WO2007094218A1 - Modified oligonucleotide - Google Patents

Modified oligonucleotide Download PDF

Info

Publication number
WO2007094218A1
WO2007094218A1 PCT/JP2007/052129 JP2007052129W WO2007094218A1 WO 2007094218 A1 WO2007094218 A1 WO 2007094218A1 JP 2007052129 W JP2007052129 W JP 2007052129W WO 2007094218 A1 WO2007094218 A1 WO 2007094218A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified
oligonucleotide
group
double
modified oligonucleotide
Prior art date
Application number
PCT/JP2007/052129
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Kitade
Yoshihito Ueno
Yusuke Wataya
Original Assignee
Gifu University
National University Corporation Okayama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University, National University Corporation Okayama University filed Critical Gifu University
Priority to JP2008500459A priority Critical patent/JPWO2007094218A1/en
Publication of WO2007094218A1 publication Critical patent/WO2007094218A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane

Definitions

  • the present invention relates to a modified oligonucleotide.
  • the anti-sense method involves adding chemically synthesized oligonucleotides (for example, single-stranded DNA consisting of 15 to 20 base pairs) to cells to form ZmRNA double-stranded nucleic acid such as target messenger RNA (mRNA) and DNA.
  • mRNA target messenger RNA
  • mRNA target messenger RNA
  • the expression of the target gene is specifically suppressed in the base sequence, and the translation process into mRNA protein is inhibited.
  • the antisense method if the base sequence of the pathogenic virus or gene is known, it is possible to theoretically design an antisense molecule and synthesize it. It is expected as one of the effective treatment methods for diseases caused by various viruses and genetic diseases.
  • RNAi RNA interference
  • Dicer RNA interference
  • the siRNA forms an RNAZ mRNA double-stranded nucleic acid with the target mRNA and recognizes this double-stranded nucleic acid (called RNA-induced silencing complex (RISC)), and the double-stranded nucleic acid Are bound, and this conjugate cleaves the target mRNA.
  • RISC RNA-induced silencing complex
  • this RNAi-based method achieves the same effect using RNA at a concentration of about 1Z100 compared to the antisense method. Therefore, the method using RNAi is Expectations are growing as an effective treatment method for diseases and genetic diseases caused by various viruses that have been considered difficult to cure.
  • oligonucleotide analogs have also been developed for the purpose of improving the ability to form a double strand with a natural oligonucleotide and improving the stability of the formed double strand.
  • oligonucleotide analogues include oligonucleotide analogues in which the 2 ′ hydroxyl group of ribose on the nucleoside of a natural oligonucleotide is replaced with an alkoxy group (eg, methoxy group) or a halogen atom (eg, fluorine atom) (eg, And non-patent document 1).
  • oligonucleotide analogues have been confirmed to improve the ability to form double strands with natural oligonucleotides and to improve the stability of the double strands formed.
  • these oligonucleotide analogues were similar in structure to natural oligonucleotides, and thus improved nuclease resistance was not achieved.
  • the modified oligonucleotide has a modified siRNA ability in which cholesterol is bound to the third end of the sense strand and is useful in the treatment of hyperlipidemia in an animal model (for example, Non-patent document 2).
  • Non-Special Reference 1 Andrew M. Kawasaki, Martin D. Casper, busan M. Freier,von A. Lesnik, Maryann C. Zounes, Lendell L. Cummins, Carolyn Gonzalez and P. Dan Cook, "Uniformly modified 2 ' -deoxy-2 and fluoro phophorothioate oligonucleotides as nucl ease-resistant antisense compounds with highly affinity and specificity for RNA targe ts ", Journal of Medicinal Chemistry, 1993, 36, p.831.
  • Non-Patent Document 2 Jurgen Sontschek et al., Nature, 2004, No. 432, p.173 Disclosure of the Invention
  • an object of the present invention is to provide an oligonucleotide having a modified 3 'end that is excellent in two properties of nuclease resistance and duplex forming ability.
  • the present invention is a modified oligonucleotide containing a modified nucleoside as a constituent component at the 3, terminus of the oligonucleotide.
  • the modified nucleoside force nucleoside has the following formula ( ⁇ ) via a linker at the 3, terminus:
  • R A means a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
  • the present invention is a double-stranded modified oligonucleotide
  • the antisense strand is an oligonucleotide analogue containing a modified nucleoside as a constituent component at the 3, end of the oligonucleotide, and at the 3, end of the modified nucleoside force nucleoside.
  • a double-stranded modified oligonucleotide which is a modified nucleoside to which a compound having a steroid skeleton represented by the following formula ( ⁇ ) is bound via a linker.
  • R s means a steroid skeleton optionally having one or more substituents, wherein one or more single bonds in the skeleton are optionally replaced with double bonds.
  • a compound having a carboxylic acid or a steroid skeleton is bound to the 3, terminus of a nucleoside contained as a constituent component at the 3, terminus of an oligonucleotide via a linker.
  • a linker to improve the nuclease resistance and the ability to form double strands of the modified oligonucleotide.
  • FIG. 1 (a) shows an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide in which palmitic acid is bound to the 3 ′ end via a linker.
  • 2 is a graph showing the expression concentration of RNaseL.
  • Lane 1 represents a control
  • lane 2 represents a 50 nM modified double-stranded oligonucleotide
  • lane 3 represents a ⁇ modified double-stranded oligonucleotide
  • lane 4 represents a 200 nM modified double-stranded oligonucleotide.
  • Fig. 1 (b) shows the RNaseL expression levels of examples of modified DNA sense strands with oleic acid bound to the end via a linker and examples of unmodified double-stranded oligonucleotides. It is a graph which shows. Lane 1 represents a control, lane 2 represents a 50 nM modified double-stranded oligonucleotide, lane 3 represents a ⁇ modified double-stranded oligonucleotide, and lane 4 represents a 200 ⁇ modified double-stranded oligonucleotide.
  • Fig. 1 (c) shows the RNaseL expression levels of a modified DN ⁇ sense strand and a non-modified double-stranded oligonucleotide example in which cholesterol is bound to the 3 'end via a linker. It is a graph to show. Lane 1 represents a control, lane 2 represents a 50 nM modified double-stranded oligonucleotide, lane 3 represents a ⁇ modified double-stranded oligonucleotide, and lane 4 represents a 20 OnM modified double-stranded oligonucleotide.
  • the present invention is a modified oligonucleotide containing a modified nucleoside as a constituent component at the 3 'end of the oligonucleotide, and the modified nucleoside force nucleoside via a linker at the 3' end,
  • a modified oligonucleotide which is a modified nucleoside to which a carboxylic acid represented by the following formula (III) is bound.
  • R A means a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
  • the modified oligonucleotide to which the carboxylic acid represented by the formula ( ⁇ ) is bound is preferably a modified oligonucleotide represented by the following formula (IA).
  • R, 1 OH means oligonucleotide
  • the hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
  • L means a divalent group
  • R A represents a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
  • the saturated aliphatic hydrocarbon group is preferably a saturated aliphatic hydrocarbon group having 1 to 25 carbon atoms.
  • the unsaturated aliphatic hydrocarbon group is preferably an unsaturated aliphatic hydrocarbon group having 3 to 25 carbon atoms.
  • the divalent group is preferably a divalent group represented by the following formula (IVA).
  • —X— is — (CH) or (CH) —CH (CH OH) —
  • —Y— is one (CH) or one (CH) -CH (CH OH) one;
  • n are each independently an integer of 1 to 20.
  • the divalent group is preferably a divalent group represented by the following formula (IVA-1).
  • n is an integer of 1-20.
  • the modified oligonucleotide to which the carboxylic acid represented by the formula ( ⁇ ) is bound may be a single-stranded oligonucleotide.
  • the modified oligonucleotide force is antisense DNA or antisense RNA, and has a sequence complementary to at least a part of mRNA encoding the modified oligonucleotide force endonuclease.
  • the modified oligonucleotide to which the carboxylic acid represented by the above formula ( ⁇ ) is bound may be a double-stranded oligonucleotide.
  • the present invention is also a double-stranded modified oligonucleotide as described above,
  • the antisense strand is an oligonucleotide analogue containing a modified nucleoside as a constituent component at the 3, end of the oligonucleotide, and at the 3, end of the modified nucleoside force nucleoside.
  • a double-stranded modified oligonucleotide which is a modified nucleoside to which a compound having a steroid skeleton represented by the following formula ( ⁇ ) is bound via a linker.
  • R S means a steroid skeleton optionally having one or more substituents, wherein one or more single bonds in the skeleton are optionally replaced with double bonds.
  • the oligonucleotide analogue is preferably represented by the formula (IS).
  • R, 1 OH means oligonucleotide
  • the hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
  • L means a divalent group
  • R s means a steroid skeleton that optionally has one or more substituents, and one or more single bonds in the skeleton are optionally replaced with double bonds.
  • the group power to be power is selected.
  • the divalent group is preferably a divalent group represented by the following formula (IVS).
  • —X— is — (CH) or (CH) —CH (CHOH) —
  • —Y— is one (CH) or one (CH) -CH (CH OH) one;
  • n are each independently an integer of 1 to 20.
  • the divalent group is preferably a divalent group represented by the following formula (IVS-1).
  • n is an integer of 1-20.
  • the modified oligonucleotide is an oligonucleotide that causes RNAi (RNA interference), and preferably has the same base sequence as a part of mRNA encoding the modified oligonucleotide force endonuclease! /.
  • the modified oligonucleotide is siRNA (short interfering RNA),
  • a portion of the mRNA is
  • the modified oligonucleotide force is more preferably a combination of a sense strand and an antisense strand of the 19-base sequence. At least one force of the sense strand and the antisense strand further includes two base sequences at the 3 ′ end. More preferably it has nucleotides.
  • the modified oligonucleotide of the present invention is preferably resistant to the oligonucleotide force nuclease.
  • the present invention is also a gene expression inhibitor comprising an oligonucleotide, wherein the oligonucleotide is a modified oligonucleotide of the present invention.
  • the present invention is also a pharmaceutical composition for treating a disease associated with gene expression, wherein the pharmaceutical composition comprises the gene expression inhibitor of the present invention.
  • the pharmaceutical composition preferably further contains a cell introduction excipient. It is preferable that the cell introduction excipient is a transfection reagent.
  • the present invention is also an RNAi kit, wherein the kit comprises the modified oligonucleotide of the present invention.
  • the present invention is also a reagent for RNAi research, wherein the reagent contains the modified oligonucleotide of the present invention.
  • the present invention is also a method for suppressing gene expression using an oligonucleotide, wherein the oligonucleotide force is a modified oligonucleotide of the present invention.
  • the present invention is also a method of causing RNAi using an oligonucleotide, wherein the oligonucleotide is a modified oligonucleotide of the present invention.
  • the present invention also provides a solid phase synthesis compound represented by the following formula (XIA) as a starting material.
  • a method for producing a modified oligonucleotide represented by the following formula (IA), wherein R 1 of the unit compound for solid phase synthesis represented by the formula (XIA) is removed and converted to a free hydroxyl group In this production method, the modified oligonucleotide is obtained by extending the oligonucleotide to a free hydroxyl group and then cutting out the solid phase carrier force.
  • R, —OH means oligonucleotide
  • the hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
  • R A means a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group
  • R 1 is a hydroxyl protecting group
  • R 2 is a solid support
  • L is a group represented by the formula (IVA).
  • —X— is — (CH) or (CH) —CH (CH OH) —
  • —Y— is one (CH) or one (CH) -CH (CH OH) one;
  • n are each independently an integer of 1 to 20.
  • the present invention also provides the following formula for producing a modified oligonucleotide represented by the following formula (IA): It is a unity compound for solid phase synthesis represented by (XIA).
  • R, —OH means oligonucleotide
  • the hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
  • R A means a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group
  • R 1 is a hydroxyl protecting group
  • R 2 is a solid support
  • L is a group represented by the formula (IVA).
  • —X— is — (CH) or (CH) —CH (CH OH) —
  • —Y— is one (CH) or one (CH) -CH (CH OH) one;
  • n are each independently an integer of 1 to 20.
  • the present invention is also a method for producing a modified oligonucleotide represented by the following formula (IS) using a compound for solid phase synthesis represented by the following formula (XIS) as a starting material,
  • R 1 of the unit compound for solid phase synthesis represented by the formula (XIS) is removed and converted to a free hydroxyl group, the oligonucleotide is extended to the free hydroxyl group, and then the solid phase carrier is cleaved. This is a production method for obtaining the modified oligonucleotide.
  • R, —OH means oligonucleotide
  • the hydroxyl group in R′—OH means the hydroxyl group at the 3, terminal end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide.
  • R S means a steroid skeleton optionally having one or more substituents, wherein one or more single bonds in the skeleton are arbitrarily replaced with double bonds,
  • R 1 is a hydroxyl protecting group
  • R 2 is a solid support
  • L is a group represented by the formula (IVS),
  • X— is one (CH) or (CH) — CH (CH OH) —,
  • Y— is one (CH) or one (CH) CH (CH OH) one;
  • n are each independently an integer of 1 to 20.
  • the present invention is also a unit compound for solid phase synthesis represented by the following formula (XIS) for producing a modified oligonucleotide represented by the following formula (IS).
  • XIS solid phase synthesis
  • IS modified oligonucleotide
  • R, —OH means oligonucleotide
  • the hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
  • R S means a steroid skeleton optionally having one or more substituents, wherein one or more single bonds in the skeleton are arbitrarily replaced with double bonds,
  • R 1 is a hydroxyl protecting group
  • R 2 is a solid support
  • L is a group represented by the formula (IVS),
  • —X— is — (CH) or (CH) —CH (CH OH) —
  • —Y— is one (CH) or one (CH) -CH (CH OH) one;
  • n are each independently an integer of 1 to 20.
  • oligonucleotide refers to, for example, a polymer of nucleoside subunits, and the number of subunits is not particularly limited.
  • the number of subunits is 2 to: LOO strength S, preferably 4 to 30 is more preferred RNA. 2 to 50 is preferred. 4 to 30 is more preferred.
  • the “oligonucleotide” in the present invention is not particularly limited except that the 3′-hydroxy group of the 3 ′ terminal nucleoside is modified.
  • the sugar moiety (eg 2′-substitution) and base may be modifications known to those skilled in the art.
  • the present invention includes a modified nucleoside as a constituent component at the 3 'end of the oligonucleotide, and the modified nucleoside force nucleoside via the linker at the 3, terminus of the modified nucleoside.
  • this is referred to as an acid-modified oligonucleotide.
  • the oligonucleotide includes a modified nucleoside as a constituent component at the 3 'end, and a carboxylic acid represented by the following formula (III) is bonded to the modified nucleoside force nucleoside at the 3' end via a linker.
  • the acid-modified oligonucleotide is preferably a modified oligonucleotide represented by the following formula (IA).
  • R, 1 OH means oligonucleotide
  • the hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
  • L means a divalent group
  • R A represents a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
  • the modified oligonucleotide represented by the formula (IA) can be represented, for example, as follows.
  • W 1 and W 2 are hydrogen or a hydroxyl group
  • Basel and Base 2 are a group represented by the following formula (1), a group represented by the following formula (2), and a formula (3) Independently selected from the group represented by the group represented by the following formula (4) and the group represented by the following formula (5).
  • the saturated aliphatic hydrocarbon group means a saturated hydrocarbon substituted with a carboxy group, for example, having 1 to 25 carbon atoms, preferably 10 ⁇ 25, more preferably 15-20 saturated aliphatic hydrocarbon groups.
  • saturated aliphatic hydrocarbon groups include methanic acid (formic acid), ethanoic acid (acetic acid), propanoic acid (propionic acid), butanoic acid (butyric acid), 2-methylbutanoic acid (isobutyric acid), pentanoic acid ( Valeric acid), 3-methylbutanoic acid (isovaleric acid), 2,2-dimethylpropanoic acid (pivalic acid), hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid (lauric acid), Examples include tridecanoic acid, tetradecanoic acid (myristic acid), pentadecanoic acid, he
  • the unsaturated aliphatic hydrocarbon group means an unsaturated hydrocarbon such as an alkene, alkyne and the like, in which a carboxy group is substituted, for example, having 3 to 25 carbon atoms, preferably 10 to 25 carbon atoms. Preferably they are 15-20 saturated aliphatic hydrocarbon groups.
  • Examples of unsaturated aliphatic hydrocarbon groups include propenoic acid (acrylic acid), propionic acid (propiolic acid), 2-methylpropenoic acid (methacrylic acid), trans butter-2-enoic acid (crotonic acid), cis butter Examples include 2-enoic acid (isocrotonic acid), cis-octadeca-9-enoic acid (oleic acid), trans-otatadecaenoic acid (raidic acid), and the like. Among them, cis-octadeca 9 enoic acid (oleic acid) is preferable.
  • the aryl group has a total of 5 to 50 ring atoms, at least one ring is aromatic, and each ring has 5 to 8 ring atoms, monocyclic, bicyclic, Refers to tricyclic and tetracyclic carbon cyclic groups.
  • Examples of the aryl group include phenyl, indul, naphthyl, fluorenyl and the like.
  • the heterocyclic group has a total of 5 to 50 ring atoms, at least one ring has a heteroatom, and each ring has 5 to 8 ring atoms, It means bicyclic, tricyclic and tetracyclic carbocyclic groups.
  • Examples of the heterocyclic group include thiophenyl, fuller, viral, xanthur, pyrrolyl, imidazolyl, pyridyl and the like.
  • Examples of the divalent group in the formula (IA) include, but are not limited to, a divalent group represented by the following formula (IVA).
  • —X— is — (CH) or (CH) —CH (CH OH) —
  • —Y— is one (CH) or one (CH) —CH (CH OH) one;
  • n are each independently an integer of 1 to 20.
  • the acid-modified oligonucleotide of the present invention may be a single-stranded oligonucleotide, a double-stranded oligonucleotide, or the like.
  • the acid-modified oligonucleotide of the present invention is preferable for use as antisense, siRNA and the like because of its excellent ability to form double strands.
  • Acid-modified oligonucleotide When the oxide is double-stranded, it is preferably a single-stranded oligonucleotide force-modified oligonucleotide of one or both of the double-stranded oligonucleotides.
  • both single-stranded oligonucleotides of the double-stranded oligonucleotide are acid-modified oligonucleotides
  • the two acid-modified oligonucleotides may be the same or different.
  • the modified oligonucleotide is antisense DNA or antisense RNA, and the modified oligonucleotide is a part of mRNA encoding endonuclease or the like It is preferable to have a sequence complementary to the whole.
  • Modified oligonucleotide force This is a force capable of forming double strands with such mRNA and suppressing the expression of endonucleases and the like.
  • the present invention is a double-stranded modified oligonucleotide, and includes a sense strand having the same base sequence as a part of the modified oligonucleotide-force target mRNA, and an antisense to the sense strand.
  • a strand of the antisense strand and the sense strand are identical to the present invention.
  • At least the antisense strand is an oligonucleotide analogue containing a modified nucleoside as a constituent component at the 3 ′ end of the oligonucleotide, and the modified nucleoside force nucleoside via the linker at the 3, end of the modified nucleoside A force that is a modified nucleoside to which a compound having a steroid skeleton represented by (ii) is bound.
  • this is referred to as a steroid-modified oligonucleotide for convenience.
  • the oligonucleotide analogue is preferably a modified oligonucleotide represented by the following formula (IS).
  • R, 1 OH means oligonucleotide
  • the hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
  • L means a divalent group
  • R s means a steroid skeleton that optionally has one or more substituents, and one or more single bonds in the skeleton are optionally replaced with double bonds.
  • oligonucleotide analog represented by the formula (IS) can be expressed, for example, as follows.
  • W 1 and W 2 are hydrogen or a hydroxyl group
  • Basel and Base 2 are a group represented by the following formula (1), a group represented by the following formula (2), and a formula (3) Independently selected from the group represented by the group represented by the following formula (4) and the group represented by the following formula (5).
  • the steroid skeleton means a cyclopentahyofuronananthrene derivative and has a structure in which three six-membered rings and one five-membered ring are condensed. Have.
  • R S one or more single bonds in the sterol skeleton may be arbitrarily replaced with a double bond.
  • the substituent in the above include a lower alkyl group (for example, methyl, ethyl, propyl, butyl, 1,5-dimethylhexyl, etc.), a hydroxyl group, and the like.
  • the substituent has 0 to: LO It may be.
  • R s include those represented by the following formulas c
  • Examples of the divalent group in the formula (IS) include, but are not limited to, a divalent group represented by the following formula (IVS).
  • —X— is — (CH) or (CH) —CH (CH OH) —
  • -Y— is one (CH) or — (H) —
  • n are each independently an integer of 1 to 20.
  • the modified oligonucleotide (acid-modified oligonucleotide and steroid-modified oligonucleotide) is double-stranded, it is an oligonucleotide that causes RNAi (RNA interference), and encodes the modified oligonucleotide force endonuclease, etc.
  • RNAi RNA interference
  • modified oligonucleotides having the same base sequence as part of the mRNA are also useful for RNAi research and the like. Examples of the endonuclease include RNaseL.
  • the modified oligonucleotide When the modified oligonucleotide is double-stranded, it is the modified oligonucleotide force siRNA (short interfering RNA), and a part of the mRNA is 75% from the start codon.
  • siRNA short interfering RNA
  • a 19-base sequence following the first AA sequence, upstream of the base, and having a partial force of the mRNA, specific to the mRNA, and the modified oligonucleotide force The sense strand and the antisense strand of the 19-base sequence And a combination thereof.
  • Such a sense chain can be obtained, for example, as follows.
  • an exonuclease mRNA sequence is obtained.
  • a known gene database such as NCBI (National Center for Biotechnology Information), EMBL-EBI (European Molecular Biology Laboratory-European Bioinformatics Institute)
  • an exonuclease mRNA sequence is obtained.
  • the gene sequence find the first AA sequence that is more than 75 bases downstream from the start codon.
  • a 19-base sequence following the AA sequence a total of 21 bases.
  • one or both of the sense strand and the antisense strand further have two base sequences at the 3 'end. Having such a sequence at the 3 ′ end also tends to cause RNAi.
  • Such two base sequences are not limited to, for example, forces such as TT and cocoon.
  • the modified oligonucleotide of the present invention is preferably nuclease resistant.
  • the modified oligonucleotide of the present invention can be prevented from being degraded by a nuclease when incorporated into cells, and as a result, the modified oligonucleotide can maintain its activity in cells. is there.
  • the gene expression inhibitor of the present invention includes the modified oligonucleotide of the present invention.
  • a gene expression inhibitor can modify the ability of modified oligonucleotide, for example, cleave the mRNA of the target gene or form a double strand with the mRNA of the target gene, thereby suppressing the gene expression.
  • the pharmaceutical composition of the present invention is for treating a disease associated with gene expression, and includes the gene expression inhibitor.
  • a disease associated with gene expression for example, a disease is caused by the expression of a protein
  • the pharmaceutical composition It can be used to suppress expression and treat diseases associated with its gene expression.
  • Such a pharmaceutical composition preferably further contains an excipient for cell introduction.
  • an excipient for cell introduction includes a transfection reagent and the like.
  • the transfection reagent includes, for example, a DNA molecule (the pharmaceutical composition) encapsulated in artificial lipid vesicles (ribosomes) composed of phospholipids, and the artificial lipid vesicles in a cell suspension.
  • it is a reagent that forms artificial lipid vesicles that are used in the lipofection method to attach DNA molecules in artificial lipid vesicles by attaching them to the cell surface and fusing with cell membranes.
  • transfer reagent examples include, for example, Lipofectamine (Invitrogen), Lipofectamine 2000 (Invitrogen), Oligofectamin (Invitrogen), Transmessenger (Kigen (Kigen)) QIAGEN))), siRNA Transfection 'kit. Jet SI (Ambion), Gene Slicer SiRNA Transfection Reagent (Gene Therapy Systems), etc. It is done.
  • the pharmaceutical composition of the present invention can also be introduced into cells by using an electroporation method, a particle gun method, or the like.
  • the electopore position method is, for example, a method in which an electric pulse is applied to a cell to make a hole in the cell wall, and the pharmaceutical composition of the present invention is introduced into the cell through the hole.
  • the particle gun method molecules such as DNA molecules (the pharmaceutical composition) are attached to gold fine particles, and using a particle gun (particle gun), the compressed fine helium gas is used to shoot the gold fine particles into the cell membrane.
  • the DNA molecule the pharmaceutical composition
  • the pharmaceutical composition is introduced into cells.
  • the RNAi kit of the present invention includes a modified oligonucleotide that is an siRNA.
  • kits include a plate on which a well and a modified oligonucleotide are fixed, a fixed carrier such as a fiber and a nanochip, and the like.
  • a kit may contain, in addition to the modified oligonucleotide, for example, a drug, a coloring reagent that reacts to develop color, a detection reagent that facilitates detection, and the like.
  • the RNAi research reagent of the present invention contains a modified oligonucleotide that is siRNA.
  • RNAi research when dsRNA of 30bp or more is introduced into a cell, the cell-specific defense reaction is activated, and a reaction that randomly degrades mRNA occurs, which indicates whether RNAi is generated in the cell. It may not be possible to judge.
  • This random degradation of mRNA is considered to occur by the following mechanism.
  • dsRNA activates 2-5 oligoadreic acid synthase (2-5AS) and activates 2-5A RNAaseL produced thereby.
  • the RNAaseL degrades mRNA at random. Since the modified oligonucleotide, which is siRNA, can suppress the expression of RNAaseL, random degradation of mRNA can be suppressed. As a result, for example, it is easy to determine whether RNAi is occurring in the cell.
  • the gene expression suppression method of the present invention is a method of suppressing gene expression using a modified oligonucleotide.
  • the modified oligonucleotide can, for example, cleave the mRNA of the target gene or form a double strand with the mRNA of the target gene, thereby suppressing gene expression.
  • the method for causing RNAi of the present invention is a method for causing RNAi using a modified oligonucleotide that is siRNA. This method can cause RNAi since it is a modified oligonucleotide force RNA.
  • R 1 of the unit compound for solid-phase synthesis represented by the following formula (XIA) is removed and converted to a free hydroxyl group
  • the modified oligonucleotide can be obtained by extending the oligonucleotide to the free hydroxyl group and then cutting out the solid phase carrier force.
  • R A is a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group.
  • R 1 is a hydroxyl protecting group
  • R 2 is a solid support
  • n 1 to 20
  • n is an integer of 1-20.
  • the saturated aliphatic hydrocarbon group in the formula (IA) As defined for unsaturated aliphatic hydrocarbon groups, aryl groups, and heterocyclic groups.
  • R 1 of the unit compound for solid phase synthesis represented by the following formula (XIS) is removed and converted to a free hydroxyl group, and the oligonucleotide is extended to the free hydroxyl group.
  • the modified oligonucleotide can be obtained by cutting out the phase carrier force.
  • R 1 optionally has one or more substituents, and one or more single bonds in the skeleton are optional.
  • the steroid skeleton is replaced by a double bond
  • R 1 is a hydroxyl protecting group
  • R 2 is a solid support
  • n 1 to 20
  • n is an integer of 1-20.
  • R S in the formula (XIS) is as defined for R S in the formula (IS).
  • the hydroxyl-protecting group means a conventionally known primary alcohol protecting group, for example, 4,4′-dimethoxytrityl (DMTr), 4-monomethoxy known in the field of nucleoside chemistry. Trityl (MMTr), (9-phenol) xanthene-9-yl [pixy 1] and the like can be used as the protecting group.
  • DMTr 4,4′-dimethoxytrityl
  • Trityl (MMTr) (9-phenol) xanthene-9-yl [pixy 1] and the like can be used as the protecting group.
  • the solid phase carrier is not limited as long as it is a solid phase carrier suitable for synthesizing DNA, RNA, etc. with the solid phase carrier.
  • CPG control pore glass
  • HC P highly cross-linked polystyrene
  • R 1 can be removed by appropriately selecting an acid, an alkali, a catalyst or the like according to the type of R 1 .
  • a nucleoside is used in accordance with the sequence of the modified oligonucleotide using a conventionally known technique in the field of oligonucleotide synthesis. Can be performed by sequentially coupling
  • nucleoside As the nucleoside, coupling reagent, deprotection reagent, washing reagent, etc., those usually used for nucleic acid solid phase synthesis are used.
  • the modified oligonucleotide on the obtained solid phase carrier is subjected to deprotection of the oligonucleotide side chain if necessary, and then the solid phase carrier force is cut out to obtain a crude modified oligonucleotide.
  • the reagent used for excision can be appropriately selected from conventionally known reagents according to the structure of the solid phase carrier and the linker (the portion connecting the solid phase carrier and the modified oligonucleotide).
  • the crude modified oligonucleotide may be purified by HPLC or the like, if necessary.
  • a single-stranded modified oligonucleotide is first produced according to the method as described above.
  • a single-stranded natural oligonucleotide having a sequence complementary to the modified oligonucleotide is also separately produced according to a conventionally known method.
  • the resulting single-stranded modified oligonucleotide is then placed in an annealing buffer (eg, a buffer containing lOOmM KOAc aqueous solution, 2 mM MgOAc solution, and 30 mM HEPES-KOH (pH 7.4)).
  • an annealing buffer eg, a buffer containing lOOmM KOAc aqueous solution, 2 mM MgOAc solution, and 30 mM HEPES-KOH (pH 7.4)
  • the solubilized product and the single-stranded natural oligonucleotide dissolved in the annealing buffer are mixed, treated at 95 ° C for 5 minutes, and then gradually cooled to 25 ° C.
  • a double-stranded modified oligonucleotide can be obtained.
  • This double-stranded modified oligonucleotide can be isolated and purified by further performing phenol Z chromatography, ethanol precipitation or the like, if necessary.
  • the solid-phase synthesis unity compound of formula (XIA) and the solid-phase synthesis unity compound of formula (XIS) used in the production method can be produced, for example, by the following method. .
  • unitary compound (XIA) will be described with reference to Scheme 1.
  • R 3 of the obtained compound of the formula ( ⁇ ) is removed, and then an anhydride (XIV) is optionally added to a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylamino). Reaction is carried out in the presence of pyridine (DMAP, etc.) to obtain a compound of formula (XVA).
  • a base eg, pyridine, triethylamine, etc.
  • a catalyst eg, 4-dimethylamino
  • Reaction is carried out in the presence of pyridine (DMAP, etc.) to obtain a compound of formula (XVA).
  • DMAP pyridine
  • solid phase carrier R 2 —NH having an amino group are cut
  • a step of obtaining a compound represented by the formula (xms) by reacting a compound represented by the formula (XII) with —011 shobi 1, 1, -carbodiimidazole; removing the R 3 of the compound represented by xms), and obtaining the following, a compound represented by the following formula (XIV) represented by is reacted with compound of the following formula (XVS), the formula (XVS ) And a solid phase carrier having an amino group are reacted to obtain the compound represented by the formula (XIS).
  • a protecting group may be introduced into each functional group, the protecting group may be deprotected, or the protecting group may be changed. Selection of a protecting group according to the type of functional group, introduction of the protecting group, and removal of the protecting group can be carried out according to methods known in the art. For example, “protective group in organic synthesis” s in Organic synthesis j, T. Greene et al., John Wiley & 3 ⁇ 4ons, Inc.
  • DMTrCl 4,4'-Dimethoxytritylchloride (4,4 dimethoxytritylchloride)
  • EDTA ethylenediamine- N, N, ⁇ ', ⁇ , —tetraacetic acid, aisodium salt, dehydrate)
  • FAB fast atom bombardment (fast atom bombardment)
  • HRMS high-resolution mass spectrometry
  • mRNA messenger ribonucleic acid
  • TBDMSCl tert-butyldimethylsilylchloride
  • TEMED N, N, ⁇ ', N, monotetramethyl monoethylenediamine ( ⁇ , ⁇ , ⁇ ', ⁇ '- tetr amethyl-ethylenediamine)
  • TRIS Tris (hydroxymethyl) aminomethane
  • WSC 1-Ethyl-3- (3-dimethylaminopropyl) -carbodimide 'hydrochloride (1- Ethyl-3- (3-dimethylaminopropyl) -carbodnmide, hydrochloride )
  • the activity of the compound on CPG was calculated as follows.
  • Abs. Is the absorbance of CPG at a wavelength of 498 nm
  • weight is the weight of the measured CPG.
  • the obtained residue was vacuum-dried for 12 hours, dissolved in DMF (12.5 mL), and applied to CPG (0.50 g, 0.25 mmol, 222 mol / g) for 30 minutes.
  • the target protein is Homo sapiens ribonuclease L (2 ', 5' -oligoisoadenylate synthetase-dependent, RNase L) [gi: 30795246], and the target self-sequence is from 92 to 114 in the start codon.
  • a base sequence consisting of SEQ ID NO: 1 was used.
  • a modified DNA sense strand in which palmitic acid, oleic acid or cholesterol is bound to the base sequence consisting of SEQ ID NO: 1 via a linker at the 3 'end (SEQ ID NO: 2)
  • a modified DNA antisense strand (SEQ ID NO: 3) in which palmitic acid, oleic acid or cholesterol was bound to the 3 ′ end via a linker (SEQ ID NO: 4)
  • siRNA manufactured by Ambion having a DNA sense strand (SEQ ID NO: 4) and a DNA antisense strand (SEQ ID NO: 5) with respect to the base sequence consisting of SEQ ID NO: 1 was used.
  • the TEAA buffer solution (10 mL) was passed through and equilibrated), and the modified DNA sense strand mixture was adsorbed onto the column.
  • the column is washed with sterile water to remove salt, and then 80% CH C
  • a 0.1 M TEAA buffer was prepared as follows. First, water was added to 1 L in a mixture of 2N acetic acid (114. 38 mL) and triethylamine (277. 6 mL). The solution was prepared by adding acetic acid to adjust the pH to 7.0, and then diluting the solution 20 times.
  • a 0.1 M aqueous EDTA solution was prepared by dissolving EDTA'4Na (l. 80 g) in water (40 mL).
  • the single-stranded 5 ′ end of SEQ ID NO: 2 is 32 P in the same manner as in Example 1 except that the 5 ′ end of the modified single-stranded oligonucleotide consisting of SEQ ID NO: 2 is labeled with the 32 P label. A labeled modified DNA sense strand was produced. [0138] Example 2
  • the obtained oligonucleotide was dissolved in water (lmL) and diluted 100 times with water to prepare a diluted solution.
  • the absorbance (260 nm) of the diluted solution was measured, and the yield was calculated.
  • the absorbance ⁇ value, absorbance at 260 nm and yield are shown in Table 1.
  • the molecular weight of the obtained oligonucleotide was confirmed by MALDI-TOFZMS. The results are also shown in Table 1. [0144] [Table 1]
  • the absorbance and yield of the oligonucleotide were measured as follows.
  • oligonucleotide was dissolved in water to prepare an aqueous solution, and the aqueous solution was diluted so that the absorbance (Abs) at a wavelength of 260 nm was within the effective range of the absorptiometer.
  • Optical path length (Abs)
  • Abs is the absorbance of the oligonucleotide solution at a wavelength of 260 nm.
  • V is the total volume of the solution
  • 1 is the optical path length
  • M is the molar concentration
  • the molar extinction coefficient ⁇ 260 of the oligonucleotide was calculated using the following formula (2).
  • ⁇ ( ⁇ ) represents ⁇ of a certain nucleic acid ⁇
  • ⁇ ( ⁇ )) represents a nucleic acid dimer
  • Example 3 was replaced by the modified DNA produced in Example 4 instead of the modified DNA antisense strand produced in Example 2.
  • a modified DNA sense strand (SEQ ID NO: 2) in which oleic acid was bound to the 3 ′ end via a linker, and oleic acid at the 3 ′ end, in the same manner as in Example 5 except that the antisense strand was used.
  • a modified double-stranded oligonucleotide with a modified DNA antisense strand (SEQ ID NO: 3) force bound via a linker was obtained.
  • the modified DNA sense strand produced in Reference Example 1 was replaced by the modified DNA produced in Reference Example 2 instead of the modified DNA antisense strand produced in Example 2.
  • SEQ ID NO: 3 a modified double-stranded oligonucleotide having a modified DNA antisense strand (SEQ ID NO: 3) force bound thereto was obtained.
  • antisense strand and sense strand are as shown in the following formula (anti) and formula (sens).
  • a natural DNA antisense strand (SEQ ID NO: 5) (manufactured by Ambion) was used in the same manner as in Example 5 except that palmitic acid was added to the 3 ′ end.
  • a modified double-stranded oligonucleotide consisting of a modified DNA sense strand (SEQ ID NO: 2) and a natural DNA antisense strand (SEQ ID NO: 5) bound to each other via a linker.
  • the structure of the obtained antisense strand and sense strand is as shown in the following formula (anti) and formula (sen s).
  • a natural DNA sense strand was prepared in the same manner as in Example 5 except that the natural DNA sense strand (SEQ ID NO: 4) (manufactured by Ambion) was used instead of the modified DNA sense strand prepared in Example 1. No. 4) and a modified double-stranded oligonucleotide having a modified DNA antisense strand (SEQ ID NO: 3) force having palmitic acid bound to the 3 ′ end via a linker.
  • the structure of the resulting antisense strand and sense strand is as shown in the following formulas (anti) and (sens).
  • siRNA The structure of natural siRNA is as follows:
  • HT1080 cells were grown at 37 ° C in RPMI 1640 medium supplemented with 10% FBS, penicillin (100 units Zml) and streptomycin (0.1 mgZml). Cells were passaged regularly to maintain exponential growth. HT1080 cells were trypsinized 24 hours before transfer at approximately 25% confluency, diluted with medium without antibiotics, and transferred to 35 ml dishes (2 ml Z dishes) ).
  • the modified double-stranded oligonucleotide was transfected to the adherent cell line using Lipofuectamine 2000 reagent (Invitrogen) by the method described below.
  • double-stranded oligonucleotide 50, ⁇ or 200 nM per 250 1 of the medium
  • RPMI1640 medium without antibiotics and FBS
  • ribofactoramine 2000 reagent diluted 50 times was added to the solution, and then incubated at room temperature for 20 minutes.
  • HT1080 cells obtained after 24 hours incubation and 48 hours incubation from transfection were trypsinized and washed twice with cold PBS (—). The resulting cell pellet was then added to 2 volumes of low osmolarity buffer A (0.5% (vZv) Nonidet P-40, 20 mM Hepes (pH 7.5), 10 mM CH. CO K, 15mM (CH
  • the obtained cell suspension was incubated on ice for 10 minutes, and then thirty times on ice using a tight 'fitting-cuffs' Dough ⁇ 's' homomonizer ⁇ ( ⁇ lght—fitting glass dounce homogenizer). Stroke up and down to homogenize.
  • the obtained homogenized solution was centrifuged at 4 ° C for 10 minutes using an ultracentrifuge (lOOOO X g). The centrifuged supernatant is then collected and an equal volume of 2X sample buffer (0.14M Tris-HCl pH 6.8, 0.2% (vZv) glycerol, 2.
  • the PVDF membrane was incubated with 5% bovine serum albumin at 25 ° C for 1 hour. Thereafter, the PVDF membrane was rinsed twice with TBST (200 mM Tris pH 7.6, 1.37 M sodium chloride sodium salt, 0.1% Tween-20). The PVDF membrane was incubated with 0.5 gZml of anti-RNaseL monoclonal antibody at 4 ° C for 16 hours. After that, the PVDF membrane is placed in TBST once for 15 minutes and then 3 times for 5 minutes. Washed. The PVDF membrane was then incubated for 1 hour at 25 ° C. with anti-mouse IgG labeled with Horse radish peroxidase (500 ⁇ g ZmL diluted 100000 fold). Thereafter, the PVDF membrane was washed with TBST once for 15 minutes and then 3 times for 5 minutes.
  • the modified double-stranded oligonucleotide of the present invention has an effect of suppressing the expression of RNaseL as compared to the unmodified double-stranded oligonucleotide. It was confirmed that the RNAi activity was improved significantly.
  • the concentration of the modified double-stranded oligonucleotide used in (2) is the same as in 2. above (1) except that 1 ⁇ , 5nM or ⁇ is used instead of 50, ⁇ or 200nM per 2501 of the medium.
  • the relative ratio of the RNase L intensity of the cells treated with the modified double-stranded oligonucleotide was determined.
  • the modified double-stranded oligonucleotide of the present invention has a markedly improved effect of suppressing the expression of RNaseL compared to the natural (unmodified) double-stranded oligonucleotide. It could be confirmed. This remarkable improvement is an effect superior to that expected from the fact that the modified double-stranded oligonucleotide of the present invention has excellent cell membrane permeability and improved nuclease resistance.
  • Example 9 in which the 3 ′ end of the antisense strand is modified, the effect of suppressing the expression of RNaseL is improved compared to Example 8 in which the 3 ′ end of the sense strand is modified. was confirmed.
  • the exonuclease resistance of the double-stranded modified oligonucleotide and the natural double-stranded oligonucleotide was evaluated.
  • snake venom phosphorodiesterase SVP
  • SVP selectively cleaves phosphodiester bonds and cleaves oligonucleotides into 5, monomonophosphate nucleotides.
  • annealing buffer 250mM Tris-HCl (pH8.0) and 50mM MgCl.
  • the reaction solution (51) was sampled into each Eppendorf tube after 10, 30, 60 minutes, and mixed with 8 M urea solution (51) to stop the reaction. Note that the sample after 0 minutes does not contain the SVP aqueous solution.
  • the samples obtained at each time were annealed at 95 ° C for 5 minutes, and then analyzed by 20% denaturing PAGE (7M urea solution) (electrokinetic buffer: 1 XTBE, ⁇ 300V, 2 hours electric) Electrophoresis). The results obtained are shown in Table 4 below.
  • modified oligonucleotide of the present invention is useful, for example, as a disease therapeutic agent.
  • SEQ ID NO: 2 Modified sense strand of siRNA sequence for target sequence of SEQ ID NO: 1
  • SEQ ID NO: 3 Modified antisense strand of siRNA sequence for target sequence of SEQ ID NO: 1
  • SEQ ID NO: 4 Sense strand of siRNA sequence for target sequence of SEQ ID NO: 1
  • SEQ ID NO: 5 antisense strand of siRNA sequence against the target sequence of SEQ ID NO: 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Steroid Compounds (AREA)

Abstract

A modified oligonucleotide comprising an oligonucleotide containing at its 3’end a modified nucleoside as a structural component, wherein the modified nucleoside is one having a carboxylic acid or steroid skeleton containing compound linked via a linker to the 3’end of nucleoside. The modified oligonucleotide can be produced by solid-phase synthesis using any of the unit compounds for solid-phase synthesis represented by the formula (XIA) or the unit compounds for solid-phase synthesis represented by the formula (XIS) as a starting material. (XIA) (XIS) wherein R1, R2, n, m, RA and RS are as defined in the description.

Description

修飾オリゴヌクレオチド  Modified oligonucleotide
技術分野  Technical field
[0001] 本発明は、修飾オリゴヌクレオチドに関するものである。  [0001] The present invention relates to a modified oligonucleotide.
背景技術  Background art
[0002] 近年、遺伝情報そのものを治療の対象としてとらえるという方法論が普及しつつある 。この方法論の一つに、オリゴヌクレオチドを用いたアンチセンス法がある。アンチセ ンス法とは、化学合成したオリゴヌクレオチド (例えば、 15〜20の塩基対から成る一 本鎖 DNA)を細胞に加え、標的メッセンジャー RNA(mRNA)と DNA等 ZmRNA二 本鎖核酸を形成させることにより、標的遺伝子の発現を塩基配列特異的に抑制し、 mRNA力 タンパク質への翻訳過程を阻害する方法である。アンチセンス法では、 病因となるウィルスまたは遺伝子の塩基配列が既知の場合、アンチセンス分子を理 論的に設計し、それを合成するのが可能であることから、これまで治癒が困難と考え られてきた様々なウィルスを原因とする疾患および遺伝子疾患に対する有効な治療 方法の一つとして期待されて 、る。  [0002] In recent years, a methodology for capturing genetic information itself as a treatment target has been spreading. One of the methodologies is an antisense method using oligonucleotides. The anti-sense method involves adding chemically synthesized oligonucleotides (for example, single-stranded DNA consisting of 15 to 20 base pairs) to cells to form ZmRNA double-stranded nucleic acid such as target messenger RNA (mRNA) and DNA. Thus, the expression of the target gene is specifically suppressed in the base sequence, and the translation process into mRNA protein is inhibited. In the antisense method, if the base sequence of the pathogenic virus or gene is known, it is possible to theoretically design an antisense molecule and synthesize it. It is expected as one of the effective treatment methods for diseases caused by various viruses and genetic diseases.
[0003] また、ごく最近、オリゴヌクレオチドを用いた遺伝子発現抑制法として、 RNAi (RNA interference, RNA干渉)を利用した方法に、注目が集まっている。この RNAiとは、 二本鎖 RNAを細胞に導入することにより、同じ塩基配列を有する細胞の染色体由来 の RNAが分解され、切断される現象を指す。この RNAiの機構は、現在のところ、次 のように考えられている。先ず、長鎖二本鎖 RNAが、酵素(Dicerと呼ばれる)により 3,— UU型のダングリングエンド構造を持つ 21塩基程度の長さの二本鎖 RNA (siR NA (short interfering RNA)と呼ばれる)に加水分解される。その siRNAが、標的 mR NAと RNAZmRNA二本鎖核酸を形成し、この二本鎖核酸を認識する細胞内タン パク質 (RISC (RNA- induced Silencing Complex)と呼ばれる)と、この二本鎖核酸とが 結合し、この結合体により、標的 mRNAが切断されるというものである。この RNAiを 利用する方法によると、多くの場合、アンチセンス法と比較して 1Z100程度の濃度 の RNAを用いて同等の効果が得られている。従って、 RNAiを利用する方法も、これ まで治癒が困難と考えられてきた様々なウィルスを原因とする疾患および遺伝子疾 患に対する有効な治療方法の一つとして期待が高まっている。 Recently, attention has been focused on a method using RNAi (RNA interference) as a gene expression suppression method using oligonucleotides. RNAi refers to a phenomenon in which RNA derived from a cell chromosome having the same base sequence is degraded and cleaved by introducing double-stranded RNA into a cell. The mechanism of RNAi is currently considered as follows. First, a long double-stranded RNA is called a double-stranded RNA (siRNA (short interfering RNA)) with a length of about 21 bases with a 3-UU-type dangling end structure by an enzyme (called Dicer). ). The siRNA forms an RNAZ mRNA double-stranded nucleic acid with the target mRNA and recognizes this double-stranded nucleic acid (called RNA-induced silencing complex (RISC)), and the double-stranded nucleic acid Are bound, and this conjugate cleaves the target mRNA. In many cases, this RNAi-based method achieves the same effect using RNA at a concentration of about 1Z100 compared to the antisense method. Therefore, the method using RNAi is Expectations are growing as an effective treatment method for diseases and genetic diseases caused by various viruses that have been considered difficult to cure.
[0004] アンチセンス法、 RNAiを利用する方法等、オリゴヌクレオチドを用いる方法では、 細胞内に導入されたオリゴヌクレオチドを、安定に存在させる必要もある力 細胞内 外には核酸加水分解酵素 (ヌクレアーゼ)が存在し、導入されたオリゴヌクレオチド、 特に天然型のオリゴヌクレオチドは容易に分解されてしまうという問題があった。  [0004] In methods using oligonucleotides, such as antisense methods and RNAi-based methods, it is necessary to make oligonucleotides introduced into cells stable. ), And the introduced oligonucleotides, in particular, the natural oligonucleotides, were easily degraded.
[0005] 天然型オリゴヌクレオチドとの二本鎖形成能力向上および形成した二本鎖の安定 性向上を目的とする、種々のオリゴヌクレオチド類似体も開発されてきた。このような オリゴヌクレオチド類似体としては、例えば、天然型オリゴヌクレオチドのヌクレオシド のリボースの 2'水酸基を、アルコキシ基 (例えばメトキシ基)やハロゲン原子 (例えば フッ素原子)に置き換えたオリゴヌクレオチド類似体 (例えば、非特許文献 1参照)等 が知られている。これらのオリゴヌクレオチド類似体は、天然型オリゴヌクレオチドとの 二本鎖形成能力の向上および形成した二本鎖の安定性の向上が確認されている。 しかし、これらのオリゴヌクレオチド類似体は、天然型オリゴヌクレオチドと構造が類似 しているため、ヌクレアーゼ耐性の向上は実現されていな力つた。  [0005] Various oligonucleotide analogs have also been developed for the purpose of improving the ability to form a double strand with a natural oligonucleotide and improving the stability of the formed double strand. Examples of such oligonucleotide analogues include oligonucleotide analogues in which the 2 ′ hydroxyl group of ribose on the nucleoside of a natural oligonucleotide is replaced with an alkoxy group (eg, methoxy group) or a halogen atom (eg, fluorine atom) (eg, And non-patent document 1). These oligonucleotide analogues have been confirmed to improve the ability to form double strands with natural oligonucleotides and to improve the stability of the double strands formed. However, these oligonucleotide analogues were similar in structure to natural oligonucleotides, and thus improved nuclease resistance was not achieved.
[0006] 一方、前記修飾オリゴヌクレオチドとしてセンス鎖の 3,末端にコレステロールを結合 させた修飾 siRNA力 動物モデルで高脂血症の治療にぉ 、て有用であることが確 認されている(例えば、非特許文献 2参照)。  [0006] On the other hand, it has been confirmed that the modified oligonucleotide has a modified siRNA ability in which cholesterol is bound to the third end of the sense strand and is useful in the treatment of hyperlipidemia in an animal model (for example, Non-patent document 2).
[0007] このように、優れたヌクレアーゼ耐性と 、う特性と、優れた二本鎖形成能力および形 成した二本鎖の優れた安定性と 、う特性は、両立するのが困難であると!/、う問題があ つた。しかし、 DNAチップ、遺伝子診断薬等にオリゴヌクレオチド類似体を用いる場 合、安定した診断結果を得るためにも、これらの特性が優れたオリゴヌクレオチド修飾 体の提供が望まれていた。  [0007] Thus, it is difficult to satisfy both the excellent nuclease resistance and the properties, the excellent ability to form a duplex and the excellent stability of the formed duplex. There was a problem! However, when oligonucleotide analogues are used for DNA chips, gene diagnostics, etc., it has been desired to provide modified oligonucleotides with excellent properties in order to obtain stable diagnostic results.
非特干文献 1: Andrew M. Kawasaki, Martin D. Casper, busan M. Freier, Elena A. L esnik, Maryann C. Zounes, Lendell L. Cummins, Carolyn Gonzalez and P. Dan Coo k, "Uniformly modified 2' - deoxy- 2し fluoro phophorothioate oligonucleotides as nucl ease-resistant antisense compounds with highly affinity and specificity for RNA targe ts", Journal of Medicinal Chemistry, 1993年、第 36卷、 p.831. 非特許文献 2 :Jurgen Sontschek et al., Nature, 2004年、第 432卷、 p.173 発明の開示 Non-Special Reference 1: Andrew M. Kawasaki, Martin D. Casper, busan M. Freier, Elena A. Lesnik, Maryann C. Zounes, Lendell L. Cummins, Carolyn Gonzalez and P. Dan Cook, "Uniformly modified 2 ' -deoxy-2 and fluoro phophorothioate oligonucleotides as nucl ease-resistant antisense compounds with highly affinity and specificity for RNA targe ts ", Journal of Medicinal Chemistry, 1993, 36, p.831. Non-Patent Document 2: Jurgen Sontschek et al., Nature, 2004, No. 432, p.173 Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] そこで、本発明は、ヌクレアーゼ耐性および二本鎖形成能という 2つの特性が優れ た 3'末端が修飾されたオリゴヌクレオチドの提供を目的とする。 [0008] Therefore, an object of the present invention is to provide an oligonucleotide having a modified 3 'end that is excellent in two properties of nuclease resistance and duplex forming ability.
課題を解決するための手段  Means for solving the problem
[0009] 本発明は、オリゴヌクレオチドの 3,末端に構成成分として修飾ヌクレオシドを含む修 飾オリゴヌクレオチドであり、前記修飾ヌクレオシド力 ヌクレオシドの 3,末端に、リン カーを介して、下記式 (ΠΙ)で表されるカルボン酸を結合させた修飾ヌクレオシドであ る修飾オリゴヌクレオチドである。 [0009] The present invention is a modified oligonucleotide containing a modified nucleoside as a constituent component at the 3, terminus of the oligonucleotide. The modified nucleoside force nucleoside has the following formula (末端) via a linker at the 3, terminus: A modified oligonucleotide which is a modified nucleoside bound with a carboxylic acid represented by the formula:
RA - COOH (III) R A -COOH (III)
前記式中、 RAは、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール基、 または複素環式基を意味する。 In the above formula, R A means a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
[0010] また、本発明は、二本鎖修飾オリゴヌクレオチドであり、  [0010] The present invention is a double-stranded modified oligonucleotide,
前記修飾オリゴヌクレオチド力 標的 mRNAの一部と同じ塩基配列をするセンス鎖 と、前記センス鎖に対するアンチセンス鎖とを含み、  A sense strand having the same base sequence as a part of the target mRNA, and an antisense strand against the sense strand,
前記アンチセンス鎖および前記センス鎖のうち、少なくとも前記アンチセンス鎖が、 オリゴヌクレオチドの 3,末端に構成成分として修飾ヌクレオシドを含むオリゴヌクレオ チド類似体であり、前記修飾ヌクレオシド力 ヌクレオシドの 3,末端に、リンカ一を介し て、下記式 (Π)で表されるステロイド骨格を有する化合物を結合させた修飾ヌクレオ シドである二本鎖修飾オリゴヌクレオチドである。  Among the antisense strand and the sense strand, at least the antisense strand is an oligonucleotide analogue containing a modified nucleoside as a constituent component at the 3, end of the oligonucleotide, and at the 3, end of the modified nucleoside force nucleoside. And a double-stranded modified oligonucleotide which is a modified nucleoside to which a compound having a steroid skeleton represented by the following formula (Π) is bound via a linker.
RS-OH (II) R S -OH (II)
前記式中、 Rsは、 1以上の置換基を任意に有し、骨格中の 1以上の単結合が任意 に二重結合に置き換えられているステロイド骨格を意味する。 In the above formula, R s means a steroid skeleton optionally having one or more substituents, wherein one or more single bonds in the skeleton are optionally replaced with double bonds.
発明の効果  The invention's effect
[0011] 本発明は、オリゴヌクレオチドの 3,末端に構成成分として含まれるヌクレオシドの 3, 末端に、リンカ一を介して、カルボン酸またはステロイド骨格を有する化合物を結合さ せることにより修飾し、その修飾オリゴヌクレオチドのヌクレアーゼ耐性向上および二 本鎖形成能の向上を実現した。 [0011] In the present invention, a compound having a carboxylic acid or a steroid skeleton is bound to the 3, terminus of a nucleoside contained as a constituent component at the 3, terminus of an oligonucleotide via a linker. To improve the nuclease resistance and the ability to form double strands of the modified oligonucleotide.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1(a)]図 1 (a)は、 3'末端にパルミチン酸がリンカ一を介して結合された修飾二本鎖 オリゴヌクレオチドの例および非修飾二本鎖オリゴヌクレオチドの一例の RNaseL発 現濃度を示すグラフである。レーン 1はコントロールを、レーン 2は 50nMの修飾二本 鎖オリゴヌクレオチドを、レーン 3は ΙΟΟηΜの修飾二本鎖オリゴヌクレオチドを、レー ン 4は 200nMの修飾二本鎖オリゴヌクレオチドを、意味する。  [0012] [FIG. 1 (a)] FIG. 1 (a) shows an example of a modified double-stranded oligonucleotide and an example of an unmodified double-stranded oligonucleotide in which palmitic acid is bound to the 3 ′ end via a linker. 2 is a graph showing the expression concentration of RNaseL. Lane 1 represents a control, lane 2 represents a 50 nM modified double-stranded oligonucleotide, lane 3 represents a ΙΟΟηΜ modified double-stranded oligonucleotide, and lane 4 represents a 200 nM modified double-stranded oligonucleotide.
[図 1(b)]図 1 (b)は、 3,末端にォレイン酸がリンカ一を介して結合された修飾 DNAセ ンス鎖の例および非修飾二本鎖オリゴヌクレオチドの一例の RNaseL発現濃度を示 すグラフである。レーン 1はコントロールを、レーン 2は 50nMの修飾二本鎖オリゴヌク レオチドを、レーン 3は ΙΟΟηΜの修飾二本鎖オリゴヌクレオチドを、レーン 4は 200η Μの修飾二本鎖オリゴヌクレオチドを、意味する。  [Fig. 1 (b)] Fig. 1 (b) shows the RNaseL expression levels of examples of modified DNA sense strands with oleic acid bound to the end via a linker and examples of unmodified double-stranded oligonucleotides. It is a graph which shows. Lane 1 represents a control, lane 2 represents a 50 nM modified double-stranded oligonucleotide, lane 3 represents a ΙΟΟηΜ modified double-stranded oligonucleotide, and lane 4 represents a 200 ηΜ modified double-stranded oligonucleotide.
[図 1(c)]図 1 (c)は、 3'末端にコレステロールがリンカ一を介して結合された修飾 DN Αセンス鎖の例および非修飾二本鎖オリゴヌクレオチドの一例の RNaseL発現濃度 を示すグラフである。レーン 1はコントロールを、レーン 2は 50nMの修飾二本鎖オリゴ ヌクレオチドを、レーン 3は ΙΟΟηΜの修飾二本鎖オリゴヌクレオチドを、レーン 4は 20 OnMの修飾二本鎖オリゴヌクレオチドを、意味する。  [Fig. 1 (c)] Fig. 1 (c) shows the RNaseL expression levels of a modified DN Α sense strand and a non-modified double-stranded oligonucleotide example in which cholesterol is bound to the 3 'end via a linker. It is a graph to show. Lane 1 represents a control, lane 2 represents a 50 nM modified double-stranded oligonucleotide, lane 3 represents a ΙΟΟηΜ modified double-stranded oligonucleotide, and lane 4 represents a 20 OnM modified double-stranded oligonucleotide.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明は、前記のように、オリゴヌクレオチドの 3 '末端に構成成分として修飾ヌクレ オシドを含む修飾オリゴヌクレオチドであり、前記修飾ヌクレオシド力 ヌクレオシドの 3 '末端に、リンカ一を介して、下記式 (III)で表されるカルボン酸を結合させた修飾ヌ クレオシドである修飾オリゴヌクレオチドである。 [0013] The present invention, as described above, is a modified oligonucleotide containing a modified nucleoside as a constituent component at the 3 'end of the oligonucleotide, and the modified nucleoside force nucleoside via a linker at the 3' end, A modified oligonucleotide which is a modified nucleoside to which a carboxylic acid represented by the following formula (III) is bound.
RA - COOH (III) R A -COOH (III)
前記式中、 RAは、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール基、 または複素環式基を意味する。 In the above formula, R A means a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
[0014] 前記式 (ΠΙ)で表されるカルボン酸を結合させた修飾オリゴヌクレオチドとしては、下 記式 (IA)で表される修飾オリゴヌクレオチドが好ま 、。 [0015] [化 4] [0014] The modified oligonucleotide to which the carboxylic acid represented by the formula (ΠΙ) is bound is preferably a modified oligonucleotide represented by the following formula (IA). [0015] [Chemical 4]
O H  O H
R1— O-P-O-L— — ^-RA (IA) R 1 — OPOL— — ^ -R A (IA)
ό- O 前記式中、  ό- O In the above formula,
R, 一 OHはオリゴヌクレオチドを意味し、  R, 1 OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3'末端に構成成分として含まれる 修飾ヌクレオシドの 3'末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
Lは二価の基を意味し、  L means a divalent group,
RAは、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール基、または複素 環式基を意味する。 R A represents a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
[0016] 前記式 (IA)中、前記飽和脂肪族炭化水素基は、炭素数 1〜25を有する飽和脂肪 族炭化水素基であるのが好ましい。また、前記式 (IA)中、前記不飽和脂肪族炭化水 素基は、炭素数 3〜25を有する不飽和脂肪族炭化水素基であるのが好ま 、。  [0016] In the formula (IA), the saturated aliphatic hydrocarbon group is preferably a saturated aliphatic hydrocarbon group having 1 to 25 carbon atoms. In the formula (IA), the unsaturated aliphatic hydrocarbon group is preferably an unsaturated aliphatic hydrocarbon group having 3 to 25 carbon atoms.
[0017] 前記式(IA)中、前記 RAは、 CH - (CH ) —または CH - (CH ) — CH = CH— [0017] In the formula (IA), R A represents CH-(CH) — or CH-(CH) — CH = CH—
3 2 14 3 2 7  3 2 14 3 2 7
(CH ) —であるのがより好ましい。  More preferably, (CH 2) —.
2 7  2 7
[0018] 前記式 (IA)中、前記二価の基は、下記式 (IVA)に示す二価の基であるのが好ま しい。  [0018] In the formula (IA), the divalent group is preferably a divalent group represented by the following formula (IVA).
-X-M-Y- (IVA)  -X-M-Y- (IVA)
前記式中、  In the above formula,
—X—は、—(CH ) または(CH ) —CH (CH OH)—であり、  —X— is — (CH) or (CH) —CH (CH OH) —,
2 m 2 m 2  2 m 2 m 2
—Y—は、一(CH ) または一(CH ) -CH (CH OH)一であり、  —Y— is one (CH) or one (CH) -CH (CH OH) one;
2 n 2 n 2  2 n 2 n 2
—M は、一0— C ( = 0) NH 、 一O—、ーじ(=0)—?《1—またはー?《1—じ(= O)—であり、  —M is one 0—C (= 0) NH, one O—, one (= 0) —? << 1-or-? << 1-ji (= O)-
mおよび nは、それぞれ独立して、 1〜20の整数である。  m and n are each independently an integer of 1 to 20.
[0019] 前記式 (IA)中、前記二価の基は、下記式 (IVA— 1)に示す二価の基であるのが 好ましい。 In the formula (IA), the divalent group is preferably a divalent group represented by the following formula (IVA-1).
— CH— CH (CH OH) -0-C ( = 0) NH- (CH ) 一 (IVA—1) 前記式中、 nは 1〜 20の整数である。 — CH— CH (CH OH) -0-C (= 0) NH- (CH) One (IVA—1) In the above formula, n is an integer of 1-20.
[0020] 前記式 (ΠΙ)で表されるカルボン酸を結合させた修飾オリゴヌクレオチドは、一本鎖 オリゴヌクレオチドであってもよい。前記修飾オリゴヌクレオチド力 アンチセンス DNA またはアンチセンス RNAであり、前記修飾オリゴヌクレオチド力 エンドヌクレアーゼ をコードする mRNAの少なくとも一部と相補的な配列を有するのが好ましい。  [0020] The modified oligonucleotide to which the carboxylic acid represented by the formula (ΠΙ) is bound may be a single-stranded oligonucleotide. Preferably, the modified oligonucleotide force is antisense DNA or antisense RNA, and has a sequence complementary to at least a part of mRNA encoding the modified oligonucleotide force endonuclease.
[0021] 前記式 (ΠΙ)で表されるカルボン酸を結合させた修飾オリゴヌクレオチドは、二本鎖 オリゴヌクレオチドであってもよ ヽ。  [0021] The modified oligonucleotide to which the carboxylic acid represented by the above formula (ΠΙ) is bound may be a double-stranded oligonucleotide.
[0022] 本発明は、また、前記のように、二本鎖修飾オリゴヌクレオチドであり、  [0022] The present invention is also a double-stranded modified oligonucleotide as described above,
前記修飾オリゴヌクレオチド力 標的 mRNAの一部と同じ塩基配列をするセンス鎖 と、前記センス鎖に対するアンチセンス鎖とを含み、  A sense strand having the same base sequence as a part of the target mRNA, and an antisense strand against the sense strand,
前記アンチセンス鎖および前記センス鎖のうち、少なくとも前記アンチセンス鎖が、 オリゴヌクレオチドの 3,末端に構成成分として修飾ヌクレオシドを含むオリゴヌクレオ チド類似体であり、前記修飾ヌクレオシド力 ヌクレオシドの 3,末端に、リンカ一を介し て、下記式 (Π)で表されるステロイド骨格を有する化合物を結合させた修飾ヌクレオ シドである二本鎖修飾オリゴヌクレオチドである。  Among the antisense strand and the sense strand, at least the antisense strand is an oligonucleotide analogue containing a modified nucleoside as a constituent component at the 3, end of the oligonucleotide, and at the 3, end of the modified nucleoside force nucleoside. And a double-stranded modified oligonucleotide which is a modified nucleoside to which a compound having a steroid skeleton represented by the following formula (Π) is bound via a linker.
RS-OH (II) R S -OH (II)
前記式中、 RSは、 1以上の置換基を任意に有し、骨格中の 1以上の単結合が任意に 二重結合に置き換えられて 、るステロイド骨格を意味する。 In the above formula, R S means a steroid skeleton optionally having one or more substituents, wherein one or more single bonds in the skeleton are optionally replaced with double bonds.
[0023] 前記オリゴヌクレオチド類似体は、式 (IS)で表されるのが好ま 、。 [0023] The oligonucleotide analogue is preferably represented by the formula (IS).
[0024] [化 5] [0024] [Chemical 5]
0  0
† H  † H
R'-O-P-O-L— ^ ORs (IS) R'-OPOL— ^ OR s (IS)
O- O 前記式中、  O-O in the above formula,
R,一 OHはオリゴヌクレオチドを意味し、  R, 1 OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3'末端に構成成分として含まれる 修飾ヌクレオシドの 3'末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
Lは二価の基を意味し、 Rsは、 1以上の置換基を任意に有し、骨格中の 1以上の単結合が任意に二重結合に 置き換えられて 、るステロイド骨格を意味する。 L means a divalent group, R s means a steroid skeleton that optionally has one or more substituents, and one or more single bonds in the skeleton are optionally replaced with double bonds.
[0025] 前記式 (IS)中、前記 Rsは、 [0025] In the formula (IS), R s is
[0026] [化 6] [0026] [Chemical 6]
Figure imgf000009_0001
Figure imgf000009_0001
力もなる群力も選択されるのが好まし 、。  It is preferable that the group power to be power is selected.
[0027] 前記式 (IS)中、 前記二価の基は、下記式 (IVS)に示す二価の基であるのが好ま しい。  In the formula (IS), the divalent group is preferably a divalent group represented by the following formula (IVS).
-X-M-Y- (IVS)  -X-M-Y- (IVS)
前記式中、  In the above formula,
—X—は、—(CH) または(CH) —CH(CHOH)—であり、  —X— is — (CH) or (CH) —CH (CHOH) —
2 m 2 m 2  2 m 2 m 2
—Y—は、一(CH ) または一(CH ) -CH(CH OH)一であり、  —Y— is one (CH) or one (CH) -CH (CH OH) one;
2 n 2 n 2  2 n 2 n 2
—M は、一0— C( = 0)NH 、 一O—、ーじ(=0)—?《1—またはー?《1—じ(= O)—であり、  —M is one 0—C (= 0) NH, one O—, one (= 0) —? << 1-or-? << 1-ji (= O)-
mおよび nは、それぞれ独立して、 1〜20の整数である。  m and n are each independently an integer of 1 to 20.
[0028] 前記式 (IS)中、前記二価の基は、下記式 (IVS— 1)に示す二価の基であるのが好 ましい。  [0028] In the formula (IS), the divalent group is preferably a divalent group represented by the following formula (IVS-1).
— CH— CH(CH 0H)-0-C( = 0)NH-(CH ) 一 (IVS— 1)  — CH— CH (CH 0H) -0-C (= 0) NH- (CH) One (IVS— 1)
2 2 2 n  2 2 2 n
前記式中、 nは 1〜 20の整数である。 [0029] 前記修飾オリゴヌクレオチドは、 RNAi (RNA interference)を引き起こすオリゴヌク レオチドであり、前記修飾オリゴヌクレオチド力 エンドヌクレアーゼをコードする mRN Aの一部と同じ塩基配列を有するのが好まし!/、。 In the above formula, n is an integer of 1-20. [0029] The modified oligonucleotide is an oligonucleotide that causes RNAi (RNA interference), and preferably has the same base sequence as a part of mRNA encoding the modified oligonucleotide force endonuclease! /.
[0030] 前記修飾オリゴヌクレオチドは、 siRNA (short interfering RNA)であり、 [0030] The modified oligonucleotide is siRNA (short interfering RNA),
前記 mRNAの一部が、  A portion of the mRNA is
スタートコドンから 75塩基以上上流の、最初の AA配列に続く 19塩基配列であって、 前記 mRNAの一部力 前記 mRNAに対して特異的であり、  It is a 19-base sequence following the first AA sequence, more than 75 bases upstream from the start codon, and is a partial force of the mRNA that is specific for the mRNA,
前記修飾オリゴヌクレオチド力 前記 19塩基配列のセンス鎖とアンチセンス鎖との 組み合わせであるのがより好ましぐ前記センス鎖およびアンチセンス鎖の少なくとも 一方力 その 3'末端にさらに 2つの塩基配列を含むヌクレオチドを有するのがさらに 好ましい。  The modified oligonucleotide force is more preferably a combination of a sense strand and an antisense strand of the 19-base sequence. At least one force of the sense strand and the antisense strand further includes two base sequences at the 3 ′ end. More preferably it has nucleotides.
[0031] 本発明の修飾オリゴヌクレオチドは、前記オリゴヌクレオチド力 ヌクレアーゼ耐性で あるのが好ましい。  [0031] The modified oligonucleotide of the present invention is preferably resistant to the oligonucleotide force nuclease.
[0032] 本発明はまた、オリゴヌクレオチドを含む遺伝子発現抑制剤であって、前記オリゴヌ クレオチドが、本発明の修飾オリゴヌクレオチドである遺伝子発現抑制剤である。  [0032] The present invention is also a gene expression inhibitor comprising an oligonucleotide, wherein the oligonucleotide is a modified oligonucleotide of the present invention.
[0033] 本発明はまた、遺伝子発現に伴う疾患を治療するための医薬組成物であって、 前記医薬組成物が、本発明の遺伝子発現抑制剤を含む医薬組成物である。前記医 薬組成物は、さらに細胞導入用賦形剤を含むのが好ましい。前記細胞導入用賦形 剤は、トランスフエクシヨン試薬であるのが好まし 、。  [0033] The present invention is also a pharmaceutical composition for treating a disease associated with gene expression, wherein the pharmaceutical composition comprises the gene expression inhibitor of the present invention. The pharmaceutical composition preferably further contains a cell introduction excipient. It is preferable that the cell introduction excipient is a transfection reagent.
[0034] 本発明はまた、 RNAiキットであって、前記キットが、本発明の修飾オリゴヌクレオチ ドを含むキットである。  [0034] The present invention is also an RNAi kit, wherein the kit comprises the modified oligonucleotide of the present invention.
[0035] 本発明はまた、 RNAi研究用試薬であって、前記試薬が、本発明の修飾オリゴヌク レオチドを含む試薬である。  [0035] The present invention is also a reagent for RNAi research, wherein the reagent contains the modified oligonucleotide of the present invention.
[0036] 本発明はまた、オリゴヌクレオチドを用いて遺伝子発現を抑制する方法であって、 前記オリゴヌクレオチド力 本発明の修飾オリゴヌクレオチドである方法である。 [0036] The present invention is also a method for suppressing gene expression using an oligonucleotide, wherein the oligonucleotide force is a modified oligonucleotide of the present invention.
[0037] 本発明はまた、オリゴヌクレオチドを用いて RNAiを引き起こす方法であって、前記 オリゴヌクレオチドが、本発明の修飾オリゴヌクレオチドである方法である。 [0037] The present invention is also a method of causing RNAi using an oligonucleotide, wherein the oligonucleotide is a modified oligonucleotide of the present invention.
[0038] 本発明はまた、下記式 (XIA)で表される固相合成用化合物を出発原料として、 下記式 (IA)で表される修飾オリゴヌクレオチドを製造する方法であって、 式 (XIA)で表される固相合成用ユニット化合物の R1を除去して遊離の水酸基へ変 換し、前記遊離の水酸基にオリゴヌクレオチドを伸長させ、その後、固相担体力 切り 出して前記修飾オリゴヌクレオチドを得る製造方法である。 [0038] The present invention also provides a solid phase synthesis compound represented by the following formula (XIA) as a starting material. A method for producing a modified oligonucleotide represented by the following formula (IA), wherein R 1 of the unit compound for solid phase synthesis represented by the formula (XIA) is removed and converted to a free hydroxyl group, In this production method, the modified oligonucleotide is obtained by extending the oligonucleotide to a free hydroxyl group and then cutting out the solid phase carrier force.
[0039] [化 7] [0039] [Chemical 7]
R'-0-
Figure imgf000011_0001
前記式中、
R'-0-
Figure imgf000011_0001
In the above formula,
R,—OHは、オリゴヌクレオチドを意味し、  R, —OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3 '末端に構成成分として含まれる 修飾ヌクレオシドの 3 '末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
RAは、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール基、または複素 環式基を意味し、 R A means a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group;
R1は、水酸基の保護基であり、 R 1 is a hydroxyl protecting group,
R2は、固相担体であり、 R 2 is a solid support,
Lは、式 (IVA)で表される基である。  L is a group represented by the formula (IVA).
-X-M-Y- (IVA)  -X-M-Y- (IVA)
前記式中、  In the above formula,
—X—は、—(CH ) または(CH ) —CH (CH OH)—であり、  —X— is — (CH) or (CH) —CH (CH OH) —,
2 m 2 m 2  2 m 2 m 2
—Y—は、一(CH ) または一(CH ) -CH (CH OH)一であり、  —Y— is one (CH) or one (CH) -CH (CH OH) one;
2 n 2 n 2  2 n 2 n 2
—M は、一0— C ( = 0) NH 、 一O—、ーじ(=0)—?《1—またはー?《1—じ(= O)—であり、  —M is one 0—C (= 0) NH, one O—, one (= 0) —? << 1-or-? << 1-ji (= O)-
mおよび nは、それぞれ独立して、 1〜20の整数である。  m and n are each independently an integer of 1 to 20.
[0040] 本発明はまた、下記式 (IA)で表される修飾オリゴヌクレオチド製造のための下記式 (XIA)で表される固相合成用ユニットィ匕合物である。 [0040] The present invention also provides the following formula for producing a modified oligonucleotide represented by the following formula (IA): It is a unity compound for solid phase synthesis represented by (XIA).
[0041] [化 8] [0041] [Chemical 8]
R'-0-
Figure imgf000012_0001
R'-0-
Figure imgf000012_0001
前記式中、  In the above formula,
R,—OHは、オリゴヌクレオチドを意味し、  R, —OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3'末端に構成成分として含まれる 修飾ヌクレオシドの 3'末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
RAは、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール基、または複素 環式基を意味し、 R A means a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group;
R1は、水酸基の保護基であり、 R 1 is a hydroxyl protecting group,
R2は、固相担体であり、 R 2 is a solid support,
Lは、式 (IVA)で表される基である。  L is a group represented by the formula (IVA).
-X-M-Y- (IVA)  -X-M-Y- (IVA)
前記式中、  In the above formula,
—X—は、—(CH ) または(CH ) —CH (CH OH)—であり、  —X— is — (CH) or (CH) —CH (CH OH) —,
2 m 2 m 2  2 m 2 m 2
—Y—は、一(CH ) または一(CH ) -CH (CH OH)一であり、  —Y— is one (CH) or one (CH) -CH (CH OH) one;
2 n 2 n 2  2 n 2 n 2
—M は、一0— C ( = 0) NH 、 一O—、ーじ(=0)—?《1—またはー?《1—じ(= O)—であり、  —M is one 0—C (= 0) NH, one O—, one (= 0) —? << 1-or-? << 1-ji (= O)-
mおよび nは、それぞれ独立して、 1〜20の整数である。  m and n are each independently an integer of 1 to 20.
[0042] 本発明はまた、下記式 (XIS)で表される固相合成用化合物を出発原料として、下 記式 (IS)で表される修飾オリゴヌクレオチドを製造する方法であって、 [0042] The present invention is also a method for producing a modified oligonucleotide represented by the following formula (IS) using a compound for solid phase synthesis represented by the following formula (XIS) as a starting material,
式 (XIS)で表される固相合成用ユニット化合物の R1を除去して遊離の水酸基へ変 換し、前記遊離の水酸基にオリゴヌクレオチドを伸長させ、その後、固相担体力 切り 出して前記修飾オリゴヌクレオチドを得る製造方法である。 R 1 of the unit compound for solid phase synthesis represented by the formula (XIS) is removed and converted to a free hydroxyl group, the oligonucleotide is extended to the free hydroxyl group, and then the solid phase carrier is cleaved. This is a production method for obtaining the modified oligonucleotide.
[化 9] [Chemical 9]
Figure imgf000013_0001
前記式中、
Figure imgf000013_0001
In the above formula,
R,—OHは、オリゴヌクレオチドを意味し、  R, —OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3'末端に構成成分として含まれる 修飾ヌクレオシドの 3,末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3, terminal end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide.
RSは、 1以上の置換基を任意に有し、骨格中の 1以上の単結合が任意に二重結合に 置き換えられて 、るステロイド骨格を意味し、 R S means a steroid skeleton optionally having one or more substituents, wherein one or more single bonds in the skeleton are arbitrarily replaced with double bonds,
R1は、水酸基の保護基であり、 R 1 is a hydroxyl protecting group,
R2は、固相担体であり、 R 2 is a solid support,
Lは、式 (IVS)で表される基であり、  L is a group represented by the formula (IVS),
-X-M-Y- (IVS)  -X-M-Y- (IVS)
前記式中、 In the above formula,
X—は、一(CH ) または(CH ) — CH (CH OH)—であり、  X— is one (CH) or (CH) — CH (CH OH) —,
2 m 2 m 2  2 m 2 m 2
Y—は、一(CH ) または一(CH ) CH (CH OH)一であり、  Y— is one (CH) or one (CH) CH (CH OH) one;
2 n 2 n 2  2 n 2 n 2
—M は、一 0— C ( = 0) NH 、 一O 、 一C ( = 0)—NH または一 NH— C ( = O)—であり、  —M is one 0—C (= 0) NH, one O, one C (= 0) —NH or one NH—C (= O) —,
mおよび nは、それぞれ独立して、 1〜20の整数である。 m and n are each independently an integer of 1 to 20.
本発明はまた、下記式 (IS)で表される修飾オリゴヌクレオチド製造のための下記式 (XIS)で表される固相合成用ユニットィ匕合物である。 [0045] [化 10] The present invention is also a unit compound for solid phase synthesis represented by the following formula (XIS) for producing a modified oligonucleotide represented by the following formula (IS). [0045] [Chemical 10]
Figure imgf000014_0001
Figure imgf000014_0001
前記式中、  In the above formula,
R,—OHは、オリゴヌクレオチドを意味し、  R, —OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3'末端に構成成分として含まれる 修飾ヌクレオシドの 3'末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
RSは、 1以上の置換基を任意に有し、骨格中の 1以上の単結合が任意に二重結合に 置き換えられて 、るステロイド骨格を意味し、 R S means a steroid skeleton optionally having one or more substituents, wherein one or more single bonds in the skeleton are arbitrarily replaced with double bonds,
R1は、水酸基の保護基であり、 R 1 is a hydroxyl protecting group,
R2は、固相担体であり、 R 2 is a solid support,
Lは、式 (IVS)で表される基であり、  L is a group represented by the formula (IVS),
-X-M-Y- (IVS)  -X-M-Y- (IVS)
前記式中、  In the above formula,
—X—は、—(CH ) または(CH ) —CH (CH OH)—であり、  —X— is — (CH) or (CH) —CH (CH OH) —,
2 m 2 m 2  2 m 2 m 2
—Y—は、一(CH ) または一(CH ) -CH (CH OH)一であり、  —Y— is one (CH) or one (CH) -CH (CH OH) one;
2 n 2 n 2  2 n 2 n 2
—M は、一0— C ( = 0) NH 、 一O—、ーじ(=0)—?《1—またはー?《1—じ(= O)—であり、  —M is one 0—C (= 0) NH, one O—, one (= 0) —? << 1-or-? << 1-ji (= O)-
mおよび nは、それぞれ独立して、 1〜20の整数である。  m and n are each independently an integer of 1 to 20.
[0046] 次に、本発明について具体的に説明する。  Next, the present invention will be specifically described.
[0047] 本発明において、「オリゴヌクレオチド」は、例えばヌクレオシドサブユニットのポリマ 一をいい、そのサブユニット数は特に限定されないが、例えば、 4力ら 100個である。 中でも、本発明の修飾オリゴヌクレオチドが DNAである場合には、それらのサブュ- ット数は、 2〜: LOO個力 S好ましく、 4〜30個がより好ましぐ RNAである場合には、 2〜 50個が好ましぐ 4〜30個がより好ましい。なお、本発明における「オリゴヌクレオチド 」は、 3'末端のヌクレオシドの 3'—水酸基が修飾されていること以外は、特に限定さ れない。例えば、オリゴヌクレオチドのサブユニットであるヌクレオシドについては、糖 部 (例えば、 2'置換体)および塩基は、当業者に公知な修飾体であってもよい。 [0047] In the present invention, "oligonucleotide" refers to, for example, a polymer of nucleoside subunits, and the number of subunits is not particularly limited. In particular, when the modified oligonucleotide of the present invention is DNA, the number of subunits is 2 to: LOO strength S, preferably 4 to 30 is more preferred RNA. 2 to 50 is preferred. 4 to 30 is more preferred. The “oligonucleotide” in the present invention is not particularly limited except that the 3′-hydroxy group of the 3 ′ terminal nucleoside is modified. For example, for a nucleoside that is a subunit of an oligonucleotide, the sugar moiety (eg 2′-substitution) and base may be modifications known to those skilled in the art.
[0048] 前記のように、本発明は、オリゴヌクレオチドの 3 '末端に構成成分として修飾ヌクレ オシドを含み、前記修飾ヌクレオシド力 ヌクレオシドの 3,末端にリンカ一を介して、 前記式 (ΠΙ)で表されるカルボン酸を結合させた修飾オリゴヌクレオチドである力 以 下、これを便宜的に酸修飾オリゴヌクレオチドと呼ぶ。  [0048] As described above, the present invention includes a modified nucleoside as a constituent component at the 3 'end of the oligonucleotide, and the modified nucleoside force nucleoside via the linker at the 3, terminus of the modified nucleoside. For the sake of convenience, this is referred to as an acid-modified oligonucleotide.
[0049] 前記オリゴヌクレオチドの 3 '末端に構成成分として修飾ヌクレオシドを含み、前記修 飾ヌクレオシド力 ヌクレオシドの 3,末端にリンカ一を介して、下記式 (III)で表される カルボン酸を結合させた酸修飾オリゴヌクレオチドとしては、下記式 (IA)で表される 修飾オリゴヌクレオチドが好ま U、。  [0049] The oligonucleotide includes a modified nucleoside as a constituent component at the 3 'end, and a carboxylic acid represented by the following formula (III) is bonded to the modified nucleoside force nucleoside at the 3' end via a linker. The acid-modified oligonucleotide is preferably a modified oligonucleotide represented by the following formula (IA).
[0050] [化 11]  [0050] [Chemical 11]
0 0
γ Η  γ Η
R'-O-P-O-L— N— f RA (IA) R'-OPOL— N— f R A (IA)
O O 前記式中、  O O In the above formula,
R,一 OHはオリゴヌクレオチドを意味し、  R, 1 OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3'末端に構成成分として含まれる 修飾ヌクレオシドの 3'末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
Lは二価の基を意味し、  L means a divalent group,
RAは、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール基、または複素 環式基を意味する。 R A represents a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
[0051] 前記式 (IA)で表される修飾オリゴヌクレオチドは、例えば、以下のように表わすこと ができる。  [0051] The modified oligonucleotide represented by the formula (IA) can be represented, for example, as follows.
[0052] [化 12]
Figure imgf000016_0001
[0052] [Chemical 12]
Figure imgf000016_0001
前記式中、 W1および W2は、水素または水酸基であり、 Baselおよび Base2は、下記 式(1)で表される基、下記式(2)で表される基、下記式(3)で表される基、下記式 (4) で表される基および下記式(5)で表される基から独立して選択される。 In the above formula, W 1 and W 2 are hydrogen or a hydroxyl group, Basel and Base 2 are a group represented by the following formula (1), a group represented by the following formula (2), and a formula (3) Independently selected from the group represented by the group represented by the following formula (4) and the group represented by the following formula (5).
[化 13] [Chemical 13]
Figure imgf000016_0002
Figure imgf000016_0002
(1 ) (2) (3) (4) (5) 前記飽和脂肪族炭化水素基としては、飽和炭化水素にカルボキシ基が置換された ものを意味し、例えば炭素数 1〜25、好ましくは 10〜25、より好ましくは 15〜20の飽 和脂肪族炭化水素基である。飽和脂肪族炭化水素基としては、たとえば、メタン酸( ギ酸)、エタン酸 (酢酸)、プロパン酸 (プロピオン酸)、ブタン酸 (酪酸)、 2—メチルプ 口パン酸 (イソ酪酸)、ペンタン酸 (吉草酸)、 3—メチルブタン酸 (イソ吉草酸)、 2, 2- ジメチルプロパン酸(ピバル酸)、へキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デ カン酸、ドデカン酸 (ラウリン酸)、トリデカン酸、テトラデカン酸 (ミリスチン酸)、ペンタ デカン酸、へキサデカン酸 (パルミチン酸)、ヘプタデカン酸、ォクタデカン酸 (ステア リン酸)、ノナデカン酸、ィコサン酸等が挙げられる。中でも、へキサデカン酸 (パルミ チン酸)が好ましい。 [0054] 前記不飽和脂肪族炭化水素基としては、アルケン、アルキン等の不飽和炭化水素 にカルボキシ基が置換されたものを意味し、例えば炭素数 3〜25、好ましくは 10〜2 5、より好ましくは 15〜20の飽和脂肪族炭化水素基である。不飽和脂肪族炭化水素 基としては、たとえば、プロペン酸 (アクリル酸)、プロピン酸 (プロピオル酸)、 2—メチ ルプロペン酸(メタクリル酸)、 trans ブター 2—ェン酸(クロトン酸)、 cis ブター 2— ェン酸 (イソクロトン酸)、 cis—ォクタデカ一 9—ェン酸(ォレイン酸)、 trans—オタタデ カー 9 ェン酸 (ライジン酸)等が挙げられる。中でも cis—ォクタデカ 9 ェン酸 (ォ レイン酸)が好ましい。 (1) (2) (3) (4) (5) The saturated aliphatic hydrocarbon group means a saturated hydrocarbon substituted with a carboxy group, for example, having 1 to 25 carbon atoms, preferably 10 ˜25, more preferably 15-20 saturated aliphatic hydrocarbon groups. Examples of saturated aliphatic hydrocarbon groups include methanic acid (formic acid), ethanoic acid (acetic acid), propanoic acid (propionic acid), butanoic acid (butyric acid), 2-methylbutanoic acid (isobutyric acid), pentanoic acid ( Valeric acid), 3-methylbutanoic acid (isovaleric acid), 2,2-dimethylpropanoic acid (pivalic acid), hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid (lauric acid), Examples include tridecanoic acid, tetradecanoic acid (myristic acid), pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanoic acid, and icosanoic acid. Of these, hexadecanoic acid (palmitic acid) is preferred. [0054] The unsaturated aliphatic hydrocarbon group means an unsaturated hydrocarbon such as an alkene, alkyne and the like, in which a carboxy group is substituted, for example, having 3 to 25 carbon atoms, preferably 10 to 25 carbon atoms. Preferably they are 15-20 saturated aliphatic hydrocarbon groups. Examples of unsaturated aliphatic hydrocarbon groups include propenoic acid (acrylic acid), propionic acid (propiolic acid), 2-methylpropenoic acid (methacrylic acid), trans butter-2-enoic acid (crotonic acid), cis butter Examples include 2-enoic acid (isocrotonic acid), cis-octadeca-9-enoic acid (oleic acid), trans-otatadecaenoic acid (raidic acid), and the like. Among them, cis-octadeca 9 enoic acid (oleic acid) is preferable.
[0055] 前記ァリール基としては、全体で 5〜50の環原子を有し、少なくとも 1つの環が芳香 族であり、各環が 5〜8の環原子を有する単環式、二環式、三環式および四環式炭 素環式基を意味する。前記ァリール基としては、例えば、フエ-ル、インデュル、ナフ チル、フルォレニル等が挙げられる。  [0055] The aryl group has a total of 5 to 50 ring atoms, at least one ring is aromatic, and each ring has 5 to 8 ring atoms, monocyclic, bicyclic, Refers to tricyclic and tetracyclic carbon cyclic groups. Examples of the aryl group include phenyl, indul, naphthyl, fluorenyl and the like.
[0056] 前記複素環式基としては、全体で 5〜50の環原子を有し、少なくとも 1つの環がへ テロ原子を有し、各環が 5〜8の環原子を有する単環式、二環式、三環式および四環 式炭素環式基を意味する。前記複素環式基としては、たとえば、チォフエニル、フラ -ル、ビラ-ル、キサンテュル、ピロリル、イミダゾリル、ピリジル等が挙げられる。  [0056] The heterocyclic group has a total of 5 to 50 ring atoms, at least one ring has a heteroatom, and each ring has 5 to 8 ring atoms, It means bicyclic, tricyclic and tetracyclic carbocyclic groups. Examples of the heterocyclic group include thiophenyl, fuller, viral, xanthur, pyrrolyl, imidazolyl, pyridyl and the like.
[0057] 前記式 (IA)中における前記二価の基としては、例えば、下記式 (IVA)に示す二価 の基が挙げられる力 この基には限定されない。  [0057] Examples of the divalent group in the formula (IA) include, but are not limited to, a divalent group represented by the following formula (IVA).
—X— M—Y— (IVA)  —X— M—Y— (IVA)
前記式中、  In the above formula,
—X—は、—(CH ) または(CH ) —CH (CH OH)—であり、  —X— is — (CH) or (CH) —CH (CH OH) —,
2 m 2 m 2  2 m 2 m 2
—Y—は、一(CH ) または一(CH ) —CH (CH OH)一であり、  —Y— is one (CH) or one (CH) —CH (CH OH) one;
2 n 2 n 2  2 n 2 n 2
—M は、一0— C ( = 0) NH 、 一O—、ーじ(=0)—?《1—またはー?《1—じ(= O)—であり、  —M is one 0—C (= 0) NH, one O—, one (= 0) —? << 1-or-? << 1-ji (= O)-
mおよび nは、それぞれ独立して、 1〜20の整数である。  m and n are each independently an integer of 1 to 20.
[0058] 本発明の酸修飾オリゴヌクレオチドは、一本鎖オリゴヌクレオチド、二本鎖オリゴヌク レオチド等であってもよい。本発明の酸修飾オリゴヌクレオチドは、二本鎖形成能に 優れるので、アンチセンス、 siRNA等として用いるのに好ましい。酸修飾オリゴヌタレ ォチドが、二本鎖である場合、前記二本鎖オリゴヌクレオチドの一方または両方の一 本鎖オリゴヌクレオチド力 酸修飾オリゴヌクレオチドであるのが好ましい。前記二本 鎖オリゴヌクレオチドの両方の一本鎖オリゴヌクレオチドが酸修飾オリゴヌクレオチド である場合、両酸修飾オリゴヌクレオチドは、同一であっても、相違してもよい。 [0058] The acid-modified oligonucleotide of the present invention may be a single-stranded oligonucleotide, a double-stranded oligonucleotide, or the like. The acid-modified oligonucleotide of the present invention is preferable for use as antisense, siRNA and the like because of its excellent ability to form double strands. Acid-modified oligonucleotide When the oxide is double-stranded, it is preferably a single-stranded oligonucleotide force-modified oligonucleotide of one or both of the double-stranded oligonucleotides. When both single-stranded oligonucleotides of the double-stranded oligonucleotide are acid-modified oligonucleotides, the two acid-modified oligonucleotides may be the same or different.
[0059] 前記酸修飾オリゴヌクレオチドが一本鎖である場合、前記修飾オリゴヌクレオチドは 、アンチセンス DNAまたはアンチセンス RNAであり、前記修飾オリゴヌクレオチドが 、エンドヌクレア一ゼ等をコードする mRNAの一部または全部と相補的な配列を有す るのが好ましい。修飾オリゴヌクレオチド力 このような mRNAと二本鎖を形成し、ェ ンドヌクレアーゼ等の発現を抑制可能だ力 である。  [0059] When the acid-modified oligonucleotide is single-stranded, the modified oligonucleotide is antisense DNA or antisense RNA, and the modified oligonucleotide is a part of mRNA encoding endonuclease or the like It is preferable to have a sequence complementary to the whole. Modified oligonucleotide force This is a force capable of forming double strands with such mRNA and suppressing the expression of endonucleases and the like.
[0060] また、前記のように、本発明は、二本鎖修飾オリゴヌクレオチドであり、前記修飾オリ ゴヌクレオチド力 標的 mRNAの一部と同じ塩基配列をするセンス鎖と、前記センス 鎖に対するアンチセンス鎖とを含み、前記アンチセンス鎖および前記センス鎖のうち [0060] Further, as described above, the present invention is a double-stranded modified oligonucleotide, and includes a sense strand having the same base sequence as a part of the modified oligonucleotide-force target mRNA, and an antisense to the sense strand. A strand of the antisense strand and the sense strand
、少なくとも前記アンチセンス鎖が、オリゴヌクレオチドの 3'末端に構成成分として修 飾ヌクレオシドを含むオリゴヌクレオチド類似体であり、前記修飾ヌクレオシド力 ヌク レオシドの 3,末端に、リンカ一を介して、前記式 (Π)で表されるステロイド骨格を有す る化合物を結合させた修飾ヌクレオシドである力 以下、これを便宜的にステロイド修 飾オリゴヌクレオチドと呼ぶ。 At least the antisense strand is an oligonucleotide analogue containing a modified nucleoside as a constituent component at the 3 ′ end of the oligonucleotide, and the modified nucleoside force nucleoside via the linker at the 3, end of the modified nucleoside A force that is a modified nucleoside to which a compound having a steroid skeleton represented by (ii) is bound. Hereinafter, this is referred to as a steroid-modified oligonucleotide for convenience.
[0061] 前記オリゴヌクレオチド類似体としては、下記式 (IS)で表される修飾オリゴヌクレオ チドが好ましい。  [0061] The oligonucleotide analogue is preferably a modified oligonucleotide represented by the following formula (IS).
[0062] [化 14] [0062] [Chemical 14]
0  0
H  H
R'-O-P-O-L— N-^pORs (IS) R'-OPOL— N- ^ pOR s (IS)
O O 前記式中、  O O In the above formula,
R,一 OHはオリゴヌクレオチドを意味し、  R, 1 OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3'末端に構成成分として含まれる 修飾ヌクレオシドの 3'末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
Lは二価の基を意味し、 Rsは、 1以上の置換基を任意に有し、骨格中の 1以上の単結合が任意に二重結合に 置き換えられて 、るステロイド骨格を意味する。 L means a divalent group, R s means a steroid skeleton that optionally has one or more substituents, and one or more single bonds in the skeleton are optionally replaced with double bonds.
[0063] 前記式 (IS)で表されるオリゴヌクレオチド類似体は、例えば、以下のように表わすこ とがでさる。 [0063] The oligonucleotide analog represented by the formula (IS) can be expressed, for example, as follows.
[0064] [化 15] [0064] [Chemical 15]
Figure imgf000019_0001
前記式中、 W1および W2は、水素または水酸基であり、 Baselおよび Base2は、下記 式(1)で表される基、下記式(2)で表される基、下記式(3)で表される基、下記式 (4) で表される基および下記式(5)で表される基から独立して選択される。
Figure imgf000019_0001
In the above formula, W 1 and W 2 are hydrogen or a hydroxyl group, Basel and Base 2 are a group represented by the following formula (1), a group represented by the following formula (2), and a formula (3) Independently selected from the group represented by the group represented by the following formula (4) and the group represented by the following formula (5).
[化 16]  [Chemical 16]
Figure imgf000019_0002
Figure imgf000019_0002
(1 ) (2) (3) (4) (5) 前記ステロイド骨格とは、シクロペンタヒフオロフヱナントレン誘導体を意味し、 3つの 六員環と 1つの五員環とが縮合した構造を有する。前記 RSにおいては、このステロイ ド骨格中の 1以上の単結合が任意に二重結合に置き換えられて 、てもよい。前記 中の置換基とは、例えば、低級アルキル基 (例えば、メチル、ェチル、プロピル、ブチ ル、 1, 5—ジメチルへキシル等)、水酸基、等である。前記置換基は、 0〜: LO個有し ていてもよい。前記 Rsとしては、例えば、以下の式に示すものが挙げられる c (1) (2) (3) (4) (5) The steroid skeleton means a cyclopentahyofuronananthrene derivative and has a structure in which three six-membered rings and one five-membered ring are condensed. Have. In the R S , one or more single bonds in the sterol skeleton may be arbitrarily replaced with a double bond. Examples of the substituent in the above include a lower alkyl group (for example, methyl, ethyl, propyl, butyl, 1,5-dimethylhexyl, etc.), a hydroxyl group, and the like. The substituent has 0 to: LO It may be. Examples of R s include those represented by the following formulas c
[化 17]  [Chemical 17]
Figure imgf000020_0001
前記式 (IS)中における前記二価の基としては、例えば、下記式 (IVS)に示す二価 の基が挙げられる力 この基には限定されない。
Figure imgf000020_0001
Examples of the divalent group in the formula (IS) include, but are not limited to, a divalent group represented by the following formula (IVS).
-X-M-Y- (IVS)  -X-M-Y- (IVS)
前記式中、  In the above formula,
—X—は、—(CH ) または(CH ) —CH (CH OH)—であり、  —X— is — (CH) or (CH) —CH (CH OH) —,
-Y—は、一(CH ) または—( H)—であり、  -Y— is one (CH) or — (H) —
M は、 O— C ( = 0) NH—
Figure imgf000020_0002
—NH—または NH— C (: O)—であり、
M is O— C (= 0) NH—
Figure imgf000020_0002
—NH— or NH— C (: O) —
mおよび nは、それぞれ独立して、 1〜20の整数である。  m and n are each independently an integer of 1 to 20.
[0067] 前記修飾オリゴヌクレオチド (酸修飾オリゴヌクレオチドおよびステロイド修飾オリゴ ヌクレオチド)が二本鎖である場合、 RNAi (RNA interference)を引き起こすオリゴヌ クレオチドであり、前記修飾オリゴヌクレオチド力 エンドヌクレア一ゼ等をコードする mRNAの一部と同じ塩基配列を有する修飾オリゴヌクレオチドが好まし 、。このような 修飾オリゴヌクレオチドは、 RNAi研究等に有用だ力もである。前記エンドヌクレア一 ゼとしては、例えば、 RNaseL等が挙げられる。  [0067] When the modified oligonucleotide (acid-modified oligonucleotide and steroid-modified oligonucleotide) is double-stranded, it is an oligonucleotide that causes RNAi (RNA interference), and encodes the modified oligonucleotide force endonuclease, etc. Preferred are modified oligonucleotides having the same base sequence as part of the mRNA. Such modified oligonucleotides are also useful for RNAi research and the like. Examples of the endonuclease include RNaseL.
[0068] 前記修飾オリゴヌクレオチドが二本鎖である場合、前記修飾オリゴヌクレオチド力 s iRNA (short interfering RNA)であり、前記 mRNAの一部が、スタートコドンから 75 塩基以上上流の、最初の AA配列に続く 19塩基配列であって、前記 mRNAの一部 力 前記 mRNAに対して特異的であり、前記修飾オリゴヌクレオチド力 前記 19塩基 配列のセンス鎖とアンチセンス鎖との組み合わせであるのが好ましい。このようなセン ス鎖は、例えば、以下のようにして得ることができる。まず、 NCBI (National Center fo r Biotechnology Information)、 EMBL― EBI (European Molecular Biology Laborato ry - European Bioinformatics Institute)等の公知遺伝子データベースを用いて、例 えばェキソヌクレアーゼの mRNA配列を取得する。その遺伝子配列中、スタートコド ンから 75塩基以上下流の、最初の AA配列を見つける。その AA配列に続く 19塩基 配列、合計 21塩基配列力 再度、公知の遺伝子データベースを用いて、 目的とする 遺伝子に対して特異的であることを確認する。なお、この 19塩基配列は、 GC含有量 が 50%前後であることも確認する。この 2つを確認して、得られた 19塩基配列力 前 記のようなセンス鎖である。 [0068] When the modified oligonucleotide is double-stranded, it is the modified oligonucleotide force siRNA (short interfering RNA), and a part of the mRNA is 75% from the start codon. A 19-base sequence following the first AA sequence, upstream of the base, and having a partial force of the mRNA, specific to the mRNA, and the modified oligonucleotide force The sense strand and the antisense strand of the 19-base sequence And a combination thereof. Such a sense chain can be obtained, for example, as follows. First, using a known gene database such as NCBI (National Center for Biotechnology Information), EMBL-EBI (European Molecular Biology Laboratory-European Bioinformatics Institute), for example, an exonuclease mRNA sequence is obtained. In the gene sequence, find the first AA sequence that is more than 75 bases downstream from the start codon. A 19-base sequence following the AA sequence, a total of 21 bases. Again, using a known gene database, confirm that it is specific for the target gene. It is also confirmed that this 19-base sequence has a GC content of around 50%. By confirming these two, the obtained 19-base sequence ability is the sense strand as described above.
[0069] 前述のように修飾オリゴヌクレオチド力 RNAである場合、前記センス鎖およびアン チセンス鎖の一方またはその両方は、その 3'末端にさらに 2つの塩基配列を有する のが好ましい。 3'末端にこのような配列を有すると、 RNAiが引き起こされやすくなる 力もである。このような 2つの塩基配列としては、例えば TT、 ΤΑ等が挙げられる力 こ れに限定されない。 [0069] In the case of a modified oligonucleotide-strength RNA as described above, it is preferable that one or both of the sense strand and the antisense strand further have two base sequences at the 3 'end. Having such a sequence at the 3 ′ end also tends to cause RNAi. Such two base sequences are not limited to, for example, forces such as TT and cocoon.
[0070] 本発明の修飾オリゴヌクレオチドは、ヌクレアーゼ耐性であるのが好まし 、。本発明 の修飾オリゴヌクレオチド力 細胞内に取り込まれた際、ヌクレアーゼで分解されるの を防ぐことができ、その結果、修飾オリゴヌクレオチドの細胞内での活性を、持続させ ることが可能だ力 である。  [0070] The modified oligonucleotide of the present invention is preferably nuclease resistant. The modified oligonucleotide of the present invention can be prevented from being degraded by a nuclease when incorporated into cells, and as a result, the modified oligonucleotide can maintain its activity in cells. is there.
[0071] 本発明の遺伝子発現抑制剤は、本発明の修飾オリゴヌクレオチドを含む。このよう な遺伝子発現抑制剤は、修飾オリゴヌクレオチド力 例えば、標的遺伝子の mRNA を切断したり、標的遺伝子の mRNAと二本鎖を形成等して、その結果、遺伝子発現 を抑制することができる。  [0071] The gene expression inhibitor of the present invention includes the modified oligonucleotide of the present invention. Such a gene expression inhibitor can modify the ability of modified oligonucleotide, for example, cleave the mRNA of the target gene or form a double strand with the mRNA of the target gene, thereby suppressing the gene expression.
[0072] 本発明の医薬組成物は、遺伝子発現に伴う疾患を治療するためであり、前記遺伝 子発現抑制剤を含むものである。遺伝子発現に伴う疾患、例えば、あるタンパク質が 発現されることにより疾患が引き起こされる場合、この医薬組成物により、その遺伝子 発現を抑制し、その遺伝子発現に伴う疾患を治療するのに用いることが可能である。 [0072] The pharmaceutical composition of the present invention is for treating a disease associated with gene expression, and includes the gene expression inhibitor. When a disease associated with gene expression, for example, a disease is caused by the expression of a protein, the pharmaceutical composition It can be used to suppress expression and treat diseases associated with its gene expression.
[0073] このような医薬組成物は、さらに細胞導入用賦形剤を含むのが好ましい。遺伝子発 現に伴う疾患を治療する際、細胞内への導入を容易にすることが可能になるからで ある。前記細胞導入用賦形剤としては、例えば、トランスフエクシヨン試薬等が挙げら れる。前記トランスフエクシヨン試薬とは、例えば、 DNA分子 (前記医薬組成物)を、リ ン脂質を用いて構成された人工脂質小胞 (リボソーム)で包み込み、この人工脂質小 胞を細胞懸濁液に加え、細胞表面に付着させ、細胞膜と融合させて、人工脂質小胞 中の DNA分子を細胞内に取り込ませるリポフエクシヨン方法において、用いられる、 人工脂質小胞を形成する試薬である。前記トランスフエクシヨン試薬としては、例えば 、リポフエクタミン (インビトロジェン(Invitrogen)社製)、リポフエクタミン 2000 (インビト ロジェン社製)、オリゴフエクタミン(Oligofectamin (インビトロジェン社製))、トランスメッ センジャー(TransMessenger (キーゲン(QIAGEN)社製) )、 siRNAトランスフエクシ ヨン 'キット.ジェット SI (アンビオン (Ambion)社製)、ジーンスライサー SiRNAトラン スフエクシヨン試薬(ジーン'セラピ一'システムズ(Gene Therapy Systems)社製)等が 、挙げられる。  [0073] Such a pharmaceutical composition preferably further contains an excipient for cell introduction. This is because it becomes possible to facilitate introduction into cells when treating diseases associated with gene expression. Examples of the cell introduction excipient include a transfection reagent and the like. The transfection reagent includes, for example, a DNA molecule (the pharmaceutical composition) encapsulated in artificial lipid vesicles (ribosomes) composed of phospholipids, and the artificial lipid vesicles in a cell suspension. In addition, it is a reagent that forms artificial lipid vesicles that are used in the lipofection method to attach DNA molecules in artificial lipid vesicles by attaching them to the cell surface and fusing with cell membranes. Examples of the transfer reagent include, for example, Lipofectamine (Invitrogen), Lipofectamine 2000 (Invitrogen), Oligofectamin (Invitrogen), Transmessenger (Kigen (Kigen)) QIAGEN))), siRNA Transfection 'kit. Jet SI (Ambion), Gene Slicer SiRNA Transfection Reagent (Gene Therapy Systems), etc. It is done.
[0074] 前述のように細胞導入用賦形剤を含むことによる他、本発明の医薬組成物は、エレ タトロポレーシヨン法、パーティクルガン法等を用いて、細胞内に導入することもできる 。前記エレクト口ポレーシヨン法は、例えば、細胞に電気パルスをかけてその細胞壁 に穴をあけ、その穴から本発明の医薬組成物を細胞内へ導入する方法である。前記 パーティクルガン法は、金微粒子に DNA分子 (前記医薬組成物)などの分子を付着 させ、パーティクルガン (粒子銃)を用いて、圧縮ヘリウムガスを利用し、銃弾を撃ち込 むように金微粒子を細胞膜に透過させて、 DNA分子 (前記医薬組成物)を細胞内に 導入する方法である。  [0074] In addition to including the cell introduction excipient as described above, the pharmaceutical composition of the present invention can also be introduced into cells by using an electroporation method, a particle gun method, or the like. . The electopore position method is, for example, a method in which an electric pulse is applied to a cell to make a hole in the cell wall, and the pharmaceutical composition of the present invention is introduced into the cell through the hole. In the particle gun method, molecules such as DNA molecules (the pharmaceutical composition) are attached to gold fine particles, and using a particle gun (particle gun), the compressed fine helium gas is used to shoot the gold fine particles into the cell membrane. In this method, the DNA molecule (the pharmaceutical composition) is introduced into cells.
[0075] 本発明の RNAiキットは、 siRNAである修飾オリゴヌクレオチドを含む。このようなキ ットは、他に、ゥエルと修飾オリゴヌクレオチド等とが固定されたプレート、ファイバー、 ノィォチップ等の固定ィ匕担体等が挙げられる。このようなキットには、前記修飾オリゴ ヌクレオチド等のほかに、例えば、薬物、反応して発色する発色試薬、検出を容易に する検出試薬等を含んでもよい。 [0076] 本発明の RNAi研究用試薬は、 siRN Aである修飾オリゴヌクレオチドを含む。 RNA i研究の際、 30bp以上の dsRNAを細胞へ導入すると、細胞固有の防御反応が活性 化され、 mRNAをランダムに分解する反応が生じたりして、細胞内で RNAiが生じて いるかどうかが、判断できない場合がある。この mRNAのランダム分解は、以下のメ 力-ズムで生じると考えられている。まず、 dsRNAにより 2— 5オリゴアデ-ル酸合成 酵素(2— 5AS)が活性ィ匕され、それにより生じた 2— 5A力 RNAaseLを活性ィ匕する 。その RNAaseLが、 mRNAをランダムに分解するというものである。 siRNAである 修飾オリゴヌクレオチドは、この RNAaseLの発現を抑制可能であるので、 mRNAの ランダム分解を抑制でき、その結果、例えば RNAiが細胞内で生じているカゝ否かが判 断しやすくなる。 [0075] The RNAi kit of the present invention includes a modified oligonucleotide that is an siRNA. Other examples of such kits include a plate on which a well and a modified oligonucleotide are fixed, a fixed carrier such as a fiber and a nanochip, and the like. Such a kit may contain, in addition to the modified oligonucleotide, for example, a drug, a coloring reagent that reacts to develop color, a detection reagent that facilitates detection, and the like. [0076] The RNAi research reagent of the present invention contains a modified oligonucleotide that is siRNA. During RNAi research, when dsRNA of 30bp or more is introduced into a cell, the cell-specific defense reaction is activated, and a reaction that randomly degrades mRNA occurs, which indicates whether RNAi is generated in the cell. It may not be possible to judge. This random degradation of mRNA is considered to occur by the following mechanism. First, dsRNA activates 2-5 oligoadreic acid synthase (2-5AS) and activates 2-5A RNAaseL produced thereby. The RNAaseL degrades mRNA at random. Since the modified oligonucleotide, which is siRNA, can suppress the expression of RNAaseL, random degradation of mRNA can be suppressed. As a result, for example, it is easy to determine whether RNAi is occurring in the cell.
[0077] 本発明の遺伝子発現抑制方法は、修飾オリゴヌクレオチドを用いて、遺伝子の発 現を抑制する方法である。この方法では、修飾オリゴヌクレオチドが、例えば、標的遺 伝子の mRNAを切断したり、標的遺伝子の mRNAと二本鎖を形成等して、その結 果、遺伝子発現を抑制することができる。  [0077] The gene expression suppression method of the present invention is a method of suppressing gene expression using a modified oligonucleotide. In this method, the modified oligonucleotide can, for example, cleave the mRNA of the target gene or form a double strand with the mRNA of the target gene, thereby suppressing gene expression.
[0078] 本発明の RNAiを引き起こす方法は、 siRN Aである修飾オリゴヌクレオチドを用い て、 RNAiを引き起こす方法である。この方法では、修飾オリゴヌクレオチド力 RNA であるので、 RNAiを引き起こすことができる。 [0078] The method for causing RNAi of the present invention is a method for causing RNAi using a modified oligonucleotide that is siRNA. This method can cause RNAi since it is a modified oligonucleotide force RNA.
[0079] 次に、本発明の修飾オリゴヌクレオチドを製造するための製造方法について、例を 挙げて説明する。このような製造方法により、従来製造することができな力つた本発明 の修飾オリゴヌクレオチドの製造が可能になった。 [0079] Next, a production method for producing the modified oligonucleotide of the present invention will be described by way of examples. Such a production method made it possible to produce the modified oligonucleotide of the present invention that could not be produced conventionally.
[0080] まず、酸修飾オリゴヌクレオチドの製造例を説明する。 [0080] First, an example of producing an acid-modified oligonucleotide will be described.
[0081] 例えば、下記式 (XIA)で表される固相合成用ユニットィ匕合物の R1を除去して遊離 の水酸基に変換し、 [0081] For example, R 1 of the unit compound for solid-phase synthesis represented by the following formula (XIA) is removed and converted to a free hydroxyl group,
前記遊離の水酸基にオリゴヌクレオチドを伸長させ、その後、固相担体力 切り出し て前記修飾オリゴヌクレオチドを得ることができる。  The modified oligonucleotide can be obtained by extending the oligonucleotide to the free hydroxyl group and then cutting out the solid phase carrier force.
[0082] [化 18]
Figure imgf000024_0001
前記式中、 RAは、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール基
[0082] [Chemical 18]
Figure imgf000024_0001
In the above formula, R A is a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group.
、または複素環式基を意味し、 Or a heterocyclic group,
R1は、水酸基の保護基であり、 R 1 is a hydroxyl protecting group,
R2は、固相担体であり、 R 2 is a solid support,
mは、 1〜20の整数であり、  m is an integer from 1 to 20,
nは、 1〜20の整数である。  n is an integer of 1-20.
[0083] 前記式 (XIA)中、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール 基、および複素環式基については、前記式 (IA)中の飽和脂肪族炭化水素基、不飽 和脂肪族炭化水素基、ァリール基、および複素環式基について定義したとおりであ る。 [0083] In the formula (XIA), the saturated aliphatic hydrocarbon group, the unsaturated aliphatic hydrocarbon group, the aryl group, and the heterocyclic group, the saturated aliphatic hydrocarbon group in the formula (IA), As defined for unsaturated aliphatic hydrocarbon groups, aryl groups, and heterocyclic groups.
[0084] 次に、ステロイド修飾オリゴヌクレオチドの製造例を説明する。  [0084] Next, production examples of steroid-modified oligonucleotides will be described.
[0085] 例えば、下記式 (XIS)で表される固相合成用ユニットィ匕合物の R1を除去して遊離 の水酸基へ変換し、前記遊離の水酸基にオリゴヌクレオチドを伸長させ、その後、固 相担体力も切り出して前記修飾オリゴヌクレオチドを得ることができる。 [0085] For example, R 1 of the unit compound for solid phase synthesis represented by the following formula (XIS) is removed and converted to a free hydroxyl group, and the oligonucleotide is extended to the free hydroxyl group. The modified oligonucleotide can be obtained by cutting out the phase carrier force.
[0086] [化 19] [0086] [Chemical 19]
Figure imgf000024_0002
前記式中、 R ま、 1以上の置換基を任意に有し、骨格中の 1以上の単結合が任意 に二重結合に置き換えられて 、るステロイド骨格を意味し、
Figure imgf000024_0002
In the above formula, R 1 optionally has one or more substituents, and one or more single bonds in the skeleton are optional. The steroid skeleton is replaced by a double bond,
R1は、水酸基の保護基であり、 R 1 is a hydroxyl protecting group,
R2は、固相担体であり、 R 2 is a solid support,
mは、 1〜20の整数であり、  m is an integer from 1 to 20,
nは、 1〜20の整数である。  n is an integer of 1-20.
[0087] 前記式 (XIS)中の RSについては、前記式 (IS)中の RSについて定義したとおりであ る。 [0087] R S in the formula (XIS) is as defined for R S in the formula (IS).
[0088] 本発明において、前記水酸基の保護基とは、従来公知の 1級アルコールの保護基 、例えば、ヌクレオシド化学の分野で公知の、 4, 4'ージメトキシトリチル(DMTr)、 4 —モノメトキシトリチル(MMTr)、(9—フエ-ル)キサンテン— 9—ィル [ピキシル(pixy 1) ]等が、その保護基として用いられうる。  In the present invention, the hydroxyl-protecting group means a conventionally known primary alcohol protecting group, for example, 4,4′-dimethoxytrityl (DMTr), 4-monomethoxy known in the field of nucleoside chemistry. Trityl (MMTr), (9-phenol) xanthene-9-yl [pixy 1] and the like can be used as the protecting group.
[0089] 本発明にお 、て、前記固相担体とは、固相担体で DNA、 RNA等を合成するのに 適した固相担体であれば限定されず、例えば、 CPG (コントロール細孔ガラス)、 HC P (highly cross-linked polystyrene) " teる。  In the present invention, the solid phase carrier is not limited as long as it is a solid phase carrier suitable for synthesizing DNA, RNA, etc. with the solid phase carrier. For example, CPG (control pore glass ), HC P (highly cross-linked polystyrene).
[0090] 前記方法において R1を除去するには、 R1の種類に応じて適宜酸、アルカリ、触媒 等を選択して行うことができる。 In the above method, R 1 can be removed by appropriately selecting an acid, an alkali, a catalyst or the like according to the type of R 1 .
[0091] 前記方法において前記固相合成用ユニットィヒ合物の遊離の水酸基にヌクレオチド を伸長させるには、オリゴヌクレオチド合成分野で従来公知の技術を用いて、修飾ォ リゴヌクレオチドの配列に従 、、ヌクレオシドを順次カップリングさせて行うことができる  [0091] In the method described above, in order to extend the nucleotide to the free hydroxyl group of the solid-phase synthesis unit compound, a nucleoside is used in accordance with the sequence of the modified oligonucleotide using a conventionally known technique in the field of oligonucleotide synthesis. Can be performed by sequentially coupling
[0092] なお、ヌクレオシド、カップリング試薬、脱保護試薬、洗浄試薬等は、通常核酸固相 合成に用いられるものを用いる。得られた固相担体上の修飾オリゴヌクレオチドは、 必要であればオリゴヌクレオチド側鎖の脱保護を行った後、固相担体力 切り出して 、粗修飾オリゴヌクレオチドを得る。切り出しに用いる試薬は、固相担体およびリンカ 一(固相担体と修飾オリゴヌクレオチドを接続する部分)構造等に応じて、従来公知 の試薬から、適宜選択することができる。この粗修飾オリゴヌクレオチドは、必要であ れば、 HPLC等で精製してもよい。 [0092] As the nucleoside, coupling reagent, deprotection reagent, washing reagent, etc., those usually used for nucleic acid solid phase synthesis are used. The modified oligonucleotide on the obtained solid phase carrier is subjected to deprotection of the oligonucleotide side chain if necessary, and then the solid phase carrier force is cut out to obtain a crude modified oligonucleotide. The reagent used for excision can be appropriately selected from conventionally known reagents according to the structure of the solid phase carrier and the linker (the portion connecting the solid phase carrier and the modified oligonucleotide). The crude modified oligonucleotide may be purified by HPLC or the like, if necessary.
[0093] 次に、修飾オリゴヌクレオチドが二本鎖である場合の製造について例を挙げて説明 する。例えば前記のような方法に従い、一本鎖の修飾オリゴヌクレオチドをまず製造 する。その修飾オリゴヌクレオチドと相補的な配列を有する、一本鎖の天然オリゴヌク レオチドも別途、従来公知の方法に従い、製造する。次いで、得られた一本鎖の修 飾オリゴヌクレオチドをアニーリング用緩衝液(例えば、 lOOmMの KOAc水溶液、 2 mMの MgOAc溶液、および 30mMの HEPES—KOH (pH7. 4)を含む緩衝液)中 に溶解させたものと、一本鎖の天然オリゴヌクレオチドをアニーリング用緩衝液中に 溶解させたものとを、例えば混合し、 95°Cで 5分間処理し、その後、徐々に 25°Cまで 冷却させて、二本鎖の修飾オリゴヌクレオチドを得ることができる。この二本鎖の修飾 オリゴヌクレオチドは、必要に応じて、フエノール Zクロ口ホルム抽出、エタノール沈殿 等をさらに行って、単離精製することができる。 [0093] Next, production in the case where the modified oligonucleotide is double-stranded is described with an example. To do. For example, a single-stranded modified oligonucleotide is first produced according to the method as described above. A single-stranded natural oligonucleotide having a sequence complementary to the modified oligonucleotide is also separately produced according to a conventionally known method. The resulting single-stranded modified oligonucleotide is then placed in an annealing buffer (eg, a buffer containing lOOmM KOAc aqueous solution, 2 mM MgOAc solution, and 30 mM HEPES-KOH (pH 7.4)). The solubilized product and the single-stranded natural oligonucleotide dissolved in the annealing buffer are mixed, treated at 95 ° C for 5 minutes, and then gradually cooled to 25 ° C. Thus, a double-stranded modified oligonucleotide can be obtained. This double-stranded modified oligonucleotide can be isolated and purified by further performing phenol Z chromatography, ethanol precipitation or the like, if necessary.
[0094] 前記製造方法で用いる式 (XIA)の固相合成用ユニットィ匕合物および式 (XIS)の固 相合成用ユニットィ匕合物は、例えば、以下のような方法で製造することができる。  [0094] The solid-phase synthesis unity compound of formula (XIA) and the solid-phase synthesis unity compound of formula (XIS) used in the production method can be produced, for example, by the following method. .
[0095] まず、ユニットィ匕合物 (XIA)の製造についてスキーム 1を参照して説明する。例え ば、式 (XII)で表される化合物と、 RA—COOHおよびペプチド用縮合剤とを反応さ せ、式 (ΧΙΠΑ)で表される化合物を得る工程と、前記式 (ΧΙΠΑ)で表される化合物の R3を除去し、次 、で下記式 (XIV)で表される化合物と反応させて下記式 (XVA)で 表される化合物を得る工程と、前記式 (XVA)で表される化合物と、アミノ基を有する 固相担体とを反応させ、前記式 (XIA)で表される化合物を得る方法により、製造する ことができる。 First, the production of unitary compound (XIA) will be described with reference to Scheme 1. For example, a step of reacting a compound represented by the formula (XII) with R A —COOH and a peptide condensing agent to obtain a compound represented by the formula (ΧΙΠΑ); Removing the R 3 of the compound, and then reacting with a compound represented by the following formula (XIV) to obtain a compound represented by the following formula (XVA): And a solid phase carrier having an amino group are reacted to obtain a compound represented by the above formula (XIA).
[0096] [化 20] [0096] [Chemical 20]
Figure imgf000027_0001
Figure imgf000027_0001
(XII) (XIIIA)  (XII) (XIIIA)
Figure imgf000027_0002
スキーム 1 まず、ユニットィ匕合物 (XIA)の製造について、スキーム 1を参照しながら説明する。 式 (ΧΠ)のァミン誘導体と、 RA— COOHとを、ペプチド用縮合剤(例えば、 WSC (1 —ェチルー 3— (3—ジメチルァミノプロピル)—カルボジイミド '塩酸塩)存在下に縮 合させ、式 (ΧΠΙΑ)の化合物を得る。式 (XII)のァミン誘導体は、市販で入手してもよ いし、グリセロールの 1位と 3位の水酸基を保護した、例えば、 1 -0- (4, 4,—ジメト キシトリチル)—3— O— tert—ブチルジメチルシリルグリセロール(De Napoli, et. al, Tetrahedron 1999, 55(32), 9899-9914参照)から公知文献を利用して自家製造しても よい。
Figure imgf000027_0002
Scheme 1 First, the production of unitary compound (XIA) will be described with reference to Scheme 1. The amine derivative of the formula (ΧΠ) and R A —COOH are condensed in the presence of a peptide condensing agent (eg WSC (1-ethyl-3-propyl (3-dimethylaminopropyl) -carbodiimide) hydrochloride). The amine derivative of formula (XII) may be obtained commercially or protected at the hydroxyl groups at positions 1 and 3 of glycerol, for example 1 -0- (4, 4, -Dimethoxytrityl) -3-O-tert-Butyldimethylsilylglycerol (see De Napoli, et. Al, Tetrahedron 1999, 55 (32), 9899-9914) Good.
次に、得られた式 (ΧΙΠΑ)の化合物の R3を除去し、次 、で無水物 (XIV)を、任意 に、塩基 (例えば、ピリジン、トリェチルァミン等)、触媒 (例えば 4—ジメチルァミノピリ ジン (DMAP)等)等の存在下に反応させ、式 (XVA)の化合物を得る。 [0098] 次に、得られた式 (XVA)の化合物と、アミノ基を有する固相担体 R2— NHとをカツ Next, R 3 of the obtained compound of the formula (ΧΙΠΑ) is removed, and then an anhydride (XIV) is optionally added to a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylamino). Reaction is carried out in the presence of pyridine (DMAP, etc.) to obtain a compound of formula (XVA). Next, the obtained compound of the formula (XVA) and solid phase carrier R 2 —NH having an amino group are cut
2 プリング試薬(例えば、 WSC (1—ェチルー 3—(3 ジメチルァミノプロピル) カル ポジイミド '塩酸塩) )存在下に縮合させ、ユニット化合物 (XIA)を得る。  2 Condensation in the presence of a pulling reagent (for example, WSC (1-ethyl 3-propyl (3 dimethylaminopropyl) carbopositimide 'hydrochloride)) gives unit compound (XIA).
[0099] つぎに、ユニットィ匕合物 (XIS)の製造にっ 、てスキーム 2を参照して説明する。例え ば、式 (XII)で表される化合物と、 ー011ぉょび1, 1,—カルボ-ルジイミダゾール とを反応させ、式 (xms)で表される化合物を得る工程と、前記式 (xms)で表される 化合物の R3を除去し、次 、で下記式 (XIV)で表される化合物と反応させて下記式( XVS)で表される化合物を得る工程と、前記式 (XVS)で表される化合物と、アミノ基 を有する固相担体とを反応させ、前記式 (XIS)で表される化合物を得る方法により、 製造することができる。 [0099] Next, the production of the unitary compound (XIS) will be described with reference to Scheme 2. For example, a step of obtaining a compound represented by the formula (xms) by reacting a compound represented by the formula (XII) with —011 shobi 1, 1, -carbodiimidazole; removing the R 3 of the compound represented by xms), and obtaining the following, a compound represented by the following formula (XIV) represented by is reacted with compound of the following formula (XVS), the formula (XVS ) And a solid phase carrier having an amino group are reacted to obtain the compound represented by the formula (XIS).
[0100] [化 21]  [0100] [Chemical 21]
Figure imgf000028_0001
Figure imgf000028_0001
(XVS) (XVS)
Figure imgf000028_0002
Figure imgf000028_0002
(XIS)  (XIS)
スキーム 2 式 (XII)のァミン誘導体と、 RS— OHとを、 1, 1,—カルボ-ルジイミダゾール存在下 に縮合させ、式 (XIIIS)の化合物を得る。式 (XII)のァミン誘導体は、市販で入手し てもよいし、グリセロールの 1位と 3位の水酸基を保護した、例えば、 1— O— (4, 4, ージメトキシトリチル)ー3— 0— 6 ーブチルジメチルシリルグリセロール(06 Napoli, et. al, Tetrahedron 1999, 55(32), 9899-9914参照)から公知文献を利用して自家製 造してちょい。 Scheme 2 An amine derivative of the formula (XII) and R S —OH are condensed in the presence of 1,1, -carbodiimidazole to obtain a compound of the formula (XIIIS). The amine derivative of the formula (XII) may be obtained commercially, or protected with hydroxyl groups at positions 1 and 3 of glycerol, such as 1-O— (4,4, -dimethoxytrityl) -3-0. — 6-Butyldimethylsilylglycerol (see 06 Napoli, et. Al, Tetrahedron 1999, 55 (32), 9899-9914) should be made in-house using known literature.
[oioi] 次に、得られた式 (xms)の化合物の R3を除去し、次いで無水物 (XIV)を、任意に[oioi] Next, R 3 of the obtained compound of formula (xms) is removed, and then anhydride (XIV) is optionally added.
、塩基 (例えば、ピリジン、トリェチルァミン等)、触媒 (例えば 4—ジメチルァミノピリジ ン (DMAP)等)等の存在下に反応させ、式 (XVS)の化合物を得る。 , Reaction in the presence of a base (eg, pyridine, triethylamine, etc.), a catalyst (eg, 4-dimethylaminopyridin (DMAP), etc.) to obtain a compound of formula (XVS).
[0102] 次に、得られた式 (XVS)の化合物と、アミノ基を有する固相担体 R2— NHとをカツ [0102] Next, the obtained compound of formula (XVS) and solid phase carrier R 2 — NH having an amino group were cut into cuts.
2 プリング試薬(例えば、 WSC (1—ェチルー 3—(3 ジメチルァミノプロピル) カル ポジイミド '塩酸塩) )存在下に縮合させ、ユニット化合物 (XIS)を得る。  2 Condensation in the presence of a pulling reagent (for example, WSC (1-ethyl-3- (3 dimethylaminopropyl) carbopositimide 'hydrochloride)) gives unit compound (XIS).
[0103] なお、スキーム 1および 2の各工程において、必要であれば、各官能基に保護基を 導入したり、保護基を脱保護したり、保護基を変更してもよい。なお、官能基の種類 に応じた保護基の選択、保護基の導入および保護基の除去は、当該分野で公知の 方法に従い、行うことができ、例えば、「有機合成における保護基 ("Protective Group s in Organic synthesis j , T. Greeneら着、 John Wiley & ¾ons, Inc.出 feu等 参照す ることがでさる。 [0103] In each step of Schemes 1 and 2, if necessary, a protecting group may be introduced into each functional group, the protecting group may be deprotected, or the protecting group may be changed. Selection of a protecting group according to the type of functional group, introduction of the protecting group, and removal of the protecting group can be carried out according to methods known in the art. For example, “protective group in organic synthesis” s in Organic synthesis j, T. Greene et al., John Wiley & ¾ons, Inc.
実施例  Example
[0104] 本明細書の記載において、以下の略語を使用する。  [0104] The following abbreviations are used in the description of this specification.
APS: アンモ-ゥムぺノレォキソジサノレフェート(ammonium peroxodisulfate)  APS: ammonium peroxodisulfate
CPG : コントロール細孔ガラス(controlled pore glass)  CPG: controlled pore glass
DMAP : 4-ジメチルァミノピリジン(4- dimethylaminopyridine )  DMAP: 4-dimethylaminopyridine
DMTrCl: 4,4'-ジメトキシトリチルクロライド(4,4し dimethoxytritylchloride )  DMTrCl: 4,4'-Dimethoxytritylchloride (4,4 dimethoxytritylchloride)
DMF : ジメチルホルムアミド(dimethylformamide )  DMF: Dimethylformamide
EDTA: エチレンジァミン- N, N, Ν' , Ν,—テトラ酢酸 'ジナトリウム塩 ' de hydrate 、ethylenediamine— ΙΝΙ,Ν,Ν' ,Ν tetraacetic acid, aisodium salt, dehydrate ) FAB: 高速原子衝撃(fast atom bombardment ) HRMS: 高分解能質量分析 (high-resolution mass spectrometry )EDTA: ethylenediamine- N, N, Ν ', Ν, —tetraacetic acid, aisodium salt, dehydrate) FAB: fast atom bombardment (fast atom bombardment) HRMS: high-resolution mass spectrometry
Im CO : 1 - 1 '—カルボ-ルビス— 1H—イミダゾール (1- 1'- Carbonylbis- 1Im CO: 1-1 '—Carborubbis- 1H-imidazole (1-1'-Carbonylbis- 1
2 2
H-匪 dazole )  H- 匪 dazole)
mRNA : メッセンンヤーリボ核酸 (messenger ribonucleic acid )  mRNA: messenger ribonucleic acid
NBA: 3—-トロべンジルアルコール (3-nitrobenzylalchol)  NBA: 3--Trobenzylalchol (3-nitrobenzylalchol)
PAGE : ポリアクリルアミドゲル電気泳動 (polyacrylamide gel electrophoresis ) PAGE: polyacrylamide gel electrophoresis
TBAF: トリブチルアンモ -ゥムフルオライド(tributylammoniumfluoride) TBAF: tributylammoniumfluoride
TBE : Tris-ホウ酸- EDTA (Tris- boric acid- EDTA)  TBE: Tris-boric acid- EDTA
TEAA: トリェチルァミン-酢酸(triethylamine- acetic acid)  TEAA: triethylamine-acetic acid
TBDMSCl: tert-ブチルジメチルシリルクロライド(tert- butyldimethylsilylchloride) TEMED : N, N, Ν' , N,一テトラメチル一エチレンジァミン(Ν,Ν,Ν',Ν'- tetr amethyl- ethylenediamine)  TBDMSCl: tert-butyldimethylsilylchloride TEMED: N, N, Ν ', N, monotetramethyl monoethylenediamine (Ν, Ν, Ν', Ν'- tetr amethyl-ethylenediamine)
THF : テトラヒドロフラン(tetrahydroforan)  THF: Tetrahydroforan
TRIS: トリス (ヒドロキシメチル)ァミノメタン(tris(hydroxymethyl)aminomethane) WSC : 1ーェチルー 3—(3—ジメチルァミノプロピル)—カルポジイミド '塩酸塩(1- Ethyl-3-(3-dimethylaminopropyl)-carbodnmide, hydrochloride)  TRIS: Tris (hydroxymethyl) aminomethane WSC: 1-Ethyl-3- (3-dimethylaminopropyl) -carbodimide 'hydrochloride (1- Ethyl-3- (3-dimethylaminopropyl) -carbodnmide, hydrochloride )
CPG上の化合物の活性は、以下のようにして算出した。  The activity of the compound on CPG was calculated as follows.
[0105] 乾燥させた CPG6mgをガラスフィルターにのせ、そこへ HCIOおよびエタノールの [0105] Place 6 mg of dried CPG on a glass filter and add HCIO and ethanol
4  Four
混合物 (HCIO: EtOH = 3 : 2)を流し込んだ。得られたろ液の吸光度 (波長 498nm  The mixture (HCIO: EtOH = 3: 2) was poured. Absorbance of the obtained filtrate (wavelength 498nm
4  Four
(DMTr基の吸収波長) )を測定し、その値を以下の式に代入して算出した。  (DMTr group absorption wavelength)) was measured, and the value was substituted into the following equation.
[0106] [数 1] [0106] [Equation 1]
Abs. (498mn) x b/.(solution)(mL) x 14.3 _活性 , ^ )  Abs. (498mn) x b /. (Solution) (mL) x 14.3 _ activity, ^)
Ife¾Ai(support)(mg)  Ife¾Ai (support) (mg)
前記式中、 Abs.は、波長 498nmにおける CPGの吸光度であり、  In the above formula, Abs. Is the absorbance of CPG at a wavelength of 498 nm,
Vol.は、測定したろ液の容量であり、  Vol. Is the measured volume of the filtrate,
weightは、測定した CPGの重量である。  weight is the weight of the measured CPG.
[0107] 1.修飾 1本鎖オリゴヌクレオチドまたは修飾 2本鎖オリゴヌクレオチド製造のための 、モノマー製造 [0108] [化 22] [0107] 1. Monomer production for production of modified single-stranded oligonucleotide or modified double-stranded oligonucleotide [0108] [Chemical 22]
Figure imgf000031_0001
Figure imgf000031_0001
(I) 1— O— (4, 4,—ジメトキシトリチル)—グリセロール(1-0- (4,4'-dimet hoxytrityl)- glycerol) (23)の製造  (I) 1—O— (4,4, -Dimethoxytrityl) -glycerol (1-0- (4,4'-dimet hoxytrityl) -glycerol) (23)
グリセロール(1. 0g、 10. 86mmol)のピリジン(24mL)溶液に、 DMAPを少量カロ え撹拌した。そこに DMTrCl (3. 68g、 10. 86mmol、 leq. )のピリジン(30mL)溶 液を加え、 12時間撹拌した。反応溶液を酢酸ェチルで希釈し、 NaHCO飽和水溶  A small amount of DMAP was added to a solution of glycerol (1.0 g, 10.86 mmol) in pyridine (24 mL) and stirred. Thereto was added DMTrCl (3.68 g, 10.86 mmol, leq.) In pyridine (30 mL), and the mixture was stirred for 12 hours. Dilute the reaction solution with ethyl acetate, saturated aqueous NaHCO
3 液( X 2)、 NaCl飽和水溶液 ( X 1)で抽出した。有機相を無水硫酸ナトリウムで乾燥 させた。有機相の溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー( N -へキサン: EtOAc = 5: 1〜 1: 1)で単離精製して、黄色のオイル状の表題ィ匕合 物を得た(収量 2. 52g、 6. 39mmol、収率 59%)。  Extraction was performed with 3 liquids (X 2) and a saturated aqueous NaCl solution (X 1). The organic phase was dried over anhydrous sodium sulfate. The solvent of the organic phase was distilled off, and the resulting residue was isolated and purified by silica gel column chromatography (N-hexane: EtOAc = 5: 1 to 1: 1) to give the title compound as a yellow oil. (Yield 2.52 g, 6.39 mmol, 59% yield).
[0109] JH NMR(400MHz, DMSO— d ) δ : 2.87-2.93 (2H, m, 1— H), 3.30—3.41 (2H, m, 3— H [0109] J H NMR (400MHz, DMSO— d) δ: 2.87-2.93 (2H, m, 1— H), 3.30—3.41 (2H, m, 3— H
6  6
), 3.53-3.65 (1H, m, cross), 3.71 (6H, s,— OCH ), 4.44 (1H, t, J=5.6Hz, 3— OH), 4.7 4 (1H, d, J=4.8Hz, 2— OH), 6.85—7.40 (13H, m, DMTr)。 ), 3.53-3.65 (1H, m, cross), 3.71 (6H, s, — OCH), 4.44 (1H, t, J = 5.6 Hz, 3—OH), 4.7 4 (1H, d, J = 4.8Hz, 2—OH), 6.85—7.40 (13H, m, DMTr).
[0110] (Il) l -O- (4, 4,ージメトキシトリチル)—3— O—tert—ブチルジメチルシリルグ リセローノレ(1—0— (4,4'-dimethoxytrityl)- 3— 0— tert— butyldimethylsilylglycerol) (24) の製造 [0110] (Il) l -O- (4,4, -Dimethoxytrityl) —3— O-tert-Butyldimethylsilylglyceronorole (1—0— (4,4'-dimethoxytrityl)-3— 0— tert — Production of (butyldimethylsilylglycerol) (24)
1 -0- (4, 4,—ジメ卜キシ卜リチル)—グリセロール(24) (2. 46g、 6. 24mmol)の DMF (5mL)溶液に、イミダゾール(0. 85g、 12. 5mmol、 2eq. )をカ卩えて溶解させ た。そこに TBDMSC1 (0. 94g、 6. 24mmol、 leq. )の DMF (15mL)溶液をカロえ、 12時間撹拌した。反応溶液を酢酸ェチルで希釈し、水( X 3)、 NaHCO飽和水溶  1 -0- (4,4, -dimethyloxylyl) -glycerol (24) (2. 46 g, 6. 24 mmol) in DMF (5 mL) was added to imidazole (0.85 g, 12.5 mmol, 2 eq. ) Was dissolved. There, a solution of TBDMSC1 (0.94 g, 6.24 mmol, leq.) In DMF (15 mL) was added and stirred for 12 hours. Dilute the reaction solution with ethyl acetate, water (X3), NaHCO saturated aqueous solution
3 液( X 2)および NaCl飽和水溶液 ( X 1)で洗浄した。有機相を無水硫酸ナトリウムで 乾燥させた。有機相の溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフ ィー(N へキサン: EtOAc = 10: 1〜 1: 3)で単離精製して、黄色のオイル状の表 題化合物を得た(収量 2. 60g、 5. l lmmol、収率 82%)。  Washed with 3 liquids (X 2) and NaCl saturated aqueous solution (X 1). The organic phase was dried over anhydrous sodium sulfate. The solvent of the organic phase was distilled off, and the resulting residue was isolated and purified by silica gel column chromatography (N hexane: EtOAc = 10: 1 to 1: 3) to give a yellow oily title compound. (Yield 2.60 g, 5. l mmol, yield 82%).
[0111] JH NMR(400MHz, CDC1 ) δ : 0.12 (6H, s, TBDMS— CH ), 0.94 (9H, s, t—ブチノレ), [0111] J H NMR (400 MHz, CDC1) δ: 0.12 (6H, s, TBDMS—CH 3), 0.94 (9H, s, t-butinole),
3 3  3 3
3.20-3.31 (2H, m, 1— H), 3.69—3.81 (2H, m, 3— H), 3.88 (7H, s,—OCH and cross), 7  3.20-3.31 (2H, m, 1— H), 3.69—3.81 (2H, m, 3— H), 3.88 (7H, s, —OCH and cross), 7
3  Three
.25-7.53 (13H, m, DMTr)。  .25-7.53 (13H, m, DMTr).
[0112] (III) l— O— (4, 4,—ジメトキシトリチル)—2— 0—[N— (4 アミノブチル)カル バモイル] 3— O— tert ブチルジメチル シリルグリセロール( l-0-(4,4'-dimetho xytrityl)- 2-0- [N- (4- aminobutyl)carbamoyl]- 3- O- tert- butyldimethyト siiylgiycero 1) (25)の製造 [0112] (III) l—O— (4,4, -Dimethoxytrityl) —2—0— [N— (4 aminobutyl) carbamoyl] 3—O—tert butyldimethylsilylglycerol (l-0- ( 4,4'-dimetho xytrityl)-2-0- [N- (4-aminobutyl) carbamoyl]-3-O- tert-butyldimethyto siiylgiycero 1) (25)
1— O— (4, 4'—ジメトキシトリチル) 3— O—tert—ブチルジメチルシリルグリセ ロール(24) (2. 60g、 5. l lmmol)のピリジン(17mL)溶液に、 Im CO (l. 66g、 1  1—O— (4,4′-dimethoxytrityl) 3-O-tert-butyldimethylsilylglycerol (24) (2.60 g, 5. l lmmol) in pyridine (17 mL) was added to Im CO (l. 66g, 1
2  2
0. 22mmol、 2eq. )を溶解させ、その反応溶液を 1時間撹拌した。原料の消失を確 認した後、反応溶液にプトレシン(3mL、 30. 66mmol、 6eq. )を氷冷下で滴下した 。 3時間撹拌した後、反応溶液をクロ口ホルムで希釈した。前記反応溶液を、水(X 3) 、 NaCl飽和水溶液(X 1)で洗浄した後、無水硫酸ナトリウムで乾燥させた。反応溶 液の溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(MeOH: CH C1 = 10〜25%)で単離精製して、無色のオイル状の表題ィ匕合物を得た (収量 3. 0 0.222 mmol, 2 eq.) Was dissolved and the reaction solution was stirred for 1 h. After confirming the disappearance of the raw materials, putrescine (3 mL, 30.66 mmol, 6 eq.) Was added dropwise to the reaction solution under ice cooling. After stirring for 3 hours, the reaction solution was diluted with black mouthform. The reaction solution was washed with water (X 3) and saturated aqueous NaCl solution (X 1) and then dried over anhydrous sodium sulfate. The solvent of the reaction solution was distilled off, and the resulting residue was isolated and purified by silica gel column chromatography (MeOH: CH C1 = 10-25%) to obtain a colorless oily title compound. (Yield 3.0
3 Three
Ogゝ 4. 82mmol、収率 94%)。 [0113] H NMR(400MHz, DMSO— d ) δ : 0.13 (6H, s, TBDMS— CH ), 0.97 (9H, s, t—ブチ Og ゝ 4.82 mmol, 94% yield). [0113] H NMR (400 MHz, DMSO— d) δ: 0.13 (6H, s, TBDMS— CH), 0.97 (9H, s, t-butyl)
6 3  6 3
ル), 1.72 (4H, s,プチノレ), 3.62 (8H, m,プチノレ and 1- H and 3- H), 3.94 (7H, s, - O CH and cross), 6.96—7.61 (13H, m, DMTr), 8.36 (1H, m, NH).  ), 1.72 (4H, s, petitnore), 3.62 (8H, m, petitnore and 1- H and 3-H), 3.94 (7H, s,-O CH and cross), 6.96—7.61 (13H, m, DMTr), 8.36 (1H, m, NH).
3  Three
13C-NMR (lOOMHz, DMSO— d ) δ :—5.58, 17.73, 25.58, 26.76, 27.83, 48.53, 54.97, 13 C-NMR (lOOMHz, DMSO- d) δ: -5.58, 17.73, 25.58, 26.76, 27.83, 48.53, 54.97,
6  6
61.67, 62.26, 72.52, 85.22, 113.09, 126.58, 127.62, 127.74, 129.63, 135.51, 144.8 5, 149.28, 155.77, 158.03.  61.67, 62.26, 72.52, 85.22, 113.09, 126.58, 127.62, 127.74, 129.63, 135.51, 144.8 5, 149.28, 155.77, 158.03.
FAB— HRMS(NBA) calcd for C H N O Si (MH+), 623.3516; found, 623.3508。 FAB— HRMS (NBA) calcd for CHNO Si (MH + ), 623.3516; found, 623.3508.
35 51 2 6  35 51 2 6
[0114] (lVa) l -0- (4, 4, ジメトキシトリチル)—2— O— [N—パルミトイル— N— (4— アミノブチル)力ルバモイル] 3— O— tert ブチル ジメチルシリル グリセロール 、丄一 0— (4,4 -dimethoxytrityl)- 2—0— [N-palmitoyl- N— (4— aminobutyl)carbamoyl]— 3— O-tert- butyl- dimethylsilyl- glycerol ) (26a)の製造  [0114] (lVa) l -0- (4, 4, Dimethoxytrityl) —2— O— [N-palmitoyl— N— (4-aminobutyl) force rubermoyl] 3— O— tert butyl dimethylsilyl glycerol, 丄0— (4,4 -dimethoxytrityl)-2—0— [N-palmitoyl- N— (4— aminobutyl) carbamoyl] — 3— O-tert-butyl-dimethylsilyl-glycerol) (26a)
1— O— (4, 4,—ジメトキシトリチル) 2— O— [N— (4 アミノブチル)力ルバモイ ル ] 3— O—tert ブチルジメチルーシリルグリセロール(25) (0. 90g、 1. 44mm ol)の CH CI (14mL)溶液に、ノ ノレミチン酸(0. 55g、 2. 16mmol、 1. 5eq. )をカロ  1—O— (4,4, -Dimethoxytrityl) 2—O— [N— (4 Aminobutyl) strength rubymoyl] 3—O-tert Butyldimethyl-silylglycerol (25) (0.90 g, 1.44 mm ol) in CH CI (14 mL) with nonremitic acid (0.55 g, 2.16 mmol, 1.5 eq.)
2 2  twenty two
えて撹拌した。 30分間撹拌した後、前記反応溶液に WSC (0. 41g、 2. 16mmol、 1 . 5eq. )をカ卩えて 24時間撹拌した。前記反応溶液をクロ口ホルムで希釈し、水( X 1) 、 NaCl飽和水溶液(X 1)で洗浄し、無水硫酸ナトリウムで乾燥させた。反応溶液の 溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー (N へキサン : EtOAc = 9 : 1〜1: 1)で単離精製して、黄色のオイル状の表題化合物を得た (収量 0. 85g、 0. 99mmol、収率 69%)。  And stirred. After stirring for 30 minutes, WSC (0.41 g, 2.16 mmol, 1.5 eq.) Was added to the reaction solution and stirred for 24 hours. The reaction solution was diluted with chloroform, washed with water (X 1) and saturated aqueous NaCl solution (X 1), and dried over anhydrous sodium sulfate. After evaporating the solvent of the reaction solution, the obtained residue was isolated and purified by silica gel column chromatography (N hexane: EtOAc = 9: 1 to 1: 1) to give the title compound as a yellow oil. (Yield 0.85 g, 0.99 mmol, 69% yield).
[0115] JH NMR(400MHz, CDCl ) δ : 0.01 (6H, s, TBDMS— CH ), 0.82 (9H, s, t—ブチノレ), [0115] J H NMR (400 MHz, CDCl) δ: 0.01 (6H, s, TBDMS—CH 3), 0.82 (9H, s, t-butinole),
3 3  3 3
0.88-0.91 (3H, m, pal), 1.26 (14H, s, pal), 2.06-2.18 (4H, m,ブチノレ), 3.24 (8H, m, プチノレ and 1-H and 3- H), 3.76-3.80 (7H, m,— OCH and cross), 6.81-7.46 (13H,  0.88-0.91 (3H, m, pal), 1.26 (14H, s, pal), 2.06-2.18 (4H, m, butinole), 3.24 (8H, m, petitenore and 1-H and 3-H), 3.76- 3.80 (7H, m, — OCH and cross), 6.81-7.46 (13H,
3  Three
m, DMTr).  m, DMTr).
13C-NMR (lOOMHz, CDCl ) δ :—5.44, 14.09, 25.73, 29.32, 29.47, 29.60, 29.61, 29. 13 C-NMR (lOOMHz, CDCl) δ: -5.44, 14.09, 25.73, 29.32, 29.47, 29.60, 29.61, 29.
3  Three
65, 31.88, 36.74, 38.99, 40.44, 55.14, 60.37, 62.14, 74.01, 85.74, 112.96, 126.63, 127.68, 128.11, 130.02, 130.03, 136.05, 136.11, 144.92, 156.24, 158.33, 173.26。  65, 31.88, 36.74, 38.99, 40.44, 55.14, 60.37, 62.14, 74.01, 85.74, 112.96, 126.63, 127.68, 128.11, 130.02, 130.03, 136.05, 136.11, 144.92, 156.24, 158.33, 173.26.
[0116] (Va) l -0- (4, 4, ジメトキシトリチル)—2— O— [N—パルミトイル— N— (4— アミノブチル)力ルバモイル]ーグリセロール(1-0- (4,4'-dimethoxytrityl)- 2- 0- [N- p almitoyト N- (4- aminobutyl)carbamoyl]- glycerol) (27a)の製造 [0116] (Va) l -0- (4, 4, Dimethoxytrityl) —2— O— [N-palmitoyl— N— (4— (Aminobutyl) power rubermoyl] -glycerol (1-0- (4,4'-dimethoxytrityl)-2- 0- [N-palmitoyto-N- (4-aminobutyl) carbamoyl] -glycerol) (27a)
1— O— (4, 4,—ジメトキシトリチル) 2— O— [N—パルミトイル— N— (4 ァミノ ブチル)力ルバモイル] 3— O— tert ブチル ジメチルシリル グリセロール(26 a) (0. 75g、 0. 87mmol)の THF (4. 4mL)溶液に、 TBAF (2mL、 2mmol、 2. 3e q. )を滴下した後、 1時間撹拌した。前記反応溶液を酢酸ェチルで希釈し、 NaHCO 飽和水溶液( X 2)、 NaCl飽和水溶液 ( X 1)で洗浄し、無水硫酸ナトリウムで乾燥さ 1—O— (4,4, —Dimethoxytrityl) 2—O— [N—palmitoyl—N— (4 aminobutyl) force rubamoyl] 3—O—tert butyl dimethylsilyl glycerol (26 a) (0.775 g, TBAF (2 mL, 2 mmol, 2.3 eq.) Was added dropwise to a solution of 0.887 mmol) in THF (4.4 mL), and the mixture was stirred for 1 hour. The reaction solution is diluted with ethyl acetate, washed with saturated aqueous NaHCO 3 solution (X 2), saturated aqueous NaCl solution (X 1), and dried over anhydrous sodium sulfate.
3 Three
せた。前記反応溶液の溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフ ィー (EtOAcl00%)で単離精製して、黄色のオイル状の表題化合物を得た (収量 0 . 52g、 0. 70mmol、収率 80%)。  Let The solvent of the reaction solution was distilled off, and the resulting residue was isolated and purified by silica gel column chromatography (EtOAc 100%) to give the title compound as a yellow oil (yield 0.52 g, 0.5%). 70 mmol, yield 80%).
[0117] JH NMR(400MHz, CDCl ) δ : 0.86—0.95 (3H, m, pal), 1.25 (14H, s, pal), 2.02-2.3 [0117] J H NMR (400 MHz, CDCl) δ: 0.86—0.95 (3H, m, pal), 1.25 (14H, s, pal), 2.02-2.3
3  Three
0 (4H, m,プチノレ), 3.22-3.30 (8H, m,プチノレ and 1- H and 3- H), 3.79 (7H, m, - OC H and cross), 6.81—7.43 (13H, m, DMTr).  0 (4H, m, Petinole), 3.22-3.30 (8H, m, Petinole and 1- H and 3- H), 3.79 (7H, m,-OC H and cross), 6.81—7.43 (13H, m, DMTr ).
3  Three
13C-NMR (lOOMHz, CDCl ) δ : 13.85, 14.09, 20.49, 22.65, 25.74, 26.74, 27.18, 29. 13 C-NMR (lOOMHz, CDCl) δ: 13.85, 14.09, 20.49, 22.65, 25.74, 26.74, 27.18, 29.
3  Three
32, 29.47, 29.61, 29.65, 31.87, 36.75, 38.95, 40.55, 52.06, 55.17, 62.86, 63.22, 74. 57, 86.12, 113.09, 126.78, 127.80, 128.01, 129.97, 135.72, 144.61, 156.57, 158.45, 173.37.  32, 29.47, 29.61, 29.65, 31.87, 36.75, 38.95, 40.55, 52.06, 55.17, 62.86, 63.22, 74. 57, 86.12, 113.09, 126.78, 127.80, 128.01, 129.97, 135.72, 144.61, 156.57, 158.45, 173.37.
FAB— HRMS(NBA) calcd for C H N O (MH+), 747.49485; found, 747.49549。  FAB— HRMS (NBA) calcd for C H N O (MH +), 747.49485; found, 747.49549.
45 67 2 7  45 67 2 7
[0118] (Via)パルミチン酸が結合された CPGユニット(29a)  [0118] (Via) CPG unit with palmitic acid bound (29a)
1— O— (4, 4,—ジメトキシトリチル) 2— O— [N—パルミトイル— N— (4 ァミノ ブチル)力ルバモイル]—グリセロール(27a) (0. 52g、0. 70mmol)のピリジン(7. 0 mL)溶液に、 DMAP (少量)および無水コハク酸(0. 21g、 2. 10mmol、 3. Oeq. ) を加え、 1日撹拌した。前記反応溶液をクロ口ホルムで希釈し、水(X 3)で洗浄し、無 水硫酸ナトリウムで乾燥させ、有機溶媒を留去した。得られた残渣を 12時間真空乾 燥した後、 DMF (17. 5mL)に溶解させ、 CPG (0. 30g、 0. 18mmol、 222 /z mol /g)に 30分間なじませた。前記反応混合物に WSC (0. 13g、 0. 70mmol、 1. Oeq . )を加えた後、 3日間振とうした。前記反応混合物力も溶媒を除去した後、得られた CPGをピリジンで洗浄した。乾燥させた後、前記 CPGに 0. 1Mの DMAP溶液 (溶媒 はピリジンと無水酢酸の混合物(ピリジン: Ac O = 9 : l) ) 20mLをカ卩え、室温で 1日 1—O— (4,4, -dimethoxytrityl) 2—O— [N-palmitoyl—N— (4 aminobutyl) force rubamoyl] —glycerol (27a) (0.52 g, 0.70 mmol) in pyridine (7 0 mL) solution was added DMAP (small amount) and succinic anhydride (0.21 g, 2.10 mmol, 3. Oeq.) And stirred for 1 day. The reaction solution was diluted with chloroform, washed with water (X 3), dried over anhydrous sodium sulfate, and the organic solvent was distilled off. The obtained residue was vacuum-dried for 12 hours, then dissolved in DMF (17.5 mL), and applied to CPG (0.30 g, 0.18 mmol, 222 / z mol / g) for 30 minutes. WSC (0.13 g, 0.70 mmol, 1. Oeq.) Was added to the reaction mixture and then shaken for 3 days. After removing the solvent from the reaction mixture, the resulting CPG was washed with pyridine. After drying, 0.1M DMAP solution (solvent Is a mixture of pyridine and acetic anhydride (pyridine: Ac 2 O = 9: l)).
2  2
ほど振とうさせた。前記反応溶液を除去した後、前記 CPGを MeOHついでアセトン で洗浄し、乾燥させた。得られた CPGの活性は、 28.: molZgであった(収量 0. 32g)。  It was made to shake. After removing the reaction solution, the CPG was washed with MeOH and then with acetone and dried. The activity of the obtained CPG was 28 .: molZg (yield 0.32 g).
[0119] (IVb) l— O— (4, 4,—ジメトキシトリチル) 2— O— [N—ォレイル— N— (4 ァ ミノブチル)力ルバモイル] 3— O— tertブチル -ジメチル -シリルグリセロール (1- 0- (4,4 -dimethoxytrityl)- 2-0 - [N- oleoyト N- (4- aminobutyl)carbamoyl]- «3- O- ter tbutyl- dimethyl- silylglycerol) (26b)の製造  [0119] (IVb) l— O— (4,4, —Dimethoxytrityl) 2— O— [N-oleyl— N— (4 aminobutyl) force rubermoyl] 3— O— tertbutyl-dimethyl-silylglycerol ( 1- 0- (4,4 -dimethoxytrityl)-2-0-[N-oleoyto N- (4-aminobutyl) carbamoyl]-«3- O-ter tbutyl- dimethyl-silylglycerol) (26b)
1— O— (4, 4,—ジメトキシトリチル) 2— O— [N— (4 アミノブチル)力ルバモイ ル ] 3— O—tert ブチルジメチルーシリルグリセロール(25) (1. 5g、 2. 41mmol )の CH C1 (12mL)溶液に、ォレイン酸(1. 15mL、 3. 62mmol、 1. 5eq. )を加え 1—O— (4,4, -Dimethoxytrityl) 2—O— [N— (4 Aminobutyl) strength rubymoyl] 3—O-tert Butyldimethyl-silylglycerol (25) (1.5 g, 2. 41 mmol ) To a solution of CH C1 (12 mL) with oleic acid (1.15 mL, 3.62 mmol, 1.5 eq.)
2 2 twenty two
撹拌した。 30分撹拌した後、その溶液に WSC (0. 69g、 3. 62mmol、 1. 5eq. )を 加え、さらに 26時間撹拌した。前記反応溶液をクロ口ホルムで希釈し、水(X I)およ び NaCl飽和水溶液(X 1)で洗浄し、無水硫酸ナトリウムで乾燥させた。有機溶媒を 留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー (N へキサン: EtO Ac = 2 : l〜l : l)で単離精製して、黄色のオイル状の表題ィ匕合物を得た (収量 1. 8 3g、 2. 06mmol、収率 86%)。  Stir. After stirring for 30 minutes, WSC (0.69 g, 3.62 mmol, 1.5 eq.) Was added to the solution and stirred for a further 26 hours. The reaction solution was diluted with chloroform, washed with water (XI) and saturated aqueous NaCl solution (X1), and dried over anhydrous sodium sulfate. After distilling off the organic solvent, the resulting residue was isolated and purified by silica gel column chromatography (N hexane: EtO Ac = 2: l to l: l) to give a yellow oily title compound. (Yield 1.83 g, 2.06 mmol, 86% yield).
[0120] JH NMR(400MHz, CDC1 ) δ : 0.04 (6H, s, TBDMS— CH ), 0.86 (14H, s, t—ブチノレ [0120] J H NMR (400 MHz, CDC1) δ: 0.04 (6H, s, TBDMS— CH), 0.86 (14H, s, t-butinole
3 3  3 3
and ole), 1.29-2.19 (32H, m, ole andプチノレ), 3.23-3.53 (8H, m,プチノレ and 1- H a nd 3-H), 3.83 (7H, m,— OCH and cross), 5.37—5.40 (2H, m, ole), 6.84-7.49 (13H,  and ole), 1.29-2.19 (32H, m, ole and petitore), 3.23-3.53 (8H, m, petitnoré and 1-Hand 3-H), 3.83 (7H, m, — OCH and cross), 5.37 —5.40 (2H, m, ole), 6.84-7.49 (13H,
3  Three
m, DMTr).  m, DMTr).
13C-NMR (100MHz, CDC1 ) δ :—5.44, 14.10, 18.14, 22.65, 25.74, 26.58, 27.15, 27. 13 C-NMR (100 MHz, CDC1) δ: -5.44, 14.10, 18.14, 22.65, 25.74, 26.58, 27.15, 27.
3  Three
19, 27.51, 29.14, 29.25, 29.28, 29.49, 29.62, 29.69, 29.74, 31.87, 36.71, 39.00, 40. 44, 50.62, 55.15, 60.39, 62.15, 62.38, 74.03, 85.75, 112.98, 126.64, 127.70, 128.1 2, 129.72, 129.95, 130.03, 136.06, 136.13, 144.93, 156.30, 158.35, 173.32.  19, 27.51, 29.14, 29.25, 29.28, 29.49, 29.62, 29.69, 29.74, 31.87, 36.71, 39.00, 40. 44, 50.62, 55.15, 60.39, 62.15, 62.38, 74.03, 85.75, 112.98, 126.64, 127.70, 128.1 2 , 129.72, 129.95, 130.03, 136.06, 136.13, 144.93, 156.30, 158.35, 173.32.
元素分析 Calced for C H N O Si-CHCl +1/2CH OH: C, 71.74; H, 9.31; N, 3.61,  Elemental analysis Calced for C H N O Si-CHCl + 1 / 2CH OH: C, 71.74; H, 9.31; N, 3.61,
53 82 2 7 3 3  53 82 2 7 3 3
Found: C, 64.08; H, 8.30; N, 2.75。  Found: C, 64.08; H, 8.30; N, 2.75.
[0121] (Vb) l -0- (4, 4,—ジメトキシトリチル) 2— O— [N—ォレイル— N— (4 アミ ノブチル)力ルバモイル]ーグリセロール(1-0- (4,4'-dimethoxytrityl)- 2- 0- [N- oleo yl-N-(4-aminobutyl)carbamoyl]- glycerol) (27b)の製造 [0121] (Vb) l -0- (4, 4, -Dimethoxytrityl) 2— O— [N-olyl— N— (4 (NOBUTYL) POWER RUBERMOYL] -glycerol (1-0- (4,4'-dimethoxytrityl)-2- 0- [N-oleo yl-N- (4-aminobutyl) carbamoyl] -glycerol) (27b)
1— O— (4, 4,一ジメトキシトリチル) 2— O— [N—ォレイル一 N— (4 アミノブ チル)力ルバモイル] 3— O—tertブチルージメチルーシリルグリセロール(26b) (1 . 66g、 1. 88mmol)の THF (18mL)溶液に、 TBAF (2mL、 3. 76mmol、 2eq. ) を滴下した。 7時間後、前記反応溶液を酢酸ェチルで希釈し、 NaHCO飽和水溶液  1- O- (4, 4, 1-dimethoxytrityl) 2- O- [N-oleyl 1 N- (4 aminobutyl) force rubamoyl] 3- O-tertbutyl-dimethyl-silylglycerol (26b) (1.66 g 1.88 mmol) in THF (18 mL) was added dropwise TBAF (2 mL, 3.76 mmol, 2 eq.). After 7 hours, the reaction solution was diluted with ethyl acetate and saturated aqueous NaHCO solution.
3  Three
( X 2)および NaCl飽和水溶液 ( X 1)で洗浄し、無水硫酸ナトリウムで乾燥させた。反 応溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー (N へキサン: EtOAc = 1: 2〜0: 1)で単離精製して、黄色のオイル状の表題化合物を得た (収量 1. 19g、 1. 54mmol、収率 82%)。  It was washed with (X 2) and a saturated aqueous NaCl solution (X 1) and dried over anhydrous sodium sulfate. The reaction solvent was distilled off, and the resulting residue was isolated and purified by silica gel column chromatography (N hexane: EtOAc = 1: 2 to 0: 1) to give the title compound as a yellow oil ( Yield 1.19 g, 1.54 mmol, yield 82%).
[0122] JH NMR(400MHz, CDC1 ) δ : 0.85 (3H, m, ole), 1.26—2.16 (32H, m, ole andブチ [0122] J H NMR (400 MHz, CDC1) δ: 0.85 (3H, m, ole), 1.26—2.16 (32H, m, ole and
3  Three
ル), 2.68 (1H, br, 3- OH), 3.21-3.29 (8H, m,プチノレ and 1- H and 3- H), 3.78 (7H, m,— OCH and cross), 5.29—5.38 (2H, m, ole), 6.81—7.43 (13H, m, DMTr).  ), 2.68 (1H, br, 3-OH), 3.21-3.29 (8H, m, Petinole and 1- H and 3-H), 3.78 (7H, m, — OCH and cross), 5.29—5.38 (2H , m, ole), 6.81—7.43 (13H, m, DMTr).
3  Three
13C-NMR (100MHz, CDC1 ) δ : 14.05, 22.60, 25.70, 26.68, 27.14, 29.09, 29.24, 29. 13 C-NMR (100 MHz, CDC1) δ: 14.05, 22.60, 25.70, 26.68, 27.14, 29.09, 29.24, 29.
3  Three
45, 29.65, 29.69, 31.83, 32.53, 36.67, 38.92, 40.50, 55.12, 62.84, 63.06, 74.53, 86. 06, 113.05, 126.74, 127.76, 127.98, 129.67, 129.93, 135.70, 144.60, 156.58, 158.4 0, 173.34.  45, 29.65, 29.69, 31.83, 32.53, 36.67, 38.92, 40.50, 55.12, 62.84, 63.06, 74.53, 86. 06, 113.05, 126.74, 127.76, 127.98, 129.67, 129.93, 135.70, 144.60, 156.58, 158.4 0, 173.34 .
元素分析. Calced for C H N O - 10/3 CHC1 : C, 73.02; H, 8.87; N, 3.62, Found  Elemental analysis. Calced for C H N O-10/3 CHC1: C, 73.02; H, 8.87; N, 3.62, Found
47 68 2 7 3  47 68 2 7 3
: C, 51.79; H, 6.08; N, 2.48。  : C, 51.79; H, 6.08; N, 2.48.
[0123] (VIb)ォレイン酸が結合された CPGユニット(29b) [0123] (VIb) CPG unit with oleic acid bound (29b)
1— O— (4, 4,一ジメトキシトリチル) 2— O— [N—ォレイル一 N— (4 アミノブ チル)力ルバモイル]—グリセロール(27b) (0. 77g、 1. OOmmol)のピリジン(10mL )溶液【こ、 DMAP (少量)および無水コノヽク酸(0. 30g、 3. 00mmol、 3. Oeq. )をカロ え、 1日撹拌した。前記反応溶液を酢酸ェチルで希釈し、水(X 3)で洗浄し、無水硫 酸ナトリウムで乾燥させ、有機溶媒を留去した。得られた残渣を 12時間真空乾燥した 後、 DMF (12. 5mL)に溶解させ、 CPG (0. 50g、 0. 25mmol、 222 mol/g)に 30分間なじませた。前記反応混合物に WSC (0. 19g、 1. 00mmol、 1. Oeq. )をカロ えた後、 3日間振とうした。前記反応混合物力も溶媒を除去した後、得られた CPGを ピリジンで洗浄した。乾燥させた後、前記 CPGに 0. 1Mの DMAP溶液 (溶媒はピリ ジンと無水酢酸の混合物(ピリジン: Ac O = 9 : l) ) 20mLをカ卩え、室温で 1日ほど振 1— O— (4, 4, 1-dimethoxytrityl) 2— O— [N-oleyl 1 N— (4 aminobutyl) force rubamoyl] -glycerol (27b) (0.77 g, 1. OOmmol) in pyridine (10 mL ) Solution [This, DMAP (small amount) and succinic anhydride (0.30 g, 3.00 mmol, 3. Oeq.) Were added and stirred for 1 day. The reaction solution was diluted with ethyl acetate, washed with water (X3), dried over anhydrous sodium sulfate, and the organic solvent was distilled off. The obtained residue was vacuum-dried for 12 hours, dissolved in DMF (12.5 mL), and applied to CPG (0.50 g, 0.25 mmol, 222 mol / g) for 30 minutes. The reaction mixture was charged with WSC (0.19 g, 1.00 mmol, 1. Oeq.) And then shaken for 3 days. After the reaction mixture force also removed the solvent, the resulting CPG Washed with pyridine. After drying, add 20 mL of 0.1 M DMAP solution (solvent is a mixture of pyridine and acetic anhydride (pyridine: Ac 2 O = 9: l)) to the CPG and shake at room temperature for about 1 day.
2  2
とうさせた。前記 CPGを MeOHついでアセトンで洗浄し、乾燥させた。得られた CPG の活性は 83. 2 /z mol/gであった(収量 0. 52g)。  I let you go. The CPG was washed with MeOH and then with acetone and dried. The activity of the obtained CPG was 83.2 / z mol / g (yield 0.52 g).
[0124] (IVC) I - O- (4, 4,—ジメトキシトリチル) 2 O— [N コレステリルォキシカル ボ-ル N—(4 アミノブチル)力ルバモイル] 3— O— tert ブチルジメチルシリ ノレ一グリセローノレ (1—0— (4,4'-dimethoxytrityl)- 2—0— [N-cholesteryloxycarbonyl- N-(4-aminobutyl)carbamoyl]- 3-0- tert- butyldimethylsilyl- glycerol) (26c)の:^造 コレステロール(0. 22g、 0. 58mmol)のピリジン(3mL)溶液に、 Im CO (0. 10g [0124] (IVC) I-O- (4,4, -Dimethoxytrityl) 2 O— [N cholesteryloxyl N- (4 aminobutyl) force rubamoyl] 3— O— tert butyldimethylsilanol Glycerellore (1—0— (4,4'-dimethoxytrityl)-2—0— [N-cholesteryloxycarbonyl- N- (4-aminobutyl) carbamoyl]-3-0- tert-butyldimethylsilyl-glycerol) (26c): ^ Cholesterol (0.22g, 0.58mmol) in pyridine (3mL) solution with Im CO (0.10g
2  2
、 0. 63mmol、 1. leq. )を加え、 2時間撹拌した。前記反応溶液に、 1— O— (4, 4 ,—ジメトキシトリチル) 2— O— [N— (4 アミノブチル)力ルバモイル]— 3— O—t ert ブチルジメチルーシリルグリセロール(25) (0. 43g、 0. 70mmol)をカ卩え、 12 時間撹拌した。前記反応溶液を酢酸ェチルで希釈し、 NaHCO飽和水溶液(X 2)  0.63 mmol, 1. leq.) Was added and stirred for 2 hours. In the reaction solution, 1—O— (4,4, -dimethoxytrityl) 2—O— [N— (4 aminobutyl) force rubermoyl] — 3—O-tert butyldimethyl-silylglycerol (25) (0 43 g, 0.70 mmol) was added and stirred for 12 hours. The reaction solution was diluted with ethyl acetate and saturated aqueous NaHCO 3 solution (X 2)
3  Three
および NaCl飽和水溶液(X 1)で洗浄し、無水硫酸ナトリウムで乾燥させた。有機溶 媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(N へキサン: EtO Ac = 10 : 1)で単離精製して、白色泡状の表題化合物を得た (収量 0. 39g、 0. 37m mol、収率 64%)。  And washed with a saturated aqueous NaCl solution (X 1) and dried over anhydrous sodium sulfate. The organic solvent was distilled off, and the resulting residue was isolated and purified by silica gel column chromatography (N hexane: EtO Ac = 10: 1) to give the title compound as a white foam (yield 0.39 g). 0.37 mmol, yield 64%).
[0125] JH NMR(400MHz, CDC1 ) δ : 0.10 (6H, s, TBDMS— CH ), 0.68—2.34 (58H, m, t—ブ [0125] J H NMR (400 MHz, CDC1) δ: 0.10 (6H, s, TBDMS— CH), 0.68—2.34 (58H, m, t-b
3 3  3 3
チル and chol andブチル), 3.09-3.18 (4H, m,ブチル), 3.76-3.79 (7H, m, - OCH a  Chill and chol and butyl), 3.09-3.18 (4H, m, butyl), 3.76-3.79 (7H, m,-OCH a
3 nd cross), 4.48-4.74 (2H, m, 1- H), 4.96-5.37 (2H, m, 2- H), 6.80-7.44 (13H, m, D MTr).  3 nd cross), 4.48-4.74 (2H, m, 1- H), 4.96-5.37 (2H, m, 2-H), 6.80-7.44 (13H, m, D MTr).
13C-NMR (100MHz, CDC1 ) δ :—5.40,—3.60, 11.84, 17.96, 18.69, 19.31, 21.01, 22. 13 C-NMR (100 MHz, CDC1) δ: −5.40, −3.60, 11.84, 17.96, 18.69, 19.31, 21.01, 22.
3  Three
54, 22.81, 23.80, 24.26, 25.63, 25.76, 27.27, 27.99, 28.15, 28.21, 31.84, 31.87, 35. 77, 36.15, 36.52, 36.95, 38.54, 39.48, 39.71, 40.57, 42.28, 49.97, 55.17, 56.09, 56. 65, 62.13, 76.68, 85.76, 112.99, 112.45, 126.63, 127.70, 128.14, 130.05, 135.62, 1 36.13, 139.81, 144.94, 156.10, 158.34.  54, 22.81, 23.80, 24.26, 25.63, 25.76, 27.27, 27.99, 28.15, 28.21, 31.84, 31.87, 35. 77, 36.15, 36.52, 36.95, 38.54, 39.48, 39.71, 40.57, 42.28, 49.97, 55.17, 56.09, 56. 65, 62.13, 76.68, 85.76, 112.99, 112.45, 126.63, 127.70, 128.14, 130.05, 135.62, 1 36.13, 139.81, 144.94, 156.10, 158.34.
元素分析 Calced for C H N O Si-2 H O : C, 73.07; H, 9.15; N, 2.71, Found: C,  Elemental analysis Calced for C H N O Si-2 H O: C, 73.07; H, 9.15; N, 2.71, Found: C,
63 94 2 8 2  63 94 2 8 2
70.63; H, 9.40; N, 2.34。 [0126] (Vc) l -O- (4, 4,—ジメトキシトリチル) 2— O— [N コレステリルォキシカル ボ-ルー N— (4 アミノブチル)力ルバモイル]ーグリセロール(1-0- (4,4'-dimethox ytrityl)- 2- O- [N- cholesteryloxycarbonyl - N- (4- aminobutyl)carbamoyl]- glycerol) ( 27c)の製造 70.63; H, 9.40; N, 2.34. [0126] (Vc) l -O- (4,4, —Dimethoxytrityl) 2— O— [N cholesteryloxyborane N— (4 aminobutyl) force rubermoyl] -glycerol (1-0- (4 , 4'-dimethox ytrityl)-2-O- [N-cholesteryloxycarbonyl-N- (4-aminobutyl) carbamoyl] -glycerol) (27c)
1— O— (4, 4,—ジメトキシトリチル) 2— O— [N コレステリルォキシカルボ-ル N—(4 アミノブチル)力ルバモイル] 3— O— tert ブチルジメチルシリル グ リセロール(26c) (0. 34g、0. 33mmol)の THF (5. OmL)溶液に、 TBAF (lmL、 lmmol, 3. Oeq. )を滴下した後、 4時間撹拌した。反応溶媒を留去した後、得られ た残渣をシリカゲルカラムクロマトグラフィー(N—へキサン: EtOAc = 5: 1〜0: 1)で 単離精製して、無色オイル状の表題ィ匕合物を得た (収量 0. 61g、 0. 18mmol、収率 53%) o  1—O— (4,4, —Dimethoxytrityl) 2—O— [N cholesteryloxycarbol N— (4 aminobutyl) force rubamoyl] 3—O— tert butyldimethylsilyl glycerol (26c) (0 (34 g, 0.33 mmol) in THF (5. OmL) was added dropwise TBAF (1 mL, 1 mmol, 3. Oeq.) And then stirred for 4 hours. After evaporating the reaction solvent, the obtained residue was isolated and purified by silica gel column chromatography (N-hexane: EtOAc = 5: 1 to 0: 1) to give the title oily compound as a colorless oil. (Yield 0.61 g, 0.18 mmol, 53% yield) o
[0127] JH NMR(400MHZ, CDCl ) δ : 0.62-2.28 (49H, m, chol andブチノレ), 3.12-3.22 (4 [0127] J H NMR (400MHZ, CDCl) δ: 0.62-2.28 (49H, m, chol and butinole), 3.12-3.22 (4
3  Three
H, m,プチノレ), 3.73 (8H, s,— OCH and cross), 4.42-4.61 (2H, m, 1- H), 4.83-5.30  H, m, petitnore), 3.73 (8H, s, — OCH and cross), 4.42-4.61 (2H, m, 1- H), 4.83-5.30
3  Three
(2H, m, 2-H), 6.75-7.37 (13H, m, DMTr).  (2H, m, 2-H), 6.75-7.37 (13H, m, DMTr).
13C-NMR (100MHz, CDCl ) δ : 11.83, 18.68, 19.30, 21.01, 22.54, 22.80, 23.80, 24. 13 C-NMR (100 MHz, CDCl) δ: 11.83, 18.68, 19.30, 21.01, 22.54, 22.80, 23.80, 24.
3  Three
26, 27.08, 27.28, 27.98, 28.14, 28.21, 31.83, 31.87, 35.77, 36.14, 36.51, 36.93, 38. 52, 39.48, 39.70, 40.68, 42.27, 49.95, 55.19, 56.09, 56.65, 62.86, 63.37, 74.55, 86. 18, 113.12, 122.46, 126.82, 127.84, 128.02, 129.97, 130.01, 135.71, 135.73, 139.7 7, 144.59, 156.21, 158.47.  26, 27.08, 27.28, 27.98, 28.14, 28.21, 31.83, 31.87, 35.77, 36.14, 36.51, 36.93, 38. 52, 39.48, 39.70, 40.68, 42.27, 49.95, 55.19, 56.09, 56.65, 62.86, 63.37, 74.55, 86. 18, 113.12, 122.46, 126.82, 127.84, 128.02, 129.97, 130.01, 135.71, 135.73, 139.7 7, 144.59, 156.21, 158.47.
元素分析 Calced for C H N O - 1/3 H O : C, 74.31; H, 8.75; N, 3.04, Found: C,  Elemental analysis Calced for C H N O-1/3 H 2 O: C, 74.31; H, 8.75; N, 3.04, Found: C,
57 80 2 8 2  57 80 2 8 2
73.87; H, 8.68; N, 2.92。  73.87; H, 8.68; N, 2.92.
[0128] (Vic)コレステロールが結合された CPGユニット(29c) [0128] (Vic) CPG unit with cholesterol bound (29c)
1— O— (4, 4,—ジメトキシトリチル) 2— O— [N コレステリルォキシカルボ-ル —N— (4 アミノブチル)力ルバモイル]—グリセロール(27c) (0. 60g、0. 17mmol )のピリジン(1. 7mL)溶液に、 DMAP (少量)および無水コハク酸(0. 051g、 0. 51 mmol、 3. Oeq. )を加え、 1日撹拌した。前記反応溶液をクロ口ホルムで希釈し、水( X 3)で洗浄し、無水硫酸ナトリウムで乾燥させ、有機溶媒を留去した。得られた残渣 を 12時間真空乾燥した後、 DMF (2. 2mL)に溶解させ、 CPG (0. 19g、 0. 043m mol、 222 /z mol/g)に 30分間なじませた。前記反応混合物に WSC (0. 033g、 0. 17mmol、 1. Oeq. )を加えた後、 3日間振とうした。前記反応混合物から溶媒を除去 した後、得られた CPGをピリジンで洗浄した。乾燥させた後、前記 CPGに 0. 1Mの D MAP溶液 (溶媒はピリジンと無水酢酸の混合物(ピリジン: Ac 0 = 9: 1) ) 20mLをカロ 1—O— (4,4, —Dimethoxytrityl) 2—O— [N cholesteryloxycarbol —N— (4 aminobutyl) force rubamoyl] —glycerol (27c) (0.60 g, 0.17 mmol) To a solution of pyridine (1.7 mL) was added DMAP (small amount) and succinic anhydride (0.051 g, 0.51 mmol, 3. Oeq.) And stirred for 1 day. The reaction solution was diluted with chloroform, washed with water (X 3), dried over anhydrous sodium sulfate, and the organic solvent was distilled off. The obtained residue was vacuum-dried for 12 hours, then dissolved in DMF (2.2 mL), and CPG (0.19 g, 0.043 m mol, 222 / z mol / g) for 30 minutes. WSC (0.033 g, 0.17 mmol, 1. Oeq.) Was added to the reaction mixture, and then shaken for 3 days. After removing the solvent from the reaction mixture, the resulting CPG was washed with pyridine. After drying, add 0.1 mL of D MAP solution (solvent is a mixture of pyridine and acetic anhydride (pyridine: Ac 0 = 9: 1)) to the CPG.
2  2
え、室温で 24時間振とうさせた。前記 CPGを MeOHついでアセトンで洗浄し、乾燥 させた。得られた CPGの活性は 88. 3 11101/8でぁった(収量0. 20g)。 Yes, it was shaken at room temperature for 24 hours. The CPG was washed with MeOH and then with acetone and dried. The resulting activity of the CPG 88.3 11101/8 Deatta (yield 0. 20 g).
[0129] 2.一本鎖の修飾オリゴヌクレオチドの製造 [0129] 2. Production of single-stranded modified oligonucleotide
標的タンパクはホモサピエンス'リボヌクレアーゼ L (Homo sapiens ribonuclease L ) ( 2 ' ,5 '-oligoisoadenylate synthetase- dependent, RNase L) [gi:30795246]とし、標的酉己 列は開始コドン力 92番目から 114番目にあたる配列番号 1からなる塩基配列とした。 修飾一本鎖オリゴヌクレオチドとして、この配列番号 1からなる塩基配列に対し、 3'末 端にパルミチン酸、ォレイン酸またはコレステロールがリンカ一を介して結合された修 飾 DNAセンス鎖(配列番号 2)と、 3'末端にパルミチン酸、ォレイン酸またはコレステ ロールがリンカ一を介して結合された修飾 DNAアンチセンス鎖(配列番号 3)とを製 造した。比較として、配列番号 1からなる塩基配列に対し、 DNAセンス鎖 (配列番号 4)および DNAアンチセンス鎖(配列番号 5)を有する siRNA (Ambion社製)を用いた  The target protein is Homo sapiens ribonuclease L (2 ', 5' -oligoisoadenylate synthetase-dependent, RNase L) [gi: 30795246], and the target self-sequence is from 92 to 114 in the start codon. A base sequence consisting of SEQ ID NO: 1 was used. As a modified single-stranded oligonucleotide, a modified DNA sense strand in which palmitic acid, oleic acid or cholesterol is bound to the base sequence consisting of SEQ ID NO: 1 via a linker at the 3 'end (SEQ ID NO: 2) And a modified DNA antisense strand (SEQ ID NO: 3) in which palmitic acid, oleic acid or cholesterol was bound to the 3 ′ end via a linker. For comparison, siRNA (manufactured by Ambion) having a DNA sense strand (SEQ ID NO: 4) and a DNA antisense strand (SEQ ID NO: 5) with respect to the base sequence consisting of SEQ ID NO: 1 was used.
[0130] 実施例 1 [0130] Example 1
3'末端にパルミチン酸がリンカ一を介して結合された修飾 DNAセンス鎖の製造 前記 CPGユニット(29a) (各々の活性に基づき 1 μ molに相当する量)を核酸自動 合成機 (Nucleic Acid Synthesis System (Expedite 8909 system, Applied Biosystems 社製))にセットして、配列番号 2に従い、ホスホロアミダイト法により 3,末端にパルミチ ン酸がリンカ一を介して結合された修飾 DNAセンス鎖を CPG上に合成した。  Production of a modified DNA sense strand in which palmitic acid is bound to the 3 'end via a linker. Nucleic acid synthesis using the CPG unit (29a) (amount equivalent to 1 μmol based on each activity) System (Expedite 8909 system, manufactured by Applied Biosystems)), and modified DNA sense strand with palmitic acid bound to the end via phosphoramidite method 3 according to SEQ ID NO: 2 on CPG according to phosphoramidite method. Was synthesized.
[0131] 縮合時間は 15分とし、 DMTr基を除去した状態で合成を終了した。 CPGに結合し た修飾 DNAセンス鎖にエタノールとアンモニアの混合(EtOH :NH = 1: 3)溶液 2 [0131] The condensation time was 15 minutes, and the synthesis was completed with the DMTr group removed. Modified DNA sense strand conjugated with CPG mixed with ethanol and ammonia (EtOH: NH = 1: 3) solution 2
3  Three
mLをカ卩え、 55° Cで 12時間反応させた。反応後、得られたろ液をエツペンドルフチ ユーブに移し、減圧下に濃縮した。得られた残渣に 1Mの TBAFの THF溶液を lmL 加え、 12時間振とうさせた。前記反応溶液を、 0. 1Mの TEAA緩衝液で希釈し、 30 mLとした。この反応液を、 C— 18逆相カラム(Sep— Pak) (CH CN10mL、 0. 1M mL was added and reacted at 55 ° C for 12 hours. After the reaction, the obtained filtrate was transferred to an Eppendorf tube and concentrated under reduced pressure. To the obtained residue, 1 mL of 1M TBAF in THF was added and shaken for 12 hours. The reaction solution is diluted with 0.1 M TEAA buffer, 30 mL. This reaction solution was mixed with a C-18 reverse phase column (Sep-Pak) (CH CN10mL, 0.1M).
3  Three
の TEAA緩衝液 lOmLを流し平衡化した)に通し、修飾 DNAセンス鎖混合物をカラ ムに吸着させた。前記カラムを滅菌水で洗浄して塩を取り除き、その後、 80%CH C  The TEAA buffer solution (10 mL) was passed through and equilibrated), and the modified DNA sense strand mixture was adsorbed onto the column. The column is washed with sterile water to remove salt, and then 80% CH C
3 Three
N水溶液 3mLで溶出した。溶出液を減圧下に濃縮した。得られた残渣にローデイン グ溶液(1 X 90% ホルムアミド中の TBE) 100 μ Lを加え、 20%PAGE (20 A, 6時 間)により目的とする修飾 DNAセンス鎖とその他を分離した。 目的とする修飾 DNA センス鎖のバンドを前記 PAGEから切り出し、前記バンドに 0. 1Mの EDTA水溶液 を 20mLカ卩え、ー晚放置した。この溶液を C— 18逆相カラムクロマトグラフィー(Sep -Pak)により 50%CH CN水溶液 3mLで精製して表題ィ匕合物を得た。 Elute with 3 mL of aqueous N solution. The eluate was concentrated under reduced pressure. To the resulting residue, 100 μL of a loading solution (TBE in 1 × 90% formamide) was added, and the desired modified DNA sense strand was separated from the others by 20% PAGE (20 A, 6 hours). The target modified DNA sense strand band was excised from the PAGE, and 20 mL of 0.1 M EDTA aqueous solution was added to the band and allowed to stand. This solution was purified by C-18 reverse phase column chromatography (Sep-Pak) with 3 mL of 50% aqueous CH 3 CN to give the title compound.
3  Three
[0132] 前記溶液の調製方法について説明する。  [0132] A method for preparing the solution will be described.
[0133] 0. 1Mの TEAA緩衝液は、以下のようにして調製した。まず、 2Nの酢酸(114. 38 mL)およびトリェチルァミン(277. 6mL)の混合物に、水をカ卩えて 1Lにした。その溶 液に酢酸をカ卩えて、 pHを 7. 0に調整し、次いでその溶液を 20倍に希釈することによ り調製した。  [0133] A 0.1 M TEAA buffer was prepared as follows. First, water was added to 1 L in a mixture of 2N acetic acid (114. 38 mL) and triethylamine (277. 6 mL). The solution was prepared by adding acetic acid to adjust the pH to 7.0, and then diluting the solution 20 times.
[0134] 20%PAGEは、以下のようにして調製した。まず、 40%アクリルアミド (アクリルアミド : N, N,—メチレンビスアクリルアミド = 19 : 1)溶液(45mL)、尿素(37. 8g)および 1 O XTBE緩衝液(9mL)を混合して溶解させ、その後水をカ卩えて 90mLとした。その 溶液に、 APS (62mg)を加えて溶解させた後、 TEMED (45 μ L)をカ卩えて振り混ぜ た。その溶液を、 1. 5mmスぺーサーを挟んで固定した 2枚ガラス板の間に流し込み 、 1時間以上静置して固化させて、 20%PAGEを得た。  [0134] 20% PAGE was prepared as follows. First, 40% acrylamide (acrylamide: N, N, -methylenebisacrylamide = 19: 1) solution (45 mL), urea (37.8 g) and 1 O XTBE buffer solution (9 mL) are mixed and dissolved, and then water is added. Was adjusted to 90 mL. APS (62 mg) was added to the solution and dissolved, and then TEMED (45 μL) was added and shaken. The solution was poured between two glass plates fixed with a 1.5 mm spacer in between, and allowed to stand for 1 hour or more to solidify to obtain 20% PAGE.
[0135] 0. 1Mの EDTA水溶液は、 EDTA'4Na (l. 80g)を水(40mL)に溶解させること により調製した。  [0135] A 0.1 M aqueous EDTA solution was prepared by dissolving EDTA'4Na (l. 80 g) in water (40 mL).
[0136] 1 X 90% ホルムアミドは、 10 XTBE緩衝液(lml)とホルミアミド(9ml)を混合して 調製した。  [0136] 1 X 90% formamide was prepared by mixing 10 XTBE buffer (1 ml) and formamide (9 ml).
[0137] 実施例 1P [0137] Example 1P
配列番号 2からなる修飾一本鎖オリゴヌクレオチドの 5 '末端に32 Pラベルを施した以 外は、実施例 1と同様にして、配列番号 2からなる一本鎖の 5'末端が32 Pでラベルさ れた修飾 DNAセンス鎖を製造した。 [0138] 実施例 2 The single-stranded 5 ′ end of SEQ ID NO: 2 is 32 P in the same manner as in Example 1 except that the 5 ′ end of the modified single-stranded oligonucleotide consisting of SEQ ID NO: 2 is labeled with the 32 P label. A labeled modified DNA sense strand was produced. [0138] Example 2
3 '末端にパルミチン酸がリンカ一を介して結合された修飾 DNAアンチセンス鎖の 製造  Production of modified DNA antisense strand with palmitic acid bound to the 3 'end via a linker
配列番号 2の代わりに配列番号 3を用いた以外は、実施例 1と同様にして製造して 、表題化合物を得た。  The title compound was obtained in the same manner as in Example 1 except that SEQ ID NO: 3 was used instead of SEQ ID NO: 2.
[0139] 実施例 3 [0139] Example 3
3 '末端にォレイン酸がリンカ一を介して結合された修飾 DNAセンス鎖の製造 CPGユニット(29a)の代わりに CPGユニット(29b)を用いた以外は、実施例 1と同 様にして製造して、表題化合物を得た。  Production of a modified DNA sense strand in which oleic acid is linked to the 3 'end via a linker. Production was carried out in the same manner as in Example 1 except that CPG unit (29b) was used instead of CPG unit (29a). To give the title compound.
[0140] 実施例 4 [0140] Example 4
3,末端にォレイン酸がリンカ一を介して結合された修飾 DNAアンチセンス鎖の製 造  3. Preparation of modified DNA antisense strand with oleic acid attached to the end via a linker
配列番号 2の代わりに配列番号 3を用いた以外は、実施例 3と同様にして製造して 、表題化合物を得た。  The title compound was obtained in the same manner as in Example 3 except that SEQ ID NO: 3 was used instead of SEQ ID NO: 2.
[0141] 参考例 1 [0141] Reference Example 1
3 '末端にコレステロールがリンカ一を介して結合された修飾 DNAセンス鎖の製造 CPGユニット(29a)の代わりに CPGユニット(29c)を用いた以外は、実施例 1と同 様にして製造して、表題化合物を得た。  Production of modified DNA sense strand in which cholesterol is bound to the 3 'end via a linker. Production is carried out in the same manner as in Example 1 except that CPG unit (29c) is used instead of CPG unit (29a). The title compound was obtained.
[0142] 参考例 2 [0142] Reference Example 2
3,末端にコレステロールがリンカ一を介して結合された修飾 DNAアンチセンス鎖 の製造  3. Production of modified DNA antisense strand with cholesterol linked to the end via a linker
配列番号 2の代わりに配列番号 3を用いた以外は、参考例 1と同様にして製造して 、表題化合物を得た。  The title compound was obtained in the same manner as in Reference Example 1 except that SEQ ID NO: 3 was used instead of SEQ ID NO: 2.
[0143] 得られたオリゴヌクレオチドを、水(lmL)に溶解させ、水で 100倍に希釈して希釈 液を調製した。その希釈液の吸光度(260nm)を測定し、収量を算出した。その吸光 度の ε値、 260nmにおける吸光度および収率を、表 1に示す。また、得られたオリゴ ヌクレオチドの分子量は、 MALDI—TOFZMSにより確認した。その結果も、表 1に 示す。 [0144] [表 1] [0143] The obtained oligonucleotide was dissolved in water (lmL) and diluted 100 times with water to prepare a diluted solution. The absorbance (260 nm) of the diluted solution was measured, and the yield was calculated. The absorbance ε value, absorbance at 260 nm and yield are shown in Table 1. The molecular weight of the obtained oligonucleotide was confirmed by MALDI-TOFZMS. The results are also shown in Table 1. [0144] [Table 1]
Figure imgf000042_0001
前記オリゴヌクレオチドの吸光度および収量は、以下のようにして測定した。
Figure imgf000042_0001
The absorbance and yield of the oligonucleotide were measured as follows.
[0145] 前記オリゴヌクレオチドを水に溶解させて、水溶液を調製し、その水溶液を、波長 2 60nmでの吸光度 (Abs )が、吸光度計の有効範囲になるように希釈した。光路長(  [0145] The oligonucleotide was dissolved in water to prepare an aqueous solution, and the aqueous solution was diluted so that the absorbance (Abs) at a wavelength of 260 nm was within the effective range of the absorptiometer. Optical path length (
260  260
1) lcmの吸光度測定用石英セルを用い、室温にて Abs を測定した。 OD 値の計  1) Abs was measured at room temperature using a lcm absorbance measurement quartz cell. Total OD value
260 260 算には以下の式(1)を用いて算出した。  260 260 The calculation was performed using the following formula (1).
OD ( ε -M-mL'^Abs ( ε -cm-M) XV"1 (mL) Xf^cm) (1) OD (ε -M-mL '^ Abs (ε -cm-M) XV " 1 (mL) Xf ^ cm) (1)
260 260  260 260
前記式(1)中、 Abs は、前記オリゴヌクレオチド溶液の波長 260nmにおける吸光  In the formula (1), Abs is the absorbance of the oligonucleotide solution at a wavelength of 260 nm.
260  260
度を示し、 Vは溶液の全量を示し、 1は光路長を示し、 Mはモル濃度を示す。  Degrees, V is the total volume of the solution, 1 is the optical path length, M is the molar concentration.
[0146] 前記式(1)中、前記オリゴヌクレオチドのモル吸光係数 ε 260は、以下の式(2)を 用いて算出した。 In the above formula (1), the molar extinction coefficient ε 260 of the oligonucleotide was calculated using the following formula (2).
ε =2{ ε (Ν Ν )+ ε (Ν Ν ) + ··· + ε (Ν Ν )}-{ ε (Ν ) + ε (Ν ) + +  ε = 2 {ε (Ν Ν) + ε (Ν Ν) + ... ε (Ν Ν)}-{ε (Ν) + ε (Ν) + +
1ρ 2 2ρ 3 n-lp η 2 3  1ρ 2 2ρ 3 n-lp η 2 3
ε (Ν )} (2)  ε (Ν)} (2)
η-1  η-1
前記式(2)中、 ε (Ν )はある核酸 Νの ε を示し、 ε (Ν Ν )はある核酸二量体  In the formula (2), ε (Ν) represents ε of a certain nucleic acid Ν, and ε (Ν)) represents a nucleic acid dimer.
η η 260 n-lp n  η η 260 n-lp n
N Nの ε を示す。なお、(11— s)、 (11— a)、 (12— s)、 (12— a)、 (13— s)、 ( n-lp n 260  Shows ε of N N. (11—s), (11—a), (12—s), (12—a), (13—s), (n-lp n 260
13— a) (F12— s)、 (F12— a) (P— 12— a)および(P13— a)については、修飾 された 3 '末端部分の TT配列を UU配列として ε を計算した。  For 13—a) (F12—s), (F12—a), (P-12—a), and (P13—a), ε was calculated using the modified TT sequence at the 3 ′ end as a UU sequence.
260  260
[0147] 濃度 C(molZL)は、以下の式(3)を用いて算出した。  [0147] The concentration C (molZL) was calculated using the following equation (3).
C=Abs X ε "'ΧΓ1 (3) C = Abs X ε "'ΧΓ 1 (3)
260 260  260 260
前記式(3)中、 Abs ε 、および 1は、前記のとおりである。  In the formula (3), Abs ε and 1 are as described above.
260 260  260 260
3.修飾二本鎖オリゴヌクレオチドの製造 実施例 5 3. Production of modified double-stranded oligonucleotides Example 5
実施例 1で製造した修飾 DNAセンス鎖(lnmmol)と実施例 2で製造した修飾アン チセンス鎖(lnmmol)を、アニーリングバッファー(10mMの Tris—HCl (pH7. 5) および lOOmMの NaCl)中に溶解させた。その溶液を 90°Cで 1分間、次いで 37°Cで 1時間の間、インキュベートして 3'末端にパルミチン酸がリンカ一を介して結合された 修飾 DNAセンス鎖 (配列番号 2)および 3'末端にノルミチン酸がリンカ一を介して結 合された修飾 DNAアンチセンス鎖 (配列番号 3)カゝらなる修飾二本鎖オリゴヌクレオ チドを得た。  Dissolve the modified DNA sense strand (lnmmol) produced in Example 1 and the modified antisense strand (lnmmol) produced in Example 2 in annealing buffer (10 mM Tris-HCl (pH 7.5) and lOO mM NaCl). I let you. The solution was incubated at 90 ° C for 1 minute, then at 37 ° C for 1 hour, and the modified DNA sense strand (SEQ ID NO: 2) and 3 ' A modified double-stranded oligonucleotide consisting of a modified DNA antisense strand (SEQ ID NO: 3) having normitic acid bound to the end via a linker was obtained.
[0148] 実施例 6 [0148] Example 6
実施例 1で製造した修飾 DNAセンス鎖の代わりに、実施例 3で製造した修飾 DNA センス鎖を、実施例 2で製造した修飾 DNAアンチセンス鎖の代わりに、実施例 4で製 造した修飾 DNAアンチセンス鎖を用いた以外は実施例 5と同様にして、 3'末端にォ レイン酸がリンカ一を介して結合された修飾 DNAセンス鎖(配列番号 2)および 3'末 端にォレイン酸がリンカ一を介して結合された修飾 DNAアンチセンス鎖 (配列番号 3 )力もなる修飾二本鎖オリゴヌクレオチドを得た。  Instead of the modified DNA sense strand produced in Example 1, the modified DNA sense strand produced in Example 3 was replaced by the modified DNA produced in Example 4 instead of the modified DNA antisense strand produced in Example 2. A modified DNA sense strand (SEQ ID NO: 2) in which oleic acid was bound to the 3 ′ end via a linker, and oleic acid at the 3 ′ end, in the same manner as in Example 5 except that the antisense strand was used. A modified double-stranded oligonucleotide with a modified DNA antisense strand (SEQ ID NO: 3) force bound via a linker was obtained.
[0149] 実施例 7 [0149] Example 7
実施例 1で製造した修飾 DNAセンス鎖の代わりに、参考例 1で製造した修飾 DNA センス鎖を、実施例 2で製造した修飾 DNAアンチセンス鎖の代わりに、参考例 2で製 造した修飾 DNAアンチセンス鎖を用いた以外は実施例 5と同様にして、 3'末端にコ レステロールがリンカ一を介して結合された修飾 DNAセンス鎖(配列番号 2)および 3 ,末端にコレステロールがリンカ一を介して結合された修飾 DNAアンチセンス鎖 (配 列番号 3)力もなる修飾二本鎖オリゴヌクレオチドを得た。  Instead of the modified DNA sense strand produced in Example 1, the modified DNA sense strand produced in Reference Example 1 was replaced by the modified DNA produced in Reference Example 2 instead of the modified DNA antisense strand produced in Example 2. A modified DNA sense strand (SEQ ID NO: 2) in which cholesterol is bound to the 3 ′ end via a linker in the same manner as in Example 5 except that the antisense strand is used, and cholesterol at the end is linked to the linker. Thus, a modified double-stranded oligonucleotide having a modified DNA antisense strand (SEQ ID NO: 3) force bound thereto was obtained.
[0150] 得られたアンチセンス鎖およびセンス鎖の構造は、以下の式(anti)および式(sens) に示すとおりである。  [0150] The structure of the obtained antisense strand and sense strand is as shown in the following formula (anti) and formula (sens).
[0151] [化 23] アンチセンス鎖 5' - GCUGUUCAAAACGAAGAUGTTX-3 (ant 0 センス鎖 3' -XTTCGACAAGUUUUGCUUCUAC -5 (sens) 実施例 5 : X =パルミチン酸 [0151] [Chemical 23] Antisense strand 5 '-GCUGUUCAAAACGAAGAUGTTX-3 (ant 0 sense strand 3' -XTTCGACAAGUUUUGCUUCUAUC -5 (sens) Example 5: X = palmitic acid
実施例 6 : X =ォレイン酸  Example 6: X = oleic acid
実施例 7 : X =コレステロール 実施例 8  Example 7: X = cholesterol Example 8
実施例 2で製造した修飾 DNAアンチセンス鎖の代わりに、天然型 DNAアンチセン ス鎖 (配列番号 5) (Ambion製)を用いた以外は実施例 5と同様にして、 3'末端にパ ルミチン酸がリンカ一を介して結合された修飾 DNAセンス鎖(配列番号 2)および天 然型 DNAアンチセンス鎖 (配列番号 5)カゝらなる修飾二本鎖オリゴヌクレオチドを得 た。得られたアンチセンス鎖およびセンス鎖の構造は、以下の式(anti)および式(sen s)に示すとおりである。  Instead of the modified DNA antisense strand prepared in Example 2, a natural DNA antisense strand (SEQ ID NO: 5) (manufactured by Ambion) was used in the same manner as in Example 5 except that palmitic acid was added to the 3 ′ end. A modified double-stranded oligonucleotide consisting of a modified DNA sense strand (SEQ ID NO: 2) and a natural DNA antisense strand (SEQ ID NO: 5) bound to each other via a linker. The structure of the obtained antisense strand and sense strand is as shown in the following formula (anti) and formula (sen s).
[0152] [化 24] アンチセンス鎖 5' - GCUGUUCAAAACGAAGAUGTT-3' (ant i)  [0152] [Chemical 24] Antisense strand 5 '-GCUGUUCAAAACGAAGAUGTT-3' (ant i)
センス鎖 3' -XTTCGACAAGUUUUGCUUCUAC -5 (sens) 実施例 8 : X =パルミチン酸 実施例 9  Sense strand 3'-XTTCGACAAGUUUUGCUUCUAC -5 (sens) Example 8: X = palmitic acid Example 9
実施例 1で製造した修飾 DNAセンス鎖の代わりに、天然型 DNAセンス鎖 (配列番 号 4) (Ambion製)を用いた以外は実施例 5と同様にして、天然型 DNAセンス鎖 (配 列番号 4)および 3'末端にパルミチン酸がリンカ一を介して結合された修飾 DNAァ ンチセンス鎖 (配列番号 3)力もなる修飾二本鎖オリゴヌクレオチドを得た。得られたァ ンチセンス鎖およびセンス鎖の構造は、以下の式(anti)および式(sens)に示すとおり である。  A natural DNA sense strand (sequence) was prepared in the same manner as in Example 5 except that the natural DNA sense strand (SEQ ID NO: 4) (manufactured by Ambion) was used instead of the modified DNA sense strand prepared in Example 1. No. 4) and a modified double-stranded oligonucleotide having a modified DNA antisense strand (SEQ ID NO: 3) force having palmitic acid bound to the 3 ′ end via a linker. The structure of the resulting antisense strand and sense strand is as shown in the following formulas (anti) and (sens).
[0153] [化 25] アンチセンス鎖 5' - GCUGUUCAAAACGAAGAUGTTX-3 (ant i)  [0153] [Chemical 25] Antisense strand 5 '-GCUGUUCAAAACGAAGAUGTTX-3 (ant i)
センス鎖 3' - TTCGACAAGUUUUGCUUCUAC - 5 (sens) 実施例 9 : X =パルミチン酸  Sense strand 3 '-TTCGACAAGUUUUGCUUCUAC-5 (sens) Example 9: X = palmitic acid
(修飾二本鎖オリゴヌクレオチドの評価) 1.熱的安定性 (Evaluation of modified double-stranded oligonucleotide) 1. Thermal stability
実施例 5〜7で製造した修飾二本鎖オリゴヌクレオチドにつ 、て、 50%%融解温度 T mを測定した。得られた結果を表 2に示す。  For the modified double-stranded oligonucleotides prepared in Examples 5-7, 50%% melting temperature Tm was measured. Table 2 shows the results obtained.
[表 2]  [Table 2]
Figure imgf000045_0001
天然型 siRNAの構造は、以下のとおりである
Figure imgf000045_0001
The structure of natural siRNA is as follows:
[0155] [化 26] 天然型 s i R N A:  [0155] [Chemical 26] Natural type s i R N A:
アンチセンス鎖 5' - GCUGUUCAAAACGAAGAUGTT-3 ' (ant i)  Antisense strand 5 '-GCUGUUCAAAACGAAGAUGTT-3' (ant i)
センス鎖 3' - TTCGACAAGUUUUGCUUCUAC -5' (sens) 前記表 2から、本発明の修飾二本鎖オリゴヌクレオチドが二本鎖形成能に優れるこ とが確認できた。  Sense strand 3′-TTCGACAAGUUUUGCUUCUAC-5 ′ (sens) From Table 2 above, it was confirmed that the modified double-stranded oligonucleotide of the present invention was excellent in double-stranded forming ability.
[0156] 2.細胞内での RNaseL発現の評価 [0156] 2. Evaluation of RNaseL expression in cells
(1) 細胞培養  (1) Cell culture
細胞培養 10%FBS、ペニシリン(100ユニット Zml)およびストレプトマイシン(0. 1 mgZml)を補充した RPMI1640培地中で、 37°Cで HT1080細胞を増殖させた。指 数増殖を維持するため、細胞を定期的に継代した。約 25%コンフルエンシーでのト ランスフエクシヨンの 24時間前に、 HT1080細胞をトリプシン処理し、抗生物質を含ま な 、新し 、培地を用いて希釈し、 35ミリディッシュに移した(2mlZディッシュ)。  Cell culture HT1080 cells were grown at 37 ° C in RPMI 1640 medium supplemented with 10% FBS, penicillin (100 units Zml) and streptomycin (0.1 mgZml). Cells were passaged regularly to maintain exponential growth. HT1080 cells were trypsinized 24 hours before transfer at approximately 25% confluency, diluted with medium without antibiotics, and transferred to 35 ml dishes (2 ml Z dishes) ).
[0157] (2) 修飾二本鎖オリゴヌクレオチドの細胞へのトランスフエクシヨン [0157] (2) Transfection of modified double-stranded oligonucleotide into cells
リポフエクタミン 2000試薬 (インビトロジェン (Invitrogen)社製)を用いて、接着細胞 株に対して以下に記載する方法で修飾二本鎖オリゴヌクレオチドのトランスフエクショ ンを行った。まず、 RPMI1640培地 (抗生物質および FBSを含まない)に、二本鎖ォ リゴヌクレオチド(前記培地 250 1当たり 50、 ΙΟΟηΜまたは 200nM) (実施例 5で得 られた修飾二本鎖オリゴヌクレオチド)を溶解させ、 5分間室温でインキュベートした。 その溶液に、 50倍希釈した等量のリボフヱクタミン 2000試薬を添加し、その後 20分 間室温でインキュベートした。得られた溶液のうち、 500 1を採取して、前記(1)で調 製した 35ミリディッシュへ移してトランスフエクシヨンを行った。トランスフエクシヨンから 24時間インキュベーション後および 48時間インキュベーション後に、その 35ミリディ ッシュ中の細胞をインキュベートした。なお、その後、実施例 6または実施例 7で得ら れた修飾二本鎖オリゴヌクレオチドの!/、ずれにつ 、ても、トランスフエクシヨンされた細 胞に対する毒性は確認されな力つた。 The modified double-stranded oligonucleotide was transfected to the adherent cell line using Lipofuectamine 2000 reagent (Invitrogen) by the method described below. First, double-stranded oligonucleotide (50, ΙΟΟηΜ or 200 nM per 250 1 of the medium) (modified double-stranded oligonucleotide obtained in Example 5) was dissolved in RPMI1640 medium (without antibiotics and FBS). And incubated for 5 minutes at room temperature. An equal volume of ribofactoramine 2000 reagent diluted 50 times was added to the solution, and then incubated at room temperature for 20 minutes. Of the resulting solution, 5001 was collected and transferred to the 35 millidish prepared in (1) above for transfection. The cells in the 35 millidish were incubated 24 hours and 48 hours after transfection. After that, the toxicity of the modified double-stranded oligonucleotide obtained in Example 6 or Example 7 to the! /, Shift was strong without confirming the toxicity to the transfected cells.
[0158] (3) ウェスタンブロット法による RNaseL発現のモニター [0158] (3) Monitoring RNaseL expression by Western blotting
トランスフエクシヨンから 24時間インキュベーション後および 48時間インキュベーショ ン後に得られた HT1080細胞をトリプシン処理し、冷 PBS (—)で 2回洗浄した。その 後、得られた細胞ペレットを 2倍量の低浸透圧緩衝液 A (0. 5% (vZv)のノ -デット( Nonidet) P— 40、 20mMの Hepes (pH7. 5)、 10mMの CH CO K、 15mMの(CH  HT1080 cells obtained after 24 hours incubation and 48 hours incubation from transfection were trypsinized and washed twice with cold PBS (—). The resulting cell pellet was then added to 2 volumes of low osmolarity buffer A (0.5% (vZv) Nonidet P-40, 20 mM Hepes (pH 7.5), 10 mM CH. CO K, 15mM (CH
3 2  3 2
CO ) Mg、 ImMのジチオトレイトール、 ImMのフエ二ルメチルスルホニルフルオラ CO) Mg, ImM dithiothreitol, ImM phenylmethylsulfonylfluora
3 2 2 3 2 2
イド、 10 gZmlのァプロチュン)に懸濁させた。  Id, 10 gZml of Aprotune).
[0159] 得られた細胞懸濁液を 10分間氷上でインキュベートした後、タイト'フィッティング- カフス 'ドウ ~~ス'ホモンナイザ ~~ (Ί lght— fitting glass dounce homogenizer)を用 ヽて 氷上で 30回上下へストロークしてホモゲナイズした。得られたホモジナイズ液を、超 遠心機(lOOOO X g)を用いて 4°Cで 10分間遠心した。その後、遠心分離された上清 液を回収し、その上清液に等量の 2 Xサンプル緩衝液(0. 14Mの Tris— HCl pH6 . 8、0. 2% (vZv)のグリセロール、 2. 8% (vZv)の SDS、適量のブロモフエノール 'ブルー)を加え、沸騰水中で 5分間インキュベートした。インキュベートされた上清液 を 7. 5%のポリアクリルアミドゲル (ATTO)を用いて 20mA、 70分間、電気泳動によ り分離し、その後、 PVDFメンブレン (ミリポア社 (Millipore)製)へタンパクを転写した。  [0159] The obtained cell suspension was incubated on ice for 10 minutes, and then thirty times on ice using a tight 'fitting-cuffs' Dough ~~ 's' homomonizer ~~ (Ίlght—fitting glass dounce homogenizer). Stroke up and down to homogenize. The obtained homogenized solution was centrifuged at 4 ° C for 10 minutes using an ultracentrifuge (lOOOO X g). The centrifuged supernatant is then collected and an equal volume of 2X sample buffer (0.14M Tris-HCl pH 6.8, 0.2% (vZv) glycerol, 2. 8% (vZv) SDS, appropriate amount of bromophenol 'blue' was added and incubated in boiling water for 5 minutes. The incubated supernatant is separated by electrophoresis using 7.5% polyacrylamide gel (ATTO) at 20 mA for 70 minutes, and then transferred to a PVDF membrane (Millipore). did.
[0160] 前記 PVDFメンブレンを、 5%の牛血清アルブミンで 25°Cで 1時間の間インキュべ ートした。その後、前記 PVDFメンブレンを TBST(200mMの Tris pH7. 6、 1. 37 Mの塩ィ匕ナトリウム、 0. 1%の Tween— 20)で 2回リンスした。その PVDFメンブレン を、 0. 5 gZmlの抗 RNaseLモノクローナル抗体で 4°C、 16時間インキュベートし た。その後、前記 PVDFメンブレンを TBSTで 15分間 1回、次いで 5分間 3回、順次 洗浄した。その PVDFメンブレンを、次いでセィヨウヮザビ 'ペルォキシダーゼ(Horse radish peroxidase)で標識された抗マウス IgG (500 μ gZmLを、 100000倍希釈した )で 25°Cで 1時間インキュベートした。その後、前記 PVDFメンブレンを TBSTで 15 分間 1回、次いで 5分間 3回、順次洗浄した。 [0160] The PVDF membrane was incubated with 5% bovine serum albumin at 25 ° C for 1 hour. Thereafter, the PVDF membrane was rinsed twice with TBST (200 mM Tris pH 7.6, 1.37 M sodium chloride sodium salt, 0.1% Tween-20). The PVDF membrane was incubated with 0.5 gZml of anti-RNaseL monoclonal antibody at 4 ° C for 16 hours. After that, the PVDF membrane is placed in TBST once for 15 minutes and then 3 times for 5 minutes. Washed. The PVDF membrane was then incubated for 1 hour at 25 ° C. with anti-mouse IgG labeled with Horse radish peroxidase (500 μg ZmL diluted 100000 fold). Thereafter, the PVDF membrane was washed with TBST once for 15 minutes and then 3 times for 5 minutes.
[0161] 前記 PVDFメンブラン上のセィヨウヮザビ ·ペルォキシダーゼ標識の検出には、 EC Lプラス'ウェスタン'ブロッテイング検出キット(prus western blotting detection kit) ( アマシャム(Amersham)社製)を用いて行った。前記 PVDFメンブラン上のセィヨウヮ ザビ 'ペルォキシダーゼ標識の定量は、デンシトメーター(Kodak Digital Science DC 290 Zoom Digital Camera)を用いて行った。二本鎖オリゴヌクレオチドでの処理を行 つていない細胞における RNaseL強度を 1として、二本鎖オリゴヌクレオチドでの処理 細胞の RNaseL強度の相対比を求めた。なお、求めた数値は GAPDH強度を 1とし 標準化した。得られた結果を図 1 (a)に示す。  [0161] The detection of C. peroxidase labeling on the PVDF membrane was performed using an ECL plus 'Western' blotting detection kit (manufactured by Amersham). Quantification of C. peroxidase labeling on the PVDF membrane was performed using a densitometer (Kodak Digital Science DC 290 Zoom Digital Camera). The relative ratio of the RNase L intensity of cells treated with the double-stranded oligonucleotide was determined with the RNase L intensity of cells not treated with the double-stranded oligonucleotide as 1. The obtained values were standardized with the GAPDH intensity set to 1. The obtained results are shown in Fig. 1 (a).
[0162] (4) 実施例 5で得られた修飾二本鎖オリゴヌクレオチドの代わりに、実施例 6およ び実施例 7でそれぞれ得られた修飾二本鎖オリゴヌクレオチドを用いる以外は、 (1) 〜(3)と同様にして、修飾二本鎖オリゴヌクレオチドでの処理細胞の RNaseL強度の 相対比を求めた。その結果は、図 1 (b)および図 1 (c)にそれぞれ示す。  [0162] (4) In place of the modified double-stranded oligonucleotide obtained in Example 5, instead of the modified double-stranded oligonucleotide obtained in Example 6 and Example 7, respectively (1 In the same manner as in (3) to (3), the relative ratio of the RNase L intensity of cells treated with the modified double-stranded oligonucleotide was determined. The results are shown in Fig. 1 (b) and Fig. 1 (c), respectively.
[0163] 前記図 1 (a)〜(c)に示すように、本発明の修飾二本鎖オリゴヌクレオチドは、非修 飾二本鎖オリゴヌクレオチドと比較して、 RNaseLの発現を抑制する効果が著しく向 上し、 RNAi活性が向上して ヽることが確認できた。  [0163] As shown in Figs. 1 (a) to (c), the modified double-stranded oligonucleotide of the present invention has an effect of suppressing the expression of RNaseL as compared to the unmodified double-stranded oligonucleotide. It was confirmed that the RNAi activity was improved significantly.
[0164] 3.細胞内での RNaseLに対する IC の測定  [0164] 3. Measurement of IC for RNaseL in cells
50  50
(1) 2. (2)において用いる修飾二本鎖オリゴヌクレオチドの濃度を、前記培地 25 0 1当たり 50、 ΙΟΟηΜまたは 200nMの代わりに 1ηΜ、 5nMまたは ΙΟηΜを用いる 以外は、前記 2. (1)〜 (4)と同様にして修飾二本鎖オリゴヌクレオチドでの処理細胞 の RNaseL強度の相対比を求めた。  (1) 2.The concentration of the modified double-stranded oligonucleotide used in (2) is the same as in 2. above (1) except that 1ηΜ, 5nM or ΙΟηΜ is used instead of 50, ΙΟΟηΜ or 200nM per 2501 of the medium In the same manner as in (4), the relative ratio of the RNase L intensity of the cells treated with the modified double-stranded oligonucleotide was determined.
[0165] (2) また、実施例 5で得られた修飾二本鎖オリゴヌクレオチドの代わりに、実施例 8 および 9でそれぞれ得られた修飾二本鎖オリゴヌクレオチドを用いる以外は、 4. (1) と同様にして、二本鎖オリゴヌクレオチドでの処理細胞の RNaseL強度の相対比を求 [0166] (3)得られた相対比から IC を求め、以下の表 3に示す。 [0165] (2) Further, instead of the modified double-stranded oligonucleotide obtained in Example 5, the modified double-stranded oligonucleotide obtained in Examples 8 and 9 was used, respectively. ) To obtain the relative ratio of RNaseL intensity of cells treated with double-stranded oligonucleotide. (3) IC was determined from the relative ratio obtained and shown in Table 3 below.
50  50
[0167] [表 3]  [0167] [Table 3]
Figure imgf000048_0001
Figure imgf000048_0001
前記表 3に示すように、本発明の修飾二本鎖オリゴヌクレオチドは、天然型 (非修飾 )二本鎖オリゴヌクレオチドと比較して、 RNaseLの発現を抑制する効果が著しく向上 していることが確認できた。この著しい向上は、本発明の修飾二本鎖オリゴヌクレオチ ドが、細胞膜の透過性に優れ、ヌクレアーゼ耐性が向上したことから予想される以上 の優れた効果である。また、アンチセンス鎖の 3'末端が修飾されている実施例 9につ いて、センス鎖の 3'末端が修飾されている実施例 8よりも RNaseLの発現を抑制する 効果が向上していることが確認できた。  As shown in Table 3 above, the modified double-stranded oligonucleotide of the present invention has a markedly improved effect of suppressing the expression of RNaseL compared to the natural (unmodified) double-stranded oligonucleotide. It could be confirmed. This remarkable improvement is an effect superior to that expected from the fact that the modified double-stranded oligonucleotide of the present invention has excellent cell membrane permeability and improved nuclease resistance. In addition, in Example 9 in which the 3 ′ end of the antisense strand is modified, the effect of suppressing the expression of RNaseL is improved compared to Example 8 in which the 3 ′ end of the sense strand is modified. Was confirmed.
[0168] 4.ヌクレーゼ耐性 [0168] 4. Nuclease resistance
二本鎖修飾オリゴヌクレオチドのェキソヌクレアーゼ耐性の評価  Evaluation of exonuclease resistance of double-stranded modified oligonucleotides
二本鎖修飾オリゴヌクレオチド、天然型の二本鎖オリゴヌクレオチドのェキソヌクレア ーゼ耐性を評価した。ェキソヌクレアーゼとしては、へビ毒ホスホロジエステラーゼ(S VP)を使用した。 SVPは、リン酸ジエステル結合を選択的に切断しオリゴヌクレオチド を 5,一モノリン酸ヌクレオチドに分解する。  The exonuclease resistance of the double-stranded modified oligonucleotide and the natural double-stranded oligonucleotide was evaluated. As the exonuclease, snake venom phosphorodiesterase (SVP) was used. SVP selectively cleaves phosphodiester bonds and cleaves oligonucleotides into 5, monomonophosphate nucleotides.
[0169] 実施例 1Pで製造した 5,末端が32 Pでラベルされた修飾 DNAセンス鎖(20 M、 4[0169] Modified DNA sense strand (20 M, 4 produced in Example 1P, labeled with 32 P at the end)
1)と天然型 DNAアンチセンス鎖(配列番号 5) (Ambion製)(8pmmol)を、ァニー リングバッファー(250mMの Tris— HCl(pH8. 0)および 50mMの MgCl  1) and natural DNA antisense strand (SEQ ID NO: 5) (Ambion) (8pmmol) were added to annealing buffer (250mM Tris-HCl (pH8.0) and 50mM MgCl).
2、 6 1)お よび水(26 μ 1)の混合物中に溶解させた。その溶液を 95°Cで 5分間、次 、で室温で 1時間の間インキュベートして、 3'末端にパルミチン酸がリンカ一を介して結合された 、 5,末端が32 Pでラベルされた修飾 DNAセンス鎖(配列番号 2)および天然型 DNA アンチセンス鎖 (配列番号 5)力もなる修飾二本鎖オリゴヌクレオチドを得た。得られた 二本鎖の構造は、下記式に示すとおりである。 2, 6 1) and water (26 μ 1). The solution for 5 min at 95 ° C the following, in and incubated for 1 hour at room temperature, the 3 'end palmitate linked through a linker one, 5, modifications terminally labeled with 32 P A modified double-stranded oligonucleotide was obtained that also possessed the ability of a DNA sense strand (SEQ ID NO: 2) and a natural DNA antisense strand (SEQ ID NO: 5). The resulting double-stranded structure is as shown in the following formula.
[0170] [化 27] アンチセンス鎖 5' - GCUGUUCAAAACGAAGAUGTT-3' (ant i ) センス鎖 3' - XTTCGACAAGUUUUGCUUCMC -5' (sens) [0170] [Chemical 27] Antisense strand 5 '-GCUGUUCAAAACGAAGAUGTT-3' (ant i) Sense strand 3 '-XTTCGACAAGUUUUGCUUCMC -5' (sens)
X=パルミチン酸 前記溶液に、 SVP (0. 10 1)を添カロした。 SVPを添カロ後、 0、 1、 3、 5X = palmitic acid SVP (0. 101) was added to the solution. After adding SVP, 0, 1, 3, 5
、 10、 30、 60分後に各エツペンドルフチューブに反応液(5 1)をサンプリングし、 8 M尿素溶液(5 1)と混合して反応を停止させた。なお、 0分後のサンプルは、 SVP 水溶液をカ卩えていないものである。得られた各時間におけるサンプルを、 95°Cで 5分 間アニーリングを行った後、 20%変性 PAGE (7M尿素溶液)により解析した (電気泳 動緩衝液: 1 XTBE、〜300V、 2時間電気泳動)。得られた結果を以下の表 4に示 す。 The reaction solution (51) was sampled into each Eppendorf tube after 10, 30, 60 minutes, and mixed with 8 M urea solution (51) to stop the reaction. Note that the sample after 0 minutes does not contain the SVP aqueous solution. The samples obtained at each time were annealed at 95 ° C for 5 minutes, and then analyzed by 20% denaturing PAGE (7M urea solution) (electrokinetic buffer: 1 XTBE, ~ 300V, 2 hours electric) Electrophoresis). The results obtained are shown in Table 4 below.
[0171] [表 4]  [0171] [Table 4]
Figure imgf000049_0001
Figure imgf000049_0001
前記表 4から、修飾オリゴヌクレオチドは、天然型オリゴヌクレオチドと比較して、ェ キソヌクレアーゼ耐性が向上していることが確認された。  From Table 4 above, it was confirmed that the modified oligonucleotide had improved exonuclease resistance compared to the natural oligonucleotide.
産業上の利用可能性  Industrial applicability
[0172] 本発明の修飾オリゴヌクレオチドは、例えば、疾患治療剤として有用である。 [0172] The modified oligonucleotide of the present invention is useful, for example, as a disease therapeutic agent.
配列表フリーテキスト  Sequence listing free text
[0173] 配列番号 1 RNaseLの標的配列 [0173] SEQ ID NO: 1 Target sequence of RNaseL
配列番号 2 配列番号 1の標的配列に対する siRNA配列の修飾センス鎖 配列番号 3 配列番号 1の標的配列に対する siRNA配列の修飾アンチセンス鎖 配列番号 4 配列番号 1の標的配列に対する siRNA配列のセンス鎖  SEQ ID NO: 2 Modified sense strand of siRNA sequence for target sequence of SEQ ID NO: 1 SEQ ID NO: 3 Modified antisense strand of siRNA sequence for target sequence of SEQ ID NO: 1 SEQ ID NO: 4 Sense strand of siRNA sequence for target sequence of SEQ ID NO: 1
配列番号 5 配列番号 1の標的配列に対する siRNA配列のアンチセンス鎖  SEQ ID NO: 5 antisense strand of siRNA sequence against the target sequence of SEQ ID NO: 1

Claims

請求の範囲 The scope of the claims
[1] オリゴヌクレオチドの 3,末端に構成成分として修飾ヌクレオシドを含む修飾オリゴヌ クレオチドであり、  [1] A modified oligonucleotide containing a modified nucleoside as a constituent component at the 3, terminal end of the oligonucleotide,
前記修飾ヌクレオシド力 ヌクレオシドの 3,末端に、リンカ一を介して、下記式 (III) で表されるカルボン酸を結合させた修飾ヌクレオシドである修飾オリゴヌクレオチド。 RA - COOH (III) A modified oligonucleotide which is a modified nucleoside in which a carboxylic acid represented by the following formula (III) is bound to the 3, terminus of the modified nucleoside via a linker at the 3, terminus of the nucleoside. R A -COOH (III)
前記式中、 RAは、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール基、 または複素環式基を意味する。 In the above formula, R A means a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
[2] 式 (IA)で表される請求項 1に記載の修飾オリゴヌクレオチド。  [2] The modified oligonucleotide according to claim 1, which is represented by formula (IA).
[化 1]  [Chemical 1]
0  0
H  H
R'— 0-P-0-L— N—— RA (IA) R'— 0-P-0-L— N—— R A (IA)
O- O 前記式中、  O-O in the above formula,
R,—OHは、オリゴヌクレオチドを意味し、  R, —OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3'末端に構成成分として含まれる 修飾ヌクレオシドの 3'末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
Lは二価の基を意味し、  L means a divalent group,
RAは、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、ァリール基、または複素 環式基を意味する。 R A represents a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
[3] 前記飽和脂肪族炭化水素基が、炭素数 1〜25を有する飽和脂肪族炭化水素基で ある請求項 1または 2に記載の修飾オリゴヌクレオチド。  [3] The modified oligonucleotide according to [1] or [2], wherein the saturated aliphatic hydrocarbon group is a saturated aliphatic hydrocarbon group having 1 to 25 carbon atoms.
[4] 前記不飽和脂肪族炭化水素基が、炭素数 3〜25を有する不飽和脂肪族炭化水素 基である請求項 1または 2に記載の修飾オリゴヌクレオチド。 [4] The modified oligonucleotide according to claim 1 or 2, wherein the unsaturated aliphatic hydrocarbon group is an unsaturated aliphatic hydrocarbon group having 3 to 25 carbon atoms.
[5] 前記 RAが、 CH - (CH ) —または CH - (CH ) — CH = CH— (CH ) —である [5] R A is CH-(CH) — or CH-(CH) — CH = CH— (CH) —
3 2 14 3 2 7 2 7 請求項 1または 2に記載の修飾オリゴヌクレオチド。  3 2 14 3 2 7 2 7 Modified oligonucleotide according to claim 1 or 2.
[6] 前記二価の基が、下記式 (IVA)に示す二価の基である請求項 2に記載の修飾オリ ゴヌクレオチド。 -X-M-Y- (IVA) 6. The modified oligonucleotide according to claim 2, wherein the divalent group is a divalent group represented by the following formula (IVA). -XMY- (IVA)
前記式中、  In the above formula,
—X—は、—(CH ) または(CH ) —CH (CH OH)—であり、  —X— is — (CH) or (CH) —CH (CH OH) —,
2 m 2 m 2  2 m 2 m 2
—Y—は、一(CH ) または一(CH ) -CH (CH OH)一であり、  —Y— is one (CH) or one (CH) -CH (CH OH) one;
2 n 2 n 2  2 n 2 n 2
—M は、一0— C ( = 0) NH 、 一O—、ーじ(=0)—?《1—またはー?《1—じ(= O)—であり、  —M is one 0—C (= 0) NH, one O—, one (= 0) —? << 1-or-? << 1-ji (= O)-
mおよび nは、それぞれ独立して、 1〜20の整数である。  m and n are each independently an integer of 1 to 20.
[7] 前記二価の基が、下記式 (IVA— 1)に示す二価の基である請求項 2に記載の修飾 オリゴヌクレオチド。 [7] The modified oligonucleotide according to [2], wherein the divalent group is a divalent group represented by the following formula (IVA-1).
— CH— CH (CH 0H) -0-C ( = 0) NH- (CH ) 一 (IVA—1)  — CH— CH (CH 0H) -0-C (= 0) NH- (CH) I (IVA—1)
2 2 2 n  2 2 2 n
前記式中、 nは 1〜 20の整数である。  In the above formula, n is an integer of 1-20.
[8] 二本鎖修飾オリゴヌクレオチドであり、 [8] A double-stranded modified oligonucleotide,
前記修飾オリゴヌクレオチド力 標的 mRNAの一部と同じ塩基配列をするセンス鎖 と、前記センス鎖に対するアンチセンス鎖とを含み、  A sense strand having the same base sequence as a part of the target mRNA, and an antisense strand against the sense strand,
前記アンチセンス鎖および前記センス鎖のうち、少なくとも前記アンチセンス鎖が、 オリゴヌクレオチドの 3,末端に構成成分として修飾ヌクレオシドを含むオリゴヌクレオ チド類似体であり、前記修飾ヌクレオシド力 ヌクレオシドの 3,末端に、リンカ一を介し て、下記式 (Π)で表されるステロイド骨格を有する化合物を結合させた修飾ヌクレオ シドである二本鎖修飾オリゴヌクレオチド。  Among the antisense strand and the sense strand, at least the antisense strand is an oligonucleotide analogue containing a modified nucleoside as a constituent component at the 3, end of the oligonucleotide, and at the 3, end of the modified nucleoside force nucleoside. A double-stranded modified oligonucleotide which is a modified nucleoside to which a compound having a steroid skeleton represented by the following formula (Π) is bound via a linker.
RS-OH (II) R S -OH (II)
前記式中、 Rsは、 1以上の置換基を任意に有し、骨格中の 1以上の単結合が任意に 二重結合に置き換えられて 、るステロイド骨格を意味する。 In the above formula, R s means a steroid skeleton optionally having one or more substituents, wherein one or more single bonds in the skeleton are arbitrarily replaced with double bonds.
[9] 前記オリゴヌクレオチド類似体が、式 (IS)で表される請求項 8に記載の二本鎖修飾 オリゴヌクレオチド。 [9] The double-stranded modified oligonucleotide according to [8], wherein the oligonucleotide analogue is represented by the formula (IS).
[化 2]  [Chemical 2]
0  0
H  H
R'-O— P - 0 - L— N丁 OR。 (IS)  R'-O— P-0-L— N Ding OR. (IS)
0- 0 前記式中、 0- 0 In the above formula,
R, 一 OHはオリゴヌクレオチドを意味し、  R, 1 OH means oligonucleotide,
R'—OH中の水酸基は、前記オリゴヌクレオチドの 3'末端に構成成分として含まれる 修飾ヌクレオシドの 3'末端の水酸基を意味し、  The hydroxyl group in R′—OH means the hydroxyl group at the 3 ′ end of the modified nucleoside contained as a constituent component at the 3 ′ end of the oligonucleotide,
Lは二価の基を意味し、 L means a divalent group,
Rsは、 1以上の置換基を任意に有し、骨格中の 1以上の単結合が任意に二重結合に 置き換えられて 、るステロイド骨格を意味する。 R s means a steroid skeleton that optionally has one or more substituents, and one or more single bonds in the skeleton are optionally replaced with double bonds.
HU記 Rが、  HU R
[化 3][Chemical 3]
Figure imgf000052_0001
からなる群力 選択される請求項 8に記載の二本鎖修飾オリゴヌクレオチド。
Figure imgf000052_0001
The double-stranded modified oligonucleotide according to claim 8, wherein the double-stranded modified oligonucleotide is selected.
前記二価の基が、下記式 (IVS)に示す二価の基である請求項 9に記載の二本鎖 修飾オリゴヌクレオチド。  10. The double-stranded modified oligonucleotide according to claim 9, wherein the divalent group is a divalent group represented by the following formula (IVS).
-X-M-Y- (IVS) -X-M-Y- (IVS)
前記式中、 In the above formula,
—X—は、—(CH ) または(CH ) —CH (CH OH)—であり、  —X— is — (CH) or (CH) —CH (CH OH) —,
2 m 2 m 2  2 m 2 m 2
—Y—は、一(CH ) または一(CH ) -CH (CH OH)一であり、  —Y— is one (CH) or one (CH) -CH (CH OH) one;
2 n 2 n 2  2 n 2 n 2
—M は、一0— C ( = 0) NH 、 一O—、ーじ(=0)—?《1—またはー?《1—じ(= O)—であり、 mおよび nは、それぞれ独立して、 1〜20の整数である。 —M is one 0—C (= 0) NH, one O—, one (= 0) —? << 1-or-? << 1-ji (= O)- m and n are each independently an integer of 1 to 20.
前記二価の基が、下記式 (IVS— 1)に示す二価の基である請求項 9に記載の二本 鎖修飾オリゴヌクレオチド。  10. The double-stranded modified oligonucleotide according to claim 9, wherein the divalent group is a divalent group represented by the following formula (IVS-1).
— CH— CH(CH OH)-0-C( = 0)NH-(CH ) 一 (IVS— 1)  — CH— CH (CH OH) -0-C (= 0) NH- (CH) One (IVS— 1)
2 2 2 n  2 2 2 n
前記式中、 nは 1〜 20の整数である。 In the above formula, n is an integer of 1-20.
PCT/JP2007/052129 2006-02-16 2007-02-07 Modified oligonucleotide WO2007094218A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008500459A JPWO2007094218A1 (en) 2006-02-16 2007-02-07 Modified oligonucleotide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006039764 2006-02-16
JP2006-039764 2006-02-16

Publications (1)

Publication Number Publication Date
WO2007094218A1 true WO2007094218A1 (en) 2007-08-23

Family

ID=38371405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052129 WO2007094218A1 (en) 2006-02-16 2007-02-07 Modified oligonucleotide

Country Status (2)

Country Link
JP (1) JPWO2007094218A1 (en)
WO (1) WO2007094218A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136157A (en) * 2007-12-03 2009-06-25 Gifu Univ Oligonucleotide analogue or its salt
CN104926905A (en) * 2014-03-20 2015-09-23 北京大学 Triphenylmethyl compounds, preparation method and applications thereof
EP3334499A4 (en) * 2015-08-14 2019-04-17 University of Massachusetts Bioactive conjugates for oligonucleotide delivery
US10774327B2 (en) 2015-04-03 2020-09-15 University Of Massachusetts Oligonucleotide compounds for targeting huntingtin mRNA
WO2022186350A1 (en) * 2021-03-03 2022-09-09 国立大学法人東京大学 Acyclic threoninol nucleic acid
US11702659B2 (en) 2021-06-23 2023-07-18 University Of Massachusetts Optimized anti-FLT1 oligonucleotide compounds for treatment of preeclampsia and other angiogenic disorders
US11753638B2 (en) 2016-08-12 2023-09-12 University Of Massachusetts Conjugated oligonucleotides
US11827882B2 (en) 2018-08-10 2023-11-28 University Of Massachusetts Modified oligonucleotides targeting SNPs
US11896669B2 (en) 2016-01-31 2024-02-13 University Of Massachusetts Branched oligonucleotides
US12024706B2 (en) 2020-08-07 2024-07-02 University Of Massachusetts Modified oligonucleotides targeting SNPs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238797A (en) * 1985-04-16 1986-10-24 Toyama Chem Co Ltd Novel 5-fluoro-2'-deoxyuridine-3'-jphosphate derivative and its salt
JPS62277395A (en) * 1985-09-04 1987-12-02 セントル ナシオナル ド ラ リシエルシユ サイエンテイフイツク (シ−エヌア−ルエス) Chemical compound constituted of oligonucleotide and oligodeoxynucleotide, its synthesis and utilization
JPH06500556A (en) * 1990-08-28 1994-01-20 エポック・ファーマシューティカルズ・インコーポレイテッド Solid-support synthesis of 3'-tailed oligonucleotides via linking molecules
WO1995023162A1 (en) * 1994-02-28 1995-08-31 Microprobe Corporation Modified oligonucleotide duplexes having anticancer activity
JPH0995495A (en) * 1995-09-29 1997-04-08 Kansai Shin Gijutsu Kenkyusho:Kk Antisense oligonucleotide, nucleoside and intermediate for producing the same, its synthesis, oligonucleotide synthesizing unit and its synthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238797A (en) * 1985-04-16 1986-10-24 Toyama Chem Co Ltd Novel 5-fluoro-2'-deoxyuridine-3'-jphosphate derivative and its salt
JPS62277395A (en) * 1985-09-04 1987-12-02 セントル ナシオナル ド ラ リシエルシユ サイエンテイフイツク (シ−エヌア−ルエス) Chemical compound constituted of oligonucleotide and oligodeoxynucleotide, its synthesis and utilization
JPH06500556A (en) * 1990-08-28 1994-01-20 エポック・ファーマシューティカルズ・インコーポレイテッド Solid-support synthesis of 3'-tailed oligonucleotides via linking molecules
WO1995023162A1 (en) * 1994-02-28 1995-08-31 Microprobe Corporation Modified oligonucleotide duplexes having anticancer activity
JPH0995495A (en) * 1995-09-29 1997-04-08 Kansai Shin Gijutsu Kenkyusho:Kk Antisense oligonucleotide, nucleoside and intermediate for producing the same, its synthesis, oligonucleotide synthesizing unit and its synthesis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAWASAKI A.M. ET AL.: "Uniformly Modified 2'-Deoxy-20-fluoro Phosphorothioate Oligonucleotides as Nuclease-Resistant Antisense Compounds with High Affinity and Specificity for RNA Targets", JOURNAL OF MEDICINAL CHEMISTRY, vol. 36, no. 7, 1993, pages 831 - 841, XP000562792 *
SOUTSCHEK J. ET AL.: "Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs", NATURE, vol. 432, 2004, pages 173 - 178, XP002336040 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136157A (en) * 2007-12-03 2009-06-25 Gifu Univ Oligonucleotide analogue or its salt
CN104926905A (en) * 2014-03-20 2015-09-23 北京大学 Triphenylmethyl compounds, preparation method and applications thereof
CN104926905B (en) * 2014-03-20 2018-04-03 北京大学 Trityl class compound and its preparation method and application
US10774327B2 (en) 2015-04-03 2020-09-15 University Of Massachusetts Oligonucleotide compounds for targeting huntingtin mRNA
US11230713B2 (en) 2015-04-03 2022-01-25 University Of Massachusetts Oligonucleotide compounds for targeting huntingtin mRNA
EP3334499A4 (en) * 2015-08-14 2019-04-17 University of Massachusetts Bioactive conjugates for oligonucleotide delivery
US10633653B2 (en) 2015-08-14 2020-04-28 University Of Massachusetts Bioactive conjugates for oligonucleotide delivery
US11896669B2 (en) 2016-01-31 2024-02-13 University Of Massachusetts Branched oligonucleotides
US11753638B2 (en) 2016-08-12 2023-09-12 University Of Massachusetts Conjugated oligonucleotides
US11827882B2 (en) 2018-08-10 2023-11-28 University Of Massachusetts Modified oligonucleotides targeting SNPs
US12024706B2 (en) 2020-08-07 2024-07-02 University Of Massachusetts Modified oligonucleotides targeting SNPs
WO2022186350A1 (en) * 2021-03-03 2022-09-09 国立大学法人東京大学 Acyclic threoninol nucleic acid
US11702659B2 (en) 2021-06-23 2023-07-18 University Of Massachusetts Optimized anti-FLT1 oligonucleotide compounds for treatment of preeclampsia and other angiogenic disorders

Also Published As

Publication number Publication date
JPWO2007094218A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
WO2007094218A1 (en) Modified oligonucleotide
AU2020244546B2 (en) Chiral control
JP4584987B2 (en) Oligonucleotides containing C5-modified pyrimidines
Lorenz et al. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells
JP4635046B2 (en) Methods and compositions for enhancing delivery of double stranded RNA or double stranded hybrid nucleic acids for modulating gene expression in mammalian cells
CA3200768A1 (en) Antibody-oligonucleotide complexes and uses thereof
JP7348064B2 (en) Compounds and methods for transmembrane delivery of molecules
WO2017010575A1 (en) β2GPI GENE EXPRESSION INHIBITING NUCLEIC ACID COMPLEX
KR20190022832A (en) Nucleic acid complex
JP2021523720A (en) Modified RNA with reduced off-target effect
WO2021132589A1 (en) Polynucleotide and medicinal composition
TW202003842A (en) Method for producing hairpin single-stranded rna molecule
Kano et al. Synthesis and properties of 4′-C-aminoalkyl-2′-fluoro-modified RNA oligomers
EP3811977A1 (en) Method for synthesis of reactive conjugate clusters
Brzezinska et al. Synthesis of 2′-O-guanidinopropyl-modified nucleoside phosphoramidites and their incorporation into siRNAs targeting hepatitis B virus
WO2007102581A1 (en) 2&#39;-hydroxyl-modified ribonucleoside derivative
Ueno et al. Synthesis and silencing properties of siRNAs possessing lipophilic groups at their 3′-termini
WO2006027862A1 (en) Nucleoside analogue and oligonucleotide analogue containing the same
Saneyoshi et al. Chemical synthesis of RNA via 2′-O-cyanoethylated intermediates
JP6501753B2 (en) Ribonucleoside analog having an azide group, method for producing the same, and chimeric oligoribonucleotide analog containing triazole-linked oligoribonucleotide formed from the analog
JP5464401B2 (en) Oligonucleotide derivative, oligonucleotide construct using oligonucleotide derivative, compound for synthesizing oligonucleotide derivative, and method for producing oligonucleotide derivative
CA3209281A1 (en) Rnai conjugates and uses thereof
Chapuis et al. 2′-Lipid-modified oligonucleotides via a ‘Staudinger–Vilarrasa’reaction
Matsubara et al. Synthesis of siRNAs incorporated with cationic peptides R8G7 and R8A7 and the effect of the modifications on siRNA properties
JPWO2006025154A1 (en) Modified oligonucleotide

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008500459

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708168

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)