WO2006025608A1 - Body fluid feeder and body fluid inspection system - Google Patents

Body fluid feeder and body fluid inspection system Download PDF

Info

Publication number
WO2006025608A1
WO2006025608A1 PCT/JP2005/016562 JP2005016562W WO2006025608A1 WO 2006025608 A1 WO2006025608 A1 WO 2006025608A1 JP 2005016562 W JP2005016562 W JP 2005016562W WO 2006025608 A1 WO2006025608 A1 WO 2006025608A1
Authority
WO
WIPO (PCT)
Prior art keywords
body fluid
blood
reagent
unit
fluid
Prior art date
Application number
PCT/JP2005/016562
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiko Waku
Original Assignee
Kabushiki Kaisya Advance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisya Advance filed Critical Kabushiki Kaisya Advance
Publication of WO2006025608A1 publication Critical patent/WO2006025608A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150343Collection vessels for collecting blood samples from the skin surface, e.g. test tubes, cuvettes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150503Single-ended needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150755Blood sample preparation for further analysis, e.g. by separating blood components or by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150801Means for facilitating use, e.g. by people with impaired vision; means for indicating when used correctly or incorrectly; means for alarming
    • A61B5/150824Means for facilitating use, e.g. by people with impaired vision; means for indicating when used correctly or incorrectly; means for alarming by visual feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism

Definitions

  • the present invention relates to a bodily fluid transfer tool for transferring bodily fluids such as blood and a bodily fluid inspection system using such bodily fluid transfer tools.
  • Concentration meter measurements of body fluid components typified by blood have been carried out for a long time using blood test equipment, and the measurement accuracy has been improved by improving the functionality of analyzers.
  • a blood test apparatus is a so-called business use, and a method in which a qualified person such as a doctor or nurse collects necessary and sufficient blood (usually about several tens of ml) using a blood collection tube is generally used. Is.
  • blood collection devices that they can use at home.
  • a technique is used in which blood is exposed to the surface of the skin, and a test piece is applied to the blood to impregnate it. It is desirable that the amount of blood collected be smaller in order to reduce the burden on patients and use at home.
  • Japanese Patent Application Laid-Open No. 1_3 1 8 8 71 describes a quantitative blood collecting device having a configuration for holding the expressed blood fraction while quantifying it.
  • This quantitative blood sampling device is suitable for a measuring device that does not have a quantitative portion, but because it is configured to hold blood by capillary force, it has the disadvantage that only a small amount of blood can be used, and it is maintained by capillary force. Therefore, if there is an incorrect contact, the capillary force may be lost and blood may be dispersed.
  • the investigative element is that the blood expression part is applied to the supply part made of a porous material, and there is no force quantification that makes it possible to impregnate the porous material with blood. It is necessary to supply a certain amount of blood using sucrose.
  • small, portable blood test devices that measure blood component concentrations in multiple items by measuring, moving and manipulating body fluids on the flow path using capillary and centrifugal forces.
  • a disc-shaped blood is injected into the center, and then blood is separated and distributed by force, and quantitative blood is supplied to the 6-type drug reaction tank, and the 33 ⁇ 4 color reaction is optically performed.
  • the transfer of blood from the specimen must use a pipette.
  • Optical body fluid component measurement in a blood test apparatus usually uses an absorbance measurement technique, and blood components such as serum are supplied to a columnar reaction tank having a liquid or solid reagent inside. After reacting with the reagent for a predetermined time, a light beam such as a laser beam is applied from the side or the vertical direction. Irradiate, measure the amount of light attenuation from reflected or transmitted light, and calibrate and measure by comparing with a calibration curve obtained from measurement of a material that has a known absorbance.
  • an invasive device that collects and analyzes blood by damaging the living body
  • it is preferable to minimize the amount of blood used so as not to burden the human body as much as possible.
  • a low-pressure blood analyzer using capillary force it is preferable to analyze blood using a smaller space.
  • Reducing the volume also means reducing the volume of the reagent reaction tank that mixes blood and reagents to cause a color reaction.
  • the area of the part irradiated with measurement light and irradiated to the outside Reducing the value may be a better adjustment than other reductions.
  • Reducing the area above and below the reagent reaction tank narrows the irradiation range of measurement light such as lasers, so that the laser light is focused with a lens. Even if the irradiation area is reduced, the deviation between the reaction tank and the optical path, which is caused by uneven rotation in the evening, may be largely reflected as a measurement error.
  • a blood cell separation tank for example, In this figure, the connection position of 30 2
  • the serum flow path after centrifugation (30 5) must be fixed, including the margin of the matrix value.
  • the present invention has been made in view of the above problems, and realizes a novel configuration for transferring bodily fluids represented by blood. That is, according to the present invention, a body fluid impregnated portion that is brought into contact with and impregnated with a body fluid exposed on the skin surface and a support portion that supports the body fluid impregnated portion are provided, and the body fluid impregnated portion is a body fluid of the body fluid inspection device.
  • a body fluid transfer device having a shape and size that can be accommodated in the examination section, a small amount of body fluid collected from a patient, typically blood, can be easily transferred.
  • the bodily fluid impregnation part is easily separated and extracted with at least a bodily fluid component, such as serum, at the time of centrifuge separation while impregnating and holding liquid such as nonwoven fabric, sponge, porous ceramics, etc. What is necessary is just to be formed from the porous material used.
  • the body fluid impregnated part only needs to have a shape and a dimension that can be mounted in a predetermined part of the inspection device. Preferably it is.
  • the support part is preferably integrated with the body fluid-impregnated part.
  • the support part can be integrated by adhesion, mechanical bonding, or the like.
  • the support portion is formed of, for example, a dense plastic, and the shape thereof may be any shape as long as it is easy to support and satisfies the use when the body fluid-impregnated portion is inserted into the inspection device. It is not limited.
  • the support part when transferring body fluid such as blood impregnated in the body fluid impregnated part, ensures that the body fluid does not adhere to the person involved in the transfer (such as a laboratory technician) or the inspection equipment.
  • the present invention relates to a testing device that processes a liquid through a flow path or the like, such as a configuration in which a body fluid such as blood is quantified and mixed with a reagent to develop a color. At Therefore, it is possible to effectively transfer a small amount of bodily fluid from the living body to equipment that can be sufficiently inspected with a small amount of bodily fluid. .
  • one or a plurality of reference reaction tanks in which an optical reference material is put in place of a reagent are placed on the measurement trajectory, so that the absorbance measurement value of the reference substance can be measured.
  • One or a plurality of reference reaction tanks may be arranged on one optical measurement trajectory in the present invention.
  • an arrangement in which reagent reaction tanks are adjacent to each other at intervals of 90 degrees on the trajectory is exemplified.
  • the optical reference substance is, for example, a dye, a dye liquid, or a solid composite material, and preferably has a known concentration, and a substance used for preparing a calibration curve is preferably used.
  • the calibration curve can be corrected by a single-point method, where an optical reference material having a known concentration component is placed on the optical path orbit at one location in the low-rise area. Place optical reference materials of known components with different concentration values (for example, concentration values indicated by cl to c4 in Fig. 8D) at several locations, and obtain errors in the absorbance values obtained individually.
  • concentration values for example, concentration values indicated by cl to c4 in Fig. 8D
  • This ⁇ overnight calibration curve slope correction etc. is exemplified, but even if there are multiple points, if the error is small, etc., the correction value is determined in a predictive and linear function. May be.
  • the measurement of the reference reaction tank can be performed by individual units before measurement, when performing measurement sequentially, when performing final measurement, or during production.
  • the data may be converted into lot management data.
  • the present invention is a unit for measuring blood components by a large number of reagent reactions, and has a rotating body structure in which a large number of measurement reaction chambers are concentrically arranged, while transmitting the unit while rotating the unit.
  • a blood test system comprising optical measuring means for optically measuring sequentially with a mold, an adjacent dummy window is formed on the same circumference as the measurement reaction chamber and at a position perpendicular to the circumferential direction of the rotating body.
  • the present invention relates to a component measurement that requires a plurality of reagent reactions from a very small amount of blood, and has an input port for storing a reagent therein and inputting a sample, and an output port for outputting a mixed sample solution of the reagent to the outside.
  • the combination configuration enables mixing with multiple reagents only by adjusting the centrifugal force and capillary force. According to this configuration, it can be used in combination with another one-time reagent reaction configuration.
  • the present invention relates to a configuration that makes it possible to adjust the amount of bodily fluid to be used.
  • blood cell separation is performed by a blood cell separation unit, and a reaction between serum and a reagent is performed, and a color reaction value is measured.
  • the volume is adjusted, the quantitative value is adjusted, and the fluid operation timing is adjusted.
  • a bodily fluid transfer device comprising a combination of a bodily fluid impregnated portion and a support portion enables a small amount of bodily fluid to be quantified, distributed, mixed, etc.
  • a testing device that can perform multi-component component measurement through operation processing, it is simple and less likely to cause bodily fluids to scatter to the outside.
  • a body fluid testing system typically a blood transfer device and a blood testing system.
  • optical information sufficient for analysis can be obtained even with a small amount of sample, and an accurate value of the component concentration can be obtained as a reagent reaction region having a diameter of several hundred m. But it becomes possible to measure.
  • a test item for reacting a plurality of types of reagents can be easily realized by adjusting centrifugal force and capillary force, and combined with a test item for reacting with one reagent. This makes it possible to perform many types of multi-item inspections by moving fluids.
  • a prosthesis can be placed on a portion of a blood cell separation chamber, a mixing / dilution chamber, a blood storage chamber, and the like that are fixed on the unit and that can adjust the volume while maintaining functionality. By doing this, it is possible to expand the field of use such as measuring different components while having the same shape and size.
  • FIG. 1 is a perspective view showing a first embodiment of the present invention.
  • FIG. 1 2A to 2C are schematic diagrams sequentially showing the operation of the embodiment shown in FIG.
  • FIG. 3 is a perspective view showing the operation of the embodiment shown in FIG. 1, and FIG. 4 is a perspective view showing the second embodiment of the present invention.
  • FIG. 5 is a perspective view showing a third embodiment of the present invention.
  • 6A to 6D are cross-sectional views sequentially showing the operation of the third embodiment of the present invention. It is a surface view
  • FIG. 7A and 7B are a sectional view and a perspective view showing a fourth embodiment of the present invention.
  • 8A to 8D are a perspective view, a cross-sectional view and a calibration curve graph showing a fifth embodiment of the present invention.
  • 9A and 9B are a perspective view and a sectional view of a sixth embodiment of the present invention.
  • FIGS. 1 O A to 10 C are graphs of received light intensity showing the operation of the embodiment shown in FIGS. 9A and 9B.
  • FIG. 11 is a plan view showing a seventh embodiment of the present invention
  • FIGS. 12A to 12C are schematic views showing the operation of the embodiment shown in FIG. And
  • FIGS. 13A and 13B are schematic views showing an eighth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • Body fluid transfer configuration especially blood transfer configuration:
  • a combination of a body fluid impregnated portion and a support portion that supports the body fluid impregnated portion is shown.
  • the shape of the body fluid impregnated part is at least a shape that can be accommodated in the body fluid testing device.
  • the body fluid is typically blood.
  • the body fluid-impregnated portion of the present invention has, for example, a shape and structure accommodated in a portion that injects blood from a unit that separates, quantifies, mixes, and moves blood cells by rotating force when it is a blood-impregnated portion. Have a low evening It is preferable to have such a porosity and shape that blood can be extracted to the outside by rotation.
  • the impregnation of blood in the body fluid impregnated part is not particularly limited, and may be a liquid holding structure by capillary force generated in the gap, or may be a brush-like porous material.
  • one or a plurality of reference reaction tanks may be provided on the optical measurement trajectory, and preferably, the reference reaction tanks are arranged at a ratio of 1: 1 in a portion adjacent to the reagent reaction tank. . This is because the possibility that the reference reaction tank has the thickness fluctuation of the adjacent reagent reaction tank is sufficiently high.
  • the absorbance O D S is obtained by measuring the absorbance in the standard reaction tank, and the concentration C 1 is obtained based on the calibration curve drawn at the initial setting. Since the concentration C s of the reference substance in the reference reaction tank is set in advance, the difference C def between C s and C 1 corresponds to the thickness of the lid and the thickness under the reaction tank. Therefore, if the concentration value obtained in the reagent reaction vessel around the reference reaction vessel is corrected by the concentration fluctuation C de, the correct concentration can be obtained.
  • the analysis unit may automatically move by drawing an optical measurement trajectory, or may be a shape that moves manually, or an optical element that automatically moves and measures.
  • a plurality of measurement probes may be provided, and the reagent part and the reference part may be measured simultaneously.
  • the present invention mainly arranges a plurality of reagent reaction tanks on a common circular orbit on a rotating body, and arranges a dummy window as a reference on the circumferential orbit, Dummy windows are formed on both sides in a direction perpendicular to the circumference, that is, in the diameter direction, and the light receiving elements on the measurement device side are also arranged at positions corresponding to the positions of these dummy windows.
  • the optical measuring body composed of the combination of the row and the light emitting element is formed so as to be slidable in the radial direction.
  • the optical light emitting body is slid by the balance of the intensity of light received by the optical measuring body. Therefore, it is sufficient that the light emission of the light emitting element can always be adjusted so as to irradiate the center of the reagent reaction part. Further, the irradiation area may be adjusted by moving the low evening drive unit and low evening.
  • Any dummy window may be used as long as it has the same color and light attenuation rate as long as the optical intensity of the light emitter can be recognized as a dummy in optical measurement.
  • the present invention is suitably used for a so-called low-humidity body fluid component testing device, typically a blood component testing device. It is preferable that the flow is controlled by centrifugal force and capillary force.
  • a supply tank that supplies blood that is also formed in a concave shape, a blood cell separation unit that separates and removes blood cells from the blood, and quantification of serum separated and extracted by the blood cell separation unit
  • the first reagent reaction tank that mixes the quantitative serum and the first reagent and performs an intermediate reaction, and the solution reacted in the first reagent reaction tank is further reacted with the reagent to develop color, and the components are measured by external photometry. It is preferable to be composed of a second reagent reaction tank to be measured.
  • Figs. 12A to 12C it may be a configuration.
  • the movement of the liquid between the first reagent reaction tank and the second reagent reaction tank is, for example, using centrifugal force due to rotation and capillary force.
  • a configuration coexisting with one reagent reaction configuration is preferred.
  • a configuration in which a mixing step with a diluent is incorporated, and a reaction with the first reagent is performed during this mixing step is exemplified.
  • the dilution step may be omitted, but a configuration may be added in which a diluent is supplied into the reaction tank at the time of reaction with the first reagent.
  • the reagent may be a solid-stated pre-encapsulated one or supplied from the outside during the reaction. Configuration that allows adjustment of the amount of body fluid to be used:
  • the present invention inputs a body fluid, typically blood, at least in a unit that uses the power to move the substrate, such as low evening, or in a unit that uses capillary action, air pressure, etc. without moving the substrate.
  • a prosthesis to change the volume of the part that temporarily stores blood, the part that separates blood cells, the part that mixes with other substances such as diluents, etc. What is necessary is just to adjust timing etc.
  • part of a prosthesis, etc. are selected suitably.
  • the blood cell storage unit in the case of a blood cell separation unit where the timing of taking out the serum is determined by the degree of blood cell separation, the blood cell storage unit is prosthetic and the amount of blood cells separated and accumulated is adjusted. There are cases.
  • Examples of the prosthesis include a prosthesis using a solid block having the same material and size and shape as the base material, and encapsulating a curable resin. It is selected appropriately.
  • Example 1 is intended to further illustrate the present invention.
  • FIG. 1 is a perspective view showing a bodily fluid transfer device according to a first embodiment of the present invention. is there.
  • 1 is a body fluid impregnated member (hereinafter also referred to as “impregnated member”) for impregnating body fluid, which is typically blood.
  • body fluid impregnated member for impregnating body fluid, which is typically blood.
  • Nonwoven fabric, sponge, sponge, porous ceramics, porous plastic It is made of paper, wood.
  • the porosity of the impregnated member 1 is preferably 50% or more, but is appropriately adjusted in accordance with the force with which the body fluid is extracted from the impregnated member in the body fluid testing device to which the impregnated member 1 is attached.
  • the impregnated member 1 may be a single porous material or an aggregate of porous materials divided into a plurality of portions. In that case, it is sufficient that the impregnated body fluid (blood, etc.) force is retained by the centrifugal force so that it flows to the outside, and various shapes can be taken within that range.
  • body fluid blood, etc.
  • Reference numeral 2 denotes a support member for supporting the impregnated member 1, which is formed of water-repellent plastic, glass, or other members.
  • the impregnation member 1 and the support member 2 can be connected by an adhesive or the like in addition to mechanical coupling.
  • Reference numeral 3 denotes a gripping part for the body fluid transfer tool, which is formed integrally with or separately from the support member 2 so as to be easily transported when picking up with a finger and transporting.
  • the gripping part 3 may be omitted depending on the transfer speed and the support material.
  • Fig. 2A skin H is injured using a skin injury device (not shown) equipped with a puncture device.
  • the skin damage device provided with the puncture device include those described in Japanese Patent Application Laid-Open No. 5-635506, but other examples include a configuration in which the lancet protrudes instantaneously.
  • FIG. 2B the impregnated member 1 is applied to the exuded blood B with the grip portion 3.
  • FIG. 2B and Fig. 2C Blood B is impregnated and absorbed (absorbed blood: GH).
  • the impregnated member 1 is accommodated in the blood accommodating portion 6 of the blood analysis row RO.
  • the support member 2 is practically handled integrally with the lid portion of the mouth pot RO.
  • the blood impregnated in the impregnating member 1 accommodated in the blood accommodating part 6 flows out to the outside by the rotation of the RO.
  • the blood that flows out travels along the flow path 7 and reaches the blood cell separation unit 8.
  • serum and blood cells are separated by moving blood cells with a high specific gravity toward the outer circumference by centrifugal force. After the separation is sufficiently performed, the serum moves to the distribution channel 10 via the siphon tube 9 by lowering the rotation speed of the low-rotation RO. The serum that has moved to the distribution channel 10 moves to the individual reagent reaction tank 1 1 and is filled in the quantitative flow channel.
  • the rotation speed of the rotor RO is increased and the fixed amount serum is supplied to the reagent reaction tank 11.
  • the opening 1 2 on the low evening RO is an example of an opening for coupling with the device for rotationally driving the mouth overnight RO.
  • the configuration is simple, The treatment of the exposed blood can be performed reliably, and measurement of many blood components can be realized from a very small amount of blood.
  • FIG. 4 A bodily fluid transfer device according to a second embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5.
  • FIG. 4 A bodily fluid transfer device according to a second embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5.
  • FIG. 4 A bodily fluid transfer device according to a second embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5.
  • FIG. 4 A bodily fluid transfer device according to a second embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5.
  • the embodiment shown in FIG. 4 shows a configuration in which a body fluid impregnated member 1 and a diluent storage part 2 1 are provided on one support body 2 2.
  • the diluent storage unit 21 is configured by filling a thin plastic bag with physiological saline or the like, and can be torn when pierced by a sharp needle or blade from the outside. Dilution
  • the plastic bag constituting the liquid storage part 21 may be any bag that can be broken if a sharp projection collides with it.
  • the diluent storage unit 21 may be made of a material that keeps the quality of the diluent constant, such as an aluminum bouch.
  • the gripping portion shown in FIG. 1 is not provided, but the support 22 is relatively larger than the support portion shown in FIG. 1, and can be gripped as it is. A gripping part may be added if necessary.
  • FIG. 5 is a perspective view showing a state in which the bodily fluid transfer device (blood transfer device) of this embodiment is actually installed on a rotor type blood test unit.
  • a smaller amount of blood is used.
  • the blood is diluted and used, but the impregnation member 1 is applied to the site where the skin has been pierced and the blood has exuded in a state where the diluent storage unit 2 1 is provided on the support 2 2.
  • the blood transfer device is set in the RO RO as shown in FIG.
  • the impregnating member 1 is press-fitted and stored in the blood storage section 6 of the low temperature RO, and the diluent storage section 2 1 is also press-fitted and stored in the diluent storage section 2 3.
  • the puncture tool 24 protruding from the bottom surface of the diluent reservoir 2 3 punctures and breaks the diluent reservoir 21 to dilute the internal diluent.
  • a configuration is adopted in which the liquid is stored outside the liquid reservoir 2 1.
  • the handling of the diluent can be simplified, the diluent can be easily stored, and the work for releasing the diluent from the diluent reservoir 21 can be facilitated.
  • a bodily fluid transfer device (blood transfer device) according to a third embodiment of the present invention will be described in detail with reference to FIGS. 6A to 6D.
  • FIG. 6A shows a configuration in which a puncture means that slides up and down is incorporated in an impregnated member.
  • 6 1 is an impregnated member, which is porous and centrifuges blood It is formed with what is detachably held at the time of separation.
  • Reference numeral 6 2 denotes a support member that accommodates the impregnating member 6 1, and an upper portion thereof and an extraction direction when the blood test apparatus is mounted are opened.
  • a puncture member 6 3 is formed at the center lower portion of the support member 6 2, and the puncture member 6 3 has an inner circumference in order to make a certain range slidable up and down.
  • a puncture member accommodating portion 6 2 1 having a protrusion formed on the other is formed integrally or detachably with another support member. Furthermore, it is preferable that a plurality of stimulation pins 6 2 3 are planted in the support member 6 2, and that the tips of the stimulation pins 6 2 3 have a slightly acute angle.
  • the puncture member 63 has a blade-like shape, a needle-like shape or the like, and has a protruding portion 6 3 a that engages with a protruding portion on the inner peripheral surface of the puncture member accommodating portion 6 21 on the outer peripheral side surface. It is.
  • the puncture member 6 3 is slidable up and down and has drive means 6 4 for assisting this sliding.
  • the driving means 64 has a configuration that pushes the puncture member 6 3 upward and also moves it downward.
  • the drive means 64 is not shown in the figure, but is a mechanism that transmits the deformation force of an elastic member such as a panel to the transmission member, and a combination in which the puncture member and the transmission member are in contact is illustrated.
  • the vibration means 64 is for transmitting the vibration generated by the rotation of the vibration mode to the outside.
  • Reference numeral 65 denotes a placement portion for a specimen, which is a portion for placing a puncture site such as a fingertip.
  • the mounting portion 65 accommodates the support member 62, and the open edge portion of the support member 62 forms a protruding portion 62 2 in a slightly protruding state as shown in the figure.
  • the fingertip is placed so as to cover the protruding portion 6 2 2 that forms the outline of the placing portion 65.
  • the puncture member 63 is hidden inside the impregnation member 61.
  • the vibration means 64 is vibrated to transmit the vibration to the support member 6 2.
  • the vibration generated in the upward projecting portion 6 2 2 of the support member 6 2 and the plurality of stimulation pins 6 2 3 is transmitted to the finger as a stimulus.
  • the puncture member 63 is vigorously pushed upward by the driving means (not shown) (arrow 6 S).
  • the puncture member 63 breaks through the impregnating member 61 and collides with the fingertip YH, causing damage S.
  • the driving means is driven to push down the puncture member 63 (arrow 6 F).
  • the blood (GB) exposed from the damage S is impregnated in the impregnating member 61 and held.
  • the support member 62 is removed from the mounting portion 65 and attached to the blood test apparatus (not shown) as shown in FIG. 6D. .
  • the structure in which the impregnating member 61 and the puncture member 63 that can slide up and down are combined is shown.
  • the puncture member is not slid up and down, and the suction force is used while keeping it fixed.
  • the structure may be such that the skin is raised and puncture is performed.
  • a combination of a puncture member and an impregnation member may be further combined with a low temperature unit for blood testing.
  • FIG. 7A and FIG. 7B show an example of this.
  • FIG. 7A is a cross-sectional view of a rotary blood test apparatus (also called a blood test unit) having a puncture portion
  • FIG. 7B is a perspective view thereof.
  • 70 is a low evening
  • 7 1 is a mouth and evening main body.
  • Mouth overnight 7 1 is made of PP, polyacrylic material, etc., and is made of a translucent material as a whole.
  • the 7 2 is the lid of Low evening 70, PET, Polyacrylic, PP It is joined to the main body 7 1 with adhesive, double-sided tape, etc.
  • Reference numeral 7 3 denotes a connection open surface, which is a part for bringing the fingertip into contact with the impregnated member 74.
  • the impregnated member 74 is made of the porous material described above, such as a nonwoven fabric or a sponge.
  • Puncture means 75 is formed in the shape of a needle or a blade, and has a structure that can slide up and down.
  • the periphery of puncturing means 75 has a configuration similar to that of the blood transfer device described above with reference to FIG. 6A. In other words, the puncture means slides up and down in communication with the vertical drive of the external drive means.
  • an accommodation part 7 7 1 is formed to accommodate the separated blood cells in the circumferential direction, and the continuous protrusion 7 7 3 so that the separated blood cells do not return to the serum part 7 7 3 again. 2 is formed.
  • 78 is a distribution channel for connecting multiple reagent reaction vessels.
  • the amount of reagent to be supplied to the reagent reaction tank 80 is determined by the length and diameter of the flow path.
  • 8 ⁇ is a reagent reaction tank that contains lyophilized reagent 80 1 inside.
  • the reagent develops color due to different components.
  • 8 1 and 8 2 are light guides, and are formed of a translucent member so that measurement light from the outside can pass therethrough. It may be unnecessary if the entire rotor body and low lid cover are transparent or translucent.
  • 8 3 is a shaft part, which forms a connection part with the external drive part.
  • 8 4 is a bearing recess, which is configured on the measurement storage side. When 3 is inserted, it has a configuration in which a locked state is formed on the inner insertion surface.
  • Shutter evening 8 6 is a housing case that houses the mouth all night 70 and has a sliding shutter 8 6 at the center.
  • the connection open surface 7 3 of the mouth 70 0 appears, and the impregnated member 7 4 appears.
  • Shutter evening 8 6 is always closed by a resilient member, etc., and when necessary, the shutter evening 8 6 is opened and fixed, and a separate device is provided to close after blood collection. This is a preferable configuration to prevent the member 7 4 from being inadvertently touched.
  • One part corresponding to the circumference of the reagent reaction tank 80 provided on the mouth / outside body 7 1 has holes 8 7 and 8 8 for optical connection with the outside. .
  • a storage case 8 5 that stores the container 70 in advance is placed on the blood test apparatus.
  • the puncturing means 75 is in a state where the driving force of the driving means on the apparatus side is transmitted.
  • the shutter 8 6 of the storage case 85 is open, and the impregnated member 74 is stopped in a visible state at the opening.
  • the opening / closing operation of the shutter 86 may be automatically closed when the housing case 85 is driven.
  • the low angle 70 is rotated, the blood in the impregnated member 74 is pushed in the circumferential direction, and moved through the flow path 76.
  • serum is separated and extracted by the blood cell separation unit 7 7, and filled into the quantitative flow path 79 connected to each reagent reaction tank 80 through the distribution flow path 7 8.
  • the rotational speed of the low pressure 70 is increased, and the serum in the quantitative flow path 79 is pushed into the reagent reaction tank 80 in the form of being pushed out.
  • laser light is transmitted from the outside (HH) through the hole 8 7 of the housing case 85, and the color is measured to obtain the component concentration.
  • Low Level 70 is an example, and it is recommended to adopt various configurations in the implementation of the present invention.
  • Such a combination of blood analysis unit and puncture means makes it possible to easily perform blood analysis even without blood collection.
  • FIG. 8A shows blood for measuring the concentration of multi-component components by separating and quantifying the blood at the center while rotating the row, distributing the quantified serum to each reagent tank and measuring the color value. It is an Example of an inspection system.
  • FIG. 8B is a schematic cross-sectional view taken along line X 2 —X 2 ′ of the blood test system shown in FIG. 8A.
  • a mouth / outlet which is formed by joining a transparent or semi-transparent mouth / outside body 8 1 made of polyacryl, PP, PET, or the like and a lid portion 8 2.
  • a transparent or semi-transparent mouth / outside body 8 1 made of polyacryl, PP, PET, or the like
  • a lid portion 8 2 In FIG. 8A, the low evening body 8 1 without the lid 8 2 is shown.
  • a blood storage tank R 1 a blood cell separation tank R 2, a distribution flow path R 3, and a quantitative flow path R 4 are formed as recesses, a reagent reaction tank 8 4 and 8 6, a reference reaction tank 8 5, 8 7, 8 8, 8 9 and 9 0 are also recessed.
  • the lid 8 2 is bonded from the top with double-sided tape or adhesive.
  • 8 3 is an optical measuring unit, and a part of the low angle 80 is sandwiched up and down in a non-contact manner.
  • the optical measuring unit 8 3 has a light emitter 9 2 such as a laser and a light receiving unit 9 3.
  • the optical measuring unit 8 3 irradiates light on the measuring light path 9 1, and the light passing through the reaction vessel is received by the light receiving unit 93. ing.
  • reaction vessel 9 4 is a reaction tank, and the inside is filled with reagents and sample or reference material.
  • the reference substance in the reaction vessel 94 does not necessarily need to be filled to the extent that there is no space, and at least it should be a standard for optical measurement.
  • 9 8 is a translucent part A, which is a part of the lower body 8 1, and has translucency.
  • Reference numeral 9 9 denotes a translucent part B, which is formed integrally with the lid part 8 2 and has translucency.
  • 9 5 indicates the optical path length
  • 96 indicates the thickness of the translucent part B
  • 9 7 indicates the thickness of the translucent part A.
  • the mouth / portion 80 rotates around the center point O, and blood (which may be impregnated blood) supplied to the central blood reservoir R 1 is caused to flow through the flow path R by centrifugal force.
  • 6 Move to the blood cell separation tank R 2 through the blood cell separation by adjusting the rotational force, extract the serum.
  • the siphon flow path R 5 supplies serum to the distribution flow path R 3 due to a decrease in the rotational speed and increase of the low speed 80, and the serum supplied to the distribution flow path R 3 R 4 is filled by capillary force.
  • the rotation of the rotor 80 is strengthened, the centrifugal force is increased, and the serum is pushed out into the reagent reaction vessels 84 and 86.
  • Serum develops a color reaction with the reagent in the reagent reaction tank, and the optical measuring unit 83 starts the measurement operation.
  • the absorbance in the reference reaction tank 85 is measured by the optical measuring section 83 in advance or after the fact.
  • FIGS. 8C and 8D show calibration curves shown in FIGS. 8C and 8D.
  • Fig. 8C shows a calibration curve for a reagent to which the single inspection standard method can be applied
  • Fig. 8D shows a calibration curve for a reagent to which the multi-inspection standard method can be applied.
  • FIG. 9A and 9B show a blood test system that is a sixth embodiment of the present invention.
  • FIG. 9A is a perspective view of the blood test system of the present example
  • FIG. 9B is a schematic cross-sectional view along the line X 2 —X 2 ′ of the blood test system shown in FIG. 9A.
  • 9 0 0 is a rotor, which is composed of a lid portion 9 0 1 and a low evening body 9 0 2.
  • the main body 90 2 is made of polypropylene, polyacrylic acid, PET, etc., and has a recess formed on the surface, blood reservoir R 1, blood cell separator R 2, distribution channel R 3, reagent reaction tank R 4, Siphon flow path R5 etc. are formed.
  • FIG. 9A shows a state in which the lid portion 9 0 1 is not attached
  • FIG. 9B shows a state in which the lid portion 9 0 1 is attached.
  • Reference numeral 9 0 3 denotes an optical measurement unit.
  • 9 0 4 is a central dummy portion.
  • the central dummy portion 04 is filled with a reference color-changing substance and transmits light to give a predetermined absorbance to the received light.
  • 9 0 5 is an outer dummy portion.
  • the outer dummy part 90 5 has the same shape as the central dummy part 90 4 and is filled with the same substance, and is provided in the outer peripheral direction.
  • 9 0 6 is an inner dummy portion.
  • the inner dummy portion 90 6 has the same shape as the central dummy portion 90 4 and is filled with the same substance, and is provided in the inner circumferential direction.
  • Each dummy part is adjacent to each other, but the interval between the dummy parts is adjusted as appropriate within the range according to the blur of the evening at the time of optical measurement.
  • the dummy parts shown in the figure have the same cylindrical shape, but may have other shapes such as a rectangular shape, and the position thereof is on the measurement trajectory and passes through the center of the reagent reaction tank. Any position can be used.
  • the arrangement of the dummy windows is not necessarily an arrangement (9A) perpendicular to the circumferential direction, and may be an arrangement in a shifted state as in the arrangements 9B and 9C.
  • the dummy windows 9 0 5 ′ and 9 0 6 ′ on both sides are shifted from each other by a predetermined angle with respect to the central dummy window 9 0 4 ′.
  • the array 9 C has a predetermined angle in the opposite direction to the array 9 B and the dummy windows 9 0 5 '' and 9 0 6 '' on both sides of the center dummy window 9 0 4 ''. It is shifted in degrees.
  • Such a shifted arrangement is less likely to form a gap between the dummy windows (so-called “dead area”) (for example, between array 9A and array 9B in FIG. 9A) than array 9A. Therefore, the more accurate light irradiation position of the light transmitting unit 9 16 can be recognized.
  • the arrangement patterns of the three dummy windows indicated by the arrangements 9A to 9C are shown. However, only various patterns are illustrated, and only one of these arrangement patterns is shown. In some cases, it may be arranged at predetermined intervals.
  • Reference numeral 9 0 7 denotes an inner light receiving portion that receives light transmitted through the inner dummy portion 90 6, photoelectrically converts it, and sends it to the processing portion 9 1 7.
  • Reference numeral 90 8 denotes a central light-receiving unit that receives light transmitted through the central dummy unit 90 4 and the reagent reaction vessel R 7, photoelectrically converts it, and sends it to the processing unit 9 17.
  • Reference numeral 9 09 denotes an outer light-receiving unit that receives light transmitted through the outer dummy portion 9 0 5, photoelectrically converts it, and sends it to the processing unit.
  • Reference numeral 9 10 denotes a lid inner translucent portion, which is disposed in the center direction of the low angle 90 0 and is formed of a translucent member.
  • 9 1 1 is a lid center translucent part, which is formed of a translucent member, and 9 1 2 is a lid outer side translucent part, which is formed of a translucent member.
  • any of these light-transmitting portions is preferably formed of a material that does not attenuate as much as possible with respect to the transmitted measurement light, and if the lid portion 9 0 1 is formed of a light-transmitting member. The material is sufficient.
  • 9 1 3 is a light transmitting part inside the body, which is made of a material that does not attenuate the passing measurement light.
  • 9 1 4 is a main body central light transmitting portion
  • 9 15 is a main body outer light transmitting portion, both of which are the same as the main body inner light transmitting portion 9 1 3 It has a material shape. Note that any of the main body translucent portions is not particularly required as long as the main body 9 0 2 has translucency.
  • the 9 1 6 is a light transmission unit, which is composed of a laser light source and a condenser lens group.
  • the light transmitter 9 1 6 may include a plurality of laser light sources.
  • the processing unit 9 1 7 is a processing unit, which includes a central processing unit and a memory.
  • the processing unit 9 1 7 obtains the absorbance, ⁇ D value, etc. for the transmitted light that has been input, compares and discriminates the distribution of the three values, and sends the drive control signal to the drive unit 9 1 8 Output.
  • Reference numeral 9 1 8 denotes a drive unit, which includes a motor, a power transmission unit, an actuate and the like, and has a servo mechanism for sliding the optical measurement unit 90 3.
  • 9 1 9 is an electrical lead wire for transmitting an electrical output for emitting the laser beam of the light transmitting unit 9 1 6.
  • 9 20 is an electrical lead wire for transmitting an electrical signal from the light receiving unit to the processing unit.
  • 9 2 1 is an electrical lead wire for electrically connecting the processing unit 9 1 7 and the driving unit 9 1 8.
  • the driving of this embodiment is performed at the timing of actual sample measurement, and is controlled so that the center received light intensity (also called received light amount) OD is the strongest as shown in Fig. 10A. Is done.
  • the mouthpiece 90 0 0 rotates, and when the reagent reaction tank on the locus 9 2 2 is optically measured, the laser beam output from the light transmitter 9 16 is somewhat
  • the central dummy portion 9 0 4 is irradiated through the main body central light transmitting portion 9 1 4 while causing scattering and attenuation.
  • the light that has passed through the central dummy portion 9 0 4 is received by the central light receiving portion 9 0 8 through the lid central light transmitting portion 9 1 1.
  • the received light is further photoelectrically converted and transmitted as an electrical signal to the processing unit 9 17 through the electrical lead wire 9 20.
  • the light transmitting unit 9 1 6 is located immediately below the central dummy unit 90 4, but a part of the light transmitting unit 9 1 3 and the outside light transmitting unit 9 1 5 are scattered due to light scattering. Through the inner dummy portion 9 0 6 and the outer dummy portion 9 0 5, respectively. Further, the passed laser light is received by the inner light receiving unit 9 0 7 through the lid inner light transmitting unit 9 10 and received by the outer light receiving unit 9 0 9 through the cover inner light transmitting unit 9 10. .
  • the state indicated by O A in FIG. 1 is the reference state, and 9 a indicates the intensity of light that has passed through the inner part 9 0 6.
  • 9b indicates the intensity of the laser beam that has passed through the central part 904, and 9c indicates the outer dummy portion 905.
  • the output laser of the light transmission unit 9 16 is tilted to the outer dummy unit 90 5 If the light is output, the amount of light output to the outer dummy portion 9 0 5 will increase, and the received light amount 9 ⁇ of the outer light receiving portion 9 0 9 will be The amount of light received is 9c, and the amount of light received by the inner light receiving unit 9 07 is larger.
  • the processing unit 9 17 instructs the driving unit 9 1 8 to slide a predetermined amount to the outside of the optical measuring unit 90 3, and the driving unit 9 18 receives the optical measuring unit 9 0 3. Slide it a predetermined amount and drive it so that the peak at the center as shown in Figure 1 OA becomes the highest in the next dummy area measurement. Then, due to uneven rotation of the rotor 90 0, as shown in FIG. 10 C, the light receiving intensity 9 g of the inner light receiving portion 9 07 is obtained from the light receiving amount 9 h and the outer light receiving amount 9 i of the central light receiving portion 90 8. When it becomes much larger, the processing unit 9 1 7 gives a command to the drive unit 9 1 8 to make the optical measurement unit 90 3 tune in the center direction, and the state as shown in FIG. Thus, the position of the optical measurement unit 90 3 is controlled.
  • Example 7 An example of the amount of light received when the dummy windows are arranged as 9B or 9C is shown by broken lines 9J and 9K in FIG. 10A. Since there are no gaps (dead areas) between the light receiving parts, the areas where the light receiving parts 9 07 to 90 9 cannot receive light are reduced, and a more accurate light irradiation range can be obtained.
  • Example 7 An example of the amount of light received when the dummy windows are arranged as 9B or 9C is shown by broken lines 9J and 9K in FIG. 10A. Since there are no gaps (dead areas) between the light receiving parts, the areas where the light receiving parts 9 07 to 90 9 cannot receive light are reduced, and a more accurate light irradiation range can be obtained.
  • Example 7 An example of the amount of light received when the dummy windows are arranged as 9B or 9C is shown by broken lines 9J and 9K in FIG. 10A. Since there are no gaps (dead areas) between the light receiving parts, the areas where the light receiving parts 9
  • the embodiment shown in Fig. 11 is a disk-shaped unit (mouth / mouth) formed as a concave part on the RO, and after the sheet-like lid is put on the concave surface, the center point O is set. Rotates as the center. It is preferable that the drive device for the rotation can change the rotation direction of the row or change the rotation speed.
  • Reference numeral 20 1 denotes an input flow path, which is formed from a blood storage part in the previous stage or a centrifuge part that separates blood cells and blood.
  • Reference numeral 20 2 denotes a first reagent reaction tank in which reagent S 1 is enclosed.
  • the reagent S 1 is preferably a lyophilized solid, but may be a liquid reagent to be injected at the time of use.
  • 2 0 3 is the second flow path, which is a bent portion bent in the center direction in the middle And having a caliber capable of exerting capillary force.
  • the second reagent reaction tank 20 4 is the second reagent reaction tank, which has the same optical measurement trajectory as the reagent reaction tank that performs the color reaction with one other reagent ⁇ T, and has the second reagent S inside. 2 is enclosed and fixed.
  • the second reagent S 2 may be solid or liquid like S 1.
  • the volumes of the first reagent reaction tank 20 2 and the second reagent reaction tank 20 4 may be different from each other in the present embodiment, and the force set to have the same volume may be different.
  • the volume of the first reagent reaction tank 20 2 is larger than the volume of the second reagent reaction tank 20 4, the connection boundary between the second reagent reaction tank 20 4 and the second flow path 20 3
  • an overflow chamber may be provided to accommodate the overflow.
  • the overflow chamber is, for example, 3 06 shown in FIG. 13 and FIG.
  • Serum preferably quantitative serum
  • the first reagent reaction tank 20 2 is supplied to the first reagent reaction tank 20 2 from the input channel 2 0 1 in FIG. Since the reagent S1 exists in the first reagent reaction tank 202, the quantitative serum is mixed with the reagent. At that time, change the rotation speed of the low evening or change the direction of rotation to mix thoroughly to form mixed serum SM (see Fig. 12 A).
  • the rotational speed of the low evening is increased again. Due to the siphon phenomenon, the mixed serum SM flows into the second reagent reaction tank 204 and is filled. After the mixed serum SM is filled in the second reagent reaction tank 204, the mixing speed is increased or changed by changing the rotation speed to form the final mixed serum SM M (See Figure 12 C). The color value of this final mixed serum SMM is read by optical measurement from outside. As described above, the flow of liquid in the two reagent reaction tanks is adjusted by adjusting the balance between capillary force and centrifugal force. This makes it easy to mix reagents and specimens multiple times. By further connecting them, it is possible to perform three or more times of reagent reactions, fluorescent substances, magnetic substance binding, etc.
  • Fig. 1 3 A and Fig. 1 3 B show the formation of a recess in a disk-shaped base material such as polypropylene, PET, PP, etc., and these recesses constitute a blood inlet, a flow path, a blood cell separator, etc. It is a thing.
  • the entire structure is omitted.
  • the surface of the base material on which the recess is formed is covered with a sheet made of the same material as the base material, and a unity is formed.
  • 3 0 1 is an input flow path, which is connected to a blood injection part formed in the vicinity of the central part O.
  • the volume between the overflow chamber 3 0 6 and the connection port of the output flow path 3 0 5 determines the amount of serum that moves to the next processing part.
  • Reference numeral 30 denotes a blood cell storage part, which is formed by a deeper recess than the separated serum part. It should be noted that the blood cell storage portion 30 3 depends on the height of the separation wall 3 0 4. That is, when the separation wall 304 is high, it may not be formed deeply. The separation wall 30 4 is set to such a height that the separated blood cells do not return to the separated serum part 30 2.
  • the blood cell storage section 30 3 may be deeper or formed in a zigzag shape so that the blood cells do not return.
  • the output flow path 3 0 5 has a flow diameter that utilizes the capillary phenomenon and forms a bent portion in the direction of the center point O, so that the centrifugal force generated by the rotational force and the capillary force of the flow path Adjust the movement.
  • the overflow chamber 30 6 is a storage section when excess blood overflows from the separated serum section 30 2.
  • the overflow chamber 3 06 is connected in the direction of the center point 0 of the separated serum part 30 2.
  • 30 7 is a distribution flow path, one of which is connected to the output flow path 3 0 5, and is a side surface of the distribution flow path 3 0 7, and a constant flow rate at a predetermined interval in the outer circumferential direction.
  • Roads 3 0 8 a to 3 0 8 d connect.
  • the fixed flow channels 30 08a to 30 08d are connected to the reagent reaction vessels 3009a to 3009d respectively, and the fixed flow channels are distributed according to the number of reagent reaction vessels 30. 7 and added to connect between reagent reaction tanks.
  • 3 10 is a prosthetic part, which is formed of the same material as the base material, and may be only a hollow and strong frame, and may be any shape that can be attached when necessary.
  • the connection of the prosthetic portion 3 10 is exemplified by the use of an adhesive, but depending on the shape, it may be simply fitted. In the present embodiment, the low evening does not need to be detached because it is generally used once. However, in some cases, the fitting configuration may be adjusted so as to be removable.
  • 3 1 1 is a stopper part made of a water-insoluble substance for blocking the flow path.
  • the stopper part 3 11 1 uses an inkjet-type discharge tool that accurately positions the discharge site to inject a water-insoluble and curable solution into the target flow.
  • the ink jet method is a method that suffices to change a commercially available ink jet ink to a hardening material, and is a preferable method when forming an embodiment of the present invention.
  • the rotor rotates around the center point 0, so that the blood collected through the input flow path 30 1 is separated into the separated serum part 30 2 and the blood cell storage part as shown in FIG. Supplied to 3 0 3.
  • the blood fills up to the opening surface of the overflow chamber 3 06, and if it continues to increase, it will overflow by the amount of increase Flows into chamber 3 0 6
  • the rotational speed of the rotor is reduced.
  • the rotation speed of the mouth overnight is increased, so that the serum of the separated serum section 30 2 is distributed to the distribution flow path 3 0 7 Output in the direction of.
  • the serum in the separated serum section 30 2 reaches the opening of the output flow path 30 5, and when the serum runs out, the fluid stops moving.
  • the serum that reaches the distribution flow path 3 0 7 is immediately before due to the capillary force.
  • the quantitative flow channels 3 0 8 a are sequentially filled. Quantitative flow path 3 0 8 a to 3 0 8 d and all other quantitative flow paths are filled with serum, then the number of revolutions is increased and the reagent reaction tank is centrifuged by centrifugal force 3 0 9 a to 3 0 9 d and other definitions The quantitative body fluid is pushed into the reagent reaction tank connected to the volume channel.
  • an unnecessary reagent reaction tank is separated by discharging the curing material to a predetermined position of the distribution flow path 30 7 by using an injection method or the like and curing it to form a plug 3 1 1.
  • the formation of the plug part 3 1 1 is preferable because the injection method makes it possible to form a plug part of any size in any place, such as a commercially available printer. It is.
  • test items can be increased or decreased by forming the state shown in Fig. 13 B, and even for blood test units that are mass-produced and fixedly formed, the required items can be tested. Can only be done. Industrial applicability
  • the transfer of a very small amount of blood can be simplified, it becomes possible to sufficiently utilize a testing apparatus capable of measuring various blood components even with a very small amount of blood.
  • handling can be simplified.
  • blood component measurement can be realized without any special training, overcoming the problems in mass production of units that can be handled disposablely by individual patients, and stable measurement can be achieved. And can expand the blood measurement field.
  • the super-flux having a flow path configuration that is difficult to adjust. It is possible to provide a simpler blood test unit by expanding the range of use of the small blood analysis unit and reducing the cost of manufacturing the analysis unit.

