WO2006025320A1 - X-ray source - Google Patents

X-ray source Download PDF

Info

Publication number
WO2006025320A1
WO2006025320A1 PCT/JP2005/015651 JP2005015651W WO2006025320A1 WO 2006025320 A1 WO2006025320 A1 WO 2006025320A1 JP 2005015651 W JP2005015651 W JP 2005015651W WO 2006025320 A1 WO2006025320 A1 WO 2006025320A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
ray tube
wall
power supply
control unit
Prior art date
Application number
PCT/JP2005/015651
Other languages
French (fr)
Japanese (ja)
Inventor
Michihiro Ito
Kazutaka Suzuki
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to CN200580025968.9A priority Critical patent/CN1994027B/en
Publication of WO2006025320A1 publication Critical patent/WO2006025320A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/025Means for cooling the X-ray tube or the generator

Definitions

  • the present invention particularly relates to an X-ray source used as a microfocus X-ray source.
  • Non-Patent Document 1 a microfocus X-ray source (manufactured by Hamamatsu Photonics Co., Ltd., product number L9181S) described in Non-Patent Document 1 is known as a technology in such a field.
  • This microfocus X-ray source is a type of X-ray source equipped with an X-ray tube that collides electrons from an electron gun with a target and irradiates the generated X-rays to the outside through an irradiation window.
  • This microfocus X-ray source is used in an X-ray non-destructive inspection device that detects abnormalities in an inspection object based on an X-ray transmission image transmitted through the inspection object.
  • Non-Patent Document 1 Microfocus X-ray source series, Hamamatsu Photonics Co., Ltd., April 2004, p. 1
  • the higher the output the greater the heat generated from the X-ray tube during operation.
  • the temperature of the X-ray tube becomes high, the output decreases accordingly. Therefore, if it is intended to stably increase the output of the X-ray source, it is necessary to cool the X-ray tube efficiently.
  • the X-ray tube force heat is easily dissipated by a structure that exposes the X-ray tube surrounding portion that accommodates the X-ray tube from the housing for storing the control board and the like.
  • the X-ray tube is cooled during operation by sending cooling air to the exposed X-ray tube enclosure by an external cooling fan. .
  • the cooling air of the cooling fan power diffuses and it is difficult to concentrate the cooling air on the X-ray tube surrounding portion, so that the X-ray tube can be sufficiently cooled. Natsuki.
  • the output is unstable. It was difficult to achieve a stable high output of this X-ray source.
  • an object of the present invention is to provide an X-ray source that stably achieves high output.
  • the X-ray source of the present invention includes a high piezoelectric source part molded with an insulating material, and X-rays generated by the electric power of the high-voltage power supply part and irradiated to the outside.
  • a tube an X-ray tube enclosure that protrudes and surrounds at least a part of the X-ray tube, a housing that houses the high-voltage power supply unit and the X-ray tube enclosure, And a cooling fan for allowing cooling air to flow around the X-ray tube surrounding portion.
  • the cooling air generated by the cooling fan flows in the housing, so that the cooling air can be efficiently and evenly distributed around the X-ray tube enclosure. .
  • the cooling air removes heat from the X-ray tube enclosure.
  • the casing extends in a direction substantially orthogonal to the first wall having an irradiation window for irradiating the X-ray generated by the X-ray tube to the outside of the casing, and is cooled. It is preferable to have a second wall on which the fan is disposed, and an inclined wall that crosses the first wall and the second wall and connects the two. In this case, by using the inclined wall as the wall connecting the first wall and the second wall, the inclined wall has a function of guiding the airflow generated by the cooling fins.
  • cooling fins provided on the outer periphery of the X-ray tube surrounding portion.
  • the cooling fins expand the heat transfer area between the X-ray tube enclosure and the cooling air flowing around it, increasing the amount of heat transfer.
  • a control unit that houses a control unit that controls the X-ray generation unit, an X-ray generation unit that includes at least a high-voltage power supply unit, an X-ray tube, and an X-ray tube surrounding unit, and a cooling fan are located within the housing. It may be further provided with a partition wall that partitions the space. As a result, the circulation of the air that has become hot air by cooling the high-voltage power supply unit and the X-ray tube enclosure is suppressed.
  • the partition wall is disposed between the X-ray tube surrounding portion and the control portion, and has a vent hole that communicates the partitioned space.
  • the partition wall may block communication between the divided spaces.
  • the space in which the X-ray generation unit is accommodated is isolated from the space around the control unit, and the flow of mutual airflow is blocked.
  • a second cooling fan arranged on the space side where the control unit of the casing is arranged may be further provided.
  • the second cooling fan mainly has a function of cooling the control unit.
  • the heat generated in the X-ray tube is efficiently removed through the X-ray tube surrounding portion by efficiently cooling the X-ray tube surrounding portion with the cooling air.
  • the X-ray source can have a stable and high output.
  • the inclined wall can generate a smooth flow of cooling air in the case, and as a result, the X-ray tube enclosure can be efficiently cooled. .
  • cooling fins are provided on the outer periphery of the X-ray tube surrounding portion, the amount of heat transfer from the X-ray tube surrounding portion to the cooling air can be increased, and the X-ray tube surrounding portion can be efficiently cooled. .
  • the partition wall prevents the cooling air (hot air) that has become hot after cooling the X-ray generation unit from flowing toward the control unit. Therefore, the temperature rise of the control unit can be suppressed. As a result, the operation of the control unit can be stabilized.
  • the cooling air can be intensively flowed around the X-ray generation unit, and the cooling can be performed intensively.
  • the control unit is concentrated by the second cooling fan. Can be cooled.
  • FIG. 1 is a perspective view showing a first embodiment of an X-ray source according to the present invention.
  • FIG. 2 is a front view of the X-ray source shown in FIG.
  • FIG. 3 is a cross-sectional view of the X-ray generation part of the X-ray source shown in FIG.
  • FIG. 4 is a cross-sectional view of the control unit of the X-ray source shown in FIG.
  • FIG. 5 is a front view showing a second embodiment of the X-ray source according to the present invention.
  • FIG. 6 is a perspective view showing a third embodiment of the X-ray source according to the present invention. Explanation of symbols
  • FIG. 1 is a perspective view showing a first embodiment of an X-ray source according to the present invention
  • FIG. 2 is a front view thereof.
  • X-ray source 1 is an X-ray type equipped with an X-ray tube that collides electrons from an electron gun with a target and irradiates the generated X-rays to the outside through an irradiation window.
  • An X-ray generation unit 5 that generates and irradiates X-rays and a control unit 7 that controls the X-ray generation unit 5 are stored in the housing 3 of the X-ray source 1.
  • the internal space of the housing 3 is composed of an X-ray generation unit accommodating space R1 for accommodating the X-ray generation unit 5, a control unit accommodating space R2 for accommodating the control unit 7, and a force.
  • a partition wall 15 extending downward from the upper inner wall of the housing 3 is provided between the space R1 and the control unit accommodation space R2. That is, the partition wall 15 divides the X-ray generation unit accommodation space R1 and the control unit accommodation space R2.
  • a cross-sectional view of the X-ray generation unit 5 includes a high voltage power supply unit 17 fixed to the bottom plate 3a of the housing 3 and the supply of electric power from the high voltage power supply unit 17.
  • An X-ray tube 27 for irradiating X-rays and a metal tube (X-ray tube surrounding portion) 29 surrounding a part of the X-ray tube 27 are provided.
  • the high voltage power supply unit 17 includes a high voltage transformer 19 that can generate a high voltage, a high voltage supply circuit 23 that multiplies the high voltage generated by the high voltage transformer 19 and supplies the high voltage to the X-ray tube 27, a high voltage transformer 19 A conducting wire 25a that electrically connects the pressure supply circuit 23 and a conducting wire 25b that electrically connects the high-pressure supply circuit 23 and the X-ray tube 27 are provided.
  • the high-voltage supply circuit 23 and the conductive wires 25a and 25b are molded in an insulating block 21 made of an electrically insulating material (for example, epoxy resin), and the high-voltage transformer 19 It is provided on the side surface 21 so as to protrude to the control unit 7 side.
  • Such a structure of the high-voltage power supply unit 17 prevents discharge from the high-voltage supply circuit 23 to which a high voltage is applied and the conductive wires 25a and 25b to the outside.
  • the X-ray tube 27 located above the high-voltage power supply unit 17 is a reflective target type X-ray tube, and holds a rod-shaped anode 27b in an insulated state and accommodates a valve unit 27a.
  • a target accommodating portion 27d that accommodates a target 27c provided at an end of the rod-shaped anode 27b;
  • An electron gun unit 27e that houses an electron gun 27k that emits an electron beam toward the reflecting surface of the target 27c.
  • valve portion 27a and the target accommodating portion 27d are arranged coaxially, and the axis of the electron gun portion 27e is substantially orthogonal to the axis.
  • the base end portion of the rod-shaped anode 27b protrudes downward from the lower portion of the valve portion 27a as the high voltage application portion 27g.
  • a socket 33 is connected to the lower portion of the high voltage application unit 27g, and the socket 33 is electrically connected to the high voltage supply circuit 23 via the conductor 25b of the high voltage power supply unit 17.
  • a high voltage is supplied to the X-ray tube 27 from the high voltage supply circuit 23 via the conductor 25b.
  • the X-ray tube 27 receives a high voltage and the electron gun 27k in the electron gun unit 27e emits electrons toward the target 27c, X-rays are generated from the target 27c.
  • the object is irradiated from the X-ray irradiation window 27h provided in the opening of the target container 27d.
  • the X-ray tube 27 is a sealed type, and the inside thereof is sealed in a vacuum.
  • the X-ray tube 27 is provided with an exhaust pipe (not shown), and after the inside of the valve portion 27a, the target accommodating portion 27d and the electron gun portion 27e is evacuated, the exhaust pipe is connected to the X-ray tube 27. It is sealed by sealing.
  • the metal tube 29 is provided so as to protrude upward from the upper surface of the high-voltage power supply unit 17 and is formed in a cylindrical shape surrounding the X-ray tube 27.
  • the metal tube 29 is made of a metal with excellent heat dissipation (for example, aluminum) and is provided with a plurality of cooling fins 29a extending in the horizontal direction around the metal tube 29. ing.
  • the cooling fin 29a is provided as a protruding portion extending in the circumferential direction on the circumferential surface of the metal tube 29, and increases the surface area of the metal tube 29, and efficiently dissipates heat generated from the X-ray tube 27. Can do.
  • An opening 23 ⁇ 4 is formed at the front end surface of the metal tube 29, and a valve portion 27a of the X-ray tube 27 is inserted from the opening 23 ⁇ 4.
  • a liquid electrical insulating material is inserted into the internal space of the metal tube 29. Insulating oil 31 is injected.
  • a mounting flange 27f is formed between the valve portion 27a and the target accommodating portion 27d of the X-ray tube 27, and the X-ray tube 27 is fixed to the distal end surface of the metal tube 29 by the mounting flange 27f.
  • the lev 27a is immersed in the insulating oil 31.
  • the valve part 27a of the X-ray tube 27 is insulated. The outer discharge from the X-ray tube 27 is prevented.
  • FIG. 4 is a cross-sectional view of the control unit 7.
  • the control unit 7 is provided in the control unit accommodating space R2, and has a first circuit board 35, a second circuit board 37, and a drive power supply unit 39.
  • the first circuit board 35 controls the voltage that can be generated by the high-voltage power supply unit 17 from a high voltage (for example, 160 kV) to a low voltage (for example, OV). Further, the first circuit board 35 controls the emission timing, tube voltage, tube current and the like of the electron gun section 27e.
  • the second circuit board 37 controls the operation of the first circuit board 35 based on a control signal of external force.
  • the drive power supply unit 39 is a converter that performs ACZDC conversion (or DCZDC conversion) on electric power supplied also from an external force.
  • the drive power supply unit 39 supplies drive power to the first circuit board 35 and the second circuit board 37, and X-rays. Electric power for generating a high voltage is supplied to the high-voltage transformer 19 of the generator 5. Note that the first circuit board 35, the second circuit board 37, the drive power supply unit 39, and the X-ray generation unit 5 are appropriately electrically connected to each other by a conductor (not shown).
  • the control unit 7 the first circuit board 35, the second circuit board 37, and the drive power supply unit 39 are accommodated in the force control unit accommodation space R2 in a compact manner and can be securely fixed. It is preferable. For this reason, the control unit 7 is provided with a circuit board holder 49 having a heat conductive metal (for example, aluminum) force in the control unit accommodating space R2, and the circuit board holder 49 includes the first circuit board 35 and the first circuit board 35. 2 The circuit board 37 and the drive power supply 39 are supported.
  • a heat conductive metal for example, aluminum
  • the circuit board holder 49 includes a first plate (first member) 45 and a second plate (second member) 47 that also have a thermally conductive metal force.
  • the first plate 45 has a first flat plate portion 46 that is inclined and inclined with respect to the bottom plate 3a
  • the second plate 47 is a second flat plate that is erected substantially perpendicular to the bottom plate 3a. Part 48.
  • the lower ends of the first plate 45 and the second plate 47 are fixed to the bottom plate 3a by screws 49a, and the upper ends of the plates 45 and 47 are overlapped with each other by screws (an example of fastening means) 49b.
  • the first flat plate portion 46 has a first mounting surface 45a for mounting the first circuit board 35
  • the second flat plate portion 48 is a second plate for mounting the second circuit board 37. It has a mounting surface 47b and a third mounting surface 47c which is the back surface of the second mounting surface 47b.
  • Circuit board By forming the rudder 49 in a chevron structure, the circuit boards 35 and 37 attached to the circuit board holder 49 can be securely fixed to the bottom plate 3a while maintaining the mechanical strength of the circuit board holder 49 itself.
