WO2006025154A1 - Modified oligonucleotides - Google Patents

Modified oligonucleotides Download PDF

Info

Publication number
WO2006025154A1
WO2006025154A1 PCT/JP2005/012579 JP2005012579W WO2006025154A1 WO 2006025154 A1 WO2006025154 A1 WO 2006025154A1 JP 2005012579 W JP2005012579 W JP 2005012579W WO 2006025154 A1 WO2006025154 A1 WO 2006025154A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
represented
group
independently
solid phase
Prior art date
Application number
PCT/JP2005/012579
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Kitade
Yoshihito Ueno
Yusuke Wataya
Original Assignee
Gifu University
National University Corporation Okayama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University, National University Corporation Okayama University filed Critical Gifu University
Priority to JP2006531339A priority Critical patent/JPWO2006025154A1/en
Publication of WO2006025154A1 publication Critical patent/WO2006025154A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/073Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/173Purine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/51Methods for regulating/modulating their activity modulating the chemical stability, e.g. nuclease-resistance

Definitions

  • the present invention relates to a modified oligonucleotide.
  • the anti-sense method involves adding chemically synthesized oligonucleotides (for example, single-stranded DNA consisting of 15 to 20 base pairs) to cells to form ZmRNA double-stranded nucleic acids such as target messenger RNA (mRNA) and DNA.
  • mRNA target messenger RNA
  • mRNA target messenger RNA
  • it is a method of inhibiting the translation process from mRNA to protein by specifically suppressing the expression of the target gene.
  • the antisense method if the base sequence of the pathogenic virus or gene is known, it is possible to theoretically design an antisense molecule and synthesize it. It is expected as one of the effective treatment methods for diseases caused by various viruses and genetic diseases.
  • RNAi RNA interference
  • Dicer RNA interference
  • the siRNA forms an RNAZmRNA double-stranded nucleic acid with the target mRNA, and an intracellular protein that recognizes this double-stranded nucleic acid (called RNA-induced silencing complex (RISC)) binds to this double-stranded nucleic acid.
  • RISC RNA-induced silencing complex
  • the target mRNA is cleaved by this conjugate.
  • this RNAi-based method achieves the same effect using RNA at a concentration of about 1Z100 compared to the antisense method. Therefore, how to use RNAi
  • expectations are rising as one of the effective treatment methods for diseases and gene diseases caused by various viruses that have been considered difficult to cure.
  • a method using an oligonucleotide such as an antisense method or a method using RNAi, it is necessary to introduce the oligonucleotide into a cell. In addition, it is necessary to stably introduce the oligonucleotide introduced into the cell.
  • Nucleic acid-hydrolyzing enzyme (nuclease) exists inside and outside the cell, and the introduced oligonucleotide, particularly the natural oligonucleotide. Had a problem with being easily disassembled.
  • Various modified oligonucleotides have been developed for the purpose of improving permeability to cell membranes and nuclease resistance.
  • a DNA oligonucleotide is known in which a modified TT dimer in which the 5 ′, 3′-phosphate diester bond between thymidine dimers is replaced with a force rubamate bond is introduced (for example, see Non-Patent Document 1). ). It has been confirmed that DNA oligonucleotides containing such modified TT dimers have slightly improved nuclease resistance. However, due to the nature of the production method, this modified TT dimer is capable of being introduced into sites other than the 3 'end of DNA oligonucleotides. .
  • nucleases are known to cleave oligonucleotides at their 3 'ends.
  • a DNA oligonucleotide containing a modified TT dimer as described above is considered to be normally degraded by a nuclease until the 3, end force of the DNA oligonucleotide is also modified TT dimer.
  • the nucleotide sequence of the DNA oligonucleotide containing the modified TT dimer is partially resolved, although it exhibits some nuclease resistance, the DNA oligonucleotide may not be conserved. There was a risk of decline.
  • modification of the 5,3, monophosphate diester bond between the first and second nucleosides from the 3, end of the oligonucleotide is a modification that shows resistance to nucleases.
  • Oligonucleotides can be expected. However, in oligonucleotide synthesis using solid phase synthesis technology, it is difficult to modify the site, and such a modified oligonucleotide has not been realized.
  • Non-patent literature 1 Adrian Waldner, Alain De Mesmaeker and Jacques Lebreton, “Synthesis of Oligodeoxyribonucleotides containing Dimers with Carbamate Moieties as Replacement of the Natural Phosphodiester linkagej, Bioorganic & Medicinal Chemistry Letters, 1994, IV, p.405
  • an object of the present invention is to provide an oligonucleotide having a modified 3 'end that is excellent in three properties of permeability to a cell membrane, nuclease resistance, and duplex forming ability.
  • the present invention relates to an oligonucleotide 3, 5, 3 between the first and second nucleosides from the end.
  • X 1 is 0, NH or S
  • Y 1 is O or S
  • Z 1 is 0, NH or S
  • the present invention has succeeded in producing an oligonucleotide in which the 5,3,3 monophosphate diester bond between the first and second nucleosides from the 3 'end has been modified, which has been difficult to produce. It is completed based on.
  • the modification replacement with a bond represented by the above formula (1-1) is selected, and the modified oligonucleotide has improved nuclease resistance, improved permeability to cell membranes, and improved duplex formation ability. did.
  • the improved nuclease resistance of the modified oligonucleotide of the present invention is far superior to that expected from the modification of the 3, termini.
  • FIG. 1 is a diagram showing an example of a modified double-stranded oligonucleotide.
  • FIG. 2 is a graph showing the RNaseL expression concentration of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
  • FIG. 3 is a graph showing the RNaseL expression concentration of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
  • FIG. 4 is a graph showing cell membrane permeability of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
  • FIG. 5 is a graph showing intracellular RNaseL expression concentrations of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
  • FIG. 6 is a graph showing the exonuclease resistance of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
  • FIG. 7 is a diagram showing an example of a modified double-stranded oligonucleotide.
  • FIG. 8 is a graph showing endonuclease resistance of an example of a modified double-stranded oligonucleotide.
  • oligonucleotide refers to, for example, a polymer of nucleoside subunits, and the number of subunits is not particularly limited. Among them, when the modified oligonucleotide of the present invention is DNA, the number of subunits is 4 to: L00 force S, preferably 4 to 30 is more preferable RNA. 4 to 50 is preferred 4 to 30 is more preferred.
  • the “oligonucleotide” in the present invention is not particularly limited except that the 5,3, monophosphate diester bond between the first and second nucleosides from the end is modified. For example, for a nucleoside that is a subunit of an oligonucleotide, the sugar moiety (eg, 2′-substitution) and base may be modifications known to those skilled in the art.
  • the bond represented by the formula (1-1) — ⁇ C ⁇ Y 1 ) —Z 1 is conveniently attached to the 5′-position carbon atom of the sugar moiety of the nucleoside.
  • the bond to be bonded is shown on the left, and the bond to be bonded to the 3 'carbon atom is shown on the right.
  • the 3 'end of the modified oligonucleotide is a clove, and the 5', 3 'phosphate diester bond between the TTs is represented by the formula (I 1). If it is replaced by a bond, it is expressed as follows.
  • W 11 is H or a group represented by the formula OR 11 ;
  • W 21 is a group represented by H or the formula OR 21 ;
  • R 11 and R 21 are each independently a protecting group.
  • the modified oligonucleotide of the present invention preferably satisfies at least one of the following (i) and (ii).
  • bonds represented by the following formula (I 2) and the following formula (I 3) for convenience, the bond that binds to the 5′-position carbon atom of the sugar moiety of the nucleoside is shown on the left. The bond on the 'position carbon atom is shown on the right.
  • X 2 is 0, NH or S
  • Y 2 is O or S
  • Z 2 is 0, NH or S
  • ii 5,3,3 phosphoric acid diester bond strength between the 3rd and 4th nucleosides from the 3rd end of the oligonucleotide and replaced by a bond represented by the following formula (1-3).
  • X 3 is 0, NH or S
  • Y 3 is O or S
  • Z 3 is 0, NH or S
  • the combination of the bond represented by the formula (I 1) and the bond represented by the formula (I 2) is not particularly limited.
  • the bond represented by the formula (I 1) and the bond represented by the formula (I 2) may be the same or different.
  • the combination of the bond represented by the formula (I 1) and the bond represented by the formula (I 3) is not particularly limited.
  • the bond represented by formula (I 1), the bond represented by formula (I 2) and the bond represented by formula (1-3) may be the same or different.
  • the modified oligonucleotide of the present invention may be a single-stranded oligonucleotide, a double-stranded oligonucleotide or the like.
  • the modified oligonucleotide of the present invention is preferable for use as an antisense, siRNA or the like because of its excellent ability to form a double strand.
  • Modified oligonucleotide force When double-stranded, 5, 3, 3, monophosphate between the first and second nucleosides from the 3, end of the single-stranded oligonucleotide of one or both of the double-stranded oligonucleotides It is preferable that the ester bond is replaced with the bond represented by the formula (I 1).
  • the double-strand oligonucleotides have both the single-strand oligonucleotides 3, 5, 3, monophosphate diester binding strength between the first and second nucleosides from the end represented by the above formula (I 1) When it is replaced by a bond, the bond represented by both formulas (I 1) is the same and must be different.
  • the modified oligonucleotide When the modified oligonucleotide is double-stranded, it is an oligonucleotide that causes RNAi (RNA interference), and has the same base sequence as a part of mRNA encoding the modified oligonucleotide force endonuclease, etc. Modified oligonucleotides are preferred. Such modified oligonucleotides are also useful for RNAi research and the like. Examples of the endonuclease include RNaseL.
  • the modified oligonucleotide When the modified oligonucleotide is double-stranded, it is the modified oligonucleotide force siRNA (short interfering RNA), and a part of the mRNA is the first AA sequence upstream of 75 bases from the start codon. It is preferable that the partial strength of the mRNA is specific to the mRNA, and the modified oligonucleotide force is a combination of a sense strand and an antisense strand of the 19 base sequence.
  • a sense chain can be obtained, for example, as follows.
  • the mRNA sequence of exonuclease can be obtained using known sites such as NCBI (National Center for Biotechnology Information) and EMBL—EBI (European Molecular Biology Laboratory-European Bioinformatics Institute). get. In the gene sequence, find the first AA sequence that is more than 75 bases downstream from the start codon. A 19-base sequence following the AA sequence, a total of 21 base sequences, is again obtained using a known gene database. Confirm that it is specific to the target gene. It is also confirmed that this 19 base sequence has a GC content of around 50%. Confirming these two, the resulting 19-base sequence is the sense strand as described above.
  • RNAi RNAi containing two more thymidines at its 3 'end. Having such a sequence at the 3 ′ end tends to cause RNAi.
  • this modified oligonucleotide is replaced by the bond represented by the formula (I 1), which is the first and second nucleosides from the 3 ′ end, the thymidine thymidine sequence ability is improved. It is preferable from the viewpoint of excellent siRNA function.
  • the modified oligonucleotide is an antisense DNA or an antisense RNA, and one of mRNAs encoding the modified oligonucleotide force endonuclease and the like. It is preferable to have a sequence complementary to part or all.
  • Modified oligonucleotide force A force capable of forming a double strand with such mRNA and suppressing the expression of endonuclease and the like.
  • the modified oligonucleotide of the present invention is preferably nuclease resistant.
  • the modified oligonucleotide of the present invention can be prevented from being degraded by a nuclease when incorporated into cells, and as a result, the modified oligonucleotide can maintain its activity in cells. is there.
  • the gene expression inhibitor of the present invention includes the modified oligonucleotide of the present invention.
  • a gene expression inhibitor can modify the ability of modified oligonucleotide, for example, cleave the mRNA of the target gene or form a double strand with the mRNA of the target gene, thereby suppressing the gene expression.
  • the pharmaceutical composition of the present invention is for treating a disease associated with gene expression, and includes the gene expression inhibitor.
  • a disease associated with gene expression for example, a disease is caused by the expression of a protein
  • this pharmaceutical composition can be used to suppress the gene expression and treat the disease associated with the gene expression. It is.
  • Such a pharmaceutical composition further contains an excipient for cell introduction.
  • Gene origin This is because it becomes possible to facilitate introduction into cells when treating a disease accompanying the present.
  • the cell introduction excipient include a transfection reagent and the like.
  • the transfection reagent includes, for example, a DNA molecule (the pharmaceutical composition) encapsulated in artificial lipid vesicles (ribosomes) composed of phospholipids, and the artificial lipid vesicles in a cell suspension.
  • it is a reagent that forms artificial lipid vesicles that are used in the lipofection method to attach DNA molecules in artificial lipid vesicles by attaching them to the cell surface and fusing with cell membranes.
  • transfer reagent examples include, for example, Lipofectamine (Invitrogen), Lipofectamine 2000 (Invitrogen), Oligofectamin (Invitrogen), Transmessenger (Kigen (Kigen)) QIAGEN))), siRNA Transfection 'Kit.Jet SI (Ambion), Gene Slicer SiRNA Transfection Reagent (Gene Therapy Systems), etc. .
  • the pharmaceutical composition of the present invention can also be introduced into cells using an electroporation method, a particle gun method, or the like.
  • the electopore position method is, for example, a method in which an electric pulse is applied to a cell to make a hole in the cell wall, and the pharmaceutical composition of the present invention is introduced into the cell through the hole.
  • the particle gun method molecules such as DNA molecules (the pharmaceutical composition) are attached to gold fine particles, and using a particle gun (particle gun), the compressed fine helium gas is used to shoot the gold fine particles into the cell membrane.
  • the DNA molecule (the pharmaceutical composition) is introduced into cells.
  • the RNAi kit of the present invention includes a modified oligonucleotide that is an siRNA.
  • kits include a plate on which a well and a modified oligonucleotide are fixed, a fixed carrier such as a fiber and a nanochip, and the like.
  • a kit may contain, in addition to the modified oligonucleotide, for example, a drug, a coloring reagent that reacts to develop color, a detection reagent that facilitates detection, and the like.
  • the reagent for RNAi research of the present invention includes a modified oligonucleotide that is siRNA.
  • introduction of 30 bp or more dsRNA into cells activates cell-specific defense reactions In some cases, it may not be possible to determine whether RNAi is generated in the cell due to a reaction that randomly degrades mRNA. This random degradation of mRNA is considered to occur by the following mechanism. First, dsRNA activates 2-5 oligoadreic acid synthase (2-5AS) and activates 2-5A RNAaseL produced thereby. The RNAaseL degrades mRNA at random.
  • modified oligonucleotide which is siRNA
  • RNAaseL random degradation of mRNA can be suppressed.
  • the gene expression suppression method of the present invention is a method for suppressing gene expression using a modified oligonucleotide.
  • the modified oligonucleotide can, for example, cleave the mRNA of the target gene or form a double strand with the mRNA of the target gene, thereby suppressing gene expression.
  • the method of causing RNAi of the present invention is a method of causing RNAi using a modified oligonucleotide that is siRNA. This method can cause RNAi since it is a modified oligonucleotide force RNA.
  • a solid-phase synthesis unit compound represented by the following formula (X-1) is used as a starting material, and R 2 of the solid-phase synthesis unit compound represented by the formula (X-1) is removed. Then, the modified oligonucleotide can be obtained by extending a nucleotide to the 5 ′ end of the unit compound for solid phase synthesis represented by the formula (X-1), and then cutting out the solid phase carrier force.
  • R 2 is a protecting group
  • B 1 and B 2 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protecting group:
  • A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
  • W 11 is a group represented by H or the formula OR 11 ,
  • W 21 is a group represented by H or the formula OR 21 ;
  • R 11 and R 21 are each independently a protecting group
  • X 1 and X 2 are independently of each other 0, NH or S;
  • Y 1 is O or S
  • Z 1 is 0, NH or S
  • M is a solid support.
  • the 3, 5, 5-phosphate diester bond strength between the first and second nucleosides from the 3, end of the oligonucleotide is represented by the formula D (wherein X 1 is 0, NH or S, Y 1 is O or S, Z 1 is 0, NH or S), and the 3rd, 2nd and 3rd positions of the oligonucleotide 5,3, Monophosphate diester bond strength between nucleosides of the following formula (1-2) (where X 2 is 0, NH or S, Y 2 is O or S, Z 2 is 0, NH Or S)
  • An example of production of a modified oligonucleotide substituted for the bond represented will be described.
  • a solid-phase synthesis unit compound represented by the following formula (XI-1) is used as a starting material, and R 3 of the solid-phase synthesis unit compound represented by the formula (XI-1) is removed.
  • the modified oligonucleotide can be obtained by extending the nucleotide to the 5 ′ end of the solid-phase synthesis unity compound represented by the formula (XI-1) and then cutting out the solid phase carrier force. .
  • B 2 and B 3 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected with a protecting group:
  • A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
  • W 11 is a group represented by H or the formula OR 11 ,
  • W 21 is a group represented by H or the formula OR 21 ;
  • W 31 is a group represented by H or the formula OR 31 ;
  • R 21 and R 31 are each independently a protecting group
  • X 1 , X 2 and X 3 are independently of each other 0, NH or S;
  • Y 1 and Y 2 are independently of each other O or S;
  • Z 1 and Z 2 are independently of each other 0, NH or S;
  • M is a solid support.
  • the 3,, 5-phosphonate diester bond strength between the first and second nucleosides from the 3, terminal end of the oligonucleotide is represented by the formula D (wherein X 1 is 0, NH or S, Y 1 is O or S, Z 1 is 0, NH or S), and 5, 3, 3, monophosphate diester bond strength between the 3rd and 4th nucleosides from the 3rd end of the oligonucleotide
  • the following modified formula (1-3) (wherein X 3 is 0, NH or S, Y 3 is O or S, Z 3 is 0, NH or S) An example of production will be described.
  • a solid-phase synthesis unit compound represented by the following formula (XII-1) is used as a starting material, and R 4 of the solid-phase synthesis unit compound represented by the formula (XII-1) is removed.
  • the modified oligonucleotide can be obtained by extending the nucleotide to the 5 ′ end of the solid-phase synthesis unity compound represented by the formula (XII-1), and then cutting out the solid phase carrier force. .
  • R 4 and R are each independently a protecting group
  • B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protective group:
  • A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
  • W 11 is a group represented by H or the formula OR 11 ,
  • W 21 is a group represented by H or the formula OR 21 ;
  • W 31 is a group represented by H or the formula OR 31 ;
  • W 41 is H or a group represented by the formula OR 41 , Wherein R 1 , R 21 , R 31 and R 41 are each independently a protecting group, X 1 , X 3 and X 4 are each independently 0, NH or S;
  • Y 1 and Y 3 are independently of each other O or S;
  • Z 1 and Z 3 are independently of each other 0, NH or S;
  • M is a solid support.
  • the 3,, 5-phosphonate diester bond strength between the first and second nucleosides from the 3, terminal end of the oligonucleotide is represented by the formula D (wherein X 1 is 0, NH or S, Y 1 is O or S, Z 1 is 0, NH or S), and 5 ′, 3 ′ phosphate diester bond strength between the 3rd and 3rd nucleosides from the 3rd end of the oligonucleotide
  • a bond represented by formula (I 2) (wherein X 2 is 0, NH or S, Y 2 is O or S, Z 2 is 0, NH or S), and 3 from the end of the oligonucleotide 3 5,3, monophosphate diester bond strength between the 4th and 4th nucleoside Formula (1-3) (where X 3 is 0, NH or S, Y 3 is O or S, Z 3
  • the solid phase synthesis unity compound represented by the following formula ( ⁇ -1) is used as a starting material, and the solid phase synthesis unity compound R4 of the formula (XIII-1) is represented by R 4
  • the nucleotide is extended to the 5 ′ end of the solid-phase synthesis unit compound represented by the formula ( ⁇ -1) in the following formula, and then the solid-phase carrier force is also cut out to obtain the modified oligonucleotide. be able to.
  • R 4 independently of each other is a protecting group
  • B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protective group:
  • A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
  • W 11 is a group represented by H or the formula OR 11 ,
  • W 21 is a group represented by H or the formula OR 21 ;
  • W 31 is a group represented by H or the formula OR 31 ;
  • W 41 is H or a group represented by the formula OR 41 , Wherein 1 , R 21 , R 31 and R 41 are each independently a protecting group, and X 1 , X 2 , X 3 and X 4 are each independently 0, NH or S Yes,
  • ⁇ 2 and ⁇ 3 are, independently of each other, ⁇ or S;
  • ⁇ 2 and ⁇ 3 are independently of each other 0, NH or S;
  • M is a solid support.
  • the solid phase carrier is not limited as long as it is a solid phase carrier suitable for synthesizing DNA, RNA, and the like on the solid phase carrier.
  • CPG control pore glass
  • HCP highly cross- lin ked polystyrene
  • the protecting groups for R 2 , R 3 and R 4 are selected from conventionally known protecting groups depending on the reactivity of X 2 — H, — X 3 — H and — X 4 — H. .
  • a conventionally known primary alcohol protecting group for example, 4,4′-dimethoxytrityl (DMTr), 4 known in the field of nucleoside chemistry Monomethoxytrityl (MMTr), (9-phenyl) xanthene mono 9-yl [pixyl] isotonic Can be used as its protecting group.
  • DMTr 4,4′-dimethoxytrityl
  • MMTr Monomethoxytrityl
  • 9-phenyl) xanthene mono 9-yl [pixyl] isotonic can be used as its protecting group.
  • R u and the protecting group for R 21, R 31 and R 41, 2, depending on the reactivity of the position hydroxyl group, is selected from known protecting groups.
  • TBD MS tert-butyldimethylsilyl
  • Tom [(triisopropylpropylsilyl) oxy] methyl
  • THP tetrahydrobiral
  • the protecting group is selected from conventionally known protecting groups depending on the reactivity of phosphoric acid.
  • cyanoethyl (CE), allyl, trimethylsilylethyl (T MSE), p-trophenethyl (NPE) and the like can be used as its protecting group.
  • the protecting group whose functional group is protected is selected from those known in nucleic acid chemistry.
  • benzoyl (Bz), isoptyryl (i Bu), phenoxycetyl (Pac), allyloxycarboxyl (AOC) and the like can be used as the protecting group.
  • nucleosides are sequentially added according to the sequence of the modified oligonucleotide using a conventionally known technique in the field of oligonucleotide synthesis. It can be done by coupling. Nucleosides, coupling reagents, deprotection reagents, washing reagents, etc. are those usually used for nucleic acid solid phase synthesis.
  • the modified oligonucleotide on the obtained solid phase carrier is subjected to deprotection of the oligonucleotide side chain if necessary, and then the solid phase carrier force is cut out to obtain a crude modified oligonucleotide.
  • the reagent used for excision can be appropriately selected from conventionally known reagents according to the structure of the solid phase carrier and the linker (the portion connecting the solid phase carrier and the modified oligonucleotide).
  • the crude modified oligonucleotide may be purified by HPLC or the like, if necessary.
  • a single-stranded modified oligonucleotide is first produced according to the method as described above.
  • a single-stranded natural oligonucleotide having a sequence complementary to the modified oligonucleotide is also separately produced according to a conventionally known method.
  • the resulting single-stranded modified oligonucleotide is then placed in an annealing buffer (eg, a buffer containing lOOmM KOAc aqueous solution, 2 mM MgOAc solution, and 30 mM HEPES-KOH (pH 7.4)).
  • an annealing buffer eg, a buffer containing lOOmM KOAc aqueous solution, 2 mM MgOAc solution, and 30 mM HEPES-KOH (pH 7.4)
  • the solubilized product and the single-stranded natural oligonucleotide dissolved in the annealing buffer are mixed, treated at 95 ° C for 5 minutes, and then gradually cooled to 25 ° C.
  • a double-stranded modified oligonucleotide can be obtained.
  • This double-stranded modified oligonucleotide can be isolated and purified by further performing phenol Z chromatography, ethanol precipitation or the like, if necessary.
  • the unity compound for solid phase synthesis of formula (X-1), the unity compound for solid phase synthesis of formula (XI-1), and the solid phase synthesis of formula (XII-1) used in the above production method The unity compound for use and the unity compound for solid phase synthesis of the formula ( ⁇ 1) can be produced, for example, by the following method.
  • nucleoside derivative of the formula (IV-1) and a nucleoside derivative of the formula ( ⁇ ) are combined with a diimidazole derivative of the formula (V-1) and optionally a base (eg pyridine etc.), a catalyst (eg 4 Reaction is carried out in the presence of minopyridine (DMAP) etc. to obtain dimer (VI).
  • a catalyst eg 4 Reaction is carried out in the presence of minopyridine (DMAP) etc. to obtain dimer (VI).
  • Nucleosides of formula (IV-1) and formula (III) may be obtained commercially or may be made in-house using known literature.
  • dimer (VI) thus obtained is mixed with an anhydride (VII), optionally with a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylaminopyridine (DMAP)). Etc.) to obtain dimer (VIII).
  • a base eg, pyridine, triethylamine, etc.
  • a catalyst eg, 4-dimethylaminopyridine (DMAP)
  • the obtained dimer (VIII) and the solid phase carrier (IX) having an amino group are coupled with a coupling reagent (for example, WSC (1-ethyl-3- (3-dimethylamino) Propyl) -carbodiimide 'hydrochloride))) in the presence to give unit compound (X-1).
  • a coupling reagent for example, WSC (1-ethyl-3- (3-dimethylamino) Propyl) -carbodiimide 'hydrochloride
  • R 2 is a protecting group
  • B 1 and B 2 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protecting group:
  • A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
  • W 11 is a group represented by H or the formula OR 11 ,
  • W 21 is a group represented by H or the formula OR 21 ;
  • R 11 and R 21 are each independently a protecting group.
  • X 1 and X 2 are independently of each other 0, NH or S;
  • Y 1 is O or S
  • Z 1 is 0, NH or S
  • M is a solid support.
  • a production example of the unitary compound (XI-1) will be described with reference to Scheme 2.
  • R 2 of the dimer of the formula (VI) is replaced with H by a method according to the property of R 2 to obtain a dimer of the formula (VI-1) in which the 5 ′ position is free.
  • the dimer of the formula (VI-1) and the nucleoside derivative of the formula (I V-2) are converted into a diimidazole derivative of the formula (V-2) and optionally a base (for example, pyridine etc.), a catalyst Reaction in the presence of (eg, 4-dimethylaminopyridine (DMAP), etc.) gives the trimer (XIV-1).
  • Nucleosides of the formula (IV-2) may be obtained through commercial sales! Or made in-house using known literature.
  • trimer (XIV-1) thus obtained is mixed with anhydride (VII), optionally with a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylaminopyridine ( React in the presence of DMAP) etc. to obtain the trimer (XV-1).
  • a base eg, pyridine, triethylamine, etc.
  • a catalyst eg, 4-dimethylaminopyridine ( React in the presence of DMAP) etc.
  • trimer (XV-1) and solid phase carrier (IX) having an amino group are coupled with a coupling reagent (for example, WSC (1-ethyl-3- (3-dimethylamine)). Minopropyl) -carbodiimide 'hydrochloride))) in the presence to give unit compound (XI-1).
  • a coupling reagent for example, WSC (1-ethyl-3- (3-dimethylamine)
  • Minopropyl) -carbodiimide 'hydrochloride Minopropyl) -carbodiimide 'hydrochloride
  • R 2 and R 3 are each independently a protecting group
  • B 2 and B 3 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected with a protecting group: [0079] [Chemical 48]
  • A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
  • W 11 is a group represented by H or the formula OR 11 ,
  • W 21 is a group represented by H or the formula OR 21 ;
  • W 31 is a group represented by H or the formula OR 31 ;
  • R 21 and R 31 are each independently a protecting group.
  • X 1 , X 2 and X 3 are independently of each other 0, NH or S;
  • Y 1 and Y 2 are independently of each other O or S;
  • Z 1 and Z 2 are independently of each other 0, NH or S;
  • M is a solid support.
  • trimer (XIV-2) is added with anhydride (VII), optionally with a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylaminopyridine ( React in the presence of DMAP) etc. to obtain the trimer (XV-2).
  • a base eg, pyridine, triethylamine, etc.
  • a catalyst eg, 4-dimethylaminopyridine ( React in the presence of DMAP) etc.
  • trimer (XV-2) and solid phase carrier (IX) having an amino group are coupled with a coupling reagent (for example, WSC (1-ethyl-3- (3-dimethyla Minopropyl) -carbodiimide 'hydrochloride))) in the presence to give unit compound (XII-1).
  • a coupling reagent for example, WSC (1-ethyl-3- (3-dimethyla Minopropyl) -carbodiimide 'hydrochloride)
  • R 3 and R are, independently of one another, a protecting group
  • B 1 , B 2 and B 3 are independently of each other a group represented by the following formula and its functional group is a protecting group: A group selected from the group protected by
  • A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
  • W 11 is a group represented by H or the formula OR 11 ,
  • W 21 is a group represented by H or the formula OR 21 ;
  • W 31 is a group represented by H or the formula OR 31 ;
  • R 21 and R 31 are each independently a protecting group.
  • X 1 and X 3 are independently of each other 0, NH or S;
  • Y 1 is, independently of one another, O or S;
  • Z 1 is independently of each other 0, NH or S;
  • M is a solid support.
  • an anhydride (VII) is optionally added with a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylaminopyridine ( Reaction in the presence of DMAP) etc. gives the tetramer (XVII-1).
  • a base eg, pyridine, triethylamine, etc.
  • a catalyst eg, 4-dimethylaminopyridine ( Reaction in the presence of DMAP) etc. gives the tetramer (XVII-1).
  • a coupling reagent for example, WSC (1-ethyl-3- (3-dimethyl) Aminopropyl) -carbodiimi
  • R 3 and R 4 are protecting groups
  • B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protective group:
  • A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
  • W 11 is a group represented by H or the formula OR 11 ,
  • W 21 is a group represented by H or the formula OR 21 ;
  • W 31 is a group represented by H or the formula OR 31 ;
  • W 41 is H or a group represented by the formula OR 41 ,
  • R 21 , R 31 and R 41 are each independently a protecting group;
  • X 1 , X 2 , X 3 and X 4 are independently of each other 0, NH or S;
  • ⁇ 2 and ⁇ 3 are, independently of each other, ⁇ or S;
  • ⁇ 2 and ⁇ 3 are independently of each other 0, NH or S;
  • M is a solid phase carrier.
  • a protecting group may be introduced into each functional group, the protecting group may be deprotected, or the protecting group may be changed.
  • the selection of the protecting group according to the type of the functional group, the introduction of the protecting group, and the removal of the protecting group can be carried out according to a method known in the art. "Groups in Organic Synthesis, T. t ⁇ reene, John Wiley & 3 ⁇ 4ons, Inc.”
  • DMTrCl 4,4'—Dimethoxytritinochloride (4,4'—dimethoxytritylchloride)
  • EDTA ethylenediamine-N, N, ⁇ ', ⁇ , —tetraacetic acid, disodium salt, dehydrate (ethylenediamine- ⁇ , ⁇ , ⁇ , ⁇ )
  • mRNA messenger ribonucleic acid
  • TBDMSCl tert-butyldimethylsilylchloride
  • TEMED N, N, ⁇ ', N, monotetramethyl monoethylenediamine ( ⁇ , ⁇ , ⁇ ', ⁇ '- tetramet hyl-ethylenediamine)
  • TRIS Tris (hydroxymethyl) aminomethane
  • WSC 1-Ethyl 3- (3-Dimethylaminopropyl) -Carpositimide 'hydrochloride (1- Ethyl- 3-— (3-Dimethylaminopropyl) — carbodumide, hydrochloride j
  • the activity of the compound on CPG was calculated as follows.
  • weight is the weight of the measured CPG.
  • Thymidine (2.00 g, 8.26 mmol) was azeotroped with DMF and dissolved in DMF (16.5 mL).
  • Et N (l. 36 mL, 9. 91 mmol, 1.2 eq)
  • DMAP (0. 05 g, 0.41 m mol, 0.05 equivalents)
  • TBDMSC1 (1.36 g, 9.02 mmol, 1.1 equivalents) were sequentially added, and the resulting reaction mixture was stirred at room temperature for 2 hours and a half in an Ar atmosphere. Further TBDMSC1 (0.25 g, 1.66 mmol, 0.2 eq) was added to the reaction mixture and stirred for another 30 minutes.
  • the reaction mixture was diluted with ethyl acetate.
  • the obtained ethyl acetate solution was mixed with water (3 times), saturated aqueous NaHCO solution (1 time), saturated Na
  • reaction mixture was stirred at 120 ° C. under Ar atmosphere. After 48 hours, the disappearance of 2, 3, 1 anhydro-5, 1 O-tert-butyldimethylsilylthymidine was confirmed by TLC analysis.
  • the reaction mixture was diluted with ethyl acetate, water (3 times), saturated aqueous NaHCO (1
  • the extract was washed successively with a saturated aqueous NaCl solution (once) and then dried over sodium sulfate.
  • RNA sense strand SEQ ID NO: 2, 3 and 4
  • RNA antisense strand SEQ ID NO: 5
  • SEQ ID NO: 8 an RNA sense strand
  • SEQ ID NO: 9 an RNA antisense strand
  • the RNA sense strand consisting of SEQ ID NO: 8 was a commercially available dT resin (coupled to CPG resin) (manufactured by Spotify Research) in order to synthesize the TT dimer sequence at the 3 ′ end. Otherwise, according to SEQ ID NO: 8, the oligonucleotide of SEQ ID NO: 8 bound to the CPG resin was produced by the phosphoramidite method using an automatic nucleic acid synthesizer. 1 ⁇ mol of the dT resin was used, and each condensation time was 15 minutes.
  • the oligonucleotide of SEQ ID NO: 8 bound to the CPG resin was synthesized by an automatic nucleic acid synthesizer with the DMTr group removed.
  • the obtained eluate was concentrated under reduced pressure.
  • the resulting concentrates were each dissolved in packing solution (1% XTBE solution in 90% formamide) (100 L).
  • the solutions were separated using 20% PAGE (20A, 6 hours) (1 XTBE buffer was used for the electrophoresis buffer), and the target oligonucleotide band was excised.
  • Each cut band was filled with 0.1 M EDTA aqueous solution (20 mL) and allowed to stand.
  • the liquid portion of this EDTA aqueous solution is purified by C-18 reverse phase column chromatography (Sep-Pak) (eluent: in water, 50% CH CN (3 mL)) to obtain the desired oligonucleotide.
  • a 0.1 M TEAA buffer was prepared as follows. First, water was added to 1 L in a mixture of 2N acetic acid (114. 38 mL) and triethylamine (277. 6 mL). The solution was prepared by adding acetic acid to adjust the pH to 7.0, and then diluting the solution 20 times.
  • a 0.1 M aqueous EDTA solution was prepared by dissolving EDTA'4Na (l. 80 g) in water (40 mL).
  • 10 XTBE buffer was prepared by dissolving 1 U of Tris (109 g), boric acid (55 g) and EDTA '2Na (7.43 g) in water.
  • the obtained oligonucleotide was dissolved in water (lmL) and diluted 100-fold with water to prepare a diluted solution.
  • the absorbance (260 nm) of the diluted solution was measured, and the yield was calculated.
  • the absorbance ⁇ value, absorbance at 260 nm, and yield are shown in Table 1.
  • the molecular weight of the obtained oligonucleotide was confirmed by MALDI-TOFZMS. The results are also shown in Table 1.
  • RNA antisense strand consisting of SEQ ID NO: 9 was produced in the same manner as Reference Example 1 Is except that SEQ ID NO: 9 was used instead of SEQ ID NO: 8.
  • Each single-stranded oligonucleotide consisting of SEQ ID NO: 9 was prepared in the same manner as Reference Example 1-la, except that the 5 'end of the modified single-stranded oligonucleotide consisting of SEQ ID NO: 9 was labeled with a 32 P label. Manufactured.
  • the modified single-stranded oligonucleotide consisting of SEQ ID NO: 9 modified at the 5 ′ end with fluorescein is labeled with the fluorescein phosphoramidite HFluorescin Phophoramidite (Glen 'Research (Glen A single-stranded oligonucleotide consisting of SEQ ID NO: 9 was prepared in the same manner as in Reference Example 1—Is except that the 5 ′ end was modified with fluorescein, except that (Research) was added.
  • RNA-stranded chain consisting of SEQ ID NO: 12 was produced in the same manner as Reference Example 1 Is except that SEQ ID NO: 12 was used instead of SEQ ID NO: 8.
  • a modified single-stranded oligonucleotide consisting of SEQ ID NO: 2 is used instead of the dT resin.
  • a modified single-stranded oligonucleotide consisting of SEQ ID NO: 2 was produced in the same manner as Reference Example 1 Is, except that the unity compound represented by (X-11) was used.
  • the modified single-stranded oligonucleotide consisting of SEQ ID NO: 5 was the same as Reference Example 1 Is except that the unity compound represented by (X-11) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 5 was produced.
  • the modified single-stranded oligonucleotide consisting of SEQ ID NO: 3 was the same as Reference Example 1 Is except that the unit compound represented by (X-12) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 3 was produced.
  • the modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 was the same as Reference Example 1 Is except that the unity compound represented by (X-12) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 was produced.
  • the modified single-stranded oligonucleotide having SEQ ID NO: 4 was the same as Reference Example 1 Is except that the unity compound represented by (X-13) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide having SEQ ID NO: 4 was also produced.
  • the modified single-stranded oligonucleotide consisting of SEQ ID NO: 7 was the same as Reference Example 1 Is except that the unity compound represented by (X-13) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 7 was produced.
  • a modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 modified at the 5 ′ end with fluorescein is labeled with a fluorescein phosphoramidite (HFluorescin Phophoramidite)
  • HFluorescin Phophoramidite fluorescein phosphoramidite
  • the modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 was modified with a 32 P label at the 5 'end consisting of SEQ ID NO: 6 in the same manner as Example 1-2a except that the 5' end was labeled with a 32 P label.
  • Single-stranded oligonucleotides were produced.
  • the modified single-stranded oligonucleotide consisting of SEQ ID NO: 10 was the same as Reference Example 1-Is except that the unity compound represented by (X-12) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 10 was produced.
  • modified single-stranded oligonucleotide consisting of SEQ ID NO: 11 was the same as Reference Example 1-Is except that the unity compound represented by (X-13) was used instead of the dT resin. Accordingly, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 11 was produced.
  • the oligonucleotides of SEQ ID NOs: 8 and 9 obtained in Reference Example 1 Is and 1 la are hereinafter referred to as (dT s) and (dTa), respectively.
  • the oligonucleotide consisting of SEQ ID NO: 9 obtained in Reference Example 12 is hereinafter referred to as (PdT-a).
  • the oligonucleotide obtained from Reference Example 1-3a and consisting of SEQ ID NO: 9 modified at the 5 ′ end with fluorescein is hereinafter referred to as (FdT-a).
  • the oligonucleotide of SEQ ID NO: 12 obtained in Reference Example 1-4 is hereinafter referred to as (d sa).
  • Example 1 Modified single-stranded oligonucleotides consisting of SEQ ID NOs: 2 and 5 obtained in Is and 1-la are hereinafter referred to as (11 s) and (11 a), respectively.
  • the modified single-stranded oligonucleotides consisting of SEQ ID NOs: 3 and 6 obtained in Examples 1-2s and 1-2a are hereinafter referred to as (12-s) and (12-a), respectively.
  • the modified single-stranded oligonucleotides consisting of SEQ ID NOs: 4 and 7 obtained in Examples 1-3s and 1-3a are hereinafter referred to as (13-s) and (13-a), respectively.
  • the modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 obtained in Example 1-4a and modified at the end with fluorescein 5 is referred to as (F12-a).
  • the modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 obtained in Example 1 5a is hereinafter referred to as (P12a).
  • the modified single-stranded oligonucleotides consisting of SEQ ID NOs: 10 and 11 obtained in Examples 1-6 and 1-7 are respectively represented by the following ( — Sa) and (17— sa). 1]
  • Example or Reference SEQ ID No. Sample Name ⁇ Value (X Absorbance Yield Calculated MALDI-TOF / MS Example 1000) (OD260) ⁇ 1 MW observd Reference Example 1 1 1 s 8 (dT-s) 216.3 15.2 70.3 6717.10 6717.52 Reference Example 1 — 1 a 9 (dT- a) 202.3 10.4 51.4 6567.93 6568.58 Reference Example 1 1 4 1 2 (d-sa) 97.8 25.0 255.62 3117.94 ⁇ Example 1 1 1 s 2 (1 1-s) 216.3 10.0 46.2 6680.15 6680.53 Implementation Example 1 1 1 1 a 5 (1 1-a) 202.3 13.9 68.7 6530.98 6532.32 Example 1 1 2 s 3 (1 2 s) 216.3 14.5 67.0 6680.15 6683.54 Example 1 1 2 a 6 (1-a) 202.3 19.8 97.9 6530.98 6531.28 Example 1 1 3 s 4
  • oligonucleotide was dissolved in water to prepare an aqueous solution, and the aqueous solution was diluted so that the absorbance (Abs) at a wavelength of 260 nm was within the effective range of the absorptiometer.
  • Optical path length (Abs)
  • Abs is the absorbance of the oligonucleotide solution at a wavelength of 260 nm.
  • V is the total volume of the solution
  • 1 is the optical path length
  • M is the molar concentration
  • the molar extinction coefficient ⁇ 260 of the oligonucleotide was calculated using the following formula (2).
  • 2 ⁇ ( ⁇ ⁇ ) + ⁇ ( ⁇ ⁇ ) + ⁇ ⁇ + ⁇ ( ⁇ ⁇ ) ⁇ - ⁇ ( ⁇ ) + ⁇ ( ⁇ ) +... +
  • ⁇ ( ⁇ ) represents ⁇ of a certain nucleic acid ⁇
  • ⁇ ( ⁇ )) represents a nucleic acid dimer
  • Example 1 (11—s) (35 nmol) prepared in Is and (11—a) (35 nmol) prepared in Example 1—la were added to an annealing buffer (10 mM Tris—HCl (pH 7.5) and 100 mM NaCl). The solution was incubated at 90 ° C. for 1 minute and then at 37 ° C. for 1 hour to obtain a modified double-stranded oligonucleotide consisting of SEQ ID NO: 2 and SEQ ID NO: 5 as shown in FIG.
  • an annealing buffer 10 mM Tris—HCl (pH 7.5) and 100 mM NaCl
  • Example 2-1 Except for using (12-s) and (12-a) instead of (11 s) and (11 a), In the same manner as in Example 2-1, a modified double-stranded oligonucleotide consisting of SEQ ID NO: 3 and SEQ ID NO: 6 as shown in FIG. 1 was obtained.
  • FIG. 1 An arrangement as shown in FIG. 1 is performed in the same manner as in Example 2-1, except that (12-s) and (F12-a) are used instead of (11-s) and (11-a).
  • (12-s) and (F12-a) are used instead of (11-s) and (11-a).
  • a modified double-stranded oligonucleotide composed of No. 3 and a sequence further modified with fluorescein at the 5 ′ end in SEQ ID NO: 6 was obtained.
  • Example 2-1 In the same manner as in Example 2-1, except that (17-sa) and (17-sa) were used instead of (11 s) and (11 a), SEQ ID NO: 11 as shown in FIG. And a modified double-stranded oligonucleotide consisting of SEQ ID NO: 11 was obtained.
  • Example 2-1 As in Example 2-1, except that (dT-s) and (dT-a) were used instead of (11-s) and (11-a), Two consisting of SEQ ID NO: 8 and SEQ ID NO: 9 A double-stranded oligonucleotide was obtained.
  • Example 2-1 As in Example 2-1, except that (d sa) and (d sa) were used instead of (11 s) and (11 a), SEQ ID NO: 12 and A double-stranded oligonucleotide consisting of SEQ ID NO: 12 was obtained.
  • HT1080 cells were grown at 37 ° C in RPMI 1640 medium supplemented with 10% FBS, penicillin (100 units Zml) and streptomycin (0.1 mgZml). Cells were passaged regularly to maintain exponential growth. HT1080 cells were trypsinized 24 hours before transfer at approximately 25% confluency, diluted with medium without antibiotics, and transferred to 35 ml dishes (2 ml Z dishes) ).
  • the modified double-stranded oligonucleotide was transfected to the adherent cell line using Lipofuectamine 2000 reagent (Invitrogen) by the method described below.
  • double-stranded oligonucleotide 50, ⁇ or 200 nM per 250 1 of the medium
  • Example 2-2 obtained double-stranded oligonucleotide
  • RPMI1640 medium without antibiotics and FBS
  • an equal volume of ribofactoramine 2000 reagent diluted 50-fold was added, and then incubated for 20 minutes at room temperature.
  • HT1080 cells obtained after 24 hours incubation and 48 hours incubation from transfection were trypsinized and washed twice with cold PBS (—). The resulting cell pellet was then added to 2 volumes of hypotonic buffer A (0.5% (vZv) Nonidet P-40, 20 mM Hepes (pH 7.5), 10 mM CH. CO K, 15mM (CH
  • the PVDF membrane was incubated with 5% bovine serum albumin at 25 ° C for 1 hour. Thereafter, the PVDF membrane was rinsed twice with TBST (200 mM Tris pH 7.6, 1.37 M sodium chloride sodium salt, 0.1% Tween-20). The PVDF membrane was incubated with 0.5 gZml of anti-RNaseL monoclonal antibody at 4 ° C for 16 hours. Thereafter, the PVDF membrane was washed with TBST once for 15 minutes and then 3 times for 5 minutes. The PVDF membrane was then incubated for 1 hour at 25 ° C. with anti-mouse IgG (500 ⁇ g ZmL diluted 100000 fold) labeled with Horse radish peroxidase.
  • TBST 200 mM Tris pH 7.6, 1.37 M sodium chloride sodium salt, 0.1% Tween-20.
  • the PVDF membrane was incubated with 0.5 gZml of anti-RNaseL monoclonal antibody at 4 ° C for 16 hours. Thereafter
  • the modified double-stranded oligonucleotide of the present invention has an effect of suppressing the expression of RNaseL as compared to the unmodified double-stranded oligonucleotide. It was confirmed that there was a marked improvement. This is presumably because the modified double-stranded oligonucleotide of the present invention was excellent in cell membrane permeability and improved in stability or retention in cells.
  • (1) 1. Using the hemocytometer, count the number of cells in the modified double-stranded oligonucleotide obtained in Example 2-2 as described in (2). Counting was performed under a phase contrast microscope. The viability of the transfected cells was determined by the trypan blue dye exclusion test. At that time, the dye could not be eliminated due to a decrease in cell membrane function, and as a result, cells stained with trypan blue were regarded as dead cells. The percentage of the total number of viable cells (%) was defined as the survival rate. As a result, no cytotoxicity was observed at any concentration (50 nM, 100 nM, and 200 nM) of the modified double-stranded oligonucleotide.
  • the concentration of the double-stranded oligonucleotide used in (2) is the same as that described in 1. (1) to (1) above except that 1 ⁇ , 5nM or ⁇ is used instead of 50, ⁇ or 200nM per 250 1 of the medium.
  • the relative ratio of the RNase L intensity of the cells treated with the double-stranded oligonucleotide was determined. The results are shown in Fig. 3.
  • Relative ratio of RNase L intensity of cells treated with double-stranded oligonucleotide was determined in the same manner as in (1) except that the double-stranded oligonucleotide obtained in 3 and Reference Example 2-1 was used. . The results are shown in Fig. 3.
  • the modified double-stranded oligonucleotide of the present invention has a markedly improved effect of suppressing the expression of RNaseL compared to the unmodified double-stranded oligonucleotide. It could be confirmed. This remarkable improvement is more than expected because the modified double-stranded oligonucleotide of the present invention has excellent cell membrane permeability and improved nuclease resistance.
  • a cover glass coated with poly L-lysine (manufactured by Sigma) was placed in a 35 millidish 24 hours before the transfer.
  • poly L-lysine manufactured by Sigma
  • the T1080 cells on the cover glass were washed twice with PBS (-). Thereafter, the cells on the coverslips were incubated with 4% paraformaldehyde at 4 ° C for 15 minutes. After washing three times with PBS (-), the cells on the cover glass were incubated with 0.2% Triton-X 100 solution at room temperature for 5 minutes. After washing 3 times with PBS (-), the cells on the coverslips were incubated with 0.5% bovine serum albumin for 30 minutes at room temperature. The cells on the cover glass were washed 3 times with PBS (1) and then incubated with 1 ⁇ g Zml of anti-RNase L monoclonal antibody for 60 minutes at room temperature.
  • the modified double-stranded oligonucleotide of the present invention has a significant decrease in RNaseL fluorescence intensity, that is, strong and suppressed RNaseL expression compared to the unmodified double-stranded oligonucleotide. It was confirmed that the effect was demonstrated.
  • HT1080 cells on the cover glass were washed twice with PBS (-). Thereafter, the cells on the coverslips were incubated with 4% paraformaldehyde at 4 ° C for 15 minutes. After washing 3 times with PBS (-), the cells on the cover glass were immediately observed with a fluorescence microscope. The results are shown in Fig. 4. From the obtained results, the ratio of the number of cells positive for fluorescein-labeled double-stranded oligonucleotide per total number of cells was calculated. The results are shown in Table 3.
  • HT1080 cells prepared previously with 500 ⁇ l of lipofucamine amine reagent solution after incubation were placed on a previously fixed cover glass, and HT1080 subjected to transfection. The results obtained with the cells are also shown in FIG.
  • the modified double-stranded oligonucleotide of the present invention was confirmed to have a remarkable decrease in RNAaseL fluorescence intensity, ie, suppression of RNAaseL.
  • snake venom phosphorodiesterase SVP selectively cleaves phosphodiester bonds and cleaves oligonucleotides into 5, monomonophosphate nucleotides.
  • Figures 6 (a) and (b) were prepared with the reaction time as the horizontal axis. Then, from the graphs of FIGS. 6 (a) and (b), the time (t) at which the remaining rate of the complete chain was 50% was calculated. The results are shown in Table 4.
  • Buffer solution 250 mM Tris-HCU 50 mM MgCl (pH 7.0) 6 L 2u / mL SVP aqueous solution 4 ⁇ L
  • the modified single-stranded oligonucleotide has improved exonuclease resistance compared to the unmodified single-stranded oligonucleotide.
  • the modified double-stranded oligonucleotide has significantly improved resistance to exonuclease compared to the unmodified double-stranded oligonucleotide.
  • double-stranded modified oligonucleotides were confirmed to have significantly improved nuclease resistance even when compared to the results of single-stranded modified oligonucleotides, and this result exceeds the expected range.
  • the resulting double-stranded oligonucleotide consisting of SEQ ID NO: 12 was evaluated for thermodynamic stability.
  • ⁇ ° represents the change in thermal energy balance when lmol single strand becomes lmol double strand in the standard state, and the one sign represents the exothermic reaction. Is stable in terms of thermal energy.
  • AS ° represents the change in randomness when lmol single strand becomes lmol double strand in the standard state, and the sign indicates that it tends to a more disordered state. A smaller value indicates that it is more advantageous for duplex formation.
  • the relationship between AG °, ⁇ °, and AS ° is expressed by the following equation (4).
  • thermodynamic stability of the duplex is determined by the difference between the thermal energy balance of the reaction and the change in randomness.
  • Tm was measured by dividing the concentration of oligonucleotides into several steps. This Tm value was measured with a Beck man Coulter DU 640 spectrophotometer. In the measurement, 10 mM NaHPO-NaHPO, 1 M NaCl (pH 7.0) was used as a buffer. Obtained Tm value
  • Example 2 6 56.9 15.4 77.9 210
  • Example 2 7 54.5 14.8 74.1 199
  • Reference Example 2 3 55.7 13.6 62.7 165
  • the modified double-stranded oligonucleotide of the present invention is more sure to increase the absolute value of -AG ° and the absolute value of ⁇ than the unmodified oligonucleotide.
  • the stability as a double strand was improved.
  • the modified double-stranded oligonucleotide of the present invention forms a more ordered double strand because the absolute value of AS is increased compared to the unmodified oligonucleotide. It was.
  • Example 1 Modified single-stranded oligonucleotide consisting of SEQ ID NO: 5 obtained in 5a (5 ′ end labeled with 32 P), unmodified consisting of SEQ ID NO: 9 obtained in Reference Example 1-2 Single-stranded oligonucleotide (5, end labeled with 32 P), modified double-stranded oligonucleotide obtained in Example 2-5 (5, end labeled with 32 P) and Reference Example 2- Endonuclease resistance of the unmodified double-stranded oligonucleotide obtained in 2 (5, labeled with 32 P at the end) was evaluated.
  • RNase A was used as the endonuclease.
  • the reaction solution (10 1) was sampled in the filling solution (8M urea XC BPB) (10 1) dispensed to each Eppendorf tube 30 minutes later. To stop the reaction. The obtained samples at each time were separated by electrophoresis using 20% polyacrylamide gel (containing 7M urea) at 20mA for 180 minutes to obtain the complete strand of the modified or unmodified single-stranded oligonucleotide. The residual rate (%) was measured. The results are shown in Table 6.
  • Buffer solution 250 mM Tris-HCU 50 mM MgCl (pH 7.0) 1.5; zL
  • the modified oligonucleotide of the present invention is useful, for example, as a disease therapeutic agent.
  • SEQ ID NO: 2 Modified sense strand of siRNA sequence against the target sequence of SEQ ID NO: 1
  • SEQ ID NO: 3 Modified sense strand of siRNA sequence against the target sequence of SEQ ID NO: 1
  • SEQ ID NO: 4 Modified sense strand of siRNA sequence against the target sequence of SEQ ID NO: 1
  • SEQ ID NO: 5 Modified antisense strand of the siRNA sequence against the target sequence of SEQ ID NO: 1
  • SEQ ID NO: 6 Modified antisense strand of the siRNA sequence against the target sequence of SEQ ID NO: 1
  • SEQ ID NO: 7 Modified antisense of the siRNA sequence against the target sequence of SEQ ID NO: 1
  • SEQ ID NO: 8 sense strand of siRNA sequence against the target sequence of SEQ ID NO: 1
  • SEQ ID NO: 9 Antisense strand of siRNA sequence against target sequence of SEQ ID NO: 1
  • SEQ ID NO: 10 Modified strand of siRNA sequence against target sequence of SEQ ID NO: 12
  • SEQ ID NO: 11 Another modified strand of siRNA sequence against the target sequence of SEQ ID NO: 12 SEQ ID NO: 12 Target sequence

Abstract

The invention aims at providing oligonucleotides modified at the 3' end which are excellent in penetration through cell membrane, resistance to nuclease, and the ability to form double strands and whose production was difficult in the prior art. The aim is attained by a modified oligonucleotide wherein the 5',3'-phosphoric diester linkage between the first and second nucleosides from the 3' end is replaced by a linkage represented by the general formula (I-1): -X1-C(=Y1)-Z1- (I) [wherein X1 is O, NH, or S; Y1 is O or S; and Z1 is O, NH, or S]. Such modified oligonucleotides can be produced through solid phase synthesis by using unit compounds for solid phase synthesis as represented by the general formula (X-1) as the starting raw material: (X-1) wherein R2, W11, W21, B1, B2, A, X2, X1, Y1, Z1 and M are each as defined in the description.

Description

明 細 書  Specification
修飾オリゴヌクレオチド  Modified oligonucleotide
技術分野  Technical field
[0001] 本発明は、修飾オリゴヌクレオチドに関するものである。  [0001] The present invention relates to a modified oligonucleotide.
背景技術  Background art
[0002] 近年、遺伝情報そのものを治療の対象としてとらえるという方法論が普及しつつある 。この方法論の一つに、オリゴヌクレオチドを用いたアンチセンス法がある。アンチセ ンス法とは、化学合成したオリゴヌクレオチド (例えば、 15〜20の塩基対から成る一 本鎖 DNA)を細胞に加え、標的メッセンジャー RNA (mRNA)と DNA等 ZmRNA 二本鎖核酸を形成させることにより、標的遺伝子の発現を塩基配列特異的に抑制し 、 mRNAからタンパク質への翻訳過程を阻害する方法である。アンチセンス法では、 病因となるウィルスまたは遺伝子の塩基配列が既知の場合、アンチセンス分子を理 論的に設計し、それを合成するのが可能であることから、これまで治癒が困難と考え られてきた様々なウィルスを原因とする疾患および遺伝子疾患に対する有効な治療 方法の一つとして期待されて 、る。  [0002] In recent years, a methodology for capturing genetic information itself as a treatment target has been spreading. One of the methodologies is an antisense method using oligonucleotides. The anti-sense method involves adding chemically synthesized oligonucleotides (for example, single-stranded DNA consisting of 15 to 20 base pairs) to cells to form ZmRNA double-stranded nucleic acids such as target messenger RNA (mRNA) and DNA. Thus, it is a method of inhibiting the translation process from mRNA to protein by specifically suppressing the expression of the target gene. In the antisense method, if the base sequence of the pathogenic virus or gene is known, it is possible to theoretically design an antisense molecule and synthesize it. It is expected as one of the effective treatment methods for diseases caused by various viruses and genetic diseases.
[0003] また、ごく最近、オリゴヌクレオチドを用いた遺伝子発現抑制法として、 RNAi (RNA inteference、 RNA干渉)を利用した方法に、注目が集まっている。この RNAiとは、 二本鎖 RNAを細胞に導入することにより、同じ塩基配列を有する細胞の染色体由来 の RNAが分解され、切断される現象を指す。この RNAiの機構は、現在のところ、次 のように考えられている。先ず、長鎖二本鎖 RNAが、酵素(Dicerと呼ばれる)により 3,— UU型のダングリングエンド構造を持つ 21塩基程度の長さの二本鎖 RNA (siR NA (short interfering RNA)と呼ばれる)に加水分解される。その siRNAが、標的 mRNAと RNAZmRNA二本鎖核酸を形成し、この二本鎖核酸を認識する細胞内 タンパク質 (RISC (RNA— induced Silencing Complex)と呼ばれる)と、この二本鎖 核酸とが結合し、この結合体により、標的 mRNAが切断されるというものである。この RNAiを利用する方法によると、多くの場合、アンチセンス法と比較して 1Z100程度 の濃度の RNAを用いて同等の効果が得られている。従って、 RNAiを利用する方法 も、これまで治癒が困難と考えられてきた様々なウィルスを原因とする疾患および遺 伝子疾患に対する有効な治療方法の一つとして期待が高まっている。 Recently, attention has been focused on a method using RNAi (RNA interference) as a gene expression suppression method using oligonucleotides. RNAi refers to a phenomenon in which RNA derived from a cell chromosome having the same base sequence is degraded and cleaved by introducing double-stranded RNA into a cell. The mechanism of RNAi is currently considered as follows. First, a long double-stranded RNA is called a double-stranded RNA (siRNA (short interfering RNA)) with a length of about 21 bases with a 3-UU-type dangling end structure by an enzyme (called Dicer). ). The siRNA forms an RNAZmRNA double-stranded nucleic acid with the target mRNA, and an intracellular protein that recognizes this double-stranded nucleic acid (called RNA-induced silencing complex (RISC)) binds to this double-stranded nucleic acid. The target mRNA is cleaved by this conjugate. In many cases, this RNAi-based method achieves the same effect using RNA at a concentration of about 1Z100 compared to the antisense method. Therefore, how to use RNAi However, expectations are rising as one of the effective treatment methods for diseases and gene diseases caused by various viruses that have been considered difficult to cure.
[0004] アンチセンス法、 RNAiを利用する方法等、オリゴヌクレオチドを用いる方法では、 細胞内にそのオリゴヌクレオチドを導入させる必要がある。また、ー且細胞内に導入 されたオリゴヌクレオチドを、安定に存在させる必要もある力 細胞内外には核酸カロ 水分解酵素 (ヌクレアーゼ)が存在し、導入されたオリゴヌクレオチド、特に天然型の オリゴヌクレオチドは容易に分解されてしまうと ヽぅ問題があった。  [0004] In a method using an oligonucleotide such as an antisense method or a method using RNAi, it is necessary to introduce the oligonucleotide into a cell. In addition, it is necessary to stably introduce the oligonucleotide introduced into the cell. Nucleic acid-hydrolyzing enzyme (nuclease) exists inside and outside the cell, and the introduced oligonucleotide, particularly the natural oligonucleotide. Had a problem with being easily disassembled.
[0005] 細胞膜に対する透過性向上と、ヌクレアーゼ耐性の向上を目的として、種々の修飾 オリゴヌクレオチドが開発されてきた。例えば、チミジン チミジンのダイマー間の 5 ' , 3'—リン酸ジエステル結合を、力ルバメート結合に置き換えた修飾 TTダイマーを導 入した、 DNAオリゴヌクレオチドが知られている(例えば、非特許文献 1参照)。このよ うな修飾 TTダイマーを含む DNAオリゴヌクレオチドは、わずかにヌクレアーゼ耐性が 向上していることが確認されている。しかし、この修飾 TTダイマーは、その製造方法 の性質上、 DNAオリゴヌクレオチドの 3'末端以外の部位に導入することは可能であ る力 3'末端部位に導入することは実現されていな力つた。  [0005] Various modified oligonucleotides have been developed for the purpose of improving permeability to cell membranes and nuclease resistance. For example, a DNA oligonucleotide is known in which a modified TT dimer in which the 5 ′, 3′-phosphate diester bond between thymidine dimers is replaced with a force rubamate bond is introduced (for example, see Non-Patent Document 1). ). It has been confirmed that DNA oligonucleotides containing such modified TT dimers have slightly improved nuclease resistance. However, due to the nature of the production method, this modified TT dimer is capable of being introduced into sites other than the 3 'end of DNA oligonucleotides. .
[0006] また、ヌクレアーゼは、オリゴヌクレオチドをその 3 '末端力 分解して 、くことが知ら れている。例えば、前記のような修飾 TTダイマーを含む DNAオリゴヌクレオチドは、 DNAオリゴヌクレオチドの 3,末端力も修飾 TTダイマーまでの間は、ヌクレアーゼに より通常分解されていると考えられる。すなわち、若干のヌクレアーゼ耐性を示すもの の、前記修飾 TTダイマーを含む DNAオリゴヌクレオチドの塩基配列は部分的に分 解されており、その配列が保存されているわけではなぐ DNAオリゴヌクレオチドの作 用が低下する恐れがあった。前記のようなヌクレアーゼの反応特性を考えると、オリゴ ヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の 5,, 3,一リン酸ジエステ ル結合を修飾すれば、ヌクレアーゼ対し耐性を示す修飾オリゴヌクレオチドが期待で きる。しかし、固相合成技術を利用したオリゴヌクレオチド合成においては、その部位 の修飾は困難であり、そのような修飾オリゴヌクレオチドは実現されていな力つた。  [0006] In addition, nucleases are known to cleave oligonucleotides at their 3 'ends. For example, a DNA oligonucleotide containing a modified TT dimer as described above is considered to be normally degraded by a nuclease until the 3, end force of the DNA oligonucleotide is also modified TT dimer. In other words, although the nucleotide sequence of the DNA oligonucleotide containing the modified TT dimer is partially resolved, although it exhibits some nuclease resistance, the DNA oligonucleotide may not be conserved. There was a risk of decline. Considering the reaction characteristics of nucleases as described above, modification of the 5,3, monophosphate diester bond between the first and second nucleosides from the 3, end of the oligonucleotide is a modification that shows resistance to nucleases. Oligonucleotides can be expected. However, in oligonucleotide synthesis using solid phase synthesis technology, it is difficult to modify the site, and such a modified oligonucleotide has not been realized.
[0007] さらに、アンチセンス法、 RNAiを利用する方法等、オリゴヌクレオチドを用いる方法 では、そのオリゴヌクレオチドに天然のオリゴヌクレオチドとの二本鎖形成能力および 、その形成した二本鎖の安定性が要求されるが、化学構造が修飾された非天然型ォ リゴヌクレオチドには、通常、その二本鎖形成能力は低下するという問題があった。 非特干文献 1: Adrian Waldner, Alain De Mesmaeker and Jacques Lebreton, 「 Synthesis of Oligodeoxyribonucleotides containing Dimers with Carbamate Moi eties as Replacement of the Natural Phosphodiester linkagej , Bioorganic & Medicinal Chemistry Letters, 1994年, 第 4卷, p.405 [0007] Furthermore, in the method using an oligonucleotide such as an antisense method or a method using RNAi, the ability of the oligonucleotide to form a double strand with a natural oligonucleotide and However, the stability of the formed double strand is required, but a non-natural oligonucleotide having a modified chemical structure usually has a problem that its ability to form a double strand is lowered. Non-patent literature 1: Adrian Waldner, Alain De Mesmaeker and Jacques Lebreton, “Synthesis of Oligodeoxyribonucleotides containing Dimers with Carbamate Moieties as Replacement of the Natural Phosphodiester linkagej, Bioorganic & Medicinal Chemistry Letters, 1994, IV, p.405
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] そこで、本発明は、細胞膜に対する透過性、ヌクレアーゼ耐性および二本鎖形成 能という 3つの特性が優れた 3'末端が修飾されたオリゴヌクレオチドの提供を目的と する。 [0008] Therefore, an object of the present invention is to provide an oligonucleotide having a modified 3 'end that is excellent in three properties of permeability to a cell membrane, nuclease resistance, and duplex forming ability.
課題を解決するための手段  Means for solving the problem
[0009] 本発明は、オリゴヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の 5,, 3  [0009] The present invention relates to an oligonucleotide 3, 5, 3 between the first and second nucleosides from the end.
'一リン酸ジエステル結合力 下記式 (I 1)で表される結合に置き換えられた修飾ォ リゴヌクレオチドである。  'Monophosphate diester bond strength A modified oligonucleotide substituted with a bond represented by the following formula (I 1).
-X1 -C ( =Y1) -Z1- (1- 1) -X 1 -C (= Y 1) -Z 1 - (1- 1)
前記式(1—1)中、 X1は 0、 NHまたは S、 Y1は Oまたは S、 Z1は 0、 NHまたは Sである In the formula (1-1), X 1 is 0, NH or S, Y 1 is O or S, Z 1 is 0, NH or S
発明の効果 The invention's effect
[0010] 本発明は、従来製造が困難であった、 3'末端から 1番目と 2番目のヌクレオシド間 の 5,, 3,一リン酸ジエステル結合が修飾されたオリゴヌクレオチドの製造に成功した ことに基づき、完成したものである。本発明では、その修飾として、前記式 (1—1)で示 す結合での置き換えを選択し、その修飾オリゴヌクレオチドのヌクレアーゼ耐性向上 、細胞膜に対する透過性向上および二本鎖形成能の向上を実現した。さらに、本発 明の修飾オリゴヌクレオチドのヌクレアーゼ耐性向上は、 3,末端が修飾されたことか ら予想されるものをはるかに超える、優れたものである。  [0010] The present invention has succeeded in producing an oligonucleotide in which the 5,3,3 monophosphate diester bond between the first and second nucleosides from the 3 'end has been modified, which has been difficult to produce. It is completed based on. In the present invention, as the modification, replacement with a bond represented by the above formula (1-1) is selected, and the modified oligonucleotide has improved nuclease resistance, improved permeability to cell membranes, and improved duplex formation ability. did. Furthermore, the improved nuclease resistance of the modified oligonucleotide of the present invention is far superior to that expected from the modification of the 3, termini.
図面の簡単な説明 [0011] [図 1]図 1は、修飾二本鎖オリゴヌクレオチドの例を示す図である。 Brief Description of Drawings FIG. 1 is a diagram showing an example of a modified double-stranded oligonucleotide.
[図 2]図 2は、修飾二本鎖オリゴヌクレオチドの例および非修飾二本鎖オリゴヌクレオ チドの一例の RNaseL発現濃度を示すグラフである。  FIG. 2 is a graph showing the RNaseL expression concentration of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
[図 3]図 3は、修飾二本鎖オリゴヌクレオチドの例および非修飾二本鎖オリゴヌクレオ チドの一例の RNaseL発現濃度を示すグラフである。  FIG. 3 is a graph showing the RNaseL expression concentration of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
[図 4]図 4は、修飾二本鎖オリゴヌクレオチドの一例および非修飾二本鎖オリゴヌタレ ォチドの一例の細胞膜透過性を示す図である。  FIG. 4 is a graph showing cell membrane permeability of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
[図 5]図 5は、修飾二本鎖オリゴヌクレオチドの一例および非修飾二本鎖オリゴヌタレ ォチドの一例の細胞内 RNaseL発現濃度を示す図である。  FIG. 5 is a graph showing intracellular RNaseL expression concentrations of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
[図 6]図 6は、修飾二本鎖オリゴヌクレオチドの一例および非修飾二本鎖オリゴヌタレ ォチドの一例のェキソヌクレアーゼ耐性を示すグラフである。  FIG. 6 is a graph showing the exonuclease resistance of an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide.
[図 7]図 7は、修飾二本鎖オリゴヌクレオチドの例を示す図である。  FIG. 7 is a diagram showing an example of a modified double-stranded oligonucleotide.
[図 8]図 8は、修飾二本鎖オリゴヌクレオチドの一例のエンドヌクレアーゼ耐性を示す グラフである。  FIG. 8 is a graph showing endonuclease resistance of an example of a modified double-stranded oligonucleotide.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明にお!/、て、「オリゴヌクレオチド」は、例えばヌクレオシドサブユニットのポリマ 一をいい、そのサブユニット数は特に限定されないが、例えば、 4力ら 100個である。 中でも、本発明の修飾オリゴヌクレオチドが DNAである場合には、それらのサブュ- ット数は、 4〜: L00個力 S好ましく、 4〜30個がより好ましぐ RNAである場合には、 4〜 50個が好ましぐ 4〜30個がより好ましい。なお、本発明における「オリゴヌクレオチド 」は、 3,末端から 1番目と 2番目のヌクレオシド間の 5,, 3,一リン酸ジエステル結合が 修飾されていること以外は、特に限定されない。例えば、オリゴヌクレオチドのサブュ ニットであるヌクレオシドについては、糖部(例えば、 2'置換体)および塩基は、当業 者に公知な修飾体であってもよ ヽ。  In the present invention, “oligonucleotide” refers to, for example, a polymer of nucleoside subunits, and the number of subunits is not particularly limited. Among them, when the modified oligonucleotide of the present invention is DNA, the number of subunits is 4 to: L00 force S, preferably 4 to 30 is more preferable RNA. 4 to 50 is preferred 4 to 30 is more preferred. The “oligonucleotide” in the present invention is not particularly limited except that the 5,3, monophosphate diester bond between the first and second nucleosides from the end is modified. For example, for a nucleoside that is a subunit of an oligonucleotide, the sugar moiety (eg, 2′-substitution) and base may be modifications known to those skilled in the art.
[0013] 本発明の修飾オリゴヌクレオチド中の式 (1—1)で表される結合— ^ C ^Y1)— Z 1一は、便宜的に、ヌクレオシドの糖部分の 5'位炭素原子に結合する結合手を左に、 3'位炭素原子に結合する結合手を右に記載する。例えば、修飾オリゴヌクレオチド の 3'末端が丁丁で、その TT間の 5 ' , 3' リン酸ジエステル結合が式 (I 1)で表され る結合に置き換えられている場合、以下のように表される。 In the modified oligonucleotide of the present invention, the bond represented by the formula (1-1) — ^ C ^ Y 1 ) —Z 1 is conveniently attached to the 5′-position carbon atom of the sugar moiety of the nucleoside. The bond to be bonded is shown on the left, and the bond to be bonded to the 3 'carbon atom is shown on the right. For example, the 3 'end of the modified oligonucleotide is a clove, and the 5', 3 'phosphate diester bond between the TTs is represented by the formula (I 1). If it is replaced by a bond, it is expressed as follows.
[0014] [化 36]  [0014] [Chemical 36]
Figure imgf000007_0001
Figure imgf000007_0001
[0015] 前記式中、 W11は、 Hまたは式 OR11で表される基であり、 In the above formula, W 11 is H or a group represented by the formula OR 11 ;
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
ここで、前記 R11および R21は、互いに独立して、保護基である。 Here, R 11 and R 21 are each independently a protecting group.
[0016] 前記式 (1—1)で表される結合は、例えば、—0— C ( = 0)—NH 、 一 NH— C (  The bond represented by the formula (1-1) is, for example, —0—C (= 0) —NH 1, NH—C (
=0)— O 、 一 NH— C ( = 0)— NH 、 一 NH— C ( = 0)— S 、 一 S— C ( = 0) 一 NH 、 一 O— C ( = S)— NH 、 一 NH— C ( = S)— O 、 一 NH— C ( = S)— N H 、 一 NH— C ( = S)— S 、 一 S— C ( = S)— NH 等が挙げられる。その中でも 、前記式 (1—1)で表される結合は、—0— C ( = 0)—NH 、 一 NH— C ( = 0)—0 または NH— C ( = 0)— NH が好ましい。  = 0) —O, 1 NH—C (= 0) —NH, 1 NH—C (= 0) —S, 1 S—C (= 0) 1 NH, 1 O—C (= S) —NH, One NH—C (═S) —O, one NH—C (═S) —NH, one NH—C (═S) —S, one S—C (═S) —NH, and the like. Among them, the bond represented by the formula (1-1) is preferably —0—C (= 0) —NH, one NH—C (= 0) —0 or NH—C (= 0) —NH. .
[0017] 本発明の修飾オリゴヌクレオチド中、下記 (i)および (ii)の少なくとも一方を満たす のが好ましい。なお、下記式 (I 2)および下記式 (I 3)で表される結合についても 、同様に、便宜的に、ヌクレオシドの糖部分の 5'位炭素原子に結合する結合手を左 に、 3'位炭素原子に結合する結合手を右に記載する。  [0017] The modified oligonucleotide of the present invention preferably satisfies at least one of the following (i) and (ii). Similarly, for the bonds represented by the following formula (I 2) and the following formula (I 3), for convenience, the bond that binds to the 5′-position carbon atom of the sugar moiety of the nucleoside is shown on the left. The bond on the 'position carbon atom is shown on the right.
(i) 前記オリゴヌクレオチドの 3,末端から 2番目と 3番目のヌクレオシド間の 5,, 3, 一 リン酸ジエステル結合力 下記式 (1— 2)で表される結合に置き換えられて 、る。  (i) 5,5,3, monophosphate diester bond strength between the 3rd and 2nd and 3rd nucleosides from the end of the oligonucleotide The bond is replaced by a bond represented by the following formula (1-2).
X2-C (=Y2) Z (1- 2) X 2 -C (= Y 2 ) Z (1- 2)
前記式(1— 2)中、 X2は 0、 NHまたは S、 Y2は Oまたは S、 Z2は 0、 NHまたは Sである (ii) 前記オリゴヌクレオチドの 3,末端から 3番目と 4番目のヌクレオシド間の 5,, 3, リン酸ジエステル結合力 下記式 (1— 3)で表される結合に置き換えられて 、る。 In the formula (1-2), X 2 is 0, NH or S, Y 2 is O or S, Z 2 is 0, NH or S (ii) 5,3,3 phosphoric acid diester bond strength between the 3rd and 4th nucleosides from the 3rd end of the oligonucleotide and replaced by a bond represented by the following formula (1-3).
-X3-C(=Y3)-Z3- (1-3) -X 3 -C (= Y 3 ) -Z 3- (1-3)
前記式(1— 3)中、 X3は 0、 NHまたは S、 Y3は Oまたは S、 Z3は 0、 NHまたは Sである In the formula (1-3), X 3 is 0, NH or S, Y 3 is O or S, Z 3 is 0, NH or S
[0018] 前記式 (I 2)で表される結合および前記式 (I 3)で表される結合は、互いに独立 して、例えば、一 O C( = 0)— NH—、— NH-C( = 0) O 、 一 NH— C( = 0) 一 NH 、 一 NH— C( = 0)— S 、 一 S— C( = 0)— NH 、 一 O C( = S)— NH 一、 一 NH— C( = S) O 、 一 NH— C( = S)— NH 、 一 NH— C( = S)— S—、 — S— C( = S)— NH 等力も選択されるのが好ましい。中でも、前記式 (1— 2)で表 される結合は、 O C( = 0)— NH—、— NH-C( = 0) O または一 NH— C( =0)—NH がより好ましい。また、中でも、前記式 (1— 3)で表される結合は、—O -C( = 0)—NH—、— NH-C( = 0)—O または NH— C( = 0)—NH がよ り好ましい。 [0018] The bond represented by the formula (I 2) and the bond represented by the formula (I 3) are independently of each other, for example, one OC (= 0) —NH—, —NH—C ( = 0) O, One NH— C (= 0) One NH, One NH— C (= 0) — S, One S— C (= 0) — NH, One OC (= S) — NH One, One NH —C (= S) O, 1 NH—C (= S) —NH, 1 NH—C (= S) —S—, —S—C (= S) —NH isotropic forces are also preferably selected. Among them, the bond represented by the formula (1-2) is more preferably O C (= 0) —NH—, —NH—C (= 0) 2 O or one NH—C (= 0) —NH 2. Among them, the bond represented by the formula (1-3) is —O—C (= 0) —NH—, —NH—C (= 0) —O or NH—C (= 0) —NH. Is more preferable.
[0019] 前記 (i)を満たす場合、式 (I 1)で表される結合と式 (I 2)で表される結合の組み 合わせは、特に限定されないが、例えば、 0— C( = 0)—NH と 0— C( = 0) NH—、— NH-C( = 0) O と一 NH— C( = 0) O 、 一 NH— C( = 0)— NH と NH— C( = 0)— NH 等である。式 (I 1 )で表される結合と式 (I 2)で 表される結合とは、同一であっても、異なっていてもよい。また、前記 (ii)を満たす場 合、式 (I 1)で表される結合と式 (I 3)で表される結合の組み合わせは、特に限定 されないが、例えば、 O C( = 0)— NH と O C( = 0)— NH 、 一 NH— C ( = 0) O と一 NH— C( = 0) O 、 一 NH— C( = 0)— NH と NH— C(= O) NH 等である。式 (I 1)で表される結合と式 (I 3)で表される結合とは、同 一であっても、異なっていてもよい。さらに、前記 (i)と (ii)の両方を満たす場合、式 (I 1)で表される結合と式 (I 2)で表される結合と式 (I 3)で表される結合の組み合 わせは、特に限定されないが、例えば、 -0-C( = 0)—NH と NH— C( = 0) O と O C( = 0)— NH—、— NH-C( = 0) O と O C( = 0)— NH と NH— C ( = O)— O 等である。式 (I 1)で表される結合と式 (I 2)で表され る結合と式 (1— 3)で表される結合は、同一であっても、異なっていてもよい。 [0019] When the above (i) is satisfied, the combination of the bond represented by the formula (I 1) and the bond represented by the formula (I 2) is not particularly limited. For example, 0−C (= 0 ) —NH and 0— C (= 0) NH—, — NH-C (= 0) O and one NH— C (= 0) O, one NH— C (= 0) — NH and NH— C (= 0) — NH, etc. The bond represented by the formula (I 1) and the bond represented by the formula (I 2) may be the same or different. Further, when satisfying the above (ii), the combination of the bond represented by the formula (I 1) and the bond represented by the formula (I 3) is not particularly limited. For example, OC (= 0) —NH And OC (= 0) — NH, 1 NH— C (= 0) O and 1 NH— C (= 0) O, 1 NH— C (= 0) — NH and NH— C (= O) NH etc. is there. The bond represented by formula (I 1) and the bond represented by formula (I 3) may be the same or different. Further, when both (i) and (ii) are satisfied, the combination of the bond represented by formula (I 1), the bond represented by formula (I 2), and the bond represented by formula (I 3) The combination is not particularly limited.For example, -0-C (= 0) —NH and NH—C (= 0) O and OC (= 0) —NH—, —NH-C (= 0) O OC (= 0) — NH And NH— C (= O) — O etc. The bond represented by formula (I 1), the bond represented by formula (I 2) and the bond represented by formula (1-3) may be the same or different.
[0020] 本発明の修飾オリゴヌクレオチドは、一本鎖オリゴヌクレオチド、二本鎖オリゴヌタレ ォチド等であってもよい。本発明の修飾オリゴヌクレオチドは、二本鎖形成能に優れ るので、アンチセンス、 siRNA等として用いるのに好ましい。修飾オリゴヌクレオチド 力 二本鎖である場合、前記二本鎖オリゴヌクレオチドの一方または両方の一本鎖ォ リゴヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の 5,, 3,一リン酸ジェ ステル結合が、前記式 (I 1)で表される結合に置き換えられているのが好ましい。前 記二本鎖オリゴヌクレオチドの両方の一本鎖オリゴヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の 5,, 3,一リン酸ジエステル結合力 前記式 (I 1)で表され る結合に置き換えられている場合、双方の式 (I 1)で表される結合は、同一であつ てち、ネ目違してちょい。 [0020] The modified oligonucleotide of the present invention may be a single-stranded oligonucleotide, a double-stranded oligonucleotide or the like. The modified oligonucleotide of the present invention is preferable for use as an antisense, siRNA or the like because of its excellent ability to form a double strand. Modified oligonucleotide force When double-stranded, 5, 3, 3, monophosphate between the first and second nucleosides from the 3, end of the single-stranded oligonucleotide of one or both of the double-stranded oligonucleotides It is preferable that the ester bond is replaced with the bond represented by the formula (I 1). The double-strand oligonucleotides have both the single-strand oligonucleotides 3, 5, 3, monophosphate diester binding strength between the first and second nucleosides from the end represented by the above formula (I 1) When it is replaced by a bond, the bond represented by both formulas (I 1) is the same and must be different.
[0021] 前記修飾オリゴヌクレオチドが二本鎖である場合、 RNAi (RNA interference)を引 き起こすオリゴヌクレオチドであり、前記修飾オリゴヌクレオチド力 エンドヌクレアーゼ 等をコードする mRNAの一部と同じ塩基配列を有する修飾オリゴヌクレオチドが好ま しい。このような修飾オリゴヌクレオチドは、 RNAi研究等に有用だ力もである。前記ェ ンドヌクレアーゼとしては、例えば、 RNaseL等が挙げられる。  [0021] When the modified oligonucleotide is double-stranded, it is an oligonucleotide that causes RNAi (RNA interference), and has the same base sequence as a part of mRNA encoding the modified oligonucleotide force endonuclease, etc. Modified oligonucleotides are preferred. Such modified oligonucleotides are also useful for RNAi research and the like. Examples of the endonuclease include RNaseL.
[0022] 前記修飾オリゴヌクレオチドが二本鎖である場合、前記修飾オリゴヌクレオチド力 s iRNA (short interfering RNA)であり、前記 mRNAの一部が、スタートコドンから 75 塩基以上上流の、最初の AA配列に続く 19塩基配列であって、前記 mRNAの一部 力 前記 mRNAに対して特異的であり、前記修飾オリゴヌクレオチド力 前記 19塩基 配列のセンス鎖とアンチセンス鎖との組み合わせであるのが好ましい。このようなセン ス鎖は、例えば、以下のようにして得ることができる。まず、 NCBI (National Center f or Biotechnology Information)、 EMBL— EBI (European Molecular Biology Lab oratory - European Bioinformatics Institute)等の公知遺 ナァ ~~タベ. ~~スを用 いて、例えばェキソヌクレアーゼの mRNA配列を取得する。その遺伝子配列中、スタ 一トコドンから 75塩基以上下流の、最初の AA配列を見つける。その AA配列に続く 19塩基配列、合計 21塩基配列が、再度、公知の遺伝子データベースを用いて、 目 的とする遺伝子に対して特異的であることを確認する。なお、この 19塩基配列は、 G C含有量が 50%前後であることも確認する。この 2つを確認して、得られた 19塩基配 列が、前記のようなセンス鎖である。 [0022] When the modified oligonucleotide is double-stranded, it is the modified oligonucleotide force siRNA (short interfering RNA), and a part of the mRNA is the first AA sequence upstream of 75 bases from the start codon. It is preferable that the partial strength of the mRNA is specific to the mRNA, and the modified oligonucleotide force is a combination of a sense strand and an antisense strand of the 19 base sequence. Such a sense chain can be obtained, for example, as follows. First, for example, the mRNA sequence of exonuclease can be obtained using known sites such as NCBI (National Center for Biotechnology Information) and EMBL—EBI (European Molecular Biology Laboratory-European Bioinformatics Institute). get. In the gene sequence, find the first AA sequence that is more than 75 bases downstream from the start codon. A 19-base sequence following the AA sequence, a total of 21 base sequences, is again obtained using a known gene database. Confirm that it is specific to the target gene. It is also confirmed that this 19 base sequence has a GC content of around 50%. Confirming these two, the resulting 19-base sequence is the sense strand as described above.
[0023] 前述のように修飾オリゴヌクレオチド力 RNAである場合、前記センス鎖およびアン チセンス鎖の一方またはその両方は、その 3'末端にさらに 2つのチミジンを含むヌク レオチドを有するのが好ましい。 3'末端にこのような配列を有すると、 RNAiが引き起 こされやすくなる力らである。また、この修飾オリゴヌクレオチドは、 3'末端から 1番目 と 2番目のヌクレオシドである、チミジン チミジン配列力 前記式 (I 1)で表される 結合に置き換えられているので、二本鎖形成能に優れ、 siRNA機能発揮の点から 好ましい。 [0023] In the case of a modified oligonucleotide-force RNA as described above, it is preferable that one or both of the sense strand and the antisense strand have a nucleotide containing two more thymidines at its 3 'end. Having such a sequence at the 3 ′ end tends to cause RNAi. In addition, since this modified oligonucleotide is replaced by the bond represented by the formula (I 1), which is the first and second nucleosides from the 3 ′ end, the thymidine thymidine sequence ability is improved. It is preferable from the viewpoint of excellent siRNA function.
[0024] また、前記修飾オリゴヌクレオチドが一本鎖である場合、前記修飾オリゴヌクレオチ ドは、アンチセンス DNAまたはアンチセンス RNAであり、前記修飾オリゴヌクレオチ ド力 エンドヌクレア一ゼ等をコードする mRNAの一部または全部と相補的な配列を 有するのが好ましい。修飾オリゴヌクレオチド力 このような mRNAと二本鎖を形成し 、エンドヌクレアーゼ等の発現を抑制可能だ力 である。  [0024] When the modified oligonucleotide is single-stranded, the modified oligonucleotide is an antisense DNA or an antisense RNA, and one of mRNAs encoding the modified oligonucleotide force endonuclease and the like. It is preferable to have a sequence complementary to part or all. Modified oligonucleotide force A force capable of forming a double strand with such mRNA and suppressing the expression of endonuclease and the like.
[0025] 本発明の修飾オリゴヌクレオチドは、ヌクレアーゼ耐性であるのが好まし 、。本発明 の修飾オリゴヌクレオチド力 細胞内に取り込まれた際、ヌクレアーゼで分解されるの を防ぐことができ、その結果、修飾オリゴヌクレオチドの細胞内での活性を、持続させ ることが可能だ力 である。  [0025] The modified oligonucleotide of the present invention is preferably nuclease resistant. The modified oligonucleotide of the present invention can be prevented from being degraded by a nuclease when incorporated into cells, and as a result, the modified oligonucleotide can maintain its activity in cells. is there.
[0026] 本発明の遺伝子発現抑制剤は、本発明の修飾オリゴヌクレオチドを含む。このよう な遺伝子発現抑制剤は、修飾オリゴヌクレオチド力 例えば、標的遺伝子の mRNA を切断したり、標的遺伝子の mRNAと二本鎖を形成等して、その結果、遺伝子発現 を抑制することができる。  [0026] The gene expression inhibitor of the present invention includes the modified oligonucleotide of the present invention. Such a gene expression inhibitor can modify the ability of modified oligonucleotide, for example, cleave the mRNA of the target gene or form a double strand with the mRNA of the target gene, thereby suppressing the gene expression.
[0027] 本発明の医薬組成物は、遺伝子発現に伴う疾患を治療するためであり、前記遺伝 子発現抑制剤を含むものである。遺伝子発現に伴う疾患、例えば、あるタンパク質が 発現されることにより疾患が引き起こされる場合、この医薬組成物により、その遺伝子 発現を抑制し、その遺伝子発現に伴う疾患を治療するのに用いることが可能である。  [0027] The pharmaceutical composition of the present invention is for treating a disease associated with gene expression, and includes the gene expression inhibitor. When a disease associated with gene expression, for example, a disease is caused by the expression of a protein, this pharmaceutical composition can be used to suppress the gene expression and treat the disease associated with the gene expression. It is.
[0028] このような医薬組成物は、さらに細胞導入用賦形剤を含むのが好ましい。遺伝子発 現に伴う疾患を治療する際、細胞内への導入を容易にすることが可能になるからで ある。前記細胞導入用賦形剤としては、例えば、トランスフエクシヨン試薬等が挙げら れる。前記トランスフエクシヨン試薬とは、例えば、 DNA分子 (前記医薬組成物)を、リ ン脂質を用いて構成された人工脂質小胞 (リボソーム)で包み込み、この人工脂質小 胞を細胞懸濁液に加え、細胞表面に付着させ、細胞膜と融合させて、人工脂質小胞 中の DNA分子を細胞内に取り込ませるリポフエクシヨン方法において、用いられる、 人工脂質小胞を形成する試薬である。前記トランスフエクシヨン試薬としては、例えば 、リポフエクタミン (インビトロジェン(Invitrogen)社製)、リポフエクタミン 2000 (インビト ロジェン社製)、オリゴフエクタミン(Oligofectamin (インビトロジェン社製))、トランスメッ センジャー(TransMessenger (キーゲン(QIAGEN)社製) )、 siRNAトランスフエクシ ヨン 'キット.ジェット SI (アンビオン (Ambion)社製)、ジーンスライサー SiRNAトラン スフエクシヨン試薬(ジーン'セラピ一'システムズ(Gene Therapy Systems)社製)等 力 挙げられる。 [0028] It is preferable that such a pharmaceutical composition further contains an excipient for cell introduction. Gene origin This is because it becomes possible to facilitate introduction into cells when treating a disease accompanying the present. Examples of the cell introduction excipient include a transfection reagent and the like. The transfection reagent includes, for example, a DNA molecule (the pharmaceutical composition) encapsulated in artificial lipid vesicles (ribosomes) composed of phospholipids, and the artificial lipid vesicles in a cell suspension. In addition, it is a reagent that forms artificial lipid vesicles that are used in the lipofection method to attach DNA molecules in artificial lipid vesicles by attaching them to the cell surface and fusing with cell membranes. Examples of the transfer reagent include, for example, Lipofectamine (Invitrogen), Lipofectamine 2000 (Invitrogen), Oligofectamin (Invitrogen), Transmessenger (Kigen (Kigen)) QIAGEN))), siRNA Transfection 'Kit.Jet SI (Ambion), Gene Slicer SiRNA Transfection Reagent (Gene Therapy Systems), etc. .
[0029] 前述のように細胞導入用賦形剤を含むことによる他、本発明の医薬組成物は、エレ タトロポレーシヨン法、パーティクルガン法等を用いて、細胞内に導入することもできる 。前記エレクト口ポレーシヨン法は、例えば、細胞に電気パルスをかけてその細胞壁 に穴をあけ、その穴から本発明の医薬組成物を細胞内へ導入する方法である。前記 パーティクルガン法は、金微粒子に DNA分子 (前記医薬組成物)などの分子を付着 させ、パーティクルガン (粒子銃)を用いて、圧縮ヘリウムガスを利用し、銃弾を撃ち込 むように金微粒子を細胞膜に透過させて、 DNA分子 (前記医薬組成物)を細胞内に 導入する方法である。  [0029] In addition to the inclusion of a cell introduction excipient as described above, the pharmaceutical composition of the present invention can also be introduced into cells using an electroporation method, a particle gun method, or the like. . The electopore position method is, for example, a method in which an electric pulse is applied to a cell to make a hole in the cell wall, and the pharmaceutical composition of the present invention is introduced into the cell through the hole. In the particle gun method, molecules such as DNA molecules (the pharmaceutical composition) are attached to gold fine particles, and using a particle gun (particle gun), the compressed fine helium gas is used to shoot the gold fine particles into the cell membrane. In this method, the DNA molecule (the pharmaceutical composition) is introduced into cells.
[0030] 本発明の RNAiキットは、 siRNAである修飾オリゴヌクレオチドを含む。このようなキ ットは、他に、ゥエルと修飾オリゴヌクレオチド等とが固定されたプレート、ファイバー、 ノィォチップ等の固定ィ匕担体等が挙げられる。このようなキットには、前記修飾オリゴ ヌクレオチド等のほかに、例えば、薬物、反応して発色する発色試薬、検出を容易に する検出試薬等を含んでもよい。  [0030] The RNAi kit of the present invention includes a modified oligonucleotide that is an siRNA. Other examples of such kits include a plate on which a well and a modified oligonucleotide are fixed, a fixed carrier such as a fiber and a nanochip, and the like. Such a kit may contain, in addition to the modified oligonucleotide, for example, a drug, a coloring reagent that reacts to develop color, a detection reagent that facilitates detection, and the like.
[0031] 本発明の RNAi研究用試薬は、 siRNAである修飾オリゴヌクレオチドを含む。 RNA i研究の際、 30bp以上の dsRNAを細胞へ導入すると、細胞固有の防御反応が活性 化され、 mRNAをランダムに分解する反応が生じたりして、細胞内で RNAiが生じて いるかどうかが、判断できない場合がある。この mRNAのランダム分解は、以下のメ 力-ズムで生じると考えられている。まず、 dsRNAにより 2— 5オリゴアデ-ル酸合成 酵素(2— 5AS)が活性ィ匕され、それにより生じた 2— 5A力 RNAaseLを活性ィ匕する 。その RNAaseLが、 mRNAをランダムに分解するというものである。 siRNAである 修飾オリゴヌクレオチドは、この RNAaseLの発現を抑制可能であるので、 mRNAの ランダム分解を抑制でき、その結果、例えば RNAiが細胞内で生じているカゝ否かが判 断しやすくなる。 [0031] The reagent for RNAi research of the present invention includes a modified oligonucleotide that is siRNA. When researching RNA i, introduction of 30 bp or more dsRNA into cells activates cell-specific defense reactions In some cases, it may not be possible to determine whether RNAi is generated in the cell due to a reaction that randomly degrades mRNA. This random degradation of mRNA is considered to occur by the following mechanism. First, dsRNA activates 2-5 oligoadreic acid synthase (2-5AS) and activates 2-5A RNAaseL produced thereby. The RNAaseL degrades mRNA at random. Since the modified oligonucleotide, which is siRNA, can suppress the expression of RNAaseL, random degradation of mRNA can be suppressed. As a result, for example, it is easy to determine whether RNAi is occurring in the cell.
[0032] 本発明の遺伝子発現抑制方法は、修飾オリゴヌクレオチドを用いて、遺伝子の発 現を抑制する方法である。この方法では、修飾オリゴヌクレオチドが、例えば、標的遺 伝子の mRNAを切断したり、標的遺伝子の mRNAと二本鎖を形成等して、その結 果、遺伝子発現を抑制することができる。  [0032] The gene expression suppression method of the present invention is a method for suppressing gene expression using a modified oligonucleotide. In this method, the modified oligonucleotide can, for example, cleave the mRNA of the target gene or form a double strand with the mRNA of the target gene, thereby suppressing gene expression.
[0033] 本発明の RNAiを引き起こす方法は、 siRN Aである修飾オリゴヌクレオチドを用い て、 RNAiを引き起こす方法である。この方法では、修飾オリゴヌクレオチド力 RNA であるので、 RNAiを引き起こすことができる。  [0033] The method of causing RNAi of the present invention is a method of causing RNAi using a modified oligonucleotide that is siRNA. This method can cause RNAi since it is a modified oligonucleotide force RNA.
[0034] 次に、本発明の修飾オリゴヌクレオチドを製造するための製造方法について、例を 挙げて説明する。このような製造方法により、従来製造することができな力つた本発明 の修飾オリゴヌクレオチドの製造が可能になった。  [0034] Next, the production method for producing the modified oligonucleotide of the present invention will be described by way of examples. Such a production method made it possible to produce the modified oligonucleotide of the present invention that could not be produced conventionally.
[0035] まず、オリゴヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の 3,, 5,ーリ ン酸ジエステル結合力 下記式 D (下記式中、 X1は 0、 NHまたは S、 Y1は Oま たは S、 Z1は 0、 NHまたは S)で表される結合に置き換えられた修飾オリゴヌクレオチ ドの製造例を説明する。 [0035] First, 3, 5, 5-phosphate diester bond strength between the first and second nucleosides from the 3, end of the oligonucleotide. Formula D (where X 1 is 0, NH or S, A production example of a modified oligonucleotide in which Y 1 is O or S, Z 1 is 0, NH or S) will be described.
[0036] -X1-C (=Y1) -Z1- (1- 1) [0036] -X 1 -C (= Y 1) -Z 1 - (1- 1)
例えば、下記式 (X— 1)で表される固相合成用ユニットィ匕合物を出発原料とし、式( X—1)で表される固相合成用ユニットィ匕合物の R2を除去し、次いで、式 (X—1)で表 される固相合成用ユニットィ匕合物の 5'末端にヌクレオチドを伸長させ、その後、固相 担体力も切り出して前記修飾オリゴヌクレオチドを得ることができる。 For example, a solid-phase synthesis unit compound represented by the following formula (X-1) is used as a starting material, and R 2 of the solid-phase synthesis unit compound represented by the formula (X-1) is removed. Then, the modified oligonucleotide can be obtained by extending a nucleotide to the 5 ′ end of the unit compound for solid phase synthesis represented by the formula (X-1), and then cutting out the solid phase carrier force.
[0037] [化 37] [0037] [Chemical 37]
Figure imgf000013_0001
Figure imgf000013_0001
[0038] 前記式 (X— 1)中、 R2は、保護基であり、 In the above formula (X—1), R 2 is a protecting group,
B1および B2は、互いに独立して、以下の式で示す基およびその官能基が保護基で 保護された基から選択される基であり、 B 1 and B 2 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protecting group:
[0039] [化 38] [0039] [Chemical 38]
Figure imgf000013_0002
Figure imgf000013_0002
[0040] Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 [0040] A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
ここで、前記 R11および R21は、互いに独立して、保護基であり、 Here, R 11 and R 21 are each independently a protecting group,
X1および X2は、互いに独立して、 0、 NHまたは Sであり、 X 1 and X 2 are independently of each other 0, NH or S;
Y1は、 Oまたは Sであり、 Y 1 is O or S;
Z1は、 0、 NHまたは Sであり、 Z 1 is 0, NH or S;
Mは、固相担体である。  M is a solid support.
[0041] また、オリゴヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の 3,, 5,ーリ ン酸ジエステル結合力 前記式 D (前記式中、 X1は 0、 NHまたは S、 Y1は Oま たは S、 Z1は 0、 NHまたは S)で、かつ、オリゴヌクレオチドの 3,末端から 2番目と 3番 目のヌクレオシド間の 5,, 3,一リン酸ジエステル結合力 下記式 (1— 2) (下記式中、 X2は 0、 NHまたは S、 Y2は Oまたは S、 Z2は 0、 NHまたは S)表される結合に置き換 えられた修飾オリゴヌクレオチドの製造例を説明する。 [0041] In addition, the 3, 5, 5-phosphate diester bond strength between the first and second nucleosides from the 3, end of the oligonucleotide is represented by the formula D (wherein X 1 is 0, NH or S, Y 1 is O or S, Z 1 is 0, NH or S), and the 3rd, 2nd and 3rd positions of the oligonucleotide 5,3, Monophosphate diester bond strength between nucleosides of the following formula (1-2) (where X 2 is 0, NH or S, Y 2 is O or S, Z 2 is 0, NH Or S) An example of production of a modified oligonucleotide substituted for the bond represented will be described.
[0042] -X2-C ( =Y2) -Z2- (1- 2) [0042] -X 2 -C (= Y 2 ) -Z 2- (1- 2)
例えば、下記式 (XI— 1)で表される固相合成用ユニットィ匕合物を出発原料とし、式 (XI- 1)で表される固相合成用ユニットィ匕合物の R3を除去し、次 、で式 (XI— 1)で 表される固相合成用ユニットィ匕合物の 5 '末端にヌクレオチドを伸長させ、その後、固 相担体力も切り出して前記修飾オリゴヌクレオチドを得ることができる。 For example, a solid-phase synthesis unit compound represented by the following formula (XI-1) is used as a starting material, and R 3 of the solid-phase synthesis unit compound represented by the formula (XI-1) is removed. Next, the modified oligonucleotide can be obtained by extending the nucleotide to the 5 ′ end of the solid-phase synthesis unity compound represented by the formula (XI-1) and then cutting out the solid phase carrier force. .
[0043] [化 39]  [0043] [Chemical 39]
Figure imgf000014_0001
Figure imgf000014_0001
[0044] 前記式中、 は、保護基であり、 [0044] In the above formula, is a protecting group,
B2および B3は、互いに独立して、以下の式で示す基およびその官能基が保護基 で保護された基から選択される基であり、 B 2 and B 3 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected with a protecting group:
[0045] [化 40] [0045] [Chemical 40]
Figure imgf000014_0002
[0046] Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、
Figure imgf000014_0002
[0046] A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
ここで、前記 1、 R21および R31は、互いに独立して、保護基であり、 Wherein 1 , R 21 and R 31 are each independently a protecting group;
X1、 X2および X3は、互いに独立して、 0、 NHまたは Sであり、 X 1 , X 2 and X 3 are independently of each other 0, NH or S;
Y1および Y2は、互いに独立して、 Oまたは Sであり、 Y 1 and Y 2 are independently of each other O or S;
Z1および Z2は、互いに独立して、 0、 NHまたは Sであり、 Z 1 and Z 2 are independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid support.
[0047] また、オリゴヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の 3,, 5,ーリ ン酸ジエステル結合力 前記式 D (前記式中、 X1は 0、 NHまたは S、 Y1は Oま たは S、 Z1は 0、 NHまたは S)で、かつ、オリゴヌクレオチドの 3,末端から 3番目と 4番 目のヌクレオシド間の 5,, 3, 一リン酸ジエステル結合力 下記式 (1— 3) (下記式中、 X3は 0、 NHまたは S、 Y3は Oまたは S、 Z3は 0、 NHまたは S)表される結合に置き換 えられた修飾オリゴヌクレオチドの製造例を説明する。 [0047] Further, the 3,, 5-phosphonate diester bond strength between the first and second nucleosides from the 3, terminal end of the oligonucleotide is represented by the formula D (wherein X 1 is 0, NH or S, Y 1 is O or S, Z 1 is 0, NH or S), and 5, 3, 3, monophosphate diester bond strength between the 3rd and 4th nucleosides from the 3rd end of the oligonucleotide The following modified formula (1-3) (wherein X 3 is 0, NH or S, Y 3 is O or S, Z 3 is 0, NH or S) An example of production will be described.
[0048] -X3-C (=Y3) -Z3- (1- 3) [0048] -X 3 -C (= Y 3 ) -Z 3- (1- 3)
例えば、下記式 (XII— 1)で表される固相合成用ユニットィ匕合物を出発原料とし、式 (XII- 1)で表される固相合成用ユニットィ匕合物の R4を除去し、次 、で式 (XII— 1)で 表される固相合成用ユニットィ匕合物の 5'末端にヌクレオチドを伸長させ、その後、固 相担体力も切り出して前記修飾オリゴヌクレオチドを得ることができる。 For example, a solid-phase synthesis unit compound represented by the following formula (XII-1) is used as a starting material, and R 4 of the solid-phase synthesis unit compound represented by the formula (XII-1) is removed. Next, the modified oligonucleotide can be obtained by extending the nucleotide to the 5 ′ end of the solid-phase synthesis unity compound represented by the formula (XII-1), and then cutting out the solid phase carrier force. .
[0049] [化 41] [0049] [Chemical 41]
Figure imgf000016_0001
Figure imgf000016_0001
[0050] 前記式中、 R4および Rは、互いに独立して、保護基であり、 [0050] In the above formula, R 4 and R are each independently a protecting group,
B3および B4は、互いに独立して、以下の式で示す基およびその官能基が保 護基で保護された基から選択される基であり、 B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protective group:
[0051] [化 42] [0051] [Chemical 42]
Figure imgf000016_0002
Figure imgf000016_0002
[0052] Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 [0052] A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
W41は、 Hまたは式 OR41で表される基であり、 ここで、前記 1、 R21、 R31および R41は、互いに独立して、保護基であり、 X1、 X3および X4は、互いに独立して、 0、 NHまたは Sであり、 W 41 is H or a group represented by the formula OR 41 , Wherein R 1 , R 21 , R 31 and R 41 are each independently a protecting group, X 1 , X 3 and X 4 are each independently 0, NH or S;
Y1および Y3は、互いに独立して、 Oまたは Sであり、 Y 1 and Y 3 are independently of each other O or S;
Z1および Z3は、互いに独立して、 0、 NHまたは Sであり、 Z 1 and Z 3 are independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid support.
[0053] また、オリゴヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の 3,, 5,ーリ ン酸ジエステル結合力 前記式 D (前記式中、 X1は 0、 NHまたは S、 Y1は Oま たは S、 Z1は 0、 NHまたは S)で、かつ、オリゴヌクレオチドの 3,末端から 2番目と 3番 目のヌクレオシド間の 5' , 3' リン酸ジエステル結合力 前記式 (I 2) (前記式中、 X2は 0、 NHまたは S、 Y2は Oまたは S、 Z2は 0、 NHまたは S)表される結合で、かつ オリゴヌクレオチドの 3,末端から 3番目と 4番目のヌクレオシド間の 5,, 3, 一リン酸ジ エステル結合力 前記式 (1— 3) (前記式中、 X3は 0、 NHまたは S、 Y3は Oまたは S、 Z3は 0、 NHまたは S)表される結合に置き換えられた修飾オリゴヌクレオチドの製造 例を説明する。 [0053] Further, the 3,, 5-phosphonate diester bond strength between the first and second nucleosides from the 3, terminal end of the oligonucleotide is represented by the formula D (wherein X 1 is 0, NH or S, Y 1 is O or S, Z 1 is 0, NH or S), and 5 ′, 3 ′ phosphate diester bond strength between the 3rd and 3rd nucleosides from the 3rd end of the oligonucleotide A bond represented by formula (I 2) (wherein X 2 is 0, NH or S, Y 2 is O or S, Z 2 is 0, NH or S), and 3 from the end of the oligonucleotide 3 5,3, monophosphate diester bond strength between the 4th and 4th nucleoside Formula (1-3) (where X 3 is 0, NH or S, Y 3 is O or S, Z 3 Illustrates an example of the preparation of a modified oligonucleotide substituted with a bond represented by 0, NH or S).
[0054] 例えば、下記式 (ΧΙΠ— 1)で表される固相合成用ユニットィ匕合物を出発原料とし、 式 (XIII— 1)で表される固相合成用ユニットィ匕合物の R4を除去し、次 、で式 (ΧΠΙ— 1)で表される固相合成用ユニットィ匕合物の 5 '末端にヌクレオチドを伸長させ、その後 、固相担体力も切り出して前記修飾オリゴヌクレオチドを得ることができる。 [0054] For example, the solid phase synthesis unity compound represented by the following formula (ΧΙΠ-1) is used as a starting material, and the solid phase synthesis unity compound R4 of the formula (XIII-1) is represented by R 4 Next, the nucleotide is extended to the 5 ′ end of the solid-phase synthesis unit compound represented by the formula (ΧΠΙ-1) in the following formula, and then the solid-phase carrier force is also cut out to obtain the modified oligonucleotide. be able to.
[0055] [化 43] [0055] [Chemical 43]
Figure imgf000018_0001
Figure imgf000018_0001
[0056] 前記式中、 R4は、互いに独立して、保護基であり、 [0056] In the above formula, R 4 independently of each other is a protecting group;
B3および B4は、互いに独立して、以下の式で示す基およびその官能基が保 護基で保護された基から選択される基であり、 B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protective group:
[0057] [化 44] [0057] [Chemical 44]
Figure imgf000018_0002
Figure imgf000018_0002
[0058] Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 [0058] A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
W41は、 Hまたは式 OR41で表される基であり、 ここで、前記 1、 R21、 R31および R41は、互いに独立して、保護基であり、 X1、 X2、 X3および X4は、互いに独立して、 0、 NHまたは Sであり、 W 41 is H or a group represented by the formula OR 41 , Wherein 1 , R 21 , R 31 and R 41 are each independently a protecting group, and X 1 , X 2 , X 3 and X 4 are each independently 0, NH or S Yes,
Υ2および Υ3は、互いに独立して、 Οまたは Sであり、Υ 2 and Υ 3 are, independently of each other, Ο or S;
Figure imgf000019_0001
Ζ2および Ζ3は、互いに独立して、 0、 NHまたは Sであり、
Figure imgf000019_0001
Ζ 2 and Ζ 3 are independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid support.
[0059] 前記固相担体とは、固相担体で DNA、RNA等を合成するのに適した固相担体で あれば限定されず、例えば、 CPG (コントロール細孔ガラス)、 HCP (highly cross-lin ked polystyrene) " teる。  [0059] The solid phase carrier is not limited as long as it is a solid phase carrier suitable for synthesizing DNA, RNA, and the like on the solid phase carrier. For example, CPG (control pore glass), HCP (highly cross- lin ked polystyrene)
[0060] R2、 R3および R4について前記保護基とは、 X2— H、— X3— Hおよび— X4— Hの 反応性に応じて、従来公知の保護基から選択される。例えば、 X2、 X3または X4が οで あるとき、従来公知の 1級アルコールの保護基、例えば、ヌクレオシドィ匕学の分野で 公知の、 4, 4'ージメトキシトリチル(DMTr)、4 モノメトキシトリチル(MMTr)、 (9 —フエ-ル)キサンテン一 9—ィル [ピキシル (pixyl) ]等力 その保護基として用いら れうる。 [0060] The protecting groups for R 2 , R 3 and R 4 are selected from conventionally known protecting groups depending on the reactivity of X 2 — H, — X 3 — H and — X 4 — H. . For example, when X 2 , X 3 or X 4 is ο, a conventionally known primary alcohol protecting group, for example, 4,4′-dimethoxytrityl (DMTr), 4 known in the field of nucleoside chemistry Monomethoxytrityl (MMTr), (9-phenyl) xanthene mono 9-yl [pixyl] isotonic Can be used as its protecting group.
[0061] また、 Ru、 R21、 R31および R41について前記保護基とは、 2,位水酸基の反応性に応 じて、従来公知の保護基から選択される。例えば、 tert -プチルジメチルシリル (TBD MS)、 [ (トリイソプロビルシリル)ォキシ]メチル (Tom)、テトラヒドロビラ-ル (THP)等 力 その保護基として用いられうる。 [0061] Further, R u, and the protecting group for R 21, R 31 and R 41, 2, depending on the reactivity of the position hydroxyl group, is selected from known protecting groups. For example, tert-butyldimethylsilyl (TBD MS), [(triisopropylpropylsilyl) oxy] methyl (Tom), tetrahydrobiral (THP) and the like can be used as its protecting group.
[0062] また、 Rにつ 、て前記保護基とは、リン酸の反応性に応じて、従来公知の保護基か ら選択される。例えば、シァノエチル (CE)、ァリル (Allyl)、トリメチルシリルェチル (T MSE)、 p -トロフエネチル (NPE)等力 その保護基として用いられうる。  [0062] For R, the protecting group is selected from conventionally known protecting groups depending on the reactivity of phosphoric acid. For example, cyanoethyl (CE), allyl, trimethylsilylethyl (T MSE), p-trophenethyl (NPE) and the like can be used as its protecting group.
[0063] また、
Figure imgf000019_0002
B3および B4について、官能基が保護されている保護基とは、核酸ィ匕 学において公知な保護基力 選択される。例えば、ベンゾィル (Bz)、イソプチリル (i Bu)、フエノキシァセチル(Pac)、ァリルォキシカルボ-ル (AOC)等力 その保護基 として用いられうる。
[0063] Also,
Figure imgf000019_0002
For B 3 and B 4 , the protecting group whose functional group is protected is selected from those known in nucleic acid chemistry. For example, benzoyl (Bz), isoptyryl (i Bu), phenoxycetyl (Pac), allyloxycarboxyl (AOC) and the like can be used as the protecting group.
[0064] 前記固相合成用ユニットィ匕合物の 5 '末端にヌクレオチドを伸長させるには、オリゴ ヌクレオチド合成分野で従来公知の技術を用いて、修飾オリゴヌクレオチドの配列に 従!、、ヌクレオシドを順次カップリングさせて行うことができる。 なお、ヌクレオシド、カップリング試薬、脱保護試薬、洗浄試薬等は、通常核酸固相 合成に用いられるものを用いる。得られた固相担体上の修飾オリゴヌクレオチドは、 必要であればオリゴヌクレオチド側鎖の脱保護を行った後、固相担体力 切り出して 、粗修飾オリゴヌクレオチドを得る。切り出しに用いる試薬は、固相担体およびリンカ 一(固相担体と修飾オリゴヌクレオチドを接続する部分)構造等に応じて、従来公知 の試薬から、適宜選択することができる。この粗修飾オリゴヌクレオチドは、必要であ れば、 HPLC等で精製してもよい。 [0064] In order to extend the nucleotide to the 5 'end of the solid-phase synthesis unity compound, a nucleoside is sequentially added according to the sequence of the modified oligonucleotide using a conventionally known technique in the field of oligonucleotide synthesis. It can be done by coupling. Nucleosides, coupling reagents, deprotection reagents, washing reagents, etc. are those usually used for nucleic acid solid phase synthesis. The modified oligonucleotide on the obtained solid phase carrier is subjected to deprotection of the oligonucleotide side chain if necessary, and then the solid phase carrier force is cut out to obtain a crude modified oligonucleotide. The reagent used for excision can be appropriately selected from conventionally known reagents according to the structure of the solid phase carrier and the linker (the portion connecting the solid phase carrier and the modified oligonucleotide). The crude modified oligonucleotide may be purified by HPLC or the like, if necessary.
[0065] 次に、修飾オリゴヌクレオチドが二本鎖である場合の製造について例を挙げて説明 する。例えば前記のような方法に従い、一本鎖の修飾オリゴヌクレオチドをまず製造 する。その修飾オリゴヌクレオチドと相補的な配列を有する、一本鎖の天然オリゴヌク レオチドも別途、従来公知の方法に従い、製造する。次いで、得られた一本鎖の修 飾オリゴヌクレオチドをアニーリング用緩衝液(例えば、 lOOmMの KOAc水溶液、 2 mMの MgOAc溶液、および 30mMの HEPES—KOH (pH7. 4)を含む緩衝液)中 に溶解させたものと、一本鎖の天然オリゴヌクレオチドをアニーリング用緩衝液中に 溶解させたものとを、例えば混合し、 95°Cで 5分間処理し、その後、徐々に 25°Cまで 冷却させて、二本鎖の修飾オリゴヌクレオチドを得ることができる。この二本鎖の修飾 オリゴヌクレオチドは、必要に応じて、フエノール Zクロ口ホルム抽出、エタノール沈殿 等をさらに行って、単離精製することができる。 [0065] Next, production when the modified oligonucleotide is double-stranded will be described with an example. For example, a single-stranded modified oligonucleotide is first produced according to the method as described above. A single-stranded natural oligonucleotide having a sequence complementary to the modified oligonucleotide is also separately produced according to a conventionally known method. The resulting single-stranded modified oligonucleotide is then placed in an annealing buffer (eg, a buffer containing lOOmM KOAc aqueous solution, 2 mM MgOAc solution, and 30 mM HEPES-KOH (pH 7.4)). The solubilized product and the single-stranded natural oligonucleotide dissolved in the annealing buffer are mixed, treated at 95 ° C for 5 minutes, and then gradually cooled to 25 ° C. Thus, a double-stranded modified oligonucleotide can be obtained. This double-stranded modified oligonucleotide can be isolated and purified by further performing phenol Z chromatography, ethanol precipitation or the like, if necessary.
[0066] 前記製造方法で用いる式 (X— 1)の固相合成用ユニットィ匕合物、式 (XI— 1)の固 相合成用ユニットィ匕合物、式 (XII— 1)の固相合成用ユニットィ匕合物および式 (ΧΠΙ 1)の固相合成用ユニットィ匕合物は、例えば、以下のような方法で製造することがで きる。 [0066] The unity compound for solid phase synthesis of formula (X-1), the unity compound for solid phase synthesis of formula (XI-1), and the solid phase synthesis of formula (XII-1) used in the above production method The unity compound for use and the unity compound for solid phase synthesis of the formula (ΧΠΙ1) can be produced, for example, by the following method.
[0067] まず、ユニットィ匕合物 (X—1)の製造について、スキーム 1を参照しながら説明する 。式 (IV— 1)のヌクレオシド誘導体と、式 (ΠΙ)のヌクレオシド誘導体とを、式 (V— 1) のジイミダゾール誘導体ならびに任意に、塩基 (例えば、ピリジン等)、触媒 (例えば 4 —ジメチルァミノピリジン (DMAP)等)等の存在下に反応させ、二量体 (VI)を得る。 式 (IV— 1)および式 (III)のヌクレオシドは、市販で入手してもよ 、し、公知文献を利 用して自家製造してもよい。 [0068] 次に、得られた二量体 (VI)に、無水物 (VII)を、任意に、塩基 (例えば、ピリジン、ト リエチルァミン等)、触媒 (例えば 4ージメチルァミノピリジン (DMAP)等)等の存在下 に反応させ、二量体 (VIII)を得る。 [0067] First, the production of the unitary compound (X-1) will be described with reference to Scheme 1. A nucleoside derivative of the formula (IV-1) and a nucleoside derivative of the formula (ΠΙ) are combined with a diimidazole derivative of the formula (V-1) and optionally a base (eg pyridine etc.), a catalyst (eg 4 Reaction is carried out in the presence of minopyridine (DMAP) etc. to obtain dimer (VI). Nucleosides of formula (IV-1) and formula (III) may be obtained commercially or may be made in-house using known literature. [0068] Next, the dimer (VI) thus obtained is mixed with an anhydride (VII), optionally with a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylaminopyridine (DMAP)). Etc.) to obtain dimer (VIII).
[0069] 次に、得られた二量体 (VIII)と、アミノ基を有する固相担体 (IX)とをカップリング試 薬(例えば、 WSC (1—ェチル— 3— (3—ジメチルァミノプロピル)—カルボジイミド' 塩酸塩) )存在下に縮合させ、ユニット化合物 (X— 1)を得る。 [0069] Next, the obtained dimer (VIII) and the solid phase carrier (IX) having an amino group are coupled with a coupling reagent (for example, WSC (1-ethyl-3- (3-dimethylamino) Propyl) -carbodiimide 'hydrochloride))) in the presence to give unit compound (X-1).
[0070] [化 45] [0070] [Chemical 45]
Figure imgf000021_0001
Figure imgf000021_0001
^ Ν. ^ Ν.
Figure imgf000021_0002
Figure imgf000021_0002
スキーム 1  Scheme 1
[0071] 前記式中、 [0071] In the above formula,
R2は、保護基であり、 R 2 is a protecting group,
B1および B2は、互いに独立して、以下の式で示す基およびその官能基が保護基で 保護された基から選択される基であり、 B 1 and B 2 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protecting group:
[0072] [化 46]
Figure imgf000022_0001
[0072] [Chemical 46]
Figure imgf000022_0001
[0073] Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 [0073] A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
ここで、前記 R11および R21は、互いに独立して、保護基であり Here, R 11 and R 21 are each independently a protecting group.
X1および X2は、互いに独立して、 0、 NHまたは Sであり、 X 1 and X 2 are independently of each other 0, NH or S;
Y1は、 Oまたは Sであり、 Y 1 is O or S;
Z1は、 0、 NHまたは Sであり、 Z 1 is 0, NH or S;
Mは、固相担体である。  M is a solid support.
[0074] つぎに、ユニットィ匕合物 (XI— 1)の製造例について、スキーム 2を参照しながら説明 する。例えば、式 (VI)の二量体の R2を R2の性質に応じた方法により、 Hに置き換え、 5 '位が遊離型の式 (VI— 1)の二量体を得る。次いで、式 (VI— 1)の二量体と、式 (I V- 2)のヌクレオシド誘導体とを、式 (V— 2)のジイミダゾール誘導体ならびに任意に 、塩基 (例えば、ピリジン等)、触媒 (例えば 4ージメチルァミノピリジン (DMAP)等)等 の存在下に反応させ、三量体 (XIV— 1)を得る。式 (IV— 2)のヌクレオシドは、巿販 で入手してもよ!/ヽし、公知文献を利用して自家製造してもよ ヽ。 Next, a production example of the unitary compound (XI-1) will be described with reference to Scheme 2. For example, R 2 of the dimer of the formula (VI) is replaced with H by a method according to the property of R 2 to obtain a dimer of the formula (VI-1) in which the 5 ′ position is free. Next, the dimer of the formula (VI-1) and the nucleoside derivative of the formula (I V-2) are converted into a diimidazole derivative of the formula (V-2) and optionally a base (for example, pyridine etc.), a catalyst Reaction in the presence of (eg, 4-dimethylaminopyridine (DMAP), etc.) gives the trimer (XIV-1). Nucleosides of the formula (IV-2) may be obtained through commercial sales! Or made in-house using known literature.
[0075] 次に、得られた三量体 (XIV— 1)に、無水物 (VII)を、任意に、塩基 (例えば、ピリ ジン、トリェチルァミン等)、触媒 (例えば 4—ジメチルァミノピリジン(DMAP)等)等の 存在下に反応させ、三量体 (XV— 1)を得る。  [0075] Next, the trimer (XIV-1) thus obtained is mixed with anhydride (VII), optionally with a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylaminopyridine ( React in the presence of DMAP) etc. to obtain the trimer (XV-1).
[0076] 次に、得られた三量体 (XV— 1)と、アミノ基を有する固相担体 (IX)とをカップリング 試薬(例えば、 WSC (1—ェチル— 3— (3—ジメチルァミノプロピル)—カルボジイミド '塩酸塩) )存在下に縮合させ、ユニット化合物 (XI— 1)を得る。  [0076] Next, the obtained trimer (XV-1) and solid phase carrier (IX) having an amino group are coupled with a coupling reagent (for example, WSC (1-ethyl-3- (3-dimethylamine)). Minopropyl) -carbodiimide 'hydrochloride))) in the presence to give unit compound (XI-1).
[0077] [化 47] [0077] [Chemical 47]
Figure imgf000023_0001
前記式中、 R2および R3は、互いに独立して、保護基であり、
Figure imgf000023_0001
In the above formula, R 2 and R 3 are each independently a protecting group,
B2および B3は、互いに独立して、以下の式で示す基およびその官能基が保護基 で保護された基から選択される基であり、 [0079] [化 48] B 2 and B 3 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected with a protecting group: [0079] [Chemical 48]
Figure imgf000024_0001
[0080] Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、
Figure imgf000024_0001
[0080] A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
ここで、前記 1、 R21および R31は、互いに独立して、保護基であり Wherein 1 , R 21 and R 31 are each independently a protecting group.
X1、 X2および X3は、互いに独立して、 0、 NHまたは Sであり、 X 1 , X 2 and X 3 are independently of each other 0, NH or S;
Y1および Y2は、互いに独立して、 Oまたは Sであり、 Y 1 and Y 2 are independently of each other O or S;
Z1および Z2は、互いに独立して、 0、 NHまたは Sであり、 Z 1 and Z 2 are independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid support.
[0081] つぎに、ユニットィ匕合物 (ΧΠ— 1)の製造例について、スキーム 3を参照しながら説 明する。例えば、式 (VI— 2)の二量体の R2を R2の性質に応じた方法により、 Hに置き 換え、 5'位が遊離型の式 (VI— 3)の二量体を得る。次いで、式 (VI— 3)の二量体と 、式 (IV— 3)のヌクレオシド誘導体とを、リン酸結合試薬 (例えば、 2—シァノエチル N, N—ジイソプロピルクロ口ホスホロアミダイト等)の存在下縮合させ、式 (XIV— 2) の三量体を得る。式 (IV— 3)のヌクレオシドは、市販で入手してもよいし、公知文献を 利用して自家製造してもよい。 [0081] Next, a production example of the unitary compound (ΧΠ-1) will be described with reference to Scheme 3. For example, R 2 of the dimer of formula (VI-2) is replaced with H by a method according to the properties of R 2 to obtain a dimer of formula (VI-3) in which the 5 ′ position is free. . Next, the dimer of formula (VI-3) and the nucleoside derivative of formula (IV-3) are present in the presence of a phosphate binding reagent (for example, 2-cyanoethyl N, N-diisopropylchlorophosphoramidite, etc.) Subsequent condensation yields the trimer of formula (XIV-2). The nucleoside of the formula (IV-3) may be obtained commercially or made in-house using known literature.
[0082] 次に、得られた三量体 (XIV— 2)に、無水物 (VII)を、任意に、塩基 (例えば、ピリ ジン、トリェチルァミン等)、触媒 (例えば 4—ジメチルァミノピリジン(DMAP)等)等の 存在下に反応させ、三量体 (XV— 2)を得る。  [0082] Next, the resulting trimer (XIV-2) is added with anhydride (VII), optionally with a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylaminopyridine ( React in the presence of DMAP) etc. to obtain the trimer (XV-2).
[0083] 次に、得られた三量体 (XV— 2)と、アミノ基を有する固相担体 (IX)とをカップリング 試薬(例えば、 WSC (1—ェチル— 3— (3—ジメチルァミノプロピル)—カルボジイミド '塩酸塩) )存在下に縮合させ、ユニット化合物 (XII— 1)を得る。  Next, the obtained trimer (XV-2) and solid phase carrier (IX) having an amino group are coupled with a coupling reagent (for example, WSC (1-ethyl-3- (3-dimethyla Minopropyl) -carbodiimide 'hydrochloride))) in the presence to give unit compound (XII-1).
[0084] [化 49] [0084] [Chemical 49]
Figure imgf000025_0001
前記式中、
Figure imgf000025_0002
R3および Rは、互いに独立して、保護基であり、
Figure imgf000025_0001
In the above formula,
Figure imgf000025_0002
R 3 and R are, independently of one another, a protecting group;
B1, B2および B3は、互いに独立して、以下の式で示す基およびその官能基が保護基 で保護された基カゝら選択される基であり、 B 1 , B 2 and B 3 are independently of each other a group represented by the following formula and its functional group is a protecting group: A group selected from the group protected by
[0086] [化 50] [0086] [Chemical 50]
Figure imgf000026_0001
Figure imgf000026_0001
[0087] Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 [0087] A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
ここで、前記 1、 R21および R31は、互いに独立して、保護基であり Wherein 1 , R 21 and R 31 are each independently a protecting group.
X1および X3は、互いに独立して、 0、 NHまたは Sであり、 X 1 and X 3 are independently of each other 0, NH or S;
Y1は、互いに独立して、 Oまたは Sであり、 Y 1 is, independently of one another, O or S;
Z1は、互いに独立して、 0、 NHまたは Sであり、 Z 1 is independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid support.
[0088] つぎに、ユニットィ匕合物 (ΧΙΠ— 1)の製造例について、スキーム 4を参照しながら説 明する。例えば、式 (XIV— 1)の三量体の R3を R3の性質に応じた方法により、 Hに置 き換え、 5'位が遊離型の式 (XIV— 3)の三量体を得る。次いで、式 (XIV— 3)の三 量体と、式 (IV— 4)のヌクレオシド誘導体とを、式 (V— 3)のジイミダゾール誘導体な らびに任意に、塩基 (例えば、ピリジン等)、触媒 (例えば 4ージメチルァミノピリジン( DMAP)等)等の存在下に反応させ、四量体 (XVI— 1)を得る。式 (IV— 4)のヌクレ オシドは、市販で入手してもよいし、公知文献を利用して自家製造してもよい。 [0088] Next, a production example of the unitary compound (V-1) will be described with reference to Scheme 4. For example, by a method corresponding to the formula (XIV 1) of the trimer of R 3 on the nature of R 3, replaced with the H, 5 'position is a trimer of free expression (XIV 3) obtain. Next, a trimer of the formula (XIV-3) and a nucleoside derivative of the formula (IV-4) are optionally converted to a diimidazole derivative of the formula (V-3) and optionally a base (for example, pyridine), The reaction is carried out in the presence of a catalyst (for example, 4-dimethylaminopyridine (DMAP) etc.) to obtain a tetramer (XVI-1). The nucleoside of the formula (IV-4) may be obtained commercially or made in-house using known literature.
[0089] 次に、得られた四量体 (XVI— 1)に、無水物 (VII)を、任意に、塩基 (例えば、ピリ ジン、トリェチルァミン等)、触媒 (例えば 4—ジメチルァミノピリジン(DMAP)等)等の 存在下に反応させ、四量体 (XVII— 1)を得る。  [0089] Next, to the resulting tetramer (XVI-1), an anhydride (VII) is optionally added with a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylaminopyridine ( Reaction in the presence of DMAP) etc. gives the tetramer (XVII-1).
[0090] 次に、得られた四量体 (XVII— 1)と、アミノ基を有する固相担体 (IX)とをカップリン グ試薬(例えば、 WSC (1—ェチル— 3— (3—ジメチルァミノプロピル)—カルボジイミ [0090] Next, the resulting tetramer (XVII-1) and the solid phase carrier (IX) having an amino group are coupled with a coupling reagent (for example, WSC (1-ethyl-3- (3-dimethyl) Aminopropyl) -carbodiimi
Figure imgf000027_0001
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0002
[0092] [化 52] [0092] [Chemical 52]
Figure imgf000028_0001
スキーム 4
Figure imgf000028_0001
Scheme 4
[0093] 前記式において、 [0093] In the above formula,
R3および R4は、保護基であり、 R 3 and R 4 are protecting groups,
B3および B4は、互いに独立して、以下の式で示す基およびその官能基が保 護基で保護された基から選択される基であり、 B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protective group:
[0094] [化 53]  [0094] [Chemical 53]
Figure imgf000028_0002
Figure imgf000028_0002
[0095] Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 [0095] A is a group represented by Formula 1 (CH) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
W41は、 Hまたは式 OR41で表される基であり、 W 41 is H or a group represented by the formula OR 41 ,
ここで、前記 1、 R21、 R31および R41は、互いに独立して、保護基であり、 X1、 X2、 X3および X4は、互いに独立して、 0、 NHまたは Sであり、 Wherein 1 , R 21 , R 31 and R 41 are each independently a protecting group; X 1 , X 2 , X 3 and X 4 are independently of each other 0, NH or S;
Υ2および Υ3は、互いに独立して、 Οまたは Sであり、Υ 2 and Υ 3 are, independently of each other, Ο or S;
Figure imgf000029_0001
Ζ2および Ζ3は、互いに独立して、 0、 NHまたは Sであり、
Figure imgf000029_0001
Ζ 2 and Ζ 3 are independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid phase carrier.
[0096] なお、スキーム 1〜4の各工程において、必要であれば、各官能基に保護基を導入 したり、保護基を脱保護したり、保護基を変更してもよい。なお、官能基の種類に応じ た保護基の選択、保護基の導入および保護基の除去は、当該分野で公知の方法に 従い、行うことができ、例えば、「有機合成における保護基("Protective Groups in Organic synthesis j , T. t^reeneり 、 John Wiley & ¾ons, Inc.出版」等を参 照することができる。  [0096] In each step of Schemes 1 to 4, if necessary, a protecting group may be introduced into each functional group, the protecting group may be deprotected, or the protecting group may be changed. The selection of the protecting group according to the type of the functional group, the introduction of the protecting group, and the removal of the protecting group can be carried out according to a method known in the art. "Groups in Organic Synthesis, T. t ^ reene, John Wiley & ¾ons, Inc."
実施例  Example
[0097] 本明細書の記載において、以下の略語を使用する。  [0097] In the description of the present specification, the following abbreviations are used.
Ar: ァノレゴン  Ar: Anolegon
APS : アンモ-ゥム ぺノレォキソジサノレフェート(ammonium peroxodisulfate) CPG : コントロール細孔ガラス (controlled pore glass)  APS: Ammonium peroxodisulfate CPG: Controlled pore glass
DIAD: ジイソプロピノレアゾカノレボキシレート(diisopropylazocarboxyrate)  DIAD: diisopropylazocarboxylate
DMAP : 4-ジメチルァミノピリジン (4- dimethylaminopyridine)  DMAP: 4-dimethylaminopyridine
DMTrCl: 4,4'—ジメトキシトリチノレクロライド(4,4'— dimethoxytritylchloride)  DMTrCl: 4,4'—Dimethoxytritinochloride (4,4'—dimethoxytritylchloride)
DMF : ジメチルホルムアミド (dimethylformamide)  DMF: dimethylformamide
EDTA: エチレンジァミン- N, N, Ν' , Ν,—テトラ酢酸'ジナトリウム塩 ' dehydr ate (ethylenediamine-Ν,Ν,Ν ,Νし tetraacetic acid, disodium salt, dehydrate) EDTA: ethylenediamine-N, N, Ν ', Ν, —tetraacetic acid, disodium salt, dehydrate (ethylenediamine-Ν, Ν, Ν, Ν)
FAB : 高速原子衝撃(fast atom bombardment) FAB: fast atom bombardment
HRMS : 高分解能質量分析(high- resolution mass spectrometry)  HRMS: high-resolution mass spectrometry
Im CO : 1 - 1 '—カルボ-ルビス— 1H—イミダゾール(1- 1'- Carbonylbis- 1H- imid Im CO: 1-1'-Carbonylbis- 1H-imidazole (1-1'-Carbonylbis-1H-imid
2 2
azole)  azole)
mRNA : メッセンンヤー リボ核酸 (messenger ribonucleic acid)  mRNA: messenger ribonucleic acid
NBA: 3—-トロべンジルアルコール (3-nitrobenzylalchol)  NBA: 3--Trobenzylalchol (3-nitrobenzylalchol)
PAGE : ポリアクリルアミドゲル電気泳動 (polvacrylamide gel electrophoresis) TBAF: トリブチルアンモ -ゥムフルオライド(tributylammoniumfluoride) TBE : Tris-ホウ酸- EDTA(Tris- boric acid- EDTA) PAGE: polyacrylamide gel electrophoresis TBAF: Tributylammoniumfluoride TBE: Tris-boric acid-EDTA
TEAA: トリェチルァミン-酢酸(triethylamine- acetic acid)  TEAA: triethylamine-acetic acid
TBDMSCl: tert-ブチルジメチルシリルクロライド(tert- butyldimethylsilylchloride) TEMED : N, N, Ν' , N,一テトラメチル一エチレンジァミン(Ν,Ν,Ν',Ν'- tetramet hyl-ethylenediamine)  TBDMSCl: tert-butyldimethylsilylchloride TEMED: N, N, Ν ', N, monotetramethyl monoethylenediamine (Ν, Ν, Ν', Ν'- tetramet hyl-ethylenediamine)
THF : テトラヒドロフラン(tetrahydroforan)  THF: Tetrahydroforan
TRIS: トリス (ヒドロキシメチル)ァミノメタン(tris(hydroxymethyl)aminomethane) WSC : 1ーェチルー 3—(3—ジメチルァミノプロピル)—カルポジイミド '塩酸塩( 1- Ethyl— 3— (3— dimethylaminopropyl)— carbodumide, hydrochloride j  TRIS: Tris (hydroxymethyl) aminomethane WSC: 1-Ethyl 3- (3-Dimethylaminopropyl) -Carpositimide 'hydrochloride (1- Ethyl- 3-— (3-Dimethylaminopropyl) — carbodumide, hydrochloride j
CPG上の化合物の活性は、以下のようにして算出した。  The activity of the compound on CPG was calculated as follows.
[0098] 乾燥させた CPG6mgをガラスフィルターにのせ、そこへ HCIOおよびエタノールの [0098] Place 6 mg of dried CPG on a glass filter and add HCIO and ethanol
4  Four
混合物 (HCIO: EtOH = 3 : 2)を流し込んだ。得られたろ液の吸光度 (波長 498nm  The mixture (HCIO: EtOH = 3: 2) was poured. Absorbance of the obtained filtrate (wavelength 498nm
4  Four
(DMTr基の吸収波長) )を測定し、その値を以下の式に代入して算出した。  (DMTr group absorption wavelength)) was measured, and the value was substituted into the following equation.
[0099] [数 1] 4b5.(498nm) x Fo/.(solution)(mL) x l4.3 _ ( 、 [0099] [Equation 1] 4b5. (498nm) x Fo /. (Solution) (mL) x l4.3 _ (,
Weight (support)( mg)  Weight (support) (mg)
[0100] 前記式中、 Abs.は、波長 498nmにおける CPGの吸光度であり、 [0100] In the above formula, Abs. Is the absorbance of CPG at a wavelength of 498 nm,
Vol.は、測定したろ液の容量であり、  Vol. Is the measured volume of the filtrate,
weightは、測定した CPGの重量である。  weight is the weight of the measured CPG.
[0101] 1.修飾 1本鎖オリゴヌクレオチドまたは修飾 2本鎖オリゴヌクレオチド製造のための[0101] 1. For production of modified single-stranded oligonucleotide or modified double-stranded oligonucleotide
、モノマー製造 , Monomer production
[0102] (1) 5'— O— (4, 4'—ジメトキシトリチル)チミジン(IV— 11) (5'- 0- (4,4し dimethoxytr ityDthymidine)の製造(S. Agrawalら, Methods in Molecular Biology vol.20, 360 -366に従い製造。)  [0102] (1) Manufacture of 5'—O— (4,4'-dimethoxytrityl) thymidine (IV—11) (5'-0- (4,4 dimethoxytrityDthymidine) (S. Agrawal et al., Methods in Manufactured according to Molecular Biology vol.20, 360-366.)
チミジン(2. 03g, 8. 43mmol)のピリジン(16mL)溶液を、 Ar雰囲気下、室温で 撹拌した。そこへ DMTrCl (3. 08g, 9. l lmmol, 1. 1当量)をカ卩えて、さらに室温 で攪拌した。 12時間後、その反応混合物へ、さらに DMTrClを 1当量 (0. 28g, 0. 8 3mmol)加えて、さらにその反応混合物を攪拌した。 TLC分析により、チミジンがこれ 以上消費されないことを確認した後、その反応混合物に、氷冷下でメタノールを加え た。その反応混合物から溶媒を減圧下に留去した後、得られた残渣をクロ口ホルムで 希釈した。そのクロ口ホルム溶液を、飽和 NaHCO水溶液(2回)および飽和 NaCl水 A solution of thymidine (2.03 g, 8. 43 mmol) in pyridine (16 mL) at room temperature under Ar atmosphere Stir. DMTrCl (3.08 g, 9. l mmol, 1.1 eq) was added thereto and stirred at room temperature. After 12 hours, another equivalent of DMTrCl (0.28 g, 0.83 mmol) was added to the reaction mixture and the reaction mixture was further stirred. After confirming that no more thymidine was consumed by TLC analysis, methanol was added to the reaction mixture under ice cooling. After the solvent was distilled off from the reaction mixture under reduced pressure, the obtained residue was diluted with chloroform. The chloroform solution is mixed with saturated aqueous NaHCO solution (twice) and saturated aqueous NaCl solution.
3  Three
溶液(1回)で順次洗浄し、その後、硫酸ナトリウムで乾燥させた。前記クロ口ホルム溶 液から溶媒を減圧下に留去し、得られた残渣をトルエンで共沸した。得られた残渣を シリカゲルカラムクロマトグラフィー(MeOH : CHCl =0〜4%)で精製して、白色の  The solution was washed successively with the solution (once) and then dried over sodium sulfate. The solvent was distilled off from the chloroform solution under reduced pressure, and the resulting residue was azeotroped with toluene. The obtained residue was purified by silica gel column chromatography (MeOH: CHCl = 0-4%)
3  Three
泡状結晶の標題化合物を得た(3. 55g, 6. 51mmol,収率 77%)。  The title compound was obtained as foamy crystals (3.55 g, 6.51 mmol, 77% yield).
[0103] JH NMR(400MHz, CDC1 ) δ : 1.47 (3H, s, 5— CH ), 2.32-2.41 (2H, m, 2'— [0103] J H NMR (400 MHz, CDC1) δ: 1.47 (3H, s, 5— CH), 2.32-2.41 (2H, m, 2′—
3 3  3 3
H), 3.35-3.49 (2H, m, 5'— H), 3.79 (6H, s, — OCH ), 4.06 (1H, m, 4'— H),  H), 3.35-3.49 (2H, m, 5'— H), 3.79 (6H, s, — OCH), 4.06 (1H, m, 4'— H),
3  Three
4.54 (1H, m, 3'— H), 6.44 (1H, t, J=6.8 Hz, l'-H), 6.83—7.40 (13H, m, D 4.54 (1H, m, 3'— H), 6.44 (1H, t, J = 6.8 Hz, l'-H), 6.83—7.40 (13H, m, D
MTr), 7.59 (1H, s, 6- H), 8.66 (1H, s, 1-NH). MTr), 7.59 (1H, s, 6- H), 8.66 (1H, s, 1-NH).
[0104] (2) 3'— O— tert—ブチルジメチルシリルチミジン(III— 12)の製造(S. Agrawalら, [0104] (2) Production of 3'—O-tert-butyldimethylsilylthymidine (III-12) (S. Agrawal et al.,
Methods in Molecular Biology vol.20, 360— 366に従い製造。)  Manufactured according to Methods in Molecular Biology vol.20, 360-366. )
[0105] (i) 3,—O— tert—ブチルジメチルシリル— 5,— O— (4, 4,—ジメトキシトリチル) チミジン(3'- 0- tert- butyldimethylsibd—5'- 0- (4,4'- dimethoxytrityl)thymidine)の製 造 [0105] (i) 3, —O— tert-Butyldimethylsilyl-5, — O— (4, 4, —Dimethoxytrityl) thymidine (3'-0-tert-butyldimethylsibd—5'- 0- (4, 4'-dimethoxytrityl) thymidine)
5'— O— (4, 4'—ジメトキシトリチル)チミジン(1. 04g, 1. 91mmol)およびイミダゾ 一ノレ(0. 32g, 4. 74mmol, 2. 5当量)を、 Ar雰囲気下で DMF (8. OmL)に溶解さ せ、得られた溶液を Ar雰囲気下で撹拌した。 TBDMSCKO. 36g, 2. 37mmol, 1 . 当量)を前記溶液に加えた後、その反応混合物を Ar雰囲気下で 12時間攪拌した。 TLC分析により、 5'— O— (4, 4'—ジメトキシトリチル)チミジン力これ以上消費されな いことを確認した後、その反応混合物に氷冷下でメタノール (4mL)を加えた。その反 応混合物から溶媒を減圧下に留去した後、得られた残渣を酢酸ェチル希釈した。そ の酢酸ェチル溶液を、飽和 NaHCO水溶液(2回)および飽和 NaCl水溶液(1回)で  5′—O— (4,4′-dimethoxytrityl) thymidine (1.04 g, 1.91 mmol) and imidazo monoole (0.32 g, 4.74 mmol, 2.5 eq) were added DMF ( 8. OmL) and the resulting solution was stirred under Ar atmosphere. TBDMSCKO. 36 g, 2. 37 mmol, 1. eq.) Was added to the solution and the reaction mixture was stirred under Ar atmosphere for 12 hours. After confirming by TLC analysis that no more 5′-O— (4,4′-dimethoxytrityl) thymidine was consumed, methanol (4 mL) was added to the reaction mixture under ice cooling. After the solvent was distilled off from the reaction mixture under reduced pressure, the resulting residue was diluted with ethyl acetate. The ethyl acetate solution was diluted with a saturated aqueous NaHCO solution (2 times) and a saturated aqueous NaCl solution (1 time).
3  Three
順次洗浄し、その後、硫酸ナトリウムで乾燥させた。前記酢酸ェチル溶液から溶媒を 減圧下に留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(MeOH: CHC1 =0〜5%)で精製して、白色の泡状結晶の標題ィ匕合物を得た(1. 18g, 1. 79mmWashing sequentially, followed by drying over sodium sulfate. Solvent from the ethyl acetate solution The residue obtained by evaporation under reduced pressure was purified by silica gel column chromatography (MeOH: CHC1 = 0-5%) to give the title compound as white foam crystals (1.18 g, 1. 79mm
3 Three
ol,収率 94%)。  ol, yield 94%).
[0106] JH NMR(400MHz, CDC1 ) δ : 0.09 (6H, s, TBDMS— CH ), 0.81 (9H, s, t— [0106] J H NMR (400 MHz, CDC1) δ: 0.09 (6H, s, TBDMS— CH), 0.81 (9H, s, t—
3 3  3 3
ブチノレ), 1.47 (3H, s, 5— CH ), 2.16—2.33 (2H, m, 2'— H), 3.23—3.46 (2H, m,  Butinole), 1.47 (3H, s, 5— CH), 2.16—2.33 (2H, m, 2′— H), 3.23—3.46 (2H, m,
3  Three
5'-H), 3.77 (6H, s, OCH ), 3.94—3.95 (1H, m, 4'— H), 4.49—4.50 (1H, m,  5'-H), 3.77 (6H, s, OCH), 3.94—3.95 (1H, m, 4'—H), 4.49—4.50 (1H, m,
3  Three
3'-H), 6.32 (1H, t, J=6.6 Hz, l'-H), 6.80—7.39 (13H, m, DMTr), 7.63 (1 H, s, 6-H), 8.15 (1H, s, NH).  3'-H), 6.32 (1H, t, J = 6.6 Hz, l'-H), 6.80—7.39 (13H, m, DMTr), 7.63 (1 H, s, 6-H), 8.15 (1H, s, NH).
[0107] (ii) 3,— O— tert—ブチルジメチルシリルチミジン(III— 12) (3'-0-tert-butyldime thylsilylthymidine)の製造 [0107] (ii) 3, — Preparation of O—tert-butyldimethylsilylthymidine (III—12) (3′-0-tert-butyldime thylsilylthymidine)
3, 0— 61^—ブチルジメチルシリルー5' -0- (4, 4'ージメトキシトリチル)チミ ジン(1. 18g, 1. 79mmol)に 80%酢酸水溶液(26mL)を加え、その反応混合物を 攪拌した。 1時間後、 TLC分析により 3,—O— tert—ブチルジメチルシリル— 5,— O - (4, 4'—ジメトキシトリチル)チミジンの消失を確認した後、前記反応混合物から溶 媒を減圧下に留去した。得られた残渣を酢酸ェチルで希釈した。その酢酸ェチル溶 液を、飽和 NaHCO水溶液(2回)および飽和 NaCl水溶液(1回)で順次洗浄し、そ  80% acetic acid aqueous solution (26mL) was added to 3, 0-61 ^ -butyldimethylsilyl-5'-0- (4,4'-dimethoxytrityl) thymidine (1.18g, 1.79mmol) and the reaction mixture Was stirred. After 1 hour, the disappearance of 3, -O-tert-butyldimethylsilyl-5, -O- (4,4'-dimethoxytrityl) thymidine was confirmed by TLC analysis, and then the solvent was removed from the reaction mixture under reduced pressure. Distilled off. The resulting residue was diluted with ethyl acetate. The ethyl acetate solution was washed successively with a saturated aqueous NaHCO solution (twice) and a saturated aqueous NaCl solution (once).
3  Three
の後硫酸ナトリウムで乾燥させた。前記酢酸ェチル溶液から溶媒を減圧下に留去し、 得られた残渣をシリカゲルカラムクロマトグラフィー(MeOH: CHC1 =0〜3%)で精  And dried with sodium sulfate. The solvent was distilled off from the ethyl acetate solution under reduced pressure, and the resulting residue was purified by silica gel column chromatography (MeOH: CHC1 = 0 to 3%).
3  Three
製して、白色結晶の標題化合物を得た (0. 60g, 1. 68mmol,収率 94%)。  To give the title compound as white crystals (0.60 g, 1.68 mmol, 94% yield).
[0108] JH NMR(400MHz, CDC1 ) δ : 0.03 (6H, s, TBDMS— CH ), 0.81 (9H, s, t— [0108] J H NMR (400MHz, CDC1) δ: 0.03 (6H, s, TBDMS— CH), 0.81 (9H, s, t—
3 3  3 3
ブチノレ), 1.83 (3H, s, 5— CH ), 2.10—2.41 (2H, m, 2'— H), 3.64—3.69 (1H, m,  Butinole), 1.83 (3H, s, 5— CH), 2.10—2.41 (2H, m, 2′— H), 3.64—3.69 (1H, m,
3  Three
4'-H), 3.81-3.86 (2H, m, 5'— H), 4.39-4.42 (1H, m, 3'— H), 6.02—6.05 (1H, t, J=6.8 Hz, l'-H), 7.26 (1H, s, 6-H), 8.34 (1H, s, NH).  4'-H), 3.81-3.86 (2H, m, 5'— H), 4.39-4.42 (1H, m, 3'— H), 6.02—6.05 (1H, t, J = 6.8 Hz, l'- H), 7.26 (1H, s, 6-H), 8.34 (1H, s, NH).
(3) 5,-ァミノチミジン (III— 11)の製造(T. Hataら、 J. Chem. Soc, Perkin trans. I, 1980, 306-310に従い製造。)  (3) Production of 5, -aminothymidine (III-11) (produced according to T. Hata et al., J. Chem. Soc, Perkin trans. I, 1980, 306-310)
[0109] (i) 5,一アジドチミジン(5'- azidothymidine)の製造 [0109] (i) 5, one azidothymidine - preparation of (5 'azidothymidine)
チミジン(2. 00g, 8. 26mmol)、 Ph P (2. 00g, 8. 26mmol, 1. 0当量)および N  Thymidine (2.00 g, 8. 26 mmol), Ph P (2. 00 g, 8. 26 mmol, 1.0 equivalent) and N
3  Three
aN (2. 60g, 41. 3mmol, 5. 0当量)を DMF (40mU【こ溶解させ、その溶液【こ CB r (2. 80g, 8. 40mmol, 1. 0当量)をカ卩えた。得られた反応混合物を、 Ar雰囲気下aN (2. 60 g, 41. 3 mmol, 5.0 eq) is dissolved in DMF (40 mU r (2.80 g, 8. 40 mmol, 1.0 equivalent) was added. The resulting reaction mixture was placed under Ar atmosphere
4 Four
に 85°Cで撹拌した。 25時間後、 TLC分析によりチミジンの消失を確認した後、前記 反応混合物を酢酸ェチルで希釈し、水(3回)、飽和 NaHCO水溶液(1回)、飽和 N  The mixture was stirred at 85 ° C. After 25 hours, the disappearance of thymidine was confirmed by TLC analysis, and the reaction mixture was diluted with ethyl acetate, water (3 times), saturated aqueous NaHCO solution (1 time), saturated N
3  Three
aCl水溶液(1回)で順次洗浄し、その後硫酸ナトリウムで乾燥させた。その酢酸ェチ ル溶液カゝら溶媒を減圧下に留去し、得られた残渣をシリカゲルカラムクロマトグラフィ 一(MeOH : CHCl = 1 :49〜7: 93)で精製して、白色結晶の標題化合物を得た (収  The resultant was washed successively with an aCl aqueous solution (once) and then dried over sodium sulfate. The solvent was distilled off under reduced pressure from the ethyl acetate solution, and the resulting residue was purified by silica gel column chromatography (MeOH: CHCl = 1: 49-7: 93) to give the title compound as white crystals. Got
3  Three
量 2. Olg, 7. 52mmol,収率 91%)。  Amount 2. Olg, 7.52 mmol, 91% yield).
[0110] JH NMR(400MHz, DMSO— d ) δ : 1.78 (3H, s, 5— CH ), 2.06-2.28 (2H, m, [0110] J H NMR (400 MHz, DMSO— d) δ: 1.78 (3H, s, 5— CH), 2.06-2.28 (2H, m,
6 3  6 3
2'-H), 3.55 (2H, d, J=4.8Hz, 5'— H), 3.83 (1H, m, 4'— H), 4.08 (1H, m, 3し H), 3.40 (1H, d, J=3.6Hz, 3— OH), 6.19 (1H, t, J=6.8Hz, l'-H), 7.55 (1H, s, 6-H), 11.32 (1H, s, NH).  2'-H), 3.55 (2H, d, J = 4.8Hz, 5'— H), 3.83 (1H, m, 4'— H), 4.08 (1H, m, 3 and H), 3.40 (1H, d, J = 3.6Hz, 3-OH), 6.19 (1H, t, J = 6.8Hz, l'-H), 7.55 (1H, s, 6-H), 11.32 (1H, s, NH).
[0111] (ii) 5, -ァミノチミジン (III - 11) (5'- aminothymidine)の製造 [0111] (ii) Production of 5, -aminothymidine (III-11) (5'-aminothymidine)
5,一アジドチミジン(0. 23g, 0. 94mmol)および 5%Pd触媒(0. 065g)を、ェタノ ールと塩化メチレンの混合溶媒 (EtOH: CH C1 = 1 : 1) (3. lmL)中、水素雰囲気  5, monoazidothymidine (0.23 g, 0.94 mmol) and 5% Pd catalyst (0.065 g) in a mixed solvent of ethanol and methylene chloride (EtOH: CH C1 = 1: 1) (3. lmL) , Hydrogen atmosphere
2 2  twenty two
下で 24時間撹拌した。 TLC分析により 5'—アジドチミジンの消失を確認した後、反 応混合物をセライト濾過した。得られたろ液力も溶媒を減圧下に留去して、白色結晶 の標題化合物を得た(収量 0. 22g, 0. 89nmol,収率 95%)。  Stir for 24 hours under. After confirming the disappearance of 5′-azidothymidine by TLC analysis, the reaction mixture was filtered through Celite. The solvent power of the obtained filtrate was also distilled off under reduced pressure to obtain the title compound as a white crystal (yield 0.22 g, 0.89 nmol, yield 95%).
[0112] JH NMR(400MHz, DMSO— d ) δ : 1.74 (3H, s, 5— CH ), 2.00—2.16 (2H, m, [0112] J H NMR (400 MHz, DMSO— d) δ: 1.74 (3H, s, 5— CH), 2.00—2.16 (2H, m,
6 3  6 3
2'-H), 2.49-2.77 (2H, m, 5'— H), 3.20—3.45 (1H, br, 3'— OH), 3.63—3.66 (1H , m, 4'-H), 4.16-4.20 (1H, m, 3'— H), 6.13 (1H, t, J=6.8 Hz, l'-H), 7.63 ( 1H, s, 6-H).  2'-H), 2.49-2.77 (2H, m, 5'— H), 3.20—3.45 (1H, br, 3'— OH), 3.63—3.66 (1H, m, 4'-H), 4.16- 4.20 (1H, m, 3'- H), 6.13 (1H, t, J = 6.8 Hz, l'-H), 7.63 (1H, s, 6-H).
[0113] (4) 3,一アミノー 5,— O—tert—ブチルジメチルシリルチミジン(IV— 12)の製造( E. W. Harkinsら, Current Protocols in Nucleic Acid Chemistry, 4. 7. 15-4.  [0113] (4) Production of 3, monoamino-5, -O-tert-butyldimethylsilylthymidine (IV-12) (E. W. Harkins et al., Current Protocols in Nucleic Acid Chemistry, 4. 7. 15-4.
7.17に従い製造。)  Manufactured according to 7.17. )
[0114] (i) 5'—O—tert—ブチルジメチルシリルチミジン(5'- O-tert- butyldimethylsilylthy midine)の製造  [0114] (i) Production of 5'-O-tert-butyldimethylsilylthymidine (5'-O-tert-butyldimethylsilylthymidine)
チミジン(2. 00g, 8. 26mmol)を DMFで共沸し、 DMF (16. 5mL)に溶力した。 その溶液に、 Et N (l. 36mL, 9. 91mmol, 1. 2当量)、 DMAP (0. 05g, 0. 41m mol, 0. 05当量)および TBDMSC1 (1. 36g, 9. 02mmol, 1. 1当量)を順次カロえ 、得られた反応混合物を Ar雰囲気下に室温で 2時間半撹拌した。さらに TBDMSC1 (0. 25g, 1. 66mmol, 0. 2当量)を前記反応混合物に加え、さらに 30分間撹拌し た。 TLC分析でチミジンの消失を確認した後、その反応混合物を酢酸ェチルで希釈 した。得られた酢酸ェチル溶液を、水(3回)、飽和 NaHCO水溶液(1回)、飽和 Na Thymidine (2.00 g, 8.26 mmol) was azeotroped with DMF and dissolved in DMF (16.5 mL). To the solution, Et N (l. 36 mL, 9. 91 mmol, 1.2 eq), DMAP (0. 05 g, 0.41 m mol, 0.05 equivalents) and TBDMSC1 (1.36 g, 9.02 mmol, 1.1 equivalents) were sequentially added, and the resulting reaction mixture was stirred at room temperature for 2 hours and a half in an Ar atmosphere. Further TBDMSC1 (0.25 g, 1.66 mmol, 0.2 eq) was added to the reaction mixture and stirred for another 30 minutes. After confirming disappearance of thymidine by TLC analysis, the reaction mixture was diluted with ethyl acetate. The obtained ethyl acetate solution was mixed with water (3 times), saturated aqueous NaHCO solution (1 time), saturated Na
3  Three
C1水溶液(1回)で順次洗浄し、その後硫酸ナトリウムで乾燥させた。その酢酸ェチル 溶液カゝら溶媒を減圧下に留去し、得られた残渣をシリカゲルカラムクロマトグラフィー This was washed sequentially with an aqueous C1 solution (once) and then dried over sodium sulfate. The solvent was distilled off under reduced pressure from the ethyl acetate solution, and the resulting residue was subjected to silica gel column chromatography.
(MeOH : CHCl =0 : 1〜1: 20)で精製して、白色結晶の標題化合物を得た (収量 2 Purification by (MeOH: CHCl = 0: 1 to 1:20) gave the title compound as white crystals (yield 2
3  Three
. 44g, 6. 84mmol,収率 83%)。  44g, 6.84mmol, 83% yield).
[0115] JH NMR(400MHz, CDC1 ) δ : 0.12 (6H, m, TBDMS— CH ), 0.92 (9H, s, t— [0115] J H NMR (400MHz, CDC1) δ: 0.12 (6H, m, TBDMS— CH), 0.92 (9H, s, t—
3 3  3 3
ブチノレ), 1.89 (3H, s, 5— CH ), 2.08—2.39 (3H, m, 2'— H and 3'— OH), 3.82—3  Butinole), 1.89 (3H, s, 5— CH), 2.08—2.39 (3H, m, 2′— H and 3′— OH), 3.82—3
3  Three
.92 (2H, m, 5'-H), 4.03 (1H, m, 4'— H), 4.47 (1H, m, 3'— H), 6.37 (1H, m , l'-H), 7.50 (1H, s, 6-H), 8.44 (1H, br, NH).  .92 (2H, m, 5'-H), 4.03 (1H, m, 4'—H), 4.47 (1H, m, 3'—H), 6.37 (1H, m, l'-H), 7.50 (1H, s, 6-H), 8.44 (1H, br, NH).
[0116] (ii) 2, 3,一アンハイドロー 5,—O—tert—ブチルジメチルシリルチミジン (2,3'- anh ydro-o - O-tert- butyldimethylsuylthymidine)の製造 [0116] (ii) Preparation of 2, 3, 1-anhydro-5, -O-tert-butyldimethylsilylthymidine (2,3'-anhydro-o-O-tert-butyldimethylsuylthymidine)
5 '—O—tert—ブチルジメチルシリルチミジン(2. 19g, 6. 14mmol)および Ph P  5 '—O-tert-butyldimethylsilylthymidine (2. 19 g, 6. 14 mmol) and Ph P
3 Three
(2. 60g, 9. 91mmol, 1. 6当量)の DMF (7. OmL)溶液に、 DIAD (3. 2mL, 9. OOmmol, 1. 6当量, 40%トルエン溶液)の DMF (3. lmL)溶液をカ卩え、得られた 反応混合物を Ar雰囲気下に室温で撹拌した。 3時間半後、 TLC分析により 5'— O tert—ブチルジメチルシリルチミジンの消失を確認した。この反応混合物を酢酸ェ チルで希釈し、水(3回)、飽和 NaHCO水溶液(1回)、飽和 NaCl水溶液(1回)で (2. 60 g, 9. 91 mmol, 1.6 eq) in DMF (7. OmL) solution, DIAD (3.2 mL, 9. OOmmol, 1.6 eq, 40% toluene solution) in DMF (3. lmL ) The solution was collected and the resulting reaction mixture was stirred at room temperature under Ar atmosphere. After 3 hours and a half, disappearance of 5′-O tert-butyldimethylsilylthymidine was confirmed by TLC analysis. The reaction mixture is diluted with ethyl acetate and washed with water (3 times), saturated aqueous NaHCO solution (1 time), saturated aqueous NaCl solution (1 time).
3  Three
順次洗浄し、その後硫酸ナトリウムで乾燥させた。得られた酢酸ェチル溶液から溶媒 を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー (n—へキサン: Et OAc: MeOH= l: 1: 0〜0 : 10 : 1)で精製して、白色結晶の標題化合物を得た (収 量 1. 63g, 4. 82mmol,収率 79%)。  Washing sequentially, followed by drying over sodium sulfate. The solvent was distilled off from the obtained ethyl acetate solution under reduced pressure, and the obtained residue was purified by silica gel column chromatography (n-hexane: Et OAc: MeOH = l: 1: 0 to 0: 10: 1). The title compound was obtained as white crystals (yield 1. 63 g, 4.82 mmol, yield 79%).
[0117] JH NMR(400MHz, CDC1 ) δ : 0.07 (6H, s, TBDMS— CH ), 0.88 (9H, s, t— [0117] J H NMR (400MHz, CDC1) δ: 0.07 (6H, s, TBDMS— CH), 0.88 (9H, s, t—
3 3  3 3
ブチノレ), 1.95 (3H, s, 5— CH ), 2.43-2.67 (2H, m, 2'— H), 3.73—3.83 (2H, m,  Butinole), 1.95 (3H, s, 5— CH), 2.43-2.67 (2H, m, 2′— H), 3.73—3.83 (2H, m,
3  Three
5'-H), 4.28 (1H, t, J=5.6Hz, 4'— H), 5.19 (1H, s, 3'— H), 5.47 (1H, s, 1' -H), 6.95 (1H, s, 6-H). 5'-H), 4.28 (1H, t, J = 5.6Hz, 4'— H), 5.19 (1H, s, 3'— H), 5.47 (1H, s, 1 ' -H), 6.95 (1H, s, 6-H).
[0118] (iii) 3,一アジドー 5,— O—tert—ブチルジメチルシリルチミジン(3'- azido [0118] (iii) 3, monoazido 5, — O-tert-butyldimethylsilylthymidine (3'-azido
— 5'— 0— tert— butyldimethylsilylthymidine)の製造  — 5'— 0— tert— butyldimethylsilylthymidine)
2, 3 '—アンハイドロー 5,—O—tert—ブチルジメチルシリルチミジン(0. 48g, 1. 41mmol)の DMF (4. 2mL)溶液に、 NaN (0. 14g, 2. 21mmol, 1. 5当量)をカロ  2,3'-Anhydro-5, -O-tert-butyldimethylsilylthymidine (0.48g, 1.41mmol) in DMF (4.2mL) solution with NaN (0.14g, 2.21mmol, 1. 5 equivalents)
3  Three
え、その反応混合物を Ar雰囲気下に 120°Cで撹拌した。 48時間後、 TLC分析によ り、 2, 3,一アンハイドロー 5,一 O— tert—ブチルジメチルシリルチミジンの消失を確 認した。この反応混合物を酢酸ェチルで希釈し、水(3回)、飽和 NaHCO水溶液(1  The reaction mixture was stirred at 120 ° C. under Ar atmosphere. After 48 hours, the disappearance of 2, 3, 1 anhydro-5, 1 O-tert-butyldimethylsilylthymidine was confirmed by TLC analysis. The reaction mixture was diluted with ethyl acetate, water (3 times), saturated aqueous NaHCO (1
3 回)、飽和 NaCl水溶液(1回)で順次洗浄し、その後硫酸ナトリウムで乾燥させた。得 られた酢酸ェチル溶液カゝら溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロ マトグラフィー (n—へキサン: EtOAc = 0 : 1)で精製して、油状の標題化合物を得た (収量 0. 48g, 1. 25mmol,収率 88%)。  3 times) and then with a saturated aqueous NaCl solution (1 time), and then dried over sodium sulfate. The solvent was distilled off under reduced pressure from the resulting ethyl acetate solution, and the resulting residue was purified by silica gel column chromatography (n-hexane: EtOAc = 0: 1) to give the title compound as an oil. (Yield 0.48 g, 1.25 mmol, yield 88%).
[0119] JH NMR(400MHz, CDC1 ) δ : 0.01 (6H, m, TBDMS— CH ), 0.80 (9H, m, t [0119] J H NMR (400 MHz, CDC1) δ: 0.01 (6H, m, TBDMS— CH), 0.80 (9H, m, t
3 3  3 3
—ブチル), 1.80 (3H, s, 5— CH ), 2.07-2.34 (2H, m, 2'— H), 3.66—3.70 (1H,  —Butyl), 1.80 (3H, s, 5— CH), 2.07-2.34 (2H, m, 2'— H), 3.66—3.70 (1H,
3  Three
m, 4'-H), 3.81-3.86 (2H, m, 5'— H), 4.12 (1H, m, 3'— H), 6.12 (1H, s, 1'— H ), 7.32 (1H, s, 6-H), 10.00 (1H, br, NH).  m, 4'-H), 3.81-3.86 (2H, m, 5'— H), 4.12 (1H, m, 3'— H), 6.12 (1H, s, 1'— H), 7.32 (1H, s, 6-H), 10.00 (1H, br, NH).
[0120] (iv) 3,一アミノー 5,— O—tert—ブチルジメチルシリルチミジン(IV— 12) (3'- amin 0—5—O—tert— butyldimethylsilylthymidine の製造 [0120] (iv) 3,1-amino-5, —O—tert-butyldimethylsilylthymidine (IV—12) (3′-amin 0—5—O—tert-butyldimethylsilylthymidine)
3 '—アジドー 5,—O—tert—ブチルジメチルシリルチミジン(1. 15g, 3. 02mmol )および 5%Pd触媒 (0. 15g)をメタノール(lOmL)中、 Ar雰囲気下に室温で 19時 間撹拌した。 TLC分析により 3'—アジドー 5'— O—tert—ブチルジメチルシリルチミ ジンが消失したことを確認した後、反応混合物をセライト濾過した。得られたろ液から 溶媒を減圧留去して、白色結晶の標題化合物を得た (収量 1. 03g, 2. 89nmmol, 収率 95%)。  3'-azido 5, -O-tert-butyldimethylsilylthymidine (1.15g, 3.02mmol) and 5% Pd catalyst (0.15g) in methanol (lOmL) at room temperature for 19 hours under Ar atmosphere Stir. After confirming the disappearance of 3′-azido 5′-O-tert-butyldimethylsilylthymidine by TLC analysis, the reaction mixture was filtered through Celite. The solvent was distilled off from the obtained filtrate under reduced pressure to obtain the title compound as white crystals (yield 1.03 g, 2.89 nmmol, yield 95%).
[0121] JH NMR(400MHz, DMSO— d ) δ : 0.05 (6H, m, TBDMS— CH ), 0.86 (9H, s, [0121] J H NMR (400MHz, DMSO— d) δ: 0.05 (6H, m, TBDMS— CH), 0.86 (9H, s,
6 3  6 3
t—ブチノレ), 1.75 (3H, s, 5'-CH ), 2.01—2.09 (2H, m, 2'— H), 3.30 (2H, s,  t-butinole), 1.75 (3H, s, 5'-CH), 2.01—2.09 (2H, m, 2'—H), 3.30 (2H, s,
3  Three
NH ), 3.41-3.46 (1H, m, 4'— H), 3.64-3.77 (2H, m, 5'— H), 3.80—3.84 (1H, NH), 3.41-3.46 (1H, m, 4'— H), 3.64-3.77 (2H, m, 5'— H), 3.80—3.84 (1H,
2 2
m, 3'-H), 6.11-6.16 (1H, t, 9.4 Hz, l'-H), 7.45 (1H, s, 6-H). [0122] 2.修飾 1本鎖オリゴヌクレオチドまたは修飾 2本鎖オリゴヌクレオチド製造のためのm, 3'-H), 6.11-6.16 (1H, t, 9.4 Hz, l'-H), 7.45 (1H, s, 6-H). [0122] 2. For production of modified single-stranded oligonucleotide or modified double-stranded oligonucleotide
、固相担体に結合したユニットィヒ合物の製造 , Manufacture of unity compound bound to solid support
[0123] (実施例 1— 01) [0123] (Example 1— 01)
(1) (X— 11)で表されるユニット化合物の製造  (1) Production of unit compounds represented by (X—11)
[0124] [化 54] [0124] [Chemical 54]
Figure imgf000036_0001
Figure imgf000036_0001
(IV- 11) (III- 11) (X-ll)  (IV-11) (III-11) (X-ll)
[0125] (i) 5, O— (4, 4,—ジメトキシトリチル)—3, - (5,,—ァミノチミジリル)カルバモ イノレテ^ンン (5—〇— (4,4— dimethoxytrityl)— 3 -(0 -aminothymidilyl)carbamoylthymiai ne)の製造 [0125] (i) 5, O— (4, 4, —Dimethoxytrityl) —3,-(5, —Aminothymidylyl) carbamoinoletin (5—〇— (4,4— dimethoxytrityl) — 3-( 0 -aminothymidilyl) carbamoylthymiai ne)
5, — O— (4, 4,—ジメトキシトリチル)チミジン(IV— 11) (0. 76g, 1. 4mmol)のピ リジン(8· OmL)溶液に、 DMAP (少量)および Im CO (0. 23g, 1· 4mmol, 1· 0  5, — O— (4, 4, — Dimethoxytrityl) thymidine (IV— 11) (0.76 g, 1.4 mmol) in a solution of pyridine (8 · OmL) with DMAP (small amount) and Im CO (0. 23g, 1 ・ 4mmol, 1 ・ 0
2  2
当量)を加え、その反応混合物を Ar雰囲気下に室温で撹拌した。 24時間後、 5' ァミノチミジン(III— 11) (0. 50g, 2. 07mmol, 1. 5当量)のピリジン(6. OmL)溶液 を、前記反応混合物に滴下して加えた。 48時間後、前記反応混合物を酢酸ェチル で希釈した。得られた酢酸ェチル溶液を、水(1回)、飽和 NaHCO水溶液(1回)、  Eq.) And the reaction mixture was stirred at room temperature under Ar atmosphere. After 24 hours, a solution of 5 ′ aminothymidine (III-11) (0.50 g, 2. 07 mmol, 1.5 eq) in pyridine (6. OmL) was added dropwise to the reaction mixture. After 48 hours, the reaction mixture was diluted with ethyl acetate. The obtained ethyl acetate solution was mixed with water (once), saturated aqueous NaHCO solution (once),
3  Three
飽和 NaCl水溶液(1回)で順次洗浄し、その後、硫酸ナトリウムで乾燥させた。前記 酢酸ェチル溶液カゝら溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトダラ フィー(MeOH : CHCl = 1: 20〜1: 10)で精製して、白色結晶の標題化合物を得た  The extract was washed successively with a saturated aqueous NaCl solution (once) and then dried over sodium sulfate. The solvent was distilled off under reduced pressure from the ethyl acetate solution, and the resulting residue was purified by silica gel column chromatography (MeOH: CHCl = 1: 20 to 1:10) to give the title compound as white crystals.
3  Three
(収量 0. 71g, 0. 87mmol,収率 62%)。  (Yield 0.71 g, 0.87 mmol, 62% yield).
[0126] JH NMR(400MHz, DMSO— d ) δ : 1.38 (3H, s, 5— CH 5'T), 1.75 (3H, s, 5 [0126] J H NMR (400 MHz, DMSO— d) δ: 1.38 (3H, s, 5— CH 5′T), 1.75 (3H, s, 5
6 3  6 3
— CH 3'T), 1.98-2.48 (4H, m, 2'— H), 3.14—3.33 (4H, m, 5'— H), 3.73 (6H, — CH 3'T), 1.98-2.48 (4H, m, 2'— H), 3.14—3.33 (4H, m, 5'— H), 3.73 (6H,
3 Three
s, OCH ), 3.99-4.04 (2H, m, 4'— H), 4.12 (1H, s, 3'— H 5'T), 5.22 (1H, br, s, OCH), 3.99-4.04 (2H, m, 4'— H), 4.12 (1H, s, 3'— H 5'T), 5.22 (1H, br,
OH), 5.28-5.29 (1H, m, 3'— H 3'T), 6.10—6.14 (1H, m, 1'— H 5'T), 6.20—6 .24 (1H, m, 1し H 3'T), 6.28—7.38 (13H, m, DMTr), 7.48 (1H, s, 6— H 5'T) , 7.51 (1H, s, 6-H 3'T), 7.60 (1H, t, J=6.0 Hz, NH), 11.28 (1H, s, NH 5'T), 11.37 (1H, s, NH 3'T). OH), 5.28-5.29 (1H, m, 3'— H 3'T), 6.10—6.14 (1H, m, 1'— H 5'T), 6.20—6 .24 (1H, m, 1 and H 3'T), 6.28—7.38 (13H, m, DMTr), 7.48 (1H, s, 6— H 5'T), 7.51 (1H, s, 6-H 3 'T), 7.60 (1H, t, J = 6.0 Hz, NH), 11.28 (1H, s, NH 5'T), 11.37 (1H, s, NH 3'T).
13C-NMR (100MHz, CDC1 ) δ : 11.44, 12.34, 37.97, 38.90, 55.22, 63.94, 71 13 C-NMR (100 MHz, CDC1) δ: 11.44, 12.34, 37.97, 38.90, 55.22, 63.94, 71
3  Three
.23, 76.33, 76.68, 77.32, 84.00, 84.36, 84.87, 87.19, 110.75, 111.96, 113. 28, 127.19, 128.01, 128.11, 130.11, 135.04, 135.21, 135.56, 144.16, 151.14 , 156.38, 158.70, 164.07, 164.41.  .23, 76.33, 76.68, 77.32, 84.00, 84.36, 84.87, 87.19, 110.75, 111.96, 113. 28, 127.19, 128.01, 128.11, 130.11, 135.04, 135.21, 135.56, 144.16, 151.14, 156.38, 158.70, 164.07, 164.41 .
FAB-MS(NBA) calcd for C H N O (MH— ), 810.29867; found, 810.29930.  FAB-MS (NBA) calcd for C H N O (MH—), 810.29867; found, 810.29930.
42 45 2 12  42 45 2 12
[0127] ユニットィ匕合物 (X— 11)の製造  [0127] Manufacture of unity compound (X—11)
5,— O— (4, 4,ージメトキシトリチル)ー3,一(5,,ーァミノチミジリル)力ルバモイル チミジン(0. 71g, 0. 87mmol)のピリジン(8. 7mL)溶液に、 DMAP (少量)および 無水コハク酸(0. 29g, 2. 87mmol, 3. 3当量)をカ卩え、その反応混合物を Ar雰囲 気下に室温で 16時間撹拌した。 TLC分析により 5' -0- (4, 4'—ジメトキシトリチ ル)—3 ' (5',ーァミノチミジリル)力ルバモイルチミジンの消失を確認した後、前記 反応混合物をクロ口ホルムで希釈した。そのクロ口ホルム溶液を、水(1回)および飽 和 NaCl水溶液(1回)で順次洗浄し、その後硫酸ナトリウムで乾燥させた。前記クロ口 ホルム溶液カゝら溶媒を減圧留去した。得られた残渣の一部(0. 80g, 0. 87mmol, 4 当量)を DMF (22mL)に溶解させた。その溶液に CPG (136 /z molZg, 1. 61g, 0 . 22mol)をカ卩えて CPGを膨潤させた後、 WSC (0. 17g, 0. 87mmol, 4当量)をそ の反応混合物に加えた。前記反応混合物を室温で 2日間、振とうした。その反応混 合物を減圧ろ過した後、得られたろ取物をピリジンで洗浄し、その後乾燥させた。前 記ろ取物に、 DMAPの 0. 1Mピリジンおよび無水酢酸混合物溶液(ピリジン:無水酢 酸 = 9 : 1) (15mL)を加え、室温で 15時間振とうさせた。その反応混合物を減圧ろ過 した後、得られたろ取物をメタノールおよびアセトンで順次洗浄し、その後乾燥させて 標題のユニットィ匕合物(CPGの化合物の活性 = 26. 7 1110173)を得た(収量1. 53 g) o  5,-O- (4, 4, -dimethoxytrityl) -3, one (5,, aminothiomidylyl) strength rubamoyl thymidine (0.71 g, 0.87 mmol) in a solution of pyridine (8.7 mL) DMAP (small amount) and succinic anhydride (0.29 g, 2.87 mmol, 3.3 eq) were added and the reaction mixture was stirred at room temperature for 16 h under Ar atmosphere. After confirming the disappearance of 5'-0- (4,4'-dimethoxytrityl) -3 '(5',-aminominomidylyl) rubamoylthymidine by TLC analysis, the reaction mixture was treated with chloroform. Diluted with The black mouth form solution was washed successively with water (once) and saturated aqueous NaCl solution (once) and then dried over sodium sulfate. The solvent was distilled off under reduced pressure from the chloroform solution. A portion of the resulting residue (0.80 g, 0.87 mmol, 4 eq) was dissolved in DMF (22 mL). CPG (136 / z molZg, 1.61 g, 0.22 mol) was added to the solution to swell CPG, and then WSC (0.17 g, 0.87 mmol, 4 equivalents) was added to the reaction mixture. . The reaction mixture was shaken at room temperature for 2 days. The reaction mixture was filtered under reduced pressure, and the resulting filtered product was washed with pyridine and then dried. To the above filtered product, a 0.1 M pyridine and acetic anhydride mixture solution (pyridine: acetic anhydride = 9: 1) (15 mL) of DMAP was added, and the mixture was shaken at room temperature for 15 hours. The reaction mixture was filtered under reduced pressure, and the resulting filtrate was washed successively with methanol and acetone, and then dried to give the title unity compound (CPG compound activity = 26.7 711010173) (yield) 1. 53 g) o
[0128] (実施例 1 02)  [0128] (Example 1 02)
(2) (X— 12)で表されるユニット化合物の製造 [0129] [化 55] (2) Production of unit compound represented by (X—12) [0129] [Chemical 55]
Figure imgf000038_0001
Figure imgf000038_0001
(IV- 12) (III- 12) (X-12)  (IV-12) (III-12) (X-12)
[0130] (i) 5,ー0— 6 ーブチルジメチルシリルー3,一アミノー(3,,— O—tert—ブチル ジメチルシリルチミジリル)力ルバモイルチミジン(5'-0-tert-butyldimethylsilyl -3し a mino— (3 — O— tert— butyldimethylsilylthymidilyl)carbamoyltnymidine)の製造 [0130] (i) 5,0-0- 6-Butyldimethylsilyl-3, 1-amino- (3,-O-tert-butyldimethylsilylthymidylyl) force rubermoylthymidine (5'-0-tert-butyldimethylsilyl) -3 and a mino— (3 — O— tert— butyldimethylsilylthymidilyl) carbamoyltnymidine)
3,— O—tert—ブチルジメチルシリルチミジン(ΠΙ— 12) (2. 27g, 6. 37mmol)の ピリジン(35mL)溶液に、 DMAP (少量)および Im CO (0. 76g, 4. 70mmol, 1当  3, —O—tert-butyldimethylsilylthymidine (ΠΙ—12) (2. 27 g, 6. 37 mmol) in pyridine (35 mL) was added to DMAP (small amount) and Im CO (0. 76 g, 4. 70 mmol, 1 This
2  2
量)をカ卩え、その反応混合物を 1日間撹拌した。 3'—アミノー 5'—O—tert—ブチル ジメチルシリルチミジン(IV— 12) (1. 70g, 4. 79mmol, 1当量)のピリジン(12mL) 溶液を滴下して加えた後、その反応混合物を 1日間撹拌した。その反応混合物を酢 酸ェチルで希釈した。その酢酸ェチル溶液を、水(1回)、飽和 NaHCO水溶液(1  The reaction mixture was stirred for 1 day. A solution of 3'-amino-5'-O-tert-butyldimethylsilylthymidine (IV-12) (1.70 g, 4. 79 mmol, 1 eq) in pyridine (12 mL) was added dropwise and the reaction mixture was added. Stir for 1 day. The reaction mixture was diluted with ethyl acetate. The ethyl acetate solution was washed with water (once), saturated aqueous NaHCO solution (1
3  Three
回)および飽和 NaCl水溶液(1回)で順次洗浄し、その後硫酸ナトリウムで乾燥させ た。その酢酸ェチル溶液カゝら溶媒を減圧留去し、得られた残渣をシリカゲルカラムク 口マトグラフィー(MeOH : CHCl =0 : 1〜1: 10)で精製して、白色結晶の標題化合  ) And saturated aqueous NaCl solution (1 time), and then dried over sodium sulfate. The solvent was distilled off under reduced pressure from the ethyl acetate solution, and the resulting residue was purified by silica gel column chromatography (MeOH: CHCl = 0: 1 to 1:10) to give the title compound of white crystals.
3  Three
物を得た(収量 2. 46g, 3. 33mmol,収率 70%)。  The product was obtained (yield 2.46 g, 3.33 mmol, yield 70%).
[0131] JH NMR (400MHz, CDC1 ) δ: 0.08—0.13 (12H, m, TBDMS— CH ), 0.89 an [0131] J H NMR (400MHz, CDC1) δ: 0.08—0.13 (12H, m, TBDMS—CH 3), 0.89 an
3 3  3 3
d 0.93 (18H, s, t—ブチノレ), 1.90 (3H, s, 5— CH 5'T), 1.93 (3H, s, 5— CH  d 0.93 (18H, s, t-butinole), 1.90 (3H, s, 5-CH 5'T), 1.93 (3H, s, 5-CH
3 3 3 3
3'T), 2.15-2.35 (4H, m, 2'- H), 3.85—3.94 (2H, m, 5し H 5'T), 4.01—4.03 (2 H, m, 5'-H 3'T), 4.24-4.34 (2H, m, 4'— H), 6.04—6.08 (1H, m, 3'— H 5'T), 6.30-6.37 (1H, m, 3'— H 3'T), 7.17 (1H, s, 6— H 5'T), 7.56 (1H, s, 6— H 3' T), 8.83 (1H, s, NH 5'T), 8.95 (1H, s, NH 3'T). 3'T), 2.15-2.35 (4H, m, 2'- H), 3.85—3.94 (2H, m, 5 and H 5'T), 4.01—4.03 (2 H, m, 5'-H 3 ' T), 4.24-4.34 (2H, m, 4'— H), 6.04—6.08 (1H, m, 3'— H 5'T), 6.30-6.37 (1H, m, 3'— H 3'T) , 7.17 (1H, s, 6— H 5'T), 7.56 (1H, s, 6— H 3 'T), 8.83 (1H, s, NH 5'T), 8.95 (1H, s, NH 3' T).
13C— NMR (100MHz, CDC1 ) δ :— 5.98, —4.91, 12.42, 18.30, 25.88, 40.46, 52 13 C— NMR (100 MHz, CDC1) δ: — 5.98, —4.91, 12.42, 18.30, 25.88, 40.46, 52
3  Three
.51, 55.21, 61.70, 63.97, 66.45, 71.52, 83.67, 84.82, 86.96, 87.56, 110.83, 110.91, 111.42, 130.02, 130.69, 135.05, 137.03, 150.23, 155.72, 163.80. FAB— HRMS(NBA) calcd for C H N O Si (MH"), 738.3566; found, 738.3579. .51, 55.21, 61.70, 63.97, 66.45, 71.52, 83.67, 84.82, 86.96, 87.56, 110.83, 110.91, 111.42, 130.02, 130.69, 135.05, 137.03, 150.23, 155.72, 163.80. FAB— HRMS (NBA) calcd for CHNO Si (MH "), 738.3566; found, 738.3579.
33 55 5 10 2  33 55 5 10 2
[0132] (ii) 3, 一ァミノ一チミジリルカルバモイルチミジン (3し amino- thymidilylcarbamoylthy midine)の製造  [0132] (ii) 3, Production of 3-amino-thymidylylcarbamoylthymidine
5' 0— 61^—ブチルジメチルシリルー3'—アミノー(3' '— O—tert—ブチルジメ チルシリルチミジリル)力ルバモイルチミジン(0. 90g, 1. 44mmol)の THF (14mL) 溶液に、 TBAF (2mL, 2mmol, 2当量)をカ卩え、その反応混合物を 1日間撹拌した 。その反応混合物から溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグ ラフィー(MeOH : CHCl = 1: 20〜1: 5)で精製して、白色結晶の標題化合物を得  5 '0- 61 ^ -Butyldimethylsilyl-3'-amino- (3' '-O-tert-butyldimethylsilylthymidylyl) -powered rubamoylthymidine (0.90 g, 1. 44 mmol) in THF (14 mL) TBAF (2 mL, 2 mmol, 2 eq) was added and the reaction mixture was stirred for 1 day. The solvent was distilled off from the reaction mixture under reduced pressure, and the resulting residue was purified by silica gel column chromatography (MeOH: CHCl = 1: 20 to 1: 5) to give the title compound as white crystals.
3  Three
た(収量 0. 72g, 1. 43mmol,収率 99%)。  (Yield 0.72 g, 1. 43 mmol, 99% yield).
[0133] JH NMR (400MHz, DMSO— d ) δ: 1.77 (6H, s, 5— CH ), 2.00—2.24 (4H, m, [0133] J H NMR (400MHz, DMSO— d) δ: 1.77 (6H, s, 5— CH), 2.00—2.24 (4H, m,
6 3  6 3
2'-H), 3.44-3.64 (2H, m, 5'— H 5'T), 3.76—3.91 (2H, m, 5'— H 3'T), 4.01— 4.21 (2H, m, 4'— H), 5.00—5.22 (1H, m, 3'— H 5'T), 5.37—5.43 (1H, m, 3'— H 2'-H), 3.44-3.64 (2H, m, 5'— H 5'T), 3.76—3.91 (2H, m, 5'— H 3'T), 4.01— 4.21 (2H, m, 4 ' — H), 5.00—5.22 (1H, m, 3'— H 5'T), 5.37—5.43 (1H, m, 3'— H
3'T), 6.13-6.21 (2H, m, l'-H), 7.44-79 (2H, m, 6— H), 11.28 (1H, s, NH3'T), 6.13-6.21 (2H, m, l'-H), 7.44-79 (2H, m, 6— H), 11.28 (1H, s, NH
5'T), 11.31 (1H, s, NH 3'T). 5'T), 11.31 (1H, s, NH 3'T).
13C— NMR (100MHz, DMSO— d ) δ : 12.23, 12.29, 37.17, 50.80, 61.24, 64.53, 1 3 C—NMR (100 MHz, DMSO— d) δ: 12.23, 12.29, 37.17, 50.80, 61.24, 64.53,
6  6
70.74, 83.46, 83.86, 84.11, 84.83, 109.40, 109.72, 135.00, 136.12, 150.41 , 150.50, 155.58, 163.71, 163.76.  70.74, 83.46, 83.86, 84.11, 84.83, 109.40, 109.72, 135.00, 136.12, 150.41, 150.50, 155.58, 163.71, 163.76.
FAB- HRMS(NBA) calcd for C H N O (MH+), 510.18406; found, 510.18357. FAB- HRMS (NBA) calcd for CHNO (MH + ), 510.18406; found, 510.18357.
21 27 5 10  21 27 5 10
[0134] (iii) 5,— O— (4, 4,ージメトキシトリチル) 3,ーァミノチミジリルカルバモイルチミ ンン (5— 0— (4,4— dimethoxytrityl)— — aminotnymidilyicarbamoylthymidine)の製造 [0134] (iii) 5, —O— (4,4, -Dimethoxytrityl) 3, -aminominomidylylcarbamoylthymine (5—0— (4,4-dimethoxytrityl) — — aminotnymidilyicarbamoylthymidine)
3,—アミノーチミジリルカルバモイルチミジン(0. 21g, 0. 41mmol)のピリジン(1. 4mL)溶液に、 DMAP (少量)および DMTrCl (0. 21g, 0. 62mmol, 1. 5当量)を 加え、その反応混合物を 1日間撹拌した。その反応混合物を酢酸ェチルで希釈した 。その酢酸ェチル溶液を、水(1回)、飽和 NaHCO水溶液(1回)および飽和 NaCl 3, -Aminothymidylylcarbamoylthymidine (0.21 g, 0.41 mmol) in pyridine (1.4 mL) was added DMAP (small amount) and DMTrCl (0.21 g, 0.62 mmol, 1.5 eq) The reaction mixture was stirred for 1 day. The reaction mixture was diluted with ethyl acetate. The ethyl acetate solution was washed with water (1 time), saturated aqueous NaHCO solution (1 time) and saturated NaCl.
3  Three
水溶液(1回)で順次洗浄し、その後硫酸ナトリウムで乾燥させた。得られた酢酸ェチ ル溶液から溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー (n へキサン: AcOEt: MeOH = 9 : 1 : 0〜0: 1: 20)で精製して、白色結晶の標題ィ匕 合物を得た(収量 0. 19g, 0. 22mmol, 54%)。 The solution was washed successively with an aqueous solution (once) and then dried over sodium sulfate. The solvent was distilled off from the obtained ethyl acetate solution under reduced pressure, and the resulting residue was purified by silica gel column chromatography (n hexane: AcOEt: MeOH = 9: 1: 0 to 0: 1: 20). White crystal title The compound was obtained (yield 0.19 g, 0.22 mmol, 54%).
[0135] JH NMR (400MHz, DMSO— d ) δ: 1.46 (3H, s, 5— CH 5'T), 1.68 (3H, s, [0135] J H NMR (400MHz, DMSO— d) δ: 1.46 (3H, s, 5— CH 5′T), 1.68 (3H, s,
6 3  6 3
5- CH 3'T), 1.90-2.36 (4H, m, 2'- H), 3.05-3.32 (4H, m, 5'- H), 3.71 (6H, 5-CH 3'T), 1.90-2.36 (4H, m, 2'- H), 3.05-3.32 (4H, m, 5'- H), 3.71 (6H,
3 Three
s, OCH ), 3.89-3.92 (2H, m, 4'— H), 4.02—4.31 (4H, m, 3'— H), 5.38 (1H, s, OCH), 3.89-3.92 (2H, m, 4'— H), 4.02—4.31 (4H, m, 3′— H), 5.38 (1H,
3 Three
d, J=4.4 Hz, OH), 6.15 (1H, t, J= 8.0Hz, 1し H 5'T), 6.21 (1H, t, J= 8.0 Hz, l'-H 3'T), 6.84-7.42 (13H, m, DMTr), 7.55 (1H, s, 6— H 5'T), 7.75-7 .55 (1H, m, 6-H 3'T), 7.76 (1H, d, J=7.6 Hz, NH), 11.30 (1H, s, NH 5' T), 11.33 (1H, s, NH 3'T).  d, J = 4.4 Hz, OH), 6.15 (1H, t, J = 8.0Hz, 1 and H 5'T), 6.21 (1H, t, J = 8.0 Hz, l'-H 3'T), 6.84 -7.42 (13H, m, DMTr), 7.55 (1H, s, 6— H 5'T), 7.75-7 .55 (1H, m, 6-H 3'T), 7.76 (1H, d, J = 7.6 Hz, NH), 11.30 (1H, s, NH 5 'T), 11.33 (1H, s, NH 3'T).
13C— NMR (100MHz, DMSO— d ) δ : 11.78, 12.14, 37.01, 38.60, 50.65, 54.98, 13 C—NMR (100 MHz, DMSO— d) δ: 11.78, 12.14, 37.01, 38.60, 50.65, 54.98,
6  6
55.00, 63.11, 64.63, 70.68, 82.68, 83.56, 83.77, 84.06, 85.76, 109.50, 10 9.67, 113.17, 126.73, 127.65, 127.84, 129.67, 129.71, 135.24, 135.31, 135. 78, 135.91, 144.68, 150.28, 150.47, 155.49, 158.09, 158.12, 163.63, 163.68  55.00, 63.11, 64.63, 70.68, 82.68, 83.56, 83.77, 84.06, 85.76, 109.50, 10 9.67, 113.17, 126.73, 127.65, 127.84, 129.67, 129.71, 135.24, 135.31, 135. 78, 135.91, 144.68, 150.28, 150.47 , 155.49, 158.09, 158.12, 163.63, 163.68
FAB— HRMS(NBA) calcd for C H N O (MH+), 812.3143; found, 812.3137. FAB— HRMS (NBA) calcd for CHNO (MH + ), 812.3143; found, 812.3137.
42 45 5 12  42 45 5 12
[0136] (iv)ユニットィ匕合物 (X— 12)の製造  [0136] (iv) Manufacture of unitary compound (X-12)
5' -0- (4, 4'ージメトキシトリチル)—3'—ァミノチミジリルカルバモイルチミジン( 0. 50g, 0. 61mmol)のピリジン(6. lmL)溶液に、 DMAP (少量)および無水コハ ク酸 (0. 18g, 1. 83mmol, 3. 0当量)をカ卩え、その反応混合物を 2日撹拌した。そ の反応混合物をクロ口ホルムで希釈した。そのクロ口ホルム溶液を、水(3回)で洗浄し 、その後硫酸ナトリウムで乾燥させた。そのクロ口ホルム溶液力 溶媒を減圧留去した 。得られた残渣の一部(0. 55g, 0. 61mmol, 4. 0当量)をー晚、真空乾燥させた。 その残 の DMF (15mL)溶液【こ、 CPG (1. 65g, 0. 15mmol, 90. 4 μ mol/g) を加え、 CPGを膨潤させた。 30分間後、その反応混合物に、さらに WSC (0. 12g, 0 . 60mmol, 1. 0当量)を加え、 3日間振とうした。その反応混合物を減圧ろ過した後 、得られたろ取物をピリジンで洗浄し、その後乾燥させた。前記ろ取物に、 DMAPの 0. 1Mピリジンおよび無水酢酸の混合物(ピリジン:無水酢酸 = 9 : 1)溶液(20mL) を加え、室温で 1日間振とうさせた。その反応混合物を減圧ろ過した後、得られたろ 取物をメタノールおよびアセトンで順次洗浄し、その後乾燥させて、標題のユニットィ匕 合物を得た(CPGの化合物の活性 =44. 4 molZg) (収量 0. 93g)。 5 '-0- (4,4'-dimethoxytrityl) -3'-aminominomidylylcarbamoylthymidine (0.50 g, 0.61 mmol) in pyridine (6. lmL) was added to DMAP (small amount) and anhydrous Citric acid (0.18 g, 1.83 mmol, 3.0 eq) was added and the reaction mixture was stirred for 2 days. The reaction mixture was diluted with black mouthform. The black mouth form solution was washed with water (3 times) and then dried over sodium sulfate. The chloroform solution solution solvent was distilled off under reduced pressure. A part of the obtained residue (0.55 g, 0.61 mmol, 4.0 equivalent) was dried in vacuo. The remaining DMF (15 mL) solution [CPG (1.65 g, 0.15 mmol, 90.4 μmol / g)] was added to swell the CPG. After 30 minutes, more WSC (0.12 g, 0.60 mmol, 1.0 equiv) was added to the reaction mixture and shaken for 3 days. The reaction mixture was filtered under reduced pressure, and the resulting filtered product was washed with pyridine and then dried. To the filtered product was added a DMAP solution of 0.1 M pyridine and acetic anhydride (pyridine: acetic anhydride = 9: 1) (20 mL), and the mixture was shaken at room temperature for 1 day. The reaction mixture was filtered under reduced pressure, and the resulting filtrate was washed successively with methanol and acetone and then dried to give the title unit. The compound was obtained (activity of the compound of CPG = 44.4 molZg) (yield 0.93 g).
[0137] (実施例 1 03) [0137] (Example 1 03)
(3) (X— 13)で表されるユニット化合物の製造  (3) Production of unit compound represented by (X—13)
[0138] [化 56] [0138] [Chemical 56]
Figure imgf000041_0001
Figure imgf000041_0001
[0139] (i) 5, 0— 6 ーブチルジメチルシリルー3,一アミノー(5,,ーァミノチミジリル)ゥ レ テ ンン (5 -O-tert-butyldimetnyisilyl —3— amino— (o -aminothymidilyl)ureathy midine)の製造 [0139] (i) 5, 0— 6-Butyldimethylsilyl-3, 1-amino- (5, -aminominomidylyl) ureten (5 -O-tert-butyldimetnyisilyl —3— amino— (o -aminothymidilyl) ureathy midine)
3,—アミノー 5,— O— tert—ブチルジメチルシリルチミジン(IV— 12) (0. 26g, 0. 74mmol)のピリジン(5mL)溶液に、 DMAP (0. 018g, 0. 15mmol, 0. 2当量)お よび Im CO (0. 12g, 0. 74mmol, 1当量)を加え、その反応混合物を 3. 5時間撹  3, -amino-5, -O-tert-butyldimethylsilylthymidine (IV-12) (0.26 g, 0.74 mmol) in pyridine (5 mL) was added to DMAP (0.018 g, 0.15 mmol, 0.2). Eq) and Im CO (0.12 g, 0.74 mmol, 1 eq) and the reaction mixture is stirred for 3.5 h.
2  2
拌した。 5,一ァミノチミジン(III— 11) (0. 22g, 0. 89mmol, 1. 2当量)のピリジン( 2mL)溶液を、その反応混合物に滴下して加えた後、その反応混合物を 12時間撹 拌した。前記反応混合物を酢酸ェチルで抽出した後、その酢酸ェチル溶液から溶媒 を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(CHC1: CH O  Stir. A solution of 5, monoaminothymidine (III-11) (0.22 g, 0.89 mmol, 1.2 eq) in pyridine (2 mL) was added dropwise to the reaction mixture, and the reaction mixture was stirred for 12 hours. did. The reaction mixture was extracted with ethyl acetate, and the solvent was distilled off from the ethyl acetate solution under reduced pressure. The obtained residue was subjected to silica gel column chromatography (CHC1: CH 2 O
3 3 3 3
11= 100 : 3〜10 : 1)で精製して、白色結晶の標題化合物を得た (収量 0. 26g, 0. 4 2mmol,収率 57%)。 11 = 100: 3 to 10: 1) to give the title compound as white crystals (yield 0.26 g, 0.4 2 mmol, 57% yield).
[0140] JH NMR(400MHz, DMSO— d ) δ : 0.06 (6H, s, TBDMS— CH ), 0.87 (9H, s, [0140] J H NMR (400 MHz, DMSO— d) δ: 0.06 (6H, s, TBDMS— CH), 0.87 (9H, s,
6 3  6 3
t-ブチノレ), 1.77 (3H, s, 5— CH 5'T), 1.79 (3H, s, 5— CH 3'T), 2.05—2.17  t-butinole), 1.77 (3H, s, 5—CH 5'T), 1.79 (3H, s, 5—CH 3'T), 2.05—2.17
3 3  3 3
(4H, m, 2'-H), 3.13-3.16 (4H, m, 5'— H), 3.70—3.84 (2H, m, 4'— H), 4.10— 4.12 (1H, m, 3'-H 5'T), 5.26-5.27 (1H, m, -OH), 5.98 (1H, t, 1'— H 5'T), (4H, m, 2'-H), 3.13-3.16 (4H, m, 5'— H), 3.70—3.84 (2H, m, 4'— H), 4.10— 4.12 (1H, m, 3'- H 5'T), 5.26-5.27 (1H, m, -OH), 5.98 (1H, t, 1'— H 5'T),
6.12-6.13 (1H, m, 3'-H 3'T), 6.45-6.47 (1H, m, l'-H 3'T), 7.48-7.50 (2 H, s, 6-H), 11.29-11.32 (2H, s, NH). C-NMR (100MHz, DMSO— d ) δ :— 5.47, —5.43, 12.10, 12.26, 18.08, 25.81, 6.12-6.13 (1H, m, 3'-H 3'T), 6.45-6.47 (1H, m, l'-H 3'T), 7.48-7.50 (2 H, s, 6-H), 11.29- 11.32 (2H, s, NH). C-NMR (100MHz, DMSO- d) δ:-5.47, -5.43, 12.10, 12.26, 18.08, 25.81,
6  6
37.67, 38.45, 41.78, 49.99, 63.46, 71.13, 79.19, 83.58, 83.76, 85.24, 85. 51, 109.41, 109.74, 135.49, 136.10, 150.34, 150.47, 157.53, 163.69, 163.74  37.67, 38.45, 41.78, 49.99, 63.46, 71.13, 79.19, 83.58, 83.76, 85.24, 85. 51, 109.41, 109.74, 135.49, 136.10, 150.34, 150.47, 157.53, 163.69, 163.74
FAB- HRMS(NBA) calcd for C H N O Si (MH"), 623.28707; found, 623.28606 FAB- HRMS (NBA) calcd for C H N O Si (MH "), 623.28707; found, 623.28606
[0141] (ii) 3,一ァミノ一(5,,一ァミノチミジリル)ゥレアチミジン(3'- amino- (5"- aminothymi dilyDureathymidineノの製造 [0141] (ii) Preparation of 3, 1-amino- (5 "-aminothymi dily Dureathymidine)
5, 0— 61^—ブチルジメチルシリルー3,一アミノー(5,,ーァミノチミジリル)ウレ ァチミジン(0. 90g, 1. 44mmol)の THF (14mL)溶液に、 TBAF (2mL, 2mmol, 1. 4当量)を加え、その反応混合物を 10時間撹拌した。その反応混合物から溶媒を 減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(CHC1: CH OH =  To a THF (14 mL) solution of 5, 0- 61 ^ -butyldimethylsilyl-3, monoamino- (5 ,,-aminominomidyryl) urethymidine (0.90 g, 1.44 mmol) in TBAF (2 mL, 2 mmol , 1.4 eq) and the reaction mixture was stirred for 10 hours. The solvent was distilled off from the reaction mixture under reduced pressure, and the resulting residue was subjected to silica gel column chromatography (CHC1: CH OH =
3 3 3 3
20 : 1〜5 : 1)で精製して、白色結晶の標題化合物を得た (収量 0. 72g, 1. 43mmo 1,収率 99%)。 20: 1 to 5: 1) to give the title compound as white crystals (yield 0.72 g, 1. 43 mmo 1, yield 99%).
[0142] JH NMR(400MHz, DMSO— d ) δ : 1.76 (3H, s, 5— CH 5'T), 1.78 (3H, s, 5 [0142] J H NMR (400MHz, DMSO— d) δ: 1.76 (3H, s, 5— CH 5'T), 1.78 (3H, s, 5
6 3  6 3
— CH 3'T), 1.94-2.20 (4H, m, 2'— H), 3.42—3.69 (4H, m, 5'— H), 4.10-4.24 ( — CH 3'T), 1.94-2.20 (4H, m, 2'— H), 3.42—3.69 (4H, m, 5'— H), 4.10-4.24 (
3 Three
2H, m, 4'-H), 5.04-5.07 (1H, m, OH 5'T), 5.27-5.28 (1H, m, OH 3'T), 6 .02 (1H, m, 3'-H 5'T), 6.09—6.15 (2H, m, 1'— H 5'T and 3'— H 3'T), 6.43— 6.45 (1H, m, 1'— H 3'T), 7.48 (1H, s, 6H 5'T), 7.73 (1H, s, 6H 3'T), 11. 28 (2H, s, NH).  2H, m, 4'-H), 5.04-5.07 (1H, m, OH 5'T), 5.27-5.28 (1H, m, OH 3'T), 6.02 (1H, m, 3'-H 5'T), 6.09—6.15 (2H, m, 1'— H 5'T and 3'— H 3'T), 6.43— 6.45 (1H, m, 1'— H 3'T), 7.48 (1H , s, 6H 5'T), 7.73 (1H, s, 6H 3'T), 11.28 (2H, s, NH).
13C-NMR (100MHz, DMSO— d ) δ : 12.07, 12.25, 37.66, 38.35, 49.78, 61.23, 13 C-NMR (100 MHz, DMSO- d) δ: 12.07, 12.25, 37.66, 38.35, 49.78, 61.23,
6  6
71.08, 83.33, 83.69, 85.43, 109.27, 109.74, 136.05, 150.39, 150.45, 157.6 3, 163.71, 163.73.  71.08, 83.33, 83.69, 85.43, 109.27, 109.74, 136.05, 150.39, 150.45, 157.6 3, 163.71, 163.73.
FAB- HRMS(NBA) calcd for C H N O (MH+), 509.1996; found, 509.1996. FAB- HRMS (NBA) calcd for CHNO (MH + ), 509.1996; found, 509.1996.
21 28 6 9  21 28 6 9
[0143] (iii) 5,一 O— (4, 4,一ジメトキシトリチル) 3,一アミノー(5,,一ァミノチミジリル) ウレフチ ンン ( — 0— (4,4— dimethoxytrityl)— — amino— (5 -aminothymidilyOureathym idine)の製造  [Iii] 5, 1, O— (4, 4, 1 dimethoxytrityl) 3, 1 amino (5, 1 aminothymidylyl) urephine (— 0— (4,4— dimethoxytrityl) — — amino— (5 -aminothymidilyOureathym idine)
3,一アミノー(5,,一ァミノチミジリル)ゥレアチミジン(0. 80g, 1. 57mmol)のピリジ ン(15. 7mL)溶液に、 DMAP (少量)および DMTrCl (0. 64g, 1. 90mmol, 1. 2 当量)を加え、その反応混合物を 1日間撹拌した。その反応混合物を酢酸ェチルで 希釈した。その酢酸ェチル溶液を、水(1回)、飽和 NaHCO水溶液(1回)および飽 3, 1-amino- (5, 1-aminothymidyryl) ureathymidine (0.80 g, 1.57 mmol) pyridi To the solution (15.7 mL) was added DMAP (small amount) and DMTrCl (0.64 g, 1.90 mmol, 1.2 eq) and the reaction mixture was stirred for 1 day. The reaction mixture was diluted with ethyl acetate. The ethyl acetate solution was diluted with water (1 ×), saturated aqueous NaHCO 3 (1 ×) and saturated.
3  Three
和 NaCl水溶液(1回)で順次洗浄し、その後硫酸ナトリウムで乾燥させた。その酢酸 ェチル溶液カゝら溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィ 一(n へキサン: AcOEt: MeOH = 9 : 1 : 0〜0: 1: 20)で精製して、白色結晶の標 題化合物を得た(収量 0. 30g, 0. 37mmol,収率 24%)。  The mixture was washed successively with aqueous NaCl solution (once) and then dried over sodium sulfate. The solvent was distilled off under reduced pressure from the ethyl acetate solution, and the resulting residue was purified by silica gel column chromatography (n hexane: AcOEt: MeOH = 9: 1: 0 to 0: 1: 20) to give a white The crystalline title compound was obtained (yield 0.30 g, 0.37 mmol, 24% yield).
[0144] JH NMR (400MHz, DMSO— d ) δ : 1.43 (3H, s, 5— CH 5'T), 1.73 (3H, s, [0144] J H NMR (400MHz, DMSO— d) δ: 1.43 (3H, s, 5— CH 5'T), 1.73 (3H, s,
6 3  6 3
5— CH 3'T), 1.98-2.32 (4H, m, 2'— H), 3.14—3.28 (4H, m, 5'— H), 3.72 (6H, 5— CH 3'T), 1.98-2.32 (4H, m, 2'— H), 3.14—3.28 (4H, m, 5'— H), 3.72 (6H,
3 Three
s, OCH ), 3.86-4.04 (2H, m, 4'— H), 4.07-4.36 (1H, m, 3'— H 5'T), 5.27 ( s, OCH), 3.86-4.04 (2H, m, 4'— H), 4.07-4.36 (1H, m, 3'— H 5'T), 5.27 (
3 Three
1H, m, OH), 6.03 (1H, t, J=6 Hz, 1 '— H 5'T), 6.03—6.16 (1H, m, 3'— H 3'T ), 6.38-6.40 (1H, m, 1 '— H 3'T), 6.80—7.30 (13H, m, DMTr), 7.49 (1H, s, 1H, m, OH), 6.03 (1H, t, J = 6 Hz, 1 '— H 5'T), 6.03—6.16 (1H, m, 3'— H 3'T), 6.38-6.40 (1H, m, 1 '— H 3'T), 6.80—7.30 (13H, m, DMTr), 7.49 (1H, s,
6- H 5'T), 7.53 (1H, s, 6— H 3'T), 11.29 (1H, s, NH 5'T), 11.34 (1H, s, NH 3'T). 6- H 5'T), 7.53 (1H, s, 6— H 3'T), 11.29 (1H, s, NH 5'T), 11.34 (1H, s, NH 3'T).
13C- NMR (100MHz, DMSO— d ) δ : 11.77, 12.08, 14.10, 20.78, 39.92, 40.13, 13 C-NMR (100MHz, DMSO- d) δ: 11.77, 12.08, 14.10, 20.78, 39.92, 40.13,
6  6
41.83, 49.75, 55.03, 59.77, 63.31 , 71.13, 83.30, 83.56, 83.75, 85.51 , 85. 78, 109.46, 109.76, 113.22, 123.93, 126.76, 127.72, 127.89, 129.77, 135.29 , 135.45, 135.71 , 136.08, 144.77, 149.63, 150.34, 150.48, 157.44, 158.13, 163.72.  41.83, 49.75, 55.03, 59.77, 63.31, 71.13, 83.30, 83.56, 83.75, 85.51, 85. 78, 109.46, 109.76, 113.22, 123.93, 126.76, 127.72, 127.89, 129.77, 135.29, 135.45, 135.71, 136.08, 144. 149.63, 150.34, 150.48, 157.44, 158.13, 163.72.
FAB-MS(NBA) calcd for C H N O (MH~), 809.31468; found, 809.31376.  FAB-MS (NBA) calcd for C H N O (MH ~), 809.31468; found, 809.31376.
42 46 6 11  42 46 6 11
[0145] (iv)ユニットィ匕合物 (X— 13)の製造  [0145] (iv) Manufacture of unitary compound (X-13)
5,一 O— (4, 4,一ジメトキシトリチル) 3,一ァミノ一(5,,一ァミノチミジリル)ゥレア チミジン(0. 72g, 0. 88mmol)のピリジン(8. 8mL)溶液に、 DMAP (少量)および 無水コハク酸(0. 29g, 2. 87mmol, 3. 0当量)をカ卩え、その反応混合物を 2日撹拌 した。前記反応混合物をクロ口ホルムで希釈した。そのクロ口ホルム溶液を、水(3回) で洗浄し、その後硫酸ナトリウムで乾燥させた。前記クロ口ホルム溶液から溶媒を減圧 留去した。得られた残渣の一部(0. 55g, 0. 61mmol, 4. 0当量)をー晚、真空乾燥 させた。その残渔の DMF ( 15mL)に CPG ( 1. 10g, 0. 15mmol, 136 /z mol/g) をカロえて膨潤させた。 30分後、その反応混合物に、さらに WSC (0. 12g, 0. 60mm ol, 1. 0当量)を加え、 3日間振とうした。その反応混合物を減圧ろ過した後、得られ たろ取物をピリジンで洗浄し、その後乾燥させた。前記ろ取物に、 DMAPの 0. 1Mピ リジンおよび無水酢酸混合物(ピリジン:無水酢酸 = 9 : 1)溶液(20mL)をカ卩え、室温 で 1日間振とうさせた。その反応混合物を減圧ろ過した後、得られたろ取物をメタノー ルおよびアセトンで順次洗浄し、その後乾燥させて、標題のユニットィ匕合物を得た (C PGの化合物の活性 = 38. 4 /z molZg) (収量 1. 09g)。 5, 1 O— (4, 4, 1-dimethoxytrityl) 3, 1-amino (5, 1-aminothymidyryl) urea thymidine (0.72 g, 0.88 mmol) in pyridine (8.8 mL) in DMAP (small amount) ) And succinic anhydride (0.29 g, 2. 87 mmol, 3.0 eq) were added and the reaction mixture was stirred for 2 days. The reaction mixture was diluted with chloroform. The black mouth form solution was washed with water (3 times) and then dried over sodium sulfate. The solvent was distilled off from the chloroform solution under reduced pressure. A part of the resulting residue (0.55 g, 0.61 mmol, 4.0 eq) was dried in vacuo. CPG (1.10g, 0.15mmol, 136 / z mol / g) to the residual DMF (15mL) Swelled and swollen. After 30 minutes, more WSC (0.12 g, 0.60 mmol, 1.0 equiv) was added to the reaction mixture and shaken for 3 days. The reaction mixture was filtered under reduced pressure, and the resulting filtered product was washed with pyridine and then dried. To the filtered product, a DMAP solution containing 0.1 M pyridine and acetic anhydride (pyridine: acetic anhydride = 9: 1) (20 mL) was added and shaken at room temperature for 1 day. The reaction mixture was filtered under reduced pressure, and the resulting filtrate was washed successively with methanol and acetone and then dried to give the title unity compound (activity of CPG compound = 38.4 / z molZg) (yield 1.09 g).
[0146] 一本鎖オリゴヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の、 3,, 5, —リン酸ジエステル結合が、 O— C ( = 0)— NH―、— NH-C ( = 0)— O また は NH— C ( = O)— NH で置き換えられた修飾一本鎖オリゴヌクレオチドの製造 標的タンパクはホモサピエンス'リボヌクレアーゼ L (Homo sapiens ribonuclease L ) (2',5 -oligoisoadenylate synthetase— dependent, RNase L) [gi:30795246]とし、 標的配列は開始コドン力 92番目から 114番目にあたる配列番号 1からなる塩基配列 とした。修飾一本鎖オリゴヌクレオチドとして、この配列番号 1からなる塩基配列に対し 、設計された siRNA配列の修飾 RNAセンス鎖(配列番号 2、 3および 4)と、修飾 RN Aアンチセンス鎖 (配列番号 5、 6および 7)とを製造した。比較として、配列番号 1から なる塩基配列に対し、設計された siRNA配列の RNAセンス鎖 (配列番号 8)および R NAアンチセンス鎖 (配列番号 9)を製造した。  [0146] 3,5, -Phosphate diester bond between the first and second nucleoside from the end of single-stranded oligonucleotide is O—C (= 0) —NH—, —NH-C (= 0) — O or NH— C (= O) — Production of modified single-stranded oligonucleotide replaced by NH Target protein is homosapiens ribonuclease L (Homo sapiens ribonuclease L) (2 ', 5-oligoisoadenylate synthetase—dependent, RNase L) [gi: 30795246], and the target sequence was a nucleotide sequence consisting of SEQ ID NO: 1 from 92 to 114 in the start codon strength. As a modified single-stranded oligonucleotide, a modified RNA sense strand (SEQ ID NO: 2, 3 and 4) of the designed siRNA sequence and a modified RNA antisense strand (SEQ ID NO: 5) are compared with the base sequence consisting of SEQ ID NO: 1. 6) and 7). For comparison, an RNA sense strand (SEQ ID NO: 8) and an RNA antisense strand (SEQ ID NO: 9) of the designed siRNA sequence were produced for the base sequence consisting of SEQ ID NO: 1.
[0147] (参考例 1 Is)  [0147] (Reference Example 1 Is)
なお、配列番号 8からなる RNAセンス鎖は、 3'末端の TT二量体配列を合成するた めに、市販の dT榭脂 (CPG榭脂に結合)(ダレンリサーチ社製)を使用した。それ以 外は、配列番号 8に従い、核酸自動合成機によるホスホロアミダイト法により、 CPG榭 脂に結合した配列番号 8のオリゴヌクレオチドを製造した。 1 μ molの前記 dT榭脂を 使用し、各縮合時間は 15分とした。  The RNA sense strand consisting of SEQ ID NO: 8 was a commercially available dT resin (coupled to CPG resin) (manufactured by Darren Research) in order to synthesize the TT dimer sequence at the 3 ′ end. Otherwise, according to SEQ ID NO: 8, the oligonucleotide of SEQ ID NO: 8 bound to the CPG resin was produced by the phosphoramidite method using an automatic nucleic acid synthesizer. 1 μmol of the dT resin was used, and each condensation time was 15 minutes.
[0148] 前記 CPG榭脂に結合した配列番号 8のオリゴヌクレオチドは、 DMTr基を除去した 状態で核酸自動合成機による合成を終了した。  [0148] The oligonucleotide of SEQ ID NO: 8 bound to the CPG resin was synthesized by an automatic nucleic acid synthesizer with the DMTr group removed.
[0149] 前記 CPG榭脂に結合したオリゴヌクレオチドは、それぞれ、エタノールおよびアン モ-ァ混合 (EtOH :NH = 1 : 3)溶液(2mL)中で 55°Cで 12時間反応させた。反応 混合物を減圧ろ過し、得られたろ液をエツペンドルフチューブにそれぞれ移し、その 後、減圧下で濃縮した。得られた濃縮物に、 1Mの TBAFの THF溶液(lmL)をそれ ぞれ加え、 12時間の間、振とうさせた。この反応溶液を、それぞれ 0. 1Mの TEAA 緩衝液で 30mLに希釈した。この希釈溶液を、 C— 18逆相カラム(Sep— Pak) (CH [0149] The oligonucleotides bound to the CPG resin were reacted at 55 ° C for 12 hours in ethanol and ammonia mixed (EtOH: NH = 1: 3) solution (2 mL), respectively. reaction The mixture was filtered under reduced pressure, and the resulting filtrate was transferred to an Eppendorf tube, and then concentrated under reduced pressure. To the obtained concentrate, 1M TBAF in THF (1 mL) was added, and the mixture was shaken for 12 hours. Each reaction solution was diluted to 30 mL with 0.1 M TEAA buffer. This diluted solution was added to a C-18 reverse phase column (Sep—Pak) (CH
3 Three
CN (lOmL)および 0. 1Mの TEAA緩衝液(lOmL)を予め順次流して、平衡化した )にそれぞれ通し、カラムに吸着させた。このカラムを滅菌水で洗浄して塩を除去し、 その後、ァセトニトリルと水の混合物(50%CH CN水(3mL) )でそれぞれ溶出した。 CN (lOmL) and 0.1 M TEAA buffer (lOmL) were sequentially passed in advance and equilibrated, respectively, and adsorbed onto the column. This column was washed with sterilized water to remove salts, and then eluted with a mixture of acetonitrile and water (50% CH CN in water (3 mL)).
3  Three
得られた溶出液を減圧下にそれぞれ濃縮した。得られた濃縮物を、充填溶液 (90% ホルムアミド中の 1 XTBE溶液)(100 L)にそれぞれ溶解させた。その溶液を、 20 %PAGE (20A, 6時間)(泳動用緩衝液は、 1 XTBE緩衝液を用いた)を用いてそ れぞれ分離し、目的とするオリゴヌクレオチドのバンドを切り出した。切りだしたバンド に、 0. 1Mの EDTA水溶液(20mL)をそれぞれカ卩え、ー晚放置した。この EDTA水 溶液の液体部分を、 C— 18逆相カラムクロマトグラフィー(Sep— Pak) (溶離液:水中 、 50%CH CN (3mL) )によりそれぞれ精製して、目的とするオリゴヌクレオチドを得  The obtained eluate was concentrated under reduced pressure. The resulting concentrates were each dissolved in packing solution (1% XTBE solution in 90% formamide) (100 L). The solutions were separated using 20% PAGE (20A, 6 hours) (1 XTBE buffer was used for the electrophoresis buffer), and the target oligonucleotide band was excised. Each cut band was filled with 0.1 M EDTA aqueous solution (20 mL) and allowed to stand. The liquid portion of this EDTA aqueous solution is purified by C-18 reverse phase column chromatography (Sep-Pak) (eluent: in water, 50% CH CN (3 mL)) to obtain the desired oligonucleotide.
3  Three
た。  It was.
[0150] 前記参考例において用いた、以下の溶液の調製方法について説明する。  [0150] A method for preparing the following solution used in the above Reference Example will be described.
[0151] 0. 1Mの TEAA緩衝液は、以下のようにして調製した。まず、 2Nの酢酸(114. 38 mL)およびトリェチルァミン(277. 6mL)の混合物に、水をカ卩えて 1Lにした。その溶 液に酢酸をカ卩えて、 pHを 7. 0に調整し、次いでその溶液を 20倍に希釈することによ り調製した。 [0151] A 0.1 M TEAA buffer was prepared as follows. First, water was added to 1 L in a mixture of 2N acetic acid (114. 38 mL) and triethylamine (277. 6 mL). The solution was prepared by adding acetic acid to adjust the pH to 7.0, and then diluting the solution 20 times.
[0152] 20%PAGEは、以下のようにして調製した。まず、 40%アクリルアミド (アクリルアミド : N, N,—メチレンビスアクリルアミド = 19 : 1)溶液(45mL)、尿素(37. 8g)および 1 0 XTBE緩衝液(9mL)を混合して溶解させ、その後水をカ卩えて 90mLとした。その 溶液に、 APS (62mg)を加えて溶解させた後、 TEMED (45 μ L)をカ卩えて振り混ぜ た。その溶液を、 1. 5mmスぺーサーを挟んで固定した 2枚ガラス板の間に流し込み 、 1時間以上静置して固化させて、 20%PAGEを得た。  [0152] 20% PAGE was prepared as follows. First, 40% acrylamide (acrylamide: N, N, -methylenebisacrylamide = 19: 1) solution (45 mL), urea (37.8 g) and 10 XTBE buffer solution (9 mL) are mixed and dissolved, and then water is added. Was adjusted to 90 mL. APS (62 mg) was added to the solution and dissolved, and then TEMED (45 μL) was added and shaken. The solution was poured between two glass plates fixed with a 1.5 mm spacer in between, and allowed to stand for 1 hour or more to solidify to obtain 20% PAGE.
[0153] 0. 1Mの EDTA水溶液は、 EDTA'4Na (l. 80g)を水(40mL)に溶解させること により調製した。 [0154] 40%アクリルアミド(アクリルアミド: N, N,一メチレンビスアクリルアミド = 19 : 1)溶液 は、アクリルアミド(190g)および N, N,一ビスアクリルアミド(10g)を [0153] A 0.1 M aqueous EDTA solution was prepared by dissolving EDTA'4Na (l. 80 g) in water (40 mL). [0154] A 40% acrylamide (acrylamide: N, N, monomethylene bisacrylamide = 19: 1) solution contains acrylamide (190 g) and N, N, monobisacrylamide (10 g).
水に溶解させて、 500mUこすることで調製した。  Prepared by dissolving in water and rubbing 500 mU.
[0155] 10 XTBE緩衝液は、 Tris (109g)、ホウ酸(55g)および EDTA' 2Na (7. 43g)を 水に溶解させて 1Uこすることで調製した。  [0155] 10 XTBE buffer was prepared by dissolving 1 U of Tris (109 g), boric acid (55 g) and EDTA '2Na (7.43 g) in water.
[0156] 得られたオリゴヌクレオチドを、水(lmL)に溶解させ、水で 100倍に希釈して希釈 液を調製した。その希釈液の吸光度(260nm)を測定し、収量を算出した。その吸光 度の ε値、 260nmにおける吸光度および収量を、表 1に示す。また、得られたオリゴ ヌクレオチドの分子量は、 MALDI—TOFZMSにより確認した。その結果も、表 1に 示す。  [0156] The obtained oligonucleotide was dissolved in water (lmL) and diluted 100-fold with water to prepare a diluted solution. The absorbance (260 nm) of the diluted solution was measured, and the yield was calculated. The absorbance ε value, absorbance at 260 nm, and yield are shown in Table 1. The molecular weight of the obtained oligonucleotide was confirmed by MALDI-TOFZMS. The results are also shown in Table 1.
[0157] (参考例 1 la)  [0157] (Reference Example 1 la)
配列番号 8の代わりに配列番号 9を用いた以外は、参考例 1 Isと同様にして、配 列番号 9からなる RNAアンチセンス鎖を製造した。  An RNA antisense strand consisting of SEQ ID NO: 9 was produced in the same manner as Reference Example 1 Is except that SEQ ID NO: 9 was used instead of SEQ ID NO: 8.
[0158] (参考例 1 2) [0158] (Reference Example 1 2)
配列番号 9からなる修飾一本鎖オリゴヌクレオチドの 5 '末端に32 Pラベルを施した以 外は、参考例 1— laと同様にして、配列番号 9からなる一本鎖オリゴヌクレオチドをそ れぞれ製造した。 Each single-stranded oligonucleotide consisting of SEQ ID NO: 9 was prepared in the same manner as Reference Example 1-la, except that the 5 'end of the modified single-stranded oligonucleotide consisting of SEQ ID NO: 9 was labeled with a 32 P label. Manufactured.
[0159] (参考例 1 3a) [0159] (Reference Example 1 3a)
同様に、フルォレセインで 5'末端が修飾された、配列番号 9からなる修飾一本鎖ォ リゴヌクレオチドは、 5,末端として、フルォレセインホスホロアミダイ HFluorescin Pho phoramidite) (グレン'リサーチ(Glen Research)社製)を追加する以外は、参考例 1 — Isと同様にして、フルォレセインで 5'末端が修飾された、配列番号 9からなる一本 鎖オリゴヌクレオチドを、製造した。  Similarly, the modified single-stranded oligonucleotide consisting of SEQ ID NO: 9 modified at the 5 ′ end with fluorescein is labeled with the fluorescein phosphoramidite HFluorescin Phophoramidite (Glen 'Research (Glen A single-stranded oligonucleotide consisting of SEQ ID NO: 9 was prepared in the same manner as in Reference Example 1—Is except that the 5 ′ end was modified with fluorescein, except that (Research) was added.
[0160] (参考例 1 4)  [0160] (Reference Example 1 4)
配列番号 8の代わりに配列番号 12を用いた以外は、参考例 1 Isと同様にして、 配列番号 12からなる RNA—本鎖を製造した。  An RNA-stranded chain consisting of SEQ ID NO: 12 was produced in the same manner as Reference Example 1 Is except that SEQ ID NO: 12 was used instead of SEQ ID NO: 8.
[0161] (実施例 1 Is) [0161] (Example 1 Is)
また、配列番号 2からなる修飾一本鎖オリゴヌクレオチドは、前記 dT榭脂の代わりに 、前記 (X— 11)で表されるユニットィ匕合物を用いた以外は、参考例 1 Isと同様にし て、配列番号 2からなる修飾一本鎖オリゴヌクレオチドを、製造した。 A modified single-stranded oligonucleotide consisting of SEQ ID NO: 2 is used instead of the dT resin. A modified single-stranded oligonucleotide consisting of SEQ ID NO: 2 was produced in the same manner as Reference Example 1 Is, except that the unity compound represented by (X-11) was used.
[0162] (実施例 1 la) [0162] (Example 1 la)
また、配列番号 5からなる修飾一本鎖オリゴヌクレオチドは、前記 dT榭脂の代わりに 、前記 (X— 11)で表されるユニットィ匕合物を用いた以外は、参考例 1 Isと同様にし て、配列番号 5からなる修飾一本鎖オリゴヌクレオチドを、製造した。  The modified single-stranded oligonucleotide consisting of SEQ ID NO: 5 was the same as Reference Example 1 Is except that the unity compound represented by (X-11) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 5 was produced.
[0163] (実施例 1 2s) [0163] (Example 1 2s)
また、配列番号 3からなる修飾一本鎖オリゴヌクレオチドは、前記 dT榭脂の代わりに 、前記 (X— 12)で表されるユニットィ匕合物を用いた以外は、参考例 1 Isと同様にし て、配列番号 3からなる修飾一本鎖オリゴヌクレオチドを、製造した。  The modified single-stranded oligonucleotide consisting of SEQ ID NO: 3 was the same as Reference Example 1 Is except that the unit compound represented by (X-12) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 3 was produced.
[0164] (実施例 1— 2a) [0164] (Example 1-2a)
また、配列番号 6からなる修飾一本鎖オリゴヌクレオチドは、前記 dT榭脂の代わりに 、前記 (X— 12)で表されるユニットィ匕合物を用いた以外は、参考例 1 Isと同様にし て、配列番号 6からなる修飾一本鎖オリゴヌクレオチドを、製造した。  The modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 was the same as Reference Example 1 Is except that the unity compound represented by (X-12) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 was produced.
[0165] (実施例 1 3s) [0165] (Example 1 3s)
また、配列番号 4力 なる修飾一本鎖オリゴヌクレオチドは、前記 dT榭脂の代わりに 、前記 (X— 13)で表されるユニットィ匕合物を用いた以外は、参考例 1 Isと同様にし て、配列番号 4力もなる修飾一本鎖オリゴヌクレオチドを、製造した。  The modified single-stranded oligonucleotide having SEQ ID NO: 4 was the same as Reference Example 1 Is except that the unity compound represented by (X-13) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide having SEQ ID NO: 4 was also produced.
[0166] (実施例 1 3a) [Example 1 1 3a]
また、配列番号 7からなる修飾一本鎖オリゴヌクレオチドは、前記 dT榭脂の代わりに 、前記 (X— 13)で表されるユニットィ匕合物を用いた以外は、参考例 1 Isと同様にし て、配列番号 7からなる修飾一本鎖オリゴヌクレオチドを、製造した。  The modified single-stranded oligonucleotide consisting of SEQ ID NO: 7 was the same as Reference Example 1 Is except that the unity compound represented by (X-13) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 7 was produced.
[0167] (実施例 1 4a) [Example 1 4a]
同様に、フルォレセインで 5 '末端が修飾された、配列番号 6からなる修飾一本鎖ォ リゴヌクレオチドは、 5,末端として、フルォレセインホスホロアミダイ HFluorescin Pho phoramidite) (ダレン 'リサーチ(Glen Research)社製)を追加する以外は、実施例 1 —2aと同様にして、フルォレセインで 5 '末端が修飾された、配列番号 6からなる修飾 一本鎖オリゴヌクレオチドを、製造した。 [0168] (実施例 1 5a) Similarly, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 modified at the 5 ′ end with fluorescein is labeled with a fluorescein phosphoramidite (HFluorescin Phophoramidite) (Glen's Research (Glen A modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 and having a 5 ′ end modified with fluorescein was prepared in the same manner as in Example 1-2a except that (Research) was added. [Example 1 5a]
配列番号 6からなる修飾一本鎖オリゴヌクレオチドの 5 '末端に32 Pラベルを施した以 外は、実施例 1— 2aと同様にして、配列番号 6からなる 5 '末端に32 Pラベル修飾一本 鎖オリゴヌクレオチドを製造した。 The modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 was modified with a 32 P label at the 5 'end consisting of SEQ ID NO: 6 in the same manner as Example 1-2a except that the 5' end was labeled with a 32 P label. Single-stranded oligonucleotides were produced.
[0169] (実施例 1 6)  [Example 1 1 6]
また、配列番号 10からなる修飾一本鎖オリゴヌクレオチドは、前記 dT榭脂の代わり に、前記 (X— 12)で表されるユニットィ匕合物を用いた以外は、参考例 1— Isと同様に して、配列番号 10からなる修飾一本鎖オリゴヌクレオチドを、製造した。  The modified single-stranded oligonucleotide consisting of SEQ ID NO: 10 was the same as Reference Example 1-Is except that the unity compound represented by (X-12) was used instead of the dT resin. Thus, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 10 was produced.
[0170] (実施例 1 7)  [0170] (Example 1 7)
また、配列番号 11からなる修飾一本鎖オリゴヌクレオチドは、前記 dT榭脂の代わり に、前記 (X— 13)で表されるユニットィ匕合物を用いた以外は、参考例 1— Isと同様に して、配列番号 11からなる修飾一本鎖オリゴヌクレオチドを、製造した。  Further, the modified single-stranded oligonucleotide consisting of SEQ ID NO: 11 was the same as Reference Example 1-Is except that the unity compound represented by (X-13) was used instead of the dT resin. Accordingly, a modified single-stranded oligonucleotide consisting of SEQ ID NO: 11 was produced.
[0171] なお、参照例 1 Isおよび 1 laで得られた配列番号 8および 9のオリゴヌクレオチ ドは、以下、それぞれ (dT s)および (dT a)と表記する。参考例 1 2で得られた 配列番号 9からなるオリゴヌクレオチドは、以下、(PdT—a)と表記する。参考例 1—3 aで得られた、フルォレセインで 5 '末端が修飾された配列番号 9からなるオリゴヌタレ ォチドは、以下、(FdT—a)と表記する。参考例 1—4で得られた配列番号 12のオリ ゴヌクレオチドは、以下、(d sa)と表記する。  [0171] The oligonucleotides of SEQ ID NOs: 8 and 9 obtained in Reference Example 1 Is and 1 la are hereinafter referred to as (dT s) and (dTa), respectively. The oligonucleotide consisting of SEQ ID NO: 9 obtained in Reference Example 12 is hereinafter referred to as (PdT-a). The oligonucleotide obtained from Reference Example 1-3a and consisting of SEQ ID NO: 9 modified at the 5 ′ end with fluorescein is hereinafter referred to as (FdT-a). The oligonucleotide of SEQ ID NO: 12 obtained in Reference Example 1-4 is hereinafter referred to as (d sa).
[0172] 実施例 1— Isおよび 1 - laで得られた配列番号 2および 5からなる修飾一本鎖オリ ゴヌクレオチドは、以下、それぞれ(11 s)および(11 a)と表記する。実施例 1—2 sおよび 1 - 2aで得られた配列番号 3および 6からなる修飾一本鎖オリゴヌクレオチド は、以下、それぞれ(12— s)および(12— a)と表記する。実施例 1— 3sおよび 1— 3a で得られた配列番号 4および 7からなる修飾一本鎖オリゴヌクレオチドは、以下、それ ぞれ(13— s)および(13— a)と表記する。実施例 1— 4aで得られた、フルォレセイン で 5,末端が修飾された、配列番号 6からなる修飾一本鎖オリゴヌクレオチドは、以下 、(F12— a)と表記する。実施例 1 5aで得られた配列番号 6からなる修飾一本鎖ォ リゴヌクレオチドは、以下、(P12 a)と表記する。実施例 1—6および 1—7で得られ た配列番号 10および 11からなる修飾一本鎖オリゴヌクレオチドは、以下、それぞれ( — sa)および( 17— sa)と表記する。 1] Example 1—Modified single-stranded oligonucleotides consisting of SEQ ID NOs: 2 and 5 obtained in Is and 1-la are hereinafter referred to as (11 s) and (11 a), respectively. The modified single-stranded oligonucleotides consisting of SEQ ID NOs: 3 and 6 obtained in Examples 1-2s and 1-2a are hereinafter referred to as (12-s) and (12-a), respectively. The modified single-stranded oligonucleotides consisting of SEQ ID NOs: 4 and 7 obtained in Examples 1-3s and 1-3a are hereinafter referred to as (13-s) and (13-a), respectively. The modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 obtained in Example 1-4a and modified at the end with fluorescein 5 is referred to as (F12-a). The modified single-stranded oligonucleotide consisting of SEQ ID NO: 6 obtained in Example 1 5a is hereinafter referred to as (P12a). The modified single-stranded oligonucleotides consisting of SEQ ID NOs: 10 and 11 obtained in Examples 1-6 and 1-7 are respectively represented by the following ( — Sa) and (17— sa). 1]
実施例または参考 配列番号 サンプル名 ε値 (X 吸光度 収量 Calcd MALDI-TOF/MS 例 1000) (OD260) 誦 1 M.W. observd 参考例 1一 1 s 8 (dT - s) 216.3 15.2 70.3 6717.10 6717.52 参考例 1— 1 a 9 (dT- a) 202.3 10.4 51.4 6567.93 6568.58 参考例 1一 4 1 2 (d - s a) 97.8 25.0 255.62 3117.94 ― 実施例 1一 1 s 2 ( 1 1 - s) 216.3 10.0 46.2 6680.15 6680.53 実施例 1一 1 a 5 (1 1 - a) 202.3 13.9 68.7 6530.98 6532.32 実施例 1一 2 s 3 ( 1 2 s) 216.3 14.5 67.0 6680.15 6683.54 実施例 1一 2 a 6 (1 - a) 202.3 19.8 97.9 6530.98 6531.28 実施例 1一 3 s 4 ( 1 3 - s) 216.3 8.3 38.4 6679.16 6679.16 実施例 1一 3 a 7 ( 1 3 - a) 202.3 10.1 49.9 6529.99 6538.39 実施例 1一 4 a 6 (F 1 2 - a) 216.3 14.5 67.4 7129.54 7127.63 実施例 1一 5 a 6 (P 1 2 - a) 202.3 12.5 57.8 7223.71 7220.40 実施例 1一 6 1 0 (1 6 - s a) 97.8 32.7 334.36 3080.99 3082.30 実施例 1一 7 1 1 (1 7 - s a) 97.8 20.8 212.68 3080.00 3081.60 Example or Reference SEQ ID No. Sample Name ε Value (X Absorbance Yield Calculated MALDI-TOF / MS Example 1000) (OD260) 誦 1 MW observd Reference Example 1 1 1 s 8 (dT-s) 216.3 15.2 70.3 6717.10 6717.52 Reference Example 1 — 1 a 9 (dT- a) 202.3 10.4 51.4 6567.93 6568.58 Reference Example 1 1 4 1 2 (d-sa) 97.8 25.0 255.62 3117.94 ― Example 1 1 1 s 2 (1 1-s) 216.3 10.0 46.2 6680.15 6680.53 Implementation Example 1 1 1 a 5 (1 1-a) 202.3 13.9 68.7 6530.98 6532.32 Example 1 1 2 s 3 (1 2 s) 216.3 14.5 67.0 6680.15 6683.54 Example 1 1 2 a 6 (1-a) 202.3 19.8 97.9 6530.98 6531.28 Example 1 1 3 s 4 (1 3-s) 216.3 8.3 38.4 6679.16 6679.16 Example 1 1 3 a 7 (1 3-a) 202.3 10.1 49.9 6529.99 6538.39 Example 1 1 4 a 6 (F 1 2-a ) 216.3 14.5 67.4 7129.54 7127.63 Example 1 1 5 a 6 (P 1 2-a) 202.3 12.5 57.8 7223.71 7220.40 Example 1 1 6 1 0 (1 6-sa) 97.8 32.7 334.36 3080.99 3082.30 Example 1 1 7 1 1 (1 7-sa) 97.8 20.8 212.68 3080.00 3081.60
[0174] 前記オリゴヌクレオチドの吸光度および収量は、以下のようにして測定した。 [0174] The absorbance and yield of the oligonucleotides were measured as follows.
[0175] 前記オリゴヌクレオチドを水に溶解させて、水溶液を調製し、その水溶液を、波長 2 60nmでの吸光度 (Abs )が、吸光度計の有効範囲になるように希釈した。光路長( [0175] The oligonucleotide was dissolved in water to prepare an aqueous solution, and the aqueous solution was diluted so that the absorbance (Abs) at a wavelength of 260 nm was within the effective range of the absorptiometer. Optical path length (
260  260
1) lcmの吸光度測定用石英セルを用い、室温にて Abs を測定した。 OD 値の計  1) Abs was measured at room temperature using a lcm absorbance measurement quartz cell. Total OD value
260 260 算には以下の式(1)を用いて算出した。  260 260 The calculation was performed using the following formula (1).
OD ( ε •M -mL"1) =Abs ( ε - cm- M) X V"1 (mL) X I"1 (cm) (1) OD (ε • M -mL " 1 ) = Abs (ε-cm- M) XV" 1 (mL) XI " 1 (cm) (1)
260 260  260 260
前記式(1)中、 Abs は、前記オリゴヌクレオチド溶液の波長 260nmにおける吸光  In the formula (1), Abs is the absorbance of the oligonucleotide solution at a wavelength of 260 nm.
260  260
度を示し、 Vは溶液の全量を示し、 1は光路長を示し、 Mはモル濃度を示す。  Degrees, V is the total volume of the solution, 1 is the optical path length, M is the molar concentration.
[0176] 前記式(1)中、前記オリゴヌクレオチドのモル吸光係数 ε 260は、以下の式(2)を 用いて算出した。 In the formula (1), the molar extinction coefficient ε 260 of the oligonucleotide was calculated using the following formula (2).
ε = 2{ ε (Ν Ν ) + ε (Ν Ν ) + · · · + ε (Ν Ν ) } - { ε (Ν ) + ε (Ν ) +… +  ε = 2 {ε (Ν Ν) + ε (Ν Ν) + · · + ε (Ν Ν)}-{ε (Ν) + ε (Ν) +… +
1ρ 2 2ρ 3 n-lp η 2 3  1ρ 2 2ρ 3 n-lp η 2 3
ε (Ν ) } (2)  ε (Ν)} (2)
η-1  η-1
前記式(2)中、 ε (Ν )はある核酸 Νの ε を示し、 ε (Ν Ν )はある核酸二量体  In the formula (2), ε (Ν) represents ε of a certain nucleic acid Ν, and ε (Ν)) represents a nucleic acid dimer.
η η 260 n-lp n  η η 260 n-lp n
N Nの ε を示す。なお、 (11 s)、 (11 a)、 (12— s)、 (12— a)、 (13— s)、 ( n-lp n 260  Shows ε of N N. (11 s), (11 a), (12—s), (12—a), (13—s), (n-lp n 260
13— a)ゝ (F12— s)、 (F12— a)ゝ (P— 12— a)および(P13— a)については、修飾 された 3 '末端部分の TT配列を UU配列として ε を計算した。  For 13—a) ゝ (F12—s), (F12—a) ゝ (P—12—a) and (P13—a), ε is calculated using the modified 3 ′ end TT sequence as the UU sequence. did.
260  260
[0177] 濃度 C (molZL)は、以下の式(3)を用いて算出した。  [0177] The concentration C (molZL) was calculated using the following equation (3).
C =Abs X ε "' Χ Γ1 (3) C = Abs X ε "'Γ Γ 1 (3)
260 260  260 260
[0178] 前記式(3)中、 Abs 、 ε 、および 1は、前記のとおりである。  In the formula (3), Abs, ε, and 1 are as described above.
260 260  260 260
修飾二本鎖オリゴヌクレオチドの製造  Production of modified double-stranded oligonucleotides
[0179] (実施例 2— 1) [0179] (Example 2-1)
実施例 1— Isで製造した、(11— s) (35nmmol)と実施例 1— laで製造した(11— a) (35nmol)を、アニーリングバッファー(10mMの Tris—HCl (pH7. 5)および 100 mMの NaCl)中に溶解させた。その溶液を 90°Cで 1分間、次いで 37°Cで 1時間の間 、インキュベートして、図 1に示すような、配列番号 2および配列番号 5からなる修飾二 本鎖オリゴヌクレオチドを得た。  Example 1— (11—s) (35 nmol) prepared in Is and (11—a) (35 nmol) prepared in Example 1—la were added to an annealing buffer (10 mM Tris—HCl (pH 7.5) and 100 mM NaCl). The solution was incubated at 90 ° C. for 1 minute and then at 37 ° C. for 1 hour to obtain a modified double-stranded oligonucleotide consisting of SEQ ID NO: 2 and SEQ ID NO: 5 as shown in FIG.
[0180] (実施例 2— 2) [0180] (Example 2—2)
(11 s)および(11 a)の代わりに、(12— s)および(12— a)を用いた以外は、実 施例 2—1と同様にして、図 1に示すような、配列番号 3および配列番号 6からなる修 飾二本鎖オリゴヌクレオチドを得た。 Except for using (12-s) and (12-a) instead of (11 s) and (11 a), In the same manner as in Example 2-1, a modified double-stranded oligonucleotide consisting of SEQ ID NO: 3 and SEQ ID NO: 6 as shown in FIG. 1 was obtained.
[0181] (実施例 2— 3) [0181] (Example 2-3)
(11 s)および(11 a)の代わりに、(13— s)および(13— a)を用いた以外は、実 施例 2—1と同様にして、図 1に示すような、配列番号 4および配列番号 7からなる修 飾二本鎖オリゴヌクレオチドを得た。  SEQ ID NO: as shown in Fig. 1 in the same manner as in Example 2-1, except that (13-s) and (13-a) were used instead of (11 s) and (11 a). A modified double-stranded oligonucleotide consisting of 4 and SEQ ID NO: 7 was obtained.
[0182] (実施例 2— 4) [0182] (Example 2—4)
(11— s)および(11— a)の代わりに、(12— s)および (F12— a)を用いた以外は、 実施例 2— 1と同様にして、図 1に示すような、配列番号 3と、配列番号 6にさらに 5 '末 端がフルォレセインで修飾された配列とからなる修飾二本鎖オリゴヌクレオチドを得 た。  An arrangement as shown in FIG. 1 is performed in the same manner as in Example 2-1, except that (12-s) and (F12-a) are used instead of (11-s) and (11-a). A modified double-stranded oligonucleotide composed of No. 3 and a sequence further modified with fluorescein at the 5 ′ end in SEQ ID NO: 6 was obtained.
[0183] (実施例 2— 5)  [0183] (Example 2-5)
実施例 1— 2sで製造した、(12— s) (80pmmol)と実施例 1— 5aで製造した (P12 -a) (80pmmol)を、アニーリングバッファー(10mMの Tris—HCl (pH7. 5)および lOOmMの NaCl)中に溶解させた。その溶液を 95°Cで 3分間加熱し、次いで室温で 1時間の間、インキュベートして、図 1に示すような、配列番号 3および 5 '末端に32 Pラ ベルを有する配列番号 6からなる修飾二本鎖オリゴヌクレオチドを得た。 (12—s) (80 pmmol) prepared in Example 1-2s and (P12-a) (80 pmmol) prepared in Example 1-5a were added to annealing buffer (10 mM Tris-HCl (pH 7.5) and lOOmM NaCl). The solution is heated at 95 ° C. for 3 minutes and then incubated at room temperature for 1 hour and consists of SEQ ID NO: 3 and SEQ ID NO: 6 with 32 P label at the 5 ′ end as shown in FIG. A modified double stranded oligonucleotide was obtained.
[0184] (実施例 2— 6) [0184] (Example 2—6)
(11 s)および(11 a)の代わりに、 (16— sa)および(16— sa)を用いた以外は、 実施例 2—1と同様にして、図 7に示すような、配列番号 10および配列番号 10からな る修飾二本鎖オリゴヌクレオチドを得た。  7 except that (16-sa) and (16-sa) were used in place of (11 s) and (11 a), and SEQ ID NO: 10 as shown in FIG. And a modified double-stranded oligonucleotide consisting of SEQ ID NO: 10 was obtained.
[0185] (実施例 2— 7) [0185] (Example 2-7)
(11 s)および(11 a)の代わりに、 (17— sa)および(17— sa)を用いた以外は、 実施例 2— 1と同様にして、図 7に示すような、配列番号 11および配列番号 11からな る修飾二本鎖オリゴヌクレオチドを得た。  In the same manner as in Example 2-1, except that (17-sa) and (17-sa) were used instead of (11 s) and (11 a), SEQ ID NO: 11 as shown in FIG. And a modified double-stranded oligonucleotide consisting of SEQ ID NO: 11 was obtained.
[0186] (参考例 2— 1) [0186] (Reference Example 2-1)
(11— s)および(11— a)の代わりに、(dT—s)および (dT—a)を用いた以外は、実 施例 2—1と同様にして、図 1に示すような、配列番号 8および配列番号 9からなる二 本鎖オリゴヌクレオチドを得た。 As in Example 2-1, except that (dT-s) and (dT-a) were used instead of (11-s) and (11-a), Two consisting of SEQ ID NO: 8 and SEQ ID NO: 9 A double-stranded oligonucleotide was obtained.
[0187] (参考例 2— 2)  [0187] (Reference Example 2-2)
( 11 s)および( 11 a)の代わりに、(dT s)および (PdT a)を用いた以外は、 実施例 2—1と同様にして、図 1に示すような、配列番号 8および配列番号 9からなる 二本鎖オリゴヌクレオチドを得た。  In the same manner as in Example 2-1, except that (dT s) and (PdT a) were used in place of (11 s) and (11 a), SEQ ID NO: 8 and SEQ ID NO: A double-stranded oligonucleotide consisting of number 9 was obtained.
[0188] (参考例 2— 3)  [0188] (Reference Example 2-3)
(11 s)および(11 a)の代わりに、 (d sa)および (d sa)を用いた以外は、実 施例 2—1と同様にして、図 7に示すような、配列番号 12および配列番号 12からなる 二本鎖オリゴヌクレオチドを得た。  As in Example 2-1, except that (d sa) and (d sa) were used instead of (11 s) and (11 a), SEQ ID NO: 12 and A double-stranded oligonucleotide consisting of SEQ ID NO: 12 was obtained.
[0189] (修飾二本鎖オリゴヌクレオチドの評価)  [0189] (Evaluation of modified double-stranded oligonucleotide)
1.細胞内での RNaseL発現の評価  1. Evaluation of intracellular RNaseL expression
(1) 細胞培養  (1) Cell culture
細胞培養 10%FBS、ペニシリン(100ユニット Zml)およびストレプトマイシン(0. 1 mgZml)を補充した RPMI1640培地中で、 37°Cで HT1080細胞を増殖させた。指 数増殖を維持するため、細胞を定期的に継代した。約 25%コンフルエンシーでのト ランスフエクシヨンの 24時間前に、 HT1080細胞をトリプシン処理し、抗生物質を含ま な 、新し 、培地を用いて希釈し、 35ミリディッシュに移した(2mlZディッシュ)。  Cell culture HT1080 cells were grown at 37 ° C in RPMI 1640 medium supplemented with 10% FBS, penicillin (100 units Zml) and streptomycin (0.1 mgZml). Cells were passaged regularly to maintain exponential growth. HT1080 cells were trypsinized 24 hours before transfer at approximately 25% confluency, diluted with medium without antibiotics, and transferred to 35 ml dishes (2 ml Z dishes) ).
[0190] (2) 修飾二本鎖オリゴヌクレオチドの細胞へのトランスフエクシヨン [0190] (2) Transfection of modified double-stranded oligonucleotide into cells
リポフエクタミン 2000試薬 (インビトロジェン (Invitrogen)社製)を用いて、接着細胞 株に対して以下に記載する方法で修飾二本鎖オリゴヌクレオチドのトランスフエクショ ンを行った。まず、 RPMI1640培地 (抗生物質および FBSを含まない)に、二本鎖ォ リゴヌクレオチド(前記培地 250 1当たり 50、 ΙΟΟηΜまたは 200nM) (実施例 2— 2 得られた二本鎖オリゴヌクレオチド)を溶解させ、 5分間室温でインキュベートした。そ の溶液に、 50倍希釈した等量のリボフヱクタミン 2000試薬を添加し、その後 20分間 室温でインキュベートした。得られた溶液のうち、 500 1を採取して、前記(1)で調製 した 35ミリディッシュへ移してトランスフエクシヨンを行った。トランスフエクシヨンから 24 時間インキュベーション後および 48時間インキュベーション後に、その 35ミリディッシ ュ中の細胞をインキュベートした。なお、その後、実施例 2— 3または参考例 2—1で 得られた二本鎖オリゴヌクレオチドのいずれについても、トランスフエクシヨンされた細 胞に対する毒性は確認されな力つた。 The modified double-stranded oligonucleotide was transfected to the adherent cell line using Lipofuectamine 2000 reagent (Invitrogen) by the method described below. First, double-stranded oligonucleotide (50, ΙΟΟηΜ or 200 nM per 250 1 of the medium) (Example 2-2 obtained double-stranded oligonucleotide) was dissolved in RPMI1640 medium (without antibiotics and FBS). And incubated for 5 minutes at room temperature. To the solution, an equal volume of ribofactoramine 2000 reagent diluted 50-fold was added, and then incubated for 20 minutes at room temperature. Of the resulting solution, 5001 was collected and transferred to the 35 millidish prepared in (1) above for transfection. The cells in the 35 millidivision were incubated 24 hours and 48 hours after transfection. After that, in Example 2-3 or Reference Example 2-1 None of the resulting double-stranded oligonucleotides was confirmed to be toxic to the transfected cells.
[0191] (3) ウェスタンブロット法による RNaseL発現のモニター [0191] (3) Monitoring RNaseL expression by Western blotting
トランスフエクシヨンから 24時間インキュベーション後および 48時間インキュベーショ ン後に得られた HT1080細胞をトリプシン処理し、冷 PBS (—)で 2回洗浄した。その 後、得られた細胞ペレットを 2倍量の低浸透圧緩衝液 A (0. 5% (vZv)のノ-デット( Nonidet) P— 40、 20mMの Hepes (pH7. 5)、 10mMの CH CO K、 15mMの(CH  HT1080 cells obtained after 24 hours incubation and 48 hours incubation from transfection were trypsinized and washed twice with cold PBS (—). The resulting cell pellet was then added to 2 volumes of hypotonic buffer A (0.5% (vZv) Nonidet P-40, 20 mM Hepes (pH 7.5), 10 mM CH. CO K, 15mM (CH
3 2  3 2
CO ) Mg、 ImMのジチオトレイトール、 ImMのフエ二ルメチルスルホニルフルオラ CO) Mg, ImM dithiothreitol, ImM phenylmethylsulfonylfluora
3 2 2 3 2 2
イド、 10 gZmlのァプロチュン)に懸濁させた。  Id, 10 gZml of Aprotune).
[0192] 得られた細胞懸濁液を 10分間氷上でインキュベートした後、タイト'フィッティング- カフス 'ドウ ~~ス'ホモンナイザ ~~ (Ί lght— fitting glass dounce homogenizer)を用 ヽ て氷上で 30回上下へストロークしてホモゲナイズした。得られたホモジナイズ液を、 超遠心機(lOOOO X g)を用いて 4°Cで 10分間遠心した。その後、遠心分離された上 清液を回収し、その上清液に等量の 2 Xサンプル緩衝液(0. 14Mの Tris—HCl p H6. 8、0. 2% (vZv)のグリセロール、 2. 8% (vZv)の SDS、適量のブロモフヱノ ール 'ブルー)を加え、沸騰水中で 5分間インキュベートした。インキュベートされた上 清液を 7. 5%のポリアクリルアミドゲル (ATTO)を用いて 20mA、 70分間、電気泳動 により分離し、その後、 PVDFメンブレン (ミリポア社 (Millipore)製)へタンパクを転写 した。 [0192] After incubating the resulting cell suspension on ice for 10 minutes, use a tight 'fitting-cuffs' Dough ~~ 's' homogenizer ~~ (Ίlght—fitting glass dounce homogenizer) 30 times on ice Stroke up and down to homogenize. The obtained homogenized solution was centrifuged at 4 ° C for 10 minutes using an ultracentrifuge (lOOOO X g). The centrifuged supernatant is then collected, and an equal volume of 2X sample buffer (0.14M Tris—HCl p H6.8, 0.2% (vZv) glycerol, 2 8% (vZv) SDS, appropriate amount of bromophenol (blue) was added and incubated in boiling water for 5 minutes. The incubated supernatant was separated by electrophoresis using 7.5% polyacrylamide gel (ATTO) at 20 mA for 70 minutes, and then the protein was transferred to a PVDF membrane (Millipore).
[0193] 前記 PVDFメンブレンを、 5%の牛血清アルブミンで 25°Cで 1時間の間インキュべ ートした。その後、前記 PVDFメンブレンを TBST(200mMの Tris pH7. 6、 1. 37 Mの塩ィ匕ナトリウム、 0. 1%の Tween— 20)で 2回リンスした。その PVDFメンブレン を、 0. 5 gZmlの抗 RNaseLモノクローナル抗体で 4°C、 16時間インキュベートし た。その後、前記 PVDFメンブレンを TBSTで 15分間 1回、次いで 5分間 3回、順次 洗浄した。その PVDFメンブレンを、次いでセィヨウヮザビ 'ペルォキシダーゼ(Horse radish peroxidase)で標識された抗マウス IgG (500 μ gZmLを、 100000倍希釈し た)で 25°Cで 1時間インキュベートした。その後、前記 PVDFメンブレンを TBSTで 15 分間 1回、次いで 5分間 3回、順次洗浄した。 [0194] 前記 PVDFメンブラン上のセィヨウヮザビ ·ペルォキシダーゼ標識の検出には、 EC Lプラス'ウェスタン'ブロッテイング検出キット(prus western blotting detection kit ) (アマシャム(Amersham)社製)を用いて行った。前記 PVDFメンブラン上のセィヨウ ヮザビ.ペルォキシダーゼ標識の定量は、デンシトメーター(Kodak Digital Science DC290 Zoom Digital Camera)を用いて行った。二本鎖オリゴヌクレオチドでの処理 を行って!/ヽな 、細胞における RNaseL強度を 1として、二本鎖オリゴヌクレオチドでの 処理細胞の RNaseL強度の相対比を求めた。なお、求めた数値は GAPDH強度を 1 とし標準化した。得られた結果を図 2 (a)に示す。 [0193] The PVDF membrane was incubated with 5% bovine serum albumin at 25 ° C for 1 hour. Thereafter, the PVDF membrane was rinsed twice with TBST (200 mM Tris pH 7.6, 1.37 M sodium chloride sodium salt, 0.1% Tween-20). The PVDF membrane was incubated with 0.5 gZml of anti-RNaseL monoclonal antibody at 4 ° C for 16 hours. Thereafter, the PVDF membrane was washed with TBST once for 15 minutes and then 3 times for 5 minutes. The PVDF membrane was then incubated for 1 hour at 25 ° C. with anti-mouse IgG (500 μg ZmL diluted 100000 fold) labeled with Horse radish peroxidase. Thereafter, the PVDF membrane was washed with TBST once for 15 minutes and then 3 times for 5 minutes. [0194] The detection of the labeling of Candida peroxidase on the PVDF membrane was performed using an ECL plus 'Western' blotting detection kit (manufactured by Amersham). Quantification of C. peroxidase labeling on the PVDF membrane was performed using a densitometer (Kodak Digital Science DC290 Zoom Digital Camera). When the treatment with the double-stranded oligonucleotide was carried out, the relative ratio of the RNase L strength of the cells treated with the double-stranded oligonucleotide was determined by setting the RNase L strength in the cells to 1. The obtained values were standardized with the GAPDH intensity set to 1. The obtained results are shown in Fig. 2 (a).
[0195] (4) 実施例 2— 2で得られた二本鎖オリゴヌクレオチドの代わりに、実施例 2— 3お よび参考例 2— 1でそれぞれ得られた二本鎖オリゴヌクレオチドを用いる以外は、 (1) 〜(3)と同様にして、二本鎖オリゴヌクレオチドでの処理細胞の RNaseL強度の相対 比を求めた。その結果は、図 2 (b)および (c)にそれぞれ示す。  [0195] (4) Instead of the double-stranded oligonucleotide obtained in Example 2-2, the double-stranded oligonucleotide obtained in Example 2-3 and Reference Example 2-1 was used, respectively. In the same manner as in (1) to (3), the relative ratio of the RNase L intensity of the cells treated with the double-stranded oligonucleotide was determined. The results are shown in Figures 2 (b) and (c), respectively.
[0196] 前記図 2 (a)〜(c)に示すように、本発明の修飾二本鎖オリゴヌクレオチドは、非修 飾二本鎖オリゴヌクレオチドと比較して、 RNaseLの発現を抑制する効果が著しく向 上していることが確認できた。このことは、本発明の修飾二本鎖オリゴヌクレオチドが、 細胞膜の透過性に優れ、かつ細胞内での安定性または滞留性が向上したためと考 えられる。  [0196] As shown in Figs. 2 (a) to (c), the modified double-stranded oligonucleotide of the present invention has an effect of suppressing the expression of RNaseL as compared to the unmodified double-stranded oligonucleotide. It was confirmed that there was a marked improvement. This is presumably because the modified double-stranded oligonucleotide of the present invention was excellent in cell membrane permeability and improved in stability or retention in cells.
[0197] 2.細胞毒性の評価  [0197] 2. Evaluation of cytotoxicity
(1) 1. (2)に記載のようにして実施例 2— 2で得られた修飾二本鎖オリゴヌクレオチ ドをトランスフエクシヨンした細胞にっ 、て、その数を血球計数板を用いて位相差顕微 鏡下で計数した。そのトランスフエクシヨンされた細胞の生存率は、トリパンブルー色 素排除試験法によって判定した。その際、細胞膜機能の低下により色素排除ができ ず、その結果トリパンブルーによって染色される細胞を死細胞とした。なお、生細胞 数の総細胞数に対する百分率 (%)を生存率とした。その結果、前記修飾二本鎖オリ ゴヌクレオチドのいずれの濃度(50nM、 100nM、および 200nM)においても、細胞 毒性は観察されな力つた。  (1) 1. Using the hemocytometer, count the number of cells in the modified double-stranded oligonucleotide obtained in Example 2-2 as described in (2). Counting was performed under a phase contrast microscope. The viability of the transfected cells was determined by the trypan blue dye exclusion test. At that time, the dye could not be eliminated due to a decrease in cell membrane function, and as a result, cells stained with trypan blue were regarded as dead cells. The percentage of the total number of viable cells (%) was defined as the survival rate. As a result, no cytotoxicity was observed at any concentration (50 nM, 100 nM, and 200 nM) of the modified double-stranded oligonucleotide.
[0198] (2) 実施例 2— 2で得られた二本鎖オリゴヌクレオチドの代わりに、実施例 2— 1、 2  [0198] (2) Instead of the double-stranded oligonucleotide obtained in Example 2-2, Examples 2-1 and 2
3および参考例 2— 1でそれぞれ得られた二本鎖オリゴヌクレオチドを用いる以外 は、 2. (1)と同様にして、細胞毒性を評価した。その結果、前記二本鎖オリゴヌタレ ォチドのいずれの濃度(50nM、 100nM、および 200nM)においても、細胞毒性は 観察されなかった。 3 and Reference Example 2-1 Other than using the double-stranded oligonucleotide obtained in 1 2. Cytotoxicity was evaluated in the same manner as in (1). As a result, no cytotoxicity was observed at any concentration of the double-stranded oligonucleotide (50 nM, 100 nM, and 200 nM).
[0199] 3.細胞内での RNaseLに対する IC の測定 [0199] 3. Measurement of IC for RNaseL in cells
50  50
(1) 1. (2)において用いる二本鎖オリゴヌクレオチドの濃度を、前記培地 250 1 当たり 50、 ΙΟΟηΜまたは 200nMの代わりに 1ηΜ、 5nMまたは ΙΟηΜを用いる以外 は、前記 1. (1)〜(4)と同様にして二本鎖オリゴヌクレオチドでの処理細胞の RNase L強度の相対比を求めた。その結果を図 3に示す。  (1) 1. The concentration of the double-stranded oligonucleotide used in (2) is the same as that described in 1. (1) to (1) above except that 1ηΜ, 5nM or ΙΟηΜ is used instead of 50, ΙΟΟηΜ or 200nM per 250 1 of the medium. In the same manner as in 4), the relative ratio of the RNase L intensity of the cells treated with the double-stranded oligonucleotide was determined. The results are shown in Fig. 3.
[0200] (2) また、実施例 2— 2で得られた二本鎖オリゴヌクレオチドの代わりに、実施例 2  [0200] (2) Further, instead of the double-stranded oligonucleotide obtained in Example 2-2, Example 2
3および参考例 2— 1でそれぞれ得られた二本鎖オリゴヌクレオチドを用いる以外 は、 3. (1)と同様にして、二本鎖オリゴヌクレオチドでの処理細胞の RNaseL強度の 相対比を求めた。その結果を図 3に示す。  3. Relative ratio of RNase L intensity of cells treated with double-stranded oligonucleotide was determined in the same manner as in (1) except that the double-stranded oligonucleotide obtained in 3 and Reference Example 2-1 was used. . The results are shown in Fig. 3.
[0201] (3)図 3のグラフから、 IC を求め、表 2に示す。  [0201] (3) IC was calculated from the graph of FIG.
50  50
[0202] [表 2]  [0202] [Table 2]
Figure imgf000056_0001
Figure imgf000056_0001
[0203] 前記表 2に示すように、本発明の修飾二本鎖オリゴヌクレオチドは、非修飾二本鎖 オリゴヌクレオチドと比較して、 RNaseLの発現を抑制する効果が著しく向上して 、る ことが確認できた。この著しい向上は、本発明の修飾二本鎖オリゴヌクレオチドが、細 胞膜の透過性に優れ、ヌクレアーゼ耐性が向上したことから予想される以上の優れた 効果である。 [0203] As shown in Table 2 above, the modified double-stranded oligonucleotide of the present invention has a markedly improved effect of suppressing the expression of RNaseL compared to the unmodified double-stranded oligonucleotide. It could be confirmed. This remarkable improvement is more than expected because the modified double-stranded oligonucleotide of the present invention has excellent cell membrane permeability and improved nuclease resistance.
[0204] 4.細胞内への修飾二本鎖オリゴヌクレオチドの導入効果の評価  [0204] 4. Evaluation of introduction effect of modified double-stranded oligonucleotide into cells
(1) 免疫染色法による細胞内 RNaseLの観察  (1) Observation of intracellular RNaseL by immunostaining
トランスフエクシヨンを行う 24時間前に、ポリ L—リジン (シグマ(Sigma)社製)によ りコートしたカバーガラスを 35ミリディッシュへ入れた。その 35ミリディッシュ内のカバ 一ガラス上へ、容量 2mLの HT1080細胞溶液を添カ卩し、その後培養することにより、 HT1080細胞をカバーガラス上へ予め固定した。 A cover glass coated with poly L-lysine (manufactured by Sigma) was placed in a 35 millidish 24 hours before the transfer. By adding 2 mL of the HT1080 cell solution onto the cover glass in the 35 millidish, and then culturing it, HT1080 cells were pre-fixed on a cover glass.
[0205] 抗生物質および FBSを含まな!/、RPMI1640培地(GIBCO社製)で、実施例 2— 2 で得られた二本鎖オリゴヌクレオチドを希釈し、その後 5分間室温でインキュベートし た (希釈濃度 =培地 250 1あたり二本鎖オリゴヌクレオチド ΙΟηΜまたは 50nM)。 別途、抗生物質および FBSを含まない RPMI1640培地(GIBCO社製)(250 1)で 、リポフエクタミン 2000試薬 (インビトロジェン社製)(5 /z g)を希釈し、その後 5分間室 温でインキュベートした。インキュベート後の二本鎖オリゴヌクレオチド希釈溶液 250 μ 1と、インキュベート後のリポフエクタミン 2000試薬溶液 250 1とを混合した後、そ の混合液を 20分間室温でインキュベートした。その混合液 500 1を、先に調製した HT1080細胞を予め固定したカバーガラスへ加え、トランスフエクシヨンを行った。  [0205] The double-stranded oligonucleotide obtained in Example 2-2 was diluted with RPMI1640 medium (GIBCO) without antibiotics and FBS !, and then incubated at room temperature for 5 minutes (dilution) Concentration = Double-stranded oligonucleotide 培 地 ηΜ or 50 nM per medium 250). Separately, Lipofectamine 2000 reagent (Invitrogen) (5 / zg) was diluted with RPMI1640 medium (GIBCO) (2501) not containing antibiotics and FBS, and then incubated at room temperature for 5 minutes. After the incubation, 250 μ1 of the diluted double-stranded oligonucleotide solution was mixed with Lipofectamine 2000 reagent solution 2501 after the incubation, and the mixture was incubated at room temperature for 20 minutes. The mixture 5001 was added to a cover glass preliminarily fixed with the HT1080 cells prepared previously, and transfection was performed.
[0206] トランスフエクシヨンから 24時間の間インキュベートした後、前記カバーガラス上の Η T1080細胞を PBS (―)で 2回洗浄した。その後、前記カバーガラス上の細胞を 4% のパラホルムアルデヒドで 4°Cで 15分間インキュベートした。 PBS (―)で 3回洗浄後、 前記カバーガラス上の細胞を 0. 2%の Triton— X 100溶液で室温で 5分間インキ ュペートした。 PBS (—)で 3回洗浄後、前記カバーガラス上の細胞を、 0. 5%の牛血 清アルブミンで室温で 30分間インキュベートした。前記カバーガラス上の細胞を PBS (一)で 3回洗浄後、 1 μ gZmlの抗 RNaseLモノクローナル抗体で室温で 60分間ィ ンキュペートした。そのカバーガラス上の細胞を、 PBS (—)で 3回洗浄した。 10 g Zmlの蛍光 (Alexa 488)標識マウス IgGを前記カバーガラス上の細胞に添カロし、 室温で 30分間インキュベートした。その後、 PBS (—)で 3回洗浄後、前記カバーガラ ス上の細胞を直ちに蛍光顕微鏡にて観察を行った。その結果を、図 5に示す。対照と して、実施例 2— 2で得られた二本鎖オリゴヌクレオチドの代わりに参考例 2— 1で得 られた二本鎖オリゴヌクレオチドを用いた以外は、前記と同様として得られた結果も示 す。  [0206] After incubation from the transfection for 24 hours, the T1080 cells on the cover glass were washed twice with PBS (-). Thereafter, the cells on the coverslips were incubated with 4% paraformaldehyde at 4 ° C for 15 minutes. After washing three times with PBS (-), the cells on the cover glass were incubated with 0.2% Triton-X 100 solution at room temperature for 5 minutes. After washing 3 times with PBS (-), the cells on the coverslips were incubated with 0.5% bovine serum albumin for 30 minutes at room temperature. The cells on the cover glass were washed 3 times with PBS (1) and then incubated with 1 μg Zml of anti-RNase L monoclonal antibody for 60 minutes at room temperature. Cells on the cover glass were washed 3 times with PBS (—). 10 g of Zml of fluorescent (Alexa 488) labeled mouse IgG was added to the cells on the cover glass and incubated at room temperature for 30 minutes. Then, after washing 3 times with PBS (-), the cells on the cover glass were immediately observed with a fluorescence microscope. The result is shown in FIG. As a control, the results obtained in the same manner as above except that the double-stranded oligonucleotide obtained in Reference Example 2-1 was used instead of the double-stranded oligonucleotide obtained in Example 2-2. Also shown.
[0207] 前記図 5に示すように、本発明の修飾二本鎖オリゴヌクレオチドは、非修飾二本鎖 オリゴヌクレオチドと比較して、顕著な RNaseL蛍光強度の減少、すなわち RNaseL の発現に対する強 、抑制効果を示して 、ることが確認できた。  [0207] As shown in Fig. 5 above, the modified double-stranded oligonucleotide of the present invention has a significant decrease in RNaseL fluorescence intensity, that is, strong and suppressed RNaseL expression compared to the unmodified double-stranded oligonucleotide. It was confirmed that the effect was demonstrated.
[0208] (2) 蛍光顕微鏡による修飾二本鎖オリゴヌクレオチドの細胞内導入効果の算出法 実施例 2— 2で得られた二本鎖オリゴヌクレオチド(10nMまたは 50nM)の濃度を、 ΙΟηΜの代わりに 50nMまたは 25nMにすること、および実施例 2— 2で得られた二 本鎖オリゴヌクレオチドの代わりに実施例 2— 4で得られたフルォロセイン標識された 二本鎖オリゴヌクレオチドを用いた以外は、 4 (1)に記載のようにして、二本鎖オリゴヌ クレオチドをカバーガラス上の HT1080細胞へトランスフエクシヨンした。 [0208] (2) Calculation method of intracellular introduction effect of modified double-stranded oligonucleotide by fluorescence microscope The concentration of the double-stranded oligonucleotide (10nM or 50nM) obtained in Example 2-2 was changed to 50nM or 25nM instead of ΙΟηΜ, and the concentration of the double-stranded oligonucleotide obtained in Example 2-2 Instead, the double-stranded oligonucleotide was transferred to HT1080 cells on the cover glass as described in 4 (1) except that the fluorescein-labeled double-stranded oligonucleotide obtained in Example 2-4 was used. Transfusion.
[0209] トランスフエクシヨンから 24時間の間インキュベートした後、前記カバーガラス上の H T1080細胞を PBS (―)で 2回洗浄した。その後、前記カバーガラス上の細胞を 4% のパラホルムアルデヒドで 4°Cで 15分間インキュベートした。 PBS (―)で 3回洗浄後、 前記カバーガラス上の細胞を直ちに蛍光顕微鏡にて観察を行った。その結果を、図 4に示す。得られた結果から、総細胞数当たりのフルォレセイン標識二本鎖オリゴヌク レオチドポジティブな細胞数の割合を算出した。その結果を表 3に示す。また、コント ロールとしては、前記混合液の代わりに、インキュベート後のリポフエクタミン 2000試 薬溶液 500 μ 1のみを先に調製した HT1080細胞を予め固定したカバーガラスへカロ え、トランスフエクシヨンを行った HT1080細胞で得られた結果も図 4に示す。  [0209] After incubation for 24 hours from the transfection, HT1080 cells on the cover glass were washed twice with PBS (-). Thereafter, the cells on the coverslips were incubated with 4% paraformaldehyde at 4 ° C for 15 minutes. After washing 3 times with PBS (-), the cells on the cover glass were immediately observed with a fluorescence microscope. The results are shown in Fig. 4. From the obtained results, the ratio of the number of cells positive for fluorescein-labeled double-stranded oligonucleotide per total number of cells was calculated. The results are shown in Table 3. Also, as a control, instead of the above mixture, only HT1080 cells prepared previously with 500 μl of lipofucamine amine reagent solution after incubation were placed on a previously fixed cover glass, and HT1080 subjected to transfection. The results obtained with the cells are also shown in FIG.
[0210] [表 3]  [0210] [Table 3]
Figure imgf000058_0001
Figure imgf000058_0001
[0211] 前記図 4および前記表 3に示すように、本発明の修飾二本鎖オリゴヌクレオチドは、 顕著な RNAaseL蛍光強度の減少、すなわち、 RNAaseLの抑制が確認された。 [0211] As shown in FIG. 4 and Table 3, the modified double-stranded oligonucleotide of the present invention was confirmed to have a remarkable decrease in RNAaseL fluorescence intensity, ie, suppression of RNAaseL.
[0212] 5.修飾一本鎖および二本鎖オリゴヌクレオチドのェキソヌクレアーゼ耐性の評価 実施例 1― 5aで得られた配列番号 6からなる修飾一本鎖オリゴヌクレオチド(5 '末 端を32 Pでラベルしたもの)、参考例 1—2で得られた配列番号 9からなる非修飾一本 鎖オリゴヌクレオチド(5,末端を32 Pでラベルしたもの)、実施例 2— 5で得られた修飾 二本鎖オリゴヌクレオチド(5,末端を32 Pでラベルしたもの)および参考例 2— 2で得ら れた非修飾二本鎖オリゴヌクレオチド(5,末端を32 Pでラベルしたもの)の、ェキソヌク レアーゼ耐性を評価した。ェキソヌクレアーゼとしては、へビ毒ホスホロジエステラー ゼ(SVP)を使用した。 SVPは、リン酸ジエステル結合を選択的に切断しオリゴヌタレ ォチドを 5, 一モノリン酸ヌクレオチドに分解する。 [0212] 5. modified single-stranded and double-stranded oligonucleotide of E exonuclease resistance Evaluation Example 1 consisting of SEQ ID NO: 6 obtained in 5a-modified single-stranded oligonucleotides (5 'end of the 32 P of Unmodified single-stranded oligonucleotide consisting of SEQ ID NO: 9 obtained in Reference Example 1-2 (5, end labeled with 32 P), modification obtained in Example 2-5 Obtained from double-stranded oligonucleotide (5, end labeled with 32 P) and Reference Example 2-2 The unmodified double-stranded oligonucleotide (5, labeled with 32 P at the end) was evaluated for exonuclease resistance. As the exonuclease, snake venom phosphorodiesterase (SVP) was used. SVP selectively cleaves phosphodiester bonds and cleaves oligonucleotides into 5, monomonophosphate nucleotides.
[0213] 以下に示す組成の反応溶液から、 1、 3、 5、 10、 30、 60分後に各エツペンドルフチ ユーブに分注してお 、た充填溶液(7M尿素 XC BPB) (5 1)中に、反応液(5 μ 1 )をサンプリングして反応を停止させた。得られた各時間におけるサンプルを、 20% ポリアクリルアミドゲル(7Μ尿素含有)を用いて 20mA、 180分間、電気泳動により分 離して、修飾オリゴヌクレオチドの完全鎖の残存率(%)を log 表示したものを縦軸に [0213] From the reaction solution having the following composition, dispensed to each Eppendorf tube after 1, 3, 5, 10, 30, 60 minutes, and into the filled solution (7M urea XC BPB) (5 1) The reaction was stopped by sampling the reaction solution (5 μ 1). The obtained samples at each time were separated by electrophoresis using 20% polyacrylamide gel (containing 7Μ urea) at 20 mA for 180 minutes, and the remaining percentage (%) of the complete strand of the modified oligonucleotide was displayed as a log. Things on the vertical axis
10  Ten
、反応時間を横軸にとって図 6 (a)および (b)を作成した。そして、図 6 (a)および (b) のグラフより、完全鎖の残存率が 50%になる時間(t )を算出した。その結果を表 4に  Figures 6 (a) and (b) were prepared with the reaction time as the horizontal axis. Then, from the graphs of FIGS. 6 (a) and (b), the time (t) at which the remaining rate of the complete chain was 50% was calculated. The results are shown in Table 4.
50  50
示す。  Show.
[0214] [表 4] [0214] [Table 4]
Figure imgf000059_0001
Figure imgf000059_0001
[0215] 修飾一本鎖オリゴヌクレオチド (実施例 1 5a)の反応溶液の組成 [0215] Composition of reaction solution of modified single-stranded oligonucleotide (Example 1 5a)
20 /z M 修飾一本鎖オリゴヌクレオチド水溶液  20 / z M modified single-stranded oligonucleotide aqueous solution
緩衝液(250mM Tris-HCU 50mM MgCl (pH7.0)) 6 L  Buffer solution (250 mM Tris-HCU 50 mM MgCl (pH 7.0)) 6 L
2  2
2u/mL SVP水溶液  2u / mL SVP aqueous solution
水 26 /z L  Water 26 / z L
計 40 /z L  40 / z L in total
[0216] 非修飾一本鎖オリゴヌクレオチド (参考例 1 2)の反応溶液の組成  [0216] Composition of reaction solution of unmodified single-stranded oligonucleotide (Reference Example 1 2)
20 /z M 非修飾一本鎖オリゴヌクレオチド水溶液  20 / z M Unmodified single-stranded oligonucleotide aqueous solution
緩衝液(250mM Tris-HCU 50mM MgCl (pH7.0)) 6 L 2u/mL SVP水溶液 4μL· Buffer solution (250 mM Tris-HCU 50 mM MgCl (pH 7.0)) 6 L 2u / mL SVP aqueous solution 4μL
水 2δμL·  Water 2δμL
計 40μL·  40 μL total
[0217] 修飾二本鎖オリゴヌクレオチド (実施例 2— 5)の反応溶液の組成 [0217] Composition of reaction solution of modified double-stranded oligonucleotide (Example 2-5)
20/zM 修飾二本鎖オリゴヌクレオチド水溶液 4μL·  20 / zM modified double-stranded oligonucleotide aqueous solution 4μL
緩衝液(250mM Tris-HCU 50mM MgCl (pH7.0)) 6μL·  Buffer (250 mM Tris-HCU 50 mM MgCl (pH 7.0)) 6 μL ·
2  2
2u/mL SVP水溶液 4μL·  2u / mL SVP aqueous solution 4μL
水 2δμL·  Water 2δμL
計 40μL·  40 μL total
[0218] 非修飾二本鎖オリゴヌクレオチド (参考例 2— 2)の反応溶液の組成 [0218] Composition of reaction solution of unmodified double-stranded oligonucleotide (Reference Example 2-2)
20/zM 非修飾二本鎖オリゴヌクレオチド水溶液 4μL·  20 / zM unmodified double-stranded oligonucleotide aqueous solution 4μL ·
緩衝液(250mM Tris-HCU 50mM MgCl (pH7.0)) 6μL·  Buffer (250 mM Tris-HCU 50 mM MgCl (pH 7.0)) 6 μL ·
2  2
2u/mL SVP水溶液 4μL·  2u / mL SVP aqueous solution 4μL
水 2δμL·  Water 2δμL
計 40μL·  40 μL total
[0219] 図 6および表 4から、修飾一本鎖オリゴヌクレオチドは、非修飾一本鎖オリゴヌクレオ チドと比較して、ェキソヌクレアーゼ耐性が向上していることが確認された。また、修 飾二本鎖オリゴヌクレオチドは、非修飾二本鎖オリゴヌクレオチドと比較して、ェキソヌ クレアーゼ耐性が著しく向上して ヽることが確認された。特に二本鎖の修飾オリゴヌク レオチドは、一本鎖の修飾オリゴヌクレオチドの結果と比較しても、著しいヌクレア一 ゼ耐性の向上が確認され、この結果は、予想の範囲を超えるものである。  [0219] From FIG. 6 and Table 4, it was confirmed that the modified single-stranded oligonucleotide has improved exonuclease resistance compared to the unmodified single-stranded oligonucleotide. In addition, it was confirmed that the modified double-stranded oligonucleotide has significantly improved resistance to exonuclease compared to the unmodified double-stranded oligonucleotide. In particular, double-stranded modified oligonucleotides were confirmed to have significantly improved nuclease resistance even when compared to the results of single-stranded modified oligonucleotides, and this result exceeds the expected range.
[0220] 6.修飾二本鎖オリゴヌクレオチドの熱力学的安定性の評価  [0220] 6. Evaluation of thermodynamic stability of modified double-stranded oligonucleotides
実施例 2— 6で得られた配列番号 10からなる修飾二本鎖オリゴヌクレオチド、実施 例 2— 7で得られた配列番号 11からなる修飾二本鎖オリゴヌクレオチド、および参考 例 2— 3で得られた配列番号 12からなる二本鎖オリゴヌクレオチドについて、熱力学 的安定性を評価した。  Modified double-stranded oligonucleotide consisting of SEQ ID NO: 10 obtained in Example 2-6, modified double-stranded oligonucleotide consisting of SEQ ID NO: 11 obtained in Example 2-7, and obtained in Reference Example 2-3 The resulting double-stranded oligonucleotide consisting of SEQ ID NO: 12 was evaluated for thermodynamic stability.
[0221] 前記オリゴヌクレオチド類について、 Markyと Bleslaurの手法に従い、 van't Hoff ト ランジシヨンェンタルピー(ΔΗ° )、エントロピー(AS° )、 298Kにおける自由エネ ルギー(AG° )を算出した。 AG° は標準状態において lmolの一本鎖が lmolの 二本鎖になる場合、ある温度における反応の平衡状態力 熱力学的エネルギーとし てどの程度傾いているかを示すもので、この値から二本鎖の熱力学的安定性を評価 できる。この値の 符号は一本鎖状態より二本鎖状態が安定であることを表しており 、この絶対値が大きいほど二本鎖の状態が安定であることを示している。 ΔΗ° は標 準状態において lmolの一本鎖が lmolの二本鎖になるときの熱エネルギー収支の 変化を表しており、一の符号は発熱反応を表し、この絶対値が大きいほど二本鎖が 熱エネルギー的に安定であることを示している。 AS° は標準状態において lmolの 一本鎖が lmolの二本鎖になるときの乱雑さの変化を表しており、 符号はより秩序 ない状態に向力うことを示すものであり、この絶対値が小さいほど二本鎖形成に有利 であることを示す。そして AG° と ΔΗ° および AS° との関係は、下記式 (4)で表さ れる。 [0221] For the oligonucleotides, according to Marky and Bleslaur, van't Hoff transition enthalpy (Δ ピ ー °), entropy (AS °), free energy at 298K Lugi (AG °) was calculated. AG ° indicates the degree of inclination of the equilibrium state force thermodynamic energy of the reaction at a certain temperature when lmol single strand becomes lmol double strand in the standard state. The thermodynamic stability of the chain can be evaluated. The sign of this value indicates that the double-stranded state is more stable than the single-stranded state, and the larger the absolute value, the more stable the double-stranded state. ΔΗ ° represents the change in thermal energy balance when lmol single strand becomes lmol double strand in the standard state, and the one sign represents the exothermic reaction. Is stable in terms of thermal energy. AS ° represents the change in randomness when lmol single strand becomes lmol double strand in the standard state, and the sign indicates that it tends to a more disordered state. A smaller value indicates that it is more advantageous for duplex formation. The relationship between AG °, ΔΗ °, and AS ° is expressed by the following equation (4).
△G。 = ΔΗ° - TAS° · · · (4)  △ G. = ΔΗ °-TAS ° (4)
すなわち、二本鎖の熱力学的安定性は反応の熱エネルギー収支と乱雑さの変化と の差によって決まる。  That is, the thermodynamic stability of the duplex is determined by the difference between the thermal energy balance of the reaction and the change in randomness.
[0222] オリゴヌクレオチド類の濃度を数段階に分けて Tmを測定した。この Tm値は、 Beck man Coulter DU 640 spectrophotometerで測定した。測定に当たっては、 bufferと して 10 mM NaH PO - Na HPO , 1 M NaCl (pH 7.0)を用いた。得られた Tm値を  [0222] Tm was measured by dividing the concentration of oligonucleotides into several steps. This Tm value was measured with a Beck man Coulter DU 640 spectrophotometer. In the measurement, 10 mM NaHPO-NaHPO, 1 M NaCl (pH 7.0) was used as a buffer. Obtained Tm value
2 4 2 4  2 4 2 4
用い、式(5)に基いて lZTm対 In CtZ4(Ctはオリゴヌクレオチド総濃度)のグラフ を描き、その傾きと切片から ΔΗ° と AS° を算出した。そして式 (4)から AG° を求 めた。得られた結果を表 5に示す。  A graph of lZTm vs. In CtZ4 (Ct is the total oligonucleotide concentration) was drawn based on Equation (5), and ΔΗ ° and AS ° were calculated from the slope and intercept. Then, AG ° was found from equation (4). The results obtained are shown in Table 5.
l/Tm=(R/AH° )lnCt/4+(AS° /ΔΗ° ) · ' · (5)  l / Tm = (R / AH °) lnCt / 4 + (AS ° / ΔΗ °) '' (5)
[0223] [表 5] [0223] [Table 5]
Tm (X ) — A VJT 2 9 8 - Δ Η Tm (X) — A VJT 2 9 8 -Δ Η
(kcal/moi) (kcai/mol)  (kcal / moi) (kcai / mol)
実施例 2— 6 56.9 15.4 77.9 210 実施例 2— 7 54.5 14.8 74.1 199 参考例 2— 3 55.7 13.6 62.7 165 [0224] 前記表 5に示すように、本発明の修飾二本鎖オリゴヌクレオチドは、非修飾のオリゴ ヌクレオチドと比較して、—AG° の絶対値の増加および ΔΗの絶対値の増加が確 Example 2—6 56.9 15.4 77.9 210 Example 2—7 54.5 14.8 74.1 199 Reference Example 2—3 55.7 13.6 62.7 165 [0224] As shown in Table 5 above, the modified double-stranded oligonucleotide of the present invention is more sure to increase the absolute value of -AG ° and the absolute value of ΔΗ than the unmodified oligonucleotide.
298  298
認され、二本鎖としての安定性が向上していることが確認された。また、本発明の修 飾二本鎖オリゴヌクレオチドは、非修飾のオリゴヌクレオチドと比較して、 ASの絶対 値が増カロしていることから、より秩序ある二本鎖を形成することが確認された。  It was confirmed that the stability as a double strand was improved. In addition, it was confirmed that the modified double-stranded oligonucleotide of the present invention forms a more ordered double strand because the absolute value of AS is increased compared to the unmodified oligonucleotide. It was.
[0225] 7.修飾二本鎖オリゴヌクレオチドのエンドヌクレアーゼ耐性の評価  [0225] 7. Evaluation of endonuclease resistance of modified double-stranded oligonucleotides
実施例 1― 5aで得られた配列番号 5からなる修飾一本鎖オリゴヌクレオチド (5 '末 端を32 Pでラベルしたもの)、参考例 1—2で得られた配列番号 9からなる非修飾一本 鎖オリゴヌクレオチド(5,末端を32 Pでラベルしたもの)、実施例 2— 5で得られた修飾 二本鎖オリゴヌクレオチド(5,末端を32 Pでラベルしたもの)および参考例 2— 2で得ら れた非修飾二本鎖オリゴヌクレオチド(5,末端を32 Pでラベルしたもの)の、エンドヌク レアーゼ耐性を評価した。エンドヌクレアーゼとしては、 RNaseAを使用した。 Example 1—Modified single-stranded oligonucleotide consisting of SEQ ID NO: 5 obtained in 5a (5 ′ end labeled with 32 P), unmodified consisting of SEQ ID NO: 9 obtained in Reference Example 1-2 Single-stranded oligonucleotide (5, end labeled with 32 P), modified double-stranded oligonucleotide obtained in Example 2-5 (5, end labeled with 32 P) and Reference Example 2- Endonuclease resistance of the unmodified double-stranded oligonucleotide obtained in 2 (5, labeled with 32 P at the end) was evaluated. RNase A was used as the endonuclease.
[0226] 以下に示す組成の反応溶液から、 30分後に各エツペンドルフチューブに分注して おいた充填溶液 (8M尿素 XC BPB) (10 1)中に、反応液(10 1)をサンプリン グして反応を停止させた。得られた各時間におけるサンプルを、 20%ポリアクリルアミ ドゲル(7M尿素含有)を用いて 20mA、 180分間、電気泳動により分離して、修飾ま たは非修飾一本鎖オリゴヌクレオチドの完全鎖の残存率 (%)を測定した。その結果 を表 6に示す。  [0226] From the reaction solution having the composition shown below, the reaction solution (10 1) was sampled in the filling solution (8M urea XC BPB) (10 1) dispensed to each Eppendorf tube 30 minutes later. To stop the reaction. The obtained samples at each time were separated by electrophoresis using 20% polyacrylamide gel (containing 7M urea) at 20mA for 180 minutes to obtain the complete strand of the modified or unmodified single-stranded oligonucleotide. The residual rate (%) was measured. The results are shown in Table 6.
[0227] [表 6]  [0227] [Table 6]
Figure imgf000062_0001
Figure imgf000062_0001
修飾一本鎖オリゴヌクレオチド (実施例 1 5a)の反応溶液の組成 Composition of reaction solution of modified single-stranded oligonucleotide (Example 1 5a)
20 /z M 修飾一本鎖オリゴヌクレオチド水溶液 2 μ L·  20 / z M modified single-stranded oligonucleotide aqueous solution 2 μL
緩衝液(250mM Tris-HCU 50mM MgCl (pH7.0)) 1. 5 μ L·  Buffer (250 mM Tris-HCU 50 mM MgCl (pH 7.0)) 1.5 μL ·
2  2
10 ^ g/mL RNase水溶液 0. 5 ^ L 水 6;zL 10 ^ g / mL RNase aqueous solution 0.5 ^ L Water 6; zL
計 lO^L  LO ^ L
[0229] 非修飾一本鎖オリゴヌクレオチド (参考例 1 2)の反応溶液の組成 [0229] Composition of reaction solution of unmodified single-stranded oligonucleotide (Reference Example 1 2)
20/zM 非修飾一本鎖オリゴヌクレオチド水溶液 2μL·  20 / zM unmodified single-stranded oligonucleotide aqueous solution 2μL ·
緩衝液(250mM Tris-HCU 50mM MgCl (pH7.0)) 1. 5μL·  Buffer (250 mM Tris-HCU 50 mM MgCl (pH 7.0)) 1.5 μL
2  2
10 ^ g/mL RNase水溶液 0. 5 ^ L  10 ^ g / mL RNase aqueous solution 0.5 ^ L
水 6;zL  Water 6; zL
計 lO^L  LO ^ L
[0230] また、以下に示す組成の反応溶液から、 5、 10、 20、 30、 60、 90分後に各エツべ ンドルフチューブに分注しておいた充填溶液(8M尿素 XC BPB) (10/zl)中に、 反応液(10 μ 1)をサンプリングして反応を停止させた。得られた各時間におけるサン プルを、 20%ポリアクリルアミドゲル(7Μ尿素含有)を用いて 20mA、 180分間、電 気泳動により分離して、修飾または非修飾二本鎖オリゴヌクレオチドの完全鎖の残存 率 (%)を縦軸に、反応時間を横軸にとって図 8を作成した。  [0230] In addition, a charged solution (8M urea XC BPB) (10M) was dispensed into each Etbendorf tube after 5, 10, 20, 30, 60, 90 minutes from the reaction solution having the composition shown below. / zl), the reaction solution (10 μ1) was sampled to stop the reaction. The obtained samples at each time were separated by electrophoresis using 20% polyacrylamide gel (containing 7% urea) at 20 mA for 180 minutes to leave the complete strand of the modified or unmodified double-stranded oligonucleotide. Figure 8 was created with the percentage (%) on the vertical axis and the reaction time on the horizontal axis.
[0231] 修飾二本鎖オリゴヌクレオチド (実施例 2— 5)の反応溶液の組成  [0231] Composition of reaction solution of modified double-stranded oligonucleotide (Example 2-5)
20/zM 修飾二本鎖オリゴヌクレオチド水溶液 2μL·  20 / zM modified double-stranded oligonucleotide aqueous solution 2μL ·
緩衝液(250mM Tris-HCU 50mM MgCl (pH7.0)) 1. 5μL·  Buffer (250 mM Tris-HCU 50 mM MgCl (pH 7.0)) 1.5 μL
2  2
10 ^ g/mL RNase水溶液 0. 5 ^ L  10 ^ g / mL RNase aqueous solution 0.5 ^ L
水 6;zL  Water 6; zL
計 lO^L  LO ^ L
[0232] 非修飾二本鎖オリゴヌクレオチド (参考例 2— 2)の反応溶液の組成 [0232] Composition of reaction solution of unmodified double-stranded oligonucleotide (Reference Example 2-2)
20/zM 非修飾二本鎖オリゴヌクレオチド水溶液 2μL·  20 / zM unmodified double-stranded oligonucleotide aqueous solution 2μL ·
緩衝液(250mM Tris-HCU 50mM MgCl (pH7.0)) 1. 5;zL  Buffer solution (250 mM Tris-HCU 50 mM MgCl (pH 7.0)) 1.5; zL
2  2
10 ^ g/mL RNase水溶液 0. 5 ^ L  10 ^ g / mL RNase aqueous solution 0.5 ^ L
水 6;zL  Water 6; zL
計 lO^L  LO ^ L
[0233] 表 6から、修飾二本鎖オリゴヌクレオチドは、非修飾二本鎖オリゴヌクレオチドと比較 して、エンドヌクレアーゼ耐性が著しく向上していることが確認された。また、図 8から 、修飾二本鎖オリゴヌクレオチドは、非修飾二本鎖オリゴヌクレオチドと比較して、ェン ドヌクレアーゼ耐性が著しく向上して 、ることが確認された。 [0233] From Table 6, it was confirmed that the modified double-stranded oligonucleotide had significantly improved endonuclease resistance compared to the unmodified double-stranded oligonucleotide. From Figure 8 The modified double-stranded oligonucleotide was confirmed to have significantly improved endonuclease resistance compared to the unmodified double-stranded oligonucleotide.
産業上の利用可能性  Industrial applicability
[0234] 本発明の修飾オリゴヌクレオチドは、例えば、疾患治療剤として有用である。  [0234] The modified oligonucleotide of the present invention is useful, for example, as a disease therapeutic agent.
配列表フリーテキスト  Sequence listing free text
[0235] 配列番号 1 RNaseLの標的配列  [0235] SEQ ID NO: 1 Target sequence of RNaseL
配列番号 2 配列番号 1の標的配列に対する siRNA配列の修飾センス鎖  SEQ ID NO: 2 Modified sense strand of siRNA sequence against the target sequence of SEQ ID NO: 1
配列番号 3 配列番号 1の標的配列に対する siRNA配列の修飾センス鎖  SEQ ID NO: 3 Modified sense strand of siRNA sequence against the target sequence of SEQ ID NO: 1
配列番号 4 配列番号 1の標的配列に対する siRNA配列の修飾センス鎖  SEQ ID NO: 4 Modified sense strand of siRNA sequence against the target sequence of SEQ ID NO: 1
配列番号 5 配列番号 1の標的配列に対する siRNA配列の修飾アンチセンス鎖 配列番号 6 配列番号 1の標的配列に対する siRNA配列の修飾アンチセンス鎖 配列番号 7 配列番号 1の標的配列に対する siRNA配列の修飾アンチセンス鎖 配列番号 8 配列番号 1の標的配列に対する siRNA配列のセンス鎖  SEQ ID NO: 5 Modified antisense strand of the siRNA sequence against the target sequence of SEQ ID NO: 1 SEQ ID NO: 6 Modified antisense strand of the siRNA sequence against the target sequence of SEQ ID NO: 1 SEQ ID NO: 7 Modified antisense of the siRNA sequence against the target sequence of SEQ ID NO: 1 Strand SEQ ID NO: 8 sense strand of siRNA sequence against the target sequence of SEQ ID NO: 1
配列番号 9 配列番号 1の標的配列に対する siRNA配列のアンチセンス鎖 配列番号 10 配列番号 12の標的配列に対する siRNA配列の修飾鎖  SEQ ID NO: 9 Antisense strand of siRNA sequence against target sequence of SEQ ID NO: 1 SEQ ID NO: 10 Modified strand of siRNA sequence against target sequence of SEQ ID NO: 12
配列番号 11 配列番号 12の標的配列に対する siRNA配列の別の修飾鎖 配列番号 12 標的配列  SEQ ID NO: 11 Another modified strand of siRNA sequence against the target sequence of SEQ ID NO: 12 SEQ ID NO: 12 Target sequence

Claims

請求の範囲 [1] オリゴヌクレオチドの 3,末端から 1番目と 2番目のヌクレオシド間の 5,, 3,一リン酸ジ エステル結合力 下記式 (1—1)で表される結合に置き換えられた修飾オリゴヌクレオ チド。 -X1-C(=Y1)-Z1- (1-1) 前記式(1—1)中、 X1は 0、 NHまたは S、 Y1は Oまたは S、 Z1は 0、 NHまたは Sである [2] 前記式 (1—1)で表される結合が、 O— C( = 0)— NH 、 一 NH— C( = 0)— O 一、 一 NH— C( = 0)— NH 、 一 NH— C( = 0)— S 、 一 S— C ( = 0)— NH—、 O— C( = S)— NH 、 一 NH— C( = S)— O 、 一 NH— C( = S)— NH 、 一 N H-C( = S)— S および一 S— C( = S)—NH からなる群から選択される請求項 1 に記載の修飾オリゴヌクレオチド。 [3] 前記式 (1—1)で表される結合が、 O— C( = 0)— NH 、 一 NH— C( = 0)— O 一および NH— C ( = O)— NH からなる群から選択される請求項 2に記載の修飾 オリゴヌクレオチド。 [4] 下記 (i)および (ii)の少なくとも一方を満たす請求項 1に記載の修飾オリゴヌクレオ チド。 (i) 前記オリゴヌクレオチドの 3,末端から 2番目と 3番目のヌクレオシド間の 5,, 3, 一 リン酸ジエステル結合力 下記式 (1— 2)で表される結合に置き換えられて 、る。 X2 - C(=Y2) - Z2 - (1-2) 前記式(1— 2)中、 X2は 0、 NHまたは S、 Y2は Oまたは S、 Z2は 0、 NHまたは Sである (ii) 前記オリゴヌクレオチドの 3,末端から 3番目と 4番目のヌクレオシド間の 5,, 3, リン酸ジエステル結合力 下記式 (1— 3)で表される結合に置き換えられて 、る。 -X3-C(=Y3)-Z3- (1-3) 前記式(1— 3)中、 X3は 0、 NHまたは S、 Y3は Oまたは S、 Z3は 0、 NHまたは Sである [5] 前記式 (I 2)で表される結合および前記式 (I 3)で表される結合が、互いに独立 して、一 O C ( = 0)— NH 、 一 NH— C ( = 0)— O 、 一 NH— C ( = 0)— NH— 、 一 NH— C ( = 0)— S 、 一 S— C ( = 0)— NH 、 一 O C ( = S)— NH 、 一 N H— C ( = S)—0—、 一 NH— C ( = S)—NH 、 一 NH— C ( = S)—S および—S -C ( = S)—NH 力 なる群力 選択される請求項 4に記載の修飾オリゴヌクレオ チド。 [6] 前記修飾オリゴヌクレオチド力 二本鎖オリゴヌクレオチドである請求項 1に記載の 修飾オリゴヌクレオチド。 [7] 前記二本鎖オリゴヌクレオチドの少なくとも一方の一本鎖オリゴヌクレオチドの 3,末 端から 1番目と 2番目のヌクレオシド間の 5' , 3' リン酸ジエステル結合力 前記式 (I 1)で表される結合に置き換えられている請求項 6に記載の修飾オリゴヌクレオチド [8] 前記修飾オリゴヌクレオチドが、 RNAi (RNA interference)を引き起こすオリゴヌク レオチドであり、前記修飾オリゴヌクレオチド力 エンドヌクレアーゼをコードする mRN Aの一部と同じ塩基配列を有する請求項 6に記載の修飾オリゴヌクレオチド。 [9] 前記修飾オリゴヌクレオチドが、 siRNA (short interfering RNA)であり、 前記 mRNAの一部が、 スタートコドンから 75塩基以上上流の、最初の AA配列に続く 19塩基配列であって、 前記 mRNAの一部力 前記 mRNAに対して特異的であり、 前記修飾オリゴヌクレオチド力 前記 19塩基配列のセンス鎖とアンチセンス鎖との 組み合わせである請求項 8に記載の修飾オリゴヌクレオチド。 [10] 前記センス鎖およびアンチセンス鎖の少なくとも一方力 その 3,末端にさらに 2つの チミジンを含むヌクレオチドを有する請求項 9に記載の修飾オリゴヌクレオチド。 [11] 前記修飾オリゴヌクレオチド力 一本鎖オリゴヌクレオチドである請求項 1に記載の 修飾オリゴヌクレオチド。 [12] 前記修飾オリゴヌクレオチド力 アンチセンス DNAまたはアンチセンス RNAであり 、前記修飾オリゴヌクレオチド力 エンドヌクレアーゼをコードする mRNAの少なくとも 一部と相補的な配列を有する請求項 11に記載の修飾オリゴヌクレオチド。 [13] 前記オリゴヌクレオチド力 ヌクレアーゼ耐性である請求項 1に記載の修飾オリゴヌ クレオチド。 [14] オリゴヌクレオチドを含む遺伝子発現抑制剤であって、前記オリゴヌクレオチドが、 請求項 1に記載の修飾オリゴヌクレオチドである遺伝子発現抑制剤。 [15] 遺伝子発現に伴う疾患を治療するための医薬組成物であって、 前記医薬組成物が、請求項 14に記載の遺伝子発現抑制剤を含む医薬組成物。 [16] さらに細胞導入用賦形剤を含む請求項 15に記載の医薬組成物。 [17] 前記細胞導入用賦形剤が、トランスフエクシヨン試薬である請求項 16に記載の医薬 組成物。 [18] RNAiキットであって、前記キットが、請求項 8に記載の修飾オリゴヌクレオチドを含 むキット。 [19] RNAi研究用試薬であって、前記試薬が、請求項 8に記載の修飾オリゴヌクレオチ ドを含む試薬。 [20] オリゴヌクレオチドを用いて遺伝子発現を抑制する方法であって、前記オリゴヌタレ ォチドが、請求項 1に記載の修飾オリゴヌクレオチドである方法。 [21] オリゴヌクレオチドを用いて RNAiを引き起こす方法であって、前記オリゴヌクレオチ ドが、請求項 8に記載の修飾オリゴヌクレオチドである方法。 [22] 下記式 (X— 1)で表される固相合成用ユニットィ匕合物を出発原料として、請求項 1 に記載の修飾オリゴヌクレオチドを製造する方法であって、 式 (X—1)で表される固相合成用ユニットィ匕合物の R2を除去し、 式 (X—1)で表される固相合成用ユニットィ匕合物の 5'末端にヌクレオチドを伸長させ 、その後、固相担体力 切り出して前記修飾オリゴヌクレオチドを得る製造方法。 Claims [1] 3,5,3, monophosphate diester bond strength between the first and second nucleosides from the end of the oligonucleotide was replaced by a bond represented by the following formula (1-1) Modified oligonucleotide. -X1-C (= Y1) -Z1- (1-1) In the formula (1-1), X1 is 0, NH or S, Y1 is O or S, Z1 is 0, NH or S [2 ] The bond represented by the formula (1-1) is O—C (= 0) —NH, one NH—C (= 0) —O one, one NH—C (= 0) —NH, one NH — C (= 0) — S, One S— C (= 0) — NH—, O— C (= S) — NH, One NH— C (= S) — O, One NH— C (= S) The modified oligonucleotide according to claim 1, selected from the group consisting of: —NH, one N HC (═S) —S and one S—C (═S) —NH. [3] The bond represented by the formula (1-1) is composed of O—C (= 0) —NH, one NH—C (= 0) —O one and NH—C (═O) —NH. The modified oligonucleotide according to claim 2, which is selected from the group. [4] The modified oligonucleotide according to claim 1, which satisfies at least one of the following (i) and (ii): (i) 5,5,3, monophosphate diester bond strength between the 3rd and 2nd and 3rd nucleosides from the end of the oligonucleotide The bond is replaced by a bond represented by the following formula (1-2). X2-C (= Y2)-Z2-(1-2) In the formula (1-2), X2 is 0, NH or S, Y2 is O or S, Z2 is 0, NH or S (ii) 5,5,3, phosphodiester bond strength between the 3rd and 4th nucleosides from the 3rd end of the oligonucleotide is replaced by a bond represented by the following formula (1-3). -X3-C (= Y3) -Z3- (1-3) In the formula (1-3), X3 is 0, NH or S, Y3 is O or S, Z3 is 0, NH or S [5 ] The bond represented by the formula (I 2) and the bond represented by the formula (I 3) are independently of each other, one OC (= 0) —NH, one NH—C (= 0) —O , 1 NH— C (= 0) — NH—, 1 NH— C (= 0) — S, 1 S— C (= 0) — NH, 1 OC (= S) — NH, 1 NH— C (= 5. A group force of S) —0—, one NH—C (= S) —NH, one NH—C (= S) —S and —S—C (= S) —NH force is selected. Modified oligonucleotide. [6] The modified oligonucleotide according to [1], which is a double-stranded oligonucleotide. [7] 3 ′ of at least one single-stranded oligonucleotide of the double-stranded oligonucleotide, 5 ′, 3 ′ phosphate diester binding force between the first and second nucleosides from the end In the formula (I 1) The modified oligonucleotide according to claim 6, wherein the modified oligonucleotide is an oligonucleotide that causes RNAi (RNA interference), and mRN encoding the modified oligonucleotide force endonuclease The modified oligonucleotide according to claim 6, which has the same base sequence as a part of A. [9] The modified oligonucleotide is siRNA (short interfering RNA), and a part of the mRNA is a 19 base sequence following the first AA sequence at least 75 bases upstream from the start codon, The modified oligonucleotide according to claim 8, wherein the modified oligonucleotide is specific for the mRNA, and is a combination of the sense strand and the antisense strand of the 19-base sequence. 10. The modified oligonucleotide according to claim 9, wherein the modified oligonucleotide has nucleotides containing at least one of the sense strand and the antisense strand, and further three thymidines at the ends. [11] The modified oligonucleotide according to [1], which is a single-stranded oligonucleotide. [12] The modified oligonucleotide according to [11], wherein the modified oligonucleotide is antisense DNA or antisense RNA and has a sequence complementary to at least a part of mRNA encoding the modified oligonucleotide force endonuclease. [13] The modified oligonucleotide according to [1], wherein the oligonucleotide is nuclease resistant. [14] A gene expression inhibitor comprising an oligonucleotide, wherein the oligonucleotide is the modified oligonucleotide according to claim 1. [15] A pharmaceutical composition for treating a disease associated with gene expression, wherein the pharmaceutical composition comprises the gene expression inhibitor according to claim 14. 16. The pharmaceutical composition according to claim 15, further comprising an excipient for cell introduction. 17. The pharmaceutical composition according to claim 16, wherein the cell introduction excipient is a transfection reagent. [18] An RNAi kit, wherein the kit comprises the modified oligonucleotide according to claim 8. [19] A reagent for RNAi research, wherein the reagent comprises the modified oligonucleotide according to claim 8. [20] A method for suppressing gene expression using an oligonucleotide, wherein the oligonucleotide is the modified oligonucleotide according to claim 1. [21] A method for causing RNAi using an oligonucleotide, wherein the oligonucleotide is the modified oligonucleotide according to claim 8. [22] A method for producing the modified oligonucleotide according to claim 1, using a unity compound for solid-phase synthesis represented by the following formula (X-1) as a starting material, wherein the formula (X-1) R2 of the solid phase synthesis unity compound represented by the formula (X-1) is removed, and a nucleotide is extended to the 5 'end of the solid phase synthesis unity compound represented by the formula (X-1). A production method for obtaining the modified oligonucleotide by cutting out the carrier force.
[化 1]
Figure imgf000068_0001
前記式 (X— 1)中、 R2は、保護基であり、
[Chemical 1]
Figure imgf000068_0001
In the formula (X-1), R 2 is a protecting group,
B1および B2は、互いに独立して、以下の式で示す基およびその官能基が保護基で 保護された基から選択される基であり、 B 1 and B 2 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protecting group:
[化 2] [Chemical 2]
Figure imgf000068_0002
Figure imgf000068_0002
Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
ここで、前記 R11および R21は、互いに独立して、保護基であり、 Here, R 11 and R 21 are each independently a protecting group,
X1および X2は、互いに独立して、 0、 NHまたは Sであり、 X 1 and X 2 are independently of each other 0, NH or S;
Y1は、 Oまたは Sであり、 Y 1 is O or S;
Z1は、 0、 NHまたは Sであり、 Z 1 is 0, NH or S;
Mは、固相担体である。  M is a solid phase carrier.
下記式 (XI— 1)で表される固相合成用ユニットィ匕合物を出発原料として、(i)を満 たす請求項 4に記載の修飾オリゴヌクレオチドを製造する方法であって、 式 (XI— 1)で表される固相合成用ユニットィ匕合物の R3を除去し、 式 (XI— 1)で表される固相合成用ユニットィ匕合物の 5'末端にヌクレオチドを伸長さ せ、その後、固相担体力 切り出して前記修飾オリゴヌクレオチドを得る製造方法。 A method for producing the modified oligonucleotide according to claim 4, wherein (i) is satisfied using a unity compound for solid phase synthesis represented by the following formula (XI-1) as a starting material, XI—Removes R 3 from the solid phase synthesis unit compound represented by 1) A production method wherein the modified oligonucleotide is obtained by extending a nucleotide at the 5 ′ end of a unity compound for solid phase synthesis represented by the formula (XI-1) and then cutting out the solid phase carrier force.
[化 3] [Chemical 3]
Figure imgf000069_0001
前記式中、 R3は、保護基であり、
Figure imgf000069_0001
In the above formula, R 3 is a protecting group,
B1, B2および B3は、互いに独立して、以下の式で示す基およびその官能基が保護基 で保護された基から選択される基であり、 B 1 , B 2 and B 3 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protecting group:
[化 4] [Chemical 4]
Figure imgf000069_0002
Figure imgf000069_0002
Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり A is a group represented by Formula 1 (CH 2) 1, wherein n is an integer of 1 to 6
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W31は、 Hまたは式 OR31で表される基であり、 W 21 is a group represented by H or the formula OR 21 ; W 31 is a group represented by H or the formula OR 31 ;
ここで、前記 1、 R21および R31は、互いに独立して、保護基であり、 Wherein 1 , R 21 and R 31 are each independently a protecting group;
X1、 X2および X3は、互いに独立して、 0、 NHまたは Sであり、 X 1 , X 2 and X 3 are independently of each other 0, NH or S;
Y1および Y2は、互いに独立して、 Oまたは Sであり、 Y 1 and Y 2 are independently of each other O or S;
Z1および Z2は、互いに独立して、 0、 NHまたは Sであり、 Z 1 and Z 2 are independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid phase carrier.
[24] 下記式 (XII— 1)で表される固相合成用ユニットィ匕合物を出発原料として、(ϋ)を満 たす請求項 4に記載の修飾オリゴヌクレオチドを製造する方法であって、 式 (XII— 1)で表される固相合成用ユニットィ匕合物の R4を除去し、 [24] The method for producing the modified oligonucleotide according to claim 4, wherein (iii) is satisfied using a unit compound for solid phase synthesis represented by the following formula (XII-1) as a starting material: Removing R 4 of the unit compound for solid phase synthesis represented by the formula (XII-1),
式 (XII— 1)で表される固相合成用ユニットィ匕合物の 5'末端にヌクレオチドを伸長さ せ、その後、固相担体力 切り出して前記修飾オリゴヌクレオチドを得る製造方法。  A production method wherein the modified oligonucleotide is obtained by extending a nucleotide to the 5 ′ end of the unity compound for solid phase synthesis represented by the formula (XII-1) and then cutting out the solid phase carrier force.
[化 5]  [Chemical 5]
Figure imgf000070_0001
前記式中、 R4および Rは、互いに独立して、保護基であり、 B3および B4は、互いに独立して、以下の式で示す基およびその官能基が保 護基で保護された基から選択される基であり、
Figure imgf000070_0001
In the above formula, R 4 and R independently of each other are protecting groups; B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protective group:
[化 6]  [Chemical 6]
Figure imgf000071_0001
Figure imgf000071_0001
Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
W41は、 Hまたは式 OR41で表される基であり、 W 41 is H or a group represented by the formula OR 41 ,
ここで、前記 1、 R21、 R31および R41は、互いに独立して、保護基であり、 Wherein 1 , R 21 , R 31 and R 41 are each independently a protecting group;
X1、 X3および X4は、互いに独立して、 0、 NHまたは Sであり、 X 1 , X 3 and X 4 are independently of each other 0, NH or S;
Y1および Y3は、互いに独立して、 Oまたは Sであり、 Y 1 and Y 3 are independently of each other O or S;
Z1および Z3は、互いに独立して、 0、 NHまたは Sであり、 Z 1 and Z 3 are independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid phase carrier.
下記式 (ΧΙΠ—1)で表される固相合成用ユニットィ匕合物を出発原料として、(i)およ び (ii)の両方を満たす請求項 4に記載の修飾オリゴヌクレオチドを製造する方法であ つて、  5. The method for producing the modified oligonucleotide according to claim 4, wherein a solid-phase synthesis unit compound represented by the following formula (ΧΙΠ-1) is used as a starting material and satisfies both (i) and (ii): Because
式 (ΧΙΠ—1)で表される固相合成用ユニットィ匕合物の R4を除去し、 R 4 of the solid phase synthesis unit compound represented by the formula (ΧΙΠ—1) is removed,
式 (ΧΙΠ—1)で表される固相合成用ユニットィ匕合物の 5'末端にヌクレオチドを伸長さ せ、その後、固相担体力 切り出して前記修飾オリゴヌクレオチドを得る製造方法。 A production method for obtaining the modified oligonucleotide by extending a nucleotide to the 5 ′ end of a unity compound for solid phase synthesis represented by the formula (ΧΙΠ-1), and then cutting out the solid phase carrier force.
[化 7] [Chemical 7]
Figure imgf000072_0001
前記式中、 R4は、保護基であり、
Figure imgf000072_0001
In the above formula, R 4 is a protecting group,
B1, B2、 B3および B4は、互いに独立して、以下の式で示す基およびその官能基が保 護基で保護された基から選択される基であり、 B 1 , B 2 , B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected with a protective group:
[化 8] [Chemical 8]
Figure imgf000072_0002
Figure imgf000072_0002
Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by Formula 1 (CH 3) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
W41は、 Hまたは式 OR41で表される基であり、 ここで、前記 1、 R21、 R31および R41は、互いに独立して、保護基であり、 X1、 X2、 X3および X4は、互いに独立して、 0、 NHまたは Sであり、 W 41 is H or a group represented by the formula OR 41 , Wherein 1 , R 21 , R 31 and R 41 are each independently a protecting group, and X 1 , X 2 , X 3 and X 4 are each independently 0, NH or S Yes,
Υ2および Υ3は、互いに独立して、 Οまたは Sであり、Υ 2 and Υ 3 are, independently of each other, Ο or S;
Figure imgf000073_0001
Ζ2および Ζ3は、互いに独立して、 0、 NHまたは Sであり、
Figure imgf000073_0001
Ζ 2 and Ζ 3 are independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid phase carrier.
[26] 請求項 1に記載の修飾オリゴヌクレオチド製造のための、下記式 (X— 1)で表される 固相合成用ユニットィ匕合物。  [26] A unit compound for solid phase synthesis represented by the following formula (X-1) for producing the modified oligonucleotide according to claim 1.
[化 9]  [Chemical 9]
Figure imgf000073_0002
前記式 (X— 1)中、 R2は、保護基であり、
Figure imgf000073_0002
In the formula (X-1), R 2 is a protecting group,
B1および B2は、互いに独立して、以下の式で示す基およびその官能基が保護基で 保護された基から選択される基であり、 B 1 and B 2 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protecting group:
[化 10]  [Chemical 10]
Figure imgf000073_0003
Figure imgf000073_0003
Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W21は、 Hまたは式 OR21で表される基であり、 W 11 is a group represented by H or the formula OR 11 , W 21 is a group represented by H or the formula OR 21 ;
ここで、前記 R11および R21は、互いに独立して、保護基であり、 Here, R 11 and R 21 are each independently a protecting group,
X1および X2は、互いに独立して、 0、 NHまたは Sであり、 X 1 and X 2 are independently of each other 0, NH or S;
Y1は、 Oまたは Sであり、 Y 1 is O or S;
Z1は、 0、 NHまたは Sであり、 Z 1 is 0, NH or S;
Mは、固相担体である。  M is a solid phase carrier.
[27] 請求項 26に記載の式 (X—1)で表される固相合成用ユニットィ匕合物の製造方法で あって、  [27] A method for producing a unitary compound for solid phase synthesis represented by the formula (X-1) according to claim 26,
下記式 (IV— 1)で表されるヌクレオシド誘導体と、下記式 (ΠΙ)で表されるヌクレオシ ド誘導体とを、下記式 (V— 1)で表されるジイミダゾール誘導体と縮合させ、下記式( VI)で表される二量体 (VI)を得、  A nucleoside derivative represented by the following formula (IV-1) and a nucleoside derivative represented by the following formula (ΠΙ) are condensed with a diimidazole derivative represented by the following formula (V-1), and the following formula: To obtain a dimer (VI) represented by (VI)
[化 11]  [Chemical 11]
Figure imgf000074_0001
前記式 (VI)で表される二量体と下記式 (VII)で表される無水物とを縮合させ、下記 式 (VIII)で表される二量体を得、
Figure imgf000074_0001
The dimer represented by the formula (VI) and the anhydride represented by the following formula (VII) are condensed to obtain a dimer represented by the following formula (VIII),
[化 12] [Chemical 12]
Figure imgf000075_0001
前記式 (VIII)で表される二量体と下記式 (IX)で表されるアミノ基を有する固相担体 とを縮合させ、式 (X— 1)で表される固相合成用ユニット化合物を得る製造方法。
Figure imgf000075_0001
A unit compound for solid phase synthesis represented by the formula (X-1) by condensing a dimer represented by the formula (VIII) and a solid phase carrier having an amino group represented by the following formula (IX) Manufacturing method.
[化 13] [Chemical 13]
Figure imgf000075_0002
j記式中、
Figure imgf000075_0002
j
R2は、保護基であり、 R 2 is a protecting group,
B1および B2は、互いに独立して、以下の式で示す基およびその官能基が保護基で 保護された基から選択される基であり、 B 1 and B 2 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protecting group:
[化 14]
Figure imgf000076_0001
[Chemical 14]
Figure imgf000076_0001
Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
ここで、前記 R11および R21は、互いに独立して、保護基であり、 Here, R 11 and R 21 are each independently a protecting group,
X1および X2は、互いに独立して、 0、 NHまたは Sであり、 X 1 and X 2 are independently of each other 0, NH or S;
Y1は、 Oまたは Sであり、 Y 1 is O or S;
Z1は、 0、 NHまたは Sであり、 Z 1 is 0, NH or S;
Mは、固相担体である。 M is a solid phase carrier.
請求項 4に記載の修飾オリゴヌクレオチド製造のための、下記式 (XI— 1)で表され る固相合成用ユニットィ匕合物。  A unit compound for solid phase synthesis represented by the following formula (XI-1) for producing the modified oligonucleotide according to claim 4.
[化 15] [Chemical 15]
Figure imgf000076_0002
前記式中、 R3は、保護基であり、
Figure imgf000076_0002
In the above formula, R 3 is a protecting group,
B1, B2および B3は、互いに独立して、以下の式で示す基およびその官能基が保護基 で保護された基カゝら選択される基であり、 B 1 , B 2 and B 3 are independently of each other a group represented by the following formula and its functional group is a protecting group: A group selected from the group protected by
[化 16]  [Chemical 16]
Figure imgf000077_0001
Figure imgf000077_0001
Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
ここで、前記 1、 R21および R31は、互いに独立して、保護基であり、 Wherein 1 , R 21 and R 31 are each independently a protecting group;
X1、 X2および X3は、互いに独立して、 0、 NHまたは Sであり、 X 1 , X 2 and X 3 are independently of each other 0, NH or S;
Y1および Y2は、互いに独立して、 Oまたは Sであり、 Y 1 and Y 2 are independently of each other O or S;
Z1および Z2は、互いに独立して、 0、 NHまたは Sであり、 Z 1 and Z 2 are independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid phase carrier.
請求項 28に記載の前記式 (XI— 1)で表される固相合成用ユニット化合物の製造 方法であって、  A method for producing a unit compound for solid phase synthesis represented by the formula (XI-1) according to claim 28,
前記式 (VI)で表される二量体の R2を Hに置き換え、式 (VI— 1)で表される二量体 を得、 Replacing R 2 of the dimer represented by the formula (VI) with H to obtain a dimer represented by the formula (VI-1),
[化 17] [Chemical 17]
Figure imgf000078_0001
Figure imgf000078_0001
前記式 (VI— 1)で表される二量体と、下記式 (IV— 2)で表されるヌクレオシド誘導体 とを、下記式 (V— 2)で表されるジイミダゾール誘導体と縮合させ、式 (XIV— 1)で表 される三量体を得、 The dimer represented by the formula (VI-1) and the nucleoside derivative represented by the following formula (IV-2) are condensed with a diimidazole derivative represented by the following formula (V-2), A trimer represented by the formula (XIV-1) is obtained,
[化 18] [Chemical 18]
Figure imgf000078_0002
前記式 (XIV— 1)で表される三量体と、下式 (VII)で表される無水物とを縮合させ、 下記式 (XV— 1)で表される三量体を得、
Figure imgf000078_0002
The trimer represented by the formula (XIV-1) and the anhydride represented by the following formula (VII) are condensed to obtain a trimer represented by the following formula (XV-1),
[化 19][Chemical 19]
Figure imgf000079_0001
前記式 (XV— 1)で表される三量体と下記式 (IX)で表されるアミノ基を有する固相担 体とを縮合させ、式 (XI— 1)で表される固相合成用ユニットィ匕合物を得る製造方法。
Figure imgf000079_0001
The trimer represented by the formula (XV-1) is condensed with a solid support having an amino group represented by the following formula (IX) to produce a solid phase synthesis represented by the formula (XI-1). A manufacturing method for obtaining a unity compound.
[化 20]
Figure imgf000079_0002
[Chemical 20]
Figure imgf000079_0002
前記式中、 ITおよび R3は、互いに独立して、保護基であり、 B2および B3は、互いに独立して、以下の式で示す基およびその官能基が保護基 で保護された基から選択される基であり、 In the above formula, IT and R 3 are independently of each other a protecting group, B 2 and B 3 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected with a protecting group:
[化 21]  [Chemical 21]
Figure imgf000080_0001
Figure imgf000080_0001
Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
ここで、前記 1、 R21および R31は、互いに独立して、保護基であり、 Wherein 1 , R 21 and R 31 are each independently a protecting group;
X1、 X2および X3は、互いに独立して、 0、 NHまたは Sであり、 X 1 , X 2 and X 3 are independently of each other 0, NH or S;
Y1および Y2は、互いに独立して、 Oまたは Sであり、 Y 1 and Y 2 are independently of each other O or S;
Z1および Z2は、互いに独立して、 0、 NHまたは Sであり、 Z 1 and Z 2 are independently of each other 0, NH or S;
Mは、固相担体である。 M is a solid phase carrier.
請求項 4に記載の修飾オリゴヌクレオチド製造のための、下記式 (XII— 1)で表され る固相合成用ユニットィ匕合物。  A unit compound for solid phase synthesis represented by the following formula (XII-1) for producing the modified oligonucleotide according to claim 4.
[化 22] [Chemical 22]
Figure imgf000081_0001
前記式中、 R4および Rは、保護基であり、
Figure imgf000081_0001
Wherein R 4 and R are protecting groups;
B3および B4は、互いに独立して、以下の式で示す基およびその官能基が保 護基で保護された基から選択される基であり、 B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protective group:
[化 23]  [Chemical 23]
Figure imgf000081_0002
Figure imgf000081_0002
Aは、式一(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by Formula 1 (CH 3) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
W41は、 Hまたは式 OR41で表される基であり、 W 41 is H or a group represented by the formula OR 41 ,
ここで、前記 1、 R21、 R31および R41は、互いに独立して、保護基であり、 X1、 X3および X4は、互いに独立して、 0、 NHまたは Sであり、 Wherein 1 , R 21 , R 31 and R 41 are each independently a protecting group; X 1 , X 3 and X 4 are independently of each other 0, NH or S;
Y1および Y3は、互いに独立して、 Oまたは Sであり、 Y 1 and Y 3 are independently of each other O or S;
Z1および Z3は、互いに独立して、 0、 NHまたは Sであり、 Z 1 and Z 3 are independently of each other 0, NH or S;
Mは、固相担体である。 M is a solid phase carrier.
請求項 30に記載の式 (XII— 1)で表される固相合成用ユニットィ匕合物の製造方法 であって、  A method for producing a unitary compound for solid phase synthesis represented by the formula (XII-1) according to claim 30,
下記式 (VI— 2)で表される二量体の R2を Hに置き換え、下記式 (VI— 3)で表される 二量体を得、 R 2 of the dimer represented by the following formula (VI-2) is replaced with H to obtain a dimer represented by the following formula (VI-3),
[化 24] [Chemical 24]
Figure imgf000082_0001
Figure imgf000082_0001
(VI-2) (VI-3) 前記式 (VI— 3)で表される 2量体と、下記式 (IV— 3)で表されるヌクレオシド誘導体 とを、リン酸結合試薬と縮合させ、下記式 (XIV— 2)で表される三量体を得、  (VI-2) (VI-3) A dimer represented by the formula (VI-3) and a nucleoside derivative represented by the following formula (IV-3) are condensed with a phosphate binding reagent, A trimer represented by the following formula (XIV-2) is obtained,
[化 25] [Chemical 25]
Figure imgf000082_0002
Figure imgf000082_0002
(VI-3) rxiv-2) OH W" 前記式 (XIV— 2)で表される三量体と、下記式 (VII)で表される無水物とを縮合させ 、下記式 (XV— 2)で表される三量体を得、 (VI-3) rxiv-2) OH W " The trimer represented by the formula (XIV-2) and the anhydride represented by the following formula (VII) are condensed to obtain a trimer represented by the following formula (XV-2),
[化 26] [Chemical 26]
Figure imgf000083_0001
前記式 (XV— 2)で表される三量体と下記式 (IX)で表されるアミノ基を有する固相担 体とを縮合させ、下記式 (ΧΠ— 1)で表される固相合成用ユニットィ匕合物を得る製造 方法。
Figure imgf000083_0001
The trimer represented by the formula (XV-2) and the solid support having an amino group represented by the following formula (IX) are condensed to form a solid phase represented by the following formula (ΧΠ-1). A production method for obtaining a unity compound for synthesis.
[化 27] [Chemical 27]
Figure imgf000083_0002
前記式中、
Figure imgf000084_0001
R3および Rは、互いに独立して、保護基であり、
Figure imgf000083_0002
In the above formula,
Figure imgf000084_0001
R 3 and R are, independently of one another, a protecting group;
B1, B2および B3は、互いに独立して、以下の式で示す基およびその官能基が保護基 で保護された基から選択される基であり、 B 1 , B 2 and B 3 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protecting group:
[化 28]  [Chemical 28]
Figure imgf000084_0002
Figure imgf000084_0002
Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
ここで、前記 1、 R21および R31は、互いに独立して、保護基であり、 Wherein 1 , R 21 and R 31 are each independently a protecting group;
X1および X3は、互いに独立して、 0、 NHまたは Sであり、 X 1 and X 3 are independently of each other 0, NH or S;
Y1は、互いに独立して、 Oまたは Sであり、 Y 1 is, independently of one another, O or S;
Z1は、互いに独立して、 0、 NHまたは Sであり、 Z 1 is independently of each other 0, NH or S;
Mは、固相担体である。  M is a solid phase carrier.
[32] 請求項 4に記載の修飾オリゴヌクレオチド製造のための、下記式 (ΧΙΠ— 1)で表さ れる固相合成用ユニットィ匕合物。 [32] A unitary compound for solid-phase synthesis represented by the following formula (1-1) for producing the modified oligonucleotide according to claim 4.
[化 29] [Chemical 29]
Figure imgf000085_0001
前記式中、 R4は、保護基であり、
Figure imgf000085_0001
In the above formula, R 4 is a protecting group,
B1, B2、 B3および B4は、互いに独立して、以下の式で示す基およびその官能基が保 護基で保護された基から選択される基であり、 B 1 , B 2 , B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected with a protective group:
[化 30] [Chemical 30]
Figure imgf000085_0002
Figure imgf000085_0002
Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
W41は、 Hまたは式 OR41で表される基であり、 W 41 is H or a group represented by the formula OR 41 ,
ここで、前記 1、 R21、 R31および R41は、互いに独立して、保護基であり、 Wherein 1 , R 21 , R 31 and R 41 are each independently a protecting group;
X1、 X2、 X3および X4は、互いに独立して、 0、 NHまたは Sであり、 X 1 , X 2 , X 3 and X 4 are independently of each other 0, NH or S;
Υ2および Υ3は、互いに独立して、 Οまたは Sであり、 Z2および Z3は、互いに独立して、 0、 NHまたは Sであり、 Υ 2 and Υ 3 are, independently of each other, Ο or S; Z 2 and Z 3 are independently of each other 0, NH or S;
Mは、固相担体である。 M is a solid phase carrier.
請求項 32に記載の式 (ΧΙΠ— 1)で表される固相合成用ユニットィ匕合物の製造方法 であって、  A method for producing a unitary compound for solid phase synthesis represented by the formula (ΧΙΠ-1) according to claim 32, comprising:
下記式 (XIV— 1)で表される三量体の R3を Hに置き換え、式 (XIV— 3)で表される三 量体を得、 R 3 of the trimer represented by the following formula (XIV-1) is replaced with H to obtain a trimer represented by the formula (XIV-3),
[化 31] [Chemical 31]
Figure imgf000086_0001
前記式 (XIV— 3)で表される三量体と、下記式 (IV— 4)で表されるヌクレオシド誘導 体とを、下記式 (V— 3)で表されるジイミダゾール誘導体と縮合させ、下記式 (XVI - 1)で表される四量体を得、
Figure imgf000086_0001
The trimer represented by the formula (XIV-3) and the nucleoside derivative represented by the following formula (IV-4) are condensed with a diimidazole derivative represented by the following formula (V-3). To obtain a tetramer represented by the following formula (XVI-1),
[化 32] [Chemical 32]
Figure imgf000087_0001
前記式 (XVI— 1)で表される四量体と、下記式 (VII)で表される無水物とを縮合さ 、下記式 (XVII— 1)で表される四量体を得、
Figure imgf000087_0001
The tetramer represented by the formula (XVI-1) and the anhydride represented by the following formula (VII) are condensed to obtain a tetramer represented by the following formula (XVII-1),
[化 33] [Chemical 33]
Figure imgf000088_0001
前記式 (XVII— 1)で表される四量体と、下記式 (IX)で表されるアミノ基を有する固 相担体とを縮合させ、式 (xm— 1)で表される固相合成用ユニットィ匕合物を得る製造 方法。
Figure imgf000088_0001
Solid phase synthesis represented by the formula (xm-1) by condensing the tetramer represented by the formula (XVII-1) and a solid phase carrier having an amino group represented by the following formula (IX) A manufacturing method for obtaining a unity compound.
[化 34]  [Chemical 34]
Figure imgf000088_0002
Figure imgf000088_0002
目 ij 己式【こお ヽて、 Eye ij self-style
R3および R4は、保護基であり、 B3および B4は、互いに独立して、以下の式で示す基およびその官能基が保 護基で保護された基から選択される基であり、 R 3 and R 4 are protecting groups, B 3 and B 4 are each independently a group selected from a group represented by the following formula and a group whose functional group is protected by a protective group:
[化 35]  [Chemical 35]
Figure imgf000089_0001
Figure imgf000089_0001
Aは、式—(CH ) 一で表される基であり、前記式において nは 1〜6の整数であり、 A is a group represented by the formula — (CH 2) 1, wherein n is an integer of 1 to 6,
2 n  2 n
W11は、 Hまたは式 OR11で表される基であり、 W 11 is a group represented by H or the formula OR 11 ,
W21は、 Hまたは式 OR21で表される基であり、 W 21 is a group represented by H or the formula OR 21 ;
W31は、 Hまたは式 OR31で表される基であり、 W 31 is a group represented by H or the formula OR 31 ;
W41は、 Hまたは式 OR41で表される基であり、 W 41 is H or a group represented by the formula OR 41 ,
ここで、前記 1、 R21、 R31および R41は、互いに独立して、保護基であり、 Wherein 1 , R 21 , R 31 and R 41 are each independently a protecting group;
X1、 X2、 X3および X4は、互いに独立して、 0、 NHまたは Sであり、 X 1 , X 2 , X 3 and X 4 are independently of each other 0, NH or S;
Υ2および Υ3は、互いに独立して、 Οまたは Sであり、Υ 2 and Υ 3 are, independently of each other, Ο or S;
Figure imgf000089_0002
Ζ2および Ζ3は、互いに独立して、 0、 NHまたは Sであり、
Figure imgf000089_0002
Ζ 2 and Ζ 3 are independently of each other 0, NH or S;
Mは、固相担体である。 M is a solid phase carrier.
PCT/JP2005/012579 2004-08-30 2005-07-07 Modified oligonucleotides WO2006025154A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531339A JPWO2006025154A1 (en) 2004-08-30 2005-07-07 Modified oligonucleotide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-250866 2004-08-30
JP2004250866 2004-08-30

Publications (1)

Publication Number Publication Date
WO2006025154A1 true WO2006025154A1 (en) 2006-03-09

Family

ID=35999818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012579 WO2006025154A1 (en) 2004-08-30 2005-07-07 Modified oligonucleotides

Country Status (2)

Country Link
JP (1) JPWO2006025154A1 (en)
WO (1) WO2006025154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136157A (en) * 2007-12-03 2009-06-25 Gifu Univ Oligonucleotide analogue or its salt

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502338A (en) * 1985-03-15 1987-09-10 アンチバイラルズ インコーポレイテッド stereoregular polynucleotide binding polymer
JPH0368594A (en) * 1989-08-09 1991-03-25 Shiratori Seiyaku Kk Production of polynucleotide
JPH09503494A (en) * 1993-07-28 1997-04-08 ハイブライドン インコーポレイテッド Building blocks with carbamate internucleoside linkages and novel oligonucleotides derived therefrom
JPH1072486A (en) * 1996-07-11 1998-03-17 Hoechst Ag Solid phase synthesis of oligonucleotide
WO2003070918A2 (en) * 2002-02-20 2003-08-28 Ribozyme Pharmaceuticals, Incorporated Rna interference by modified short interfering nucleic acid
JP2004519458A (en) * 2001-01-09 2004-07-02 リボファルマ アーゲー Target gene expression inhibition method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169176B1 (en) * 1998-07-02 2001-01-02 The Regents Of The University Of California Deoxynucleic alkyl thiourea compounds and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502338A (en) * 1985-03-15 1987-09-10 アンチバイラルズ インコーポレイテッド stereoregular polynucleotide binding polymer
JPH0368594A (en) * 1989-08-09 1991-03-25 Shiratori Seiyaku Kk Production of polynucleotide
JPH09503494A (en) * 1993-07-28 1997-04-08 ハイブライドン インコーポレイテッド Building blocks with carbamate internucleoside linkages and novel oligonucleotides derived therefrom
JPH1072486A (en) * 1996-07-11 1998-03-17 Hoechst Ag Solid phase synthesis of oligonucleotide
JP2004519458A (en) * 2001-01-09 2004-07-02 リボファルマ アーゲー Target gene expression inhibition method
WO2003070918A2 (en) * 2002-02-20 2003-08-28 Ribozyme Pharmaceuticals, Incorporated Rna interference by modified short interfering nucleic acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STIRCHAK P. ET AL.: "Uncharged stereoregular nucleic acid analogs. 1.Synthesis of a cytosine-containing oligomer with carbamate interbucleoside linkages.", JOURNAL OF ORGANIC CHEMISTRY, vol. 52, no. 19, 1987, pages 4202 - 4206, XP002070311 *
WALDNER A. ET AL.: "Synthesis of oligodeoxyribonucleotides containing dimers with carbamate moieties as replacement of the natural phosphodiester linkage.", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS., vol. 4, no. 3, 1994, pages 405 - 408, XP002991792 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136157A (en) * 2007-12-03 2009-06-25 Gifu Univ Oligonucleotide analogue or its salt

Also Published As

Publication number Publication date
JPWO2006025154A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
AU2018205183B2 (en) Chiral control
US20120142101A1 (en) Oligonucleotide end caps
KR102520362B1 (en) A nucleic acid complex in which a sugar chain ligand is coupled to an oligonucleotide through a linker
CA2961993A1 (en) Galnac phosphoramidites, nucleic acid conjugates thereof and their use
EP2647713B1 (en) Modified single-strand polynucleotide
AU2005323437A1 (en) Oligonucleotides comprising a C5-modified pyrimidine
JP7384833B2 (en) Modified RNA agents with reduced off-target effects
TW201718030A (en) [beta]2GPI gene expression inhibiting nucleic acid complex
Grijalvo et al. Synthesis of oligonucleotides carrying amino lipid groups at the 3′-end for RNA interference studies
WO2021132589A1 (en) Polynucleotide and medicinal composition
WO2011084345A1 (en) A method for rapidly evaluating performance of short interfering rna with novel chemical modifications
WO2007094218A1 (en) Modified oligonucleotide
Zhang et al. RNA interference in mammalian cells by siRNAs modified with morpholino nucleoside analogues
Grijalvo et al. Synthesis of lipid–oligonucleotide conjugates for RNA interference studies
Ueno et al. Synthesis of nuclease-resistant siRNAs possessing benzene-phosphate backbones in their 3′-overhang regions
WO2006025154A1 (en) Modified oligonucleotides
Chapuis et al. 2′-Lipid-modified oligonucleotides via a ‘Staudinger–Vilarrasa’reaction
WO2015137121A1 (en) Ribonucleoside analog having azide groups and method for producing same, and chimera-type oligoribonucleotide analog containing triazole linking-type oligoribonucleotide formed from such analog
JP5205873B2 (en) Novel dideoxynucleoside derivatives
Matsubara et al. Synthesis of siRNAs incorporated with cationic peptides R8G7 and R8A7 and the effect of the modifications on siRNA properties
JP5424236B2 (en) Oligonucleotide derivative, oligonucleotide construct using oligonucleotide derivative, compound for synthesizing oligonucleotide derivative, and method for producing oligonucleotide derivative
Koyasu et al. Non-terminal conjugation of small interfering RNAs with spermine improves duplex binding and serum stability with position-specific incorporation
Varley et al. Synthesis of 5’-fluorophosphate-modified short-interfering RNAs
Ueno et al. Synthesis and properties of siRNAs containing 5′-amino-2′, 5′-dideoxy-2′ α-fluororibonucleosides
WO2023164464A1 (en) 5'-modified carbocyclic ribonucleotide derivatives and methods of use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531339

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase