WO2006018062A1 - Miniaturisierbarer motor mit hohlzylindrischem piezooszillator - Google Patents

Miniaturisierbarer motor mit hohlzylindrischem piezooszillator Download PDF

Info

Publication number
WO2006018062A1
WO2006018062A1 PCT/EP2005/006995 EP2005006995W WO2006018062A1 WO 2006018062 A1 WO2006018062 A1 WO 2006018062A1 EP 2005006995 W EP2005006995 W EP 2005006995W WO 2006018062 A1 WO2006018062 A1 WO 2006018062A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillator
miniaturizierbarer
axis
hollow cylindrical
rotor
Prior art date
Application number
PCT/EP2005/006995
Other languages
English (en)
French (fr)
Inventor
Wladimir Wischnewskij
Alexej Wischnewskij
Original Assignee
Physik Instrumente (Pi) Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Physik Instrumente (Pi) Gmbh & Co. Kg filed Critical Physik Instrumente (Pi) Gmbh & Co. Kg
Priority to US11/659,762 priority Critical patent/US7795782B2/en
Priority to JP2007525188A priority patent/JP4648391B2/ja
Publication of WO2006018062A1 publication Critical patent/WO2006018062A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Definitions

  • the invention relates to a miniaturizable motor with a rotor, which is driven by a hollow cylindrical piezoelectric oscillator, wherein the rotor is in operative connection with an end face of the piezoelectric oscillator Fritations Chemistry and on the surface of the hollow cylinder a main or counterelectrode erode and excitation electrodes are arranged, according to the preamble of claim 1.
  • Piezo or ultrasonic motors with composite connected by means of special screws oscillators, for example according to US-PS 4,965,482, belong to the prior art.
  • the design of such motors is complicated and technologically complex, so that this precludes a desired miniaturization.
  • the state of the art also includes piezoelectric ultrasonic micro-motors with a metallic cylindrical oscillator and plate-shaped piezo elements fastened thereon in a materially conclusive manner.
  • Such motor constructions have the disadvantage that, during operation, a softening of the adhesive connecting the piezoelements to the resonator takes place. This in turn leads to a reduction of the excitation level of the oscillator and due to a reduction of the mechanical power. Because of these disadvantages, such motors can not be operated with the maximum possible excitation amplitudes. This in turn results in a reduction of the reliability and a limited use possibility according reali ⁇ sated motors. For example, reference may be made to the publication in IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, pages 495-500, April 2002. ver ⁇ .
  • the oscillator is made entirely of a piezoceramic material.
  • a disadvantage of such an embodiment lies in the high brittleness of the piezoceramic with small diameters of the actual piezo oscillator. These prior art motors can not be made smaller than 3mm diameter.
  • Another problem is that the friction Surface of the oscillator, which has only a small size, to protect against the inevitable wear. Even with oscillators with a diameter of ⁇ 6 mm, considerable technological difficulties arise when applying metallic or glass layers to the friction surface, which leads to increased production costs. If a coating of the friction surface is dispensed with, the service life of the motors is correspondingly reduced.
  • the object of the invention is achieved with a miniaturizable motor according to the features of claim 1, wherein the Unteransprü ⁇ che represent at least expedient refinements and developments.
  • the basic idea of the invention is to specify a miniaturizable piezoelectric motor with a cylindrical oscillator, wherein the oscillator is made of a piezoelectric monocrystal with a special crystallographic orientation or consists of such a material.
  • the hollow cylindrical piezo oscillator which is preferably used consists of a monocrystalline material with a trigonal crystal system.
  • a crystal is then called trigonal if it has a threefold axis of rotation.
  • this has three main electrical axes arranged at an angle of 120 ° to one another and an optical axis which coincides with the Intersection of the electric axes forms an angle of substantially 90 ° and which coincides with the longitudinal axis of the hollow cylindrical Piezooszilla- gate.
  • the axial symmetry axis of the respective excitation electrode or excitation electrode surface intersects one of the main electrical axes, the respective axial axis of symmetry being parallel to the optical axis.
  • the excitation electrodes of the piezo oscillator are distributed in the same way on the outer jacket of the hollow cylinder, the common main electrode being located on the inside lateral surface of the hollow cylinder.
  • the basic embodiment of the miniaturizable motor is thus based on an oscillator in the form of a monolithic piezoelectric hollow cylinder, which is in frictional contact with a pressed rotor on at least one end face and which has a common main electrode and three excitation electrodes which are arranged on the mantle surface of the oscillator. ie of the hollow cylinder are arranged.
  • the first bending mode is excited by each excitation electrode.
  • the oscillator oscillates in a plane which is formed by the optical axis and the electrical axis corresponding to the respective excitation electrode.
  • the first tangential-axial vibration mode is excited in the hollow cylindrical oscillator.
  • a third embodiment of the motor is characterized in that, from each excitation electrode, a standing longitudinal wave, i. a strain wave is excited on the circumference of the cylinder.
  • Fig. 1 is a schematic representation of the engine in side view
  • Fig. 2 is a sectional view of the motor according to the invention with a hollow cylindrical oscillator
  • Fig. 3 is a schematic representation of a piezoelectric crystal with a trigonal crystal system in a rhombometric setup
  • Fig. 6 is an end view of the hollow cylindrical piezo oscillator
  • the starting point is a monolithic piezoelectric hollow cylinder which is in frictional contact with a rotor pressed against at least one end face.
  • the piezoelectric hollow cylinder has a common main electrode on the inner surface of the cylinder and three excitation electrodes on the outer surface of the cylinder jacket.
  • the piezo oscillator consists of a piezoelectric monocrystal with a trigonal crystal system.
  • a trigonal crystal piezoelectric monocrystal has three main electrical and one optical axis.
  • the electric axes are at an angle of 120 ° to each other arranged. They form with the optical axis with reference to FIGS. 4 and 6 at an angle of 90 °.
  • the piezoelectric crystal is oriented such that the optical axis coincides with the longitudinal axis of the cylindrical oscillator.
  • the arrangement of the three excitation electrodes is selected such that the axial symmetry axis of each electrode intersects one of the main electrical axes of the monocrystal, but at the same time runs parallel to the optical axis of the monocrystal.
  • the miniaturizable motor according to FIGS. 1 and 2 initially has an oscillator 1, which is designed as a monolithic piezoelectric hollow-cylindrical piezoelectric element 2.
  • the outer lateral surface receives the three excitation electrodes 4, 5 and 6.
  • friction discs 9 are pressed as part of the rotor 12 with the aid of elastic elements.
  • the friction discs 9 are fixed to the rotor shaft 11 by means of a bushing arrangement 12.
  • the oscillator 1 is provided with two conical friction surfaces 13. Correspondingly complementary conical surfaces 14 are formed on the friction discs 9, wherein these are in contact with the conical surfaces 13 of the oscillator 1.
  • the friction disks 9 are preferably made of a wear-resistant material, e.g. of aluminum oxide, zirconium oxide, silicon nitride, silicon carbide or similar materials.
  • the elastic elements 8 can be realized as rings of a silicone rubber material or of a similar material. It is also conceivable to carry out the elastic elements 8 as a flat plate spring.
  • the piezoelectric element 2 is produced from a piezoelectric monocrystal with a trigonal crystal system, for example from crystalline quartz (SiO 2 ), lithium niobium (LiNbO 3 ), lithium tantalate (LiTaO 3 ), langasite (La 3 Ga 5 SiO 14 ) or similar materials , Crystals with such a crystal system have an optical axis Z and three equivalent main electrical axes X1, X2 and X3, which are arranged below one another at an angle of 120 ° and which enclose an angle of 90 ° with the optical axis. Reference is made to the schematic representation of such a trigonal crystal system according to FIG. 3.
  • optical crystal axis Z is understood to mean the crystal direction in which there is no inverse piezoelectric effect or which appears only very weakly in comparison with the other crystallographic orientations.
  • the electrical axis is understood to mean that crystal direction in which the inverse piezoelectric effect has a maximum value.
  • the piezoelectric element 2 of the miniaturizable motor is manufactured as a hollow cylinder from the mentioned crystal material, where the orientation of the cylinder with respect to the crystal axes Z, X1, X2 and X3 is shown in FIG. It is essential that the axial axis S of the piezoelectric element 2 or of the oscillator 1 coincide with the optical axis Z of the monocrystal.
  • the electrodes 3, 4, 5 and 6 of the oscillator are designed as thin metal layers, shown in FIGS. 2, 5 and 6, which are applied to the surface of the hollow cylindrical oscillator.
  • the excitation electrodes 4, 5 and 6 are realized as metallized sectors of the outer mantle surface of the piezoelectric element 2, wherein their spatial position is at an angle of 120 ° to each other.
  • each excitation electrode intersects the corresponding main electrical axis Xl, X2 or X3 of the piezoelectric monocrystal see and extends parallel to the optical axis Z, as shown in Fig. 6 for the axes El, E2. 7 shows a basic electrical circuit of the miniaturizable piezoelectric motor according to the invention with a three-phase electrical excitation source 15 and the phase-shifted voltages U 1, U 2 and U 3 resulting therefrom.
  • Fig. 8 symbolizes two oscillation phases of the oscillator, shown when exciting the bending mode by means of one of the excitation electrodes.
  • FIG. 9 Vibration phases of the oscillator when exciting the tangential-axial vibration mode with the aid of one of the excitation electrodes are shown in FIG. 9, wherein FIG. 10 symbolizes two oscillation phases of the oscillator which, upon excitation of longitudinal waves on the circumference of the cylinder with the aid of one of the oscillation phases Excitation electrodes arise.
  • the above-described miniaturizable piezoelectric motor represents a three-phase traveling wave motor, wherein the traveling wave is generated by the Sprint ⁇ tion of three standing waves.
  • the bending mode i. the ⁇ / 2 bend of the cylinder along its longitudinal axis.
  • This mode causes oscillations of the oscillator in the electrical axis X (FIG. 8) corresponding to the optical axis Z and the driven electrode.
  • operation is possible by exciting the first tangential-axial oscillation mode according to FIG. 9 or by means of a longitudinal wave on the circumference of the cylinder as a multiple of the wavelength ⁇ .
  • the location of the standing wave excited in the oscillator is determined by the ratio of the height of the oscillator H to the diameter of the oscillator D.
  • this ratio is, for example, 4, for exciting the first tangential-axial mode 0.9 and 0.5 for the excitation of a longitudinal wave on the circumference of the cylinder.
  • the wall thickness of the cylinder is approximately D / 6 in the cases described above.
  • the operating principle of the motor is based on excitation of a traveling wave in the oscillator.
  • points on the faces of the oscillator move along elliptical orbits.
  • the hiking The wave is generated here as the result of a superimposition of three standing waves with equal amplitudes, the spatial displacement of the rising waves being ⁇ / 3 with respect to one another and their time shift being 120 °.
  • Each of these three standing waves is generated by one of the excitation electrodes 4, 5 or 6.
  • the amplitude equality of the standing waves is due to the orientation of the monocrystal with respect to the excitation electrodes 4, 5 and 6.
  • the oscillator is connected to a three-phase electrical voltage source 15 (FIG. 7) with a 120 ° phase difference between the phases.
  • Each phase excites in the oscillator independent of the other two phases a standing wave whose type is determined by the ratio H / D.
  • a traveling wave is generated in the oscillator of the three standing waves, so that the points of the friction surfaces 13 of the oscillator 1 undergo the aforementioned elliptical paths.
  • the miniaturizable motor according to the invention is made of a very hard monocrystal.
  • a monocrystalline oscillator be ⁇ sits a very high strength and can be manufactured in small dimensions.
  • the oscillator may have a diameter of less than 1 mm.
  • the manufacture of a monocrystalline oscillator takes place according to sufficiently controlled production technologies of e.g. Quartz resonators.
  • the friction surface of the presented monocrystalline oscillator requires no special abrasion-resistant protective coating, since even the hardness of the monocrystal is extremely high and therefore the desired Verschl employ ⁇ strength occurs.
  • the wear of the friction surface in such a Oscillator also takes place in the direction of the optical axis, ie in the direction of the greatest hardness, which also increases the reliability of the engine and its life.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Die Erfindung betrifft einen miniaturisierbaren Motor (1) mit einem Rotor (12), welcher von einem hohlzylindrischen Piezooszillator (2) angetrieben wird, wobei der Rotor mit einer stirnseitigen Friktionsfläche (13) des Piezooszillators in Wirkverbindung steht und an der Oberfläche des Hohlzylinders eine Haupt- oder Gegenelektrode (3) sowie Anregungselektroden (4, 5, 6) angeordnet sind. Der hohlzylindrische Piezooszillator besteht aus einem monokristallinen Material mit trigonalem Kristallsystem, welches drei in einem Winkel von 120° zueinander angeordnete elektrische Hauptachsen und eine optische Achse besitzt. Die optische Achse schließt mit dem Schnittpunkt der elektrischen Achsen einen Winkel von 90° ein und fällt mit der Längsachse des hohlzylindrischen Piezooszillators zusammen. Weiterhin schneidet die axiale Symmetrieachse der jeweiligen Anregungselektrode eine der elektrischen Hauptachsen und es verläuft die axiale Symmetrieachse parallel zur optischen Achse.

Description

"Miniaturisierbarer Motor"
Beschreibung
Die Erfindung betrifft einen miniaturisierbaren Motor mit einem Rotor, welcher von einem hohlzylindrischen Piezooszillator angetrieben wird, wobei der Rotor mit einer stirnseitigen Friktionsfläche des Piezooszillators in Wirkverbindung steht und an der Oberfläche des Hohlzylinders eine Haupt- oder Gegenelekt- rode sowie Anregungselektroden angeordnet sind, gemäß Oberbegriff des Pa¬ tentanspruchs 1.
Piezo- bzw. Ultraschallmotoren mit zusammengesetzten, mittels spezieller Schrauben verbundenen Oszillatoren, beispielsweise gemäß der US-PS 4,965,482, gehören zum Stand der Technik. Die Bauweise derartiger Motoren ist kompliziert und technologisch aufwendig, so dass dies einer gewünschten Miniaturisierung entgegensteht.
Ebenfalls zum Stand der Technik gehören piezoelektrische Ultraschall-Mikro- motoren mit einem metallischen zylinderförmigen Oszillator und dort stoff¬ schlüssig befestigten plattenförmigen Piezoelementen. Derartige Motorkon¬ struktionen besitzen den Nachteil, dass beim Betrieb eine Erweichung des die Piezoelemente mit dem Resonator verbindenden Klebstoffs stattfindet. Dies wiederum führt zu einer Verringerung des Anregungspegels des Oszillators und infolge zu einer Senkung der mechanischen Leistung. Aufgrund dieser Nach¬ teile können derartige Motoren nicht mit den maximal möglichen Anregungs¬ amplituden betrieben werden. Hieraus folgt wiederum eine Reduzierung der Zuverlässigkeit und eine beschränkte Einsatzmöglichkeit entsprechend reali¬ sierter Motoren. Beispielhaft sei hierzu auf die Veröffentlichung in IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, Seiten 495-500, April 2002. ver¬ wiesen.
Bei dem piezoelektrischen Ultraschallmotor nach US-PS 5,872,418 besteht der Oszillator vollständig aus einem piezokeramischen Material. Ein Nachteil einer derartigen Ausführungsform liegt in der hohen Sprödigkeit der Piezokeramik bei kleinen Durchmessern des eigentlichen Piezo-Oszillators. Diese Motoren aus dem Stand der Technik können nicht kleiner als mit einem Durchmesser von 3mm gefertigt werden. Ein weiteres Problem besteht darin, die Friktions- fläche des Oszillators, die nur eine geringe Größe aufweist, vor dem unver¬ meidlichen Verschleiß zu schützen. Bereits bei Oszillatoren mit einem Durch¬ messer von <6mm entstehen erhebliche technologische Schwierigkeiten beim Aufbringen metallischer oder Glasschichten auf die Friktionsoberfläche, was zu erhöhten Herstellungskosten führt. Verzichtet man auf eine Beschichtung der Friktionsoberfläche, verringert sich die Lebensdauer der Motoren dementspre¬ chend.
Aus dem Vorgenannten ist es daher Aufgabe der Erfindung, einen miniaturi- sierbaren Motor mit einem Rotor, welcher von einem hohlzylindrischen Piezo- oszillator angetrieben wird und wobei der Rotor mit einer stirnseitigen Frikti¬ onsfläche des Piezooszillators in Wirkverbindung steht, anzugeben, welcher mit einer einfachen Herstellungstechnologie kostengünstig auch in hohen Stückzahlen produziert werden kann und wobei die Lebensdauer und die Lang- zeitstabilität derartiger Motoren den Praxiserfordernissen genügt.
Die Lösung der Aufgabe der Erfindung erfolgt mit einem miniaturisierbaren Motor gemäß den Merkmalen des Patentanspruchs 1, wobei die Unteransprü¬ che mindestens zweckmäßige Ausgestaltungen und Weiterbildungen darstellen.
Demnach liegt der Grundgedanke der Erfindung darin, einen miniaturisierbaren piezoelektrischen Motor mit einem zylindrischen Oszillator anzugeben, wobei der Oszillator aus einem piezoelektrischen Monokristall mit einer speziellen kristallografischen Orientierung gefertigt wird bzw. aus einem derartigen Ma- terial besteht.
Kommt ein derartiges piezoelektrisches Monokristall zum Einsatz, ist einerseits durch eine spezielle Anordnung der Elektroden mit Bezug auf die Kristallach¬ sen die notwendige Anregung für die Funktionsweise des Motors möglich, an- dererseits ergibt sich aber wegen der hohen Härte des Monokristalls ein mini¬ maler Verschleiß im Bereich der Friktionsflächen zum Antreiben des Rotors.
Konkret besteht der bevorzugt zur Anwendung kommende hohlzylindrische Pie- zooszillator aus einem monokristallinen Material mit trigonalem Kristallsystem. Ein Kristall wird dann als trigonal bezeichnet, wenn es eine dreizählige Dreh¬ achse aufweist. Bei dem zum Einsatz kommenden Material mit trigonalem Kristallsystem besitzt dieses drei in einem Winkel von 120° zueinander ange¬ ordnete elektrische Hauptachsen und eine optische Achse, die mit dem Schnittpunkt der elektrischen Achsen einen Winkel von im wesentlichen 90° einschließt und welche mit der Längsachse des hohlzylindrischen Piezooszilla- tors zusammenfällt.
Die axiale Symmetrieachse der jeweiligen Anregungselektrode bzw. Anre- gungselektrodenfläche schneidet eine der elektrischen Hauptachsen, wobei die jeweilige axiale Symmetrieachse parallel zur optischen Achse verläuft.
Die Anregungselektroden des Piezooszillators sind gleich verteilt am Außen¬ mantel des Hohlzylinders angebracht, wobei die gemeinsame Hauptelektrode auf der innenseitigen Manteloberfläche des Hohlzylinders befindlich ist.
Die grundsätzliche Ausführungsform des miniaturisierbaren Motors geht also von einem Oszillator in Form eines monolithischen piezoelektrischen Hohlzylin¬ ders aus, welcher mindestens an einer Stirnseite in Friktionskontakt mit einem angepressten Rotor steht und welcher eine gemeinsame Hauptelektrode und drei Anregungselektroden besitzt, die auf der Manteloberfläche des Oszillators, d.h. des Hohlzylinders angeordnet sind.
Bei einer ersten Ausführungsform des erfindungsgemäßen Motors wird von je- der Anregungselektrode die erste Biegemode angeregt. Dabei schwingt der Os¬ zillator in einer Ebene, die durch die optische Achse sowie die der jeweiligen Anregungselektrode entsprechenden elektrischen Achse gebildet wird.
Bei einer zweiten Ausführungsform des Motors wird von jeder Anregungs- elektrode die erste tangential-axiale Schwingungsmode im hohlzylindrischen Oszillator angeregt.
Eine dritte Ausführungsform des Motors ist dadurch gekennzeichnet, dass von jeder Anregungselektrode eine stehende Longitudinalwelle, d.h. eine Deh- nungswelle auf dem Zylinderumfang angeregt wird.
Die Erfindung soll nachstehend anhand eines Ausführungsbeispiels sowie unter Zuhilfenahme von Figuren näher erläutert werden.
Hierbei zeigen :
Fig. 1 eine prinzipielle Darstellung des Motors in Seitenansicht; Fig . 2 eine Schnittdarstellung des erfindungsgemäßen Motors mit hohlzylindrischem Oszillator;
Fig . 3 eine schematische Darstellung eines piezoelektrischen Kristalls mit ei- nem trigonalen Kristallsystem in rhomboetrischer Aufstellung;
Fig. 4 Orientierungen des Piezoelements des antreibenden Oszillators in Be¬ zug auf die definierten Kristallachsen;
Fig. 5 die Anordnung der Elektroden auf dem hohlzylindrischen Piezooszilla- tor;
Fig. 6 eine stirnseitige Ansicht des hohlzylindrischen Piezooszillators;
Fig. 7 eine beispielhafte Beschaltung des Oszillators mit einer elektrischen Anregungsquelle;
Fig. 8 eine Darstellung der Oszillatorschwingungen beim Anregen der Biege¬ mode;
Fig. 9 eine Darstellung von Oszillatorschwingungen beim Anregen der tangential-axialen Mode und
Fig. 10 eine Darstellung von Oszillatorschwingungen beim Anregungen der Longitudinalwelle auf dem Umfang des Hohlzylinders.
Bei der bevorzugten Ausführungsform des Motors gemäß dem nachstehend nä¬ her erläuterten Ausführungsbeispiel wird von einem monolithischen piezo¬ elektrischen Hohlzylinder ausgegangen, der an mindestens einer Stirnseite in Friktionskontakt mit einem dort angepressten Rotor steht. Der piezoelektrische Hohlzylinder weist eine gemeinsame Hauptelektrode an der Innenoberfläche des Zylinders und drei Anregungselektroden an der Außenoberfläche des Zylin¬ dermantels auf.
Der Piezooszillator besteht aus einem piezoelektrischen Monokristall mit einem trigonalen Kristallsystem . Ein derartiger piezoelektrischer Monokristall mit tri- gonalem Kristallsystem besitzt drei elektrische Haupt- sowie eine optische Achse. Die elektrischen Achsen sind zueinander unter einem Winkel von 120° angeordnet. Sie bilden mit der optischen Achse unter Hinweis auf die Fig. 4 und 6 einen Winkel von 90°. Der piezoelektrische Kristall ist dabei so orien¬ tiert, dass die optische Achse mit der Längsachse des zylindrischen Oszillators zusammenfällt. Die Anordnung der drei Anregungselektroden ist so gewählt, dass' die axiale Symmetrieachse jeder Elektrode eine der elektrischen Haupt¬ achsen des Monokristalls schneidet, gleichzeitig aber parallel zur optischen Achse des Monokristalls verläuft.
Der miniaturisierbare Motor nach den Fig. 1 und 2 weist zunächst einen Oszil- lator 1 auf, welcher als monolithisches piezoelektrisches hohlzylindrisches Pie- zoelement 2 ausgeführt ist.
An der inneren Mantelfläche des piezoelektrischen Elements 2 befindet sich die gemeinsame Hauptelektrode 3.
Die äußere Mantelfläche nimmt die drei Anregungselektroden 4, 5 und 6 auf. An den zwei gegenüberliegenden Stirnseiten 7 des Oszillators 1 sind mit Hilfe von elastischen Elementen 8 Friktionsscheiben 9 als Bestandteil des Rotors 12 angepresst. Die Friktionsscheiben 9 sind an der Rotorwelle 11 mit Hilfe einer Buchsenanordnung 12 fixiert.
Zur Gewährleistung eines ausreichenden Friktionskontakts ist der Oszillator 1 mit zwei konischen Friktionsflächen 13 versehen. Entsprechend komplementäre konische Flächen 14 sind an den Friktionsscheiben 9 ausgebildet, wobei diese in Kontakt mit den konischen Flächen 13 des Oszillators 1 stehen.
Die Friktionsscheiben 9 werden bevorzugt aus einem verschleißfesten Werk¬ stoff hergestellt, z.B. aus Aluminiumoxid, Zirkonoxid, Siliziumnitrid, Silizium¬ karbid oder ähnlichen Materialien.
Die elastischen Elemente 8 können als Ringe aus einem Silikongummimaterial oder aus einem ähnlichen Werkstoff realisiert werden. Auch ist denkbar, die elastischen Elemente 8 als flache Tellerfeder auszuführen.
Das Piezoelement 2 wird aus einem piezoelektrischen Monokristall mit trigo- nalem Kristallsystem gefertigt, z.B. aus kristallinem Quarz (SiO2), Lithiumnio- bat (LiNbO3), Lithiumtantalat (LiTaO3), Langasit (La3Ga5SiO14) oder ähnlichen Werkstoffen. Kristalle mit einem solchen Kristallsystem besitzen eine optische Achse Z sowie drei gleichwertige elektrische Hauptachsen Xl, X2 und X3, die zueinander un¬ ter einem Winkel von 120° angeordnet sind und die mit der optischen Achse einen Winkel von 90° einschließen. Verwiesen sei hierzu auf die schematische Darstellung eines derartigen trigonalen Kristallsystems gemäß Fig. 3.
Unter der optischen Kristallachse Z wird die Kristallrichtung verstanden, bei der es keinen inversen piezoelektrischen Effekt gibt oder der nur im Vergleich zur anderen kristallografischen Orientierungen sehr schwach in Erscheinung tritt.
Unter der elektrischen Achse versteht man diejenige Kristallrichtung, in der der inverse piezoelektrische Effekt einen maximalen Wert aufweist.
Das Piezoelement 2 des miniaturisierbaren Motors wird, wie aus den Figuren ersichtlich, als Hohlzylinder aus dem erwähnten Kristallmaterial gefertigt, wo¬ bei die Orientierung des Zylinders in Bezug auf die Kristallachsen Z, Xl, X2 und X3 in Fig. 4 gezeigt ist. Wesentlich dabei ist, dass die Axialachse S des Piezoelements 2 bzw. des Oszillators 1 mit der optischen Achse Z des Mono- kristalls zusammenfällt.
Die Elektroden 3, 4, 5 und 6 des Oszillators sind als dünne, auf die Mantelflä¬ che des hohlzylindrischen Oszillators aufgebrachte Metallschichten gemäß den Fig. 2, 5 und 6 ausgeführt.
Als gemeinsame Hauptelektrode 3 des Oszillators 1 dient eine vollständig me¬ tallisierte innere Manteloberfläche des Piezoelements 2.
Die Anregungselektroden 4, 5 und 6 sind als metallisierte Sektoren der äuße- ren Manteloberfläche des Piezoelements 2 realisiert, wobei ihre räumliche Lage zueinander in einem Winkel von jeweils 120° steht.
Die axiale Symmetrieachse El, E2 und E3 jeder Anregungselektrode schneidet die entsprechende elektrische Hauptachse Xl, X2 oder X3 des piezoelektri- sehen Monokristalls und verläuft parallel zur optischen Achse Z, wie dies in Fig. 6 für die Achsen El, E2 dargestellt ist. Fig. 7 zeigt eine prinzipielle elektrische Beschaltung des erfindungsgemäßen miniaturisierbaren Piezomotors mit einer dreiphasigen elektrischen Anregungs¬ quelle 15 und den hieraus resultierenden phasenverschobenen Spannungen U l, U2 und U3.
Fig. 8 symbolisiert zwei Schwingungsphasen des Oszillators, dargestellt beim Anregen der Biegemode mit Hilfe einer der Anregungselektroden.
Schwingungsphasen des Oszillators beim Anregen der tangential-axialen Schwingungsmode mit Hilfe einer der Anregungselektroden sind in der Fig. 9 gezeigt, wobei die Fig. 10 zwei Schwingungsphasen des Oszillators symboli¬ siert, die bei Anregung von Longitudinalwellen auf dem Umfang des Zylinders mit Hilfe einer der Anregungselektroden entstehen.
Der vorbeschriebene miniaturisierbare piezoelektrische Motor stellt einen drei¬ phasigen Wanderwellenmotor dar, wobei die Wanderwelle durch die Überlage¬ rung von drei stehenden Wellen erzeugt wird.
Zum Betreiben des vorgestellten Motors können drei Typen von stehenden Wellen herangezogen werden. Zum einen die Biegemode, d.h. die λ/2 Biegung des Zylinders entlang seiner Längsachse. Diese Mode ruft Schwingungen des Oszillators in der durch die optische Achse Z sowie die der angesteuerten Elektrode entsprechenden elektrischen Achse X (Fig. 8) hervor.
Ebenso ist ein Betrieb über Anregen der ersten tangential-axialen Schwin¬ gungsmode nach Fig. 9 oder mittels Longitudinalwelle auf dem Umfang des Zylinders als Vielfaches der Wellenlänge λ möglich.
Der Ort der im Oszillator angeregten stehenden Welle wird durch das Verhält- nis der Höhe des Oszillators H zum Durchmesser des Oszillators D bestimmt. Zur Anregung der ersten Biegemode beträgt dieses Verhältnis beispielsweise 4, zur Anregung der ersten tangential-axialen Mode 0,9 sowie 0,5 bei der Anre¬ gung einer Longitudinalwelle auf dem Umfang des Zylinders. Die Wandstärke des Zylinders beträgt in den vorstehend beschriebenen Fällen ca. D/6.
Wie erläutert, beruht das Funktionsprinzip des Motors auf Anregung einer Wanderwelle im Oszillator. Als Ergebnis dieser Anregung bewegen sich Punkte an den Stirnseiten des Oszillators entlang elliptischer Bahnen . Die Wander- welle wird hier als das Resultat einer Überlagerung dreier stehender Wellen mit gleichen Amplituden erzeugt, wobei die räumliche Verschiebung der ste¬ henden Wellen zueinander λ/3 und ihre zeitliche Verschiebung 120° beträgt. Jede von diesen drei stehenden Wellen wird von einer der Anregungselektro- den 4, 5 oder 6 erzeugt. Die Amplitudengleichheit der stehenden Wellen ist durch die Orientierung des Monokristalls bezüglich der Anregungselektroden 4, 5 und 6 bedingt.
Zur gleichzeitigen Anregung dreier stehender Wellen wird der Oszillator an eine dreiphasige elektrische Spannungsquelle 15 (Fig. 7) mit 120° Phasenun¬ terschied zwischen den Phasen angeschlossen.
Jede Phase regt im Oszillator unabhängig von den beiden anderen Phasen eine stehende Welle an, deren Typ vom Verhältnis H/D bestimmt wird. Im Ergebnis einer solchen Überlagerung wird im Oszillator von den drei stehenden Wellen eine laufende Welle erzeugt, so dass die Punkte der Friktionsoberflächen 13 des Oszillators 1 die vorerwähnten elliptischen Bahnen durchlaufen.
Die an den Oszillator 1 angepressten Friktionsscheiben 9 erfahren hierdurch eine Drehbewegung, die über die kraftübertragenden, elastischen Elemente 8 an die Rotorwelle 11 weitergegeben wird.
Im Sinne der anzustrebenden kleinen Gesamtabmessungen des Motors wird dieser ohne ein den Oszillator 1 stützendes Gehäuse gefertigt. Die Befestigung des Motors geschieht z.B. durch Kleben oder Löten an einer Außenelektrode.
Wie erläutert, wird der miniaturisierbare Motor gemäß der Erfindung aus einem sehr harten Monokristall hergestellt. Ein solcher monokristalliner Oszillator be¬ sitzt eine sehr hohe Festigkeit und kann in kleinen Abmessungen gefertigt werden. Bei Ausführungsvarianten realisierter Motoren kann der Oszillator ei¬ nen Durchmesser von weniger als 1 mm besitzen. Die Fertigung eines mono¬ kristallinen Oszillators erfolgt nach ausreichend beherrschten Fertigungstech¬ nologien von z.B. Quarzresonatoren.
Die Friktionsoberfläche des vorgestellten monokristallinen Oszillators bedarf keiner speziellen abriebfesten Schutzbeschichtung, da bereits die Härte des Monokristalls außerordentlich hoch ist und daher die gewünschte Verschlei߬ festigkeit eintritt. Der Verschleiß der Friktionsoberfläche in einem derartigen Oszillator findet darüber hinaus in Richtung der optischen Achse statt, d. h. in Richtung der größten Härte, was zusätzlich die Zuverlässigkeit des Motors und seine Lebensdauer erhöht.
Bezugszeichenliste
1 Oszillator
2 Piezoelement
3 gemeinsame Hauptelektrode 4 Anregungselektrode
5 Anregungselektrode
6 Anregungselektrode
7 Stirnseite des Oszillators
8 elastisches Element 9 Friktionsscheibe
10 Rotor
11 Welle
12 Buchse
13 Friktionsoberfläche des Oszillators 14 Friktionsoberfläche der Scheibe 9
15 dreiphasige elektrische Spannungsquelle

Claims

Patentansprüche
1. Miniaturisierbarer Motor mit einem Rotor, welcher von einem hohlzylindri- schen Piezooszillator angetrieben wird, wobei der Rotor mit einer stirnseitigen Friktionsfläche des Piezooszillators in Wirkverbindung steht und an der Ober¬ fläche des Hohlzylinders eine Haupt- oder Gegenelektrode sowie Anregungs¬ elektroden angeordnet sind, dadurch gekennzeichnet, dass der hohlzylindrische Piezooszillator aus einem monokristallinen Material mit trigonalem Kristallsystem besteht, welches drei in einem Winkel von 120° zu¬ einander angeordnete elektrische Hauptachsen und eine optische Achse be¬ sitzt, die zu der von den elektrischen Achsen aufgespannten Ebene einen Win¬ kel von 90° einschließt und welche mit der Längsachse des hohlzylindrischen Piezooszillators zusammenfällt, sowie weiterhin die axiale Symmetrieachse der jeweiligen Anregungselektrode eine der elektrischen Hauptachsen schneidet und die jeweilige axiale Symmetrieachse parallel zur optischen Achse verläuft.
2. Miniaturisierbarer Motor nach Anspruch 1, dadurch gekennzeichnet, dass die Anregungselektroden gleich verteilt am Außenmantel des Hohlzylinders an¬ geordnet sind.
3. Miniaturisierbarer Motor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die gemeinsame Hauptelektrode auf der innenseitigen Manteloberfläche des Hohlzylinders befindlich ist.
4. Miniaturisierbarer Motor nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass an den Stirnseiten des Hohlzylinders jeweils eine konische Friktionsfläche aus¬ gebildet ist, welche jeweils mit einem komplementären Konus einer Friktions¬ scheibe zum Antreiben des Rotors zusammenwirkt.
5. Miniaturisierbarer Motor nach Anspruch 1, dadurch gekennzeichnet, dass von jeder Anregungselektrode die erste Biegemode des Oszillators angeregt wird, wobei der Piezooszillator in einer Ebene schwingt, die durch die optische sowie die der jeweiligen Anregungselektrode entsprechenden elektrischen Achse gebildet wird.
6. Miniaturisierbarer Motor nach Anspruch 1, dadurch gekennzeichnet, dass von jeder Anregungselektrode im Piezooszillator die erste tangential-axiale Schwingungsmode angeregt wird.
7. Miniaturisierbarer Motor nach Anspruch 1, dadurch gekennzeichnet, dass von jeder Anregungselektrode im Piezooszillator eine stehende Longitudinal- welle auf dem Umfang des Hohlzylinders angeregt wird.
PCT/EP2005/006995 2004-08-13 2005-06-29 Miniaturisierbarer motor mit hohlzylindrischem piezooszillator WO2006018062A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/659,762 US7795782B2 (en) 2004-08-13 2005-06-29 Miniaturizable motor
JP2007525188A JP4648391B2 (ja) 2004-08-13 2005-06-29 小型化可能なモーター

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004039391 2004-08-13
DE102004039391.5 2004-08-13
DE102004044184.7 2004-09-13
DE102004044184A DE102004044184B4 (de) 2004-08-13 2004-09-13 Miniaturisierbarer Motor

Publications (1)

Publication Number Publication Date
WO2006018062A1 true WO2006018062A1 (de) 2006-02-23

Family

ID=35079299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006995 WO2006018062A1 (de) 2004-08-13 2005-06-29 Miniaturisierbarer motor mit hohlzylindrischem piezooszillator

Country Status (4)

Country Link
US (1) US7795782B2 (de)
JP (1) JP4648391B2 (de)
DE (1) DE102004044184B4 (de)
WO (1) WO2006018062A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008023478A1 (de) * 2007-11-08 2009-05-14 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschalllinearantrieb mit hohlzylindrischem Oszillator
TWI408888B (zh) * 2008-08-07 2013-09-11 Ind Tech Res Inst 超音波線性馬達
WO2011125579A1 (ja) * 2010-03-31 2011-10-13 株式会社ニコン モータ装置、モータ装置の製造方法及びロボット装置
US20120268910A1 (en) * 2011-04-20 2012-10-25 Golko Albert J Piezoelectric vibrator with double-ended shaft support
CN102355157B (zh) * 2011-10-10 2014-02-12 哈尔滨工业大学 压电片夹心式旋转直线超声电机定子
JP2013084780A (ja) * 2011-10-11 2013-05-09 Olympus Corp 圧電素子及び圧電アクチュエータ
JP2013179786A (ja) * 2012-02-28 2013-09-09 Olympus Corp 圧電素子及び圧電アクチュエータ
WO2013054789A1 (ja) * 2011-10-11 2013-04-18 オリンパス株式会社 圧電素子及び圧電アクチュエータ
TWI574439B (zh) * 2011-12-30 2017-03-11 晶緻材料科技私人有限公司 多樁式致動器及其製造方法及使用該多樁式致動器的衍生設備、壓電式馬達、微型馬達
US8574295B2 (en) 2012-01-17 2013-11-05 Vista Ocular, Llc Accommodating intra-ocular lens system
DE102012202727B4 (de) * 2012-02-22 2015-07-02 Vectron International Gmbh Verfahren zur Verbindung eines ersten elektronischen Bauelements mit einem zweiten Bauelement
US10702375B2 (en) 2015-09-18 2020-07-07 Vista Ocular, Llc Electromyographic sensing and vision modification
DE102020114219A1 (de) * 2020-05-27 2021-12-02 Physik Instrumente (PI) GmbH & Co KG Ultraschallaktor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858065A (en) * 1970-12-31 1974-12-31 Becton Dickinson Co Annular 3m class piezoelectric crystal transducer
US4019073A (en) * 1975-08-12 1977-04-19 Vladimir Sergeevich Vishnevsky Piezoelectric motor structures
US5872418A (en) * 1994-10-31 1999-02-16 Pi Ceramic Gmbh Piezoelectric motor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2838696A (en) * 1955-08-15 1958-06-10 Bell Telephone Labor Inc Torsional transducers of ethylene diamine tartrate and dipotassium tartrate
US4087715A (en) * 1976-11-18 1978-05-02 Hughes Aircraft Company Piezoelectric electromechanical micropositioner
JPS63181010A (ja) * 1987-01-22 1988-07-26 Nec Corp 小角度回転駆動装置
US4965482A (en) * 1988-06-17 1990-10-23 Nec Corporation Ultrasonic motor and method of adjusting the same
JP2729827B2 (ja) * 1989-03-06 1998-03-18 株式会社トーキン 超音波モータ
US5323082A (en) * 1989-05-03 1994-06-21 Spectra Physics Lasers, Inc. Piezoelectric actuator for planar alignment
JPH03112374A (ja) * 1989-09-22 1991-05-13 Fuji Elelctrochem Co Ltd 圧電アクチュエータ
JPH0757108B2 (ja) * 1990-06-22 1995-06-14 日本電信電話株式会社 移動テーブル及びその駆動方法
DE4305894C1 (de) * 1993-02-26 1994-08-18 Daimler Benz Ag Schwingungsanregung bei einem Schwingungsmotor mit zylinderförmigem Schwingkörper
JP3112374B2 (ja) * 1993-06-30 2000-11-27 富士写真フイルム株式会社 記録材料
DE19522072C1 (de) * 1995-06-17 1997-02-06 Pi Ceramic Gmbh Piezoelektrischer Motor
DE4438876B4 (de) * 1994-10-31 2004-04-01 Pi Ceramic Piezoelektrischer Motor
JPH08247770A (ja) * 1995-03-14 1996-09-27 Murata Mfg Co Ltd 振動ジャイロ
JPH11261127A (ja) * 1998-03-10 1999-09-24 Matsushita Electric Ind Co Ltd 圧電部品、圧電センサおよび圧電アクチュエータ、ならびにインクジェットプリンタヘッド
DE19926010C2 (de) * 1999-06-08 2003-01-30 Bundesdruckerei Gmbh Wert- und Sicherheitsdokument mit Sicherheitsmerkmal mit Piezo-Effekt-basierten Eigenschaften und dazugehöriges Nachweisverfahren
US7118356B2 (en) * 2002-10-02 2006-10-10 Nanyang Technological University Fluid pump with a tubular driver body capable of selective axial expansion and contraction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858065A (en) * 1970-12-31 1974-12-31 Becton Dickinson Co Annular 3m class piezoelectric crystal transducer
US4019073A (en) * 1975-08-12 1977-04-19 Vladimir Sergeevich Vishnevsky Piezoelectric motor structures
US5872418A (en) * 1994-10-31 1999-02-16 Pi Ceramic Gmbh Piezoelectric motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VYSHNEVSKYY O ET AL: "Coupled tangential-axial resonant modes of piezoelectric hollow cylinders and their application in ultrasonic motors", IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL IEEE USA, vol. 52, no. 1, January 2005 (2005-01-01), pages 31 - 36, XP002350772, ISSN: 0885-3010 *

Also Published As

Publication number Publication date
JP2008509645A (ja) 2008-03-27
DE102004044184B4 (de) 2013-02-21
US20080297001A1 (en) 2008-12-04
DE102004044184A1 (de) 2006-03-02
US7795782B2 (en) 2010-09-14
JP4648391B2 (ja) 2011-03-09

Similar Documents

Publication Publication Date Title
WO2006018062A1 (de) Miniaturisierbarer motor mit hohlzylindrischem piezooszillator
DE3213348C2 (de) Piezoelektrischer Motor
EP1234346B1 (de) Piezoelektrischer antrieb
EP0789937A1 (de) Piezoelektrischer motor
DE2560628C2 (de)
DE3587940T2 (de) Piezoelektrischer Motor.
DE3703676C2 (de)
EP0306530A1 (de) Piezoelektrischer motor
WO2006027031A1 (de) Linearer ultraschallmotor
DE3423884C2 (de)
DE69206570T2 (de) Piezoelektrischer Motor.
EP1581992B1 (de) Verfahren zum Betreiben eines piezoelektrischen Motors sowie piezoelektrischer Motor mit einem Stator in Form eines hohlzylindrischen Oszillators
WO2008135457A1 (de) Piezoelektrische antriebsvorrichtung
WO2014183761A1 (de) Ultraschallmotor
WO2003036786A2 (de) Piezoelektrischer antrieb
DE4216050C2 (de) Ultraschallwanderwellenmotor mit formschlüssiger Anregung von Wanderwellen
DE69130751T2 (de) Vibrationsangetriebener Motor
EP1485985B1 (de) Piezoelektrischer motor und verfahren zum antrieb desselben
US5726519A (en) Traveling-wave piezoelectric motor
DE4438876B4 (de) Piezoelektrischer Motor
DE19522072C1 (de) Piezoelektrischer Motor
DE102020130013B3 (de) Ultraschallaktor
DE102022114863B3 (de) Ultraschallmotor
DE4002254A1 (de) Ultraschallmotor mit zwei rotoren
DE69222734T2 (de) Ultraschallmotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007525188

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580027520.0

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11659762

Country of ref document: US