  • the lower portion of the second plate 47 is bent in an L shape so as to approach the side wall 3f of the housing 3, and the high voltage transformer 19 of the high voltage power supply unit 17 includes the second plate 47 and the first plate. It is located between 45.
  • the first circuit board 35 is attached along the first attachment surface 45 a of the first plate 45 via the spacer 51.
  • the second circuit board 37 is mounted along the second mounting surface 47b of the second plate 47 via the spacer 51, and the drive power supply unit 39 is mounted on the third mounting surface 47c of the second plate 47. And is attached via a spacer 51.
  • the first mounting surface 45a of the circuit board holder 49 is provided to be inclined with respect to the bottom plate 3a, the first circuit board 35 can be accommodated in the control unit accommodating space R2 while being inclined. Contributes to the low profile of X-ray source 1.
  • the circuit board holder 49 is composed of two members, the first plate 45 and the second plate 47, the circuit boards 35 and 37 and the drive are mounted on the first to third mounting surfaces 45a, 47b and 47c.
  • the drive power supply unit 39 is arranged between the first plate 45 and the second plate 47 by connecting the first plate 45 and the second plate 47 by screwing, and the circuit board holder Since 49 can be completed, the assembling workability of the control unit 7 is improved.
  • the X-ray generation unit 5 including the metal tube 29 is stored inside the housing 3 and is orthogonal to the bottom plate 3 a of the housing 3.
  • a cooling fan unit 55 is provided on the side wall (second wall) 3b that stands up and the metal tube 29 is cooled by flowing cooling air in the housing 3.
  • the housing 3 extends in parallel with the bottom plate 3a, and has an X-ray tube. It has an upper wall (first wall) 3c provided with an opening (irradiation part) 3 for irradiating the X-rays from 27 to the outside. This opening is provided at a position corresponding to the irradiation window 27h of the X-ray tube 27 and exposes the irradiation window 27h to the outside.
  • a wall connecting the upper wall 3c and the side wall 3b is formed as an inclined wall 3d.
  • the wall connecting the side wall 3f facing the side wall 3b and the upper wall 3c is also an inclined wall 3e. The degree of inclination of the inclined wall 3d and the inclined wall 3e with respect to the upper wall 3c may be different or the same.
  • the cooling fan unit 55 is provided on the side wall 3b of the housing 3 as described above, and includes the cooling fan 55a that rotates about an axis perpendicular to the side wall 3b.
  • the cooling fan 55a rotates to cause air to flow from the outside to the inside of the housing 3.
  • the cooling fan 55a is positioned in the vicinity of the X-ray generation unit 5 so that the cooling air directly hits the X-ray generation unit 5.
  • the air taken into the housing 3 by the cooling fan 55a flows in the X-ray generation unit accommodating space R1 as cooling air, and hits the metal cylinder 29 without unevenness. While passing, it flows in the direction of the side wall 3f. Then, the cooling air passing around the metal tube 29 is guided by the cooling fins 29a and smoothly flows in the horizontal direction, hits the metal tube 29 with a sufficient heat transfer area, and efficiently heats from the metal tube 29. Remove it. As a result, the metal tube 29 can be efficiently cooled, and the X-ray tube 27 surrounded by the metal tube 29 can be efficiently cooled.
  • the metal tube 29 contacts the cooling air without any unevenness and is cooled, it is possible to suppress output fluctuation and output decrease due to temperature unevenness of the X-ray tube 27. Thereafter, the cooling air that has received heat from the metal tube 29 and has risen in temperature is discharged to the outside through the exhaust port 3k provided in the inclined wall 3e.
  • the X-ray source 1 can efficiently cool the X-ray tube 27 by efficiently cooling the metal tube 29, so that the output of the X-ray source can be increased.
  • the X-ray source 1 is connected to a personal computer or the like on a part of the side wall 3b on the control unit accommodation space R2 side.
  • the X-ray source 1 inputs and outputs signals relating to the control information of the personal computer force and the like via the connector portion.
  • the cooling fan unit 55 and the connector section have wiring connections to the control section 7 and the like, so that they are separate from other parts of the casing 3. If it is, it is preferable in terms of maintenance of the X-ray source 1 or the like.
  • the cooling fan unit 55 and the connector portion are fixed to the bottom plate 3a and connected to the control portion 7 by wiring.
  • the inclined wall 3d and the inclined wall 3e are formed in the casing 3 of the X-ray source 1, the following effects can be obtained.
  • the inclined walls 3d and 3e are not formed, corners are formed between the upper wall 3c and the side walls 3b and 3f.
  • the tilted inspection object hits the corner, and therefore the irradiation window 27h and the inspection object are sufficiently close to each other. I can't let you.
  • the inspection object can be brought closer to the irradiation window 27h. For this reason, it is possible to obtain a fluoroscopic image of the inspection object having a larger magnification.
  • the partition wall 15 in the housing 3 does not completely separate the X-ray generation unit accommodation space R1 and the control unit accommodation space R2, but separates the partition between the metal tube 29 and the control unit 7.
  • a ventilation port 59 that communicates the X-ray generation unit accommodation space R 1 and the control unit accommodation space R 2.
  • the temperature rise of the control unit 7 can be suppressed, and the operation of the circuit boards 35 and 37 of the control unit 7 can be stabilized.
  • the X-ray generation unit accommodating space R1 and the control unit accommodating space R are formed by the vent 59. Therefore, a part of the cooling air introduced by the cooling fan 55a flows into the control unit accommodating space R2 through the ventilation port 59, so that the control unit 7 can be cooled by this cooling air. it can.
  • the control unit housing space R2 includes the first plate 45, the second plate 47, the bottom plate 3a, and the like. Tunnel part R2a surrounded by is formed. This tunnel portion R2a extends in the direction in which the cooling air flows in through the ventilation opening 59 (the direction perpendicular to the paper surface of FIG. 4), and thus functions as a cooling air ventilation path. Therefore, a smooth cooling air flow that concentrates on the tunnel R2a occurs. Since the drive power supply unit 39 exists in the tunnel portion R2a, the heat generated in the drive power supply unit 39 is efficiently removed by the cooling air, and the drive power supply unit 39 is cooled intensively and efficiently. can do. As a result, the operation characteristics of the drive power supply 39 can be stabilized.
  • the high-voltage transformer 19 is provided so as to protrude from the insulating block 21 in the direction of the control unit 17, and is located in the tunnel part R2a. Therefore, the high-voltage transformer 19 is also provided in the tunnel part R2a. Will come into contact with the flowing cooling air (see Fig. 2). Therefore, the high-pressure transformer 19 that reaches a high temperature is also efficiently cooled by the cooling air. Then, the cooling air that has received heat from the drive power supply unit 39 and the high-voltage transformer 19 and has risen in temperature is discharged to the outside through the exhaust port 3h (see FIGS. 1 and 2) provided in the side wall 3g of the housing 3. Is done.
  • the cooling air that cools the first circuit board 35 and the second circuit board 37 and the cooling air that cools the drive power supply unit 39 and the high-voltage transformer 19 flow in different ventilation paths, respectively. Therefore, the circuit board holder 49 prevents the cooling air from being mixed.
  • the drive power supply 39 and the high-voltage transformer 19 that generate a large amount of heat are efficiently cooled, while cooling air whose temperature has risen due to cooling of the drive power supply 39 and the high-voltage transformer 19 flows into the tunnel R2a.
  • the temperature of the first circuit board 35 and the second circuit board 37 However, it can suppress that it rises on the contrary. As a result, the operating characteristics of the components of the first circuit board 35 and the second circuit board 37 can be stabilized.
  • first circuit board 35, the second circuit board 37, and the drive power supply unit 39 are mounted in a state of being lifted from the mounting surfaces 45a, 47b, 47c via the spacers 51. Therefore, the cooling air comes into contact with both the front and back of the first circuit board 35, the second circuit board 37, and the drive power supply unit 39. Therefore, such a mounting method also contributes to good efficiency and cooling of the first circuit board 35, the second circuit board 37, and the drive power supply unit 39.
  • the power transistor 61 (see FIG. 2) generates a relatively large amount of heat, so that it is separated from the first circuit board 35, and the high voltage power supply unit 17 and the cooling fan are separated. It is installed in close contact with a metal heat sink 63 provided between the knit 55. At this time, the power transistor 61 functions as a component of the first circuit board 35 by being electrically connected to the first circuit board 35 by a conducting wire (not shown). With such an arrangement, the heat sink 63 is cooled by receiving the cooling air from the cooling fan 55a, and the power transistor 61 tightly attached to the heat sink 63 is indirectly cooled. In this way, the temperature rise of the control unit 7 can be effectively suppressed by separately cooling components that generate particularly large heat away from the circuit board body side force.
  • the X-ray source 71 of the second embodiment of the present invention includes a housing 73.
  • a partition wall 75 that partitions the X-ray generation unit accommodation space R1 and the control unit accommodation space R2 is formed in the case 73 so as to extend from the inner wall of the case 73. That is, the internal space of the housing 73 is divided into the X-ray generation unit accommodation space R1 and the control unit accommodation space R2 by the partition wall 75, and cooling air flows into and out of the two spaces. It is isolated so as not to.
  • the cooling fan 55a allows the cooling air to flow into the X-ray generation unit accommodating space R1 to intensively cool the X-ray generation unit 5 including the metal tube 29. In addition, it is possible to reliably prevent the cooling air that has become hot from flowing into the control unit accommodating space R2.
  • the X-ray source 71 includes a second cooling fan unit 77 different from the cooling fan unit 55 on the control unit accommodation space R 2 side of the housing 73.
  • This cooling fan unit 77 and other cooling units The cooling fan 77a is arranged in the vicinity of the first circuit board 35 so that the cooling air generated by the cooling fan 77a directly hits the first circuit board 35.
  • the cooling fan 55a causes the cooling air to flow into the X-ray generation unit accommodating space R1 and cools the X-ray generation unit 5 in the middle, and at the same time, the cooling fan 77a controls the control unit accommodating space R2.
  • the cooling air can be flowed into the controller 7 to cool the controller 7 in a concentrated manner.
  • the X-ray generation unit 5 including the metal tube 29 and the control unit 7 including the drive power supply unit 39 are efficiently performed.
  • the metal heat sink 63 for cooling the power transistor 61 and the power transistor 61 is disposed in the vicinity of the cooling fan 77a in the control unit accommodating space R2, since the cooling efficiency is increased.
  • the X-ray source 71 can also efficiently cool the X-ray tube 27 by efficiently cooling the metal tube 29. Therefore, the output of the X-ray source can be increased, and the control unit By efficiently cooling the drive power supply unit 39 of 7, the operation characteristics of each component of the drive power supply unit 39 can be stabilized.
  • FIG. 6 shows a perspective view of the control unit 7 in the X-ray source 91 of the third embodiment of the present invention via a circuit board holder 85 including plates 81 and 83 that are independent from each other.
  • the circuit boards 35 and 37 are fixed to the bottom plate 3a.
  • the drive power supply 39 is efficiently cooled by the cooling air flowing in the space between the plate 81 and the plate 83.
  • the plates 81 and 83 may extend until reaching the upper wall 3c and contact the upper wall 3c.
  • the cooling fan 55a, 77a uses an intake-type cooling fan that sends air from the outside to the inside of the casing as the cooling fan 55a, 77a. It may be an exhaust type that sends out. In this case, the cooling fans 55a and 77a are preferably arranged close to the heat source.
  • the arrangement of the cooling fan 55a is not limited to the side wall 3b, and may be provided in another part as long as the cooling air flows inside the housing 3 around the metal tube 29.
  • the cooling air may flow around the metal tube 29 by providing a ventilation hole in the casing 3 and disposing a cooling fan in the vicinity of the ventilation opening and in the casing 3.
  • a plurality of cooling fans may be provided in each of the X-ray generation unit accommodation space R1 and the control unit accommodation space R2.
  • an intake-type cooling fan and an exhaust-type cooling fan can be provided in combination.
  • an exhaust type cooling fan can be provided on the substantially opposite wall (particularly the inclined wall 3e).
  • an exhaust type cooling fan can be provided on the substantially opposing wall (particularly the side wall 3f) or the side wall 3g.
  • an intake-type cooling fan is provided in the X-ray generation unit accommodation space R1 to accommodate the control unit.
  • Exhaust type cooling fan may be provided on the space R2 side.
  • Exhaust type cooling fan may be provided on the X-ray generation unit accommodation space side R1
  • intake type cooling fan may be provided on the control unit accommodation space R2 side.
  • An exhaust type cooling fan may be placed on the side wall 3g so that it can be sent to the side.
  • the X-ray tube 27 may be a transmissive target type that is not a reflective target type.
  • the X-ray tube 27 may be accommodated entirely in the metal tube 29.
  • the X-ray tube 27 has a high X-ray permeability in order to irradiate the X-ray from the X-ray tube to the outside.
  • a site can be provided.
  • a part of the X-ray tube 27 may protrude from the metal tube 29 and further protrude from the housing 3.
  • the metal tube 29 surrounding the X-ray tube 27 may not be provided with the cooling fin 29a.
  • the circuit board holder 49 is not limited to being screwed, and may be fixed to the bottom plate 3a by welding or adhesion. Further, the circuit board holder 49 may be fixed to a member fixed to the casing 3 which may be fixed to a portion other than the bottom plate 3a of the casing 3. Further, the first plate 45 and the second plate 47 are not limited to being screwed but may be connected by welding or adhesion.
  • the circuit board holder 49 is also composed of a single member, a first plate 45 and a second plate 47. Not only the holder but also a number of members may be combined. In this case, the bending process can be omitted by forming a circuit board holder by combining a number of members such as flat plates.
  • the circuit board holder 49 is not limited to a heat conductive metal, and may be made of resin.
  • the X-ray source according to the present invention is suitable as a microfocus X-ray source used in, for example, an X-ray nondestructive inspection apparatus.

Abstract

Disclosed is an X-ray source (1) comprising a high-voltage power supply unit (17), an X-ray tube (27), a metal cylinder (29) projecting from the high-voltage power supply unit (17) and surrounding the X-ray tube (27), and a casing (3) housing the high-voltage power supply unit (17) and the metal cylinder (29). The casing (3) is provided with a cooling fan (55a) for causing a cooling wind to flow around the metal cylinder (29) within the casing (3), thereby efficiently cooling the metal cylinder (29) which contains the X-ray tube (27) that is heated to high temperature.

Description

X線源  X-ray source
技術分野  Technical field
[0001] 本発明は、特に、マイクロフォーカス X線源として利用される X線源に関するもので ある。  The present invention particularly relates to an X-ray source used as a microfocus X-ray source.
背景技術  Background art
[0002] 従来、このような分野の技術として、非特許文献 1に記載のマイクロフォーカス X線 源 (浜松ホトニタス株式会社製、製品番号 L9181S)が知られている。このマイクロフ オーカス X線源は、電子銃からの電子をターゲットに衝突させ、発生した X線を照射 窓を介して外部に照射する X線管を備えたタイプの X線源である。このマイクロフォー カス X線源は、検査対象物を透過した X線による透過画像に基づ!、て検査対象物の 異常を発見する X線非破壊検査装置に用いられている。  Conventionally, a microfocus X-ray source (manufactured by Hamamatsu Photonics Co., Ltd., product number L9181S) described in Non-Patent Document 1 is known as a technology in such a field. This microfocus X-ray source is a type of X-ray source equipped with an X-ray tube that collides electrons from an electron gun with a target and irradiates the generated X-rays to the outside through an irradiation window. This microfocus X-ray source is used in an X-ray non-destructive inspection device that detects abnormalities in an inspection object based on an X-ray transmission image transmitted through the inspection object.
非特許文献 1 :マイクロフォーカス X線源シリーズ、浜松ホトニタス株式会社、平成 16 年 4月、 p. 1  Non-Patent Document 1: Microfocus X-ray source series, Hamamatsu Photonics Co., Ltd., April 2004, p. 1
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、この種のマイクロフォーカス X線源は、出力が高くなるほど運転時に おける X線管からの発熱が大きくなる。 X線管が高温になると、それに伴い、出力は 低下するので、 X線源の高出力化を安定して図ろうとすれば、 X線管を効率よく冷却 する必要がある。上記の X線源では、制御基板等を格納する筐体から X線管を収容 する X線管包囲部を露出させる構造によって、 X線管力 の熱を放散しやすくしてい る。その上で、さらに冷却効率を高める方法の一つとして、運転中には、外付けの冷 却ファンにより、露出した X線管包囲部に冷却風を送ることで X線管が冷却されてい る。 However, with this type of microfocus X-ray source, the higher the output, the greater the heat generated from the X-ray tube during operation. When the temperature of the X-ray tube becomes high, the output decreases accordingly. Therefore, if it is intended to stably increase the output of the X-ray source, it is necessary to cool the X-ray tube efficiently. In the above X-ray source, the X-ray tube force heat is easily dissipated by a structure that exposes the X-ray tube surrounding portion that accommodates the X-ray tube from the housing for storing the control board and the like. In addition, as one way to further increase the cooling efficiency, the X-ray tube is cooled during operation by sending cooling air to the exposed X-ray tube enclosure by an external cooling fan. .
[0004] ところが、この場合、冷却ファン力 の冷却風が拡散し、 X線管包囲部に冷却風を 集中的に当てることが困難であるため、 X線管の冷却を十分に図ることができなかつ た。さらに、 X線管の冷却にムラが発生するため、出力の不安定ィ匕ゃ出力の低下を 招きやすくなり、この X線源の安定した高出力化が困難であった。 [0004] However, in this case, the cooling air of the cooling fan power diffuses and it is difficult to concentrate the cooling air on the X-ray tube surrounding portion, so that the X-ray tube can be sufficiently cooled. Natsuki. In addition, since the X-ray tube is not evenly cooled, the output is unstable. It was difficult to achieve a stable high output of this X-ray source.
[0005] X線源の出力が低い場合には、 X線の照射量が少ないため、 X線非破壊検査装置 の場合に、明瞭な透過画像を得ることができず、精度が高い検査が困難である。特 に、搬送ライン上で流通する検査対象物を高速で透視検査する場合には、 X線を照 射できる時間をできるだけ短く設定する必要があるため、 X線源の出力が低い場合に は明瞭な透過画像が得られなカゝった。 [0005] When the output of the X-ray source is low, the amount of X-ray irradiation is small, so in the case of an X-ray nondestructive inspection device, a clear transmission image cannot be obtained, and high-precision inspection is difficult. It is. In particular, when inspecting objects to be inspected on the transfer line at high speed, it is necessary to set the time during which X-rays can be irradiated as short as possible, so it is clear when the output of the X-ray source is low. I could not get a clear transmission image.
[0006] そこで、本発明は、安定して高出力を実現する X線源を提供することを課題とする。 [0006] Therefore, an object of the present invention is to provide an X-ray source that stably achieves high output.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するため、本発明の X線源は、絶縁材料でモールドされた高圧電 源部と、この高圧電源部力 の電力によって X線を発生させて外部に照射する X線管 と、高圧電源部力 突出して設けられ、 X線管の少なくとも一部を包囲する X線管包 囲部と、高圧電源部および X線管包囲部を格納する筐体と、筐体内部の X線管包囲 部の周囲に冷却風を流動させる冷却ファンと、を備えていることを特徴とする。 [0007] In order to solve the above problems, the X-ray source of the present invention includes a high piezoelectric source part molded with an insulating material, and X-rays generated by the electric power of the high-voltage power supply part and irradiated to the outside. A tube, an X-ray tube enclosure that protrudes and surrounds at least a part of the X-ray tube, a housing that houses the high-voltage power supply unit and the X-ray tube enclosure, And a cooling fan for allowing cooling air to flow around the X-ray tube surrounding portion.
[0008] この X線源では、冷却ファンにより発生する冷却風は筐体内を流動することになるの で、この冷却風を X線管包囲部の周囲に効率良ぐムラなく流通させることができる。 この冷却風により、 X線管包囲部から熱を除去する。  [0008] In this X-ray source, the cooling air generated by the cooling fan flows in the housing, so that the cooling air can be efficiently and evenly distributed around the X-ray tube enclosure. . The cooling air removes heat from the X-ray tube enclosure.
[0009] また、筐体は、 X線管で発生した X線を筐体外部へ照射する照射窓を有する第 1の 壁と、この第 1の壁に対して略直交する方向に延びるとともに冷却ファンが配置される 第 2の壁と、これら第 1の壁と第 2の壁に交差して両者を連結する傾斜壁と、を有する ことが好ましい。この場合、第 1の壁と第 2の壁を連結する壁を傾斜壁とすることで、傾 斜癖が冷却フィンによって生成される気流をガイドする機能を有することになる。  [0009] Further, the casing extends in a direction substantially orthogonal to the first wall having an irradiation window for irradiating the X-ray generated by the X-ray tube to the outside of the casing, and is cooled. It is preferable to have a second wall on which the fan is disposed, and an inclined wall that crosses the first wall and the second wall and connects the two. In this case, by using the inclined wall as the wall connecting the first wall and the second wall, the inclined wall has a function of guiding the airflow generated by the cooling fins.
[0010] また、 X線管包囲部の外周に設けられた冷却フィンをさらに備えて 、ることが好まし い。冷却フィンにより、 X線管包囲部とその周囲を流動する冷却風との伝熱面積が拡 大され、伝熱量が増大する。  [0010] Further, it is preferable to further include a cooling fin provided on the outer periphery of the X-ray tube surrounding portion. The cooling fins expand the heat transfer area between the X-ray tube enclosure and the cooling air flowing around it, increasing the amount of heat transfer.
[0011] 筐体内に、 X線発生部を制御する制御部を収容する制御部と、少なくとも高圧電源 部と X線管と X線管包囲部とを有する X線発生部および冷却ファンが位置する空間と を仕切る仕切壁をさらに備えているとよい。これにより、高圧電源部や X線管包囲部 を冷却して温風となった空気の制御部周囲への流通が抑制される。 [0012] この仕切壁は、 X線管包囲部と制御部との間に配置されるとともに、区分した空間を 連通する通風口を有していることが好ましい。この場合には、温風の流入を抑制しつ つ、冷却ファンによって導入された空気の一部が制御部周囲へも流通される。あるい は、仕切壁は、区分した空間間の連通を遮断しているものでもよい。この場合は、 X 線発生部が収容される空間は、制御部周囲の空間とは隔絶され、相互の気流の流 通は遮断される。 [0011] A control unit that houses a control unit that controls the X-ray generation unit, an X-ray generation unit that includes at least a high-voltage power supply unit, an X-ray tube, and an X-ray tube surrounding unit, and a cooling fan are located within the housing. It may be further provided with a partition wall that partitions the space. As a result, the circulation of the air that has become hot air by cooling the high-voltage power supply unit and the X-ray tube enclosure is suppressed. [0012] Preferably, the partition wall is disposed between the X-ray tube surrounding portion and the control portion, and has a vent hole that communicates the partitioned space. In this case, a part of the air introduced by the cooling fan is circulated around the control unit while suppressing the inflow of warm air. Alternatively, the partition wall may block communication between the divided spaces. In this case, the space in which the X-ray generation unit is accommodated is isolated from the space around the control unit, and the flow of mutual airflow is blocked.
[0013] 筐体の制御部が配置される空間側に配置される第 2の冷却ファンをさらに備えてい てもよい。この第 2の冷却ファンは、主として制御部を冷却する機能を有する。  [0013] A second cooling fan arranged on the space side where the control unit of the casing is arranged may be further provided. The second cooling fan mainly has a function of cooling the control unit.
発明の効果  The invention's effect
[0014] 本発明によれば、 X線管包囲部を冷却風によって効率よく冷却することで、 X線管 で発生する熱を X線管包囲部を通じて効率よく除去する。つまり、 X線管を効率よく冷 却することができるので、 X線源の安定した高出力化が可能となる。  [0014] According to the present invention, the heat generated in the X-ray tube is efficiently removed through the X-ray tube surrounding portion by efficiently cooling the X-ray tube surrounding portion with the cooling air. In other words, since the X-ray tube can be cooled efficiently, the X-ray source can have a stable and high output.
[0015] 筐体に傾斜壁を設けると、この傾斜壁により筐体内にスムーズな冷却風の流れを生 成することができ、その結果として、効率よく X線管包囲部を冷却することができる。  [0015] When the case is provided with an inclined wall, the inclined wall can generate a smooth flow of cooling air in the case, and as a result, the X-ray tube enclosure can be efficiently cooled. .
[0016] X線管包囲部の外周に冷却フィンを設けると、 X線管包囲部から冷却風への伝熱 量を増大させることができ、 X線管包囲部を効率良く冷却することができる。  [0016] When cooling fins are provided on the outer periphery of the X-ray tube surrounding portion, the amount of heat transfer from the X-ray tube surrounding portion to the cooling air can be increased, and the X-ray tube surrounding portion can be efficiently cooled. .
[0017] 筐体内部に上述したように仕切壁を設けることで、 X線発生部の冷却後に高温とな つた冷却風 (温風)が、制御部方向へ流動することを、仕切壁によって抑制することが できるので、制御部の温度上昇を抑制することができる。その結果として、制御部の 動作を安定させることができる。  [0017] By providing the partition wall inside the housing as described above, the partition wall prevents the cooling air (hot air) that has become hot after cooling the X-ray generation unit from flowing toward the control unit. Therefore, the temperature rise of the control unit can be suppressed. As a result, the operation of the control unit can be stabilized.
[0018] 仕切壁に上述したような通風口を設けた場合には、 X線管包囲部の冷却後に高温 となった冷却風が、制御部へ直接流入することが抑制できると同時に、冷却ファンに よって発生する冷却風の一部を通風口を通じて制御部へと導入することができるため 、制御部の冷却に寄与することとなり、制御部の動作をさらに安定させることができる  [0018] When the above-described ventilation port is provided in the partition wall, it is possible to suppress the cooling air that has become high temperature after cooling the X-ray tube surrounding portion from flowing directly into the control unit, and at the same time, the cooling fan As a result, a part of the cooling air generated can be introduced to the control unit through the air vent, which contributes to the cooling of the control unit and can further stabilize the operation of the control unit.
[0019] 一方、仕切壁により X線発生部と制御部とを隔絶すると、 X線発生部周囲に冷却風 を集中的に流動させることができ、集中的に冷却することができる。 On the other hand, when the X-ray generation unit and the control unit are separated from each other by the partition wall, the cooling air can be intensively flowed around the X-ray generation unit, and the cooling can be performed intensively.
[0020] 制御部側に第 2の冷却ファンを設けると、制御部を第 2の冷却ファンにより集中的に 冷却することができる。 [0020] When the second cooling fan is provided on the control unit side, the control unit is concentrated by the second cooling fan. Can be cooled.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明に係る X線源の第 1の実施形態を示す斜視図である。  FIG. 1 is a perspective view showing a first embodiment of an X-ray source according to the present invention.
[図 2]図 1に示した X線源の正面図である。  FIG. 2 is a front view of the X-ray source shown in FIG.
[図 3]図 1に示した X線源の X線発生部の断面図である。  3 is a cross-sectional view of the X-ray generation part of the X-ray source shown in FIG.
[図 4]図 1に示した X線源の制御部の断面図である。  4 is a cross-sectional view of the control unit of the X-ray source shown in FIG.
[図 5]本発明に係る X線源の第 2の実施形態を示す正面図である。  FIG. 5 is a front view showing a second embodiment of the X-ray source according to the present invention.
[図 6]本発明に係る X線源の第 3の実施形態を示す斜視図である。 符号の説明  FIG. 6 is a perspective view showing a third embodiment of the X-ray source according to the present invention. Explanation of symbols
[0022] 1、71、91 X線源 [0022] 1, 71, 91 X-ray source
3、 73 筐体  3, 73 housing
3c 上壁 (第 1の壁)  3c Upper wall (first wall)
3b 側壁 (第 2の壁)  3b Side wall (second wall)
3d 傾斜壁  3d inclined wall
3j 開口(照射部)  3j aperture (irradiation part)
5 X線発生部  5 X-ray generator
7 制御部  7 Control unit
15 仕切壁  15 Partition wall
17 高圧電源部  17 High voltage power supply
27 X線管  27 X-ray tube
29a 冷却フィン  29a Cooling fin
29 金属筒 (X線管包囲部)  29 Metal tube (X-ray tube enclosure)
55a、 77a 冷却ファン  55a, 77a cooling fan
59 通風口  59 Ventilation openings
75 仕切壁  75 partition wall
Rl X線発生部収容空間  Rl X-ray generator housing space
R2 制御部収容空間  R2 control space
発明を実施するための最良の形態 [0023] 以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。 説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な 限り同一の参照番号を附し、重複する説明は省略する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same reference numerals are given to the same components in the drawings as much as possible, and duplicate descriptions are omitted.
(第 1実施形態)  (First embodiment)
[0024] 図 1は、本発明に係る X線源の第 1の実施形態を示す斜視図であり、図 2はその正 面図である。図 1および図 2に示すように、 X線源 1は、電子銃からの電子をターゲット に衝突させ、発生した X線を照射窓を介して外部に照射する X線管を備えたタイプの X線源であり、例えば、 X線非破壊検査装置における X線源として用いられる。この X 線源 1の筐体 3内部には、 X線を発生させかつ照射する X線発生部 5と、その X線発 生部 5を制御する制御部 7とが格納されている。筐体 3の内部空間は、 X線発生部 5 を収容する X線発生部収容空間 R1と、制御部 7を収納する制御部収容空間 R2と力ゝ ら構成されており、 X線発生部収容空間 R1と制御部収容空間 R2との間には、筐体 3 の上部内壁から下方に向けて延びる仕切壁 15が設けられている。つまり、仕切壁 15 が X線発生部収容空間 R1と制御部収容空間 R2を区分している。  FIG. 1 is a perspective view showing a first embodiment of an X-ray source according to the present invention, and FIG. 2 is a front view thereof. As shown in Fig. 1 and Fig. 2, X-ray source 1 is an X-ray type equipped with an X-ray tube that collides electrons from an electron gun with a target and irradiates the generated X-rays to the outside through an irradiation window. For example, it is used as an X-ray source in an X-ray nondestructive inspection apparatus. An X-ray generation unit 5 that generates and irradiates X-rays and a control unit 7 that controls the X-ray generation unit 5 are stored in the housing 3 of the X-ray source 1. The internal space of the housing 3 is composed of an X-ray generation unit accommodating space R1 for accommodating the X-ray generation unit 5, a control unit accommodating space R2 for accommodating the control unit 7, and a force. A partition wall 15 extending downward from the upper inner wall of the housing 3 is provided between the space R1 and the control unit accommodation space R2. That is, the partition wall 15 divides the X-ray generation unit accommodation space R1 and the control unit accommodation space R2.
[0025] X線発生部 5は、その断面図を図 3に示すように、筐体 3の底板 3aに固定された高 圧電源部 17と、この高圧電源部 17から電力の供給を受けて X線を照射する X線管 2 7と、この X線管 27の一部を包囲する金属筒 (X線管包囲部) 29とを備えている。この 高圧電源部 17は、高電圧を発生させ得る高圧トランス 19と、高圧トランス 19で発生し た高電圧を増倍させて X線管 27に供給する高圧供給回路 23と、高圧トランス 19と高 圧供給回路 23とを電気的に接続する導線 25aと、高圧供給回路 23と X線管 27とを 電気的接続する導線 25bとを備えている。そして、高圧供給回路 23と、各導線 25a、 25bとは、電気絶縁性材料 (例えば、エポキシ榭脂)カゝらなる絶縁ブロック 21中にモ 一ルドされており、高圧トランス 19は、絶縁ブロック 21の側面で制御部 7側に突出し て設けられている。このような高圧電源部 17の構造によって、高電圧が印加される高 圧供給回路 23、導線 25a、 25bからの外部への放電が防止されている。  As shown in FIG. 3, a cross-sectional view of the X-ray generation unit 5 includes a high voltage power supply unit 17 fixed to the bottom plate 3a of the housing 3 and the supply of electric power from the high voltage power supply unit 17. An X-ray tube 27 for irradiating X-rays and a metal tube (X-ray tube surrounding portion) 29 surrounding a part of the X-ray tube 27 are provided. The high voltage power supply unit 17 includes a high voltage transformer 19 that can generate a high voltage, a high voltage supply circuit 23 that multiplies the high voltage generated by the high voltage transformer 19 and supplies the high voltage to the X-ray tube 27, a high voltage transformer 19 A conducting wire 25a that electrically connects the pressure supply circuit 23 and a conducting wire 25b that electrically connects the high-pressure supply circuit 23 and the X-ray tube 27 are provided. The high-voltage supply circuit 23 and the conductive wires 25a and 25b are molded in an insulating block 21 made of an electrically insulating material (for example, epoxy resin), and the high-voltage transformer 19 It is provided on the side surface 21 so as to protrude to the control unit 7 side. Such a structure of the high-voltage power supply unit 17 prevents discharge from the high-voltage supply circuit 23 to which a high voltage is applied and the conductive wires 25a and 25b to the outside.
[0026] この高圧電源部 17の上方に位置する X線管 27は、反射型ターゲットタイプの X線 管であり、棒状の陽極 27bを絶縁状態に保持して収容しているバルブ部 27aと、棒状 陽極 27bの端部に設けられたターゲット 27cを収容しているターゲット収容部 27dと、 ターゲット 27cの反射面に向けて電子線を出射する電子銃 27kを収容している電子 銃部 27eとを備えている。 [0026] The X-ray tube 27 located above the high-voltage power supply unit 17 is a reflective target type X-ray tube, and holds a rod-shaped anode 27b in an insulated state and accommodates a valve unit 27a. A target accommodating portion 27d that accommodates a target 27c provided at an end of the rod-shaped anode 27b; An electron gun unit 27e that houses an electron gun 27k that emits an electron beam toward the reflecting surface of the target 27c.
[0027] このバルブ部 27aとターゲット収容部 27dとは同軸に配置されており、この軸線に対 して電子銃部 27eの軸線は略直交している。また、棒状陽極 27bの基端部は、高電 圧印加部 27gとしてバルブ部 27aの下部から下方に突出している。  [0027] The valve portion 27a and the target accommodating portion 27d are arranged coaxially, and the axis of the electron gun portion 27e is substantially orthogonal to the axis. The base end portion of the rod-shaped anode 27b protrudes downward from the lower portion of the valve portion 27a as the high voltage application portion 27g.
[0028] この高電圧印加部 27gの下部にはソケット 33が接続されており、ソケット 33は、高圧 電源部 17の導線 25bを介して高圧供給回路 23に電気的に接続されて!、る。このよう な構成により、 X線管 27には、導線 25bを介して高圧供給回路 23から高電圧が供給 される。そして、 X線管 27が高電圧の供給を受けた状態で、電子銃部 27e内の電子 銃 27kがターゲット 27cに向けて電子を出射すると、ターゲット 27cから X線が発生し 、この X線がターゲット収容部 27dの開口部に設けられた X線照射窓 27hから被検体 に向けて照射される。  [0028] A socket 33 is connected to the lower portion of the high voltage application unit 27g, and the socket 33 is electrically connected to the high voltage supply circuit 23 via the conductor 25b of the high voltage power supply unit 17. With such a configuration, a high voltage is supplied to the X-ray tube 27 from the high voltage supply circuit 23 via the conductor 25b. When the X-ray tube 27 receives a high voltage and the electron gun 27k in the electron gun unit 27e emits electrons toward the target 27c, X-rays are generated from the target 27c. The object is irradiated from the X-ray irradiation window 27h provided in the opening of the target container 27d.
[0029] なお、 X線管 27は、密封型であり、その内部を真空にして封止されている。例えば X線管 27には、図示しない排気管が設けられており、この排気管を介してバルブ部 2 7a、ターゲット収容部 27dおよび電子銃部 27eの内部が真空引きされた後、排気管 を封止することによって密封される。  Note that the X-ray tube 27 is a sealed type, and the inside thereof is sealed in a vacuum. For example, the X-ray tube 27 is provided with an exhaust pipe (not shown), and after the inside of the valve portion 27a, the target accommodating portion 27d and the electron gun portion 27e is evacuated, the exhaust pipe is connected to the X-ray tube 27. It is sealed by sealing.
[0030] 金属筒 29は、高圧電源部 17の上面から上方に突出して設けられており、 X線管 27 を包囲する円筒形に形成されている。金属筒 29は、 X線管 27から発生する熱を効率 よく放散させるために、放熱性に優れた金属(例えば、アルミニウム)からなると共に、 水平方向に延びる複数の冷却フィン 29aが周囲に設けられている。冷却フィン 29aは 、金属筒 29の周面で円周方向に延びる凸条部として設けられ、金属筒 29の表面積 を拡大するものであり、 X線管 27から発生する熱を効率よく放散させることができる。  The metal tube 29 is provided so as to protrude upward from the upper surface of the high-voltage power supply unit 17 and is formed in a cylindrical shape surrounding the X-ray tube 27. In order to efficiently dissipate the heat generated from the X-ray tube 27, the metal tube 29 is made of a metal with excellent heat dissipation (for example, aluminum) and is provided with a plurality of cooling fins 29a extending in the horizontal direction around the metal tube 29. ing. The cooling fin 29a is provided as a protruding portion extending in the circumferential direction on the circumferential surface of the metal tube 29, and increases the surface area of the metal tube 29, and efficiently dissipates heat generated from the X-ray tube 27. Can do.
[0031] この金属筒 29の先端面には開口 2¾が形成され、この開口 2¾から X線管 27のバ ルブ部 27aが挿入され、金属筒 29の内部空間には、液状の電気絶縁性物質である 絶縁オイル 31が注入されている。そして、 X線管 27のバルブ部 27aとターゲット収容 部 27dとの間には取付フランジ 27fが形成されており、この取付フランジ 27fによって X線管 27は金属筒 29の先端面に固定され、ノ レブ部 27aは絶縁オイル 31に浸漬さ れている。この絶縁オイル 31の採用によって、 X線管 27のバルブ部 27aが絶縁オイ ル 31で包囲され、 X線管 27からの外部への放電が防止されている。 [0031] An opening 2¾ is formed at the front end surface of the metal tube 29, and a valve portion 27a of the X-ray tube 27 is inserted from the opening 2¾. A liquid electrical insulating material is inserted into the internal space of the metal tube 29. Insulating oil 31 is injected. A mounting flange 27f is formed between the valve portion 27a and the target accommodating portion 27d of the X-ray tube 27, and the X-ray tube 27 is fixed to the distal end surface of the metal tube 29 by the mounting flange 27f. The lev 27a is immersed in the insulating oil 31. By adopting this insulating oil 31, the valve part 27a of the X-ray tube 27 is insulated. The outer discharge from the X-ray tube 27 is prevented.
[0032] 続いて、制御部 7について説明する。図 4は、この制御部 7の断面図である。図 1お よび図 4に示すように、制御部 7は、制御部収容空間 R2内に設けられ、第 1回路基板 35、第 2回路基板 37、および駆動電源部 39を有している。この第 1回路基板 35は、 高圧電源部 17で発生させ得る電圧を、高電圧 (例えば 160kV)から低電圧 (例えば OV)までコントロールしている。さらに、第 1回路基板 35は、電子銃部 27eにおける電 子の放出のタイミングや管電圧、管電流などのコントロールを行う。第 2回路基板 37 は、外部力もの制御信号に基づいて第 1回路基板 35の動作をコントロールする。駆 動電源部 39は、外部力も供給される電力を ACZDC変換 (または DCZDC変換)す るコンバータであり、これら第 1回路基板 35および第 2回路基板 37に駆動電力を供 給するとともに、 X線発生部 5の高圧トランス 19に高電圧を発生させるための電力を 供給する。なお、これらの第 1回路基板 35、第 2回路基板 37、駆動電源部 39および X線発生部 5は、適宜、図示しない導線によって互いに電気的接続が図られている。 Next, the control unit 7 will be described. FIG. 4 is a cross-sectional view of the control unit 7. As shown in FIGS. 1 and 4, the control unit 7 is provided in the control unit accommodating space R2, and has a first circuit board 35, a second circuit board 37, and a drive power supply unit 39. The first circuit board 35 controls the voltage that can be generated by the high-voltage power supply unit 17 from a high voltage (for example, 160 kV) to a low voltage (for example, OV). Further, the first circuit board 35 controls the emission timing, tube voltage, tube current and the like of the electron gun section 27e. The second circuit board 37 controls the operation of the first circuit board 35 based on a control signal of external force. The drive power supply unit 39 is a converter that performs ACZDC conversion (or DCZDC conversion) on electric power supplied also from an external force. The drive power supply unit 39 supplies drive power to the first circuit board 35 and the second circuit board 37, and X-rays. Electric power for generating a high voltage is supplied to the high-voltage transformer 19 of the generator 5. Note that the first circuit board 35, the second circuit board 37, the drive power supply unit 39, and the X-ray generation unit 5 are appropriately electrically connected to each other by a conductor (not shown).
[0033] この制御部 7にあっては、第 1回路基板 35、第 2回路基板 37および駆動電源部 39 力 制御部収容空間 R2内にコンパクトに収容され、かつ、確実に固定されることが好 ましい。このため、制御部 7には、制御部収容空間 R2内に、導熱性の金属(例えば、 アルミニウム)力もなる回路基板ホルダー 49が設けられ、この回路基板ホルダー 49に 、第 1回路基板 35、第 2回路基板 37、および駆動電源部 39が支持された構造をなし ている。 [0033] In the control unit 7, the first circuit board 35, the second circuit board 37, and the drive power supply unit 39 are accommodated in the force control unit accommodation space R2 in a compact manner and can be securely fixed. It is preferable. For this reason, the control unit 7 is provided with a circuit board holder 49 having a heat conductive metal (for example, aluminum) force in the control unit accommodating space R2, and the circuit board holder 49 includes the first circuit board 35 and the first circuit board 35. 2 The circuit board 37 and the drive power supply 39 are supported.
[0034] 回路基板ホルダー 49は、熱伝導性の金属力もなる第 1プレート (第 1の部材) 45と、 第 2のプレート (第 2の部材) 47とからなる。第 1プレート 45は、底板 3aに対して傾斜し て立設させた第 1平板部 46を有しており、第 2プレート 47は、底板 3aに対して略垂直 に立設させた第 2平板部 48を有している。この第 1プレート 45および第 2プレート 47 は、下端がネジ 49aによってそれぞれ底板 3aに固定されており、プレート 45、 47の 上端同士が重ねられた状態でネジ (締結手段の一例) 49bによって連結されて 、る。  The circuit board holder 49 includes a first plate (first member) 45 and a second plate (second member) 47 that also have a thermally conductive metal force. The first plate 45 has a first flat plate portion 46 that is inclined and inclined with respect to the bottom plate 3a, and the second plate 47 is a second flat plate that is erected substantially perpendicular to the bottom plate 3a. Part 48. The lower ends of the first plate 45 and the second plate 47 are fixed to the bottom plate 3a by screws 49a, and the upper ends of the plates 45 and 47 are overlapped with each other by screws (an example of fastening means) 49b. And
[0035] そして、第 1平板部 46は、第 1回路基板 35を取り付けるための第 1取付面 45aを有 しており、第 2平板部 48は、第 2回路基板 37を取り付けるための第 2取付面 47bおよ び第 2取付面 47bの裏面である第 3取付面 47cを有して 、る。このように回路基板ホ ルダー 49は山形構造をなすことで、回路基板ホルダー 49自体の機械的強度を維持 しつつ、回路基板ホルダー 49に取り付けられる回路基板 35、 37を底板 3aに対して 確実に固定することができる。 The first flat plate portion 46 has a first mounting surface 45a for mounting the first circuit board 35, and the second flat plate portion 48 is a second plate for mounting the second circuit board 37. It has a mounting surface 47b and a third mounting surface 47c which is the back surface of the second mounting surface 47b. Circuit board By forming the rudder 49 in a chevron structure, the circuit boards 35 and 37 attached to the circuit board holder 49 can be securely fixed to the bottom plate 3a while maintaining the mechanical strength of the circuit board holder 49 itself.
[0036] また、第 2プレート 47の下部は、筐体 3の側壁 3fに近づくように L字状に屈曲してお り、高圧電源部 17の高圧トランス 19は第 2プレート 47と第 1プレート 45との間に位置 するようになっている。 [0036] The lower portion of the second plate 47 is bent in an L shape so as to approach the side wall 3f of the housing 3, and the high voltage transformer 19 of the high voltage power supply unit 17 includes the second plate 47 and the first plate. It is located between 45.
[0037] 第 1回路基板 35は、スぺーサ 51を介して第 1プレート 45の第 1取付面 45aに沿つ て取り付けられている。同様に、第 2回路基板 37は、スぺーサ 51を介して第 2プレー ト 47の第 2取付面 47bに沿って取り付けられ、駆動電源部 39は、第 2プレート 47の第 3取付面 47cに沿ってスぺーサ 51を介して取り付けられている。  The first circuit board 35 is attached along the first attachment surface 45 a of the first plate 45 via the spacer 51. Similarly, the second circuit board 37 is mounted along the second mounting surface 47b of the second plate 47 via the spacer 51, and the drive power supply unit 39 is mounted on the third mounting surface 47c of the second plate 47. And is attached via a spacer 51.
[0038] この回路基板ホルダー 49の第 1取付面 45aは、底板 3aに対して傾斜して設けられ ているので、第 1回路基板 35を傾けたまま制御部収容空間 R2に収めることができ、 X 線源 1の低背化に寄与している。また、回路基板ホルダー 49が第 1プレート 45およ び第 2プレート 47の 2部材で構成されていることから、第 1〜第 3取付面 45a、 47b、 4 7cに回路基板 35、 37および駆動電源部 39を取り付けた後に、第 1プレート 45と第 2 プレート 47とをネジ止めによって連結させることで駆動電源部 39を第 1プレート 45と 第 2プレート 47との間に配置し、回路基板ホルダー 49を完成させることができるので 、制御部 7の組付け作業性が向上する。  [0038] Since the first mounting surface 45a of the circuit board holder 49 is provided to be inclined with respect to the bottom plate 3a, the first circuit board 35 can be accommodated in the control unit accommodating space R2 while being inclined. Contributes to the low profile of X-ray source 1. In addition, since the circuit board holder 49 is composed of two members, the first plate 45 and the second plate 47, the circuit boards 35 and 37 and the drive are mounted on the first to third mounting surfaces 45a, 47b and 47c. After mounting the power supply unit 39, the drive power supply unit 39 is arranged between the first plate 45 and the second plate 47 by connecting the first plate 45 and the second plate 47 by screwing, and the circuit board holder Since 49 can be completed, the assembling workability of the control unit 7 is improved.
[0039] このような X線源 1は、運転中に、 X線管 27が発熱するので、 X線管 27および金属 筒 29が高温になりやすい。この X線管 27の発熱は、 X線照射の出力が高いほど大き くなり、 X線管 27が高温になると、他の部品に悪影響を及ぼすとともに、 X線管 27の 出力低下を招いてしまうので、 X線管 27を効率よく冷却すべく金属筒 29を効率よく冷 却する必要がある。  [0039] In such an X-ray source 1, since the X-ray tube 27 generates heat during operation, the X-ray tube 27 and the metal tube 29 are likely to become hot. The heat generated by the X-ray tube 27 increases as the output of the X-ray irradiation increases. When the temperature of the X-ray tube 27 increases, other parts are adversely affected and the output of the X-ray tube 27 is reduced. Therefore, it is necessary to efficiently cool the metal tube 29 in order to cool the X-ray tube 27 efficiently.
[0040] そこで、 X線源 1においては、図 1に示すように、金属筒 29を含む X線発生部 5を筐 体 3の内部へ格納し、筐体 3の底板 3aに対し直交する方向に起立する側壁 (第 2の 壁) 3bに冷却ファンユニット 55を設け、筐体 3内で冷却風を流動させることによって、 金属筒 29を冷却することにして 、る。  Therefore, in the X-ray source 1, as shown in FIG. 1, the X-ray generation unit 5 including the metal tube 29 is stored inside the housing 3 and is orthogonal to the bottom plate 3 a of the housing 3. A cooling fan unit 55 is provided on the side wall (second wall) 3b that stands up and the metal tube 29 is cooled by flowing cooling air in the housing 3.
[0041] 図 1および図 4に示すように、この筐体 3は、底板 3aに平行に延びると共に、 X線管 27からの X線を外部に照射するための開口(照射部)¾が設けられた上壁 (第 1の壁 ) 3cを有している。この開口 ¾は、 X線管 27の照射窓 27hに対応する位置に設けら れ、照射窓 27hを外部に露出させている。また、筐体 3では、上壁 3cと側壁 3bとを連 結する壁が傾斜壁 3dとして形成されている。さらに、側壁 3bに対向する側壁 3fと、上 壁 3cと、を連結する壁も同様に傾斜壁 3eとされている。上壁 3cに対する傾斜壁 3dと 傾斜壁 3eとの傾斜の程度は、互いに異なっていてもよぐ同じであってもよい。 [0041] As shown in FIGS. 1 and 4, the housing 3 extends in parallel with the bottom plate 3a, and has an X-ray tube. It has an upper wall (first wall) 3c provided with an opening (irradiation part) 3 for irradiating the X-rays from 27 to the outside. This opening is provided at a position corresponding to the irradiation window 27h of the X-ray tube 27 and exposes the irradiation window 27h to the outside. Further, in the housing 3, a wall connecting the upper wall 3c and the side wall 3b is formed as an inclined wall 3d. Further, the wall connecting the side wall 3f facing the side wall 3b and the upper wall 3c is also an inclined wall 3e. The degree of inclination of the inclined wall 3d and the inclined wall 3e with respect to the upper wall 3c may be different or the same.
[0042] 冷却ファンユニット 55は上述のように筐体 3の側壁 3bに設けられており、側壁 3bに 垂直な軸線を中心として回転する冷却ファン 55aを有して 、る。冷却ファン 55aは回 転することにより、筐体 3外部から内部へ向けて空気を流動させる。冷却ファン 55aは 、冷却風が直接 X線発生部 5に当たるように X線発生部 5の近傍に位置している。  The cooling fan unit 55 is provided on the side wall 3b of the housing 3 as described above, and includes the cooling fan 55a that rotates about an axis perpendicular to the side wall 3b. The cooling fan 55a rotates to cause air to flow from the outside to the inside of the housing 3. The cooling fan 55a is positioned in the vicinity of the X-ray generation unit 5 so that the cooling air directly hits the X-ray generation unit 5.
[0043] この冷却ファン 55aにより筐体 3の内部に取り込まれた空気は、冷却風として X線発 生部収容空間 R1で流動し、金属筒 29にムラなく当たりながら、金属筒 29の周囲を 通過しつつ、側壁 3fの方向に流れていくことになる。そして、金属筒 29の周囲を通過 する冷却風は、冷却フィン 29aにより案内されて円滑に水平方向に流動しながら、十 分な伝熱面積をもって金属筒 29にあたり、金属筒 29から効率よく熱を除去していく。 その結果、金属筒 29を効率よく冷却することができ、金属筒 29に包囲された X線管 2 7を効率よく冷却することができる。そして、金属筒 29がムラなく冷却風に接触し、冷 却されるので、 X線管 27の温度ムラによる出力変動や出力低下を抑制することができ る。その後、金属筒 29から熱を受け取って温度が上昇した冷却風は、傾斜壁 3eに設 けられた排気口 3kを通じて外部に排出される。  [0043] The air taken into the housing 3 by the cooling fan 55a flows in the X-ray generation unit accommodating space R1 as cooling air, and hits the metal cylinder 29 without unevenness. While passing, it flows in the direction of the side wall 3f. Then, the cooling air passing around the metal tube 29 is guided by the cooling fins 29a and smoothly flows in the horizontal direction, hits the metal tube 29 with a sufficient heat transfer area, and efficiently heats from the metal tube 29. Remove it. As a result, the metal tube 29 can be efficiently cooled, and the X-ray tube 27 surrounded by the metal tube 29 can be efficiently cooled. Since the metal tube 29 contacts the cooling air without any unevenness and is cooled, it is possible to suppress output fluctuation and output decrease due to temperature unevenness of the X-ray tube 27. Thereafter, the cooling air that has received heat from the metal tube 29 and has risen in temperature is discharged to the outside through the exhaust port 3k provided in the inclined wall 3e.
[0044] このとき、上壁 3cと側壁 3bとを連結する壁が傾斜壁 3dとされていることから、冷却 風の淀みが抑制され、筐体 3内でのスムーズな冷却風の流れを出現させることができ る。その結果として、金属筒 29の周囲にスムーズに冷却風が流動し、効率よく金属筒 29を冷却することができる。なお、筐体 3の上壁 3cと側壁 3fとを連結する壁も同様に 傾斜壁 3eとされているので、このことも冷却風のスムーズな流動に寄与している。以 上のように、 X線源 1では、金属筒 29を効率よく冷却することで、 X線管 27を効率よく 冷却できるので、 X線源の高出力化が可能となる。  [0044] At this time, since the wall connecting the upper wall 3c and the side wall 3b is the inclined wall 3d, the stagnation of the cooling air is suppressed and a smooth flow of the cooling air in the housing 3 appears. It can be made. As a result, the cooling air smoothly flows around the metal tube 29, and the metal tube 29 can be efficiently cooled. Since the wall connecting the upper wall 3c and the side wall 3f of the housing 3 is also the inclined wall 3e, this also contributes to the smooth flow of the cooling air. As described above, the X-ray source 1 can efficiently cool the X-ray tube 27 by efficiently cooling the metal tube 29, so that the output of the X-ray source can be increased.
[0045] なお、 X線源 1は、制御部収容空間 R2側の側壁 3bの一部に、パソコン等と接続さ れるコネクタ部(図示せず)を有しており、 X線源 1にはこのコネクタ部を介してバソコ ン等力 の制御情報等に関する信号の入出力が行われる。底板 3aを除いた筐体 3 のうち、冷却ファンユニット 55やコネクタ部(図示せず)は、制御部 7等との配線接続 を有しているので、筐体 3の他の部位と別部材になっていると、 X線源 1の整備等の 面において好ましい。本実施形態においては、冷却ファンユニット 55やコネクタ部( 図示せず)は、底板 3aに固定されて制御部 7と配線接続されている。 Note that the X-ray source 1 is connected to a personal computer or the like on a part of the side wall 3b on the control unit accommodation space R2 side. The X-ray source 1 inputs and outputs signals relating to the control information of the personal computer force and the like via the connector portion. Of the casing 3 excluding the bottom plate 3a, the cooling fan unit 55 and the connector section (not shown) have wiring connections to the control section 7 and the like, so that they are separate from other parts of the casing 3. If it is, it is preferable in terms of maintenance of the X-ray source 1 or the like. In the present embodiment, the cooling fan unit 55 and the connector portion (not shown) are fixed to the bottom plate 3a and connected to the control portion 7 by wiring.
[0046] なお、 X線源 1の筐体 3には、傾斜壁 3dおよび傾斜壁 3eが形成されて ヽることで、 以下のような効果も得られる。この傾斜壁 3d、 3eが形成されない場合には、上壁 3cと 側壁 3b、 3fとの間に角部が形成されることになる。ここで、そのような X線源によって 検査対象物を傾けた状態の透視画像を取得する場合には、傾けた検査対象物が角 部に当たるため、照射窓 27hと検査対象物とを十分に近接させることが出来ない。こ れに比して X線源 1にあっては、このような角部が存在しないため、検査対象物をより 照射窓 27hに近接させることができる。このため、より拡大率の大きい検査対象物の 透視画像を得ることができる。  [0046] It should be noted that since the inclined wall 3d and the inclined wall 3e are formed in the casing 3 of the X-ray source 1, the following effects can be obtained. When the inclined walls 3d and 3e are not formed, corners are formed between the upper wall 3c and the side walls 3b and 3f. Here, when obtaining a fluoroscopic image in which the inspection object is tilted with such an X-ray source, the tilted inspection object hits the corner, and therefore the irradiation window 27h and the inspection object are sufficiently close to each other. I can't let you. In contrast, in the X-ray source 1, since such a corner does not exist, the inspection object can be brought closer to the irradiation window 27h. For this reason, it is possible to obtain a fluoroscopic image of the inspection object having a larger magnification.
[0047] また、このような X線源 1にあっては、制御部 7の第 1および第 2回路基板 35、 37お よび駆動電源部 39には様々な電子部品が実装されている。各部品の動作特性を安 定させるにあたって、これらの部品を冷却することが必要である。特に、駆動電源部 3 9は、 ACZDC変換 (または DCZDC変換)を行う際に大量の熱を発生するので、効 率的に冷却する必要がある。  In such an X-ray source 1, various electronic components are mounted on the first and second circuit boards 35 and 37 and the drive power supply unit 39 of the control unit 7. In order to stabilize the operating characteristics of each part, it is necessary to cool these parts. In particular, the drive power supply unit 39 generates a large amount of heat when performing ACZDC conversion (or DCZDC conversion), and thus needs to be efficiently cooled.
[0048] そこで、筐体 3における仕切壁 15は、 X線発生部収容空間 R1と制御部収容空間 R 2とを完全に分離せず、金属筒 29と制御部 7との間を仕切り、仕切壁 15の下方には、 X線発生部収容空間 R1と制御部収容空間 R2とを連通する通風口 59が設けられて いる。このように、金属筒 29と制御部 7との間が仕切壁 15によって仕切られているた め、金属筒 29の冷却後に高温となった冷却風が、制御部収容空間 R2へ直接流入 することが抑制できる。また、金属筒 29から発せられる放射熱が仕切壁 15によって遮 断され、制御部 7に直接伝播されることが抑制できる。その結果、制御部 7の温度上 昇を抑制することができ、制御部 7の各回路基板 35、 37の動作を安定させることがで きる。それと同時に、通風口 59によって X線発生部収容空間 R1と制御部収容空間 R 2とが連通されて 、ることから、冷却ファン 55aによって導入される冷却風の一部が通 風口 59を通じて制御部収容空間 R2に流入するので、この冷却風によって制御部 7 を冷却することができる。 [0048] Therefore, the partition wall 15 in the housing 3 does not completely separate the X-ray generation unit accommodation space R1 and the control unit accommodation space R2, but separates the partition between the metal tube 29 and the control unit 7. Below the wall 15, there is provided a ventilation port 59 that communicates the X-ray generation unit accommodation space R 1 and the control unit accommodation space R 2. Thus, since the metal tube 29 and the control unit 7 are partitioned by the partition wall 15, the cooling air that has become hot after cooling the metal tube 29 flows directly into the control unit accommodating space R2. Can be suppressed. Further, it is possible to suppress that the radiant heat generated from the metal cylinder 29 is blocked by the partition wall 15 and directly transmitted to the control unit 7. As a result, the temperature rise of the control unit 7 can be suppressed, and the operation of the circuit boards 35 and 37 of the control unit 7 can be stabilized. At the same time, the X-ray generation unit accommodating space R1 and the control unit accommodating space R are formed by the vent 59. Therefore, a part of the cooling air introduced by the cooling fan 55a flows into the control unit accommodating space R2 through the ventilation port 59, so that the control unit 7 can be cooled by this cooling air. it can.
[0049] このとき、回路基板ホルダー 49が上述のように構成されていることから、図 4に示す ように、制御部収容空間 R2には、第 1プレート 45と第 2プレート 47と底板 3aとで囲ま れたトンネル部 R2aが形成される。このトンネル部 R2aは、冷却風が通風口 59を通じ て流入して来る方向(図 4の紙面に垂直な方向)に延びているので、冷却風の通風路 として機能する。従って、トンネル部 R2aに集中するような、スムーズな冷却風の流動 が発生する。そして、このトンネル部 R2a内には、駆動電源部 39が存在しているので 、駆動電源部 39で発生する熱が冷却風によって効率よく除去され、駆動電源部 39 を集中的にかつ効率良く冷却することができる。その結果、駆動電源部 39の動作特 '性を安定させることができる。  [0049] At this time, since the circuit board holder 49 is configured as described above, as shown in FIG. 4, the control unit housing space R2 includes the first plate 45, the second plate 47, the bottom plate 3a, and the like. Tunnel part R2a surrounded by is formed. This tunnel portion R2a extends in the direction in which the cooling air flows in through the ventilation opening 59 (the direction perpendicular to the paper surface of FIG. 4), and thus functions as a cooling air ventilation path. Therefore, a smooth cooling air flow that concentrates on the tunnel R2a occurs. Since the drive power supply unit 39 exists in the tunnel portion R2a, the heat generated in the drive power supply unit 39 is efficiently removed by the cooling air, and the drive power supply unit 39 is cooled intensively and efficiently. can do. As a result, the operation characteristics of the drive power supply 39 can be stabilized.
[0050] また、高圧トランス 19は、制御部 17の方向に向力つて絶縁ブロック 21から突出して 設けられており、トンネル部 R2a内に位置することから、高圧トランス 19も、このトンネ ル部 R2aを流動する冷却風に接触することとなる(図 2参照)。よって、高温となる高 圧トランス 19もこの冷却風によって効率よく冷却される。そして、駆動電源部 39およ び高圧トランス 19から熱を受け取って温度が上昇した冷却風は、筐体 3の側壁 3gに 設けられた排気口 3h (図 1および図 2参照)を通じて外部に排出される。  [0050] In addition, the high-voltage transformer 19 is provided so as to protrude from the insulating block 21 in the direction of the control unit 17, and is located in the tunnel part R2a. Therefore, the high-voltage transformer 19 is also provided in the tunnel part R2a. Will come into contact with the flowing cooling air (see Fig. 2). Therefore, the high-pressure transformer 19 that reaches a high temperature is also efficiently cooled by the cooling air. Then, the cooling air that has received heat from the drive power supply unit 39 and the high-voltage transformer 19 and has risen in temperature is discharged to the outside through the exhaust port 3h (see FIGS. 1 and 2) provided in the side wall 3g of the housing 3. Is done.
[0051] また、このとき、通風口 59を通じて制御部収容空間 R2に流入して来た冷却風は、 その一部が回路基板ホルダー 49の外側の空間 R2bにも流入し、この外側空間 R2b で構成された通風路内には、第 1回路基板 35および第 2回路基板 37が存在してい るので、空間 R2bを流動する冷却風によって回路基板 35、 37が冷却される。  [0051] At this time, a part of the cooling air that has flowed into the control unit housing space R2 through the ventilation opening 59 also flows into the space R2b outside the circuit board holder 49, and this outside space R2b Since the first circuit board 35 and the second circuit board 37 exist in the configured ventilation path, the circuit boards 35 and 37 are cooled by the cooling air flowing in the space R2b.
[0052] このように、第 1回路基板 35および第 2回路基板 37を冷却する冷却風と、駆動電源 部 39および高圧トランス 19を冷却する冷却風とがそれぞれ別の通風路を流動するこ とから、これらの冷却風が混合されることが回路基板ホルダー 49によって抑制される 。これにより、大量の熱を発生する駆動電源部 39および高圧トランス 19が効率よく冷 却される一方で、駆動電源部 39および高圧トランス 19の冷却により温度が上昇した 冷却風がトンネル部 R2aへ流入して第 1回路基板 35および第 2回路基板 37の温度 が却って上昇してしまうことを抑制することができる。その結果、第 1回路基板 35およ び第 2回路基板 37の各部品の動作特性を安定させることができる。 [0052] In this way, the cooling air that cools the first circuit board 35 and the second circuit board 37 and the cooling air that cools the drive power supply unit 39 and the high-voltage transformer 19 flow in different ventilation paths, respectively. Therefore, the circuit board holder 49 prevents the cooling air from being mixed. As a result, the drive power supply 39 and the high-voltage transformer 19 that generate a large amount of heat are efficiently cooled, while cooling air whose temperature has risen due to cooling of the drive power supply 39 and the high-voltage transformer 19 flows into the tunnel R2a. The temperature of the first circuit board 35 and the second circuit board 37 However, it can suppress that it rises on the contrary. As a result, the operating characteristics of the components of the first circuit board 35 and the second circuit board 37 can be stabilized.
[0053] なお、これらの第 1回路基板 35、第 2回路基板 37および駆動電源部 39は、スぺー サ 51を介して各取付面 45a、 47b、 47cから浮いた状態で取り付けられていることか ら、冷却風が、第 1回路基板 35、第 2回路基板 37および駆動電源部 39の表裏双方 に接触することになる。よって、このような取り付け方も、第 1回路基板 35、第 2回路基 板 37および駆動電源部 39の効率の良 、冷却に寄与して 、る。  It should be noted that the first circuit board 35, the second circuit board 37, and the drive power supply unit 39 are mounted in a state of being lifted from the mounting surfaces 45a, 47b, 47c via the spacers 51. Therefore, the cooling air comes into contact with both the front and back of the first circuit board 35, the second circuit board 37, and the drive power supply unit 39. Therefore, such a mounting method also contributes to good efficiency and cooling of the first circuit board 35, the second circuit board 37, and the drive power supply unit 39.
[0054] また、第 1回路基板 35の部品の中で、パワートランジスタ 61 (図 2参照)は、比較的 大きい熱を発生するので、第 1回路基板 35から離し、高圧電源部 17と冷却ファンュ ニット 55との間に設けられた金属製のヒートシンク 63に密着させて設置されている。 このとき、パワートランジスタ 61は、図示しない導線により第 1回路基板 35と電気的に 接続されることで、第 1回路基板 35の一部品として機能する。このような配置により、ヒ ートシンク 63が冷却ファン 55aからの冷却風を受けて冷却され、ヒートシンク 63に密 着したパワートランジスタ 61が間接的に冷却される。このように、特に大きい熱を発生 する部品を回路基板本体側力 遠ざけて個別に冷却することにより、効果的に制御 部 7の温度上昇を抑制することができる。  In addition, among the components of the first circuit board 35, the power transistor 61 (see FIG. 2) generates a relatively large amount of heat, so that it is separated from the first circuit board 35, and the high voltage power supply unit 17 and the cooling fan are separated. It is installed in close contact with a metal heat sink 63 provided between the knit 55. At this time, the power transistor 61 functions as a component of the first circuit board 35 by being electrically connected to the first circuit board 35 by a conducting wire (not shown). With such an arrangement, the heat sink 63 is cooled by receiving the cooling air from the cooling fan 55a, and the power transistor 61 tightly attached to the heat sink 63 is indirectly cooled. In this way, the temperature rise of the control unit 7 can be effectively suppressed by separately cooling components that generate particularly large heat away from the circuit board body side force.
(第 2実施形態)  (Second embodiment)
[0055] 図 5にその正面図を示すように、本発明の第 2実施形態の X線源 71は筐体 73を備 えている。この筐体 73には、 X線発生部収容空間 R1と制御部収容空間 R2とを仕切 る仕切壁 75が、筐体 73の内壁から延びて形成されている。すなわち、筐体 73の内 部空間は、仕切壁 75によって、 X線発生部収容空間 R1と制御部収容空間 R2とに分 割されており、両空間の間では、互いに冷却風が流入、流出しないように隔絶されて いる。このような X線源 71の構成によれば、冷却ファン 55aによって X線発生部収容 空間 R1内に冷却風を流動させ、金属筒 29を含む X線発生部 5を集中的に冷却する ことができるとともに、高温となった冷却風が制御部収容空間 R2へ流入することを確 実に抑制することができる。  As shown in the front view of FIG. 5, the X-ray source 71 of the second embodiment of the present invention includes a housing 73. A partition wall 75 that partitions the X-ray generation unit accommodation space R1 and the control unit accommodation space R2 is formed in the case 73 so as to extend from the inner wall of the case 73. That is, the internal space of the housing 73 is divided into the X-ray generation unit accommodation space R1 and the control unit accommodation space R2 by the partition wall 75, and cooling air flows into and out of the two spaces. It is isolated so as not to. According to such a configuration of the X-ray source 71, the cooling fan 55a allows the cooling air to flow into the X-ray generation unit accommodating space R1 to intensively cool the X-ray generation unit 5 including the metal tube 29. In addition, it is possible to reliably prevent the cooling air that has become hot from flowing into the control unit accommodating space R2.
[0056] また、 X線源 71は、筐体 73の制御部収容空間 R2側に、冷却ファンユニット 55とは 別の第 2の冷却ファンユニット 77を備えている。この冷却ファンユニット 77と、他の冷 却ファンユニット 55とは並置されており、冷却ファン 77aで発生する冷却風が直接第 1回路基板 35に当たるように、第 1回路基板 35の近傍に冷却ファン 77aを配置して いる。このような構成により、冷却ファン 55aによって X線発生部収容空間 R1内に冷 却風を流動させ、 X線発生部 5 中的に冷却すると同時に、冷却ファン 77aによつ て制御部収容空間 R2内に冷却風を流動させ、制御部 7を集中的に冷却することが できる。このように、 X線発生部収容空間 R1と制御部収容空間 R2とをそれぞれ個別 に冷却することで、金属筒 29を含む X線発生部 5および駆動電源部 39を含む制御 部 7を効率よく冷却することができる。なお、この場合、パワートランジスタ 61およびパ ワートランジスタ 61を冷却するための金属製のヒートシンク 63は、制御部収容空間 R 2の冷却ファン 77aの近傍に配置すると、冷却効率が高くなり好ましい。 In addition, the X-ray source 71 includes a second cooling fan unit 77 different from the cooling fan unit 55 on the control unit accommodation space R 2 side of the housing 73. This cooling fan unit 77 and other cooling units The cooling fan 77a is arranged in the vicinity of the first circuit board 35 so that the cooling air generated by the cooling fan 77a directly hits the first circuit board 35. With such a configuration, the cooling fan 55a causes the cooling air to flow into the X-ray generation unit accommodating space R1 and cools the X-ray generation unit 5 in the middle, and at the same time, the cooling fan 77a controls the control unit accommodating space R2. The cooling air can be flowed into the controller 7 to cool the controller 7 in a concentrated manner. In this way, by individually cooling the X-ray generation unit accommodating space R1 and the control unit accommodating space R2, the X-ray generation unit 5 including the metal tube 29 and the control unit 7 including the drive power supply unit 39 are efficiently performed. Can be cooled. In this case, it is preferable that the metal heat sink 63 for cooling the power transistor 61 and the power transistor 61 is disposed in the vicinity of the cooling fan 77a in the control unit accommodating space R2, since the cooling efficiency is increased.
[0057] 以上のように、 X線源 71によっても、金属筒 29を効率よく冷却することで、 X線管 27 を効率よく冷却できるので、 X線源の高出力化が可能となり、制御部 7の駆動電源部 39を効率よく冷却することで、駆動電源部 39の各部品の動作特性を安定させること ができる。 [0057] As described above, the X-ray source 71 can also efficiently cool the X-ray tube 27 by efficiently cooling the metal tube 29. Therefore, the output of the X-ray source can be increased, and the control unit By efficiently cooling the drive power supply unit 39 of 7, the operation characteristics of each component of the drive power supply unit 39 can be stabilized.
(第 3実施形態)  (Third embodiment)
[0058] 図 6に、その斜視図を示すように、本発明の第 3実施形態の X線源 91における制御 部 7は、互いに独立したプレート 81、 83で構成される回路基板ホルダー 85を介して 回路基板 35、 37を底板 3aに固定する構造をなしている。このような X線源 91によつ ても、プレート 81とプレート 83との間の空間を流動する冷却風によって、駆動電源部 39が効率よく冷却される。なお、このプレート 81、 83は、上壁 3cに達するまで延び、 上壁 3cに接触してもよい。  FIG. 6 shows a perspective view of the control unit 7 in the X-ray source 91 of the third embodiment of the present invention via a circuit board holder 85 including plates 81 and 83 that are independent from each other. The circuit boards 35 and 37 are fixed to the bottom plate 3a. Also with such an X-ray source 91, the drive power supply 39 is efficiently cooled by the cooling air flowing in the space between the plate 81 and the plate 83. The plates 81 and 83 may extend until reaching the upper wall 3c and contact the upper wall 3c.
[0059] なお、本発明は、上記実施形態に限定されない。例えば、上記実施形態では、冷 却ファン 55a、 77aとして、筐体の外部から内部へ空気を送り込む吸気タイプの冷却 ファンを用いている力 冷却ファン 55a、 77aは、筐体の内部から外部へ空気を送り 出す排気タイプであってもよい。この場合は、冷却ファン 55a、 77aは熱源に近接して 配置することが好ましい。  Note that the present invention is not limited to the above embodiment. For example, in the above embodiment, the cooling fan 55a, 77a uses an intake-type cooling fan that sends air from the outside to the inside of the casing as the cooling fan 55a, 77a. It may be an exhaust type that sends out. In this case, the cooling fans 55a and 77a are preferably arranged close to the heat source.
[0060] また、冷却ファン 55aの配置は側壁 3bに限らず、筐体 3の内部において金属筒 29 の周囲で冷却風を流動させるような位置であれば、他の部位に設けてもよい。例えば 、筐体 3に通風口を設け、その通風口の近傍かつ筐体 3内部に冷却ファンを配置す ることで、金属筒 29の周囲で冷却風を流動させてもよい。 In addition, the arrangement of the cooling fan 55a is not limited to the side wall 3b, and may be provided in another part as long as the cooling air flows inside the housing 3 around the metal tube 29. For example The cooling air may flow around the metal tube 29 by providing a ventilation hole in the casing 3 and disposing a cooling fan in the vicinity of the ventilation opening and in the casing 3.
[0061] また、 X線発生部収容空間 R1および制御部収容空間 R2のそれぞれに、複数の冷 却ファンを設けてもよい。この場合、吸気タイプの冷却ファンと、排気タイプの冷却フ アンとを組合せて設けることができる。例えば、 X線発生部収容空間 R1の、側壁 3bの 冷却ファン 55aにカ卩えて、その略対向する側の壁 (特に傾斜壁 3e)に排気タイプの冷 却ファンを設けることができる。また、例えば、制御部収容空間 R2の、側壁 3bの冷却 ファン 77aに加えて、その略対向する側の壁 (特に側壁 3f)や、側壁 3gに排気タイプ の冷却ファンを設けることができる。  [0061] In addition, a plurality of cooling fans may be provided in each of the X-ray generation unit accommodation space R1 and the control unit accommodation space R2. In this case, an intake-type cooling fan and an exhaust-type cooling fan can be provided in combination. For example, in addition to the cooling fan 55a on the side wall 3b of the X-ray generation unit accommodating space R1, an exhaust type cooling fan can be provided on the substantially opposite wall (particularly the inclined wall 3e). Further, for example, in addition to the cooling fan 77a on the side wall 3b of the control unit housing space R2, an exhaust type cooling fan can be provided on the substantially opposing wall (particularly the side wall 3f) or the side wall 3g.
[0062] また、 X線発生部収容空間 R1と制御部収容空間 R2とが区画されな 、場合にお 、 て、 X線発生部収容空間側 R1に吸気タイプの冷却ファンを設け、制御部収容空間 R 2側に排気タイプの冷却ファンを設けてもよぐ X線発生部収容空間側 R1に排気タイ プの冷却ファンを設け、制御部収容空間 R2側に吸気タイプの冷却ファンを設けても よい。例えば、 X線発生部収容空間 R1側の吸気タイプの冷却ファン 55aに加えて、 制御部収容空間 R2に冷却ファンを設ける場合、駆動電源部 39を有するトンネル部 R 2aの空気を筐体外にスムーズに送り出せるように、側壁 3gに排気タイプの冷却ファン を配置してもよい。  [0062] If the X-ray generation unit accommodation space R1 and the control unit accommodation space R2 are not partitioned, an intake-type cooling fan is provided in the X-ray generation unit accommodation space R1 to accommodate the control unit. Exhaust type cooling fan may be provided on the space R2 side. Exhaust type cooling fan may be provided on the X-ray generation unit accommodation space side R1, and intake type cooling fan may be provided on the control unit accommodation space R2 side. Good. For example, when a cooling fan is provided in the control unit housing space R2 in addition to the intake-type cooling fan 55a on the X-ray generation unit housing space R1, the air in the tunnel unit R 2a having the drive power supply unit 39 is smoothly discharged outside the housing. An exhaust type cooling fan may be placed on the side wall 3g so that it can be sent to the side.
[0063] また、 X線管 27は反射型ターゲットタイプでなぐ透過型ターゲットタイプであっても よい。また、 X線管 27は、全体が金属筒 29に収容されてもよぐこの場合、 X線管から の X線を外部へ照射するために、金属筒 29には、 X線透過性の高い部位を設けるこ とができる。また、 X線管 27の一部は、金属筒 29から突出し、かつ、さらに筐体 3から 突出していてもよい。 X線管 27を包囲する金属筒 29には、冷却フィン 29aが設けられ なくてもよい。  [0063] Further, the X-ray tube 27 may be a transmissive target type that is not a reflective target type. The X-ray tube 27 may be accommodated entirely in the metal tube 29. In this case, the X-ray tube 27 has a high X-ray permeability in order to irradiate the X-ray from the X-ray tube to the outside. A site can be provided. Further, a part of the X-ray tube 27 may protrude from the metal tube 29 and further protrude from the housing 3. The metal tube 29 surrounding the X-ray tube 27 may not be provided with the cooling fin 29a.
[0064] また、回路基板ホルダー 49は、ネジ止めに限らず、溶接や接着によって底板 3aに 固定されてもよい。また、回路基板ホルダー 49は、筐体 3の底板 3a以外の部分に固 定されてもよぐ筐体 3に固定された部材に固定されてもよい。また、第 1プレート 45と 第 2プレート 47とは、ネジ止めに限らず、溶接や接着によって連結されてもよい。回 路基板ホルダー 49は、 1部材ゃ第 1プレート 45と第 2プレート 47との 2部材カもなる ホルダーに限らず、さらに多数の部材を組み合わせて形成されてもよい。この場合、 平板カゝらなる多数の部材を組み合わせて回路基板ホルダーを形成することで、屈曲 の加工を省略することもできる。また、回路基板ホルダー 49は導熱性の金属に限ら ず、榭脂製であっても良い。 [0064] Further, the circuit board holder 49 is not limited to being screwed, and may be fixed to the bottom plate 3a by welding or adhesion. Further, the circuit board holder 49 may be fixed to a member fixed to the casing 3 which may be fixed to a portion other than the bottom plate 3a of the casing 3. Further, the first plate 45 and the second plate 47 are not limited to being screwed but may be connected by welding or adhesion. The circuit board holder 49 is also composed of a single member, a first plate 45 and a second plate 47. Not only the holder but also a number of members may be combined. In this case, the bending process can be omitted by forming a circuit board holder by combining a number of members such as flat plates. The circuit board holder 49 is not limited to a heat conductive metal, and may be made of resin.
[0065] また、以上に述べた各構成は、本発明の趣旨を逸脱しない限り、互いに組合せるこ とが可能である。 [0065] Further, the respective configurations described above can be combined with each other without departing from the gist of the present invention.
産業上の利用可能性  Industrial applicability
[0066] 本発明に係る X線源は、例えば、 X線非破壊検査装置に用いられるマイクロフォー カス型 X線源として好適である。 [0066] The X-ray source according to the present invention is suitable as a microfocus X-ray source used in, for example, an X-ray nondestructive inspection apparatus.

Claims

請求の範囲 The scope of the claims
[1] 絶縁材料でモールドされた高圧電源部と、  [1] a high voltage power supply molded with an insulating material;
前記高圧電源部力 の電力によって X線を発生させて外部に照射する X線管と、 前記高圧電源部力 突出して設けられ、前記 X線管の少なくとも一部を包囲する X 線管包囲部と、  An X-ray tube that generates X-rays by the electric power of the high-voltage power supply unit and irradiates the X-ray tube; and an X-ray tube enclosure that protrudes from the high-voltage power supply unit and surrounds at least a part of the X-ray tube. ,
前記高圧電源部および前記 X線管包囲部を格納する筐体と、  A housing for storing the high-voltage power supply unit and the X-ray tube surrounding unit;
前記筐体内部の前記 X線管包囲部の周囲に冷却風を流動させる冷却ファンと、を 備えて 、ることを特徴とする X線源。  An X-ray source comprising: a cooling fan that causes cooling air to flow around the X-ray tube surrounding portion inside the housing.
[2] 前記筐体は、 [2] The housing is
前記 X線管で発生した X線を筐体外部へ照射する照射窓を有する第 1の壁と、 前記第 1の壁に対して略直交する方向に延びるとともに前記冷却ファンが配置され る第 2の壁と、  A first wall having an irradiation window for irradiating X-rays generated by the X-ray tube to the outside of the housing; and a second wall extending in a direction substantially orthogonal to the first wall and the cooling fan being disposed. The wall of the
前記第 1の壁と前記第 2の壁に交差して両者を連結する傾斜壁と、を有することを 特徴とする請求項 1に記載の X線源。  The X-ray source according to claim 1, further comprising an inclined wall that intersects the first wall and the second wall and connects the two.
[3] 前記 X線管包囲部の外周に設けられた冷却フィンをさらに備えていることを特徴と する請求項 1または 2のいずれかに記載の X線源。 3. The X-ray source according to claim 1, further comprising cooling fins provided on an outer periphery of the X-ray tube surrounding portion.
[4] 前記筐体内に、前記 X線発生部を制御する制御部を収容する制御部と、少なくとも 前記高圧電源部と前記 X線管と前記 X線管包囲部とを有する X線発生部および前記 冷却ファンが位置する空間とを仕切る仕切壁をさらに備えていることを特徴とする請 求項 1〜3のいずれか 1項に記載の X線源。 [4] A control unit that houses a control unit that controls the X-ray generation unit in the housing, an X-ray generation unit having at least the high-voltage power supply unit, the X-ray tube, and the X-ray tube surrounding unit, 4. The X-ray source according to claim 1, further comprising a partition wall that partitions the space where the cooling fan is located.
[5] 前記仕切壁は、前記 X線管包囲部と前記制御部との間に配置されるとともに、区分 した空間を連通する通風口を有して ヽることを特徴とする請求項 4記載の X線源。 5. The partition wall according to claim 4, wherein the partition wall is disposed between the X-ray tube surrounding portion and the control portion, and has a ventilation port communicating with the partitioned space. X-ray source.
[6] 前記仕切壁は、区分した空間間の連通を遮断していることを特徴とする請求項 4記 載の X線源。 6. The X-ray source according to claim 4, wherein the partition wall blocks communication between the divided spaces.
[7] 前記筐体の前記制御部が配置される空間側に配置される第 2の冷却ファンをさらに 備えて 、ることを特徴とする請求項 4〜6の 、ずれか 1項に記載の X線源。  [7] The displacement according to any one of claims 4 to 6, further comprising a second cooling fan disposed on a space side where the control unit of the housing is disposed. X-ray source.
PCT/JP2005/015651 2004-09-02 2005-08-29 X-ray source WO2006025320A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200580025968.9A CN1994027B (en) 2004-09-02 2005-08-29 X-ray source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-256231 2004-09-02
JP2004256231A JP4664025B2 (en) 2004-09-02 2004-09-02 X-ray source

Publications (1)

Publication Number Publication Date
WO2006025320A1 true WO2006025320A1 (en) 2006-03-09

Family

ID=35999974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015651 WO2006025320A1 (en) 2004-09-02 2005-08-29 X-ray source

Country Status (3)

Country Link
JP (1) JP4664025B2 (en)
CN (1) CN1994027B (en)
WO (1) WO2006025320A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765407A1 (en) * 2011-10-04 2014-08-13 Nikon Corporation Device, x-ray irradiation method, and manufacturing method for structure
EP2765408A1 (en) * 2011-10-04 2014-08-13 Nikon Corporation X-ray device, x-ray irradiation method, and manufacturing method for structure
EP3897077A1 (en) * 2020-04-10 2021-10-20 Elec-Field Future Corp. X-ray apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096557A1 (en) * 2010-02-08 2011-08-11 株式会社 日立メディコ X-ray tube device and x-ray ct device
CN102595754B (en) 2012-01-06 2015-05-13 同方威视技术股份有限公司 Radiation device installing box and oil cooling cyclic system as well as X-ray generator
CN102595753B (en) 2012-01-06 2015-05-13 同方威视技术股份有限公司 Radiation device installing box and X-ray generator
CN102846335B (en) * 2012-07-31 2014-11-12 苏州明威医疗科技有限公司 Device and efficiency evaluation method of air-cooled X-ray machine air cooling system
EP2896959B1 (en) * 2012-09-12 2018-05-09 System Square Inc. X-ray testing device
CN104113001A (en) * 2013-04-19 2014-10-22 衢州电力局 Air-insulation enclosed metal switch equipment fault diagnosis device based on image identification
CN104465278B (en) * 2014-12-31 2017-03-15 江苏天瑞仪器股份有限公司 A kind of X-ray tube heat abstractor
JP7112234B2 (en) * 2018-04-12 2022-08-03 浜松ホトニクス株式会社 X-ray generator and X-ray utilization system
JP7089396B2 (en) * 2018-04-12 2022-06-22 浜松ホトニクス株式会社 X-ray generator
KR102596820B1 (en) * 2020-04-10 2023-11-02 주식회사 일렉필드퓨처 X-ray apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729532A (en) * 1993-07-15 1995-01-31 Hamamatsu Photonics Kk X-ray device
JP2001318062A (en) * 2000-05-08 2001-11-16 Anritsu Corp X-ray foreign matter detection device
JP2004022459A (en) * 2002-06-19 2004-01-22 Anritsu Sanki System Co Ltd X-ray generation device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104547A (en) * 1984-10-29 1986-05-22 Hitachi Ltd X-ray tube device
JPH07335389A (en) * 1994-06-13 1995-12-22 Toshiba Corp X-ray tube device
JPH11224793A (en) * 1998-02-09 1999-08-17 Hamamatsu Photonics Kk X-ray generating device
US6257762B1 (en) * 1999-02-19 2001-07-10 General Electric Company Lead surface coating for an x-ray tube casing
JP3934836B2 (en) * 1999-10-29 2007-06-20 浜松ホトニクス株式会社 Nondestructive inspection equipment
JP2002025792A (en) * 2000-07-11 2002-01-25 Shimadzu Corp X-ray generator
JP3777539B2 (en) * 2000-12-07 2006-05-24 株式会社島津製作所 X-ray generator
JP2002345804A (en) * 2001-05-18 2002-12-03 Ge Medical Systems Global Technology Co Llc X-ray tube unit and device as well as its cooling method and program
JP4113177B2 (en) * 2004-11-11 2008-07-09 浜松ホトニクス株式会社 X-ray generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729532A (en) * 1993-07-15 1995-01-31 Hamamatsu Photonics Kk X-ray device
JP2001318062A (en) * 2000-05-08 2001-11-16 Anritsu Corp X-ray foreign matter detection device
JP2004022459A (en) * 2002-06-19 2004-01-22 Anritsu Sanki System Co Ltd X-ray generation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765407A1 (en) * 2011-10-04 2014-08-13 Nikon Corporation Device, x-ray irradiation method, and manufacturing method for structure
EP2765408A1 (en) * 2011-10-04 2014-08-13 Nikon Corporation X-ray device, x-ray irradiation method, and manufacturing method for structure
EP2765407A4 (en) * 2011-10-04 2015-04-22 Nikon Corp Device, x-ray irradiation method, and manufacturing method for structure
EP2765408A4 (en) * 2011-10-04 2015-04-22 Nikon Corp X-ray device, x-ray irradiation method, and manufacturing method for structure
US9234855B2 (en) 2011-10-04 2016-01-12 Nikon Corporation Apparatus, X-ray irradiation method, and structure manufacturing method
EP3897077A1 (en) * 2020-04-10 2021-10-20 Elec-Field Future Corp. X-ray apparatus
US11792906B2 (en) 2020-04-10 2023-10-17 Elec-Field Future Corp. X-ray apparatus

Also Published As

Publication number Publication date
CN1994027A (en) 2007-07-04
CN1994027B (en) 2011-12-28
JP2006073381A (en) 2006-03-16
JP4664025B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2006025320A1 (en) X-ray source
JP4889979B2 (en) X-ray source
US7686461B2 (en) Integral ballast-igniter-lamp unit for a high intensity discharge lamp
JP5019760B2 (en) Integrated X-ray generator
WO2006025318A1 (en) X-ray source
US11166360B2 (en) X-ray generator
WO2006025372A1 (en) X-ray source
WO2007026612A1 (en) X-ray tube
JP2009043658A (en) X-ray generator
JP2004022459A (en) X-ray generation device
JP5478873B2 (en) X-ray source
CN111937498B (en) X-ray generating device
JP2009252648A (en) Rotating anode x-ray tube device
CN111972049A (en) X-ray generating device and X-ray utilization system
JP7270817B2 (en) X-ray generator
JP7431460B2 (en) power supply
JP2009158418A (en) Rotary anode type x-ray tube assembly
JP2023090808A (en) X-ray generator
JP2001015295A (en) X-ray generating device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580025968.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase