JPH0368594A - Production of polynucleotide - Google Patents

Production of polynucleotide

Info

Publication number
JPH0368594A
JPH0368594A JP1206545A JP20654589A JPH0368594A JP H0368594 A JPH0368594 A JP H0368594A JP 1206545 A JP1206545 A JP 1206545A JP 20654589 A JP20654589 A JP 20654589A JP H0368594 A JPH0368594 A JP H0368594A
Authority
JP
Japan
Prior art keywords
formula
nucleoside
polynucleotide
polynucleoside
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1206545A
Other languages
Japanese (ja)
Inventor
Hiroshi Takaku
洋 高久
Osamu Sakazume
坂爪 修
Hiroshi Yamane
山根 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIRATORI SEIYAKU KK
Shiratori Pharmaceutical Co Ltd
Original Assignee
SHIRATORI SEIYAKU KK
Shiratori Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIRATORI SEIYAKU KK, Shiratori Pharmaceutical Co Ltd filed Critical SHIRATORI SEIYAKU KK
Priority to JP1206545A priority Critical patent/JPH0368594A/en
Publication of JPH0368594A publication Critical patent/JPH0368594A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To obtain a polynucleotide in high yield and short time without causing side reaction by reacting a nucleoside phosphorous acid ester derivative with a nucleoside in the presence of an imidazolinium compound. CONSTITUTION:The objective polynucleoside is produced by condensing a nucleoside phosphorous acid ester derivative of formula I (A is pyrimidine base or purine base: R<1> is hydroxyl-protecting group or mono or polynucleoside phosphorous acid ester residue; R<2> is H or cationic group) with a nucleoside of formula II (B is pyrimidine base or purine base; R<3> is same as R<1>) in the presence of an imidazolinium compound of formula III (R<4> and R<5> are lower alkyl; X and Y are halogen) in a solvent (e.g. acetonitrile) at room temperature and oxidizing the resultant polynucleoside phosphorous acid ester of formula IV. The amounts of the compound of formula I and the compound of formula III are 1-50mol and 1-250mol per 1 mol of the compound of formula II, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリヌクレオチドの製造法に関し、更に詳細に
は遺伝子組換え材料として有用なポリヌクレオチドの新
規な化学合成法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing polynucleotides, and more particularly to a novel chemical synthesis method for polynucleotides useful as genetically recombinant materials.

〔従来の技術及びその課題〕[Conventional technology and its problems]

近年の分子生物学、とりわけ遺伝子m換え技術の進歩は
めざましいが、それに伴ない遺伝子の化学合成の重要性
も増大しつつある。従来、遺伝子、すなわちポリヌクレ
オチドの合成法としてはリン酸ジエステル法C)I、 
G、 Khorana; rsome RecentD
evelopments in the Chemis
try of Phosphateasters of
 8io1ogical rnterastJ、 Jo
hn Wileyand 5ons、  Inc、、 
New York (1961))が広く知られている
が、縮合反応に長時間を要し、分離も困難であるという
欠点があった。
In recent years, advances in molecular biology, particularly in gene modification technology, have been remarkable, and along with this, the importance of chemical synthesis of genes is also increasing. Conventionally, methods for synthesizing genes, that is, polynucleotides, include the phosphodiester method C)I;
G, Khorana; rsome RecentD
developments in the Chemises
try of Phosphateasters of
8io1logical rnterastJ, Jo
hn Wileyand 5ons, Inc.
New York (1961)) is widely known, but it has the disadvantage that the condensation reaction takes a long time and separation is difficult.

リン酸ジエステル法の改良法として、リン酸トリエステ
ル法、ホスファイト法[R,L。
Improvements to the phosphoric acid diester method include the phosphoric acid triester method and the phosphite method [R,L.

Letsinger、  W、  B、  Lun5f
ord;  J、 A+n、 Cham、  Sac、
Letsinger, W.B., Lun5f.
ord; J, A+n, Cham, Sac,
.

98、3655 (1976) ) 、ホスホロアミダ
イト法[5゜し、   Beaucage、   M、
   H,Caruthers;  Tetrahed
ronLett、 、 22.1859 (1981)
 )などが報告されている。
98, 3655 (1976)), phosphoramidite method [5°, Beaucage, M.
H, Caruthers; Tetrahed
ron Lett, 22.1859 (1981)
) etc. have been reported.

ところでヌクレオシド亜リン酸エステルを原料として用
いる、いわゆるH−ホスホネート法[8,C,Froe
hler and M、 D、Mattaucci;T
etrahedron Lett、、 27.469 
(1986)及びP、 J。
By the way, the so-called H-phosphonate method [8, C, Froe
hler and M, D, Mattaucci;
etrahedron Lett,, 27.469
(1986) and P, J.

Garegg、 T、Regberg、 J、 Sta
winski、 and R。
Garegg, T., Regberg, J., Sta.
winski, and R.

Str6mbarg、 Tetrahedron La
tt、、 27.4055(1986))は反応時間が
短く、ヌクレオシド亜リン酸エステルユニットが化学的
に安定で、さらにリン酸の保護基を必要としないため、
精製が容易であるなどの利点がある。
Str6mbarg, Tetrahedron La
tt., 27.4055 (1986)) has a short reaction time, the nucleoside phosphite unit is chemically stable, and it does not require a phosphoric acid protecting group.
It has advantages such as easy purification.

しかし、このH−ホスホネート法は、使用されている縮
合剤ピバロイルクロライドが溶媒中で不安定であること
、副反応が生起することなどの欠点があった。
However, this H-phosphonate method has drawbacks such as the condensing agent pivaloyl chloride used is unstable in a solvent and side reactions occur.

従って、種々の利点を有するH−ホスホネート法をさら
に改良したポリヌクレオチドの製造法の開発が望まれて
いた。
Therefore, it has been desired to develop a method for producing polynucleotides that is a further improvement over the H-phosphonate method, which has various advantages.

〔課題を解決するための手段〕[Means to solve the problem]

かかる実情に鑑み本発明者らは、前記課題を解決すべく
種々検討した結果、H−ホスホネート法においてヌクレ
オシド亜リン酸エステルの縮合剤として特定のイミダゾ
リウム化合物を用いれば、副反応が生起することなく、
極めて高収率でポリヌクレオシド亜リン酸エステルが得
られること、さらにこれを酸化すればポリヌクレオチド
も効率よく製造できることを見出し本発明を完成した。
In view of these circumstances, the present inventors have conducted various studies to solve the above problems, and have found that when a specific imidazolium compound is used as a condensing agent for nucleoside phosphite in the H-phosphonate method, side reactions occur. Without,
The present invention was completed by discovering that polynucleoside phosphites can be obtained in extremely high yields and that polynucleotides can also be efficiently produced by oxidizing this.

すなわち、本発明は次の一般式(1,)以下余白 (III) X 〔式中、Aはピリミジン塩基又はプリン塩基を示し、R
′はヒドロキシ基の保護基又はモノもしくはポリヌクレ
オシド亜リン酸エステル残基を示し、R2は水素原子又
はカチオン性基を示す〕で表わされるヌクレオシド亜リ
ン酸エステル誘導体(以下H−ホスホネートユニットと
略す)と次の一般式(II) 〔式中、R4及びRsは低級アルキル基を示し、X及び
Yはハロゲン原子を示す〕 で表わされるイミダゾリニウム化合物の存在下に反応さ
せることを特徴とする一般式(rV)〔式中、Bはピリ
ミジン塩基又はプリン塩基を示し、R3はヒドロキシ基
の保護基又はモノもしくはポリスクレオシド亜リン酸エ
ステル残基を示す〕で表わされるヌクレオシド類とを、
次の一般式〔式中、A SB SR’及びR1は前記と
同じ意味を有する〕 で表わされるポリヌクレオシド亜リン酸エステル類の製
造法、並びに当該縮合反応を利用したポリヌクレオチド
の製造法を提供するものである。
That is, the present invention relates to the following general formula (1,) below the margin (III) X [wherein A represents a pyrimidine base or purine base,
' represents a protecting group for a hydroxy group or a mono- or polynucleoside phosphite residue, and R2 represents a hydrogen atom or a cationic group] (hereinafter abbreviated as H-phosphonate unit) and the following general formula (II) [wherein R4 and Rs represent a lower alkyl group, and X and Y represent a halogen atom]. Nucleosides represented by the formula (rV) [wherein B represents a pyrimidine base or a purine base, and R3 represents a hydroxy group protecting group or a mono- or polyscleoside phosphite residue],
Provides a method for producing a polynucleoside phosphite represented by the following general formula [wherein ASB SR' and R1 have the same meanings as above], and a method for producing a polynucleotide using the condensation reaction. It is something to do.

本発明は次の反応式で示される。The present invention is shown by the following reaction formula.

〔式中、R1−R5,^、8、x及びYは前記と同じ意
味を有する〕 本発明方法の原料であるH−ホスホネートユニット(1
)において、Aはピリミジン塩基又はプリン塩基であり
、具体的にはアデニン、グアニン、シトシン又はチミン
を示す。R’で示されるヒドロキシ基の保護基としては
、一般にポリヌクレオチドの合成において用いられるヒ
ドロキシ基の保護基であればいずれも用いることができ
るが、ジメトキシトリチル基、9−フルオレニルメチル
オキシカルボニル基、レブニリル基等が好ましい。また
、R2で示されるカチオン性基としては、トリエチルア
ミン、1,5−ジアザビシクロ[5,4,0]ウンデク
−5−エン(OBtl)、等の三級塩基が挙げられる。
[In the formula, R1-R5, ^, 8, x and Y have the same meanings as above] H-phosphonate unit (1
), A is a pyrimidine base or a purine base, specifically adenine, guanine, cytosine or thymine. As the hydroxy group-protecting group represented by R', any hydroxy group-protecting group generally used in the synthesis of polynucleotides can be used, including dimethoxytrityl group, 9-fluorenylmethyloxycarbonyl group, etc. , levunyl group, etc. are preferred. Further, examples of the cationic group represented by R2 include tertiary bases such as triethylamine and 1,5-diazabicyclo[5,4,0]undec-5-ene (OBtl).

式(I)のH−ホスホネートユニットは、例えば5′位
を保護したヌクレオシドにトリス(1,l、 1゜3、
3.3−ヘキサフルオロ−2−プロポキシ〉ホスフィン
、ビス(N、N−ジイソプロピルアミノ)クロロホスフ
ィン、ビス(N、N−ジエチルアミノ〉クロロホスフィ
ン等のホスフィン類を反応させることによって製造する
ことができる。
The H-phosphonate unit of formula (I) is, for example, a tris(1,l, 1°3,
It can be produced by reacting phosphines such as 3.3-hexafluoro-2-propoxy>phosphine, bis(N,N-diisopropylamino)chlorophosphine, and bis(N,N-diethylamino>chlorophosphine).

本発明方法の他方の原料であるヌクレオシド類(II)
においてBで示されるピリミジン塩基、プリン塩基の例
としては前記^と同様のものが挙げられる。またヒドロ
キシ基の保護基としては、−般にポリヌクレオチドの台
底において用いられる保護基及び固相担体が挙げられる
。固相担体としては、ポリスチレン、ポリジメチルアク
リルアミド、ポリアクリルモルホリド、シリカゲル、多
孔質ガラスピーズ等が挙げられる。なお、かかる固相担
体との結合にあたっては通常コハク酸エステル等の架橋
剤を介して結合される。
Nucleosides (II), the other raw material for the method of the present invention
Examples of the pyrimidine base and purine base represented by B include those mentioned above. Furthermore, examples of protecting groups for hydroxy groups include protecting groups and solid supports that are generally used in the base of polynucleotides. Examples of the solid support include polystyrene, polydimethylacrylamide, polyacrylmorpholide, silica gel, porous glass beads, and the like. Note that the bonding with such a solid phase carrier is usually performed via a crosslinking agent such as a succinate ester.

固相担体として多孔質ガラスピーズを用い、架橋剤とし
て無水コハク酸を用いた場合のモノヌクレオシド類(I
I)は、例えば5′位保護ヌクレオシドに無水コハク酸
を反応させ、得られた5′位保1ii−3’ −〇−サ
クシニルヌクレオシドと多孔質ガラスピーズをジシクロ
カルボジイミド、トリエチルアミン及びジメチルアミノ
ピリジンの存在下に反応させることにより得られる。
Mononucleosides (I
In I), for example, a 5'-protected nucleoside is reacted with succinic anhydride, and the obtained 5'-protected 1ii-3'-〇-succinyl nucleoside and porous glass beads are treated with dicyclocarbodiimide, triethylamine, and dimethylaminopyridine. It can be obtained by reacting in the presence of

また本発明に用いられる縮合剤であるイミダゾリニウム
化合物(III)は、例えば入手容易な溶剤として知ら
れている次の一般式(V) (式中、R4及びR5は前記した意味を有する)で表わ
される1、3−ジアルキル−2−イミダゾリジノンにハ
ロゲン化剤を反応せしめることにより製造される。
Further, the imidazolinium compound (III) which is a condensing agent used in the present invention is, for example, the following general formula (V) which is known as an easily available solvent (wherein R4 and R5 have the above-mentioned meanings) It is produced by reacting 1,3-dialkyl-2-imidazolidinone represented by the formula with a halogenating agent.

ここで使用されるハロゲン化剤としては、オキザリルハ
ロゲニド、三ハロゲン化リン、五ハロゲン化リン、オキ
シハロゲン化リン、ホスゲン、トリクロロメチルクロロ
ホルメート等が挙げられる。
Examples of the halogenating agent used here include oxalyl halide, phosphorus trihalide, phosphorus pentahalide, phosphorus oxyhalide, phosgene, trichloromethyl chloroformate, and the like.

反応は1.3−ジアルキル−2−イミダゾリジノン又は
ハロゲン化剤の何れか一方を四塩化炭素等の適当な溶媒
に溶かしておき、これに他方を少量ずつ添加し、更に、
室温ないし70℃で数時間〜十数時間反応させることに
よって行われる。
The reaction is carried out by dissolving either the 1,3-dialkyl-2-imidazolidinone or the halogenating agent in a suitable solvent such as carbon tetrachloride, adding the other one little by little to this, and then
The reaction is carried out by reacting at room temperature to 70°C for several hours to over ten hours.

斯くして得られる1、3−ジアルキル−2−ハロゲノ−
イミダゾリニウム・ハロゲニドは単離することもできる
が、単離することなく、その反応液を本発明の縮合反応
に使用することもできる。
1,3-dialkyl-2-halogeno- thus obtained
Although the imidazolinium halide can be isolated, its reaction solution can also be used in the condensation reaction of the present invention without isolation.

本発明を実施例するにはヌクレオシド類(If)に対し
て、H−ホスホネートユニット(I)を1〜50倍モル
用いイミダゾリニウム化合物(III)1〜250倍モ
ルの存在下に数分〜数十分縮合反応させればよい。反応
温度は室温が好ましく、反応溶媒としてはアセトニトリ
ル、ピリジン、これらの混合溶媒などを用いるのが好ま
しい。
To carry out the present invention, H-phosphonate unit (I) is used in an amount of 1 to 50 times the nucleoside (If) in the presence of 1 to 250 times the mole of imidazolinium compound (III) for several minutes. The condensation reaction may be carried out for several tens of minutes. The reaction temperature is preferably room temperature, and the reaction solvent is preferably acetonitrile, pyridine, a mixed solvent thereof, or the like.

かかる縮合反応を順次繰り返すことにより得られるポリ
ヌクレオシド亜リン酸エステルを常法に従い、酸化せし
めればポリヌクレオチドを製造することができる。
A polynucleotide can be produced by oxidizing the polynucleoside phosphite obtained by sequentially repeating such a condensation reaction according to a conventional method.

ポリヌクレオチドの製造にあたっては、前述のポリヌク
レオシド亜リン酸エステルの合成は固相で行うのが好ま
しい。固相担体上のポリヌクレオシド亜リン酸エステル
の酸化は例えばテトラヒドロフラン−ピリジン−水中で
ヨウ素を反応させることにより行うことができる。さら
に固相担体上のポリヌクレオチドを脱離するにはアルカ
リ、例えばアンモニア水等により処理すればよい。なお
、かかるポリヌクレオチド合成は市販のDNA合戒台底
利用するのが好ましい。
In the production of polynucleotides, the synthesis of the polynucleoside phosphites described above is preferably carried out in a solid phase. Oxidation of the polynucleoside phosphite on a solid support can be carried out, for example, by reacting iodine in tetrahydrofuran-pyridine-water. Furthermore, in order to remove the polynucleotide on the solid support, treatment with an alkali such as aqueous ammonia or the like may be performed. It is preferable to use a commercially available DNA kit for such polynucleotide synthesis.

得られたポリヌクレオチドを精製するには、例えば、イ
オン交換もしくは、逆相シリカゲル高速液体クロマトグ
ラフィー等を利用するのが好ましい。
In order to purify the obtained polynucleotide, it is preferable to use, for example, ion exchange or reversed phase silica gel high performance liquid chromatography.

〔実施例〕〔Example〕

次に実施例を挙げて本発明の詳細な説明するが、本発明
はこれら実施例に何ら限定されるものではない。
EXAMPLES Next, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 (1)5’−〇−ジメトキシトリチルデオキシリボヌク
レオシドの製造: チミジン(10mM、 2.4g)に少量の無水ピリジ
ンを加え減圧乾固する。この操作を3回繰り返し脱水し
た後、無水ピリジン(50−)に溶かし、ジメトキシト
リチルクロライド(12mM、 4.1g)を加え、室
温で30〜60分ごとにTLCにより検索し原料のチミ
ジンのスポットが消失するまで反応させた。この反応溶
液に氷水を注ぎ、塩化メチレンで抽出し有機層を水で数
回洗浄した後、硫酸ナトリウムで脱水し、これを濾別除
去し有機層を減圧S縮した後、残渣を少量の塩化メチレ
ンに溶かし5〜10%エーテル−ヘキサン溶液により再
沈澱させると5′−〇−ジメトキシトリチルチミジン(
d−DMTrT)の白色結晶(8,8g、 1 ad、
  80%ンが得られた。
Example 1 (1) Production of 5'-〇-dimethoxytrityl deoxyribonucleoside: A small amount of anhydrous pyridine was added to thymidine (10 mM, 2.4 g) and the mixture was dried under reduced pressure. After repeating this operation three times to dehydrate, dissolve in anhydrous pyridine (50-), add dimethoxytrityl chloride (12mM, 4.1g), and search by TLC at room temperature every 30 to 60 minutes to find the spot of the raw material thymidine. The reaction was allowed to occur until it disappeared. Ice water was poured into this reaction solution, extracted with methylene chloride, the organic layer was washed several times with water, dehydrated with sodium sulfate, filtered off, and the organic layer was condensed under reduced pressure. When dissolved in methylene and reprecipitated with a 5-10% ether-hexane solution, 5'-〇-dimethoxytritylthymidine (
d-DMTrT) white crystals (8.8 g, 1 ad,
A yield of 80% was obtained.

(2)  デオキシリボヌクレオチド−3’ −H−ホ
スホネートの製造: 5′−ジメトキシトリチルチミジン(DMTrT)(3
,5mM、 1.92g)に少量の無水ピリジンを加え
、3回減圧乾固し脱水する。これに無水ピリジン(17
,5mMりを加え、無水トリエチルアミン(31,5m
M、 4.4mt’ )を加えさらにトリス(1,1,
1,3゜3.3−ヘキサフルオロ−2−プロポキシ)ホ
スフィン(10,5mM、 3.12m1! )を加え
窒素雰囲気下、室温で30分ごとにTLCにより検索し
反応終了後0.1M1.5−ジアザビシクロ[5,4,
0]ウンデク−5−エン(080)水溶液で加水分解し
、塩化メチレンで3回抽出し有機層を0゜1Mトリエチ
ルアンモニウムビカーボネート(TBAB) : )リ
エチルアミン(Bt、N)= 50 : 1 (V/v
)、 0. IM TBAB’?’順次5〜lo回洗浄
を行った。この時、水層に対してTLCにより時々検索
しホスホネートユニットが残っていないかを確める。洗
浄が終わった後、有機層を減圧濃縮し、最後にこれを2
%BtaNを含む塩化メチレンの溶出液でシリカゲルカ
ラムクロマトグラフィーにまり単離精製したところ、目
的とするヌクレオシド−H−ホスホネートのDBtl塩
(3,03mM、  87%、 2.306g )が得
られた。
(2) Production of deoxyribonucleotide-3'-H-phosphonate: 5'-dimethoxytritylthymidine (DMTrT) (3
, 5mM, 1.92g) was added with a small amount of anhydrous pyridine and dried under reduced pressure three times to dehydrate. This was added to anhydrous pyridine (17
, 5mM, anhydrous triethylamine (31.5mM
M, 4.4mt') and further tris(1,1,
Add 1,3゜3.3-hexafluoro-2-propoxy)phosphine (10.5mM, 3.12m1!) and search by TLC every 30 minutes at room temperature under a nitrogen atmosphere, and after the reaction is completed, 0.1M1.5 -diazabicyclo[5,4,
0] undec-5-ene (080) aqueous solution, extracted three times with methylene chloride, and extracted the organic layer with 0.1 M triethylammonium bicarbonate (TBAB): ) ethylamine (Bt, N) = 50: 1 ( V/v
), 0. IM TBAB'? 'Washing was performed sequentially 5 to 10 times. At this time, the aqueous layer is occasionally searched by TLC to confirm whether any phosphonate units remain. After washing, the organic layer was concentrated under reduced pressure, and finally this was
Isolation and purification by silica gel column chromatography using a methylene chloride eluate containing % BtaN yielded the desired DBtl salt of nucleoside-H-phosphonate (3.03 mM, 87%, 2.306 g).

(3)デオキシリボヌクレオシド−H−ホスホネートジ
エステルの製造: (2)で得られた5′−ジメトキシトリチルチミジン−
3′−H−ホスホネートの080塩1mmof、3′−
〇−ベンゾイルチミジン1.1mmo !、および1゜
3−ジメチル−2−クロロ−イミダゾリニウム・クロラ
イド2.0mmo 1をアセトニトリル−ピリジン(1
:1)溶媒中で、室温でIO分攪拌した。反応を3IP
−NMRでモニターしたところ、原料であるH−ホスホ
ネートのシグナルが完全に消失し、新しいシグナルが8
.21と7.20ppmに現われ、デオキシリボヌクレ
オシド−H−ホスホネートジエステルの生成を確認した
(3) Production of deoxyribonucleoside-H-phosphonate diester: 5'-dimethoxytritylthymidine obtained in (2)
080 salt of 3'-H-phosphonate 1 mmof, 3'-
〇-Benzoylthymidine 1.1mmo! , and 2.0 mmol of 1°3-dimethyl-2-chloro-imidazolinium chloride in acetonitrile-pyridine (1
:1) Stirred for IO minutes in a solvent at room temperature. 3IP reaction
- When monitored by NMR, the signal of the raw material H-phosphonate completely disappeared, and a new signal appeared at 8
.. 21 and 7.20 ppm, confirming the production of deoxyribonucleoside-H-phosphonate diester.

実施例2 (1)  コントロール・ボア・グラス(CPG)への
ヌクレオシドの導入 l)5′−〇−ジメトキシトリチルー3’ −0−サク
シニルチミジンの合成 5′−〇−ジメトキシトリチルチミジン(DMTrT)
 (10mM、 5.44g)を少量の無水ピリジンに
より脱水を行い、これに無水ピリジン(30Tnl) 
、 ジメチルアミノピリジン(15mM、 1.8g)
Example 2 (1) Introduction of nucleosides into control bore grass (CPG) l) Synthesis of 5'-〇-dimethoxytrityl-3'-0-succinylthymidine 5'-〇-dimethoxytritylthymidine (DMTrT)
(10mM, 5.44g) was dehydrated with a small amount of anhydrous pyridine, and then anhydrous pyridine (30Tnl) was added.
, dimethylaminopyridine (15mM, 1.8g)
.

無水コハク酸(15mM、 1.5g)を加え、室温下
で5時間攪拌し、TLCによりOMTrTのスポットが
消えるまで反応させた。反応終了後、これを減圧濃縮し
塩化メチレン(100mg)で抽出して5%炭酸す) 
IJウム水溶液で3回、水で3回洗浄し硫酸す) IJ
ウムで脱水する。これを減圧濃縮してピリジン臭を完全
に抜き再沈澱(5%エーテルへキサン溶液)を行った結
果、目的とする5′−〇−ジメトキシトリチルー3′−
〇−サクシニルチミジン(DMTrTCO(CI(−)
 *C00H)が50%の収率で得られた。
Succinic anhydride (15 mM, 1.5 g) was added, stirred at room temperature for 5 hours, and reacted until the OMTrT spot disappeared by TLC. After the reaction was completed, this was concentrated under reduced pressure, extracted with methylene chloride (100 mg), and 5% carbonated)
Wash 3 times with IJum aqueous solution, 3 times with water, and rinse with sulfuric acid)
Dehydrate with um. This was concentrated under reduced pressure to completely remove the pyridine odor and reprecipitated (5% ether-hexane solution), resulting in the desired 5'-〇-dimethoxytrityl-3'-
〇-Succinylthymidine (DMTrTCO(CI(-)
*C00H) was obtained in 50% yield.

1f)CPGへの導入 初めに減圧乾固したアルキルアミノCPG(rアミノプ
ロピルCPG AMPO[l 500BJ 、BLB(
’TR0−NtJCLBONICS社、  1.5g)
に5′−〇−ジメトキシトリチルー3′−〇−サクシニ
ルチミジン(1,4mM。
1f) Alkylamino CPG (raminopropyl CPG AMPO[l 500BJ, BLB(
'TR0-NtJCLBONICS, 1.5g)
and 5'-〇-dimethoxytrityl-3'-〇-succinylthymidine (1.4mM).

1、204g)とジクロロカルボジイミド(7mM。1, 204g) and dichlorocarbodiimide (7mM).

1.442g) 、無水トリエチルアミン(1,4tn
M、 0.196−)、無水ジメチルホルムアミド(7
mMり、  ジメチルアミノピリジン(数片)を加え、
室温下でアジテータ−を用いて12時間反応させた。反
応終了後、ヌクレオシドを担持させたCPGを無水ジメ
チルホルムアミド、ピリジン、メタノール、無水エーテ
ルで順に洗浄し、減圧乾固させた。これを少量測りとり
、過塩素酸を加えジメトキシトリチル基を除去し、この
トリチルカチオンの比色定量を行なった結果、目的とす
るヌクレオシドが担持量39μIIIo1/g導入され
ていることを確認した。
1.442g), anhydrous triethylamine (1.4tn
M, 0.196-), anhydrous dimethylformamide (7
mM, add dimethylaminopyridine (several pieces),
The reaction was carried out for 12 hours at room temperature using an agitator. After the reaction was completed, the CPG carrying the nucleoside was washed successively with anhydrous dimethylformamide, pyridine, methanol, and anhydrous ether, and dried under reduced pressure. A small amount of this was measured, perchloric acid was added to remove the dimethoxytrityl group, and the trityl cation was colorimetrically determined. As a result, it was confirmed that the target nucleoside was introduced in a supported amount of 39 μIIIo1/g.

これを無水酢酸:ピリジン= 1 : 9 (V/V)
と数片のジメチルアミノピリジンにより1時間キャッピ
ングすることによりアルキルアミノ基の未反応の部分を
アシル化した。
This was converted into acetic anhydride:pyridine=1:9 (V/V)
The unreacted portions of the alkylamino groups were acylated by capping with several pieces of dimethylaminopyridine for 1 hour.

(2) d−Tpl 4Tの台底 グラスフィルターのついた内径15開のガラス反応管に
チミジンが導入されたCPG(28■)を入れ、初めに
CPGのキャッピングを行う。無水酢酸:ルチジン:T
HF=10:10:80と7%ジメチルアミノピリジン
のテトラヒドロフラン溶液を各IWLl加え30分間反
応させた。反応後無水アセトニトリルで洗浄した。次に
2.5%ジクロロ酢酸の塩化メチレン溶液でジメトキシ
トリチル基を完全に除去し、塩化メチレン、無水アセト
ニトリルで順次洗浄し10分間減圧乾固させた。減圧乾
固後、H−ホスホネートユニット(55μmo1゜50
eq) 、1. 3−ジメチル−2−クロロ−イミダゾ
リニウム・クロライド(137,5μm01゜125 
eq)を1mlの無水アセトニトリル:無水ピリジン=
 1 : 1 (V/V)に溶かし、1o分間反応させ
た。反応後、無水ジメチルホルムアミド、無水アセトニ
トリル:無水ピリジン= 1 : 1 (V/V)、無
水アセトニトリル、塩化メチレンの順で3〜5回洗浄を
行った。この一連の操作を14回繰り返しd−DMTr
Tp r <To/XAJCPGを合成した。各縮合収
率は過塩素酸:エタノール= 3 : 2 (V/V)
によりトリチルカチオンの発色(Ls’t)を可視スペ
クトルにより比色定置し求めた。その結果を表1に示す
(2) Thymidine-introduced CPG (28 cm) was placed in a glass reaction tube with an inner diameter of 15 mm and equipped with a d-Tpl 4T bottom glass filter, and the CPG was first capped. Acetic anhydride: Lutidine: T
A solution of HF=10:10:80 and 7% dimethylaminopyridine in tetrahydrofuran was added to each IWL and reacted for 30 minutes. After the reaction, the mixture was washed with anhydrous acetonitrile. Next, the dimethoxytrityl group was completely removed with a 2.5% dichloroacetic acid solution in methylene chloride, washed successively with methylene chloride and anhydrous acetonitrile, and dried under reduced pressure for 10 minutes. After drying under reduced pressure, H-phosphonate unit (55μmol1゜50
eq), 1. 3-dimethyl-2-chloro-imidazolinium chloride (137,5μm01゜125
eq) to 1 ml of anhydrous acetonitrile: anhydrous pyridine =
It was dissolved at a ratio of 1:1 (V/V) and reacted for 10 minutes. After the reaction, washing was performed 3 to 5 times with anhydrous dimethylformamide, anhydrous acetonitrile:anhydrous pyridine=1:1 (V/V), anhydrous acetonitrile, and methylene chloride in this order. Repeat this series of operations 14 times.d-DMTr
Tpr<To/XAJCPG was synthesized. Each condensation yield is perchloric acid:ethanol = 3:2 (V/V)
The color development (Ls't) of the trityl cation was determined by colorimetry using the visible spectrum. The results are shown in Table 1.

以下余白 (3)  d−TP、TO〜〜CPGの酸化・脱離・精
製・構造確認 d−Tp + aToNXJcPGの酸化は、O,1M
ヨウ素のテトラヒドロフラン:ピリジン:水=44 :
 3 : 3溶液で室温下1時間行なった後、無水アセ
トニトリルで洗浄を行った。これによりホスホネートを
ホスフェートへと酸化した。さらに28%アンモニア水
により室温下で30分間反応させ、生成物をCPGから
脱離した。これを20%アセトニトリルを含むギ酸アン
モニウム水溶液(pH6,8) (OJ8〜0、94M
)のグラジェント溶媒を用いてイオン交換)IPLC(
TSK get DRAB−23W)にまり単離精製を
行った。
Blank space below (3) Oxidation, elimination, purification, and structure confirmation of d-TP, TO~~CPG The oxidation of d-Tp + aToNXJcPG is O, 1M
Iodine in tetrahydrofuran: pyridine: water = 44:
3:3 solution at room temperature for 1 hour, and then washed with anhydrous acetonitrile. This oxidized the phosphonate to phosphate. The product was further removed from CPG by reacting with 28% ammonia water at room temperature for 30 minutes. This was mixed with an ammonium formate aqueous solution (pH 6,8) containing 20% acetonitrile (OJ8-0, 94M
) IPLC (
TSK get DRAB-23W) was isolated and purified.

その結果20分付近に目的物であるd−’rp14Tが
(100口)得られた。この目的物を20%ポリアクリ
ルアミドゲル電気泳動により確認したところ比較のオリ
ゴチミジンと一致することから目的とするd−TP、T
であることを確認した。
As a result, the target product d-'rp14T (100 mouths) was obtained around 20 minutes. When this target product was confirmed by 20% polyacrylamide gel electrophoresis, it matched with the comparative oligothymidine, so the target d-TP, T
It was confirmed that

実施例3 H−ホスホネートユニットを30 eq、用い、1゜3
−ジメチル−2−クロロ−イミダゾリニウム・クロライ
ドを150 eq、用いる以外は実施例2と同様にして
c+−’rp l 4Tの合成を行った。この場合の収
率を表2に示す。
Example 3 Using 30 eq of H-phosphonate unit, 1°3
c+-'rp l 4T was synthesized in the same manner as in Example 2, except that 150 eq of -dimethyl-2-chloro-imidazolinium chloride was used. The yield in this case is shown in Table 2.

さらに、実施例2の(3)と同様に酸化を行い、d−T
p t aTが(2゜50D)得られた。
Furthermore, oxidation was performed in the same manner as in Example 2 (3), and d-T
p taT (2°50D) was obtained.

以下余白 実施例4 H−ホスホネートユニットを40 eq、用い、1゜3
−ジメチル−2−クロロ−イミダゾリニウム・クロライ
ドを100 eq、用いる以外は実施例2と同様にして
d−TI’+*Tの合成を行った。この場合の収率を表
3に示す。
Below is the margin Example 4 Using 40 eq of H-phosphonate unit, 1°3
d-TI'+*T was synthesized in the same manner as in Example 2, except that 100 eq of -dimethyl-2-chloro-imidazolinium chloride was used. The yield in this case is shown in Table 3.

さらに実施例2の(3)と同様に酸化を行い、d−Tp
+mTが(1800)得られた。
Further, d-Tp was oxidized in the same manner as in Example 2 (3).
+mT (1800) was obtained.

以下余白 〔発明の効果〕 叙上の如く本発明によればH−ホスホネート(1)とヌ
クレオシド類(II)の縮合反応を、多くの有機溶媒に
可溶で、かつ安定なイミダゾリニウム化合物(III)
を用いることにより、短時間でかつ副反応を生起するこ
となく高収率で行うことができる。従って本発明方法は
遺伝子の合成、特に固相上でのON八へ台底極めて有用
である。また、この方法は自動合成機にも応用すること
ができる。
The following blanks [Effects of the Invention] As described above, according to the present invention, the condensation reaction of H-phosphonate (1) and nucleosides (II) can be carried out using a stable imidazolinium compound ( III)
By using , the reaction can be carried out in a short time and in high yield without causing side reactions. Therefore, the method of the present invention is extremely useful for gene synthesis, especially ON8 on a solid phase. This method can also be applied to automatic synthesizers.

以上that's all

Claims (1)

【特許請求の範囲】 1、次の一般式( I ) ▲数式、化学式、表等があります▼( I ) 〔式中、Aはピリミジン塩基又はプリン塩基を示し、R
^1はヒドロキシ基の保護基又はモノもしくはポリヌク
レオシド亜リン酸エステル残基を示し、R^2は水素原
子又はカチオン性基を示す〕で表わされるヌクレオシド
亜リン酸エステル誘導体と次の一般式(II) ▲数式、化学式、表等があります▼(II) 〔式中、Bはピリミジン塩基又はプリン塩基を示し、R
^3はヒドロキシ基の保護基又はモノもしくはポリヌク
レオシド亜リン酸エステル残基を示す〕で表わされるヌ
クレオシド類とを、次の一般式(III) ▲数式、化学式、表等があります▼(III) 〔式中、R^4及びR^5は低級アルキル基を示し、X
及びYはハロゲン原子を示す〕 で表わされるイミダゾリニウム化合物の存在下に反応さ
せることを特徴とする一般式(IV) ▲数式、化学式、表等があります▼(IV) 〔式中、A、B、R^1及びR^3は前記と同じ意味を
有する〕 で表わされるポリヌクレオシド亜リン酸エステル類の製
造法。 2、ヌクレオシド亜リン酸エステルを順次縮合させ、得
られたポリヌクレオシド亜リン酸エステルを酸化せしめ
るポリヌクレオチドの製造法において、ヌクレオシド亜
リン酸エステルの縮合反応を次の一般式(III) ▲数式、化学式、表等があります▼(III) 〔式中、R^4及びR^5は低級アルキル基を示し、X
及びYはハロゲン原子を示す〕 で表わされるイミダゾリニウム化合物の存在下に行うこ
とを特徴とするポリヌクレオチドの製造法。 3、固相担体上において、ヌクレオシド亜リン酸エステ
ルを順次縮合させ、得られたポリヌクレオシド亜リン酸
エステルを酸化してポリヌクレオチドとなし、次いで、
ポリヌクレオチドを固相から脱離せしめるポリヌクレオ
チドの製造法において、ヌクレオシド亜リン酸エステル
の縮合反応を次の一般式(III) ▲数式、化学式、表等があります▼(III) 〔式中、R^4及びR^5は低級アルキル基を示し、X
及びYはハロゲン原子を示す〕 で表わされるイミダゾリニウム化合物の存在下に行うこ
とを特徴とするポリヌクレオチドの製造法。
[Claims] 1. The following general formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) [In the formula, A represents a pyrimidine base or a purine base, and R
^1 represents a protecting group for a hydroxy group or a mono- or polynucleoside phosphite residue, R^2 represents a hydrogen atom or a cationic group] and a nucleoside phosphite derivative represented by the following general formula ( II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) [In the formula, B represents a pyrimidine base or a purine base, and R
The nucleosides represented by the following general formula (III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) [In the formula, R^4 and R^5 represent a lower alkyl group, and
and Y represents a halogen atom] General formula (IV) characterized by reaction in the presence of an imidazolinium compound represented by ▲There are mathematical formulas, chemical formulas, tables, etc.▼(IV) B, R^1 and R^3 have the same meanings as above.] A method for producing a polynucleoside phosphite represented by: 2. In a method for producing a polynucleotide in which nucleoside phosphites are sequentially condensed and the obtained polynucleoside phosphites are oxidized, the condensation reaction of nucleoside phosphites is carried out by the following general formula (III) ▲Math. There are chemical formulas, tables, etc.▼(III) [In the formula, R^4 and R^5 represent lower alkyl groups, and
and Y represents a halogen atom] A method for producing a polynucleotide, which is carried out in the presence of an imidazolinium compound represented by the following. 3. Condensing nucleoside phosphites sequentially on a solid support, oxidizing the obtained polynucleoside phosphite to form a polynucleotide, and then
In a polynucleotide production method in which the polynucleotide is detached from a solid phase, the condensation reaction of nucleoside phosphites is carried out using the following general formula (III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) [In the formula, R ^4 and R^5 represent lower alkyl groups, X
and Y represents a halogen atom] A method for producing a polynucleotide, which is carried out in the presence of an imidazolinium compound represented by the following.
JP1206545A 1989-08-09 1989-08-09 Production of polynucleotide Pending JPH0368594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206545A JPH0368594A (en) 1989-08-09 1989-08-09 Production of polynucleotide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206545A JPH0368594A (en) 1989-08-09 1989-08-09 Production of polynucleotide

Publications (1)

Publication Number Publication Date
JPH0368594A true JPH0368594A (en) 1991-03-25

Family

ID=16525157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206545A Pending JPH0368594A (en) 1989-08-09 1989-08-09 Production of polynucleotide

Country Status (1)

Country Link
JP (1) JPH0368594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510282A (en) * 1999-09-25 2003-03-18 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Immunostimulatory nucleic acids
WO2006025154A1 (en) * 2004-08-30 2006-03-09 Gifu University Modified oligonucleotides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510282A (en) * 1999-09-25 2003-03-18 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Immunostimulatory nucleic acids
WO2006025154A1 (en) * 2004-08-30 2006-03-09 Gifu University Modified oligonucleotides
JPWO2006025154A1 (en) * 2004-08-30 2008-05-08 国立大学法人岐阜大学 Modified oligonucleotide

Similar Documents

Publication Publication Date Title
US5264566A (en) Method for in vitro oligonucleotide synthesis using H-phosphonates
US5476925A (en) Oligodeoxyribonucleotides including 3&#39;-aminonucleoside-phosphoramidate linkages and terminal 3&#39;-amino groups
US5700919A (en) Modified phosphoramidite process for the production of modified nucleic acids
JPH0631305B2 (en) Nucleoside derivative
US4808520A (en) Labelling of oligonucleotides
Hyodo et al. An improved method for synthesizing cyclic bis (3′–5′) diguanylic acid (c-di-GMP)
CN112279877A (en) Nucleoside phosphate and synthesis method thereof
NZ225944A (en) Biotinylated polynucleotides and analogues thereof, processes for their preparation and intermediates therefor
US5134228A (en) Nucleoside-3&#39;-phosphites for synthesis of oligonucleotides
JP7475056B2 (en) Method for producing photoresponsive nucleotide analogues
JPH0368594A (en) Production of polynucleotide
Zain et al. Nucleoside H-phosphonates. 15. Preparation of nucleoside H-phosphonothioate monoesters from the corresponding nucleoside H-phosphonates
US4503233A (en) Phosphorylating agent and process for the phosphorylation of organic hydroxyl compounds
JPS59502025A (en) Method for producing oligonucleoside phosphonates
JP4709959B2 (en) Nucleoside phosphoramidite compounds
JPS6270391A (en) Production of protected oligonucleotide
US7049432B2 (en) Oligonucleotides having alkylphosphonate linkages and methods for their preparation
JPH06135988A (en) Nucleotide derivative
JP2508006B2 (en) Method for producing oligodeoxynucleotide
JPS6284097A (en) Production of protected oligonucleotide
SU1081168A1 (en) Process for preparing o=alkyldichlorothiophosphates
JPH06135989A (en) Nucleotide derivative
JPS60120890A (en) Novel phosphorylation agent
JPH04112894A (en) Phosphine compound and synthesis of oligonucleotide using the same
JPS6284096A (en) Phosphoramidite compound and production thereof