Abstract

A body fluid feeder and a body fluid inspection system for feeding and inspecting a body fluid. The body fluid feeder, particularly a blood feeder, is characterized by comprising a body fluid impregnating part capable of impregnating the body fluid therein by the contact thereof with the body fluid and a support part supporting the body fluid impregnating part and in that the body fluid impregnating part has such a shape and a size that can be stored in the body fluid inspection part of a body fluid inspection apparatus. The body fluid inspection system is characterized by comprising a blood organism measuring device optically measuring by operating a fluid while rotating a rotor, a standard tank installed on the measuring circumference of the blood organism measuring device and storing a standard substance, and a correction means measuring the dispersion of the optical path length of the standard tank by measuring the absorbancy of the standard substance stored in the standard tank beforehand and correcting optical information such as dimensional error.

Description

体液移送具及び体液検査システム Body fluid transfer device and body fluid inspection system
技術分野 Technical field
本発明は、 例えば血液などの体液を移送するための体液移送具及 びかかる体液移送具を用いた体液検査システムに関する。  The present invention relates to a bodily fluid transfer tool for transferring bodily fluids such as blood and a bodily fluid inspection system using such bodily fluid transfer tools.
明 背景技術  Background art
血液に代表される体液成分の濃度計書測は、 血液検査装置を使用し て古くから行われおり、 また、 計測精度は、 分析装置の高機能化等 により向上してきた。 このような血液検査装置は、 いわゆる業務用 であって、 医師、 看護士等の有資格者が、 採血管を用いて必耍十分 な血液 (通常、 数十 m l程度) を採取する方式が一般的である。  Concentration meter measurements of body fluid components typified by blood have been carried out for a long time using blood test equipment, and the measurement accuracy has been improved by improving the functionality of analyzers. Such a blood test apparatus is a so-called business use, and a method in which a qualified person such as a doctor or nurse collects necessary and sufficient blood (usually about several tens of ml) using a blood collection tube is generally used. Is.
一方、 糖尿病患者のように、 血糖値の変化が経時的に気になる患 者は、 在宅で自 らが使用できる採血機器を使用している。 この採血 機器では、 血液を皮膚表面に表出させ、 これに試験片をあてがい含 浸させるといった手法が用いられている。 血液の採取量は、 在宅で の使用、 患者への負担の軽減をするために、 より少量であることが 望ましい。  On the other hand, patients who are concerned about changes in blood glucose levels over time, such as diabetic patients, use blood collection devices that they can use at home. In this blood collection device, a technique is used in which blood is exposed to the surface of the skin, and a test piece is applied to the blood to impregnate it. It is desirable that the amount of blood collected be smaller in order to reduce the burden on patients and use at home.
例えば特開平 1 1 _ 3 1 8 8 7 1号公報には、 表出した血液留を 定量しながら保持する構成を備えた定量採血具が記載されている。 この定量採血具は、 定量部を持たない計測装置にづいては好適であ るが、 毛管力により血液を保持する構成であるため、 少量の血液し か利用できないという欠点や、 毛管力で維持するため、 誤った接触 があった場合、 毛管力が崩れ、 血液が分散してしまう恐れがある。  For example, Japanese Patent Application Laid-Open No. 1_3 1 8 8 71 describes a quantitative blood collecting device having a configuration for holding the expressed blood fraction while quantifying it. This quantitative blood sampling device is suitable for a measuring device that does not have a quantitative portion, but because it is configured to hold blood by capillary force, it has the disadvantage that only a small amount of blood can be used, and it is maintained by capillary force. Therefore, if there is an incorrect contact, the capillary force may be lost and blood may be dispersed.
ところで、 ドライケミス ト リーのような、 '試験紙タイプの血液検 査要素は、 多孔質材よりなる供給部へ血液表出部をあてがう ことで 、 多孔質材へ血液を含浸させることも可能のように感じられる力 定量性がないため、 分注用ピぺッ トなどを用いた血液の定量供給が 必要となってく る。 By the way, like a dry chemistry tree, a 'test paper type blood test The investigative element is that the blood expression part is applied to the supply part made of a porous material, and there is no force quantification that makes it possible to impregnate the porous material with blood. It is necessary to supply a certain amount of blood using sucrose.
他方において、 多項目の血液成分濃度測定を、 体液を流路上を毛 管力、 遠心力を利用して定量、 移動、 操作させて行う、 小型で、 携 帯可能なロー夕形式の血液検査装置が提案されている。 この血液検 査装置には、 例えば、 円盤状で、 中央に血液を注入した後 、 、力 で、 血球分離、 分配、 6式薬反応槽への定量血液の供給を行い 、 3¾色 反応を光学的に測定し 、 成分濃度を表示する装置があるが 、 検体か らの血液の移送は、 ピぺッ トを利用 しなければならない。  On the other hand, small, portable blood test devices that measure blood component concentrations in multiple items by measuring, moving and manipulating body fluids on the flow path using capillary and centrifugal forces. Has been proposed. In this blood test apparatus, for example, a disc-shaped blood is injected into the center, and then blood is separated and distributed by force, and quantitative blood is supplied to the 6-type drug reaction tank, and the 3¾ color reaction is optically performed. Although there is a device that measures and displays the concentration of the component, the transfer of blood from the specimen must use a pipette.
血液検査について記載したその他の従来技術としては、 例えば、 特開平 1 1 一 1 7 4 0 4 8号公報、 特開 2 0 0 4 — 1 0 1 3 8 1 号 公報、 特開平 5 — 7 2 2 1 0号公報、 特表平 9 一 5 0 4 7 3 2号公 報、 特表平 3 — 5 1 0 4 8 4号公報、 特開平 5 — 5 0 8 7 0 9号公 報、 特公昭 5 0 — 2 3 6 2 4号公報、 特表 2 0 0 3 — 5 2 0 5 8 2 号公報などを挙げることができる。 発明の開示  Other conventional techniques described for blood tests include, for example, Japanese Patent Laid-Open No. 1 1 1 1 7 4 0 4 8, Japanese Patent Laid-Open No. 2 0 0 4 — 1 0 1 3 8 1, and Japanese Patent Laid-Open No. 5 7-2. No. 2 1 0, No. 9 Heisei 5 0 4 7 3 No. 2, No. 3 No. 5-5 1 0 4 8 No. 4, No. 5 No. 5-5 0 8 7 0 No. 9 The official gazettes of No. 5 0 — 2 3 6 2 4 and the special table 2 0 0 3 — 5 2 0 5 8 2 can be cited. Disclosure of the invention
少量でありながら計測に必要十分な血液を保持するとともに、 そ の血液を血液検査装置へ移送する器具は存在せず、 ましてや数十〜 数百マイク ロ リ ッ トル ( 1 ) の体液を血液検査装置で検査可能に 移送するのに適当な構成は、 未だ存在していない。  Although there is no small amount of blood that holds enough blood for measurement and there is no instrument to transfer the blood to a blood test device, more than tens to hundreds of microliters (1) of body fluid can be used for blood tests. There is still no suitable configuration for transporting the equipment for inspection.
血液検査装置における光学的体液成分測定は、 通常、 吸光度計測 手法を用いるもので、 液状乃至固体状の試薬を内部に有する主に柱 状の反応槽に対し、 血清などの血液成分を供給し、 試薬と所定時間 反応させた後、 その側面又は上下方向から レーザ光等の光ビームを 照射し、 反射光又は透過光から、 光量の減衰量を計測して、 別途既 知の吸光度を示す材料の計測から得られた検量線との比較によって 校正計測するものである Optical body fluid component measurement in a blood test apparatus usually uses an absorbance measurement technique, and blood components such as serum are supplied to a columnar reaction tank having a liquid or solid reagent inside. After reacting with the reagent for a predetermined time, a light beam such as a laser beam is applied from the side or the vertical direction. Irradiate, measure the amount of light attenuation from reflected or transmitted light, and calibrate and measure by comparing with a calibration curve obtained from measurement of a material that has a known absorbance.
従って、 血液量をより少量化すると共に装置全体をよ Ό薄く小さ く しょう とする場合や試薬や試料の性質によっては、 より濃い反応 色に対応する必要が生じ 、 少なく とも反応槽の光路長を短 < して反 応試料から得られる光をより多く検出して 、 検量線による高濃度値 検出に対する精度を向上させよう とするために、 反応槽を含む基材 をより薄く小さくする必要が生じる。  Therefore, it is necessary to cope with a darker reaction color when reducing the blood volume and making the entire device thinner and smaller, or depending on the nature of the reagent or sample, and at least increase the optical path length of the reaction tank. In short, in order to detect more light obtained from the reaction sample and improve the accuracy for detecting high concentration values using the calibration curve, it is necessary to make the substrate including the reaction vessel thinner and smaller. .
このよ Όな場合 、 反応槽を薄 <小さくすると、 今まで問題になら なかつた基材製造時の目に見えないハ、リや、 材質の変成等の誤差が 計測光に旦; ί響を与えるようになるのである。 例えば光路長を 2 m m とすると 、 光路長を形成する部材に生じる 1 0 0 Sクロン ( m ) の誤差は 、 それだけで精度を 5 %マイナスとする 。 更に、 光路長を 仮に 1 m mとすると、 上記の構 だけで 1 0 %マィナスとなつ てしまい、 正確な成分分析が困難になる。  In such a case, if the reaction vessel is made thinner and smaller, errors such as invisibility and material transformation that have not been a problem until now and material modification will be affected by the measurement light. It comes to give. For example, when the optical path length is 2 mm, the error of 100 S cron (m) generated in the member forming the optical path length is minus 5% accuracy by itself. Furthermore, assuming that the optical path length is 1 mm, it becomes 10% minus only with the above configuration, and accurate component analysis becomes difficult.
上述のように生体に損傷を加えて血液を採取し分析する観血的な 装置に関しては、 なるべく人体に負担を与えないよ に使用血液量 を最小にすることが好ましいことから、 JS 、力と毛管力を利用 した ロー夕形式の血液分析装置において ¾、 より小さい空間を利用して 血液の分析を行う ことが好ましい。  As described above, regarding an invasive device that collects and analyzes blood by damaging the living body, it is preferable to minimize the amount of blood used so as not to burden the human body as much as possible. In a low-pressure blood analyzer using capillary force, it is preferable to analyze blood using a smaller space.
ロー夕を小さくするという ことは、 血液と試薬とを混合して発色 反応を行わせる試薬反応槽の体積を小さくすることでもあり、 その 際、 計測光を入射し、 外部へ照射する部分の面積を小さくすること が、 その他の縮小より も好ましい調整となる場合がある。  Reducing the volume also means reducing the volume of the reagent reaction tank that mixes blood and reagents to cause a color reaction. At this time, the area of the part irradiated with measurement light and irradiated to the outside Reducing the value may be a better adjustment than other reductions.
試薬反応槽の上下の面積を小さくすることは、 反面レーザ等の計 測光の照射範囲を狭く してしまうために、 レーザ光をレンズで絞つ て照射面積を狭く しても、 ロー夕の回転むら等からく る反応槽と光 路のずれが、 測定誤差と して大きく反映されることになつてしまう 場合がある。 Reducing the area above and below the reagent reaction tank, on the other hand, narrows the irradiation range of measurement light such as lasers, so that the laser light is focused with a lens. Even if the irradiation area is reduced, the deviation between the reaction tank and the optical path, which is caused by uneven rotation in the evening, may be largely reflected as a measurement error.
と ろで、 血液成分の多項目に及ぶ成分検査項目の中には、 他の 反応工程とは異なつて D H L C等、 少なく とも 2種類の試薬と 反応させた結果を分光光度的に測定しなければならない項目もある On the other hand, some of the component test items that cover multiple blood components must be measured spectrophotometrically with the results of reaction with at least two reagents, such as DHLC, unlike other reaction processes. Some items are not
。 しかし、 微小流体を移動させて、 複数回の試薬反応を行わせる構 成であつて、 より少量の皿液成分計測を可能とするための構成につ いては 、 未だ開示されるに至っていない。 . However, a configuration in which a microfluid is moved and a reagent reaction is performed a plurality of times and a configuration that enables measurement of a smaller amount of a dish liquid component has not yet been disclosed.
また 、 基板上に流路、 反応槽、 分離槽等を形成して検查ュニッ を量 する場合は、 精密に調整加工した金型を作成することで 安 定した反応動作を保証する検査ュニッ 卜の提供が可能となる力 況に応じては、 検查 二ッ 卜が取り扱つ血液量を最小にしたいとい う二ーズが頻繁に生じ  In addition, when a flow path, reaction tank, separation tank, etc. are formed on a substrate to measure the test unit, an inspection unit that ensures stable reaction operation by creating a precisely adjusted mold. Depending on the strength of the situation, it is often necessary to minimize the amount of blood handled by the laboratory.
の状況は、 より串者に苦痛を与えないために最小限の採血で留 めたいというニーズとも一致する。 例えば、 必要血液量が 4 5 1 で 1 5種類の検査反応をさせるために提供される血液分析ュ ―ッ 卜 に対し、 検査状況により必要検査項 が 5項目で足り る場合 ある が、 その場合でも血液量は 4 5 1必要となってしまう。  This situation is also consistent with the need to keep blood with minimal blood draw so as not to cause more pain to the skewer. For example, if the required blood volume is 4 5 1 and the blood analysis tool provided to allow 15 types of test reactions, 5 test items may be sufficient depending on the test status. But blood volume is required 4 5 1.
血液の必要量が変わらない原因の一つと して、 例えば図 1 3 A及 び図 1 3 Bのような血球分離の際に遠心分離を利用する構成を例に とると、 血球分離槽 (例えば、 図の 3 0 2 ) と遠心分離後の血清の 移動流路 ( 3 0 5 ) の接続位置をへマ トク リ ッ ト値のマージンを含 めて固定しなければならないことが挙げられる。 しかしながら、 精 密な金型を利用 した量産後の血球分離部と流路の固定された接続関 係を変化させることは不可能である。  As one of the reasons why the required amount of blood does not change, for example, in the configuration using centrifugation for blood cell separation as shown in FIGS. 13A and 13B, a blood cell separation tank (for example, In this figure, the connection position of 30 2) and the serum flow path after centrifugation (30 5) must be fixed, including the margin of the matrix value. However, it is impossible to change the connection relationship between the blood cell separation part and the flow path after mass production using a precise mold.
以上の事項は、 より限られた血液を採取して、 血液の多項目成分 の計測を行うための構成であって、 在宅医療にも適用可能なものに ついては、 より大きな課題となる。 The above items are collected from a limited number of blood samples. This is a bigger problem for a configuration that can be applied to home medical care.
本発明は、 上記の課題に鑑みたもので、 血液に代表される体液の 移送のための新規な構成を実現する。 すなわち、 本発明によれば、 皮膚表面に表出した体液に接触させ含浸させる体液含浸部と、 その 体液含浸部を支持する支持部とを備え、 かつ体液含浸部が、 体液検 査装置の体液検査部へ収容可能な形状及び寸法を有してなる体液移 送具により、 患者から採取される微量な体液、 典型的には血液の移 送を容易に実現する。  The present invention has been made in view of the above problems, and realizes a novel configuration for transferring bodily fluids represented by blood. That is, according to the present invention, a body fluid impregnated portion that is brought into contact with and impregnated with a body fluid exposed on the skin surface and a support portion that supports the body fluid impregnated portion are provided, and the body fluid impregnated portion is a body fluid of the body fluid inspection device. By using a body fluid transfer device having a shape and size that can be accommodated in the examination section, a small amount of body fluid collected from a patient, typically blood, can be easily transferred.
本発明の体液移送具において、 体液含浸部は、 例えば、 不織布、 スポンジ、 多孔質セラミ ックス等、 液体を含浸保持させながら、 遠 心分離の際、 容易に少なく とも体液成分、 例えば血清が分離抽出さ れる多孔質性の材料から形成されていればよい。 また、 体液含浸部 は、 検査機器の所定の部位内に装着され得る形状及び寸法を有して おればよく、 したがって、 体液含浸部が装着されるべき検査機器内 の部位の形状に成形されていることが好ましい。  In the bodily fluid transfer device of the present invention, the bodily fluid impregnation part is easily separated and extracted with at least a bodily fluid component, such as serum, at the time of centrifuge separation while impregnating and holding liquid such as nonwoven fabric, sponge, porous ceramics, etc. What is necessary is just to be formed from the porous material used. In addition, the body fluid impregnated part only needs to have a shape and a dimension that can be mounted in a predetermined part of the inspection device. Preferably it is.
支持部は、 体液含浸部と一体化した形であることが好ましく、 例 えば、 接着、 機械的結合等により一体化可能である。 支持部は、 例 えば緻密なプラスチック等で形成され、 その形状は、 支持し易さが あり、 かつ体液含浸部を検査機器に挿入される際の使用を満足させ る形状であればよく、 特に限定されるものではない。 また、 支持部 は、 少なく とも、 体液含浸部に含浸された血液等の体液を移送する 際、 移送に携わる人 (検査技師等) や検査機器にその体液が付着し ない状態が確保されるものであれば、 特に限定されるものではない 本発明は、 血液などの体液を、 定量し、 試薬等と混合して発色さ せる構成のような、 液体を流路等を介して処理する検査機器であつ て、 微量の体液で十分に検査を行い得る機器に、 微量な体液を、 生 体から有効に移送することを実現する。 . The support part is preferably integrated with the body fluid-impregnated part. For example, the support part can be integrated by adhesion, mechanical bonding, or the like. The support portion is formed of, for example, a dense plastic, and the shape thereof may be any shape as long as it is easy to support and satisfies the use when the body fluid-impregnated portion is inserted into the inspection device. It is not limited. In addition, the support part, when transferring body fluid such as blood impregnated in the body fluid impregnated part, ensures that the body fluid does not adhere to the person involved in the transfer (such as a laboratory technician) or the inspection equipment. As long as the present invention is not particularly limited, the present invention relates to a testing device that processes a liquid through a flow path or the like, such as a configuration in which a body fluid such as blood is quantified and mixed with a reagent to develop a color. At Therefore, it is possible to effectively transfer a small amount of bodily fluid from the living body to equipment that can be sufficiently inspected with a small amount of bodily fluid. .
更に本発明は、 光学計測において、 試薬の代わり に光学的基準物 質を入れた基準反応槽を、 測定軌道上に 1個乃至複数個を据えるこ とで、 計測時、 基準物質の吸光度計測値から濃度を得て、 検量線の ずれから光路長のぶれを検出して、 濃度の補償を行う ことで、 製品 の量産時に生じる規格のばらつきをなくすことを実現する。  Furthermore, in the present invention, in the optical measurement, one or a plurality of reference reaction tanks in which an optical reference material is put in place of a reagent are placed on the measurement trajectory, so that the absorbance measurement value of the reference substance can be measured. By obtaining the concentration from the calibration curve, and detecting the optical path length fluctuation from the deviation of the calibration curve, and compensating the concentration, it is possible to eliminate the variations in specifications that occur during mass production of products.
本発明は、 濃度の濃い血液反応項目を計測するのに吸光度 O D値 を下げるためや全体血液量を少なく酸素反応をしやすくするなどの 理由で、 光路長を短くする必要が生じた場合等、 基準反応槽を計測 することで、 検量線の補正が可能となるのである。  In the present invention, it is necessary to shorten the optical path length for the purpose of lowering the absorbance OD value for measuring a blood reaction item having a high concentration or reducing the total blood volume to facilitate an oxygen reaction, etc. Calibration of the calibration curve is possible by measuring the reference reaction tank.
本発明における基準反応槽は、 一つの光学計測軌道上に 1個乃至 複数個を配置すればよいが、 例えば軌道上、 9 0度間隔で試薬反応 槽が隣接する配置が例示される。  One or a plurality of reference reaction tanks may be arranged on one optical measurement trajectory in the present invention. For example, an arrangement in which reagent reaction tanks are adjacent to each other at intervals of 90 degrees on the trajectory is exemplified.
光学的基準物質は、 例えば、 色素、 色素の液体又は固体の複合材 であって、 濃度が既知であることが好ましく、 検量線を作成する際 に使用する物質が好適に利用される。  The optical reference substance is, for example, a dye, a dye liquid, or a solid composite material, and preferably has a known concentration, and a substance used for preparing a calibration curve is preferably used.
検量線の補正は、 一点法である場合は、 ロー夕の 1箇所に、 既知 の濃度成分をもつ光学的基準物質を光路軌道上に配置すればよいが 、 多点の場合は、 ロー夕の数箇所に、 既知であって異なる濃度値を もった成分の光学的基準物質 (例えば、 図 8 Dに c l 〜 c 4で示す 濃度値) を配置し、 個々に得られる吸光度値の誤差を得るなどして 、 この□一夕検量線の傾き補正等をすることが例示されるが、 多点 であっても、 誤差が小さい場合等は、 予測的で直線関数的に、 補正 値を決定してもよい。  The calibration curve can be corrected by a single-point method, where an optical reference material having a known concentration component is placed on the optical path orbit at one location in the low-rise area. Place optical reference materials of known components with different concentration values (for example, concentration values indicated by cl to c4 in Fig. 8D) at several locations, and obtain errors in the absorbance values obtained individually. This □ overnight calibration curve slope correction etc. is exemplified, but even if there are multiple points, if the error is small, etc., the correction value is determined in a predictive and linear function. May be.
この基準反応槽の計測は、 個別のユニッ トで、 計測前に行う場合 、 計測時逐次行う場合や最終計測時に行ってもよいし、 生産時に行 いロッ ト管理データ化してしまう ものでもよい場合もある。 The measurement of the reference reaction tank can be performed by individual units before measurement, when performing measurement sequentially, when performing final measurement, or during production. In some cases, the data may be converted into lot management data.
更に本発明は、 多数項目の試薬反応による血液成分を計測するュ ニッ 卜であって、 同心円状に計測反応室が多数配置されている回転 体構造を有し同ュニッ トを回転させながら、 透過型で光学的に順次 計測する光学計測手段を具えた血液検査システムにおいて、 計測反 応室と同一の円周上及び回転体の円周方向に垂直な位置で隣接する ダミー窓を形成し、 当該ダミー窓を透過する透過光量から、 発光体 の発光光路のずれを検出し、 正確な試料分析を実現する。  Furthermore, the present invention is a unit for measuring blood components by a large number of reagent reactions, and has a rotating body structure in which a large number of measurement reaction chambers are concentrically arranged, while transmitting the unit while rotating the unit. In a blood test system comprising optical measuring means for optically measuring sequentially with a mold, an adjacent dummy window is formed on the same circumference as the measurement reaction chamber and at a position perpendicular to the circumferential direction of the rotating body. By detecting the deviation of the light emission path of the light emitter from the amount of light transmitted through the dummy window, accurate sample analysis is realized.
更に本発明は、 微量血液から複数試薬反応を必要とする成分計測 について、 内部に試薬を収容し、 試料を入力する入力口と、 前記試 薬との混合試料液を外部へ出力する出力口を具えた第 1試薬反応槽 と、 内部に試薬を収容し、 第 1試薬反応槽から供給された混合試料 溶液を入力する入力口と、 外部より計測可能な構成を有する第 2試 薬反応槽の組み合わせ構成により、 遠心力と毛管力の調整のみで、 複数の試薬との混合を可能とする。 当該構成によれば、 他の一回の 試薬反応構成との併用も可能となるのである。  Furthermore, the present invention relates to a component measurement that requires a plurality of reagent reactions from a very small amount of blood, and has an input port for storing a reagent therein and inputting a sample, and an output port for outputting a mixed sample solution of the reagent to the outside. A first reagent reaction tank, a reagent container inside, an input port for inputting the mixed sample solution supplied from the first reagent reaction tank, and a second reagent reaction tank having a configuration that can be measured from the outside. The combination configuration enables mixing with multiple reagents only by adjusting the centrifugal force and capillary force. According to this configuration, it can be used in combination with another one-time reagent reaction configuration.
更に本発明は、 利用する体液の量を調整可能とする構成について 、 回転体上で、 血球分離部で血球分離を行い、 血清と試薬とを反応 させて、 その発色反応値を計測する体液検査システムにおいて、 前 記血球分離部内の容積を調整するために補綴する補綴体を備えるこ とで、 容積を調整し、 定量値の調整、 流体操作タイ ミ ングの調整等 を実現する。  Furthermore, the present invention relates to a configuration that makes it possible to adjust the amount of bodily fluid to be used. On a rotating body, blood cell separation is performed by a blood cell separation unit, and a reaction between serum and a reagent is performed, and a color reaction value is measured. In the system, by providing a prosthetic body that performs prosthesis to adjust the volume in the blood cell separation unit, the volume is adjusted, the quantitative value is adjusted, and the fluid operation timing is adjusted.
本発明によれば、 以下の説明からより詳細に理解されるように、 体液含浸部と支持部の組み合わせによる体液移送具の利用により、 少量の体液でしかもその体液を定量、 分配、 混合等の操作処理をし て多項目の成分測定を可能とする検査機器に移送する際、 簡単でし かも外部へ体液が飛散する恐れが少なく、 しかも安価な体液移送具 及び体液検査システム、 典型的には血液移送具及び血液検査システ ムを提供できる。 According to the present invention, as will be understood in more detail from the following description, the use of a bodily fluid transfer device comprising a combination of a bodily fluid impregnated portion and a support portion enables a small amount of bodily fluid to be quantified, distributed, mixed, etc. When transferring to a testing device that can perform multi-component component measurement through operation processing, it is simple and less likely to cause bodily fluids to scatter to the outside. And a body fluid testing system, typically a blood transfer device and a blood testing system.
また、 本発明によれば、 少量の血液を用いて多項目成分分析を行 う場合、 検査ユニッ トをより薄く小さ くするために光学的計測量産 時に不可避的に生じる、 構成のぶれや光路長の変更にも十分対応で き、 計測範囲が格段に広がる。  In addition, according to the present invention, when multi-component analysis is performed using a small amount of blood, in order to make the test unit thinner and thinner, it is unavoidable at the time of optical measurement and mass production. It is possible to cope with changes in the measurement range and the measurement range is greatly expanded.
さ らに、 本発明によれば、 少量の検体であっても分析に十分な光 学的情報を得ることが可能となり、 成分濃度の正確な値を数 1 0 0 mの直径の試薬反応領域でも計測可能となる。  Furthermore, according to the present invention, optical information sufficient for analysis can be obtained even with a small amount of sample, and an accurate value of the component concentration can be obtained as a reagent reaction region having a diameter of several hundred m. But it becomes possible to measure.
さ らにまた、 本発明によれば、 複数種類の試薬を反応させる検査 項目を、 遠心力と毛管力の調整により容易に実現することができ、 しかも一つの試薬と反応させる検査項目との併用が容易であり、 流 体の移動によるより多くの種類の多項目検査が可能となる。  Furthermore, according to the present invention, a test item for reacting a plurality of types of reagents can be easily realized by adjusting centrifugal force and capillary force, and combined with a test item for reacting with one reagent. This makes it possible to perform many types of multi-item inspections by moving fluids.
さらに加えて、 本発明によれば、 ユニッ ト上に固定された、 容積 を持つ血球分離室、 混合希釈室、 血液貯留室などに対し、 機能性を 維持しながら当該容積を調整できる部位に補綴を行う ことで、 同一 の形状、 大きさを有しながら、 異なる成分測定等、 利用分野を広げ ることが可能となる。 図面の簡単な説明  In addition, according to the present invention, a prosthesis can be placed on a portion of a blood cell separation chamber, a mixing / dilution chamber, a blood storage chamber, and the like that are fixed on the unit and that can adjust the volume while maintaining functionality. By doing this, it is possible to expand the field of use such as measuring different components while having the same shape and size. Brief Description of Drawings
図 1 は、 本発明の第 1 の実施例を示した斜視図であり、  FIG. 1 is a perspective view showing a first embodiment of the present invention.
図 2 A〜図 2 Cは、 図 1 に示した実施例の動作を順に示した模式 図であり、  2A to 2C are schematic diagrams sequentially showing the operation of the embodiment shown in FIG.
図 3 は、 図 1 に示した実施例の動作を示した斜視図であり、 図 4は、 本発明の第 2 の実施例を示した斜視図であり、  FIG. 3 is a perspective view showing the operation of the embodiment shown in FIG. 1, and FIG. 4 is a perspective view showing the second embodiment of the present invention.
図 5 は、 本発明の第 3 の実施例を示した斜視図であり、  FIG. 5 is a perspective view showing a third embodiment of the present invention.
図 6 A〜図 6 Dは、 本発明の第 3 の実施例の動作を順に示した断 面図であり、 6A to 6D are cross-sectional views sequentially showing the operation of the third embodiment of the present invention. It is a surface view,
図 7 A及び図 7 Bは、 本発明の第 4の実施例を示した断面図及び 斜視図であり、  7A and 7B are a sectional view and a perspective view showing a fourth embodiment of the present invention,
図 8 A〜図 8 Dは、 本発明の第 5の実施例を示した斜視図、 断面 図及び検量線のグラフであり、  8A to 8D are a perspective view, a cross-sectional view and a calibration curve graph showing a fifth embodiment of the present invention,
図 9 A及び図 9 Bは、 本発明の第 6の実施例をした斜視図及び断 面図であり、  9A and 9B are a perspective view and a sectional view of a sixth embodiment of the present invention,
図 1 O A〜図 1 0 Cは、 図 9 A及び図 9 Bに示した実施例の動作 を示した受光強度のグラフであり、  FIGS. 1 O A to 10 C are graphs of received light intensity showing the operation of the embodiment shown in FIGS. 9A and 9B.
図 1 1 は、 本発明の第 7の実施例を示した平面図であり、 図 1 2 A〜図 1 2 Cは、 図 1 1 に示した実施例の動作を示した模 式図であり、 そして  FIG. 11 is a plan view showing a seventh embodiment of the present invention, and FIGS. 12A to 12C are schematic views showing the operation of the embodiment shown in FIG. And
図 1 3 A及び図 1 3 Bは、 本発明の第 8の実施例を示した模式図 である。 発明を実施するための最良の形態  13A and 13B are schematic views showing an eighth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
引き続いて、 本発明をその好ましい実施の形態について説明する 。 なお、 本発明は、 以下に記載する特定の実施の形態によって限定 されるものではないことを理解されたい。  Subsequently, the present invention will be described with reference to its preferred embodiments. It should be understood that the present invention is not limited to the specific embodiments described below.
体液移送構成、 特に血液移送構成 : Body fluid transfer configuration, especially blood transfer configuration:
本発明における実施の最良の形態の一例と して、 体液含浸部と、 この体液含浸部を支持する支持部との組み合わせが示される。 体液 含浸部の形状は、 少なく とも体液検査装置内に収容可能な形状であ る。 体液は、 典型的には血液である。  As an example of the best mode for carrying out the present invention, a combination of a body fluid impregnated portion and a support portion that supports the body fluid impregnated portion is shown. The shape of the body fluid impregnated part is at least a shape that can be accommodated in the body fluid testing device. The body fluid is typically blood.
本発明の体液含浸部は、 例えばそれが血液含浸部である場合、 回 転力により、 血球分離、 定量、 混合、 移動をさせるユニッ トの血液 を外部より注入する部分に収容される形状及び構造を有し、 ロー夕 の回転により、 外部へ血液が抽出できる程度の空隙率、 形状を有す ることが好ましい。 体液含浸部の血液の含浸は、 特に限定されるも のではなく、 空隙に生じる毛管力による液体の保持構造であっても よく、 ブラシ状などの多孔質材であってもよい。 The body fluid-impregnated portion of the present invention has, for example, a shape and structure accommodated in a portion that injects blood from a unit that separates, quantifies, mixes, and moves blood cells by rotating force when it is a blood-impregnated portion. Have a low evening It is preferable to have such a porosity and shape that blood can be extracted to the outside by rotation. The impregnation of blood in the body fluid impregnated part is not particularly limited, and may be a liquid holding structure by capillary force generated in the gap, or may be a brush-like porous material.
光学計測 : Optical measurement:
本発明においては、 光学的計測軌道上に 1個乃至複数個の基準反 応槽があればよく、 好ましく は、 試薬反応槽に隣接する部分に 1対 1 の割合で基準反応槽が配置される。 この場合、 隣接する試薬反応 槽が持つ厚みのぶれを基準反応槽が持つ可能性が十分に高いからで ある。  In the present invention, one or a plurality of reference reaction tanks may be provided on the optical measurement trajectory, and preferably, the reference reaction tanks are arranged at a ratio of 1: 1 in a portion adjacent to the reagent reaction tank. . This is because the possibility that the reference reaction tank has the thickness fluctuation of the adjacent reagent reaction tank is sufficiently high.
例えば、 基準反応槽の、 吸光度を測定して吸光度 O D S を得、 初 期設定時に引かれた検量線に基づいて濃度 C 1 を得る。 基準反応槽 の基準物質の濃度値 C sは予め設定されていることから、 C sと C 1 の差 C d e fが、 蓋の厚みや、 反応槽下の厚みのぶれに相当する。 従 つて、 基準反応槽周辺の試薬反応槽で得られた濃度値を濃度のぶれ C d e こよって補正すれば、 正確な濃度が得られる。  For example, the absorbance O D S is obtained by measuring the absorbance in the standard reaction tank, and the concentration C 1 is obtained based on the calibration curve drawn at the initial setting. Since the concentration C s of the reference substance in the reference reaction tank is set in advance, the difference C def between C s and C 1 corresponds to the thickness of the lid and the thickness under the reaction tank. Therefore, if the concentration value obtained in the reagent reaction vessel around the reference reaction vessel is corrected by the concentration fluctuation C de, the correct concentration can be obtained.
このよう に、 基準反応槽が、 数多く あれば、 それだけ、 正確な濃 度が得られるが、 逆に広い面積が必要になったり、 計算量が格段に 増えるため、 一つおき、 或いは複数おきに基準反応槽を設定しても よく、 実際の測定の前後で、 ぶれ補正のためのパラメ一夕を 1 乃至 複数回繰り返し得てもよい。  In this way, if there are a large number of reference reaction tanks, the correct concentration can be obtained, but conversely, a large area is required and the amount of calculations increases dramatically, so every other or every other number A reference reaction tank may be set, and the parameters for blur correction may be repeated one or more times before and after the actual measurement.
本発明においては、 分析ユニッ トが、 光学計測軌道を描いて自動 的に動く ほか、 手動で動く ような形状又は、 光学素子が、 自動的に 動いて、 計測するものであってもよく、 また、 計測プローブを複数 有して、 試薬部と基準部を同時に計測するものであってもよい。  In the present invention, the analysis unit may automatically move by drawing an optical measurement trajectory, or may be a shape that moves manually, or an optical element that automatically moves and measures. A plurality of measurement probes may be provided, and the reagent part and the reference part may be measured simultaneously.
本発明は、 主に回転体上の共通する円周軌道上に複数の試薬反応 槽を配列し、 この円周軌道上に基準となるダミー窓を配置し、 その 両側であって、 円周に対し垂直方向、 即ち直径方向にそれぞれダミ 一窓を形成し、 計測装置側の受光素子もこれらダミー窓の位置に併 せた位置にそれぞれ配置すると共に、 これら受光素子列と、 発光素 子の組み合わせからなる光学計測体が半径方向に摺動可能に形成さ れていればよく、 この光学計測体が受光する光の強度のバランスで 、 光学発光体を摺動させて、 常に、 発光素子の発光が、 試薬反応部 の中心を照射するように調整できればよい。 また、 ロー夕駆動部及 びロー夕を移動させて、 照射領域を調整してもよい。 The present invention mainly arranges a plurality of reagent reaction tanks on a common circular orbit on a rotating body, and arranges a dummy window as a reference on the circumferential orbit, Dummy windows are formed on both sides in a direction perpendicular to the circumference, that is, in the diameter direction, and the light receiving elements on the measurement device side are also arranged at positions corresponding to the positions of these dummy windows. It is only necessary that the optical measuring body composed of the combination of the row and the light emitting element is formed so as to be slidable in the radial direction. The optical light emitting body is slid by the balance of the intensity of light received by the optical measuring body. Therefore, it is sufficient that the light emission of the light emitting element can always be adjusted so as to irradiate the center of the reagent reaction part. Further, the irradiation area may be adjusted by moving the low evening drive unit and low evening.
ダミー窓は、 何れも、 同一の色彩、 光減衰率を持つものであれば よいが、 光学的計測において、 その発光体の光学的強度がダミーと して認識できるものであればよい。  Any dummy window may be used as long as it has the same color and light attenuation rate as long as the optical intensity of the light emitter can be recognized as a dummy in optical measurement.
微量血液から複数試薬反応を必要とする成分計測について : 本発明は、 いわゆるロー夕形式の体液成分検査装置、 典型的には 血液成分検査装置に好適に利用され、 ロー夕、 即ち円盤上に凹状の 流路を形成して、 遠心力と毛管力により流れが制御されることが好 ましい。 ロー夕上には、 同じく 凹状に形成される血液を供給する供 給槽と、 当該血液から、 血球を分離除去する血球分離部と、 血球分 離部で分離抽出された血清の定量化をはかり、 定量血清と第 1試薬 を混合し、 中間反応を行う第 1試薬反応槽と、 この第 1試薬反応槽 で反応した溶液を、 更に試薬と反応させて発色させ、 外部からの計 測光により成分計測する第 2試薬反応槽とで構成されることが好ま しい。 Component measurement that requires multiple reagent reactions from a small amount of blood: The present invention is suitably used for a so-called low-humidity body fluid component testing device, typically a blood component testing device. It is preferable that the flow is controlled by centrifugal force and capillary force. In the evening, a supply tank that supplies blood that is also formed in a concave shape, a blood cell separation unit that separates and removes blood cells from the blood, and quantification of serum separated and extracted by the blood cell separation unit The first reagent reaction tank that mixes the quantitative serum and the first reagent and performs an intermediate reaction, and the solution reacted in the first reagent reaction tank is further reacted with the reagent to develop color, and the components are measured by external photometry. It is preferable to be composed of a second reagent reaction tank to be measured.
第 1 試薬反応槽へ供給される試料は、 定量化されることが好まし い場合もあるが、 例えば図 1 2 A〜図 1 2 Cに示されるような、 遠 心分離時に定量化を図る構成であってもよい。  Although it may be preferable to quantify the sample supplied to the first reagent reaction tank, it should be quantified during centrifuge separation, for example, as shown in Figs. 12A to 12C. It may be a configuration.
第 1試薬反応槽と、 第 2試薬反応槽との間の液体の移動は、 例え ば、 回転による遠心力と、 毛管力を利用したものであって、 他の一 つの試薬反応構成と併存させた構成が好ましい。 例えば、 一つの試 薬反応構成の場合は、 希釈液との混合工程を組み込み、 この混合ェ 程の際、 第 1 の試薬との反応を行わせるような構成が例示される。 The movement of the liquid between the first reagent reaction tank and the second reagent reaction tank is, for example, using centrifugal force due to rotation and capillary force. A configuration coexisting with one reagent reaction configuration is preferred. For example, in the case of a single reagent reaction configuration, a configuration in which a mixing step with a diluent is incorporated, and a reaction with the first reagent is performed during this mixing step is exemplified.
また、 複数の試薬反応構成の場合は、 希釈工程が省略されてしま うが、 第 1 の試薬との反応時、 当該反応槽内に併せて希釈液を供給 する構成を加えてもよい。 尚、 試薬は、 固形化したものが予め封入 されたものでもよく、 反応時外部より供給するものであってもよい 利用する体液の量を調整可能とする構成 :  In the case of a plurality of reagent reaction configurations, the dilution step may be omitted, but a configuration may be added in which a diluent is supplied into the reaction tank at the time of reaction with the first reagent. The reagent may be a solid-stated pre-encapsulated one or supplied from the outside during the reaction. Configuration that allows adjustment of the amount of body fluid to be used:
本発明は、 少なく とも、 ロー夕等、 基材を動かす動力を利用した ユニッ ト、 又は基材を動かさず毛管現象、 空気圧などを利用するュ ニッ トにおいて、 体液、 典型的には血液を入力し、 一時的に血液を 貯留する部分、 血球を分離する部分、 希釈液など他の物質と混合す る部分等の容積を変えるための補綴物を用いて、 取り扱う試料の量 、 試料の移動のタイ ミ ングなどを調整すればよく、 補綴の部位等は 、 適宜選択される。  The present invention inputs a body fluid, typically blood, at least in a unit that uses the power to move the substrate, such as low evening, or in a unit that uses capillary action, air pressure, etc. without moving the substrate. Using a prosthesis to change the volume of the part that temporarily stores blood, the part that separates blood cells, the part that mixes with other substances such as diluents, etc. What is necessary is just to adjust timing etc. The site | part of a prosthesis, etc. are selected suitably.
例えば、 血球分離部において、 血球の分離の程度で、 血清の取り 出すタイ ミ ングが決定されている血球分離部の場合は、 血球収容部 を補綴し、 分離蓄積される血球の量を調整する場合等がある。  For example, in the blood cell separation unit, in the case of a blood cell separation unit where the timing of taking out the serum is determined by the degree of blood cell separation, the blood cell storage unit is prosthetic and the amount of blood cells separated and accumulated is adjusted. There are cases.
また、 補綴の態様は、 基材と同一材質で、 目的の調整を行うため の大きさ及び形状を有する固形ブロックによる補綴、 硬化形樹脂の 封入等が例示されるが、 本発明の実施においては適宜選択される。  Examples of the prosthesis include a prosthesis using a solid block having the same material and size and shape as the base material, and encapsulating a curable resin. It is selected appropriately.
実施例 Example
下記の実施例は、 本発明をさ らに説明するためのものである。 実施例 1  The following examples are intended to further illustrate the present invention. Example 1
図 1 は、 本発明の第 1 の実施例である体液移送具を示す斜視図で ある。 図中、 1 は、 代表的には血液である体液を含浸させるための 体液含浸部材 (以下、 「含浸部材」 ともいう) であり、 不織布、 ス ボンジ、 海綿、 多孔質セラミ ックス、 多孔質プラスチック、 紙、 木 材などにより形成される。 含浸部材 1 の空隙率は、 5 0 %以上が好 ましいが、 それが装着される体液検査装置内で、 含浸部材より体液 を取り出す力に応じて、 適宜調整される。 FIG. 1 is a perspective view showing a bodily fluid transfer device according to a first embodiment of the present invention. is there. In the figure, 1 is a body fluid impregnated member (hereinafter also referred to as “impregnated member”) for impregnating body fluid, which is typically blood. Nonwoven fabric, sponge, sponge, porous ceramics, porous plastic It is made of paper, wood. The porosity of the impregnated member 1 is preferably 50% or more, but is appropriately adjusted in accordance with the force with which the body fluid is extracted from the impregnated member in the body fluid testing device to which the impregnated member 1 is attached.
含浸部材 1 は、 一つの多孔質材であるほか、 複数の部分にわかれ た多孔質材の集合体であってもよい。 その場合は、 遠心力により、 含浸された体液 (血液等) 力 外部へ流出する程度の保持がなされ ればよく、 その範囲で、 様々な形状が取り得る。  The impregnated member 1 may be a single porous material or an aggregate of porous materials divided into a plurality of portions. In that case, it is sufficient that the impregnated body fluid (blood, etc.) force is retained by the centrifugal force so that it flows to the outside, and various shapes can be taken within that range.
2 は、 含浸部材 1 を支持するための支持部材であり、 撥水性を有 するプラスチック、 ガラス、 その他の部材で形成される。 含浸部材 1 と、 支持部材 2 は、 機械的結合の他、 接着剤などにより接続可能 である。  Reference numeral 2 denotes a support member for supporting the impregnated member 1, which is formed of water-repellent plastic, glass, or other members. The impregnation member 1 and the support member 2 can be connected by an adhesive or the like in addition to mechanical coupling.
3 は、 体液移送具のための把持部であり、 指で摘んで移送する場 合など、 移送しやすくするために、 支持部材 2 と一体的又は、 別体 的に形成されるものである。 把持部 3 は、 移送のしゃすさ、 支持部 材に応じては、 省略してもよい。  Reference numeral 3 denotes a gripping part for the body fluid transfer tool, which is formed integrally with or separately from the support member 2 so as to be easily transported when picking up with a finger and transporting. The gripping part 3 may be omitted depending on the transfer speed and the support material.
本実施例の体液移送具の取り扱い動作について、 図 2 A〜図 2 C 及び図 3 を参照して以下に説明する。  The handling operation of the bodily fluid transfer device of this embodiment will be described below with reference to FIGS. 2A to 2C and FIG.
図 2 Aにおいて、 穿刺具を具えた皮膚損傷器 (図示せず) を用い て皮膚 Hを傷つける。 穿刺具を具えた皮膚損傷器と しては、 特開平 5 - 6 3 5 0 6号公報に記載されたものが例示されるが、 その他、 ランセッ トが瞬間的に突出する構成が例示される。 皮膚 H上に損傷 Sが形成されると、 皮膚 Hの内部より血液 Bが滲出する。 次いで、 図 2 Bに示すように、 滲出した血液 B上に、 含浸部材 1 を把持部 3 をもってあてがう。 図 2 B及び図 2 Cに示すように、 含浸部材 1 に 血液 Bが含浸及び吸収される (吸収血液 : G H ) 。 In Fig. 2A, skin H is injured using a skin injury device (not shown) equipped with a puncture device. Examples of the skin damage device provided with the puncture device include those described in Japanese Patent Application Laid-Open No. 5-635506, but other examples include a configuration in which the lancet protrudes instantaneously. . When damage S is formed on skin H, blood B exudes from the inside of skin H. Next, as shown in FIG. 2B, the impregnated member 1 is applied to the exuded blood B with the grip portion 3. As shown in Fig. 2B and Fig. 2C, Blood B is impregnated and absorbed (absorbed blood: GH).
次いで、 図 3 に示すように、 含浸部材 1 を血液分析ロー夕 R Oの 血液収容部 6 に収容する。 血液分析ロー夕 R Oに含浸部材 1 が収容 されると、 支持部材 2 は、 口一夕 R Oの蓋部と事実上一体的に扱わ れる。  Next, as shown in FIG. 3, the impregnated member 1 is accommodated in the blood accommodating portion 6 of the blood analysis row RO. When the impregnated member 1 is accommodated in the blood analysis row RO, the support member 2 is practically handled integrally with the lid portion of the mouth pot RO.
血液収容部 6 に収容された含浸部材 1 に含浸された血液は、 ロー 夕 R Oの回転により、 外部へ流れ出る。 外部へ流れ出た血液は、 流 路 7 を進行し、 血球分離部 8 に到達する。  The blood impregnated in the impregnating member 1 accommodated in the blood accommodating part 6 flows out to the outside by the rotation of the RO. The blood that flows out travels along the flow path 7 and reaches the blood cell separation unit 8.
血球分離部 8では、 遠心力により、 比重の重い血球が外周方向へ 移動することで血清と血球が分離する。 分離が十分に行われた後、 ロー夕 R Oの回転数を下げることで、 血清は、 サイフォン管 9 を介 して分配流路 1 0へ移動する。 分配流路 1 0へ移動した血清は、 個 々の試薬反応槽 1 1 へ移動し、 その定量流路に充填される。  In the blood cell separation unit 8, serum and blood cells are separated by moving blood cells with a high specific gravity toward the outer circumference by centrifugal force. After the separation is sufficiently performed, the serum moves to the distribution channel 10 via the siphon tube 9 by lowering the rotation speed of the low-rotation RO. The serum that has moved to the distribution channel 10 moves to the individual reagent reaction tank 1 1 and is filled in the quantitative flow channel.
血清の充填後、 ロータ R Oの回転速度を増加させて定量血清を試 薬反応槽 1 1へ供給する。 ここで、 ロー夕 R O上の開口 1 2 は、 口 一夕 R Oを回転駆動させるための装置との結合用開口の一例である 以上のように、 本実施例では、 構成が簡単でありながら、 表出し た血液の処置を確実に行い、 微量血液から多数項目の血液成分の測 定を実現することができる。  After filling the serum, the rotation speed of the rotor RO is increased and the fixed amount serum is supplied to the reagent reaction tank 11. Here, the opening 1 2 on the low evening RO is an example of an opening for coupling with the device for rotationally driving the mouth overnight RO. As described above, in this embodiment, the configuration is simple, The treatment of the exposed blood can be performed reliably, and measurement of many blood components can be realized from a very small amount of blood.
実施例 2 Example 2
本発明の第 2の実施例である体液移送具を、 図 4及び図 5 を参照 して詳細に説明する。  A bodily fluid transfer device according to a second embodiment of the present invention will be described in detail with reference to FIGS. 4 and 5. FIG.
図 4に示す実施例では、 一つの支持体 2 2 に体液含浸部材 1 と希 釈液貯留部 2 1 を併設した構成を示す。 希釈液貯留部 2 1 は、 薄い ビニール袋に生理食塩水などを充填した構成であって、 外部より鋭 利な針、 刃物によって穿刺されると破れるようになつている。 希釈 液貯留部 2 1 を構成するビニール袋は、 鋭利な突起物が衝突した場 合破れるものであればよい。 希釈液貯留部 2 1 は、 アルミバウチな ど、 希釈液の品質を一定に保つような素材であってもよい。 The embodiment shown in FIG. 4 shows a configuration in which a body fluid impregnated member 1 and a diluent storage part 2 1 are provided on one support body 2 2. The diluent storage unit 21 is configured by filling a thin plastic bag with physiological saline or the like, and can be torn when pierced by a sharp needle or blade from the outside. Dilution The plastic bag constituting the liquid storage part 21 may be any bag that can be broken if a sharp projection collides with it. The diluent storage unit 21 may be made of a material that keeps the quality of the diluent constant, such as an aluminum bouch.
図 4では、 図 1で示した把持部がないが、 支持体 2 2が、 図 1 に 示した支持部より も比較的大きいため、 そのまま把持可能であるか らである。 なお、 必要により把持部を付加してもよい。  In FIG. 4, the gripping portion shown in FIG. 1 is not provided, but the support 22 is relatively larger than the support portion shown in FIG. 1, and can be gripped as it is. A gripping part may be added if necessary.
図 5は、 実際、 ロータタイプの血液検査ユニッ ト上に本実施例の 体液移送具 (血液移送具) を据え置いた状態を示した斜視図である 本血液移送具において、 より少量の血液を使用する場合、 血液を 希釈して利用するが、 希釈液貯留部 2 1 を支持体 2 2上に併設した 状態で、 皮膚を穿刺した部位であって、 血液が滲出した部位に含浸 部材 1 をあてがい、 血液を含浸させた後、 図 5で示すように、 ロー 夕 R Oに当該血液移送具をセッ トする。 含浸部材 1 がロー夕 R Oの 血液収容部 6 に圧入収容されると同時に、 希釈液貯留部 2 1 も併せ て希釈液収容部 2 3 に圧入収容される。 こ こで、 希釈液貯留部 2 1 の圧入時、 希釈液収容部 2 3の底面から突出した穿刺具 2 4が、 希 釈液貯留部 2 1 を穿刺して破り、 内部の希釈液を希釈液貯留部 2 1 の外部へ流出させる構成が採用されている。  FIG. 5 is a perspective view showing a state in which the bodily fluid transfer device (blood transfer device) of this embodiment is actually installed on a rotor type blood test unit. In this blood transfer device, a smaller amount of blood is used. In this case, the blood is diluted and used, but the impregnation member 1 is applied to the site where the skin has been pierced and the blood has exuded in a state where the diluent storage unit 2 1 is provided on the support 2 2. After the blood is impregnated, the blood transfer device is set in the RO RO as shown in FIG. The impregnating member 1 is press-fitted and stored in the blood storage section 6 of the low temperature RO, and the diluent storage section 2 1 is also press-fitted and stored in the diluent storage section 2 3. Here, when the diluent reservoir 21 is press-fitted, the puncture tool 24 protruding from the bottom surface of the diluent reservoir 2 3 punctures and breaks the diluent reservoir 21 to dilute the internal diluent. A configuration is adopted in which the liquid is stored outside the liquid reservoir 2 1.
このような構成により、 希釈液の取り扱いを簡易にできると共に 、 希釈液の保管を容易にし、 希釈液貯留部 2 1 から希釈液を放出す る際の作業を楽にすることができる。  With such a configuration, the handling of the diluent can be simplified, the diluent can be easily stored, and the work for releasing the diluent from the diluent reservoir 21 can be facilitated.
実施例 3 Example 3
本発明の第 3 の実施例である体液移送具 (血液移送具) を、 図 6 A〜図 6 Dを参照して詳細に説明する。  A bodily fluid transfer device (blood transfer device) according to a third embodiment of the present invention will be described in detail with reference to FIGS. 6A to 6D.
図 6 Aは、 含浸部材に、 上下に摺動する穿刺手段を内蔵させた構 成を示す。 6 1 は、 含浸部材であり、 多孔質であって、 血液を遠心 分離時に離脱可能に保持するもので形成されている。 また、 6 2 は 、 含浸部材 6 1 を収容する支持部材であり、 その上方と、 血液検査 装置の装着時の抽出方向とが開口いる。 さ らに、 支持部材 6 2の中 央下部には、 穿刺部材 6 3が形成されており、 また、 穿刺部材 6 3 が一定の範囲を上下に摺動可能な状態とするために、 内周に突起部 を形成した穿刺部材収容部 6 2 1 が他の支持部材と一体的又は着脱 自在に形成されている。 さ らにまた、 支持部材 6 2 内には、 複数の 刺激ピン 6 2 3が植立されており、 刺激ピン 6 2 3 の先端は、 多少 鋭角であることが好ましい。 FIG. 6A shows a configuration in which a puncture means that slides up and down is incorporated in an impregnated member. 6 1 is an impregnated member, which is porous and centrifuges blood It is formed with what is detachably held at the time of separation. Reference numeral 6 2 denotes a support member that accommodates the impregnating member 6 1, and an upper portion thereof and an extraction direction when the blood test apparatus is mounted are opened. Further, a puncture member 6 3 is formed at the center lower portion of the support member 6 2, and the puncture member 6 3 has an inner circumference in order to make a certain range slidable up and down. A puncture member accommodating portion 6 2 1 having a protrusion formed on the other is formed integrally or detachably with another support member. Furthermore, it is preferable that a plurality of stimulation pins 6 2 3 are planted in the support member 6 2, and that the tips of the stimulation pins 6 2 3 have a slightly acute angle.
穿刺部材 6 3 は、 刃物状、 針状などの形状を有し、 その外周側面 において、 穿刺部材収容部 6 2 1 の内周面の突起部に係止するよう な突起部 6 3 a を具えている。 また、 穿刺部材 6 3 は、 上下に摺動 可能であり、 この摺動を補助する駆動手段 6 4 を有する。  The puncture member 63 has a blade-like shape, a needle-like shape or the like, and has a protruding portion 6 3 a that engages with a protruding portion on the inner peripheral surface of the puncture member accommodating portion 6 21 on the outer peripheral side surface. It is. The puncture member 6 3 is slidable up and down and has drive means 6 4 for assisting this sliding.
駆動手段 6 4は、 穿刺部材 6 3 を勢いよく上方へ押し上げる他、 下方向への移動も行う構成を有する。 駆動手段 6 4は、 図示してい ないが、 例えばパネ、 等の弾性部材の変形力を伝達部材に伝えるよ うなものであって、 穿刺部材と伝達部材が接触した組み合わせが例 示される。 振動手段 6 4は、 振動モー夕の回転によって発生する振 動を外部へ伝達するためのものである。  The driving means 64 has a configuration that pushes the puncture member 6 3 upward and also moves it downward. The drive means 64 is not shown in the figure, but is a mechanism that transmits the deformation force of an elastic member such as a panel to the transmission member, and a combination in which the puncture member and the transmission member are in contact is illustrated. The vibration means 64 is for transmitting the vibration generated by the rotation of the vibration mode to the outside.
6 5 は、 検体のための載置部であり、 例えば指先のような穿刺部 位を載せるための部分である。 載置部 6 5 には支持部材 6 2が収容 され、 また、 支持部材 6 2の開放縁部は、 図示されるように、 多少 突出した状態で突出部 6 2 2 を形成している。  Reference numeral 65 denotes a placement portion for a specimen, which is a portion for placing a puncture site such as a fingertip. The mounting portion 65 accommodates the support member 62, and the open edge portion of the support member 62 forms a protruding portion 62 2 in a slightly protruding state as shown in the figure.
次いで、 図示の血液移送具の動作について説明する。  Next, the operation of the illustrated blood transfer tool will be described.
図 6 Aに示すように、 指先を載置部 6 5の輪郭を形成する突出部 6 2 2 を覆うように載せる。 含浸部材 6 1 の内部には、 穿刺部材 6 3が隠れている。 次いで、 振動手段 6 4を振動させて、 支持部材 6 2 に振動を伝達 する。 その結果、 支持部材 6 2の上方突出部 6 2 2及び複数の刺激 ピン 6 2 3 に生じる振動が指に刺激となって伝達する。 As shown in FIG. 6A, the fingertip is placed so as to cover the protruding portion 6 2 2 that forms the outline of the placing portion 65. The puncture member 63 is hidden inside the impregnation member 61. Next, the vibration means 64 is vibrated to transmit the vibration to the support member 6 2. As a result, the vibration generated in the upward projecting portion 6 2 2 of the support member 6 2 and the plurality of stimulation pins 6 2 3 is transmitted to the finger as a stimulus.
次いで、 図 6 Bに示すように、 駆動手段 (図示せず) によって、 穿刺部材 6 3を上方に勢いよく押し上げる (矢印 6 S ) 。 穿刺部材 6 3は、 含浸部材 6 1 を突き破り、 指先 YHに衝突し、 損傷 Sを与 える。  Next, as shown in FIG. 6B, the puncture member 63 is vigorously pushed upward by the driving means (not shown) (arrow 6 S). The puncture member 63 breaks through the impregnating member 61 and collides with the fingertip YH, causing damage S.
その後、 図 6 Cに示すように、 駆動手段を駆動させて穿刺部材 6 3 を押し下げる (矢印 6 F) 。 損傷 Sから表出した血液 (G B) は 、 含浸部材 6 1 に含浸され、 保持される。  Thereafter, as shown in FIG. 6C, the driving means is driven to push down the puncture member 63 (arrow 6 F). The blood (GB) exposed from the damage S is impregnated in the impregnating member 61 and held.
含浸部材 6 1 に血液 (G B) が十分に含浸保持された後、 図 6 D に示すように、 支持部材 6 2 を載置部 6 5から取り外し、 血液検査 装置 (図示せず) に装着する。  After the blood (GB) is sufficiently impregnated and held in the impregnated member 61, the support member 62 is removed from the mounting portion 65 and attached to the blood test apparatus (not shown) as shown in FIG. 6D. .
本実施例では、 含浸部材 6 1 と上下に摺動可能な穿刺部材 6 3 を 組み合わせた構成を示したが、 穿刺部材を上下に摺動させず、 固定 した状態で保ちつつ、 吸引力を用いて皮膚を盛り上がらせて穿刺を 行うような構成であってもよい。  In the present embodiment, the structure in which the impregnating member 61 and the puncture member 63 that can slide up and down are combined is shown. However, the puncture member is not slid up and down, and the suction force is used while keeping it fixed. The structure may be such that the skin is raised and puncture is performed.
また、 穿刺部材と含浸部材を組み合わせたものを、 さ らに血液検 査用のロー夕ュニッ 卜に組み合わせてもよい。 図 7 A及び図 7 Bは 、 この一例を示したものである。  In addition, a combination of a puncture member and an impregnation member may be further combined with a low temperature unit for blood testing. FIG. 7A and FIG. 7B show an example of this.
実施例 4 Example 4
図 7 Aは、 穿刺部を具えた回転型血液検査装置 (血液検査ュニッ トともいう) の断面図であり、 図 7 Bは、 その斜視図である。  FIG. 7A is a cross-sectional view of a rotary blood test apparatus (also called a blood test unit) having a puncture portion, and FIG. 7B is a perspective view thereof.
図示の回転型血液検査装置において、 7 0はロー夕であり、 そし て 7 1 は口一夕本体である。 口一夕 7 1 は、 P P、 ポリアク リル材 等よりなり、 全体的に透光性を有する部材で形成されている。  In the illustrated rotary blood test apparatus, 70 is a low evening, and 7 1 is a mouth and evening main body. Mouth overnight 7 1 is made of PP, polyacrylic material, etc., and is made of a translucent material as a whole.
7 2は、 ロー夕 7 0の蓋部であり、 P E T、 ポリアク リル、 P P 等よりなり、 接着剤、 両面テープなどでロー夕本体 7 1 と接合され ている。 7 2 is the lid of Low evening 70, PET, Polyacrylic, PP It is joined to the main body 7 1 with adhesive, double-sided tape, etc.
7 3 は、 接続開放面であり、 指先を含浸部材 7 4に接触させるた めの部分である。 含浸部材 7 4は、 不織布、 スポンジなど、 上述し た多孔質材で形成されている。 7 5 は、 穿刺手段であり、 針状、 刃 状で形成され、 上下に摺動可能な構成を有している。  Reference numeral 7 3 denotes a connection open surface, which is a part for bringing the fingertip into contact with the impregnated member 74. The impregnated member 74 is made of the porous material described above, such as a nonwoven fabric or a sponge. Puncture means 75 is formed in the shape of a needle or a blade, and has a structure that can slide up and down.
穿刺手段 7 5の周辺は、 図 6 Aを参照して先に説明した血液移送 具と同様な構成を具備する。 すなわち、 外部の駆動手段の上下駆動 と連通して、 穿刺手段を上下に摺動させる構成を有している。  The periphery of puncturing means 75 has a configuration similar to that of the blood transfer device described above with reference to FIG. 6A. In other words, the puncture means slides up and down in communication with the vertical drive of the external drive means.
7 6 は、 流路であり、 含浸部材 7 4に含浸されていた血液が口一 夕本体 7 1 の回転により流れ出し、 外方向に移動した血液を血球分 離部マ 7へ移動させるための通路である。 血球分離部 7 7では、 分 離された血球を円周方向に収容する収容部 7 7 1 が形成され、 かつ 分離後の血球が、 再び血清部 7 7 3戻らないように、 連続突起 7 7 2が形成されている。  7 6 is a flow path, and the blood impregnated in the impregnating member 74 flows out by the rotation of the main body 7 1, and the passage for moving the blood that has moved outward to the blood cell separation unit 7 It is. In the blood cell separation part 7 7, an accommodation part 7 7 1 is formed to accommodate the separated blood cells in the circumferential direction, and the continuous protrusion 7 7 3 so that the separated blood cells do not return to the serum part 7 7 3 again. 2 is formed.
7 8 は、 分配流路であり、 複数の試薬反応槽を連結するためのも のである。  78 is a distribution channel for connecting multiple reagent reaction vessels.
7 9 は、 定量流路であり、 当該流路の長さ、 口径により、 試薬反 応槽 8 0へ供給する試薬量が決定する。  7 9 is a quantitative flow path, and the amount of reagent to be supplied to the reagent reaction tank 80 is determined by the length and diameter of the flow path.
8 ◦ は、 試薬反応槽であり、 内部に凍結乾燥された試薬 8 0 1 が 収容されている。 試薬は、 異なる成分によって、 発色する。  8 ◦ is a reagent reaction tank that contains lyophilized reagent 80 1 inside. The reagent develops color due to different components.
8 1及び 8 2 は、 導光路であり、 外部からの測定光が通過する為 に透光性を有する部材によって形成されている。 ロータ本体、 ロー 夕蓋部全体が透明な場合、 透光性を有する場合は、 不要な場合もあ る。  8 1 and 8 2 are light guides, and are formed of a translucent member so that measurement light from the outside can pass therethrough. It may be unnecessary if the entire rotor body and low lid cover are transparent or translucent.
8 3 は、 軸部であり、 外部駆動部との接続部分を形成する。  8 3 is a shaft part, which forms a connection part with the external drive part.
8 4は、 軸受け凹部であり、 計測蔵置側の構成であって、 軸部 8 3が挿入されると、 内挿入面で、 係止状態が形成されるような構成 を有する。 8 4 is a bearing recess, which is configured on the measurement storage side. When 3 is inserted, it has a configuration in which a locked state is formed on the inner insertion surface.
8 5 は、 収容ケースであり、 口一夕 7 0 を収容し、 中央部に摺動 開閉式のシャッター 8 6 を有する。 シャ ッター 8 6が開く と、 口一 夕 7 0 の接続開放面 7 3が表れ、 含浸部材 7 4が表出する。 シャ ツ 夕一 8 6 は、 弾力性部材などによって、 常時閉じた状態と し、 要時 、 シャ ツ夕一 8 6 を開いて固定し、 採血後閉じるような器具が別途 設けられることで、 含浸部材 7 4 を不用意に触らないようにするた めには好ましい構成となる。  8 5 is a housing case that houses the mouth all night 70 and has a sliding shutter 8 6 at the center. When the shutter 8 6 opens, the connection open surface 7 3 of the mouth 70 0 appears, and the impregnated member 7 4 appears. Shutter evening 8 6 is always closed by a resilient member, etc., and when necessary, the shutter evening 8 6 is opened and fixed, and a separate device is provided to close after blood collection. This is a preferable configuration to prevent the member 7 4 from being inadvertently touched.
口一夕本体 7 1 上に設けられた試薬反応槽 8 0の円周に相当する 一部には、 外部との光学的連結を行うための孔部 8 7及び 8 8が形 成されている。  One part corresponding to the circumference of the reagent reaction tank 80 provided on the mouth / outside body 7 1 has holes 8 7 and 8 8 for optical connection with the outside. .
次いで、 図示の回転型血液検査装置の動作について説明する。 予め、 ロー夕 7 0 を収容した収容ケース 8 5 を血液検査装置上に 載置する。 この時点で、 穿刺手段 7 5 は、 装置側の駆動手段の駆動 力が伝達されるような状態が形成されている。 収容ケース 8 5のシ ャ ッ夕一 8 6 は開いており、 その開口部分には含浸部材 7 4が、 見 えている状態で停止している。  Next, the operation of the illustrated rotary blood test apparatus will be described. A storage case 8 5 that stores the container 70 in advance is placed on the blood test apparatus. At this time, the puncturing means 75 is in a state where the driving force of the driving means on the apparatus side is transmitted. The shutter 8 6 of the storage case 85 is open, and the impregnated member 74 is stopped in a visible state at the opening.
次いで、 図 7 Bに示すように、 指先 Y Hを含浸部材 7 4上に載置 する。 その後、 血液検査装置側の駆動部を駆動し、 穿刺手段 7 5 を 上方に押し上げる。 これらの動作は、 図 6 A〜図 6 Cを参照して先 に説明した動作と同様である。  Next, as shown in FIG. 7B, the fingertip YH is placed on the impregnated member 74. Thereafter, the drive unit on the blood test apparatus side is driven to push up the puncture means 75. These operations are the same as those described above with reference to FIGS. 6A to 6C.
血液が十分に含浸部材 7 4 に含浸された後、 指先を離し、 シャ ツ 夕一 8 6 を閉める。 シャッター 8 6 の開閉動作は、 収容ケース 8 5 が駆動する時点で、 自動的に閉まる場合もある。  After the blood is sufficiently impregnated in the impregnated member 7 4, release the fingertip and close the shutter 8 6. The opening / closing operation of the shutter 86 may be automatically closed when the housing case 85 is driven.
なお、 皮膚損傷部から表出した血液が十分含浸したかどうか不明 となる場合がある力 その場合、 十分な血液が含浸したか、 その重 量、 含有面積等を測定して電気的に判断してもよい。 It may be unclear whether or not the blood exposed from the skin damaged part is sufficiently impregnated. It may be judged electrically by measuring the amount, area, etc.
その後、 ロー夕 7 0 を回転させ、 含浸部材 7 4中の血液を円周方 向へ押し出し、 流路 7 6 を介して移動させる。 次いで、 血球分離部 7 7で血清を分離抽出し、 分配流路 7 8 を介して、 個々の試薬反応 槽 8 0に接続した定量流路 7 9に充填する。  Thereafter, the low angle 70 is rotated, the blood in the impregnated member 74 is pushed in the circumferential direction, and moved through the flow path 76. Next, serum is separated and extracted by the blood cell separation unit 7 7, and filled into the quantitative flow path 79 connected to each reagent reaction tank 80 through the distribution flow path 7 8.
血清の充填後、 ロー夕 7 0の回転数をより大きく して、 定量流路 7 9内の血清を試薬反応槽 8 0へ、 押し出す形で、 流入させる。 流 入した血清と、 試薬が反応して発色した状態で、 収容ケース 8 5の 孔 8 7 を介して外部より レーザ光を透過し (HH) 、 測色を行い、 成分濃度を得る。  After the serum is filled, the rotational speed of the low pressure 70 is increased, and the serum in the quantitative flow path 79 is pushed into the reagent reaction tank 80 in the form of being pushed out. In the state where the color of the infused serum reacts with the reagent, laser light is transmitted from the outside (HH) through the hole 8 7 of the housing case 85, and the color is measured to obtain the component concentration.
なお、 ロー夕 7 0の上記した動作は、 一例であり、 本発明の実施 において、 様々な構成を採用することが推奨される。  It should be noted that the above-described operation of Low Level 70 is an example, and it is recommended to adopt various configurations in the implementation of the present invention.
このような血液分析ュニッ 卜と穿刺手段の組み合わせにより、 採 血の担当がいなくても、 簡単に血液分析が行えるようになる。  Such a combination of blood analysis unit and puncture means makes it possible to easily perform blood analysis even without blood collection.
実施例 5 Example 5
図 8 Aは、 ロー夕を回転しながら、 その中央の血液を、 分離定量 し、 各試薬槽に定量血清を分配して発色値を計測して多項目成分濃 度値を測定するための血液検査システムの実施例である。 また、 図 8 Bは、 図 8 Aに示した血液検査システムの線分 X 2 — X 2 ' にそ つた概略断面図である。  Fig. 8A shows blood for measuring the concentration of multi-component components by separating and quantifying the blood at the center while rotating the row, distributing the quantified serum to each reagent tank and measuring the color value. It is an Example of an inspection system. FIG. 8B is a schematic cross-sectional view taken along line X 2 —X 2 ′ of the blood test system shown in FIG. 8A.
8 0は、 口一夕であり、 ポリアク リル、 P P、 P E T等よりなる 透明、 又は半透明な口一夕本体 8 1 と、 蓋部 8 2 を接合して形成さ れる。 図 8 Aでは、 蓋部 8 2が装着されていないロー夕本体 8 1 を 示している。  80 is a mouth / outlet, which is formed by joining a transparent or semi-transparent mouth / outside body 8 1 made of polyacryl, PP, PET, or the like and a lid portion 8 2. In FIG. 8A, the low evening body 8 1 without the lid 8 2 is shown.
ロータ本体 8 1 には、 血液貯留槽 R l、 血球分離槽 R 2、 分配流 路 R 3、 及び定量流路 R 4が凹部として形成され、 試薬反応槽 8 4 及び 8 6、 基準反応槽 8 5 , 8 7、 8 8, 8 9及び 9 0 も凹部とし て形成され、 上部から蓋部 8 2が両面テープ、 接着剤等で接着結合 されている。 8 3 は、 光学測定部であり、 ロー夕 8 0の一部を非接 触的に上下挟持している。 光学測定部 8 3 は、 レーザ等の発光体 9 2 と、 受光部 9 3 を有し、 計測光軌道 9 1 上に光を照射し、 反応槽 を通過した光を受光部 9 3で受光している。 In the rotor body 8 1, a blood storage tank R 1, a blood cell separation tank R 2, a distribution flow path R 3, and a quantitative flow path R 4 are formed as recesses, a reagent reaction tank 8 4 and 8 6, a reference reaction tank 8 5, 8 7, 8 8, 8 9 and 9 0 are also recessed. The lid 8 2 is bonded from the top with double-sided tape or adhesive. 8 3 is an optical measuring unit, and a part of the low angle 80 is sandwiched up and down in a non-contact manner. The optical measuring unit 8 3 has a light emitter 9 2 such as a laser and a light receiving unit 9 3. The optical measuring unit 8 3 irradiates light on the measuring light path 9 1, and the light passing through the reaction vessel is received by the light receiving unit 93. ing.
9 4は、 反応槽であり、 内部は、 試薬と試料又は、 基準物質が封 入され、 満タン状態になっている。 反応槽 9 4内の基準物質は、 空 隙がないほどに必ずしも充填される必要がなく、 少なく とも、 光学 的計測の基準になればよい。  9 4 is a reaction tank, and the inside is filled with reagents and sample or reference material. The reference substance in the reaction vessel 94 does not necessarily need to be filled to the extent that there is no space, and at least it should be a standard for optical measurement.
9 8 は、 透光部 Aであって、 ロー夕本体 8 1 の一部であり、 透光 性を有している。 また、 9 9 は、 透光部 Bであって、 蓋部 8 2 と一 体的に形成されており、 透光性を有している。 9 5 は、 光路長を示 し、 9 6は透光部 Bの厚みを示し、 9 7 は透光部 Aの厚みをそれぞ れ示す。  9 8 is a translucent part A, which is a part of the lower body 8 1, and has translucency. Reference numeral 9 9 denotes a translucent part B, which is formed integrally with the lid part 8 2 and has translucency. 9 5 indicates the optical path length, 96 indicates the thickness of the translucent part B, and 9 7 indicates the thickness of the translucent part A.
次いで、 図示の血液検査システムの動作について説明する。  Next, the operation of the illustrated blood test system will be described.
本実施例において、 口一夕 8 0 は、 中心点 Oを中心として回転し 、 中央の血液貯留部 R 1 に供給された血液 (含浸血液の場合もある ) は、 遠心力により、 流路 R 6 を介して血球分離槽 R 2へ移動する 、 回転力を調整して血球分離を行い、 血清を抽出する。 サイフォン 流路 R 5は、 ロー夕 8 0の回転数の低下と増加の変化により、 血清 を分配流路 R 3へ供給し、 分配流路 R 3 に供給された血清は、 個々 の定量流路 R 4に毛管力により充填される。  In the present embodiment, the mouth / portion 80 rotates around the center point O, and blood (which may be impregnated blood) supplied to the central blood reservoir R 1 is caused to flow through the flow path R by centrifugal force. 6 Move to the blood cell separation tank R 2 through the blood cell separation by adjusting the rotational force, extract the serum. The siphon flow path R 5 supplies serum to the distribution flow path R 3 due to a decrease in the rotational speed and increase of the low speed 80, and the serum supplied to the distribution flow path R 3 R 4 is filled by capillary force.
次いで、 ロータ 8 0の回転を強く し、 遠心力を増加させ、 試薬反 応槽 8 4及び 8 6 に血清を押し出させる。 血清は、 試薬反応槽内の 試薬と発色反応し、 光学測定部 8 3 において、 計測動作が始まる。 その際、 事前に、 又は事後に基準反応槽 8 5の吸光度を光学測定部 8 3 により測定する。 口一夕 8 0が所定の速度で回転している状態で、 又は停止してい る状態で、 発光体 9 2の発光は、 透光部 A 9 8、 反応槽 9 4及び透 光部 B 9 9 を介して受光部 9 3 に到達し、 その際の吸光度を測定す る。 Next, the rotation of the rotor 80 is strengthened, the centrifugal force is increased, and the serum is pushed out into the reagent reaction vessels 84 and 86. Serum develops a color reaction with the reagent in the reagent reaction tank, and the optical measuring unit 83 starts the measurement operation. At that time, the absorbance in the reference reaction tank 85 is measured by the optical measuring section 83 in advance or after the fact. When the mouth is rotating at a predetermined speed or stopped, light emission of the light emitter 92 is performed by the light transmitting part A 9 8, the reaction tank 94, and the light transmitting part B 9 The light reaches the light receiver 9 3 via 9 and the absorbance at that time is measured.
この時点で既に、 図 8 C及び図 8 Dで示す検量線が形成されてい る。 図 8 Cは、 一点検量線法が適用可能な試薬の検量線であり、 図 8 Dは、 多点検量線法が適用可能な試薬の検量線である。  At this point, calibration curves shown in FIGS. 8C and 8D have already been formed. Fig. 8C shows a calibration curve for a reagent to which the single inspection standard method can be applied, and Fig. 8D shows a calibration curve for a reagent to which the multi-inspection standard method can be applied.
図 8 Cにおいて、 基準物質の濃度は既知 8 cであるため、 検量線 8 aからその際の吸光度 O D aも既知であり、 これを基準値とする。 しかしながら、 実際のロー夕上の個々の基準物質の測定において、 吸光度値 O D adが基準値 O D aとずれている場合がある。 このずれ 8 bは、 反応槽の透光部の厚み 9 6及び 9 7 の量産むらに起因して いることから、 その周辺の試薬反応槽 8 4 も同様の濃度のずれ値に よる補正をすることで、 正確な濃度値が得られる。  In Fig. 8C, since the concentration of the reference substance is known 8 c, the absorbance O D a at that time is also known from the calibration curve 8 a, and this is the reference value. However, the absorbance value O D ad may be different from the reference value O D a in the measurement of individual reference materials on the actual law. Since this deviation 8 b is caused by uneven production of the translucent parts 96 and 9 7 of the reaction tank, the neighboring reagent reaction tank 8 4 is also corrected by the same concentration deviation value. As a result, an accurate density value can be obtained.
図 8 Dも同様であり、 多点検量線も、 検量線 8 eに対し、 基準反 応槽における各ユニッ ト毎の吸光度の差 O Dbd— O Dbに基づく濃 度値の差 ( 8 Π を補正値として、 各ユニッ ト毎の試薬反応槽の光 学的計測が行われる。  The same applies to Fig. 8D. The difference between the absorbance values for each unit in the standard reaction tank O Dbd — concentration difference based on O Db (8 As a correction value, optical measurement of the reagent reaction tank for each unit is performed.
以上のように構成することで、 補正が困難な量産むらによる計測 値の補正を可能とし、 更には、 他の要因、 濃すぎる反応時の光路長 の変更などに対しても、 その差をとることで、 変更前の光路長の検 量線データを生かしながら正確な濃度値を得ることも可能となる。 実施例 6  By configuring as described above, it is possible to correct measurement values due to uneven production, which is difficult to correct, and to take the difference between other factors and changes in the optical path length when the reaction is too dark. This makes it possible to obtain an accurate concentration value using the calibration curve data of the optical path length before the change. Example 6
図 9 A及び図 9 Bは、 本発明の第 6 の実施例である血液検査シス テムを示したものである。 図 9 Aは、 本実施例の血液検査システム の斜視図であり、 図 9 Bは、 図 9 Aに示した血液検査システムの線 分 X 2 — X 2 ' にそった概略断面図である。 9 0 0は、 ロータであり、 蓋部 9 0 1 とロー夕本体 9 0 2よりな る。 ロー夕本体 9 0 2は、 ポリ プロピレン、 ポリアク リル、 P E T などからなり、 表面に凹部が形成され、 血液貯留部 R l、 血球分離 部 R 2、 分配流路 R 3, 試薬反応槽 R 4、 サイフォン流路 R 5等が 形成されている。 なお、 図 9 Aは、 蓋部 9 0 1 を装着しない状態を 示すが、 図 9 Bは、 蓋部 9 0 1 を装着した状態を示す。 9A and 9B show a blood test system that is a sixth embodiment of the present invention. FIG. 9A is a perspective view of the blood test system of the present example, and FIG. 9B is a schematic cross-sectional view along the line X 2 —X 2 ′ of the blood test system shown in FIG. 9A. 9 0 0 is a rotor, which is composed of a lid portion 9 0 1 and a low evening body 9 0 2. The main body 90 2 is made of polypropylene, polyacrylic acid, PET, etc., and has a recess formed on the surface, blood reservoir R 1, blood cell separator R 2, distribution channel R 3, reagent reaction tank R 4, Siphon flow path R5 etc. are formed. FIG. 9A shows a state in which the lid portion 9 0 1 is not attached, while FIG. 9B shows a state in which the lid portion 9 0 1 is attached.
9 0 3は、 光学測定部である。  Reference numeral 9 0 3 denotes an optical measurement unit.
9 0 4は、 中央ダミー部である。 中央ダミー部 0 0 4は、 基準的 な配色物質が封入され、 光を透過して予め定められた吸光度を受光 した光に与えることができるものである。 9 0 5は、 外側ダミー部 である。 外側ダミー部 9 0 5は、 中央ダミー部 9 0 4と同一形状で 同じ物質が封入され、 外周方向に設けられている。 9 0 6は、 内側 ダミー部である。 内側ダミー部 9 0 6は、 中央ダミー部 9 0 4と同 一形状で同じ物質が封入され、 内周方向に設けられている。  9 0 4 is a central dummy portion. The central dummy portion 04 is filled with a reference color-changing substance and transmits light to give a predetermined absorbance to the received light. 9 0 5 is an outer dummy portion. The outer dummy part 90 5 has the same shape as the central dummy part 90 4 and is filled with the same substance, and is provided in the outer peripheral direction. 9 0 6 is an inner dummy portion. The inner dummy portion 90 6 has the same shape as the central dummy portion 90 4 and is filled with the same substance, and is provided in the inner circumferential direction.
それぞれのダミー部は、 隣接しているが、 ダミー部の間隔は、 光 学計測時の、 ロー夕のぶれに応じた範囲で適宜調整される。 また、 図示のダミー部は、 何れも同一の円筒形状であるが、 直方形状等他 の形状であってもよく、 また、 その位置は、 計測軌道上であって、 試薬反応槽の中心を通るものであれば、 いずれの位置であってもよ い。  Each dummy part is adjacent to each other, but the interval between the dummy parts is adjusted as appropriate within the range according to the blur of the evening at the time of optical measurement. The dummy parts shown in the figure have the same cylindrical shape, but may have other shapes such as a rectangular shape, and the position thereof is on the measurement trajectory and passes through the center of the reagent reaction tank. Any position can be used.
ダミー窓の配列は、 必ずしも円周方向に垂直な配列 ( 9 A) でな くてもよく、 配列 9 B及び 9 Cのように、 ずら した状態の配置であ つてもよい。  The arrangement of the dummy windows is not necessarily an arrangement (9A) perpendicular to the circumferential direction, and may be an arrangement in a shifted state as in the arrangements 9B and 9C.
配列 9 Bは、 中央のダミー窓 9 0 4 ' に対し両側のダミー窓 9 0 5 ' と 9 0 6 ' は, 所定の角度でずれた状態となっている。 これに 対し、 配列 9 Cは、 中央のダミー窓 9 0 4 ' ' に対し両側のダミー 窓 9 0 5 ' ' と 9 0 6 ' ' 、 配列 9 Bとは逆の方向に、 所定の角 度でずれている。 In the array 9 B, the dummy windows 9 0 5 ′ and 9 0 6 ′ on both sides are shifted from each other by a predetermined angle with respect to the central dummy window 9 0 4 ′. On the other hand, the array 9 C has a predetermined angle in the opposite direction to the array 9 B and the dummy windows 9 0 5 '' and 9 0 6 '' on both sides of the center dummy window 9 0 4 ''. It is shifted in degrees.
このようなずれた配置は、 配列 9 Aに比べて、 ダミー窓間の間隙 (いわゆる 「デッ ドエリア」 ) (例えば図 9 Aの配列 9 Aと配列 9 Bとの間) が形成されにく く、 より正確な送光部 9 1 6 の光照射位 置が認識できる。  Such a shifted arrangement is less likely to form a gap between the dummy windows (so-called “dead area”) (for example, between array 9A and array 9B in FIG. 9A) than array 9A. Therefore, the more accurate light irradiation position of the light transmitting unit 9 16 can be recognized.
なお、 本実施例では、 配列 9 A〜 9 Cで示す 3通りのダミー窓の 配列パターンを示したが、 いろいろなパターンを例示しているにす ぎず、 この中の一つだけの配列パターンを所定間隔毎に配置したも のであってもよい場合もある。  In the present embodiment, the arrangement patterns of the three dummy windows indicated by the arrangements 9A to 9C are shown. However, only various patterns are illustrated, and only one of these arrangement patterns is shown. In some cases, it may be arranged at predetermined intervals.
9 0 7 は、 内側受光部であり、 内側ダミー部 9 0 6 を透過した光 を受光し、 光電変換して、 処理部 9 1 7へ送る働きを有する。  Reference numeral 9 0 7 denotes an inner light receiving portion that receives light transmitted through the inner dummy portion 90 6, photoelectrically converts it, and sends it to the processing portion 9 1 7.
9 0 8は、 中央受光部であり、 中央ダミー部 9 0 4及び試薬反応 槽 R 7 を透過した光を受光し、 光電変換して、 処理部 9 1 7へ送る 働きを有する。  Reference numeral 90 8 denotes a central light-receiving unit that receives light transmitted through the central dummy unit 90 4 and the reagent reaction vessel R 7, photoelectrically converts it, and sends it to the processing unit 9 17.
9 0 9は、 外側受光部であり、 外側ダミー部 9 0 5 を透過した光 を受光し、 光電変換して、 処理部へ送る働きを有する。  Reference numeral 9 09 denotes an outer light-receiving unit that receives light transmitted through the outer dummy portion 9 0 5, photoelectrically converts it, and sends it to the processing unit.
9 1 0は、 蓋内側透光部であり、 ロー夕 9 0 0の中心方向に配置 されており、 透光性部材で形成されている。 9 1 1 は、 蓋中央透光 部であり、 透光性部材で形成され、 また、 9 1 2 は、 蓋外側透光部 であり、 透光性部材で形成されている。  Reference numeral 9 10 denotes a lid inner translucent portion, which is disposed in the center direction of the low angle 90 0 and is formed of a translucent member. 9 1 1 is a lid center translucent part, which is formed of a translucent member, and 9 1 2 is a lid outer side translucent part, which is formed of a translucent member.
これらの透光部は何れも、 透過する測定光に対し、 なるべく減衰 しない材質から形成されていることが好ましく、 また、 もしも蓋部 9 0 1 が透光性部材で形成されているのであれば、 その材質で足り る。  Any of these light-transmitting portions is preferably formed of a material that does not attenuate as much as possible with respect to the transmitted measurement light, and if the lid portion 9 0 1 is formed of a light-transmitting member. The material is sufficient.
9 1 3 は、 本体内側透光部であり、 通過する測定光に減衰を与え ないような材質よりなる。 また、 9 1 4は本体中央透光部、 9 1 5 は本体外側透光部であり、 いずれも本体内側透光部 9 1 3 と同様の 材質形状を有する。 なお、 何れの本体透光部も、 ロー夕本体 9 0 2 が透光性を有するものであれば、 特に設ける必要がないものである 9 1 3 is a light transmitting part inside the body, which is made of a material that does not attenuate the passing measurement light. In addition, 9 1 4 is a main body central light transmitting portion, and 9 15 is a main body outer light transmitting portion, both of which are the same as the main body inner light transmitting portion 9 1 3 It has a material shape. Note that any of the main body translucent portions is not particularly required as long as the main body 9 0 2 has translucency.
9 1 6 は、 送光部であり、 レーザ光源と、 集光レンズ群よりなる 。 送光部 9 1 6 は、 複数のレーザ光源を含む場合もある。 9 1 6 is a light transmission unit, which is composed of a laser light source and a condenser lens group. The light transmitter 9 1 6 may include a plurality of laser light sources.
9 1 7 は、 処理部であり、 中央処理装置、 メモリーを具備する。 処理部 9 1 7 は、 入力された透過光に対し、 吸光度、 〇 D値等を求 め、 3つの値の分布を比較し、 判別して、 駆動部 9 1 8へ、 駆動制 御信号を出力する。  9 1 7 is a processing unit, which includes a central processing unit and a memory. The processing unit 9 1 7 obtains the absorbance, 〇 D value, etc. for the transmitted light that has been input, compares and discriminates the distribution of the three values, and sends the drive control signal to the drive unit 9 1 8 Output.
9 1 8 は、 駆動部であり、 モー夕、 動力伝達部、 ァクチユエ一夕 等を具備し、 光学測定部 9 0 3 を摺動させるためのサーボ機構を有 するものである。  Reference numeral 9 1 8 denotes a drive unit, which includes a motor, a power transmission unit, an actuate and the like, and has a servo mechanism for sliding the optical measurement unit 90 3.
9 1 9は、 電気リー ド線であり、 送光部 9 1 6のレーザ光を発光 させるための電気出力を伝達するためのものである。  9 1 9 is an electrical lead wire for transmitting an electrical output for emitting the laser beam of the light transmitting unit 9 1 6.
9 2 0 は、 電気リー ド線であり、 受光部からの電気信号を処理部 へ伝達するためのものである。  9 20 is an electrical lead wire for transmitting an electrical signal from the light receiving unit to the processing unit.
9 2 1 は、 電気リー ド線であり、 処理部 9 1 7 と駆動部 9 1 8 を 電気的に接続するためのものである。  9 2 1 is an electrical lead wire for electrically connecting the processing unit 9 1 7 and the driving unit 9 1 8.
次いで、 図示した血液検査システムの動作を、 図 1 0 A〜図 1 0 Cを参照して詳細に説明する。  Next, the operation of the illustrated blood test system will be described in detail with reference to FIGS. 10A to 10C.
本実施例の駆動は、 実際の検体の測定のタイ ミ ング時に行われ、 図 1 0 Aに示すような、 中央の受光強度 (受光光量ともいう) O D が一番強い状態であるように制御される。  The driving of this embodiment is performed at the timing of actual sample measurement, and is controlled so that the center received light intensity (also called received light amount) OD is the strongest as shown in Fig. 10A. Is done.
即ち、 安定した状態の場合、 口一夕 9 0 0が回転し、 軌跡 9 2 2 上の試薬反応槽を光学的に計測する際、 送光部 9 1 6から出力され たレーザ光は、 多少の散乱と減衰を生じさせながら、 本体中央透光 部 9 1 4 を介して中央ダミー部 9 0 4に照射される。 中央ダミー部 9 0 4を通過した光は、 蓋中央透光部 9 1 1 を介し て中央受光部 9 0 8に受光される。 受光された光は、 さらに光電変 換され、 電気信号として電気リード線 9 2 0 を介して処理部 9 1 7 へ送信される。 That is, in a stable state, the mouthpiece 90 0 0 rotates, and when the reagent reaction tank on the locus 9 2 2 is optically measured, the laser beam output from the light transmitter 9 16 is somewhat The central dummy portion 9 0 4 is irradiated through the main body central light transmitting portion 9 1 4 while causing scattering and attenuation. The light that has passed through the central dummy portion 9 0 4 is received by the central light receiving portion 9 0 8 through the lid central light transmitting portion 9 1 1. The received light is further photoelectrically converted and transmitted as an electrical signal to the processing unit 9 17 through the electrical lead wire 9 20.
送光部 9 1 6は、 中央ダミー部 9 0 4の直下に位置するが、 光の 散乱などによって、 その一部が、 本体内側透光部 9 1 3及び本体外 側透光部 9 1 5を介して、 それぞれ、 内側ダミー部 9 0 6及び外側 ダミー部 9 0 5 を通過する。 さらに、 通過したレーザ光は、 蓋内側 透光部 9 1 0 を介して内側受光部 9 0 7 に、 蓋内側透光部 9 1 0 を 介して外側受光部 9 0 9に、 それぞれ受光される。  The light transmitting unit 9 1 6 is located immediately below the central dummy unit 90 4, but a part of the light transmitting unit 9 1 3 and the outside light transmitting unit 9 1 5 are scattered due to light scattering. Through the inner dummy portion 9 0 6 and the outer dummy portion 9 0 5, respectively. Further, the passed laser light is received by the inner light receiving unit 9 0 7 through the lid inner light transmitting unit 9 10 and received by the outer light receiving unit 9 0 9 through the cover inner light transmitting unit 9 10. .
その結果、 図 1 O Aに示すように、 横軸を受光部の位置、 縦軸を 受光した光の強さ O D値とした場合、 中央ダミー部 9 0 4のピーク 9 b力 S、 一番強い状態となって現れる。  As a result, as shown in Fig. 1 OA, when the horizontal axis is the position of the light receiving part and the vertical axis is the received light intensity OD value, the peak 9 b force 9 b of the central dummy part 9 0 4 is the strongest. Appears as a state.
図 1 O Aで示す状態が、 基準の状態であって、 9 aは、 内側ダミ 一部 9 0 6 を通過してきた光の強度を示す。 また、 9 bは中央ダミ 一部 9 0 4を、 9 cは外側ダミー部 9 0 5を、 それぞれ通過してき たレーザ光の強度を示す。  The state indicated by O A in FIG. 1 is the reference state, and 9 a indicates the intensity of light that has passed through the inner part 9 0 6. In addition, 9b indicates the intensity of the laser beam that has passed through the central part 904, and 9c indicates the outer dummy portion 905.
しかし、 ロー夕 9 0 0の回転むらが生じたり して、 中心がぶれた 場合には、 例えば送光部 9 1 6の出力レーザが、 外側ダミー部 9 0 5へ、 傾いたような状態で出力された場合には、 外側ダミー部 9 0 5への出力光量が大きくなり、 図 1 0 Bに示すように、 外側受光部 9 0 9の受光量 9 ίが、 中央受光部 9 0 8での受光量 9 c、 内側受光 部 9 0 7での受光量より大きくなる。  However, if the center of rotation is shifted due to low rotation rotation of 90,000, for example, the output laser of the light transmission unit 9 16 is tilted to the outer dummy unit 90 5 If the light is output, the amount of light output to the outer dummy portion 9 0 5 will increase, and the received light amount 9 ί of the outer light receiving portion 9 0 9 will be The amount of light received is 9c, and the amount of light received by the inner light receiving unit 9 07 is larger.
この時、 処理部 9 1 7は、 駆動部 9 1 8 に光学測定部 9 0 3の外 側への所定量の摺動を命令し、 駆動部 9 1 8は、 光学測定部 9 0 3 を所定量摺動させ、 次のダミー領域の計測で、 図 1 O Aで示すよう な中央のピークが一番高くなるように駆動させる。 そして、 ロータ 9 0 0 の回転むらにより、 図 1 0 Cに示すように 、 内側受光部 9 0 7 の受光強度 9 gが中央受光部 9 0 8の受光量 9 h 及び外側受光量 9 iより格段に大きくなつた場合、 処理部 9 1 7 は 、 駆動部 9 1 8 に、 光学測定部 9 0 3 を中心方向に修道させるよう な命令を出し、 常に、 図 1 O Aで示すような状態となるように、 光 学測定部 9 0 3 の位置を制御する。 At this time, the processing unit 9 17 instructs the driving unit 9 1 8 to slide a predetermined amount to the outside of the optical measuring unit 90 3, and the driving unit 9 18 receives the optical measuring unit 9 0 3. Slide it a predetermined amount and drive it so that the peak at the center as shown in Figure 1 OA becomes the highest in the next dummy area measurement. Then, due to uneven rotation of the rotor 90 0, as shown in FIG. 10 C, the light receiving intensity 9 g of the inner light receiving portion 9 07 is obtained from the light receiving amount 9 h and the outer light receiving amount 9 i of the central light receiving portion 90 8. When it becomes much larger, the processing unit 9 1 7 gives a command to the drive unit 9 1 8 to make the optical measurement unit 90 3 tune in the center direction, and the state as shown in FIG. Thus, the position of the optical measurement unit 90 3 is controlled.
このような調整を血液検査システムにおいて行う ことにより、 試 薬反応槽の中心部の光計測が可能となり、 安定した発色反応の計測 を行う ことができる。  By making such adjustments in the blood test system, light measurement at the center of the reagent reaction tank becomes possible, and stable color reaction can be measured.
ダミー窓の配列を配列 9 B又は 9 Cとした場合の受光量の一例を 、 図 1 0 Aの破線 9 J及び 9 Kで示した。 受光部間の間隙 (デッ ド エリア) がなくなることから受光部 9 0 7〜 9 0 9が受光できない 領域が減り、 より精度の高い光の照射範囲を得ることができる。 実施例 7  An example of the amount of light received when the dummy windows are arranged as 9B or 9C is shown by broken lines 9J and 9K in FIG. 10A. Since there are no gaps (dead areas) between the light receiving parts, the areas where the light receiving parts 9 07 to 90 9 cannot receive light are reduced, and a more accurate light irradiation range can be obtained. Example 7
本発明の第 7 の実施例について、 図 1 1 を参照して詳細に説明す る。  The seventh embodiment of the present invention will be described in detail with reference to FIG.
図 1 1 で示す実施例は、 円盤状のユニッ ト (口一夕) R O上に凹 部と して形成されており、 凹部表面にシー ト状の蓋を被せた後、 中 心点 Oを中心として回転する。 当該回転のための駆動装置は、 ロー 夕の回転方向を変えたり、 回転速度を変えたりすることができるこ とが好ましい。  The embodiment shown in Fig. 11 is a disk-shaped unit (mouth / mouth) formed as a concave part on the RO, and after the sheet-like lid is put on the concave surface, the center point O is set. Rotates as the center. It is preferable that the drive device for the rotation can change the rotation direction of the row or change the rotation speed.
2 0 1 は、 入力流路であり、 前段の血液貯留部、 又は、 血球と血 清を分離する遠心分離部より形成される。  Reference numeral 20 1 denotes an input flow path, which is formed from a blood storage part in the previous stage or a centrifuge part that separates blood cells and blood.
2 0 2 は、 第 1試薬反応槽であって、 内部に試薬 S 1 が封入され ている。 試薬 S 1 は、 凍結乾燥された固形状のものが好ましいが、 使用時、 注入される液体状の試薬であってもよい。  Reference numeral 20 2 denotes a first reagent reaction tank in which reagent S 1 is enclosed. The reagent S 1 is preferably a lyophilized solid, but may be a liquid reagent to be injected at the time of use.
2 0 3 は、 第 2流路であって、 途中に中心方向に屈曲した屈曲部 を形成すると共に、 毛管力を発揮し得る口径を有する。 2 0 3 is the second flow path, which is a bent portion bent in the center direction in the middle And having a caliber capable of exerting capillary force.
2 0 4は、 第 2試薬反応槽であり、 その他の一回の試薬による発 色反応をする試薬反応槽〇 Tと光学的計測軌道を同じくするもので あって、 内部に第 2の試薬 S 2が封入固定されている。 当該第 2の 試薬 S 2 は、 S 1 と同様、 固形状又は液体状にいずれであってもよ い。  20 4 is the second reagent reaction tank, which has the same optical measurement trajectory as the reagent reaction tank that performs the color reaction with one other reagent ○ T, and has the second reagent S inside. 2 is enclosed and fixed. The second reagent S 2 may be solid or liquid like S 1.
第 1試薬反応槽 2 0 2 と、 第 2試薬反応槽 2 0 4の容積は、 本実 施例では、 同一の体積を有するように設定されている力 、 異なって いてもよく、 その際、 第 1試薬反応槽 2 0 2の容積が、 第 2試薬反 応槽 2 0 4の容積より も大きいときは、 第 2試薬反応槽 2 0 4 と第 2流路 2 0 3 との接続境界部に、 溢れた分を収容する溢流室を設け てもよい。 溢流室としては、 例えば図 1 3 Α及び図 1 3 Βで示す 3 0 6のようなものである。  The volumes of the first reagent reaction tank 20 2 and the second reagent reaction tank 20 4 may be different from each other in the present embodiment, and the force set to have the same volume may be different. When the volume of the first reagent reaction tank 20 2 is larger than the volume of the second reagent reaction tank 20 4, the connection boundary between the second reagent reaction tank 20 4 and the second flow path 20 3 In addition, an overflow chamber may be provided to accommodate the overflow. The overflow chamber is, for example, 3 06 shown in FIG. 13 and FIG.
次いで、 図 1 1 で示した実施例の動作を、 図 1 2 A〜図 1 2 Cを 参照して詳細に説明する。  Next, the operation of the embodiment shown in FIG. 11 will be described in detail with reference to FIGS. 12A to 12C.
図 1 1 の入力流路 2 0 1 から、 血清、 好ましく は定量血清が第 1 試薬反応槽 2 0 2 に供給される。 第 1試薬反応槽 2 0 2内部には、 試薬 S 1が存在することから、 定量血清が、 試薬と混合する。 その 際、 ロー夕の回転数を変化させたり、 回転方向を変えたり して、 十 分な混合を行い、 混合血清 S Mを形成する (図 1 2 Aを参照) 。  Serum, preferably quantitative serum, is supplied to the first reagent reaction tank 20 2 from the input channel 2 0 1 in FIG. Since the reagent S1 exists in the first reagent reaction tank 202, the quantitative serum is mixed with the reagent. At that time, change the rotation speed of the low evening or change the direction of rotation to mix thoroughly to form mixed serum SM (see Fig. 12 A).
次いで、 ロー夕の回転を停止させるか弱める。 すると、 第 2流路 2 0 3 の毛管力が、 ロー夕の回転によって生じる遠心力より も強く なるため、 混合血清 S Mが、 第 2流路 2 0 3内に充填されよう と し て移動する (図 1 2 Bを参照) 。  Next, stop or weaken the low evening rotation. Then, since the capillary force of the second channel 20 3 becomes stronger than the centrifugal force generated by the low-speed rotation, the mixed serum SM moves as if it is filled in the second channel 20 3. (See Figure 12 B).
混合血清 S Mが屈曲部を越えた時点で、 再びロー夕の回転数を上 げると、 サイ フォン現象により、 混合血清 S Mが、 第 2試薬反応槽 2 0 4に流入し、 充填される。 混合血清 S Mが第 2試薬反応槽 2 0 4内に充填された後、 ロー夕 の回転数に強弱を与えたり、 回転方向を変えたり して、 混合を促進 させ、 最終混合血清 S MMを形成する (図 1 2 Cを参照) 。 この最 終混合血清 S MMの発色値を外部からの光学的計測により読み取る 以上のように、 毛管力、 遠心力のバランスを調整して、 2つの試 薬反応槽内の液体の流れを調整することで、 容易に複数回の試薬と 検体との混合が行われることから、 これを更に繋げることで、 '3回 以上の試薬反応、 蛍光物質、 磁性物質結合、 等の操作が可能となる 実施例 8 When the mixed serum SM exceeds the bent portion, the rotational speed of the low evening is increased again. Due to the siphon phenomenon, the mixed serum SM flows into the second reagent reaction tank 204 and is filled. After the mixed serum SM is filled in the second reagent reaction tank 204, the mixing speed is increased or changed by changing the rotation speed to form the final mixed serum SM M (See Figure 12 C). The color value of this final mixed serum SMM is read by optical measurement from outside. As described above, the flow of liquid in the two reagent reaction tanks is adjusted by adjusting the balance between capillary force and centrifugal force. This makes it easy to mix reagents and specimens multiple times. By further connecting them, it is possible to perform three or more times of reagent reactions, fluorescent substances, magnetic substance binding, etc. Example 8
本発明の第 8の実施例について、 図 1 3 A及び図 1 3 Bを参照し て詳細に説明する。  An eighth embodiment of the present invention will be described in detail with reference to FIGS. 13A and 13B.
図 1 3 A及び図 1 3 Bは、 円盤状のポリ プロピレン、 P E T、 P P等の基材に凹部を形成して、 これらの凹部でもって、 血液注入口 、 流路、 血球分離部等を構成したものである。 なお、 これらの図面 においては全体の構成が省略されている力 全体の構成については 、 例えば、 図 7 A及び図 1 1 を参照されたい。 凹部を形成した基材 の表面をその基材と同じ材料よりなるシー トで覆い、 ュニッ 卜が形 成される。  Fig. 1 3 A and Fig. 1 3 B show the formation of a recess in a disk-shaped base material such as polypropylene, PET, PP, etc., and these recesses constitute a blood inlet, a flow path, a blood cell separator, etc. It is a thing. In these drawings, the entire structure is omitted. For the entire structure of the force, see, for example, FIG. 7A and FIG. The surface of the base material on which the recess is formed is covered with a sheet made of the same material as the base material, and a unity is formed.
図 1 3 Aにおいて、 3 0 1 は、 入力流路であり、 中心部 Oの近傍 に形成された血液注入部と接続するものである。  In FIG. 13A, 3 0 1 is an input flow path, which is connected to a blood injection part formed in the vicinity of the central part O.
3 0 2は、 分離血清部であり、 溢流室 3 0 6 と、 出力流路 3 0 5 の接続口間の容積が、 次の処理部へ移動する血清量を決定している  30 2 is a separation serum part, and the volume between the overflow chamber 3 0 6 and the connection port of the output flow path 3 0 5 determines the amount of serum that moves to the next processing part.
3 0 3は、 血球収容部であり、 分離血清部よ り も深い凹部で形成 されている。 なお、 血球収容部 3 0 3は、 分離壁 3 0 4の高さによ つては、 すなわち、 分離壁 3 0 4が高い場合は、 深く形成されなく てもよい場合もある。 分離壁 3 0 4は、 分離された血球が分離血清 部 3 0 2 に戻らないような高さに設定されている。 Reference numeral 30 denotes a blood cell storage part, which is formed by a deeper recess than the separated serum part. It should be noted that the blood cell storage portion 30 3 depends on the height of the separation wall 3 0 4. That is, when the separation wall 304 is high, it may not be formed deeply. The separation wall 30 4 is set to such a height that the separated blood cells do not return to the separated serum part 30 2.
本実施例では、 比重の大きい血球が、 ロー夕を回転させる際、 外 周方向へ移動する性質を利用 しているため、 分離壁 3 0 4がなくて も、 血球分離は行われることから、 その際、 血球収容部 3 0 3 をよ り深くするか、 ジグザクの形状にして、 血球が、 戻らないようにす るなどした構成であってもよい。  In this embodiment, since blood cells having a large specific gravity move in the outer circumferential direction when rotating the low evening, blood cell separation is performed without the separation wall 3 0 4. At that time, the blood cell storage section 30 3 may be deeper or formed in a zigzag shape so that the blood cells do not return.
出力流路 3 0 5 は、 毛管現象を利用する程度の流径であって中心 点 Oの方向に屈曲部を形成することで、 回転力によって生じる遠心 力と、 流路の毛管力により、 流体の移動を調整する。  The output flow path 3 0 5 has a flow diameter that utilizes the capillary phenomenon and forms a bent portion in the direction of the center point O, so that the centrifugal force generated by the rotational force and the capillary force of the flow path Adjust the movement.
溢流室 3 0 6 は、 分離血清部 3 0 2から余分な血液が溢れた場合 の収容部である。 溢流室 3 0 6は、 分離血清部 3 0 2の中心点 0方 向に接続している。  The overflow chamber 30 6 is a storage section when excess blood overflows from the separated serum section 30 2. The overflow chamber 3 06 is connected in the direction of the center point 0 of the separated serum part 30 2.
3 0 7 は、 分配流路であり、 一方を出力流路 3 0 5 と接続してい ると共に、 分配流路 3 0 7 の側面であって、 外周方向には、 所定の 間隔で、 定量流路 3 0 8 a〜 3 0 8 dが接続する。 定量流路 3 0 8 a 〜 3 0 8 dは、 試薬反応槽 3 0 9 a〜 3 0 9 dのそれぞれと接続し、 試薬反応槽の個数に応じて、 定量流路が分配流路 3 0 7 と、 試薬反 応槽間を接続するために追加される。  30 7 is a distribution flow path, one of which is connected to the output flow path 3 0 5, and is a side surface of the distribution flow path 3 0 7, and a constant flow rate at a predetermined interval in the outer circumferential direction. Roads 3 0 8 a to 3 0 8 d connect. The fixed flow channels 30 08a to 30 08d are connected to the reagent reaction vessels 3009a to 3009d respectively, and the fixed flow channels are distributed according to the number of reagent reaction vessels 30. 7 and added to connect between reagent reaction tanks.
3 1 0 は、 補綴部であり、 基材と同材で形成され、 中空で強固な 枠組みだけであってもよく、 要時、 装着できるような形状であれば よい。 補綴部 3 1 0 の接続は、 接着剤の使用が例示されるが、 形状 によっては、 単に嵌合しただけのものであってもよい。 本実施例に おけるロー夕は、 一度の使用が一般的であることから、 離脱を要し ないが、 場合によっては、 嵌合構成を調節して離脱可能な構成を具 えてもよい。 3 1 1 は、 栓部であり、 流路を遮断するための水不溶性の物質か らなる。 当該栓部 3 1 1 は、 吐出部位の位置決めが精度よく行われ るイ ンクジエツ ト方式の吐出具を利用 して、 水不溶性で硬化性を有 する溶液をイ ンクジェッ ト方式で、 目的となる流路面に吐出して、 硬化後流路を遮断する方式が好適に利用される。 イ ンクジエツ ト方 式は、 市販のイ ンクジエツ トプリ ン夕のイ ンクを硬化材に変更すれ ば足りる手法であり、 本発明の実施例を形成する場合は、 好適な手 法である。 3 10 is a prosthetic part, which is formed of the same material as the base material, and may be only a hollow and strong frame, and may be any shape that can be attached when necessary. The connection of the prosthetic portion 3 10 is exemplified by the use of an adhesive, but depending on the shape, it may be simply fitted. In the present embodiment, the low evening does not need to be detached because it is generally used once. However, in some cases, the fitting configuration may be adjusted so as to be removable. 3 1 1 is a stopper part made of a water-insoluble substance for blocking the flow path. The stopper part 3 11 1 uses an inkjet-type discharge tool that accurately positions the discharge site to inject a water-insoluble and curable solution into the target flow. A method of discharging to the road surface and blocking the flow path after curing is preferably used. The ink jet method is a method that suffices to change a commercially available ink jet ink to a hardening material, and is a preferable method when forming an embodiment of the present invention.
次いで、 本実施例の動作を説明する。  Next, the operation of this embodiment will be described.
最初、 ロータは、 中心点〇を中心に回転し、 よって、 入力流路 3 0 1 を介して採取された血液が、 図 1 3 Aに示すように、 分離血清 部 3 0 2及び血球収容部 3 0 3 に供給される。 ここで、 入力流路 3 0 1 から供給された血液が多く、 溢流室 3 0 6の開口面まで血液が 一杯になり、 さ らに増え続けようとすると、 増えようとする分だけ 溢流室 3 0 6へ流れ込む。  At first, the rotor rotates around the center point 0, so that the blood collected through the input flow path 30 1 is separated into the separated serum part 30 2 and the blood cell storage part as shown in FIG. Supplied to 3 0 3. Here, there is a lot of blood supplied from the input flow path 30 1, the blood fills up to the opening surface of the overflow chamber 3 06, and if it continues to increase, it will overflow by the amount of increase Flows into chamber 3 0 6
ロー夕の回転数を増減し、 血球が、 分離壁 3 0 4 を越えて、 血球 収容部 3 0 3 に収容されるよう調整する。 血球がおおよそ全部、 血 球収容部 3 0 3 に収容された後、 ロータの回転数を下げる。 すると 、 出力流路 3 0 5の毛管力により、 血清が、 屈曲部を越えた後、 口 一夕の回転数を上げることで、 分離血清部 3 0 2 の血清を、 分配流 路 3 0 7の方向へ出力する。 分離血清部 3 0 2 の血清は、 出力流路 3 0 5の開口部まできて、 血清が切れると、 流体の移動が停止する 分配流路 3 0 7 に到達した血清は、 毛管力により直前の定量流路 3 0 8 aから順次充填されていく。 定量流路 3 0 8 a〜 3 0 8 d及び その他の定量流路すべてに血清が充填された後、 ロー夕の回転数を 上げて、 遠心力により試薬反応槽 3 0 9 a〜 3 0 9 d及びその他の定 量流路に接続する試薬反応槽に定量体液を押し込む。 Increase or decrease the number of revolutions of the low evening so that the blood cells are accommodated in the blood cell accommodating part 30 3 beyond the separation wall 30 4. After all of the blood cells are accommodated in the blood cell storage section 30 3, the rotational speed of the rotor is reduced. Then, due to the capillary force of the output flow path 30 5, after the serum exceeds the bent portion, the rotation speed of the mouth overnight is increased, so that the serum of the separated serum section 30 2 is distributed to the distribution flow path 3 0 7 Output in the direction of. The serum in the separated serum section 30 2 reaches the opening of the output flow path 30 5, and when the serum runs out, the fluid stops moving. The serum that reaches the distribution flow path 3 0 7 is immediately before due to the capillary force. The quantitative flow channels 3 0 8 a are sequentially filled. Quantitative flow path 3 0 8 a to 3 0 8 d and all other quantitative flow paths are filled with serum, then the number of revolutions is increased and the reagent reaction tank is centrifuged by centrifugal force 3 0 9 a to 3 0 9 d and other definitions The quantitative body fluid is pushed into the reagent reaction tank connected to the volume channel.
ところで、 試薬の項目を減らすことによって血液の必要量が少な くてすむ場合は、 図 1 3 Bに示すように、 補綴物 3 1 0 を挿入して 分離血清部 3 0 2の容積を小さ くする。  By the way, if the necessary amount of blood can be reduced by reducing the number of reagent items, insert prosthesis 3 1 0 to reduce the volume of the separated serum part 3 0 2 as shown in Fig. 1 3 B. To do.
更に、 イ ンクジェッ ト方式等を利用して硬化材を分配流路 3 0 7 の所定の位置に吐出し、 硬化させて栓部 3 1 1 を形成することで、 不要な試薬反応槽を切り離す。  Furthermore, an unnecessary reagent reaction tank is separated by discharging the curing material to a predetermined position of the distribution flow path 30 7 by using an injection method or the like and curing it to form a plug 3 1 1.
栓部 3 1 1 の形成は、 イ ンクジェッ ト方式が、 市販のプリ ン夕な どのように、 自在な場所へ任意の大きさの栓部を形成することを可 能とすることから、 好ましい手法である。  The formation of the plug part 3 1 1 is preferable because the injection method makes it possible to form a plug part of any size in any place, such as a commercially available printer. It is.
また、 図 1 3 Bのような状態を形成することで、 検査項目数の増 減が可能となり、 量産されて、 固定的に形成された血液検査ュニッ 卜であっても、 必要な項目の検査だけ行う ことが可能となる。 産業上の利用の可能性  In addition, the number of test items can be increased or decreased by forming the state shown in Fig. 13 B, and even for blood test units that are mass-produced and fixedly formed, the required items can be tested. Can only be done. Industrial applicability
本発明によれば、 微量血液の移送の簡易化を図ることができるた めに、 微量血液でも多項目の血液成分測定が可能な、 検査装置の十 分な利用が図れるようになり、 特にロー夕タイプの分析ュニッ 卜に おいては、 取り扱いの簡素化を図ることができる。  According to the present invention, since the transfer of a very small amount of blood can be simplified, it becomes possible to sufficiently utilize a testing apparatus capable of measuring various blood components even with a very small amount of blood. In the evening type analysis unit, handling can be simplified.
また、 本発明によれば、 血液成分測定を何ら、 特別な訓練をせず に、 実現でき、 個々の患者により使い捨てに取り扱われるユニッ ト の量産上問題となる点を克服し、 安定した計測を可能とし、 血液計 測分野を広げることができる。  In addition, according to the present invention, blood component measurement can be realized without any special training, overcoming the problems in mass production of units that can be handled disposablely by individual patients, and stable measurement can be achieved. And can expand the blood measurement field.
さ らに、 本発明によれば、 少量でも、 無駄が無く正確な血液計測 が行う ことができ、 血液検査の簡素化、 健常人の健康のチェックを 容易にすることができる。  Furthermore, according to the present invention, even in a small amount, accurate blood measurement can be performed without waste, simplification of blood tests and easy health check of healthy persons can be achieved.
さ らにまた、 本発明によれば、 調節が困難な流路構成を有する超 小型血液分析ュニッ 卜の利用範囲を広げ、 分析ュニッ 卜製作の低コ ス ト化を図り、 より簡易な血液検査ュニッ トを提供することが可能 となる。 In addition, according to the present invention, the super-flux having a flow path configuration that is difficult to adjust. It is possible to provide a simpler blood test unit by expanding the range of use of the small blood analysis unit and reducing the cost of manufacturing the analysis unit.

Claims

1 . 体液を移送し検査するためのものであって、 該体液との接触 により体液を含浸可能な体液含浸部と、 該体液含浸部を支持する支 持部とを備え、 前記体液含浸部は、 体液検査装置の体液検査部に収 容可能な形状及び寸法を有していることを特徴とする体液移送具。 1. For transferring and inspecting body fluid, comprising a body fluid impregnated portion that can be impregnated with body fluid by contact with the body fluid, and a support portion that supports the body fluid impregnated portion, A bodily fluid transfer tool characterized by having a shape and dimensions that can be accommodated in a bodily fluid test section of a bodily fluid testing device.
 Contract
2 . 把持部をさ らに有していることを特徴とする請求項 1 に記載 の体液移送具。  2. The bodily fluid transfer device according to claim 1, further comprising a gripping portion.
3 . 体液検査部に収容したときに希釈液を放出可能な希釈液貯留 部をさ らに有していることを特徴とす As範1る請求項 1 又は 2 に記載の体 液移送具。 画 3. Body fluid transfer tool according to claim 1 or 2 that Ru features and to As range 1 having a diluent reservoir releasable made et dilution when accommodated in humoral testing unit. Picture
4 . 前記体液が血液であることを特徴とする請求項 1 〜 3のいず れか 1 項に記載の体液移送具。  4. The body fluid transfer device according to any one of claims 1 to 3, wherein the body fluid is blood.
5 . 前記血液が、 皮膚表面に表出したものであることを特徴とす る請求項 4 に記載の体液移送具。  5. The bodily fluid transfer device according to claim 4, wherein the blood is expressed on the skin surface.
6 . 前記体液含浸部に血液凝固防止剤が含まれることを特徴とす る請求項 1 〜 5のいずれか 1項に記載の体液移送具。  6. The bodily fluid transfer device according to any one of claims 1 to 5, wherein the bodily fluid impregnated portion contains a blood coagulation inhibitor.
7 . 体液表出用穿刺具をさ らに備えることを特徴とする請求項 1 〜 6 のいずれか 1項に記載の体液移送具。  7. The bodily fluid transfer device according to any one of claims 1 to 6, further comprising a puncture device for bodily fluid expression.
8 . 前記体液検査装置が、 ロー夕形式の体液成分検査装置である ことを特徴とする 1 〜 7 のいずれか 1項に記載の体液移送具。  8. The bodily fluid transfer device according to any one of 1 to 7, wherein the bodily fluid inspection device is a low-humidity bodily fluid component inspection device.
9 . 体液を移送し検査するためのものであって、 体液採取用穿刺 具と、 体液との接触により該体液を含浸可能な体液含浸部と、 該体 液含浸部を支持する支持部とを備えた体液移送具、 及び該体液移送 具を装着可能な体液検査装置を含んでなることを特徴とする体液検 査システム。  9. A body fluid collecting puncture device, a body fluid collecting puncture device, a body fluid impregnated portion that can be impregnated with the body fluid by contact with the body fluid, and a support portion that supports the body fluid impregnated portion. A bodily fluid inspection system comprising: a bodily fluid transfer device provided; and a bodily fluid inspection device to which the bodily fluid transfer device can be attached.
1 0 . 前記体液検査装置が、 口一夕形式の体液成分検査装置であ ることを特徴とする請求項 9 に記載の体液検査システム。 1 0. The body fluid testing device is a mouth fluid type body fluid component testing device. The body fluid test system according to claim 9, wherein
1 1 . 前記体液検査装置が、 前記体液移送具の載置部、 前記体液 移送具の体液含浸部から検査要素を抽出する抽出部、 抽出された検 查要素を定量する定量部、 及び前記定量部で定量された検査要素と 試薬成分を反応させ、 特定成分情報を得る検出部を含むことを特徴 とする請求項 9又は 1 0 に記載の体液検査システム。  1 1. The body fluid testing device includes a placement unit for the body fluid transfer tool, an extraction unit for extracting a test element from a body fluid impregnation unit of the body fluid transfer tool, a quantification unit for quantifying the extracted test element, and the quantification. The body fluid test system according to claim 9 or 10, further comprising a detection unit that reacts the test element quantified by the unit with the reagent component to obtain specific component information.
1 2 . 前記穿刺具が、 上下に移動可能であることを特徴とする請 求項 9〜 1 1 のいずれか 1項に記載の体液検査システム。  1 2. The body fluid test system according to any one of claims 9 to 11, wherein the puncture device is movable up and down.
1 3 . 前記体液が血液であることを特徴とする請求項 9〜 1 2の いずれか 1 項に記載の体液検査システム。  13. The body fluid testing system according to any one of claims 9 to 12, wherein the body fluid is blood.
1 4 . 血球分離後の血清を複数種類の試薬と発色反応させて複数 の検査項目について検査を実施する試薬反応系を含む血液試薬反応 計測ュニッ 卜において、 必要検査項目に応じて必要血液量をコン ト ロール下に供給できる血液供給手段が備わっていることを特徴とす る血液試薬反応計測ュニッ ト。  1 4. In the blood reagent reaction measurement unit, which includes a reagent reaction system in which the serum after blood cell separation undergoes color reaction with multiple types of reagents and tests for multiple test items, the required blood volume is determined according to the required test items. A blood reagent reaction measurement unit characterized by having blood supply means that can be supplied under control.
1 5 . 体液採取部位に物理的刺激を加える刺激手段、 体液表出用 穿刺手段、 前記体液採取部位に当接され、 前記穿刺手段により表出 された体液を吸収及び含浸する体液吸収手段、 及び前記体液吸収手 段から体液を抽出し、 分離処理して生体情報を計測する計測手段を 含んでなることを特徴とする体液検査システム。  15. Stimulation means for applying a physical stimulus to a body fluid collection site, body fluid expression puncture means, body fluid absorption means abutting on the body fluid collection site for absorbing and impregnating body fluid exposed by the puncture means, and A bodily fluid examination system comprising: a measuring means for extracting bodily fluid from the bodily fluid absorption means and performing separation processing to measure biological information.
1 6 . 前記刺激手段が、 振動手段、 吸引手段又はその組み合わせ であることを特徴とする請求項 1 5 に記載の体液検査システム。  16. The body fluid testing system according to claim 15, wherein the stimulation means is vibration means, suction means, or a combination thereof.
1 7 . 前記体液吸収手段中に前記穿刺手段が組み込まれているこ とを特徴とする請求項 1 5又は 1 6 に記載の血液検査システム。  17. The blood test system according to claim 15, wherein the puncture means is incorporated in the body fluid absorbing means.
1 8 . 前記体液が血液であることを特徴とする請求項 1 5〜 1 7 のいずれか 1 項に記載の体液検査システム。  18. The body fluid test system according to any one of claims 15 to 17, wherein the body fluid is blood.
1 9 . ロータを回転させながら流体を操作して光学的に計測する 血液生体計測器と、 該血液生体計測器の計測円周上に設けられた、 標準物質を収容した標準槽と、 前記標準槽の光路長のばらつきを、 あらかじめ挿入しておいた標準物質の吸光度の計測によって計測し 、 寸法誤差等の光学情報の補正を行う補正手段とを備えてなること を特徴とする体液検査システム。 1 9. Operate fluid and measure optically while rotating the rotor A blood biometer, a standard tank containing a standard substance provided on the circumference of the blood biometer, and a variation in the optical path length of the standard tank. A bodily fluid inspection system comprising: a correction means that measures optical information such as a dimensional error by measuring the measurement.
2 0 . 前記光学情報の補正が、 検量線の補正であることを特徴と する請求項 1 9 に記載の体液検査システム。  20. The body fluid test system according to claim 19, wherein the correction of the optical information is correction of a calibration curve.
2 1 . 前記標準槽が、 円周上の等角度間隔にて複数個配置されて いることを特徴とする請求項 1 9又は 2 0 に記載の体液検査システ ム。  21. The body fluid testing system according to claim 19 or 20, wherein a plurality of the standard tanks are arranged at equiangular intervals on the circumference.
2 2 . 前記標準物質は、 濃度値が既知であることを特徴とする請 求項 1 9〜 2 1 のいずれか 1 項に記載の体液検査システム。  2 2. The body fluid test system according to any one of claims 19 to 21, wherein the standard substance has a known concentration value.
2 3 . 血液成分による試薬反応を光学的に計測するためのもので あって、 同心円状に計測反応室が多数配匱されている回転体ュニッ 卜と、 前記回転体ユニッ トを回転させながら、 計測反応室における 試薬反応を光学的に順次計測可能な透過型の光学計測手段とを備え た血液検査システムにおいて、  2 3. For optically measuring reagent reaction due to blood components, while rotating a rotary unit having many measurement reaction chambers arranged concentrically, and while rotating the rotary unit, In a blood test system equipped with a transmission type optical measurement means capable of optically measuring reagent reactions in a measurement reaction chamber sequentially,
前記回転体ュニッ 卜が、 計測のための光路軌道上に複数の隣接す るダミー窓を備え、 そのダミー窓の通過光量に基づいて光源のビー ム照射位置を制御し、 前記計測反応室に常に計測光を照射すること を特徴とする血液検査システム。  The rotating body unit includes a plurality of adjacent dummy windows on the optical path trajectory for measurement, controls the beam irradiation position of the light source based on the amount of light passing through the dummy window, and is always in the measurement reaction chamber. A blood test system characterized by irradiating measurement light.
2 4 . 前記ダミー窓は、 前記計測反応室と同一の円周上及び前記 回転体ユニッ トの円周方向に垂直な位置に配置されていることを特 徴とする請求項 2 3 に記載の血液検査システム。  24. The dummy window according to claim 23, wherein the dummy window is disposed on the same circumference as the measurement reaction chamber and at a position perpendicular to the circumferential direction of the rotating body unit. Blood test system.
2 5 . 前記複数の隣接するダミー窓において、 個々のダミー窓は 、 円周方向にずれて配置されていることを特徴とする請求項 2 3 に 記載の血液検査システム。 25. The blood test system according to claim 23, wherein in the plurality of adjacent dummy windows, the individual dummy windows are arranged so as to be shifted in the circumferential direction.
2 6 . 前記ダミー窓が 3個以上であることを特徴とする請求項 2 3〜 2 5のいずれか 1項に記載の血液検査システム。 26. The blood test system according to any one of claims 23 to 25, wherein there are three or more dummy windows.
2 7 . 前記ダミー窓に対応する受光部をさ らに有していることを 特徴とする請求項 2 3〜 2 6 のいずれか 1項に記載の血液検査シス テム。  27. The blood test system according to claim 23, further comprising a light receiving portion corresponding to the dummy window.
2 8 . 前記ダミー窓に基づいて得られる光学的情報に基づいて、 前記計測反応室と、 前記光学計測手段の位置を調整する調整手段を さ らに有していることを特徴とする請求項 2 3〜 2 7 のいずれか 1 項に記載の血液検査システム。  28. The method according to claim 8, further comprising: an adjustment unit that adjusts a position of the measurement reaction chamber and the optical measurement unit based on optical information obtained based on the dummy window. The blood test system according to any one of 2 3 to 2 7.
2 9 . 前記ダミー窓が、 前記回転体ユニッ ト 1個について 1 乃至 複数個が配置されていることを特徴とする請求項 2 3〜 2 8のいず れか 1項に記載の血液検査システム。  29. The blood test system according to any one of claims 23 to 28, wherein one or a plurality of the dummy windows are arranged for each of the rotating body units. .
3 0 . 毛管力と遠心力により、 ロー夕上の体液を分離し、 試薬と の定量混合を行なった後、 体液成分と試薬との発色反応から、 成分 濃度等の情報を得る体液検查システムにおいて、  3 0. Body fluid detection system that obtains information such as component concentration from color reaction of body fluid components and reagents after separating body fluids by capillary force and centrifugal force and performing quantitative mixing with reagents. In
第 1 の試薬を内部に収容するとともに、 試料を入力する入力口と 、 前記第 1 の試薬との混合試料液を外部へ出力する出力口とを備え た第 1試薬反応槽、 及び  A first reagent reaction tank having an input port for containing a first reagent and an output port for outputting a mixed sample solution of the first reagent to the outside;
第 2の試薬を内部に収容し、 前記第 1試薬反応槽から供給された 混合試料溶液を入力する入力口と、 前記発色反応を外部より計測可 能な構成を有する第 2試薬反応槽を含んでなることを特徴とする体 液検査システム。  An input port for receiving a mixed sample solution supplied from the first reagent reaction tank; and a second reagent reaction tank having a configuration capable of measuring the color reaction from the outside. A body fluid inspection system characterized by comprising:
3 1 . 前記発色反応の計測が、 光学的計測であることを特徴とす る請求項 3 0 に記載の体液検査システム。  31. The body fluid test system according to claim 30, wherein the color development reaction is measured by optical measurement.
3 2 . 前記第 1試薬反応槽と前記第 2試薬反応槽とを接続する流 路が、 回転力により内部流体の移動が調整される流路であることを 特徴とする請求項 3 0又は 3 1 に記載の体液検査システム。 3. The flow path connecting the first reagent reaction tank and the second reagent reaction tank is a flow path in which movement of an internal fluid is adjusted by a rotational force. 1. The body fluid inspection system according to 1.
3 3 . 前記流路、 第 1試薬反応槽及び第 2試薬反応槽が、 一つの ロー夕上に形成されていることを特徼とする請求項 3 2 に記載の体 液検査システム。 3. The body fluid test system according to claim 3, wherein the flow path, the first reagent reaction tank, and the second reagent reaction tank are formed on one row.
3 4 . 回転体上で、 その回転体に形成された血液操作部で血球分 離等を行い、 血清と試薬とを反応させて、 その発色反応値を計測す る体液検査システムにおいて、  3 4. In a humor testing system that measures blood color reaction values by performing blood cell separation, etc. on the rotating body at the blood operation section formed on the rotating body, and reacting the serum with the reagent.
前記血液操作部内の容積を調整するために補綴する補綴体をさ ら に備えていることを特徴とする体液検査システム。  A bodily fluid test system further comprising a prosthesis for performing prosthesis in order to adjust the volume in the blood operation section.
3 5 . 前記補綴体は、 血球分離領域で、 得られる血清量を調整す るためのものであることを特徴とする請求項 3 4に記載の体液検查 システム。  35. The bodily fluid examination system according to claim 34, wherein the prosthesis is for adjusting the amount of serum obtained in a blood cell separation region.
PCT/JP2005/016562 2004-09-03 2005-09-02 Body fluid feeder and body fluid inspection system WO2006025608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004257369A JP2006068384A (en) 2004-09-03 2004-09-03 Body fluid transfer implement, and body fluid inspecting system using the same
JP2004-257369 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006025608A1 true WO2006025608A1 (en) 2006-03-09

Family

ID=36000235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016562 WO2006025608A1 (en) 2004-09-03 2005-09-02 Body fluid feeder and body fluid inspection system

Country Status (2)

Country Link
JP (1) JP2006068384A (en)
WO (1) WO2006025608A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104107056A (en) * 2013-04-15 2014-10-22 贝克顿·迪金森公司 Biological fluid collection device and biological fluid collection and testing system
JP2014211349A (en) * 2013-04-18 2014-11-13 ローム株式会社 Microchip
EP3184158A1 (en) * 2015-12-21 2017-06-28 Roche Diagnostics GmbH Blood collector with capillary structure
US10702199B2 (en) 2015-06-17 2020-07-07 Hitachi High-Tech Corporation Blood collecting device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100069792A1 (en) * 2006-11-10 2010-03-18 National Institute Of Advanced Industrial Science And Technology Biosensor cartridge, biosensor device, sample collecting method, manufacturing method of biosensor cartridge, and needle integral sensor
JP4752815B2 (en) * 2007-06-26 2011-08-17 住友ベークライト株式会社 Blood separation and recovery device
WO2011065981A1 (en) 2009-11-30 2011-06-03 Intuity Medical, Inc. Calibration material delivery devices and methods
HUE026294T2 (en) * 2010-03-19 2016-05-30 Atomo Diagnostics Pty Ltd Diagnostic system
CA3154143A1 (en) * 2011-08-03 2013-02-07 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
EP2676606B1 (en) * 2012-06-20 2017-05-03 Fabpulous B.V. Quick test device and method
EP3135377A1 (en) 2013-04-15 2017-03-01 Becton, Dickinson and Company Biological fluid collection device and biological fluid separation and testing system
ES2832756T3 (en) 2013-04-15 2021-06-11 Becton Dickinson Co Biological fluid sampling device
CN106662595B (en) 2014-06-30 2019-10-15 普和希控股公司 Sample analysis substrate, sample analyzer, sample analysis system and the method that liquid is removed from the liquid containing magnetic-particle
US10520521B2 (en) 2014-06-30 2019-12-31 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
JP6588908B2 (en) * 2014-06-30 2019-10-09 Phcホールディングス株式会社 Sample analysis substrate, sample analysis apparatus, sample analysis system, and program for sample analysis system
JP6548645B2 (en) 2014-06-30 2019-07-24 Phcホールディングス株式会社 Substrate for sample analysis and sample analyzer
JP6660305B2 (en) 2014-12-12 2020-03-11 Phcホールディングス株式会社 Sample analysis substrate, sample analyzer, sample analysis system, and program for sample analysis system
CN113624956A (en) 2016-06-30 2021-11-09 希森美康株式会社 Detection method and detection device
JP6457451B2 (en) * 2016-06-30 2019-01-23 シスメックス株式会社 Detection apparatus and detection method
JP7308868B2 (en) * 2018-05-25 2023-07-14 ベクトン・ディキンソン・アンド・カンパニー Blood collection assembly with vibration module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231742A (en) * 1988-07-21 1990-02-01 Terumo Corp Instrument equipped with puncture needle for analyzing blood component
JPH0763750A (en) * 1993-08-27 1995-03-10 Nissho Corp Container for diagnosis
JP2003083958A (en) * 2001-09-11 2003-03-19 Jun Kikuchi Blood analyzer and blood analyzing method
JP2003093371A (en) * 2001-08-01 2003-04-02 Lifescan Inc Device for determining analyzed substance concentration and method for using the same
JP2004000600A (en) * 2002-05-09 2004-01-08 Lifescan Inc Physiological sampling apparatus and method for using the sample
JP2004194926A (en) * 2002-12-18 2004-07-15 Terumo Corp Humor collecting equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231742A (en) * 1988-07-21 1990-02-01 Terumo Corp Instrument equipped with puncture needle for analyzing blood component
JPH0763750A (en) * 1993-08-27 1995-03-10 Nissho Corp Container for diagnosis
JP2003093371A (en) * 2001-08-01 2003-04-02 Lifescan Inc Device for determining analyzed substance concentration and method for using the same
JP2003083958A (en) * 2001-09-11 2003-03-19 Jun Kikuchi Blood analyzer and blood analyzing method
JP2004000600A (en) * 2002-05-09 2004-01-08 Lifescan Inc Physiological sampling apparatus and method for using the sample
JP2004194926A (en) * 2002-12-18 2004-07-15 Terumo Corp Humor collecting equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104107056A (en) * 2013-04-15 2014-10-22 贝克顿·迪金森公司 Biological fluid collection device and biological fluid collection and testing system
JP2014211349A (en) * 2013-04-18 2014-11-13 ローム株式会社 Microchip
US10702199B2 (en) 2015-06-17 2020-07-07 Hitachi High-Tech Corporation Blood collecting device
EP3184158A1 (en) * 2015-12-21 2017-06-28 Roche Diagnostics GmbH Blood collector with capillary structure
US10416054B2 (en) 2015-12-21 2019-09-17 Roche Diagnostics Operations, Inc. Blood collector with capillary structure

Also Published As

Publication number Publication date
JP2006068384A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
WO2006025608A1 (en) Body fluid feeder and body fluid inspection system
JP3984748B2 (en) Chemical analyzer and chemical analysis system
CN107073470B (en) Point of care analysis processing system
KR101009447B1 (en) Device for sampling and preprocessing biological fluids and method thereof
JP4105097B2 (en) Sample testing equipment
US10261041B2 (en) Integrated disposable chip cartridge system for mobile multiparameter analyses of chemical and/or biological substances
ES2289152T3 (en) FLOW AND METHOD CONTROL MEASUREMENT SYSTEM FOR THE CONTROL OF THE FILTRATION OF LIQUID-BASED SAMPLES.
US20030157723A1 (en) Immunoassay chemistry cassette barcode for system customization
CN106536057B (en) Sample acquisition and transferring device
JP2017507730A (en) System, apparatus and method for collecting body fluid samples
WO2012141848A1 (en) Sample holders and analytical instrument for point-of-care quantification of clinical samples
JP2004325462A (en) Chemical analyzer and chemical analysis system
US20050145046A1 (en) Sampling means and system for testing a sample liquid
CN100471571C (en) A reagent cuvette
US20190314815A1 (en) Microfluidic metering and delivery system
US20220111385A1 (en) System and method for blood sample collection and processing
JP5148205B2 (en) Method for equalizing surface tension of sample fluid
JP2007333716A (en) Separating/weighing chip, and method for using the same
KR101770679B1 (en) Method of in vitro automatic diagnostics
EP0958862B1 (en) Multiuse reactive-plate for analysis, particularly for direct analysis of whole blood or fluids containing any kind of particles or fragments
WO2016115397A1 (en) Apparatus for drawing of a bodily fluid and method therefor
JP5219221B2 (en) Body fluid analyzer with reagent chip pressing mechanism
JP4352037B2 (en) Pre-processing operation mechanism and sample mounting unit of sample testing apparatus
CN114728216A (en) Integrated point-of-care blood detection system and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase