WO2006024528A1 - Wärmeübertrager, insbesondere für ein kraftfahrzeug - Google Patents

Wärmeübertrager, insbesondere für ein kraftfahrzeug Download PDF

Info

Publication number
WO2006024528A1
WO2006024528A1 PCT/EP2005/009426 EP2005009426W WO2006024528A1 WO 2006024528 A1 WO2006024528 A1 WO 2006024528A1 EP 2005009426 W EP2005009426 W EP 2005009426W WO 2006024528 A1 WO2006024528 A1 WO 2006024528A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
exchanger according
profile
tubes
profiles
Prior art date
Application number
PCT/EP2005/009426
Other languages
English (en)
French (fr)
Inventor
Walter Demuth
Wolfgang Geiger
Martin Kotsch
Michael Kranich
Karl-Heinz Staffa
Christoph Walter
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to EP05794801A priority Critical patent/EP1794528B1/de
Priority to AT05794801T priority patent/ATE462948T1/de
Priority to DE502005009327T priority patent/DE502005009327D1/de
Publication of WO2006024528A1 publication Critical patent/WO2006024528A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Definitions

  • Heat exchanger in particular for a motor vehicle
  • the invention relates to a heat exchanger, in particular for a motor vehicle according to the preamble of claim 1.
  • a heat exchanger in particular for a motor vehicle was known, which is characterized by a pressure-stable construction, as used in particular in CO2-powered air conditioning use.
  • the tubes which can be flowed through by refrigerant, are designed as multi-chamber flat tubes which communicate with collecting and / or distribution devices as well as deflection devices.
  • the collection and / or distribution devices are characterized by a pressure-stable plate construction, which essentially consists of a base plate, a distribution plate and a cover plate.
  • the refrigerant, R744 is guided in the known heat exchanger in a very wide variety of ways through the tubes, with fundamentally deflections in the width (parallel to the end face) and in the depth (in or opposite to the flow direction of the air) being possible.
  • a disadvantage of this heat exchanger is that the inlet and outlet channels or the refrigerant inlet and outlet are not optimally insulated from each other thermally, but rather are in blazelei ⁇ tender connection over the common plates.
  • a similar construction was known from WO 98/51983, wherein a pressure-resistant heat exchanger of flat tubes and headers is built up, each of which is constructed of a plurality of communicating Kreisquer ⁇ sections.
  • the headers can be produced as extruded parts and thus are particularly resistant to internal pressure, but are also associated with corresponding costs. Again, only a deflection of the refrigerant takes place in the width and not in the depth.
  • a heat exchanger of the type mentioned in particular with deflection in the width and / or in depth with respect to its collection and / or Verleinrichtun ⁇ conditions to improve, in particular, a thermal separation of flow channels with high temperature difference is given.
  • Er ⁇ invention provides that the collecting and / or Verileinrich ⁇ device is formed as at least one C-profile, which is closed by atient ⁇ raked rake.
  • the C-profile can be obtained as a semifinished product or folded out of a flat sheet metal.
  • the openings for receiving pipe ends, so-called passages can be easily produced by punching or stamping.
  • the rake, ie a bar with recesses in the region of the passages can be formed as a flat stamped part with arbitrary shapes, for. B. with tongue-shaped Trennste ⁇ gene, which extend into the C-profile and cause a subdivision of the C-profile into individual chambers.
  • the dividers which act as partitions, can be arranged at any point between the passages.
  • the C-profile is soldered to the rake and the pipe ends and thus represents a low-priced pressure-resistant solution.
  • two C-profiles are arranged at a distance next to each other for two rows of tubes, d. H. in Heilströmungsrich ⁇ direction behind the other.
  • the distance between the two C-profiles results in the advantage of a thermal separation, ie. H. Heat is prevented from flowing from the higher temperature C-profile to the lower temperature C-profile, thereby degrading the efficiency of the heat exchanger.
  • deflecting devices are provided on the side of the block facing away from the C-profiles, which are preferably designed as a U-profile with an inserted wave profile, one "shaft” forming a deflection chamber and connecting two pipe ends to one another.
  • the first flow medium preferably carbon dioxide
  • the first flow medium preferably carbon dioxide
  • the lee- and windward flow channels can be used as separate rows of tubes, z. B. be formed two rows of flat tubes or as a continuous flat tube with opposite flow-through flow channels.
  • the C-profile can also be used as a deflecting device by providing a clamping between the two legs. - A -
  • te is inserted, which may have either the shape of a rake or a Plat ⁇ te with slots.
  • the slots are formed as elongated holes and comprise the tube ends - they form in a two-row Rohranord ⁇ tion a crossing channel from one to the other row of tubes.
  • stops for limiting the insertion depth of the tubes are provided on the strips, rakes or plates, and preferably designed as paragraphs, which engage over the Röhren ⁇ , preferably on the narrow sides.
  • the tubes can be mounted in a simple manner always with the same insertion depth.
  • a collecting channel for refrigerant emerging from the tubes can be arranged in the strip, in particular of the plate, communicating with the oblong holes.
  • both C-profiles can be subdivided into two chambers by separating webs arranged on the rake, so that four chambers arise for the entire heat exchanger, two of which are interconnected approximately diagonally opposite chambers by a transfer device.
  • the Studentshielsein ⁇ direction each have a breakthrough in the web portion of the C-profile and a Matterbergsteil which forms a connection or transfer channel between bei ⁇ the C-profiles.
  • the refrigerant thus enters the first lee für gelege ⁇ ne chamber, flows through after deflection in the depth of the second luvsei ⁇ tig chamber arranged, then enters the third lee chrome located chamber and leaves the heat exchanger on the fourth windward side chamber of the windward C.
  • Profiles - this is the refrigerant inlet and - exit approximately diagonally opposite, ie they are largely isolated from each other thermally (a thermally conductive connection exists only in the middle crossing area).
  • the soldered heat exchanger according to the invention can be used advantageously in particular as a gas cooler of a CO2 air conditioning system because the collecting, distributing and deflecting devices according to the invention are on the one hand pressure-resistant and, on the other hand, variable in terms of flow guidance and thus deflections of the refrigerant both in width and in space depth, allowing effective cooling of the refrigerant from entry to exit.
  • Fig. 1 shows a detail of a gas cooler with C-profile and inserted
  • FIG. 5 shows an alternative form of a deflection device with C-profile and Rohrinstecktiefenbegrenzung
  • Fig. 6 shows a section through a further deflection with 7 shows a single-row system with C-profile and rake
  • FIG. 8 shows a single-row system with C-profile and slotted plate.
  • FIG. 1 shows a section of a gas cooler 1 with a gas cooler block 2, consisting of flat tubes 3 and corrugated strips 4 arranged between them.
  • the flat tubes 3 are arranged in two rows and are soldered to the corrugated strips 4.
  • a C-profile 5 is attached, which has elongated openings 6, so-called passages, for receiving the tube ends of the flat tubes 3.
  • a Rake 7 used in the open side of the C-profile, which has in the region of the passages 6 recesses 7a for the pipe ends and a divider 7b.
  • the C-profile 5 has two legs 5a, 5b formed as flat sides, which are connected by a web 5c.
  • the C-profile can be produced by folding from a level sheet metal, whereby the passages 6 can be produced by stamping prior to folding.
  • Fig. 1a shows the rake 7 (partially) as a single part with the divider 7b, as shown in Fig. 1.
  • the C-profile which is soldered to the tube ends of the flat tubes 3 and the rake 7, forms a Sammel ⁇ or distribution channel, which is interrupted by the divider 7b.
  • the C-profile 5 is closed at the end by an end web 7 c at the end of the rake 7.
  • Fig. 2 shows a cross section in the upper region of the gas cooler 1 with a first row of tubes I and a second row of tubes II.
  • the direction of air flow is shown by an arrow L;
  • the row of tubes I is the leeward (downstream) and the tube row Il the windward (upstream).
  • the C-profile 5 and on the lee side tube row I is another C-profile 8 is arranged, which is also completed by a rake 9 to the outside and mirror image to the C-profile 5 with rake 7 is formed.
  • Both C-profiles form Strömungska ⁇ channels 10, 11, which are interconnected by a transfer channel 12.
  • a T-shaped formed transition part 13 is inserted and soldered to the two C-profiles 5, 8.
  • the crossing channel 12 is - as shown in the drawing - formed by openings in the web areas of the C-profiles 5, 8 and the T-shaped crossing part 13.
  • Such a transition region is preferably arranged in the middle of the heat exchanger or in the middle region of the two C-profiles 5, 8, so that a passage of the refrigerant from the windward chamber 10 into the leeward chamber 11 is made possible.
  • FIG. 3 shows the transition region according to FIG.
  • the distance a between the two C-profiles 5, 8 causes a thermal decoupling.
  • the front C-profile 5 is divided into two flow chambers 11, 15 by the separating web 7b of the compute 7 into two flow chambers 10, 14 and the rear C-profile 8 through a dividing web 9b of the rake 9.
  • the two separating webs 7b, 9b are arranged offset from one another, so that an overlap is formed between the chambers 10, 11, within which the transfer channel 12 is arranged, which in the region of the distance a is formed by the T-shaped crossing part 13 becomes.
  • the flow chamber 15 is the inlet chamber for the refrigerant and the flow chamber 14 is the outlet chamber for the refrigerant from the gas cooler 1.
  • the refrigeration unit, not shown - Teteneintritt and the refrigerant outlet also not shown are thus almost diagonally opposite and have a maximum distance, which proves favorable for the efficiency of the gas cooler, ins ⁇ also in connection with the thermal decoupling by the distance a both C-profiles 5, 8.
  • FIG. 4 shows the side of the gas cooler 1 facing away from the C-sections 5, 8 with a deflection device 16, which consists essentially of a U-profile 17 with a wave profile 18.
  • the U-profile 17 has a flat Stegbe ⁇ rich 17a, which acts as a tube sheet and punched passages 19 for receiving the pipe ends of the flat tubes 3.
  • U-legs 17b, 17c are bent at right angles, which receive the wave profile 18 between them and are soldered tightly thereto.
  • the wave profile 18 has a multiplicity of "waves" 18a, 18b ..., which respectively form deflection chambers and communicate with tubes of the first and second row of tubes I 1 Il
  • the wave profile 18 is soldered on the one end to the two legs 17b, 17c and on the other hand, with its wave crests, not shown, with the tube bottom 17a.
  • This deflecting device 16 thus effects a deflection in the depth.
  • the embodiment described above represents only one possibility of many for the flow guidance of the refrigerant within the gas cooler 1 according to the invention.
  • the transfer area described in FIGS. 2 and 3 can be dispensed with, so that both C-profiles 5, 8 do not exist on the refrigerant side interconnected, rather are completely separate.
  • the arrangement of the separating webs could be modified, for example, to the effect that only the leeward rake 9 has an approximately central separating web 9b, whereas the windward rake 7 has no separating web.
  • Other flow guides in the invention are possible.
  • Fig. 5 shows a further embodiment of a deflection device 20, which is designed as a C-profile 21 with two parallel legs 21a, 21b and a web 21c. Between the two legs 21a, 21b, a plate 22 is inserted, which has slots 23 in the form of elongated holes. Within the slots open pipe ends 24, 25, which are through the lower leg 21 a, which acts as a tube sheet, are pushed through. The block of the heat exchanger, consisting of tubes and fins, is not shown here. On the side facing the leg 21a of the plate 22 paragraphs 26, 27 are arranged, which partially overlap the tube ends 24, 25 on their narrow sides and thus act as a limitation for the insertion depth of the tubes.
  • the oblong holes 23 form a crossover channel for the tubes 24, 25 or the first and the second row of tubes.
  • the assembly of the deflecting device 20 takes place in such a way that first the plate 22 is pushed into the gap between the two legs 21a, 21b and fixed in this position, which can be done positively or non-positively. Thereafter, the deflection device 20 is attached to the tube ends 24, 25 of the finished block, not shown, wherein the tube ends 24, 25 come with their upper edges in attack with the paragraphs 26, 27. Da ⁇ after the heat exchanger can be soldered.
  • Fig. 6 shows a further embodiment of a deflection device 28 in a sectional view.
  • the C-profile 29 is shown here by dashed lines.
  • a plate 30 which has at its lower side four shoulders 31a, 31b, 31c, 31d, which respectively overlap the narrow side edges of the two flat tubes 32, 33 and thus form an insertion depth limitation .
  • two elongated holes 34, 35 and above a perpendicular to the plane ver ⁇ running collection channel 36 are arranged in the plate 30 for emerging from the tubes 32, 33 in the direction of the arrows P refrigerant.
  • This arrangement with collecting channel 36 allows a parallel flow of the tubes 32, 33, d. H. in the same direction as shown by the arrows P.
  • the escaping refrigerant is then supplied via the collecting channel 36 to the outlet of the heat exchanger zuge ⁇ .
  • Fig. 7 shows a heat exchanger 37 as a single-row system, i. H. with only one row of flat tubes 38, which are received by the lower leg 39a of the C-profile 39.
  • a rake 40 - as described above - inserted.
  • the plate-shaped rake 40 has on its underside a shoulder 41, which engages over the narrow side of the pipe end 38 and thus forms a stop for (one-sided) Be ⁇ limitation of the insertion.
  • the heat exchanger 37 can be completed by side parts, not shown, which are inserted with their ends by slots, not shown in the C-profile 39.
  • FIG. 8 shows a further exemplary embodiment of a single-row heat exchanger 42 with C-profile 43 and inserted plate 44, which has slots in the form of oblong holes 46 in the region of the tube ends 45.
  • paragraphs 47, 48 are provided as beid ⁇ sided Einstecktiefenbegrenzung.
  • the invention is not limited to the refrigerant R747 (CO2), but also extends to heat exchangers, which are operated with the refrigerant R134a or R152.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Die Erfindung betrifft einen Wärmeübertrager (1) mit einem aus Rohren (3) und Rippen (4) bestehenden Block (2), wobei die Rohre (3) von einem ersten Medium in mindestens einer Richtung durchströmbar und von einem zweiten Medium umströmbar sind, und mit mindestens einer Sammel- und/oder Ver­teileinrichtung für das erste Medium, welche mit den Rohren (3) kommunizie­rend verbunden ist. Es wird vorgeschlagen, dass die Sammel- und/oder Verteileinrichtung als mindestens ein C-Profil (5) mit zwei Schenkeln (5a, 5b) und einem Steg (5c) ausgebildet und dass das C-Profil (5) durch eine zwischen den Schenkeln (5a, 5b) angeordnete Leiste (7) geschlossen ist.

Description

BEHR GmbH & Co. KG Mauserstraße 3, 70469 Stuttgart
Wärmeübertrager, insbesondere für ein Kraftfahrzeug
Die Erfindung betrifft einen Wärmeübertrager, insbesondere für ein Kraft- fahrzeug nach dem Oberbegriff des Patentanspruches 1.
Durch die DE-A 102 60 107 der Anmelderin wurde ein Wärmeübertrager, insbesondere für ein Kraftfahrzeug bekannt, der durch eine druckstabile Bauweise gekennzeichnet ist, wie sie insbesondere bei mit CO2 betriebenen Klimaanlagen Verwendung findet. Die von Kältemittel durchströmbaren Roh¬ re sind als Mehrkammerflachrohre ausgebildet, welche mit Sammel- und/oder Verteileinrichtungen sowie Umlenkeinrichtungen kommunizierend in Verbindung stehen. Die Sammel- und/oder Verteileinrichtungen sind dabei durch eine druckstabile Plattenbauweise gekennzeichnet, die sich im We- sentlichen aus einer Bodenplatte, einer Verteilplatte und einer Deckplatte zusammensetzt. Das Kältemittel, R744, ist bei dem bekannten Wärmeü¬ bertrager auf unterschiedlichste Weise durch die Rohre geführt, wobei grundsätzlich Umlenkungen in der Breite (parallel zur Stirnfläche) und in der Tiefe (in oder entgegen der Strömungsrichtung der Luft) möglich sind. Nachteilig bei diesem Wärmeübertrager ist, dass die Ein- und Austrittskanäle bzw. der Kältemitteleintritt und -austritt nicht optimal thermisch voneinander isoliert sind, sondern vielmehr über die gemeinsamen Platten in wärmelei¬ tender Verbindung stehen.
BESTÄTIGUNG5KOP1E Durch die DE-A 199 06 289 wurde ein Wärmeübertrager für einen C02- Kältekreislauf bekannt, bei welchem das Kältemittel vom Kältemitteleintritt bis zum Kältemittelaustritt lediglich in der Breite umgelenkt wird, sodass es den gesamten Wärmeübertragerblock dreiflutig, d. h. in drei Durchgängen durchströmt. Die Sammelkästen, welche die Rohrenden aufnehmen, sind aus Gründen der Innendruckstabilität in zwei kreisförmige Querschnitte auf¬ geteilt, die miteinander kommunizieren. Eine Umlenkung des Kältemittels in der Tiefe, d. h. ein Kreuz-Gegenstrom mit der Luft ist hier nicht vorgesehen, was die Leistung dieses Wärmeübertragers beschränkt.
Eine ähnliche Bauweise wurde durch die WO 98/51983 bekannt, wobei ein druckfester Wärmeübertrager aus Flachrohren und Sammelrohren aufge¬ baut ist, die jeweils aus mehreren miteinander kommunizierenden Kreisquer¬ schnitten aufgebaut sind. Die Sammelrohre sind als Extrusionsteile herstell- bar und somit besonders innendruckfest, allerdings auch mit entsprechen¬ den Kosten verbunden. Auch hier findet nur eine Umlenkung des Kältemit¬ tels in der Breite und nicht in der Tiefe statt.
Es ist Aufgabe der vorliegenden Erfindung, einen Wärmeübertrager der ein- gangs genannten Art, insbesondere mit Umlenkmöglichkeiten in der Breite und/oder in der Tiefe hinsichtlich seiner Sammel- und/oder Verteileinrichtun¬ gen zu verbessern, wobei insbesondere auch eine thermische Trennung von Strömungskanälen mit hoher Temperaturdifferenz gegeben ist.
Diese Aufgabe wird durch die Merkmale des Patenanspruches 1 gelöst. Er¬ findungsgemäß ist vorgesehen, dass die Sammel- und/oder Verteileinrich¬ tung als mindestens ein C-Profil ausgebildet ist, welches durch einen einge¬ schobenen Rechen geschlossen wird. Das C-Profil kann als Halbzeug bezo¬ gen oder aus einem flachen Blech abgekantet werden. Die Öffnungen zur Aufnahme von Rohrenden, so genannte Durchzüge, können einfach durch Stanzen oder Stanzprägen hergestellt werden. Der Rechen, d. h. eine Leiste mit Aussparungen im Bereich der Durchzüge kann als flaches Stanzteil mit beliebigen Formen ausgebildet werden, z. B. mit zungenförmigen Trennste¬ gen, die in das C-Profil hineinreichen und eine Unterteilung des C-Profils in einzelne Kammern bewirken. Die Trennstege, die als Trennwände wirken, können an beliebiger Stelle jeweils zwischen den Durchzügen angeordnet werden. Das C-Profil wird mit dem Rechen und den Rohrenden verlötet und stellt somit eine preisgünstige druckfeste Lösung dar.
In vorteilhafter Ausgestaltung der Erfindung sind für zwei Rohrreihen zwei C- Profile im Abstand nebeneinander angeordnet, d. h. in Luftströmungsrich¬ tung hintereinander. Durch den Abstand beider C-Profile ergibt sich der Vor¬ teil einer thermischen Trennung, d. h. es wird verhindert, dass Wärme von dem C-Profil höherer Temperatur zum C-Profil niedrigerer Temperatur fließt und damit den Wirkungsgrad des Wärmeübertragers verschlechtert.
In weiterer vorteilhafter Ausgestaltung der Erfindung sind auf der den C- Profilen abgewandten Seite des Blockes Umlenkeinrichtungen vorgesehen, die vorzugsweise als U-Profil mit einem eingesetzten Wellenprofil ausgebil- det sind, wobei jeweils eine „Welle" eine Umlenkkammer bildet und zwei Rohrenden miteinander verbindet. Damit kann eine Umlenkung in der Tiefe, vorzugsweise entgegen der Luftströmungsrichtung, d. h. zur Erzeugung ei¬ nes Gegenstromes bewirkt werden. Das erste Strömungsmedium, vorzugs¬ weise Kohlendioxid tritt also zunächst in ein leeseitiges C-Profil ein, durch- strömt eine leeseitige Rohrreihe oder leeseitig angeordnete Strömungskanä¬ le, wird über die Umlenkeinrichtung entgegen der Luftströmungsrichtung umgelenkt und durchströmt eine luvseitige Rohrreihe oder Strömungskanäle bis zum Erreichen des luvseitigen C-Profils, wo das Kältemittel inzwischen eine erheblich geringere Temperatur als beim Eintritt aufweist. Durch den erfindungsgemäßen Abstand zwischen beiden C-Profilen kann Wärme vom leeseitigen C-Profil nicht zum luvseitigen C-Profil fließen und dort das Kälte¬ mittel wieder erwärmen. Diese thermische Trennung wirkt sich somit beson¬ ders vorteilhaft bei Gaskühlern mit fallender oder gleitender Temperatur des überkritischen Kältemittels aus. Die lee- und luvseitigen Strömungskanäle können als getrennte Rohrreihen, z. B. zwei Reihen von Flachrohren oder auch als durchgehendes Flachrohr mit entgegengesetzt durchströmbaren Strömungskanälen ausgebildet sein.
In weiterer Ausgestaltung der Erfindung kann das C-Profil auch als Umlenk- einrichtung verwendet werden, indem zwischen beiden Schenkeln eine Leis- - A -
te eingeschoben wird, die entweder die Form eines Rechens oder einer Plat¬ te mit Schlitzen aufweisen kann. Die Schlitze sind als Langlöcher ausgebildet und umfassen die Rohrenden - sie bilden bei einer zweireihigen Rohranord¬ nung einen Übertrittskanal von einer zur anderen Rohrreihe.
In weiterer vorteilhafter Ausgestaltung der Erfindung sind an den Leisten, Rechen oder Platten, Anschläge zur Begrenzung der Einstecktiefe der Rohre vorgesehen und vorzugsweise als Absätze ausgebildet, welche die Rohren¬ den, vorzugsweise an deren Schmalseiten übergreifen. Damit können die Rohre auf einfache Weise stets mit derselben Einstecktiefe montiert werden.
In weiterer vorteilhafter Ausgestaltung der Erfindung kann in der Leiste, ins¬ besondere der Platte, kommunizierend zu den Langlöchern, ein Sammelka¬ nal für aus den Rohren austretendes Kältemittel angeordnet sein. Damit kann eine Parallelschaltung der Rohre, sei es für eine zweireihige oder eine einreihige Anordnung ermöglicht werden.
In weiterer Ausgestaltung der Erfindung können beide C-Profile durch an den Rechen angeordnete Trennstege in jeweils zwei Kammern unterteilt werden, sodass sich für den gesamten Wärmeübertrager vier Kammern er¬ geben, von denen zwei sich etwa diagonal gegenüberliegende Kammern durch eine Übertrittseinrichtung miteinander verbunden sind. Damit ergibt sich der Vorteil, dass der Wärmeübertrager zweimal, jeweils halbseitig im Gegenstrom durchströmbar ist. Dies erhöht den Wärmeübertragungswir- kungsgrad. Möglich ist auch, durch mehrere Trennstege mehrere Kammern zu schaffen, die durch mehrere Übertrittseinrichtungen verbunden sind.
In weiterer vorteilhafter Ausgestaltung der Erfindung weist die Übertrittsein¬ richtung jeweils einen Durchbruch im Stegbereich des C-Profils auf und ein Übertrittsteil, welches einen Verbindungs- oder Übertrittskanal zwischen bei¬ den C-Profilen bildet. Das Kältemittel tritt somit in die erste leeseitig gelege¬ ne Kammer ein, durchströmt nach Umlenkung in der Tiefe die zweite luvsei¬ tig angeordnete Kammer, tritt dann in die dritte leeseitig gelegene Kammer über und verlässt den Wärmeübertrager über die vierte luvseitig gelegene Kammer des luvseitigen C-Profils - damit liegen sich Kältemitteleintritt- und - austritt etwa diagonal gegenüber, d. h. sie sind weitestgehend thermisch ge¬ geneinander isoliert (eine wärmeleitende Verbindung besteht nur im mittleren Übertrittsbereich).
Der erfindungsgemäße gelötete Wärmeübertrager ist insbesondere als Gas¬ kühler einer CO2-Klimaanlage vorteilhaft verwendbar, weil die erfindungs¬ gemäßen Sammel-, Verteil- und Umlenkeinrichtungen einerseits druckfest und andererseits variabel hinsichtlich der Strömungsführung sind und somit Umlenkungen des Kältemittels sowohl in der Breite als auch in der Tiefe er- möglichen, wodurch eine effektive Abkühlung des Kältemittels vom Eintritt bis zum Austritt möglich ist.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
Fig. 1 einen Ausschnitt eines Gaskühlers mit C-Profil und eingesetztem
Rechen,
Fig. 1a einen Abschnitt eines Rechens mit Trennsteg, Fig. 2 einen Querschnitt durch den Gaskühler mit zwei C-Profilen und Übertrittsbereich,
Fig. 3 eine Ansicht von oben auf die C-Profile mit Übertrittsbereich, Fig. 4 einen Ausschnitt des Gaskühlers mit Umlenkeinrichtung, Fig. 5 eine alternative Form einer Umlenkeinrichtung mit C-Profil und Rohreinstecktiefenbegrenzung, Fig. 6 einen Schnitt durch eine weitere Umlenkeinrichtung mit Rohrein¬ stecktiefenbegrenzung und Sammelkanal, Fig. 7 ein einreihiges System mit C-Profil und Rechen und Fig. 8 ein einreihiges System mit C-Profil und Schlitzplatte.
Fig. 1 zeigt einen Ausschnitt eines Gaskühlers 1 mit einem Gaskühlerblock 2, bestehend aus Flachrohren 3 und zwischen diesen angeordneten Wellrip¬ pen 4. Die Flachrohre 3 sind in zwei Reihen angeordnet und mit den Wellrip¬ pen 4 verlötet. Auf eine Reihe der Flachrohre 3 ist ein C-Profil 5 aufgesteckt, welches längliche Öffnungen 6, so genannte Durchzüge, zur Aufnahme der Rohrenden der Flachrohre 3 aufweist. In die offene Seite des C-Profils ist ein Rechen 7 eingesetzt, welcher im Bereich der Durchzüge 6 Aussparungen 7a für die Rohrenden und einen Trennsteg 7b aufweist. Das C-Profil 5 weist zwei als flache Seiten ausgebildete Schenkel 5a, 5b auf, welche durch einen Steg 5c verbunden sind. Das C-Profil kann durch Abkanten aus einem ebe- nen Blech hergestellt werden, wobei vor dem Abkanten die Durchzüge 6 durch Stanzprägen herstellbar sind.
Fig. 1a zeigt den Rechen 7 (teilweise) als Einzelteil mit dem Trennsteg 7b, wie er auch in Fig. 1 dargestellt ist. Das C-Profil, welches mit den Rohrenden der Flachrohre 3 und mit dem Rechen 7 verlötet ist, bildet einen Sammel¬ oder Verteilerkanal, welcher durch den Trennsteg 7b unterbrochen wird. Damit können innerhalb des C-Profils zwei oder mehrere Kammern gebildet werden. Das C-Profil 5 ist endseitig durch einen Endsteg 7c am Ende des Rechens 7 geschlossen.
Fig. 2 zeigt einen Querschnitt im oberen Bereich des Gaskühlers 1 mit einer ersten Rohrreihe I und einer zweiten Rohrreihe II. Die Luftströmungsrichtung ist durch einen Pfeil L dargestellt; somit ist die Rohrreihe I die leeseitige (stromabwärts gelegene) und die Rohrreihe Il die luvseitige (stromaufwärts gelegene). Auf der luvseitigen Rohrreihe Il ist das C-Profil 5 und auf der lee¬ seitigen Rohrreihe I ist ein weiteres C-Profil 8 angeordnet, welches ebenfalls durch einen Rechen 9 nach außen abgeschlossen und spiegelbildlich zum C-Profil 5 mit Rechen 7 ausgebildet ist. Beide C-Profile bilden Strömungska¬ näle 10, 11 , welche durch einen Übertrittskanal 12 miteinander verbunden sind. Zwischen beiden C-Profilen 5, 8 besteht ein Abstand a, in welchen ein T-förmig ausgebildetes Übertrittsteil 13 eingesetzt und mit den beiden C- Profilen 5, 8 verlötet ist. Der Übertrittskanal 12 wird - wie aus der Zeichnung ersichtlich - durch Durchbrüche in den Stegbereichen der C-Profile 5, 8 und des T-förmigen Übertrittsteiles 13 gebildet. Ein solcher Übertrittsbereich ist vorzugsweise in der Mitte des Wärmeübertragers bzw. im mittleren Bereich der beiden C-Profil 5, 8 angeordnet, sodass ein Übertritt des Kältemittels von der luvseitigen Kammer 10 in die leeseitige Kammer 11 ermöglicht wird. Je nach Zahl der Umlenkungen des Kältemittels in der Tiefe können auch meh¬ rere solcher Übertrittsbereiche an einem Wärmeübertrager vorgesehen sein. Fig. 3 zeigt den Übertrittsbereich gemäß Fig. 2 in einer Ansicht von oben auf die beiden C-Profile 5, 8, die im Bereich ihrer Stege 5c, 8c geschnitten sind. Der Abstand a zwischen den beiden C-Profilen 5, 8 bewirkt eine thermische Entkopplung. Das vordere C-Profil 5 ist durch den Trennsteg 7b des Re- chens 7 in zwei Strömungskammern 10, 14 und das hintere C-Profil 8 durch einen Trennsteg 9b des Rechens 9 in zwei Strömungskammern 11 , 15 un¬ terteilt. Die beiden Trennstege 7b, 9b sind versetzt zueinander angeordnet, sodass sich zwischen den Kammern 10, 11 eine Überlappung bildet, inner¬ halb welcher der Übertrittskanal 12 angeordnet ist, der im Bereich des Ab- Standes a durch das T-förmig ausgebildete Übertrittsteil 13 gebildet wird. Somit erfolgt eine Z-förmige Strömungsumlenkung des Kältemittels von der Kammer 10 in die Kammer 11. Dabei ist die Strömungskammer 15 die Ein¬ trittskammer für das Kältemittel und die Strömungskammer 14 die Austritts¬ kammer für das Kältemittel aus dem Gaskühler 1. Der nicht dargestellte Käl- temitteleintritt und der ebenfalls nicht dargestellte Kältemittelaustritt liegen sich somit quasi diagonal gegenüber und weisen einen maximalen Abstand auf, was sich für den Wirkungsgrad des Gaskühlers als günstig erweist, ins¬ besondere auch in Verbindung mit der thermischen Entkoppelung durch den Abstand a beider C-Profile 5, 8.
Fig. 4 zeigt die den C-Profilen 5, 8 abgewandte Seite des Gaskühlers 1 mit einer Umlenkeinrichtung 16, die im Wesentlichen aus einem U-Profil 17 mit einem Wellenprofil 18 besteht. Das U-Profil 17 weist einen flachen Stegbe¬ reich 17a auf, welcher als Rohrboden fungiert und ausgestanzte Durchzüge 19 zur Aufnahme der Rohrenden der Flachrohre 3 aufweist. Beiderseits des Rohrbodens 17a sind U-Schenkel 17b, 17c im rechten Winkel abgekantet, die zwischen sich das Wellenprofil 18 aufnehmen und mit diesem dicht verlö¬ tet sind. Das Wellenprofil 18 weist eine Vielzahl von „Wellen" 18a, 18b..., die jeweils Umlenkkammern bilden und mit Rohren der ersten und der zweiten Rohreihe I1 Il kommunizieren. Das Wellenprofil 18 ist einerseits stirnseitig mit den beiden Schenkeln 17b, 17c verlötet und andererseits mit seinen nicht dargestellten Wellenkämmen mit dem Rohrboden 17a. Durch diese Umlenk¬ einrichtung 16 wird somit eine Umlenkung in der Tiefe bewirkt. Das oben beschriebene Ausführungsbeispiel stellt nur eine Möglichkeit von vielen für die Strömungsführung des Kältemittels innerhalb des erfindungs¬ gemäßen Gaskühlers 1 dar. Beispielsweise kann der in Figuren 2 und 3 be¬ schriebene Übertrittsbereich entfallen, sodass beide C-Profile 5, 8 kältemit- telseitig nicht miteinander verbunden, vielmehr völlig getrennt sind. Die An¬ ordnung der Trennstege könnte beispielsweise dahingehend abgeändert werden, dass nur der leeseitige Rechen 9 einen etwa mittleren Trennsteg 9b aufweist, der luvseitige Rechen 7 dagegen keinen Trennsteg. Dies hätte zur Folge, dass das Kältemittel, welches in die Eintrittskammer 15 eintritt, nach Umlenkung durch die Umlenkeinrichtung 16 die zweite Kammer 10 erreicht und sich dann auf die Kammer 14 verteilen würde. Nach der Umlenkung in der Tiefe über die Umlenkeinrichtung 16 würde also durch die Strömung von der Kammer 10 in die Kammer 14 eine Umlenkung in der Breite erfolgen. Nach erneuter Umlenkung in der Tiefe, jetzt in Luftströmungsrichtung L, wür- de die Kammer 11 vom Kältemittel erreicht, die jetzt Austrittskammer wäre. Weitere Strömungsführungen im Rahmen der Erfindung sind möglich.
Fig. 5 zeigt ein weiteres Ausführungsbeispiel für eine Umlenkeinrichtung 20, welche als C-Profil 21 mit zwei parallel angeordneten Schenkeln 21a, 21b und einem Steg 21c ausgebildet ist. Zwischen die beiden Schenkel 21a, 21b ist eine Platte 22 eingeschoben, welche Schlitze 23 in Form von Langlöchern aufweist. Innerhalb der Langlöcher münden Rohrenden 24, 25, welche durch den unteren Schenkel 21a, welcher als Rohrboden fungiert, durchgesteckt sind. Der Block des Wärmeübertragers, bestehend aus Rohren und Rippen, ist hier nicht dargestellt. An der dem Schenkel 21a zugewandten Seite der Platte 22 sind Absätze 26, 27 angeordnet, welche die Rohrenden 24, 25 an ihren Schmalseiten teilweise übergreifen und somit als Begrenzung für die Einstecktiefe der Rohre wirken. Die Langlöcher 23 bilden einen Übertrittska¬ nal für die Rohre 24, 25 bzw. der ersten und der zweiten Rohrreihe. Die Montage der Umlenkeinrichtung 20 erfolgt in der Weise, dass zunächst die Platte 22 in den Spalt zwischen den beiden Schenkeln 21a, 21b geschoben und in dieser Position fixiert wird, was form- oder kraftschlüssig erfolgen kann. Danach wird die Umlenkeinrichtung 20 auf die Rohrenden 24, 25 des fertigen, nicht dargestellten Blockes aufgesteckt, wobei die Rohrenden 24, 25 mit ihren Oberkanten in Anschlag mit den Absätzen 26, 27 kommen. Da¬ nach kann der Wärmeübertrager verlötet werden.
Fig. 6 zeigt ein weiteres Ausführungsbeispiel für eine Umlenkeinrichtung 28 in einer Schnittdarstellung. Das C-Profil 29 ist hier gestrichelt dargestellt. In¬ nerhalb des Profils 29 befindet sich eine Platte 30, welche an ihrer Untersei¬ te vier Absätze 31a, 31b, 31c, 31 d aufweist, welche jeweils die Schmalsei¬ tenoberkanten der beiden Flachrohre 32, 33 übergreifen und damit eine Ein¬ stecktiefenbegrenzung bilden. Oberhalb der Rohre 32, 33 sind in der Platte 30 zwei Langlöcher 34, 35 und darüber ein senkrecht zur Zeichenebene ver¬ laufender Sammelkanal 36 für aus den Rohren 32, 33 in Richtung der Pfeile P austretendes Kältemittel angeordnet. Diese Anordnung mit Sammelkanal 36 erlaubt eine Paralleldurchströmung der Rohre 32, 33, d. h. in gleicher Richtung, wie durch die Pfeile P dargestellt. Das austretende Kältemittel wird dann über den Sammelkanal 36 dem Austritt des Wärmeübertragers zuge¬ führt.
Fig. 7 zeigt ein Wärmeübertrager 37 als einreihiges System, d. h. mit nur einer Reihe von Flachrohren 38, welche vom unteren Schenkel 39a des C- Profils 39 aufgenommen werden. In das C-Profil 39 ist ein Rechen 40 - wie oben beschrieben - eingeschoben. Der plattenförmig ausgebildete Rechen 40 weist an seiner Unterseite einen Absatz 41 auf, welcher die Schmalseite des Rohrendes 38 übergreift und damit einen Anschlag zur (einseitigen) Be¬ grenzung der Einstecktiefe bildet. Seitlich kann der Wärmeübertrager 37 durch nicht dargestellte Seitenteile abgeschlossen werden, welche mit ihren Enden durch nicht dargestellte Schlitze im C-Profil 39 gesteckt werden.
Fig. 8 zeigt ein weiteres Ausführungsbeispiel für einen einreihigen Wärmeü¬ bertrager 42 mit C-Profil 43 und eingeschobener Platte 44, welche im Be- reich der Rohrenden 45 Schlitze in Form von Langlöchern 46 aufweist. Im Bereich der Schmalseiten der Rohrenden 45 sind Absätze 47, 48 als beid¬ seitige Einstecktiefenbegrenzung vorgesehen. Die Erfindung ist nicht auf das Kältemittel R747 (CO2) beschränkt, sondern erstreckt sich auch auf Wärmeübertrager, die mit dem Kältemittel R134a oder R152 betrieben werden.

Claims

P a t e n t a n s p r ü c h e
1. Wärmeübertrager (1) mit einem aus Rohren (3) und insbesondere Rippen (4) bestehenden Block (2), wobei die Rohre (3) von einem ers¬ ten Medium in mindestens einer Richtung durchströmbar und von ei¬ nem zweiten Medium umströmbar sind, und mit mindestens einer Sammel- und/oder Verteileinrichtung für das erste Medium, welche mit den Rohren(3) kommunizierend verbunden ist, dadurch gekenn¬ zeichnet, dass die Sammel- und/oder Verteileinrichtung als mindes¬ tens ein C-Profil (5) mit zwei Schenkeln (5a, 5b) und einem Steg (5c) ausgebildet und dass das C-Profil (5) durch eine zwischen den Schenkeln (5a, 5b) angeordnete Leiste (7) geschlossen ist.
2. Wärmeübertrager nach Anspruch 1 , dadurch gekennzeichnet, dass in einem der beiden Schenkel (5b) Öffnungen (6) zur Aufnahme von Rohrenden der Rohre (3) angeordnet sind.
3. Wärmeübertrager nach Anspruch 2, dadurch gekennzeichnet, dass die Leiste als Rechen (7) mit Aussparungen (7a) im Bereich der Öff¬ nungen (6) für die Rohrenden ausgebildet ist.
4. Wärmeübertrager nach Anspruch 1 , 2 oder 3, dadurch gekenn- zeichnet, dass die Rohre (3) zwei oder mehr Reihen (I, II) von Rohr¬ enden aufweisen und dass eine Reihe (I, II) jeweils mit einem C-Profil (5, 8) verbunden ist.
5. Wärmeübertrager nach Anspruch 4, dadurch gekennzeichnet, dass die beiden C-Profile (5, 8) parallel und im Abstand (a) zueinander an¬ geordnet sind.
6. Wärmeübertrager nach Anspruch 4 oder 5, dadurch gekennzeich¬ net, dass ein C-Profil (5) als Eintrittskanal und das benachbarte C- Profil (8) als Austrittskanal ausgebildet und die Rohre (3) in zwei Rich¬ tungen mit einer Umlenkung in der Tiefe parallel durchströmbar sind.
7. Wärmeübertrager nach Anspruch 4, 5 oder 6, dadurch gekenn¬ zeichnet, dass die den C-Profilen (5, 8) abgewandten Rohrenden mit einer Umlenkeinrichtung (16, 20, 28) verbunden sind.
8. Wärmeübertrager nach Anspruch 7, dadurch gekennzeichnet, dass die Umlenkeinrichtung (16) als U-Profil (17) mit einem als Rohrboden ausgebildeten Steg (17a) zur Aufnahme der Rohrenden und zwei Sei¬ tenflächen (17b, 17c) ausgebildet ist, zwischen denen ein wellenför¬ mig ausgebildetes Umlenkblech (Wellenprofil 18) angeordnet ist.
9. Wärmeübertrager nach Anspruch 8, dadurch gekennzeichnet, dass das Wellenprofil (18) Wellenkämme aufweist, die mit dem Rohrboden (17a) zur Bildung von Umlenkkammern verbunden sind.
10. Wärmeübertrager nach Anspruch 7, dadurch gekennzeichnet, dass die Umlenkeinrichtung (20, 28) als C-Profil (21, 29) ausgebildet ist, in welches eine Leiste (22, 30) einschiebbar ist.
11. Wärmeübertrager nach Anspruch 10, dadurch gekennzeichnet, dass die Leiste als Rechen ausgebildet ist.
12. Wärmeübertrager nach Anspruch 10, dadurch gekennzeichnet, dass die Leiste als Platte (22) mit Schlitzen, insbesondere Langlö¬ chern (23) ausgebildet ist, in welche die Rohrenden (24, 25) münden.
13. Wärmeübertrager nach Anspruch 10, 11 oder 12, dadurch gekenn¬ zeichnet, dass die Leiste (22, 30) Anschläge (26, 27, 31a - 31 d) zur Begrenzung der Einstecktiefe der Rohre (24, 25, 32, 33) aufweist.
14. Wärmeübertrager nach Anspruch 13, dadurch gekennzeichnet, dass die Anschläge als Absätze (26, 27, 31a - 31 d) in der Leiste (22, 30) ausgebildet sind, welche die Rohrenden (24, 25, 32, 33) partiell übergreifen.
15. Wärmeübertrager nach Anspruch 14, dadurch gekennzeichnet, dass die Absätze (26, 27, 31a - 31 d) im Bereich mindestens einer der Schmalseiten der Rohre (24, 25, 32, 33) angeordnet sind.
16. Wärmeübertrager nach einem der Ansprüche 10 bis 15, dadurch ge- kennzeichnet, dass die Leiste (30) einen Sammelkanal (36) für aus den Rohren (32, 33) austretendes Kältemittel aufweist.
17. Wärmeübertrager nach einem der vorhergehenden Ansprüche, insbe¬ sondere nach Anspruch 16, dadurch gekennzeichnet, dass die Roh- re ein- oder zweireihig (32, 33) angeordnet und parallel durchströmbar sind.
18. Wärmeübertrager nach einem der Ansprüche 3 bis 17, dadurch ge¬ kennzeichnet, dass mindestens ein C-Profil (5) durch einen oder mehrere am Rechen (7) angeordnete Trennstege (7b) in Längsrich¬ tung unterteilt ist.
19. Wärmeübertrager nach Anspruch 18, dadurch gekennzeichnet, dass beide C-Profile (5, 8) zur Bildung von vier oder mehr Kammern (10, 11 , 14, 15) in Längsrichtung unterteilt und dass zwei Kammern
(10, 11) durch einen Übertrittskanal (12) zwischen den C-Profilen (5, 8) verbunden sind.
20. Wärmeübertrager nach Anspruch 19, dadurch gekennzeichnet, dass der Übertrittskanal (12) durch je einen Durchbruch in den Stegen (5c, 8c) und ein zwischen den Stegen (5c, 8c) angeordnetes Über¬ trittsteil (13) gebildet ist.
21. Wärmeübertrager nach Anspruch 20, dadurch gekennzeichnet, dass das Übertrittsteil (13) T-förmig ausgebildet, einen T-Steg mit Durch¬ trittsöffnung aufweist und dass der T-Steg den Abstand a zwischen den C-Profilen (5, 8) überbrückt.
22. Wärmeübertrager nach einem der Ansprüche 1 bis 21 , dadurch ge- kennzeichnet, dass das erste Medium ein Kältemittel, insbesondere
R744 (CO2) und das zweite Medium ein Gas, insbesondere Luft ist.
23. Wärmeübertrager nach Anspruch 22, dadurch gekennzeichnet, dass der Wärmeübertrager als Gaskühler (1) einer mit CO2 betriebe- nen Klimaanlage ausgebildet ist.
24. Wärmeübertrager nach Anspruch 22 oder 23, dadurch gekenn¬ zeichnet, dass das Kältemittel CO2 und die Luft im Kreuzgegenstrom zueinander geführt sind.
25. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass er durch Löten herstellbar ist.
26. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass das Übertrittsteil (13) rohrförmig ausge¬ bildet ist.
27. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass das Übertrittsteil (13) in zumindest ein C-Profil hineinragt.
28. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, dass in zumindest einem C-Profil eine Kam¬ mer gebildet ist, die Rohre einer ersten Durchströmungsrichtung und Rohre mit einer zweiten, von der ersten verschiedenen Durchströ- mungsrichtung miteinander verbindet, wobei die erste und die zweite Durchströmungsrichtung insbesondere zueinander entgegengesetzt sind.
PCT/EP2005/009426 2004-09-01 2005-09-01 Wärmeübertrager, insbesondere für ein kraftfahrzeug WO2006024528A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05794801A EP1794528B1 (de) 2004-09-01 2005-09-01 Wärmeübertrager, insbesondere für ein kraftfahrzeug
AT05794801T ATE462948T1 (de) 2004-09-01 2005-09-01 Wärmeübertrager, insbesondere für ein kraftfahrzeug
DE502005009327T DE502005009327D1 (de) 2004-09-01 2005-09-01 Wärmeübertrager, insbesondere für ein kraftfahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004042677 2004-09-01
DE102004042677.5 2004-09-01

Publications (1)

Publication Number Publication Date
WO2006024528A1 true WO2006024528A1 (de) 2006-03-09

Family

ID=35462434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/009426 WO2006024528A1 (de) 2004-09-01 2005-09-01 Wärmeübertrager, insbesondere für ein kraftfahrzeug

Country Status (4)

Country Link
EP (1) EP1794528B1 (de)
AT (1) ATE462948T1 (de)
DE (1) DE502005009327D1 (de)
WO (1) WO2006024528A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4137037A1 (de) * 1991-07-02 1993-01-14 Thermal Waerme Kaelte Klima Sammler fuer einen flachrohrverfluessiger
FR2793015A1 (fr) * 1999-04-28 2000-11-03 Valeo Thermique Moteur Sa Echangeur de chaleur brase pour haute pression, en particulier pour vehicule automobile
WO2003040640A1 (fr) * 2001-11-08 2003-05-15 Zexel Valeo Climate Control Corporation Echangeur thermique et tube pour echangeur thermique
WO2003102486A1 (fr) * 2002-05-31 2003-12-11 Zexel Valeo Climate Control Corporation Echangeur de chaleur
WO2004059235A1 (en) * 2002-12-31 2004-07-15 Modine Korea,Llc Evaporator
DE102004003789A1 (de) * 2004-01-23 2005-08-18 Behr Gmbh & Co. Kg Wärmetauscher

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4137037A1 (de) * 1991-07-02 1993-01-14 Thermal Waerme Kaelte Klima Sammler fuer einen flachrohrverfluessiger
FR2793015A1 (fr) * 1999-04-28 2000-11-03 Valeo Thermique Moteur Sa Echangeur de chaleur brase pour haute pression, en particulier pour vehicule automobile
WO2003040640A1 (fr) * 2001-11-08 2003-05-15 Zexel Valeo Climate Control Corporation Echangeur thermique et tube pour echangeur thermique
EP1452814A1 (de) * 2001-11-08 2004-09-01 Zexel Valeo Climate Control Corporation Wärmetauscher und rohr für wärmetauscher
WO2003102486A1 (fr) * 2002-05-31 2003-12-11 Zexel Valeo Climate Control Corporation Echangeur de chaleur
EP1553375A1 (de) * 2002-05-31 2005-07-13 Zexel Valeo Climate Control Corporation Wärmetauscher
WO2004059235A1 (en) * 2002-12-31 2004-07-15 Modine Korea,Llc Evaporator
DE102004003789A1 (de) * 2004-01-23 2005-08-18 Behr Gmbh & Co. Kg Wärmetauscher

Also Published As

Publication number Publication date
ATE462948T1 (de) 2010-04-15
DE502005009327D1 (de) 2010-05-12
EP1794528A1 (de) 2007-06-13
EP1794528B1 (de) 2010-03-31

Similar Documents

Publication Publication Date Title
EP0401752B1 (de) Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage
DE69911131T2 (de) Wärmetauscher
WO2004065876A1 (de) Wärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
EP1701125A2 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
DE102008014169A1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, System mit einem Wärmetauscher zur Abgaskühlung, Verfahren zum Betreiben eines Wärmetauschers
DE60310992T2 (de) Hochdruckwärmetauscher
WO2005038375A1 (de) Wärmeübertrager, insbesondere für kraftfahrzeuge
EP1256772A2 (de) Wärmetauscher
WO2009074196A2 (de) Wärmeübertrager, insbesondere heizkörper für kraftfahrzeuge
WO2003076860A1 (de) Wärmetauscher
WO2004053411A1 (de) Wärmeübertrager
EP1203922A2 (de) Kondensator und Rohr dafür
DE202014103206U1 (de) Wärmeaustauscher
EP3491323B1 (de) Wärmetauscher mit mikrokanal-struktur oder flügelrohr-struktur
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
EP1738125A1 (de) Wärmeübertrager für kraftfahrzeuge
EP1588115B1 (de) Wärmeübertrager, insbesondere gaskühler
DE202004011489U1 (de) Wärmeaustauscher für Hochtemperatur-Anwendungen, insbesondere Ladeluftkühler
DE10342241A1 (de) Wärmetauscher
DE102004001786A1 (de) Wärmeübertrager, insbesondere für überkritischen Kältekreislauf
DE102008020230A1 (de) Wärmetauscher sowie Wärmetauscherrohr
DE102007001430A1 (de) Wärmetauscher
EP1794528B1 (de) Wärmeübertrager, insbesondere für ein kraftfahrzeug
EP1248063B1 (de) Wärmeübertrager
EP2049859B1 (de) Kraftfahrzeugklimaanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005794801

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005794801

Country of ref document: EP