WO2006016414A1 - Signal forming circuit, signal forming method, and electronic device - Google Patents

Signal forming circuit, signal forming method, and electronic device Download PDF

Info

Publication number
WO2006016414A1
WO2006016414A1 PCT/JP2004/011704 JP2004011704W WO2006016414A1 WO 2006016414 A1 WO2006016414 A1 WO 2006016414A1 JP 2004011704 W JP2004011704 W JP 2004011704W WO 2006016414 A1 WO2006016414 A1 WO 2006016414A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
modulation
sub
modulation signal
output
Prior art date
Application number
PCT/JP2004/011704
Other languages
French (fr)
Japanese (ja)
Inventor
Futoshi Fujiwara
Original Assignee
Shearwater Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shearwater Kabushiki Kaisha filed Critical Shearwater Kabushiki Kaisha
Priority to PCT/JP2004/011704 priority Critical patent/WO2006016414A1/en
Priority to JP2006531098A priority patent/JP4543042B2/en
Publication of WO2006016414A1 publication Critical patent/WO2006016414A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/095Modifications of modulator for regulating the mean frequency using a phase locked loop applying frequency modulation to the loop in front of the voltage controlled oscillator

Definitions

  • Signal forming circuit Signal forming method, and electronic apparatus
  • the present invention relates to a signal forming circuit, a signal forming method, and an electronic device, and in particular, a spread spectrum signal forming circuit and a signal that reduce EMI more efficiently by using a modulated wave that further modulates a modulated wave.
  • the present invention relates to a forming method and an electronic device including the signal forming circuit.
  • EMI Electro Magnetic Interference
  • circuits that use periodically changing signals such as clocks (rectangular waves), triangular waves, and sine waves.
  • a spread spectrum clock generator (SSCG) is known as an example of a technique for reducing EMI in a clock forming circuit (clock generator) (for example, Patent Document 1).
  • SSCG uses the modulated wave to slightly change the frequency of the oscillation clock in the clock generator (frequency modulation), thereby reducing EMI.
  • Figure 19 illustrates this principle. That is, the spectrum spO indicates an accurate clock frequency spectrum without frequency modulation. In this case, the spectrum spO has the highest frequency component at the transmission frequency fO.
  • this clock is frequency-modulated, its frequency spectrum spl changes as shown in FIG. As a result, since the ratio of the unit time to the frequency within the modulation width is low, the peak of the spectrum spl is reduced, and EMI can be reduced.
  • FIGS. 20 (A) to 20 (C) show the relationship between the SSCG modulation wave and the clock spectrum.
  • the SSCG modulation wave is shown on the left and the clock spectrum is shown on the right.
  • Figure 20 (A) shows the spectrum of the clock when modulated with a sine wave.
  • Figure 20 (B) shows the spectrum of the clock when modulated with a triangular wave.
  • Fig. 21 (B) in order to obtain a uniform density without depending on time, There should be no peaks in the spectrum.
  • the waveform at the apex of the triangular wave becomes dull due to deterioration of the characteristics of the modulator with respect to the modulation wave (specifically, the band limitation of the VCO (voltage controlled oscillator)), resulting in some peaks at both ends of the spectrum Exists.
  • the band limitation of the VCO voltage controlled oscillator
  • Patent Document 1 US Pat. No. 4,507,796
  • Patent Document 2 US Pat. No. 5,488,627
  • the spectrum shown in FIG. 20 (C) also has the same fine peak as shown in FIG. 22 (A).
  • the conventional SSCG modulation method described above basically increases the number of peaks and decreases the density per unit time by lowering the frequency of the modulation wave. It can be said that the peak of the vector is reduced. If the spectrum peak can be reduced, EMI can be reduced.
  • the spectrum peak cannot be reduced unless the frequency of the modulated wave is lowered.
  • the lower limit of the modulation frequency fl is considered to be about 20 kHz which is an audible frequency in practice. If the frequency is lower than this, a part or the whole of the electronic device may vibrate at the modulation frequency fl, and the vibration sound may be heard by humans. Therefore, according to the conventional SSCG modulation method, there is a limit to reducing the spectrum peak due to the lower limit of the frequency of the modulation wave.
  • An object of the present invention is to provide a signal forming circuit capable of reducing EMI more efficiently by improving at least the flatness of a spectrum of a periodic signal or by reducing the peak of the spectrum.
  • an object of the present invention is to provide a signal forming method that improves EMI more efficiently by improving at least the flatness of the spectrum of a periodic signal or by reducing the peak of the spectrum. It is in.
  • an object of the present invention is to provide an electronic device including a signal forming circuit that more efficiently reduces EMI.
  • a signal forming circuit of the present invention is a signal forming circuit that forms an output signal capable of reducing EMI, and that modulates a reference signal serving as a reference for generating a final modulated signal.
  • a modulation signal generation unit for outputting the final modulation signal generated by modulating the reference signal with at least one sub modulation signal, and a periodic signal forming unit.
  • a signal modulation unit for output.
  • a signal forming method of the present invention is a signal forming method for forming an output signal capable of reducing EMI, for generating at least one sub-modulation signal and generating a final modulation signal.
  • a final reference signal is generated by modulating a reference signal serving as a reference with the at least one sub-modulation signal, and a periodic signal is modulated with the final modulation signal.
  • an output signal capable of reducing the EMI is generated by reducing a spectrum caused by the output signal.
  • the electronic device of the present invention includes a periodic signal forming circuit that outputs a periodic signal, a reference signal generation unit that outputs a reference signal serving as a reference for generating a final modulation signal, and at least modulates the reference signal.
  • a modulation signal generation unit that outputs the final modulation signal generated by modulating the reference signal with the at least one submodulation signal. And reducing the EMI by reducing the spectrum resulting from the output signal generated by modulating the periodic signal output from the periodic signal forming circuit with the final modulation signal.
  • a signal modulating unit that outputs an output signal capable of performing a predetermined operation, and an operation unit that performs a predetermined operation based on the output signal.
  • SSCG basically has two problems. First, what kind of modulation signal is appropriate to obtain the flatness of the spectrum, and second, when the modulation width is the same, the spectrum peak is further reduced. How should we do it?
  • the present invention is based on a new principle obtained by reexamining SSCG from its principle. By applying the new principle to not only a clock signal but also a periodic signal such as a sine wave. In addition, while maintaining the frequency of the modulation signal within the range that does not generate vibration sound, the flatness of the spectrum can be improved and the spectrum peak can be reduced.
  • the modulation signal is further modulated using the sub-modulation signal.
  • the clock signal is modulated in multiple (double or higher).
  • the type of sub-modulation is frequency modulation or amplitude modulation.
  • modulating the frequency of the modulation signal it is possible to reduce the peak of the modulation frequency.
  • modulating the amplitude of the modulation signal the spectrum can be flattened.
  • the modulation signal may be frequency-modulated and amplitude-modulated, whereby the peak of the modulation frequency can be reduced and the spectrum can be flattened.
  • the clock signal is generated by the final modulation signal generated by (sub) modulating the modulation signal with at least one ⁇ IJ modulation signal. Etc. to modulate multiple periodic signals. Therefore, by modulating the modulation signal at least by frequency modulation or amplitude modulation, the peak of the modulation frequency can be reduced, or the spectrum can be flattened. As a result, even if the modulation frequency is not lower than the frequency (about 20kHZ) that generates vibration sound, the peak of the spectrum can be reduced, and the modulation wave that emphasizes the apex of the triangular wave is not used. However, the spectrum can be flattened.
  • a signal forming that multiplexly modulates a periodic signal such as a clock signal by a final modulation signal generated by modulating the modulation signal with at least one sub-modulation signal Provide circuit. Therefore, by modulating the modulation signal at least by frequency modulation or amplitude modulation, as described above, it is possible to flatten the force and spectrum for reducing the peak of the modulation frequency. Therefore, it is not necessary to consider the characteristics of the modulator, which does not require the use of a complex clock generation circuit, due to the flatness of the spectrum. As a result, the EMI of the electronic device can be reduced by at least reducing the spectrum peak or flattening the spectrum.
  • FIG. 1 shows a configuration of a signal forming circuit according to the present invention.
  • FIG. 2 is a diagram illustrating clock modulation according to the present invention.
  • FIG. 4 is a diagram illustrating clock modulation according to the present invention.
  • FIG. 10 shows a configuration of still another signal forming circuit according to the present invention.
  • FIG. 11 shows the configuration of still another signal forming circuit according to the present invention.
  • FIG. 12 shows the configuration of still another signal forming circuit according to the present invention.
  • FIG. 13 shows a configuration of still another signal forming circuit according to the present invention.
  • FIG. 14 shows a configuration of still another signal forming circuit according to the present invention.
  • FIG. 15 shows a configuration of still another signal forming circuit according to the present invention.
  • FIG. 16 shows a configuration of still another signal forming circuit according to the present invention.
  • FIG. 17 shows a configuration of an electronic device including a signal forming circuit of the present invention.
  • FIG. 18 shows a configuration of another electronic device including the signal forming circuit of the present invention.
  • FIG. 19 is an explanatory diagram of spread spectrum.
  • FIG. 20 is an explanatory diagram of spread spectrum.
  • FIG. 21 is an explanatory diagram of spread spectrum.
  • FIG. 22 is an explanatory diagram of spread spectrum.
  • FIG. 1 is a configuration diagram of a signal forming circuit, and shows an example of a configuration of a signal forming circuit according to the present invention.
  • the signal forming circuit 100 of the present invention includes a clock modulation unit 2 and a modulation signal generation unit 3 which are signal modulation units.
  • the clock modulation unit 2 receives a clock signal (periodic rectangular wave) output from the oscillator 1 which is a periodic signal forming circuit. That is, this example shows an example of modulating a clock signal which is the most typical periodic signal.
  • a relatively simple configuration that is, the circuit scale is not so large
  • a periodic signal By using a periodic signal, a sufficient EMI reduction effect can be obtained.
  • the oscillator 1 generates a clock signal
  • the clock modulator 2 generates a modulation signal, a first submodulation signal that is an FM submodulation wave, and a second submodulation signal that is an AM submodulation wave. Is done.
  • the modulation signal is modulated by the first and second sub-modulation signals (frequency modulation and amplitude modulation), thereby generating a final modulation signal.
  • an output clock signal is generated by modulating the clock signal with the final modulation signal.
  • the present invention is not limited to a clock signal, but can be widely applied to periodic signals such as a triangular wave and a sine wave.
  • the modulation signal (modulation wave) is a signal for slightly varying the frequency of the clock signal (carrier wave) output from the oscillator 1.
  • the sub-modulation signal (sub-modulation wave) is a general term for signals that further modulate the modulation signal, and is referred to as a “sub-modulation signal” to distinguish it from the modulation signal.
  • two types of sub-modulation signals called first and second sub-modulation signals are used.
  • the modulation signal is composed of, for example, a triangular wave
  • the frequency modulation using the first sub modulation signal is modulation in the horizontal direction (time axis direction) in FIG.
  • the amplitude modulation using the second sub-modulation signal is modulation in the vertical direction (voltage or current axis direction) in FIG. Therefore, the modulation signal is sub-modulated twice (in two directions). Since the clock signal is modulated by the modulation signal that is doubly submodulated, it can be said that the clock signal is triple modulated. Thereby, as shown in FIG. 2, the spectrum peak of the clock signal can be reduced and flattened.
  • the oscillator 1 generates and outputs a clock signal having a predetermined frequency, for example, 10 MHz.
  • the oscillator 1 may be a clock generation device having a known configuration.
  • the clock signal output from oscillator 1 is input to clock modulator 2.
  • the clock modulation unit 2 modulates the clock signal output from the oscillator 1 with the final modulation signal to synchronize with the clock signal. Generate and output the expected output clock signal.
  • the clock modulation unit 2 is composed of a phase locked loop (PLL) that receives the clock signal output from the oscillator 1 as an input, uses the final modulation signal as a control signal, and outputs the output clock signal.
  • PLL phase locked loop
  • the output clock is input to the operation unit (operation unit 300 in FIG. 17) of various electronic devices and used as a basic clock.
  • the modulation signal generation unit 3 includes a reference signal generation unit 33, a first sub modulation signal generation unit 31 that is an FM (frequency modulation) sub modulation signal generation unit, and an AM (amplitude modulation) sub modulation signal.
  • a second sub-modulation signal generation unit 32 and a multiplier 34, which are generation units, are provided.
  • FIG. 3 conceptually shows the waveform of each signal in the modulation signal generator 3.
  • the reference signal generation unit 33 generates and outputs a modulation signal FM (not shown) that is a reference signal (reference signal) for generating a final modulation signal.
  • the reference signal generation unit 33 is provided inside the modulation signal generation unit 3.
  • the modulation signal FM is a triangular wave (a symmetrical triangular wave). Therefore, the reference signal generation unit 33 in this example is a triangular wave generation circuit.
  • the modulation signal FM may be a signal that changes continuously, for example, a sine wave.
  • the reference signal generation unit 33 outputs the intermediate modulation signal FMsigo when the first sub modulation signal (FM sub modulation wave) FMo output from the first sub modulation signal generation unit 31 is input. To do.
  • the intermediate modulation signal FMsigo is not a triangular wave because it is the result of FM modulation of the triangular wave that is the modulation signal FM.
  • the intermediate modulation signal FM sigo is input to the multiplier 34.
  • the first sub-modulation signal generator 31 outputs a first sub-modulation signal FMo.
  • the first sub-modulation signal F Mo is a signal that frequency-modulates the modulation signal FM, and is a triangular wave in this example. By modulating the frequency of the modulation signal FM, the modulation frequency in the modulation range on the spectrum can be dispersed, and as a result, the peak of the modulation frequency can be reduced.
  • the first sub modulation signal FMo is a signal that changes continuously and does not change discontinuously. The frequency and phase of the first sub-modulation signal FMo need not depend on other oscillators. Specifically, the first sub-modulation signal FMo is a triangular wave having a period sufficiently longer than the modulation signal FM.
  • the period is, for example, a period about 10 times as long as the modulation signal FM.
  • the frequency sub-modulation width is preferably 0.5 to 1.5 times the frequency of the modulation signal FM.
  • the first sub modulation signal FMo is input to the reference signal generation unit 33.
  • the second sub-modulation signal generator 32 outputs the second sub-modulation signal AMo.
  • the second sub-modulation signal A Mo is a signal that modulates the amplitude of the modulation signal FM, and is a triangular wave in this example. By modulating the amplitude of the modulation signal FM, the peaks at both ends of the spectrum can be reduced, and as a result, the spectrum can be flattened.
  • the second submodulation signal AMo is either a continuously changing signal (for example, a triangular wave) or a discontinuously changing signal (for example, a staircase wave). The frequency and phase of the second secondary modulation signal AMo do not depend on other oscillators.
  • the second submodulation signal AMo is a triangular wave having a period longer than the modulation signal FM and shorter, longer or equal to the first submodulation signal FMo.
  • the period is, for example, a period about 23 times longer than the modulation signal FM.
  • the second submodulation signal AMo is input to the multiplier 34.
  • the first and second sub-modulation signals FMo and AMo may be any signals that continuously change in addition to the triangular wave. Even in this case, it is possible to obtain the effect of spreading the outer surface similarly.
  • the submodulation signal is composed of the sum of a sine wave of arbitrary amplitude An, a cosine wave of arbitrary amplitude Bn, a sine wave of arbitrary amplitude An of an integer multiple of these, and a cosine wave of arbitrary amplitude Bn.
  • the sub-modulated signal may be a signal generated by any irregular process such as uniform distribution noise, Gaussian distribution noise, binomial distribution noise, Poisson distribution noise, Rayleigh distribution, etc.
  • the submodulation signal may be a signal obtained by combining two or more of the various signals described herein.
  • the multiplier 34 multiplies the intermediate modulation signal FMsigo output from the reference signal generation unit 33 by the second sub modulation signal AMo output from the second sub modulation signal generation unit 32, thereby finalizing the signal.
  • Modulation signal MODo is output. That is, the multiplier 34 is for amplitude-modulating the frequency-modulated intermediate modulation signal FMsigo.
  • the modulation signal generator 3 generates and outputs the final modulation signal MODo by modulating the modulation signal FM with the first and second sub modulation signals FMo and AMo (frequency modulation and amplitude modulation). .
  • the final modulation signal MODo is input to the PLL that is the clock modulation unit 2.
  • the PLL 2 includes a first divider 21 with a division ratio A, a second divider 22 with a division ratio B, a phase comparator 23, a loop filter 24, a voltage-current converter (VI ) 25, multiplier 26, current controlled oscillator (ICO) 27.
  • the voltage-current converter 25 and the current-controlled oscillator 27 constitute a voltage-controlled oscillator (VCO). That is, the voltage controlled oscillator includes a multiplier 26.
  • Figure 4 conceptually shows the waveform of each signal in PLL2.
  • f (Fin) f (Fin) ⁇ ⁇ .
  • is the division ratio of the first divider 21
  • B is the division ratio of the second divider 22
  • the input clock signal is a 10 MHz clock signal. In this case, a 133 MHz output clock signal is obtained.
  • the second frequency divider 22 When the clock signal Fin having the frequency f (Fin) output from the oscillator 1 is input, the second frequency divider 22 outputs a signal Bo obtained by dividing the clock signal Fin by the frequency dividing ratio B.
  • the frequency f (Bo) of the signal Bo is a value f (Fin) ZB obtained by dividing the frequency f (Fin) by the division ratio B.
  • the signal Bo is input to the phase comparator 23.
  • the output Ao is also input to the phase comparator 23 from the first frequency divider 21.
  • the phase comparator 23 compares the output Bo of the second frequency divider 22 with the output Ao of the first frequency divider 21, detects the phase difference PHCo, and outputs this to the loop filter 24.
  • the loop filter 24 has a time constant corresponding to its transfer function, and determines the response of the loop of the PLL control system. That is, the input phase difference PHCo is filtered and output. The output LPFo of the loop filter 24 is input to the voltage / current converter 25.
  • the voltage / current converter 25 converts the output LPFo (voltage value) from the loop filter 24 into a current value and outputs the current value to the multiplier 26.
  • the output current is proportional to the square of the voltage.
  • the multiplier 26 multiplies the input current value by the control signal M_in (signal M0Do in FIG. 3) and outputs the result to the current control oscillator 27.
  • the current control oscillator 27 oscillates and outputs an output clock signal Fout having a frequency corresponding to the input current value.
  • the frequency of the output signal is proportional to the 1/2 power of the input current.
  • the final modulation signal MODo output from the multiplier 34 has a change amount slightly deviating from a linear change that is not a linear change amount. Therefore, it is possible to disperse the modulation frequency in the modulation range on the spectrum and extinguish the peaks at both ends of the spectrum rather than the linear change. As a result, the peak at the modulation frequency of the spectrum can be further reduced, and the spectrum can be flattened.
  • the control signal M_in (final modulation signal MODo) of the multiplier 26 is a frequency-modulated triangular wave
  • the modulation frequency in the modulation range on the spectrum is dispersed, and as a result
  • the peak at the modulation frequency of Tatonole can be reduced. This can be seen from the fact that the density decreases when the triangular wave in Fig. 21 (B) is modulated in the time axis (horizontal axis) direction.
  • the control signal M_in of the multiplier 26 is an amplitude-modulated triangular wave, the peaks at both ends of the spectrum are extinguished, and as a result, the spectrum is corrected. Torr can be flattened. This can be seen from the fact that the density decreases when the triangular wave in FIG. 21B is modulated in the voltage or current axis (vertical axis) direction.
  • the modulation signal FM, the first sub-modulation signal FMo, and the second sub-modulation signal AMo are all not required to be phase-synchronized with the input signal (clock signal) from the oscillator 1, and the frequency There is no need to synchronize. However, it is preferable that these signals are not phase-synchronized and frequency-synchronized with the clock signal, rather than phase-synchronized and / or frequency-synchronized. This is due to the following reasons. First, without phase synchronization and frequency synchronization, the modulation frequency in the modulation range on the spectrum can be dispersed, and the peak of the modulation frequency can be reduced. Second, spectrum flatness can be ensured by not synchronizing the phase and frequency.
  • the period of the output signal changes between 9.8 nSec and 10.2 nSec.
  • the period of the output signal is 10.2nSec
  • the time of 250nSec elapses, it is 24.5 periods.
  • the period of the input signal is 24 periods. Therefore, a half-circulator delay occurs.
  • PLL2 suddenly changes to the state in which the state force advance that was detecting the delay was detected (causes a cycle slip), and tries to increase the frequency that it was trying to reduce until then. As a result, discontinuous points are generated in frequency, and the flatness of the spout is impaired.
  • the discontinuous operating point of the PLL 2 due to cycle slip can be spread over a long period of time, and the spectral flatness Can be prevented.
  • the discontinuous operation point can be moved by amplitude-modulating the modulation signal FM with the second sub-modulation signal AMo. Thereby, the discontinuous operating point can be diffused for a long time, and the flatness of the spectrum can be prevented from being impaired.
  • the modulation signal does not necessarily need to be double-modulated by the first and second sub-modulation signals as described above, and may be simply modulated by one sub-modulation signal. That is, the final modulated signal may be generated by modulating the modulated signal with either the first or second sub-modulated signal (frequency modulation or amplitude modulation).
  • the modulation signal generation unit 3 includes at least one sub-modulation signal generation unit, and the modulation signal May be modulated with at least one sub-modulated signal to generate a final modulated signal. That is, a clock signal, a modulation signal, and one sub-modulation signal are generated, and the modulation signal is modulated with the sub-modulation signal (frequency modulation or amplitude modulation) to generate a final modulation signal, and the clock signal is finally modulated. It is also possible to generate the output clock signal by modulating with the signal.
  • FIG. 7 is another signal forming circuit configuration diagram, and shows the configuration of another signal forming circuit according to the present invention.
  • the signal forming circuit 100 in FIG. 7 has a configuration similar to that of the signal forming circuit 100 in FIG. 1, but the modulation signal generation unit 3 includes the first sub modulation signal generation unit 31 (only), and the second sub modulation signal generation unit 31 The difference is that the modulation signal generator 32 is not provided.
  • the signal forming circuit 100 in FIG. the signal forming circuit can have a very simple configuration, but the case where an EMI reduction effect can be obtained is limited. In other words, when there is only one (or small) operation part in the subsequent stage as shown in FIG. 17 (when there are no multiple operation parts (shown in FIG. 18)), an EMI reduction effect can be obtained. .
  • FIG. 8 is still another signal forming circuit configuration diagram showing the configuration of still another signal forming circuit according to the present invention.
  • the signal forming circuit 100 in FIG. 8 has a configuration similar to that of the signal forming circuit 100 in FIG. 1, but the modulation signal generation unit 3 includes the second sub modulation signal generation unit 32 (only), and the first The difference is that the sub-modulation signal generation unit 31 is not provided.
  • the signal forming circuit can be made very simple, but the case where an EMI reduction effect can be obtained is limited. In other words, as shown in Fig. 18, when a PLL is provided in the subsequent stage, an EMI reduction effect can be obtained.
  • the modulation signal output from the reference signal generation unit 33 and the second sub-modulation signal generation The second sub-modulated signal output from the generator 32 is multiplied by the multiplier 34 to output the final modulated signal.
  • the second sub-modulation signal is a signal that amplitude-modulates the modulation signal, and is a triangular wave. Therefore, the final modulation signal is a signal obtained by amplitude modulating the modulation signal with a triangular wave.
  • the final modulated signal in this example is a signal obtained by removing the influence of the signal FMo from the signal MODo in FIG. That is, the signal (modulated signal FM) before the frequency modulation of the signal FMsigo is amplitude-modulated with the signal AMo.
  • FIG. 9 is still another signal forming circuit configuration diagram, and shows the configuration of still another signal forming circuit according to the present invention.
  • the signal forming circuit 100 in FIG. 9 has a configuration similar to that of the signal forming circuit 100 in FIG. 1, but the modulation signal generation unit 3 includes the first sub modulation signal generation unit 31 (only). The difference is that is used for two sub-modulations.
  • the plurality of submodulation signal generation units 31 and 32 are actually composed of one submodulation signal generation unit 31 that is also used as the submodulation signal generation units 31 and 32.
  • the final modulation signal is generated by modulating the modulation signal using one first submodulation signal generated by the one submodulation signal generation unit 31 twice (multiple times).
  • the chip area of the LSI can be minimized by the simplest configuration, and sufficient EMI reduction effect can be obtained for almost all periodic signals including clock signals. Can do.
  • the reference signal generation unit 33 when the first sub-modulation signal output from the first sub-modulation signal generation unit 31 is input, the reference signal generation unit 33 outputs a frequency-modulated modulation signal.
  • the multiplier 34 multiplies the frequency-modulated modulation signal and the first sub-modulation signal to amplitude-modulate the frequency-modulated modulation signal.
  • the final modulated signal is output. Therefore, the final modulated signal is a signal modulated twice by the first sub-modulated signal.
  • the final modulated signal in this example is a signal similar to the signal FMsigo in FIG.
  • the modulation signal generation unit 3 includes a second sub modulation signal generation unit 32 (only), which is used for two sub modulations (frequency modulation and amplitude modulation). You may do it.
  • the modulation signal generation unit 3 is actually composed of one sub modulation signal generation unit 32 that is also used as the sub modulation signal generation units 31 and 32.
  • FIG. 10 is still another signal forming circuit configuration diagram showing the configuration of still another signal forming circuit according to the present invention.
  • the signal forming circuit 100 in FIG. 10 has a configuration similar to that of the signal forming circuit 100 in FIG. 1, except that the modulation signal generation unit 3 includes third and fourth sub modulation signal generation units 3 11 and 321. Is different.
  • the outputs of the other submodulation signal generation units 311 and 321 are input to the submodulation signal generation units 31 and 32, respectively.
  • the first and second submodulation signals formed by further modulating (submodulation) the outputs of the other submodulation signal generation units 311 and 321 from the submodulation signal generation units 31 and 32, respectively.
  • the signal forming circuit has a complicated configuration, but the EMI reduction effect can be further improved compared to the signal forming circuit of FIG. However, the EMI reduction effect is not improved as the circuit becomes more complex.
  • the final modulation signal output from the modulation signal generator 3 is Has a corresponding dimension.
  • a signal having a dimension corresponding to the phase is obtained as an integration signal.
  • the delay amount of the clock signal can be changed based on the final modulation signal obtained by frequency-modulating and amplitude-modulating the modulation signal. Therefore, the signal forming circuit 100 of this example can obtain the same result as the signal forming circuit 100 of FIG.
  • FIG. 1 and FIG. 11 described above are examples in which the signal forming circuit of the present invention is configured by an analog circuit, but the signal forming circuit of the present invention can also be configured by a digital circuit.
  • the FIG. 12 to FIG. 16 show examples in which the signal forming circuit of the present invention is configured by a digital circuit
  • the output frequency Fout can be modulated by periodically changing the set value of the first frequency divider 21 ′. That is, two values are set for the first frequency divider 21 ′. Prepare values NO and N1, and set value NO at time t2n and value N1 at time Ijt2n + 1 to first divider 21 'and select the loop constant of loop filter 24' appropriately.
  • modulation can be performed using the transient response due to the integral characteristic of the loop filter 24 '.
  • the output frequency Fout repeats a continuous change from NO ZM 'Fin to Nl ZM' Fin.
  • the reference clock signal generation circuit 4 generates and outputs a modulation signal (not shown) which is a reference signal (reference signal) for generating the final modulation signal. Therefore, this example is also an example in which the reference signal generation unit (33) is provided outside the signal forming circuit 100.
  • the reference signal or modulation signal is the second clock signal.
  • the second clock signal has a frequency that is not an integral multiple of the clock signal (first clock signal) output from the oscillator 1 in order to sufficiently obtain the effect of submodulation.
  • the frequency-modulated clock signal tk is supplied as a clock signal to the second triangular wave generation unit 37 in the next stage.
  • the second triangular wave generator 37 generates an amplitude submodulated wave. That is, the second triangular wave generation unit 37 generates the output Sk by adding or subtracting the constant C to the current output value of the second triangular wave generation unit 37 for each frequency-modulated clock.
  • Figure Output Sk It is shown in 13.
  • the number of bits of the adder / subtracter (not shown) in the second triangular wave generation unit 37 is finite, and there is a maximum numerical value that can be processed by the second triangular wave generation unit 37. Assuming that the value is G max, G max is determined by the number of bits of the adder / subtracter in the second triangular wave generator 37. When the number of bits is n, the minimum numerical value that can be handled by the second triangular wave generation unit 37 is the maximum numerical value Gmax_ (2 n_l).
  • the second triangular wave generator 37 When the second triangular wave generator 37 functions as an adder, the constant C is added for each frequency submodulation clock. When the result of this addition reaches the maximum value due to the limitation on the number of bits, the second triangular wave generator 37 switches to a subtracter. As a result, the constant C is subtracted for each frequency sub-modulation clock, and thereafter, the subtraction is continued until the minimum value is reached due to the limitation on the number of bits. In addition, when the output of the second triangular wave generation unit 37 reaches the minimum value in the subtractor state, the second triangular wave generation unit 37 switches to an adder, and the constant C is set for each frequency submodulation clock. It is added until it reaches the maximum value G max that can be handled by this calculator.
  • the numerical value of the output of the second triangular wave generator 37 repeats the increase to the maximum value and the decrease to the minimum value according to the constant C for each frequency submodulation clock. As a result, a sequence Sk representing the triangular wave subjected to frequency submodulation is generated.
  • An appropriate loop constant can be obtained by multiplying the original loop constant by k -Nk / FMk or k -Nk / tk. Where k is a proportionality constant. Set the generated sequence Nk to the first divider 21 'for each generated frequency submodulated clock and set the appropriate loop constant Is set to loop filter 24 by Nk and FMk. As a result, the output LPFo of the loop filter 24 'becomes as shown in FIG. By inputting this output LPFo to the voltage controlled oscillator 210, it is possible to generate a clock signal Font that is modulated by a modulation wave subjected to frequency sub-modulation and amplitude sub-modulation. Therefore, according to the present invention, by performing frequency sub-modulation and amplitude sub-modulation on the modulated wave, the spectrum can be effectively spread and attenuated, and as a result, EMI can be greatly reduced.
  • FIG. 14 is still another signal forming circuit configuration diagram, and shows the configuration of still another signal forming circuit according to the present invention. That is, the signal forming circuit in FIG. 14 is configured by a digital circuit, and shows an example in which the modulated wave is submodulated by frequency modulation as in the example of FIG. Therefore, the relationship between FIG. 12 and FIG. 14 corresponds to the relationship between FIG. 1 and FIG.
  • the signal forming circuit 100 in FIG. 14 has a configuration similar to that of the signal forming circuit 100 in FIG. 12, except that the second triangular wave generating unit 37 is omitted in the modulation signal generating unit 3. Different.
  • the reference clock signal which is a modulation signal, can be frequency-modulated.
  • the modulation frequency can be dispersed and the peak thereof can be reduced.
  • FIG. 16 is still another signal forming circuit configuration diagram, and shows the configuration of still another signal forming circuit according to the present invention. That is, the signal forming circuit in FIG. 16 is configured by a digital circuit, and in the same manner as in the example of FIG. 10, an example of further submodulating the submodulation wave for modulating the modulation wave (an example of multiple modulation). Show. Therefore, the relationship between FIG. 12 and FIG. 16 corresponds to the relationship between FIG. 1 and FIG.
  • the signal forming circuit 100 in FIG. 16 has a configuration similar to that of the signal forming circuit 100 in FIG. 12, but in the modulation signal generating unit 3, the third triangular wave is placed in front of the first triangular wave generating unit 36.
  • the reference clock signal which is a modulation signal
  • the reference clock signal is further (sub) modulated by the first and second sub modulation signals once modulated (sub). Therefore, as in FIG. 10, the reference clock signal that is the modulation signal is triple-modulated.
  • FIG. 17 is a configuration diagram of an electronic device, and shows an example of the configuration of an electronic device 200 including the signal forming circuit 100 ′ of the present invention.
  • the electronic device 200 includes a signal forming circuit 100 ′ according to the present invention and an operation unit 300 that performs a predetermined operation based on an output clock signal output from the signal forming circuit 100 ′.
  • the signal forming circuit 100 ′ of the present invention has one of the configurations shown in FIG. 1, FIG. 7, or FIG. Therefore, the modulation signal generation unit 3 only needs to include the sub modulation signal generation unit 31 or 32 that outputs at least one sub modulation signal.
  • FIG. 17 shows an example in which two sub-modulation signal generation units 31 and 32 are provided.
  • the operation unit 300 includes, for example, a personal computer, a facsimile machine, a copier, and a printer. Since the wiring that propagates the clock signal extends long inside the large housing, these wirings can easily operate as an antenna. Therefore, in reality, EMI is reduced by attaching the electromagnetic wave absorbing sheet inside the housing and absorbing the emitted electromagnetic waves. According to the present invention, it is possible to omit or thin the attachment of the electromagnetic wave absorbing sheet while reducing EMI, and to reduce the cost.
  • the operating unit 300 may have, for example, a class D amplifier power.
  • Class D amplifiers filter the digital signal obtained by processing the clock signal and input it directly to the speaker. It is said that it is efficient. Since the class D amplifier is accompanied by switching of a large current, it is easy to radiate electromagnetic waves. However, according to the present invention, radiation of electromagnetic waves can be suppressed and EMI can be reduced.
  • FIG. 18 is a configuration diagram of another electronic device, and shows an example of the configuration of another electronic device 200 including the signal forming circuit of the present invention.
  • the electronic device in FIG. 18 has a configuration similar to the configuration of the electronic device in FIG. 17, but the operation unit 300 includes a plurality of PLLs 301a 301 ⁇ and a plurality of operation units 302a to 302 ⁇ corresponding thereto.
  • the signal forming circuit 100 ′ has one of the configurations shown in FIG. 1, FIG. 8, FIG. 11, and FIG. FIG. 18 shows an example in which two sub-modulation signal generation units 31 and 32 are provided.
  • the signal forming circuit 100 ′ of the present invention includes the oscillator 1 as a part thereof as shown in FIGS.
  • the signal forming circuit of the present invention shown in each of FIGS. 1, 7, and 8 may include the oscillator 1 as a part thereof.
  • the present invention is not limited to clock signals, and can be widely applied to circuits that use periodically changing signals such as triangular waves and sine waves. Accordingly, the present invention is, for example, a data interface driving circuit (or driver), a photodiode (ie, laser diode or LED) driving circuit, a motor driving circuit, a display driving circuit, an EL driving circuit, a CCD driving circuit, etc. Can be applied to.
  • the wiring length is generally long, and when data is transmitted, the driving current is large and alternating current or pulsating current (plus or minus) It is easy to radiate electromagnetic waves.
  • the photodiode driving circuit may be driven by alternating current (or alternating voltage) when the diode is turned on. In this case, the drive current is large, and it is driven by an alternating current or a pulsating flow, so that it is easy to radiate electromagnetic waves.
  • the motor drive circuit is apt to radiate electromagnetic waves because the motor drive current is very large and is driven by alternating current or pulsating current.
  • the display drive circuit and EL drive circuit have a large display area, the drive current is very large, and the display drive circuit and the EL drive circuit are driven by an alternating current or a pulsating current, so that they easily radiate electromagnetic waves. Since the CCD drive circuit is driven by alternating current or pulsating current when sending image signals from the CCD, it easily radiates electromagnetic waves.
  • such a circuit radiates electromagnetic waves and deteriorates EMI characteristics.
  • the amount of radiated electromagnetic waves can be reduced and EMI can be reduced.
  • the present invention in the signal forming circuit and the signal forming method, at least frequency modulation or amplitude modulation is performed on the modulation signal using at least one sub-modulation signal, so that the period of the clock signal or the like is increased. Multiple modulations of a typical signal.
  • the peak of the modulation frequency can be reduced without making the modulation frequency lower than the frequency (about 20 kHz) that generates vibration noise, or without using a modulation wave that emphasizes the top of the triangular wave.
  • the spectrum can be flattened. Therefore, it is not necessary to consider the characteristics of the modulator, which does not require the use of a complicated clock generation circuit, due to the flatness of the spectrum. As a result, it is possible to reduce the EMI of the signal forming circuit and the electronic device using the signal forming circuit by reducing the spectrum peak or flattening the spectrum.
  • the electronic device includes the signal forming circuit of the present invention that multiplexly modulates a periodic signal such as a clock signal, thereby at least reducing the peak of the spike.
  • a periodic signal such as a clock signal
  • the spectrum can be flattened. Therefore, the spectral flatness Therefore, it is not necessary to consider the characteristics of the modulator, which does not require the use of a complicated clock generator circuit.
  • EMI of the electronic device can be reduced by at least reducing the spectrum peak or flattening the spectrum.

Landscapes

  • Manipulation Of Pulses (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A signal forming circuit for forming an output signal in which EMI can be reduced, comprising a modulating signal generating part (3) and a clock modulating part (2). The modulating signal generating part (3) includes a reference signal producing part (33) for outputting a modulating signal that is a reference signal serving as a reference used for producing an ultimate modulating signal; and first and second sub-modulating signal producing parts (31,32) for outputting first and second sub-modulating signals. The modulating signal generating part (3) modulates the modulating signal by use of the first and second sub-modulating signals to output the ultimate modulating signal. The clock modulating part (2) modulates, by use of the ultimate modulating signal, a periodic signal outputted from a periodic signal forming circuit (1), thereby outputting an output signal in which EMI can be reduced by reducing spectrum caused by the output signal.

Description

明 細 書  Specification
信号形成回路、信号形成方法及び電子機器  Signal forming circuit, signal forming method, and electronic apparatus
技術分野  Technical field
[0001] 本発明は、信号形成回路、信号形成方法及び電子機器に関し、特に、変調波を更 に変調する変調波を用いることにより EMIをより効率良く低減するスペクトラム拡散型 の信号形成回路、信号形成方法、及び当該信号形成回路を備える電子機器に関す る。  TECHNICAL FIELD [0001] The present invention relates to a signal forming circuit, a signal forming method, and an electronic device, and in particular, a spread spectrum signal forming circuit and a signal that reduce EMI more efficiently by using a modulated wave that further modulates a modulated wave. The present invention relates to a forming method and an electronic device including the signal forming circuit.
背景技術  Background art
[0002] 電子機器にぉレ、ては、 EMI (Electro Magnetic Interference )を低減することが要求 されている。 EMIは、特に、クロック(矩形波)、三角波、正弦波等の周期的に変化す る信号を用いる回路から放出される電磁波による影響が大きい。  [0002] Electronic devices are required to reduce EMI (Electro Magnetic Interference). EMI is particularly affected by electromagnetic waves emitted from circuits that use periodically changing signals such as clocks (rectangular waves), triangular waves, and sine waves.
[0003] そこで、例えばクロック形成回路(クロックジェネレータ)におレ、て、 EMIを低減する ための技術の一例として、スペクトラム拡散クロックジェネレータ(SSCG : Spread Spectrum Clock Generator )が知られている(例えば、特許文献 1)。 SSCGは、変調 波を用いてクロックジェネレータにおける発信クロックの周波数をわずかに変動(周波 数変調)させることにより、 EMIを低減させる。図 19はこの原理を示す。即ち、スぺタト ル spOは、周波数変調の無い正確なクロックの周波数スペクトルを示す。この場合、ス ぺクトル spOは、発信周波数 fOにおいて最も高い周波数成分を有する。このクロック を周波数変調すると、その周波数スペクトル splは、図 19に示すように変化する。こ れにより、変調幅以内の周波数に、単位時間に占める割合が低くなるために、スぺク トル splのピークが小さくなり、 EMIを低減させることができる。  Therefore, for example, a spread spectrum clock generator (SSCG) is known as an example of a technique for reducing EMI in a clock forming circuit (clock generator) (for example, Patent Document 1). SSCG uses the modulated wave to slightly change the frequency of the oscillation clock in the clock generator (frequency modulation), thereby reducing EMI. Figure 19 illustrates this principle. That is, the spectrum spO indicates an accurate clock frequency spectrum without frequency modulation. In this case, the spectrum spO has the highest frequency component at the transmission frequency fO. When this clock is frequency-modulated, its frequency spectrum spl changes as shown in FIG. As a result, since the ratio of the unit time to the frequency within the modulation width is low, the peak of the spectrum spl is reduced, and EMI can be reduced.
[0004] 図 20 (A)乃至図 20 (C)は、 SSCGの変調波とクロックのスペクトルとの関係を示し 、各々において、左側に SSCGの変調波を示し、右側にクロックのスぺクトノレを示す。 図 20 (A)は、正弦波で変調した場合におけるクロックのスペクトルを示す。この場合、 図 21 (A)に円で囲んで示すように、頂点付近の密度が高くなるために、スペクトルの 両端が高くなる。図 20 (B)は、三角波で変調した場合におけるクロックのスペクトルを 示す。この場合、図 21 (B)に示すように、時間に依存せず均一な密度になるために、 スペクトルにピークは存在しないはずである。しかし、実際には、変調器の変調波に 対する特性劣化 (具体的には、 VCO (電圧制御発振器)の帯域制限)により、三角波 の頂点の波形が鈍る結果、スペクトルの両端に多少のピークが存在する。更に、実際 には、 SSCGの後段に接続される PLLの帯域制限により、三角波の頂点の波形が鈍 る結果、スペクトルの両端に多少のピークが存在する。 FIGS. 20 (A) to 20 (C) show the relationship between the SSCG modulation wave and the clock spectrum. In each, the SSCG modulation wave is shown on the left and the clock spectrum is shown on the right. Show. Figure 20 (A) shows the spectrum of the clock when modulated with a sine wave. In this case, as shown by a circle in FIG. 21 (A), the density near the apex increases, so both ends of the spectrum increase. Figure 20 (B) shows the spectrum of the clock when modulated with a triangular wave. In this case, as shown in Fig. 21 (B), in order to obtain a uniform density without depending on time, There should be no peaks in the spectrum. In reality, however, the waveform at the apex of the triangular wave becomes dull due to deterioration of the characteristics of the modulator with respect to the modulation wave (specifically, the band limitation of the VCO (voltage controlled oscillator)), resulting in some peaks at both ends of the spectrum Exists. Furthermore, in practice, due to the band limitation of the PLL connected to the latter stage of SSCG, the peak waveform of the triangular wave becomes dull, and as a result, there are some peaks at both ends of the spectrum.
[0005] そこで、変調器の特性を考慮して、変調波として三角波の頂点を強調した波形を用 レ、ることが知られている(特許文献 2)。図 20 (C)は、この場合における変調波とクロッ クのスペクトルとの関係を示す。この場合、平坦なスペクトルが得られ、従って、より大 きな減衰量が得られる。 [0005] Therefore, it is known to use a waveform in which the apex of a triangular wave is emphasized as a modulated wave in consideration of the characteristics of the modulator (Patent Document 2). Figure 20 (C) shows the relationship between the modulated wave and the spectrum of the clock in this case. In this case, a flat spectrum is obtained, and thus a greater attenuation is obtained.
特許文献 1 :米国特許第 4, 507, 796号明細書  Patent Document 1: US Pat. No. 4,507,796
特許文献 2 :米国特許第 5, 488, 627号明細書  Patent Document 2: US Pat. No. 5,488,627
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] クロック信号又は搬送波(即ち、被変調波である)をある変調波(周波数 fl)で変調 した場合におけるスペクトルを厳密に観測すると、図 22 (A)に示すように、当該スぺ タトルは変調周波数 flの間隔で細カ 、ピークを持つ。従って、実際には、図 20 (C) に示すスペクトルも、図 22 (A)に示すと同様の細かいピークを持つ。以上に述べた 従来の SSCGの変調方法は、基本的には、図 22 (B)に示すように、変調波の周波数 を下げることによりピークの数を増やして単位時間あたりの密度を減らすことにより、ス ベクトルのピーク(の高さ)を小さくしていると言うことができる。このスぺタトノレのピーク を小さくできれば、 EMIを低減することができる。  [0006] When the spectrum when a clock signal or a carrier wave (that is, a modulated wave) is modulated with a certain modulated wave (frequency fl) is strictly observed, as shown in FIG. Has fine peaks and peaks at intervals of the modulation frequency fl. Therefore, in practice, the spectrum shown in FIG. 20 (C) also has the same fine peak as shown in FIG. 22 (A). As shown in Fig. 22 (B), the conventional SSCG modulation method described above basically increases the number of peaks and decreases the density per unit time by lowering the frequency of the modulation wave. It can be said that the peak of the vector is reduced. If the spectrum peak can be reduced, EMI can be reduced.
[0007] 従来の SSCGの変調方法によれば、原理的に、変調波の周波数をより低くしなけれ ばスペクトルのピークをより小さくすることはできなレ、。一方、変調周波数 flの下限は 、現実的には可聴周波数である約 20kHz程度であると考えられる。これより低い周波 数になると、変調周波数 flで電子装置の一部又は全体が振動しその振動音が人間 に聞こえてしまう可能性がある。従って、従来の SSCGの変調方法によれば、変調波 の周波数の下限に起因して、スペクトルのピークを小さくすることに対する限界が存 在する。 [0008] また、スペクトルの平坦性を得るために、三角波の頂点を強調した変調波を用いる 場合、このような波形の信号を簡単に得ることはできない。即ち、クロック発生回路の 構成が極めて複雑になる。また、クロック発生回路の設計時に変調器の種類毎にそ の特性を考慮する必要があり、煩わしい。 [0007] According to the conventional SSCG modulation method, in principle, the spectrum peak cannot be reduced unless the frequency of the modulated wave is lowered. On the other hand, the lower limit of the modulation frequency fl is considered to be about 20 kHz which is an audible frequency in practice. If the frequency is lower than this, a part or the whole of the electronic device may vibrate at the modulation frequency fl, and the vibration sound may be heard by humans. Therefore, according to the conventional SSCG modulation method, there is a limit to reducing the spectrum peak due to the lower limit of the frequency of the modulation wave. [0008] In addition, when using a modulated wave in which the apex of a triangular wave is emphasized in order to obtain flatness of the spectrum, a signal having such a waveform cannot be easily obtained. That is, the configuration of the clock generation circuit becomes extremely complicated. In addition, when designing the clock generation circuit, it is necessary to consider the characteristics of each type of modulator, which is troublesome.
[0009] 以上のような問題は、クロックに限らず、三角波、正弦波等の周期的な信号を用い る回路において、同様に発生する問題であり、このような回路を備える電子機器にお レ、て EMI低減の障害となってレ、る。 [0009] The above problems are not only limited to clocks, but also occur in circuits that use periodic signals such as triangular waves and sine waves. This is an obstacle to EMI reduction.
[0010] 本発明の目的は、少なくとも周期的な信号のスペクトルの平坦性を改善するか又は 前記スペクトルのピークを小さくすることにより EMIをより効率良く低減する信号形成 回路を提供することにある。 [0010] An object of the present invention is to provide a signal forming circuit capable of reducing EMI more efficiently by improving at least the flatness of a spectrum of a periodic signal or by reducing the peak of the spectrum.
[0011] また、本発明の目的は、少なくとも周期的な信号のスペクトルの平坦性を改善する か又は前記スペクトルのピークを小さくすることにより EMIをより効率良く低減する信 号形成方法を提供することにある。 [0011] In addition, an object of the present invention is to provide a signal forming method that improves EMI more efficiently by improving at least the flatness of the spectrum of a periodic signal or by reducing the peak of the spectrum. It is in.
[0012] また、本発明の目的は、 EMIをより効率良く低減する信号形成回路を備える電子 機器を提供することにある。 [0012] Also, an object of the present invention is to provide an electronic device including a signal forming circuit that more efficiently reduces EMI.
課題を解決するための手段  Means for solving the problem
[0013] 本発明の信号形成回路は、 EMIを低減することが可能な出力信号を形成する信号 形成回路であって、最終変調信号を生成するための基準となる基準信号を変調する 副変調信号を出力する少なくとも 1個の副変調信号生成部からなり、前記基準信号 を少なくとも 1個の前記副変調信号により変調することにより生成した前記最終変調 信号を出力する変調信号発生部と、周期信号形成回路から出力された周期信号を 前記最終変調信号により変調することにより生成した出力信号であって、当該出力信 号に起因するスペクトルを低減することにより前記 EMIを低減することが可能な出力 信号を出力する信号変調部とを備える。  [0013] A signal forming circuit of the present invention is a signal forming circuit that forms an output signal capable of reducing EMI, and that modulates a reference signal serving as a reference for generating a final modulated signal. A modulation signal generation unit for outputting the final modulation signal generated by modulating the reference signal with at least one sub modulation signal, and a periodic signal forming unit. An output signal generated by modulating a periodic signal output from a circuit with the final modulation signal, and an output signal capable of reducing the EMI by reducing a spectrum caused by the output signal. A signal modulation unit for output.
[0014] 本発明の信号形成方法は、 EMIを低減することが可能な出力信号を形成する信号 形成方法であって、少なくとも 1個の副変調信号を生成し、最終変調信号を生成する ための基準となる基準信号を前記少なくとも 1個の副変調信号により変調することに より、前記最終変調信号を生成し、周期信号を前記最終変調信号により変調すること により、当該出力信号に起因するスペクトルを低減することにより前記 EMIを低減す ることが可能な出力信号を生成する。 [0014] A signal forming method of the present invention is a signal forming method for forming an output signal capable of reducing EMI, for generating at least one sub-modulation signal and generating a final modulation signal. A final reference signal is generated by modulating a reference signal serving as a reference with the at least one sub-modulation signal, and a periodic signal is modulated with the final modulation signal. Thus, an output signal capable of reducing the EMI is generated by reducing a spectrum caused by the output signal.
[0015] 本発明の電子機器は、周期信号を出力する周期信号形成回路と、最終変調信号 を生成するための基準となる基準信号を出力する基準信号生成部と、前記基準信号 を変調する少なくとも 1個の副変調信号を出力する副変調信号生成部とを備え、前 記基準信号を前記少なくとも 1個の副変調信号により変調することにより生成した前 記最終変調信号を出力する変調信号発生部と、前記周期信号形成回路から出力さ れた周期信号を前記最終変調信号により変調することにより生成した出力信号であ つて、当該出力信号に起因するスペクトルを低減することにより前記 EMIを低減する ことが可能な出力信号を出力する信号変調部と、前記出力信号に基づいて所定の 動作を行う動作部とを備える。 [0015] The electronic device of the present invention includes a periodic signal forming circuit that outputs a periodic signal, a reference signal generation unit that outputs a reference signal serving as a reference for generating a final modulation signal, and at least modulates the reference signal. A modulation signal generation unit that outputs the final modulation signal generated by modulating the reference signal with the at least one submodulation signal. And reducing the EMI by reducing the spectrum resulting from the output signal generated by modulating the periodic signal output from the periodic signal forming circuit with the final modulation signal. A signal modulating unit that outputs an output signal capable of performing a predetermined operation, and an operation unit that performs a predetermined operation based on the output signal.
発明の効果  The invention's effect
[0016] 本発明者の検討によれば、 SSCGには基本的に 2つの課題がある。第 1に、スぺク トルの平坦性を得るためにはどのような形状の変調信号が適当かであり、第 2に、変 調幅が同一であるとした場合において更にスペクトルのピークを小さくするにはどのよ うにすれば良いかである。本発明は、 SSCGをその原理から再検討することにより得 た新しい原理に基づくものであり、当該新しい原理をクロック信号のみならず正弦波 等の周期的な信号にまで拡大して適用することにより、変調信号の周波数を振動音 を生じない範囲内に維持しつつ、スぺタトノレの平坦性を改善し、スペクトルのピークを 小さくすること力 Sできる。  [0016] According to the study of the present inventor, SSCG basically has two problems. First, what kind of modulation signal is appropriate to obtain the flatness of the spectrum, and second, when the modulation width is the same, the spectrum peak is further reduced. How should we do it? The present invention is based on a new principle obtained by reexamining SSCG from its principle. By applying the new principle to not only a clock signal but also a periodic signal such as a sine wave. In addition, while maintaining the frequency of the modulation signal within the range that does not generate vibration sound, the flatness of the spectrum can be improved and the spectrum peak can be reduced.
[0017] 本発明においては、変調信号を副変調信号を用いて更に変調する。即ち、クロック 信号を多重(2重又はそれ以上)に変調する。副変調の種類は周波数変調又は振幅 変調である。変調信号を周波数変調することにより、変調周波数のピークを小さくす ること力 Sできる。変調信号を振幅変調することにより、スペクトルを平坦ィヒすることがで きる。変調信号を周波数変調しかつ振幅変調しても良ぐこれにより、変調周波数の ピークを小さくし、かつ、スペクトルを平坦ィ匕することができる。  In the present invention, the modulation signal is further modulated using the sub-modulation signal. In other words, the clock signal is modulated in multiple (double or higher). The type of sub-modulation is frequency modulation or amplitude modulation. By modulating the frequency of the modulation signal, it is possible to reduce the peak of the modulation frequency. By modulating the amplitude of the modulation signal, the spectrum can be flattened. The modulation signal may be frequency-modulated and amplitude-modulated, whereby the peak of the modulation frequency can be reduced and the spectrum can be flattened.
[0018] 本発明の信号形成回路及び信号形成方法によれば、変調信号を少なくとも 1個の 畐 IJ変調信号により(副)変調することにより生成した最終変調信号により、クロック信号 等の周期的な信号を多重に変調する。従って、変調信号を少なくとも周波数変調又 は振幅変調することにより、変調周波数のピークを小さくすることができ、又は、スぺク トルを平坦ィ匕することができる。これにより、変調周波数を振動音を発生する周波数( 約 20kHZ)より小さくしなくても、スぺタトノレのピークを小さくすることができ、また、三 角波の頂点を強調した変調波を用いなくても、スペクトルを平坦ィ匕することができる。 従って、スペクトルの平坦ィ匕のために、複雑な構成のクロック発生回路を用いなくても 良ぐ変調器の特性を考慮する必要も無い。この結果、スペクトルのピークを小さくす ること、又は、スペクトルを平坦ィ匕することにより、当該信号形成回路及びこれを使用 する電子機器の EMIを低減させることができる。 According to the signal forming circuit and the signal forming method of the present invention, the clock signal is generated by the final modulation signal generated by (sub) modulating the modulation signal with at least one 畐 IJ modulation signal. Etc. to modulate multiple periodic signals. Therefore, by modulating the modulation signal at least by frequency modulation or amplitude modulation, the peak of the modulation frequency can be reduced, or the spectrum can be flattened. As a result, even if the modulation frequency is not lower than the frequency (about 20kHZ) that generates vibration sound, the peak of the spectrum can be reduced, and the modulation wave that emphasizes the apex of the triangular wave is not used. However, the spectrum can be flattened. Therefore, due to the flatness of the spectrum, it is not necessary to consider the characteristics of the modulator, which does not require the use of a complicated clock generation circuit. As a result, it is possible to reduce the EMI of the signal forming circuit and the electronic device using the signal forming circuit by reducing the spectrum peak or flattening the spectrum.
[0019] 本発明の電子機器によれば、変調信号を少なくとも 1個の副変調信号により変調す ることにより生成した最終変調信号により、クロック信号等の周期的な信号を多重に 変調する信号形成回路を備える。従って、変調信号を少なくとも周波数変調又は振 幅変調することにより、前述のように、変調周波数のピークを小さくする力、スペクトル を平坦ィ匕することができる。従って、スペクトルの平坦ィ匕のために、複雑な構成のクロ ック発生回路を用いなくても良ぐ変調器の特性を考慮する必要も無い。この結果、 少なくともスペクトルのピークを小さくする力、又は、スペクトルを平坦ィ匕することにより 、当該電子機器の EMIを低減させることができる。 [0019] According to the electronic device of the present invention, a signal forming that multiplexly modulates a periodic signal such as a clock signal by a final modulation signal generated by modulating the modulation signal with at least one sub-modulation signal. Provide circuit. Therefore, by modulating the modulation signal at least by frequency modulation or amplitude modulation, as described above, it is possible to flatten the force and spectrum for reducing the peak of the modulation frequency. Therefore, it is not necessary to consider the characteristics of the modulator, which does not require the use of a complex clock generation circuit, due to the flatness of the spectrum. As a result, the EMI of the electronic device can be reduced by at least reducing the spectrum peak or flattening the spectrum.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明による信号形成回路の構成を示す。  FIG. 1 shows a configuration of a signal forming circuit according to the present invention.
[図 2]本発明のクロック変調を説明する図である。  FIG. 2 is a diagram illustrating clock modulation according to the present invention.
[図 3]本発明のクロック変調を説明する図である。  FIG. 3 is a diagram illustrating clock modulation according to the present invention.
[図 4]本発明のクロック変調を説明する図である。  FIG. 4 is a diagram illustrating clock modulation according to the present invention.
[図 5]変調信号発生部における波形を示す。  FIG. 5 shows a waveform in the modulation signal generator.
[図 6]クロック変調部である PLLにおける波形を示す。  [Figure 6] Shows waveforms in the PLL that is the clock modulator.
[図 7]本発明による他の信号形成回路の構成を示す。  FIG. 7 shows the configuration of another signal forming circuit according to the present invention.
[図 8]本発明による更に他の信号形成回路の構成を示す。  FIG. 8 shows a configuration of still another signal forming circuit according to the present invention.
[図 9]本発明による更に他の信号形成回路の構成を示す。  FIG. 9 shows a configuration of still another signal forming circuit according to the present invention.
[図 10]本発明による更に他の信号形成回路の構成を示す。 [図 11]本発明による更に他の信号形成回路の構成を示す。 FIG. 10 shows a configuration of still another signal forming circuit according to the present invention. FIG. 11 shows the configuration of still another signal forming circuit according to the present invention.
[図 12]本発明による更に他の信号形成回路の構成を示す。  FIG. 12 shows the configuration of still another signal forming circuit according to the present invention.
[図 13]本発明による更に他の信号形成回路の構成を示す。  FIG. 13 shows a configuration of still another signal forming circuit according to the present invention.
[図 14]本発明による更に他の信号形成回路の構成を示す。  FIG. 14 shows a configuration of still another signal forming circuit according to the present invention.
[図 15]本発明による更に他の信号形成回路の構成を示す。  FIG. 15 shows a configuration of still another signal forming circuit according to the present invention.
[図 16]本発明による更に他の信号形成回路の構成を示す。  FIG. 16 shows a configuration of still another signal forming circuit according to the present invention.
[図 17]本発明の信号形成回路を備える電子機器の構成を示す。  FIG. 17 shows a configuration of an electronic device including a signal forming circuit of the present invention.
[図 18]本発明の信号形成回路を備える他の電子機器の構成を示す。  FIG. 18 shows a configuration of another electronic device including the signal forming circuit of the present invention.
[図 19]スペクトラム拡散の説明図である。  FIG. 19 is an explanatory diagram of spread spectrum.
[図 20]スペクトラム拡散の説明図である。  FIG. 20 is an explanatory diagram of spread spectrum.
[図 21]スペクトラム拡散の説明図である。  FIG. 21 is an explanatory diagram of spread spectrum.
[図 22]スペクトラム拡散の説明図である。  FIG. 22 is an explanatory diagram of spread spectrum.
符号の説明  Explanation of symbols
[0021] 1 周期信号形成回路 (発振器) [0021] 1 period signal forming circuit (oscillator)
2 信号変調部 (クロック変調部)  2 Signal modulator (clock modulator)
3 変調信号発生部  3 Modulation signal generator
31 第 1副変調信号生成部  31 First sub-modulation signal generator
32 第 2副変調信号生成部  32 Second sub-modulation signal generator
33 基準信号生成部  33 Reference signal generator
34 乗算器  34 multiplier
100 信号形成回路  100 signal forming circuit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 図 1は信号形成回路構成図であり、本発明による信号形成回路の構成の一例を示 す。本発明の信号形成回路 100は、信号変調部であるクロック変調部 2、変調信号 発生部 3を備える。クロック変調部 2には、周期信号形成回路である発振器 1の出力 するクロック信号 (周期的な矩形波)が入力される。即ち、この例は、最も代表的な周 期信号であるクロック信号を変調する一例について示す。この例によれば、比較的簡 易な(即ち、回路規模があまり大きくない)構成により、クロック信号を含む殆ど全ての 周期信号にっレ、て、十分な EMIの低減効果を得ることができる。 FIG. 1 is a configuration diagram of a signal forming circuit, and shows an example of a configuration of a signal forming circuit according to the present invention. The signal forming circuit 100 of the present invention includes a clock modulation unit 2 and a modulation signal generation unit 3 which are signal modulation units. The clock modulation unit 2 receives a clock signal (periodic rectangular wave) output from the oscillator 1 which is a periodic signal forming circuit. That is, this example shows an example of modulating a clock signal which is the most typical periodic signal. According to this example, a relatively simple configuration (that is, the circuit scale is not so large) allows almost all the clock signals to be included. By using a periodic signal, a sufficient EMI reduction effect can be obtained.
[0023] この例では、発振器 1においてクロック信号が生成され、クロック変調部 2において 変調信号、 FM副変調波である第 1副変調信号、 AM副変調波である第 2副変調信 号が生成される。そして、図 2に示すように、変調信号が第 1及び第 2副変調信号によ り変調される (周波数変調及び振幅変調される)ことにより、最終変調信号が生成され る。更に、クロック信号が最終変調信号により変調されることにより、出力クロック信号 が生成される。後述するように、本発明は、クロック信号に限らず、三角波や正弦波の ような周期信号に広く適用可能であるが、クロック信号に適用した場合、 EMIの低減 において特に大きな効果が得られる。即ち、クロック信号は矩形であるため三角波等 よりも(奇数次の)高調波成分を多く含むので、また、デジタル信号で動作する電子 機器においては 2値信号であるクロック信号の振幅 (又は、瞬間的な変化量)が三角 波等よりも大きいので、 EMIの影響が出やすレ、が、これを有効に低減することができ る。 In this example, the oscillator 1 generates a clock signal, and the clock modulator 2 generates a modulation signal, a first submodulation signal that is an FM submodulation wave, and a second submodulation signal that is an AM submodulation wave. Is done. Then, as shown in FIG. 2, the modulation signal is modulated by the first and second sub-modulation signals (frequency modulation and amplitude modulation), thereby generating a final modulation signal. Furthermore, an output clock signal is generated by modulating the clock signal with the final modulation signal. As will be described later, the present invention is not limited to a clock signal, but can be widely applied to periodic signals such as a triangular wave and a sine wave. However, when applied to a clock signal, a particularly significant effect can be obtained in reducing EMI. That is, since the clock signal is rectangular, it contains more harmonic components (odd order) than triangular waves, etc. Also, in electronic devices that operate with digital signals, the amplitude (or instantaneous This is effective for reducing the effects of EMI.
[0024] 変調信号 (変調波)は、発振器 1の出力するクロック信号 (搬送波)の周波数を僅か に変動させるための信号である。副変調信号 (副変調波)は、変調信号を更に変調 する信号の総称であり、変調信号と区別するために「副」変調信号と言うこととする。こ の例では、第 1及び第 2副変調信号と言う 2種類の副変調信号を用いる。  The modulation signal (modulation wave) is a signal for slightly varying the frequency of the clock signal (carrier wave) output from the oscillator 1. The sub-modulation signal (sub-modulation wave) is a general term for signals that further modulate the modulation signal, and is referred to as a “sub-modulation signal” to distinguish it from the modulation signal. In this example, two types of sub-modulation signals called first and second sub-modulation signals are used.
[0025] 変調信号が例えば三角波からなるとすると、第 1副変調信号を用いた周波数変調 は、図 2における横方向(時間軸方向)への変調である。また、第 2副変調信号を用い た振幅変調は、図 2における縦方向(電圧又は電流軸方向)への変調である。従って 、変調信号は 2重(2方向に)に副変調される。クロック信号は、 2重に副変調された変 調信号により変調されるので、いわば 3重に変調されると言うことができる。これにより 、図 2に示すように、クロック信号のスペクトルのピークを小さくし、かつ、平坦化するこ とができる。  [0025] If the modulation signal is composed of, for example, a triangular wave, the frequency modulation using the first sub modulation signal is modulation in the horizontal direction (time axis direction) in FIG. The amplitude modulation using the second sub-modulation signal is modulation in the vertical direction (voltage or current axis direction) in FIG. Therefore, the modulation signal is sub-modulated twice (in two directions). Since the clock signal is modulated by the modulation signal that is doubly submodulated, it can be said that the clock signal is triple modulated. Thereby, as shown in FIG. 2, the spectrum peak of the clock signal can be reduced and flattened.
[0026] 発振器 1は、所定の周波数、例えば 10MHzの周波数のクロック信号を生成して出 力する。発振器 1は、周知の構成のクロック生成装置であって良い。発振器 1の出力 したクロック信号はクロック変調部 2に入力される。クロック変調部 2は、発振器 1から 出力されたクロック信号を最終変調信号により変調することにより、クロック信号に同 期した出力クロック信号を生成して出力する。例えば、クロック変調部 2は、発振器 1 力 出力されたクロック信号を入力とし、最終変調信号を制御信号とし、出力クロック 信号を出力とする位相同期回路(PLL : Phase Locked Loop )からなる。出力クロック は、後述するように、種々の電子機器の動作部(図 17の動作部 300)に入力され、基 本クロックとして用いられる。 The oscillator 1 generates and outputs a clock signal having a predetermined frequency, for example, 10 MHz. The oscillator 1 may be a clock generation device having a known configuration. The clock signal output from oscillator 1 is input to clock modulator 2. The clock modulation unit 2 modulates the clock signal output from the oscillator 1 with the final modulation signal to synchronize with the clock signal. Generate and output the expected output clock signal. For example, the clock modulation unit 2 is composed of a phase locked loop (PLL) that receives the clock signal output from the oscillator 1 as an input, uses the final modulation signal as a control signal, and outputs the output clock signal. As will be described later, the output clock is input to the operation unit (operation unit 300 in FIG. 17) of various electronic devices and used as a basic clock.
[0027] 変調信号発生部 3は、この例においては、基準信号生成部 33、 FM (周波数変調) 副変調信号生成部である第 1副変調信号生成部 31、 AM (振幅変調)副変調信号生 成部である第 2副変調信号生成部 32、乗算器 34を備える。図 3は、変調信号発生部 3における各信号の波形を概念的に示す。  In this example, the modulation signal generation unit 3 includes a reference signal generation unit 33, a first sub modulation signal generation unit 31 that is an FM (frequency modulation) sub modulation signal generation unit, and an AM (amplitude modulation) sub modulation signal. A second sub-modulation signal generation unit 32 and a multiplier 34, which are generation units, are provided. FIG. 3 conceptually shows the waveform of each signal in the modulation signal generator 3.
[0028] 基準信号生成部 33は、最終変調信号を生成するための基準となる信号 (基準信号 )である変調信号 FM (図示せず)を生成して出力する。この例は、基準信号生成部 3 3を変調信号発生部 3の内部に備える例である。この例において、変調信号 FMは三 角波 (左右対称の三角波)である。従って、この例の基準信号生成部 33は三角波発 生回路である。変調信号 FMは、連続的に変化する信号であれば良ぐ例えば正弦 波であっても良い。この例では、基準信号生成部 33は、第 1副変調信号生成部 31か ら出力された第 1副変調信号 (FM副変調波) FMoを入力されることにより、中間変 調信号 FMsigoを出力する。実際には、中間変調信号 FMsigoは、変調信号 FMであ る三角波が FM変調された結果であるので、三角波ではない。中間変調信号 FM sigoは乗算器 34に入力される。  The reference signal generation unit 33 generates and outputs a modulation signal FM (not shown) that is a reference signal (reference signal) for generating a final modulation signal. In this example, the reference signal generation unit 33 is provided inside the modulation signal generation unit 3. In this example, the modulation signal FM is a triangular wave (a symmetrical triangular wave). Therefore, the reference signal generation unit 33 in this example is a triangular wave generation circuit. The modulation signal FM may be a signal that changes continuously, for example, a sine wave. In this example, the reference signal generation unit 33 outputs the intermediate modulation signal FMsigo when the first sub modulation signal (FM sub modulation wave) FMo output from the first sub modulation signal generation unit 31 is input. To do. Actually, the intermediate modulation signal FMsigo is not a triangular wave because it is the result of FM modulation of the triangular wave that is the modulation signal FM. The intermediate modulation signal FM sigo is input to the multiplier 34.
[0029] 第 1副変調信号生成部 31は第 1副変調信号 FMoを出力する。第 1副変調信号 F Moは、変調信号 FMを周波数変調する信号であり、この例では三角波である。変調 信号 FMを周波数変調することにより、スペクトル上の変調範囲における変調周波数 を分散させ、その結果として変調周波数のピークを小さくすることができる。第 1副変 調信号 FMoは、連続的に変化する信号であり、不連続に変化することはない。第 1 副変調信号 FMoの周波数及び位相は他の発振器に依存する必要はない。具体的 には、第 1副変調信号 FMoは、変調信号 FMよりも十分に長い周期を有する三角波 である。当該周期は、例えば変調信号 FMの約 10倍の長さの周期とされる。周波数 の副変調幅は、好ましくは変調信号 FMの周波数の 0. 5倍一 1. 5倍であれば良い。 第 1副変調信号 FMoは基準信号生成部 33に入力される。 [0029] The first sub-modulation signal generator 31 outputs a first sub-modulation signal FMo. The first sub-modulation signal F Mo is a signal that frequency-modulates the modulation signal FM, and is a triangular wave in this example. By modulating the frequency of the modulation signal FM, the modulation frequency in the modulation range on the spectrum can be dispersed, and as a result, the peak of the modulation frequency can be reduced. The first sub modulation signal FMo is a signal that changes continuously and does not change discontinuously. The frequency and phase of the first sub-modulation signal FMo need not depend on other oscillators. Specifically, the first sub-modulation signal FMo is a triangular wave having a period sufficiently longer than the modulation signal FM. The period is, for example, a period about 10 times as long as the modulation signal FM. The frequency sub-modulation width is preferably 0.5 to 1.5 times the frequency of the modulation signal FM. The first sub modulation signal FMo is input to the reference signal generation unit 33.
[0030] 第 2副変調信号生成部 32は第 2副変調信号 AMoを出力する。第 2副変調信号 A Moは変調信号 FMを振幅変調する信号であり、この例では三角波である。変調信 号 FMを振幅変調することにより、スペクトルの両端におけるピークを減少させて、そ の結果としてスペクトルを平坦ィ匕することができる。第 2副変調信号 AMoは、連続的 に変化する信号 (例えば三角波)又は不連続に変化する信号 (例えば階段波)のい ずれかである。第 2副変調信号 AMoの周波数及び位相は他の発振器に依存するこ とはない。具体的には、第 2副変調信号 AMoは、変調信号 FMよりも長く第 1副変調 信号 FMoよりも短いか長いか又は等しい周期を有する三角波である。当該周期は、 例えば変調信号 FMの約 2 3倍の長さの周期とされる。第 2副変調信号 AMoは乗 算器 34に入力される。 [0030] The second sub-modulation signal generator 32 outputs the second sub-modulation signal AMo. The second sub-modulation signal A Mo is a signal that modulates the amplitude of the modulation signal FM, and is a triangular wave in this example. By modulating the amplitude of the modulation signal FM, the peaks at both ends of the spectrum can be reduced, and as a result, the spectrum can be flattened. The second submodulation signal AMo is either a continuously changing signal (for example, a triangular wave) or a discontinuously changing signal (for example, a staircase wave). The frequency and phase of the second secondary modulation signal AMo do not depend on other oscillators. Specifically, the second submodulation signal AMo is a triangular wave having a period longer than the modulation signal FM and shorter, longer or equal to the first submodulation signal FMo. The period is, for example, a period about 23 times longer than the modulation signal FM. The second submodulation signal AMo is input to the multiplier 34.
[0031] ここで、第 1及び第 2副変調信号 FMo及び AMo (ここでは、単に副変調信号と言 う)は、各々、三角波以外にも、連続的に変化する信号であれば良ぐその場合でも 同様にスぺ外ルの拡散効果を得ることができる。例えば、副変調信号は、任意の振 幅 Anの正弦波、任意の振幅 Bnの余弦波、これらの整数倍の周波数の任意の振幅 Anの正弦波及び任意の振幅 Bnの余弦波の和により構成された信号 (全ての周期信 号、又は、∑八11 ' 3111 (11 0^) +∑811' (:03 (11 0^)、ここで、∑は 1一 nまで)、のこぎり 波 (左右非対称の三角波)のいずれかであって良い。また、副変調信号は、例えば一 様分布雑音、ガウス分布雑音、二項分布雑音、ポアソン分布雑音、レイリー分布等の いずれかの不規則過程による信号であって良い。更に、副変調信号は、ここに述べ た種々の信号の 2又は複数の組み合わせにより得られる信号であって良い。  [0031] Here, the first and second sub-modulation signals FMo and AMo (herein simply referred to as sub-modulation signals) may be any signals that continuously change in addition to the triangular wave. Even in this case, it is possible to obtain the effect of spreading the outer surface similarly. For example, the submodulation signal is composed of the sum of a sine wave of arbitrary amplitude An, a cosine wave of arbitrary amplitude Bn, a sine wave of arbitrary amplitude An of an integer multiple of these, and a cosine wave of arbitrary amplitude Bn. Signal (all periodic signals, or 8'11 '3111 (11 0 ^) + ∑811' (: 03 (11 0 ^), where ∑ is 1 to 1 n)), sawtooth wave (left and right The sub-modulated signal may be a signal generated by any irregular process such as uniform distribution noise, Gaussian distribution noise, binomial distribution noise, Poisson distribution noise, Rayleigh distribution, etc. In addition, the submodulation signal may be a signal obtained by combining two or more of the various signals described herein.
[0032] 乗算器 34は、基準信号生成部 33から出力された中間変調信号 FMsigoと、第 2副 変調信号生成部 32から出力された第 2副変調信号 AMoとを乗算することにより、最 終変調信号 MODoを出力する。即ち、乗算器 34は周波数変調された中間変調信 号 FMsigoを振幅変調するためのものである。これにより、変調信号発生部 3は、変調 信号 FMを第 1及び第 2副変調信号 FMo及び AMoにより変調する(周波数変調及 び振幅変調する)ことにより、最終変調信号 MODoを生成して出力する。最終変調 信号 MODoはクロック変調部 2である PLLに入力される。 [0033] PLL2は、この例においては、分周比 Aの第 1分周器 21、分周比 Bの第 2分周器 22 、位相比較器 23、ループフィルター 24、電圧電流変換器 (VI) 25、乗算器 26、電流 制御発振器 (ICO) 27を備える。電圧電流変換器 25及び電流制御発振器 27は電圧 制御発振器 (VCO)を構成する。即ち、電圧制御発振器が乗算器 26を備える。図 4 は、 PLL2における各信号の波形を概念的に示す。 [0032] The multiplier 34 multiplies the intermediate modulation signal FMsigo output from the reference signal generation unit 33 by the second sub modulation signal AMo output from the second sub modulation signal generation unit 32, thereby finalizing the signal. Modulation signal MODo is output. That is, the multiplier 34 is for amplitude-modulating the frequency-modulated intermediate modulation signal FMsigo. Thus, the modulation signal generator 3 generates and outputs the final modulation signal MODo by modulating the modulation signal FM with the first and second sub modulation signals FMo and AMo (frequency modulation and amplitude modulation). . The final modulation signal MODo is input to the PLL that is the clock modulation unit 2. In this example, the PLL 2 includes a first divider 21 with a division ratio A, a second divider 22 with a division ratio B, a phase comparator 23, a loop filter 24, a voltage-current converter (VI ) 25, multiplier 26, current controlled oscillator (ICO) 27. The voltage-current converter 25 and the current-controlled oscillator 27 constitute a voltage-controlled oscillator (VCO). That is, the voltage controlled oscillator includes a multiplier 26. Figure 4 conceptually shows the waveform of each signal in PLL2.
[0034] PLL2における入力信号 Finの周波数 f (Fin)と出力信号 Foutの周波数 f (Fout )と の関係は、 f (Fout ) =f (Fin) ·ΑΖΒである。例えば、 Αは第 1分周器 21の分周比で あり、 Bは第 2分周器 22の分周比であり、 A = 40、 B = 3とすると、入力クロック信号が 10MHzのクロック信号である場合、 133MHzの出力クロック信号が得られる。  [0034] The relationship between the frequency f (Fin) of the input signal Fin and the frequency f (Fout) of the output signal Fout in the PLL2 is f (Fout) = f (Fin) · ΑΖΒ. For example, Α is the division ratio of the first divider 21, B is the division ratio of the second divider 22, and if A = 40 and B = 3, the input clock signal is a 10 MHz clock signal. In this case, a 133 MHz output clock signal is obtained.
[0035] 第 2分周器 22は、発振器 1から出力された周波数 f (Fin)のクロック信号 Finが入力 されると、これを分周比 Bで分周した信号 Boを出力する。信号 Boの周波数 f (Bo ) は、周波数 f (Fin)を分周比 Bで割った値 f (Fin) ZBとなる。信号 Boは位相比較器 2 3に入力される。  When the clock signal Fin having the frequency f (Fin) output from the oscillator 1 is input, the second frequency divider 22 outputs a signal Bo obtained by dividing the clock signal Fin by the frequency dividing ratio B. The frequency f (Bo) of the signal Bo is a value f (Fin) ZB obtained by dividing the frequency f (Fin) by the division ratio B. The signal Bo is input to the phase comparator 23.
[0036] 位相比較器 23には、第 1分周器 21からもその出力 Aoが入力される。位相比較器 23は、第 2分周器 22の出力 Boと第 1分周器 21の出力 Aoとを比較して、その位相 差 PHCoを検出し、これをループフィルター 24に出力する。  The output Ao is also input to the phase comparator 23 from the first frequency divider 21. The phase comparator 23 compares the output Bo of the second frequency divider 22 with the output Ao of the first frequency divider 21, detects the phase difference PHCo, and outputs this to the loop filter 24.
[0037] ループフィルター 24は、その伝達関数に応じた時定数を持ち、 PLL制御系のルー プの応答を決定する。即ち、入力された位相差 PHCoをフィルタリングして出力する 。ループフィルター 24の出力 LPFoは電圧電流変換器 25に入力される。  [0037] The loop filter 24 has a time constant corresponding to its transfer function, and determines the response of the loop of the PLL control system. That is, the input phase difference PHCo is filtered and output. The output LPFo of the loop filter 24 is input to the voltage / current converter 25.
[0038] 電圧電流変換器 25はループフィルター 24からの出力 LPFo (電圧値)を電流値に 変換して乗算器 26に出力する。一般的に、 MOS回路からなる電圧電流変換器 25 においては、出力電流は電圧の 2乗に比例する。乗算器 26は、入力された電流値を 制御信号 M_in (図 3の信号 M〇Do )倍して電流制御発振器 27に出力する。電流 制御発振器 27は、入力された電流値に応じた周波数の出力クロック信号 Foutを発 振出力する。一般的に、 M〇S回路力もなる電流制御発振器 27においては、出力信 号の周波数は入力電流の 1/2乗に比例する。なお、電圧電流変換器 25及び電流 制御発振器 27を含む PLL2は、バイポーラ回路やバイポーラ回路及び CMOS回路 力、らなる BiCMOS回路からなっていても良レ、。 [0039] 従って、電流制御発振器 27の出力である出力クロック信号 Foutの周波数 f (Fout ) は、乗算器 26へ入力される制御信号を M— inとし、電圧電流変換器 25からの入力 電流値を Vioとすると、 f (Fout ) =M— in * (Vio * Kvco +F0)となる。ここで、 Kvco は電圧電流変換器 25と電流制御発振器 27とで構成する電圧制御発振器の持つ特 性係数であり、 F0は発振器 1から出力されたクロック信号の本来の出力周波数である The voltage / current converter 25 converts the output LPFo (voltage value) from the loop filter 24 into a current value and outputs the current value to the multiplier 26. In general, in a voltage-current converter 25 composed of a MOS circuit, the output current is proportional to the square of the voltage. The multiplier 26 multiplies the input current value by the control signal M_in (signal M0Do in FIG. 3) and outputs the result to the current control oscillator 27. The current control oscillator 27 oscillates and outputs an output clock signal Fout having a frequency corresponding to the input current value. In general, in the current controlled oscillator 27 with MOS circuit power, the frequency of the output signal is proportional to the 1/2 power of the input current. Note that the PLL2 including the voltage-current converter 25 and the current-controlled oscillator 27 may be a BiCMOS circuit composed of a bipolar circuit, a bipolar circuit, and a CMOS circuit. Therefore, the frequency f (Fout) of the output clock signal Fout that is the output of the current control oscillator 27 is the control signal input to the multiplier 26, and the input current value from the voltage-current converter 25 is M−in. If Vio is Vio, then f (Fout) = M-in * (Vio * Kvco + F0). Where Kvco is a characteristic coefficient of the voltage controlled oscillator composed of the voltage-current converter 25 and the current controlled oscillator 27, and F0 is the original output frequency of the clock signal output from the oscillator 1.
[0040] 出力クロック信号 Foutは、信号形成回路 100から出力されると共に、第 1分周器 21 に入力される。第 1分周器 21は、周波数 f (Fout ) =M_in * (Vio * Kvco +F0)の クロック信号が入力されると、これを分周比 Aで分周した信号 Aoを出力する。信号 A 0の周波数 f (Ao )は、周波数 f (Fout )を分周比 Aで割った値(M_in * (Vio * K vco +F0) ) ZAとなる。信号 Aoは、前述のように、位相比較器 23に入力される。 The output clock signal Fout is output from the signal forming circuit 100 and also input to the first frequency divider 21. When a clock signal having a frequency f (Fout) = M_in * (Vio * Kvco + F0) is input, the first frequency divider 21 outputs a signal Ao obtained by dividing the clock signal by a frequency division ratio A. The frequency f (Ao) of the signal A 0 is a value obtained by dividing the frequency f (Fout) by the frequency division ratio A (M_in * (Vio * K vco + F0)) ZA. The signal Ao is input to the phase comparator 23 as described above.
[0041] なお、乗算器 26に代えて、加算器を用いることも可能である。即ち、出力周波数が 一定の場合、電流制御発振器 27の入力は一定となる。周波数変調における変調度 は一定であるため、乗算器 26に代えて、加算器を用いることができる。これにより、 P LL2の回路の規模を小さくすることができる。  Note that an adder can be used instead of the multiplier 26. That is, when the output frequency is constant, the input of the current control oscillator 27 is constant. Since the degree of modulation in frequency modulation is constant, an adder can be used instead of the multiplier 26. As a result, the scale of the PLL2 circuit can be reduced.
[0042] 図 5は、変調信号発生部波形図であり、変調信号発生部 3における波形の一例を 示す。図 6は、 PLL波形図であり、クロック変調部 2である PLLにおける波形の一例を 示す。  FIG. 5 is a waveform diagram of the modulation signal generation unit, and shows an example of the waveform in the modulation signal generation unit 3. FIG. 6 is a PLL waveform diagram showing an example of a waveform in the PLL that is the clock modulation unit 2.
[0043] 図 5において、第 1副変調信号生成部 31は、変調信号 FMよりも十分に長い周期を 有する三角波である第 1副変調信号 (FM副変調波) FMoを、基準信号生成部 33に 入力する。これにより、本来三角波である変調信号 FMを生成する基準信号生成部 3 3は、この例では、変調信号 FMを第 1副変調信号 FMoにより周波数変調した中間 変調信号 FMsigoを出力する。また、第 2副変調信号生成部 32は、変調信号 FMより も長く第 1副変調信号 FMoよりも短い周期を有する三角波である第 2副変調信号 (A M副変調波) AMoを出力する。従って、乗算器 34は、中間変調信号 FMsigoを第 2 副変調信号 AMo  In FIG. 5, the first sub-modulation signal generation unit 31 converts the first sub-modulation signal (FM sub-modulation wave) FMo, which is a triangular wave having a sufficiently longer period than the modulation signal FM, to the reference signal generation unit 33. Enter in. As a result, the reference signal generator 33 that generates the modulation signal FM that is essentially a triangular wave outputs an intermediate modulation signal FMsigo obtained by frequency-modulating the modulation signal FM with the first sub-modulation signal FMo in this example. Further, the second sub-modulation signal generating unit 32 outputs a second sub-modulation signal (AM sub-modulation wave) AMo that is a triangular wave having a period longer than the modulation signal FM and shorter than the first sub-modulation signal FMo. Therefore, the multiplier 34 converts the intermediate modulation signal FMsigo into the second sub-modulation signal AMo
により振幅変調した最終変調信号 M〇Doを出力する。即ち、乗算器 34は、変調信 号 FMを、第 1副変調信号 FMoにより周波数変調し、かつ、第 2副変調信号 AMoに より振幅変調した最終変調信号 MODoを出力する。最終変調信号 MODoは、一定 の周期的の信号ではなぐ一定の振幅の信号ではない。最終変調信号 MODoは、 図 6における信号 M— inとして、 PLL2に入力される。 Outputs the final modulated signal M0Do amplitude-modulated by. That is, the multiplier 34 frequency-modulates the modulation signal FM with the first sub-modulation signal FMo, and converts it to the second sub-modulation signal AMo. Outputs the final modulated signal MODo, which has been amplitude-modulated. The final modulation signal MODo is not a constant amplitude signal, rather than a constant periodic signal. The final modulation signal MODo is input to PLL2 as signal M-in in Fig. 6.
[0044] 図 5から判るように、乗算器 34の出力する最終変調信号 MODoは、直線的な変化 量ではなぐ直線的変化からやや外れた変化量を有する。従って、直線的変化よりも 、更に、スペクトル上の変調範囲における変調周波数を分散させ、かつ、スペクトル の両端におけるピークを消滅させることができる。この結果、より一層、スペクトルの変 調周波数におけるピークを小さくすることができ、かつ、スペクトルを平坦ィ匕することが できる。 As can be seen from FIG. 5, the final modulation signal MODo output from the multiplier 34 has a change amount slightly deviating from a linear change that is not a linear change amount. Therefore, it is possible to disperse the modulation frequency in the modulation range on the spectrum and extinguish the peaks at both ends of the spectrum rather than the linear change. As a result, the peak at the modulation frequency of the spectrum can be further reduced, and the spectrum can be flattened.
[0045] 図 6において、第 2分周器 22は、発振器 1からの周波数 10MHzのクロック信号 Fin を分周比 B = 3で分周した出力信号 Boを出力する。位相比較器 23は、第 2分周器 2 2の出力信号 Boと第 1分周器 21の出力信号 Aoとを比較して、その位相差 PHCoを 検出する。ループフィルター 24は、入力された位相差 PHCoをフィルタリングした結 果である信号 LPFoを出力する。電圧電流変換器 25はループフィルター 24からの 出力 LPFo (電圧値)を電流値に変換した信号 Vioを乗算器 26に出力する。乗算器 26は、入力された電流値 Vioに、図 5において得られた制御信号 M— in (最終変調 信号 MODo )を乗じて、電流制御発振器 27に出力する。電流制御発振器 27は、入 力された電流値に応じた周波数の出力クロック信号 Foutを発振出力する。出力クロ ック信号 Foutの周波数 f (Fout )は、 f (Fout ) =M— in * (Vio * Kvco +F0)となる 。出力クロック信号 Foutは、当該信号形成回路 100から出力されると共に、第 1分周 器 21において分周比 A=40で分周されて、周波数(M_in * (Vio * Kvco +F0) ) /40の信号 Aoとして位相比較器 23に入力される。  In FIG. 6, the second frequency divider 22 outputs an output signal Bo obtained by dividing the clock signal Fin having a frequency of 10 MHz from the oscillator 1 by the frequency division ratio B = 3. The phase comparator 23 compares the output signal Bo of the second frequency divider 22 with the output signal Ao of the first frequency divider 21, and detects the phase difference PHCo. The loop filter 24 outputs a signal LPFo that is a result of filtering the input phase difference PHCo. The voltage / current converter 25 outputs a signal Vio obtained by converting the output LPFo (voltage value) from the loop filter 24 into a current value to the multiplier 26. The multiplier 26 multiplies the input current value Vio by the control signal M—in (final modulation signal MODo) obtained in FIG. 5 and outputs the result to the current control oscillator 27. The current control oscillator 27 oscillates and outputs an output clock signal Fout having a frequency corresponding to the input current value. The frequency f (Fout) of the output clock signal Fout is f (Fout) = M−in * (Vio * Kvco + F0). The output clock signal Fout is output from the signal forming circuit 100 and is also divided by the first divider 21 with the division ratio A = 40, and the frequency (M_in * (Vio * Kvco + F0)) / 40 The signal Ao is input to the phase comparator 23.
[0046] 以上のように、乗算器 26の制御信号 M_in (最終変調信号 MODo )が周波数変調 された三角波であるので、スぺクトノレ上の変調範囲における変調周波数を分散させ、 その結果としてスぺタトノレの変調周波数におけるピークを小さくすることができる。これ は、図 21 (B)における三角波を時間軸 (横軸)方向に変調させた場合、密度が低くな ることから判る。これに加えて、乗算器 26の制御信号 M_inが振幅変調された三角 波であるので、スぺタトノレの両端におけるピークを消滅させて、その結果としてスぺク トルを平坦ィ匕することができる。これは、図 21 (B)における三角波を電圧又は電流軸 (縦軸)方向に変調させた場合、密度が低くなることから判る。 As described above, since the control signal M_in (final modulation signal MODo) of the multiplier 26 is a frequency-modulated triangular wave, the modulation frequency in the modulation range on the spectrum is dispersed, and as a result The peak at the modulation frequency of Tatonole can be reduced. This can be seen from the fact that the density decreases when the triangular wave in Fig. 21 (B) is modulated in the time axis (horizontal axis) direction. In addition, since the control signal M_in of the multiplier 26 is an amplitude-modulated triangular wave, the peaks at both ends of the spectrum are extinguished, and as a result, the spectrum is corrected. Torr can be flattened. This can be seen from the fact that the density decreases when the triangular wave in FIG. 21B is modulated in the voltage or current axis (vertical axis) direction.
[0047] 変調信号 FM、第 1副変調信号 FMo及び第 2副変調信号 AMoは、いずれも、発 振器 1からの入力信号 (クロック信号)に対して、位相同期する必要はなぐまた、周波 数同期する必要はない。しかし、これらの信号をクロック信号に位相同期及び周波数 同期させない方が、位相同期及び/又は周波数同期させるよりも好ましい。これは、 以下の理由による。第 1に、位相同期及び周波数同期させない方が、スペクトル上の 変調範囲における変調周波数を分散させることができ、変調周波数のピークを小さく すること力 Sできる。第 2に、位相同期及び周波数同期させない方が、スペクトルの平坦 性を確保することができる。  [0047] The modulation signal FM, the first sub-modulation signal FMo, and the second sub-modulation signal AMo are all not required to be phase-synchronized with the input signal (clock signal) from the oscillator 1, and the frequency There is no need to synchronize. However, it is preferable that these signals are not phase-synchronized and frequency-synchronized with the clock signal, rather than phase-synchronized and / or frequency-synchronized. This is due to the following reasons. First, without phase synchronization and frequency synchronization, the modulation frequency in the modulation range on the spectrum can be dispersed, and the peak of the modulation frequency can be reduced. Second, spectrum flatness can be ensured by not synchronizing the phase and frequency.
[0048] 例えば、一般に、 SSCGにおいて、変調度 ± 2%で入力周波数 100MHzの場合、 出力信号の周期は 9. 8nSec 10. 2nSecの間で変化する。出力信号の周期が 10 . 2nSecの時、 250nSecの時間が経過すると、 24. 5周期である。その間、入力信号 の周期は 24周期となる。従って、半周器の遅れが生じる。この時、 PLL2は、遅れを 検出していた状態力 進みを検出した状態に突然変化し (サイクルスリップを起こし) 、それまで下げようとしていた周波数を上げようとする。これにより、周波数的に不連 続な点が発生し、スぺタトノレの平坦性が損なわれる。  For example, in general, in SSCG, when the modulation degree is ± 2% and the input frequency is 100 MHz, the period of the output signal changes between 9.8 nSec and 10.2 nSec. When the period of the output signal is 10.2nSec, if the time of 250nSec elapses, it is 24.5 periods. Meanwhile, the period of the input signal is 24 periods. Therefore, a half-circulator delay occurs. At this time, PLL2 suddenly changes to the state in which the state force advance that was detecting the delay was detected (causes a cycle slip), and tries to increase the frequency that it was trying to reduce until then. As a result, discontinuous points are generated in frequency, and the flatness of the spout is impaired.
[0049] しかし、変調信号 FMを発振器 1からのクロック信号に位相同期及び周波数同期さ せないことにより、サイクルスリップによる PLL2の不連続動作点を長い時間では拡散 することができ、スペクトルの平坦性を損なわないようにすることができる。また、本発 明のように、変調信号 FMを第 2副変調信号 AMoにより振幅変調することにより、前 記不連続動作点を移動させることができる。これにより、前記不連続動作点を長い時 間では拡散することができ、スペクトルの平坦性を損なわないようにすることができる。  [0049] However, by not synchronizing the phase and frequency of the modulation signal FM with the clock signal from the oscillator 1, the discontinuous operating point of the PLL 2 due to cycle slip can be spread over a long period of time, and the spectral flatness Can be prevented. Further, as in the present invention, the discontinuous operation point can be moved by amplitude-modulating the modulation signal FM with the second sub-modulation signal AMo. Thereby, the discontinuous operating point can be diffused for a long time, and the flatness of the spectrum can be prevented from being impaired.
[0050] 変調信号は、必ずしも以上のように第 1及び第 2副変調信号により 2重に変調される 必要はなぐ 1個の副変調信号により 1重に変調するのみでも良い。即ち、変調信号 が第 1又は第 2副変調信号のいずれかにより変調される(周波数変調又は振幅変調 される)ことにより、最終変調信号が生成されるようにしても良レ、。  [0050] The modulation signal does not necessarily need to be double-modulated by the first and second sub-modulation signals as described above, and may be simply modulated by one sub-modulation signal. That is, the final modulated signal may be generated by modulating the modulated signal with either the first or second sub-modulated signal (frequency modulation or amplitude modulation).
[0051] 従って、変調信号発生部 3が少なくとも 1個の副変調信号生成部を備え、変調信号 を少なくとも 1個の副変調信号により変調することにより最終変調信号を生成するよう にしても良い。即ち、クロック信号、変調信号、 1個の副変調信号を生成し、変調信号 を副変調信号により変調する (周波数変調又は振幅変調する)ことにより、最終変調 信号を生成し、クロック信号を最終変調信号により変調することにより、出力クロック信 号を生成するようにしても良レ、。 [0051] Therefore, the modulation signal generation unit 3 includes at least one sub-modulation signal generation unit, and the modulation signal May be modulated with at least one sub-modulated signal to generate a final modulated signal. That is, a clock signal, a modulation signal, and one sub-modulation signal are generated, and the modulation signal is modulated with the sub-modulation signal (frequency modulation or amplitude modulation) to generate a final modulation signal, and the clock signal is finally modulated. It is also possible to generate the output clock signal by modulating with the signal.
[0052] 図 7は他の信号形成回路構成図であり、本発明による他の信号形成回路の構成を 示す。図 7の信号形成回路 100は、図 1の信号形成回路 100の構成と類似の構成を 有するが、その変調信号発生部 3が第 1副変調信号生成部 31 (のみ)を備え、第 2副 変調信号生成部 32を備えない点が異なる。また、図 7の信号形成回路 100は乗算器 34を持たない。この例によれば、信号形成回路を極めて簡易な構成とすることができ る一方、 EMIの低減効果を得られる場合が制限される。即ち、後段の動作部が図 17 に示すように 1個である(又は小さい)場合 (複数の動作部(図 18に示す)が存在しな い場合)には、 EMIの低減効果が得られる。  FIG. 7 is another signal forming circuit configuration diagram, and shows the configuration of another signal forming circuit according to the present invention. The signal forming circuit 100 in FIG. 7 has a configuration similar to that of the signal forming circuit 100 in FIG. 1, but the modulation signal generation unit 3 includes the first sub modulation signal generation unit 31 (only), and the second sub modulation signal generation unit 31 The difference is that the modulation signal generator 32 is not provided. In addition, the signal forming circuit 100 in FIG. According to this example, the signal forming circuit can have a very simple configuration, but the case where an EMI reduction effect can be obtained is limited. In other words, when there is only one (or small) operation part in the subsequent stage as shown in FIG. 17 (when there are no multiple operation parts (shown in FIG. 18)), an EMI reduction effect can be obtained. .
[0053] この例では、基準信号生成部 33は、第 1副変調信号生成部 31から出力された第 1 副変調信号を入力されることにより、最終変調信号を出力する。前述のように、第 1副 変調信号は、変調信号を周波数変調する信号であり、三角波である。従って、最終 変調信号は変調信号を三角波で周波数変調した信号となる。変調信号を周波数変 調することにより、スぺ外ル上の変調範囲における変調周波数を分散させ、その結 果として変調周波数のピークを小さくすることができる。なお、この例の最終変調信号 は、図 5における信号 FMsigoに等しい信号となる。  In this example, the reference signal generation unit 33 receives the first sub modulation signal output from the first sub modulation signal generation unit 31 and outputs the final modulation signal. As described above, the first sub-modulation signal is a signal that frequency-modulates the modulation signal, and is a triangular wave. Therefore, the final modulation signal is a signal obtained by frequency modulating the modulation signal with a triangular wave. By modulating the frequency of the modulation signal, it is possible to disperse the modulation frequency in the modulation range on the spectrum, and as a result, the peak of the modulation frequency can be reduced. Note that the final modulated signal in this example is equal to the signal FMsigo in FIG.
[0054] 図 8は更に他の信号形成回路構成図であり、本発明による更に他の信号形成回路 の構成を示す。図 8の信号形成回路 100は、図 1の信号形成回路 100の構成と類似 の構成を有するが、その変調信号発生部 3が第 2副変調信号生成部 32 (のみ)を備 え、第 1副変調信号生成部 31を備えない点が異なる。この例によれば、信号形成回 路を極めて簡易な構成とすることができる一方、 EMIの低減効果を得られる場合が 制限される。即ち、図 18に示すように後段に PLLを備える場合には、 EMIの低減効 果が得られる。  FIG. 8 is still another signal forming circuit configuration diagram showing the configuration of still another signal forming circuit according to the present invention. The signal forming circuit 100 in FIG. 8 has a configuration similar to that of the signal forming circuit 100 in FIG. 1, but the modulation signal generation unit 3 includes the second sub modulation signal generation unit 32 (only), and the first The difference is that the sub-modulation signal generation unit 31 is not provided. According to this example, the signal forming circuit can be made very simple, but the case where an EMI reduction effect can be obtained is limited. In other words, as shown in Fig. 18, when a PLL is provided in the subsequent stage, an EMI reduction effect can be obtained.
[0055] この例では、基準信号生成部 33から出力された変調信号と前記第 2副変調信号生 成部 32から出力された第 2副変調信号とを乗算器 34により乗算することにより、最終 変調信号を出力する。前述のように、第 2副変調信号は、変調信号を振幅変調する 信号であり、三角波である。従って、最終変調信号は変調信号を三角波で振幅変調 した信号となる。変調信号を振幅変調することにより、スペクトルの両端におけるピー クを減少させて、その結果としてスペクトルを平坦ィ匕することができる。なお、この例の 最終変調信号は、図 5における信号 MODoから信号 FMoの影響を除いた信号とな る。即ち、信号 FMsigoが周波数変調される前の信号 (変調信号 FM)を信号 AMoで 振幅変調した信号となる。 In this example, the modulation signal output from the reference signal generation unit 33 and the second sub-modulation signal generation The second sub-modulated signal output from the generator 32 is multiplied by the multiplier 34 to output the final modulated signal. As described above, the second sub-modulation signal is a signal that amplitude-modulates the modulation signal, and is a triangular wave. Therefore, the final modulation signal is a signal obtained by amplitude modulating the modulation signal with a triangular wave. By modulating the amplitude of the modulation signal, the peak at both ends of the spectrum can be reduced, and as a result, the spectrum can be flattened. Note that the final modulated signal in this example is a signal obtained by removing the influence of the signal FMo from the signal MODo in FIG. That is, the signal (modulated signal FM) before the frequency modulation of the signal FMsigo is amplitude-modulated with the signal AMo.
[0056] 図 9は更に他の信号形成回路構成図であり、本発明による更に他の信号形成回路 の構成を示す。図 9の信号形成回路 100は、図 1の信号形成回路 100の構成と類似 の構成を有するが、その変調信号発生部 3が第 1副変調信号生成部 31 (のみ)を備 えるが、これを 2回の副変調に用いる点が異なる。即ち、この例では、複数の副変調 信号生成部 31及び 32が、実際は、当該副変調信号生成部 31及び 32として兼用さ れる 1個の副変調信号生成部 31からなる。そして、最終変調信号は、変調信号を、 当該 1個の副変調信号生成部 31の発生した 1個の第 1副変調信号を 2回 (複数回) 用いて変調することにより生成される。この例によれば、最も簡易な構成により、 LSI のチップ面積を最小とすることができ、また、クロック信号を含む殆ど全ての周期信号 につレ、て、十分な EMIの低減効果を得ることができる。  FIG. 9 is still another signal forming circuit configuration diagram, and shows the configuration of still another signal forming circuit according to the present invention. The signal forming circuit 100 in FIG. 9 has a configuration similar to that of the signal forming circuit 100 in FIG. 1, but the modulation signal generation unit 3 includes the first sub modulation signal generation unit 31 (only). The difference is that is used for two sub-modulations. In other words, in this example, the plurality of submodulation signal generation units 31 and 32 are actually composed of one submodulation signal generation unit 31 that is also used as the submodulation signal generation units 31 and 32. The final modulation signal is generated by modulating the modulation signal using one first submodulation signal generated by the one submodulation signal generation unit 31 twice (multiple times). According to this example, the chip area of the LSI can be minimized by the simplest configuration, and sufficient EMI reduction effect can be obtained for almost all periodic signals including clock signals. Can do.
[0057] この例では、第 1副変調信号生成部 31から出力された第 1副変調信号を入力され ることにより、基準信号生成部 33は、周波数変調された変調信号を出力する。乗算 器 34は、周波数変調された変調信号と第 1副変調信号とを乗算することにより、周波 数変調された変調信号を振幅変調する。これにより、最終変調信号が出力される。従 つて、最終変調信号は第 1副変調信号により 2回変調した信号となる。変調信号を周 波数変調及び振幅変調することにより、スぺ外ル上の変調範囲における変調周波 数を分散させ、その結果として変調周波数のピークを小さくすることができる。なお、 この例の最終変調信号は、図 5における信号 FMsigoに類似の信号となる。  In this example, when the first sub-modulation signal output from the first sub-modulation signal generation unit 31 is input, the reference signal generation unit 33 outputs a frequency-modulated modulation signal. The multiplier 34 multiplies the frequency-modulated modulation signal and the first sub-modulation signal to amplitude-modulate the frequency-modulated modulation signal. As a result, the final modulated signal is output. Therefore, the final modulated signal is a signal modulated twice by the first sub-modulated signal. By frequency-modulating and amplitude-modulating the modulation signal, it is possible to disperse the modulation frequency in the modulation range on the spectrum, and as a result, the peak of the modulation frequency can be reduced. Note that the final modulated signal in this example is a signal similar to the signal FMsigo in FIG.
[0058] なお、図 9の例とは逆に、変調信号発生部 3が第 2副変調信号生成部 32 (のみ)を 備え、これを 2回の副変調 (周波数変調及び振幅変調)に用いるようにしても良い。こ の場合、変調信号発生部 3が、実際は、当該副変調信号生成部 31及び 32として兼 用される 1個の副変調信号生成部 32からなる。 In contrast to the example of FIG. 9, the modulation signal generation unit 3 includes a second sub modulation signal generation unit 32 (only), which is used for two sub modulations (frequency modulation and amplitude modulation). You may do it. This In this case, the modulation signal generation unit 3 is actually composed of one sub modulation signal generation unit 32 that is also used as the sub modulation signal generation units 31 and 32.
[0059] 図 10は更に他の信号形成回路構成図であり、本発明による更に他の信号形成回 路の構成を示す。図 10の信号形成回路 100は、図 1の信号形成回路 100の構成と 類似の構成を有するが、その変調信号発生部 3が第 3及び第 4副変調信号生成部 3 11及び 321を備える点が異なる。即ち、この例では、副変調信号生成部 31及び 32 に、各々、他の副変調信号生成部 311及び 321の出力が入力される。これにより、副 変調信号生成部 31及び 32から、各々、他の副変調信号生成部 311及び 321の出 力を更に変調 (副変調)することにより形成された第 1及び第 2副変調信号が出力さ れる。この例によれば、信号形成回路は複雑な構成となる一方、 EMIの低減効果を 図 1の信号形成回路よりも更に改善することができる。但し、回路が複雑化するほど には、 EMIの低減効果は改善されない。  FIG. 10 is still another signal forming circuit configuration diagram showing the configuration of still another signal forming circuit according to the present invention. The signal forming circuit 100 in FIG. 10 has a configuration similar to that of the signal forming circuit 100 in FIG. 1, except that the modulation signal generation unit 3 includes third and fourth sub modulation signal generation units 3 11 and 321. Is different. In other words, in this example, the outputs of the other submodulation signal generation units 311 and 321 are input to the submodulation signal generation units 31 and 32, respectively. Thus, the first and second submodulation signals formed by further modulating (submodulation) the outputs of the other submodulation signal generation units 311 and 321 from the submodulation signal generation units 31 and 32, respectively. Is output. According to this example, the signal forming circuit has a complicated configuration, but the EMI reduction effect can be further improved compared to the signal forming circuit of FIG. However, the EMI reduction effect is not improved as the circuit becomes more complex.
[0060] この例では、第 1及び第 3副変調信号生成部 31及び 311は同一の構成を有し、第  [0060] In this example, the first and third submodulation signal generation units 31 and 311 have the same configuration,
2及び第 4副変調信号生成部 32及び 321は同一の構成を有する。第 1副変調信号 生成部 31から出力された第 1副変調信号は第 3副変調信号生成部 311の出力を副 変調 (周波数変調)したものであり、第 2副変調信号生成部 32から出力された第 2副 変調信号は、第 4副変調信号生成部 321の出力を副変調 (振幅変調)したものである 。従って、最終変調信号は、一度 (副)変調された第 1及び第 2副変調信号により更に (副)変調される。この最終変調信号により、更にクロック信号が変調される。即ち、ク ロック信号は 3重変調される。  The second and fourth submodulation signal generation units 32 and 321 have the same configuration. The first sub-modulation signal output from the first sub-modulation signal generation unit 31 is obtained by sub-modulating (frequency modulation) the output of the third sub-modulation signal generation unit 311 and output from the second sub-modulation signal generation unit 32. The second sub-modulated signal is obtained by sub-modulating (amplitude modulating) the output of the fourth sub-modulated signal generating unit 321. Therefore, the final modulation signal is further (sub) modulated by the first and second sub modulation signals once (sub) modulated. The clock signal is further modulated by the final modulation signal. That is, the clock signal is triple modulated.
[0061] このように、本発明においては、副変調波について、更に副変調することができる。  Thus, in the present invention, the submodulation wave can be further submodulated.
即ち、図 1の例はクロック信号を変調及び副変調する 2重変調の例であるが、この例 は、クロック信号を 3重に変調する例である。スペクトルを細かく観察すると、 副変調 信号の周波数成分も同様に存在するので、 スペクトルの悪化する一因となる。そこで 、本発明によりクロック信号を 3重に変調 (周波数変調)することにより、 副変調信号 の周波数成分を減衰させることができる。振幅変調についても、同様に、 その周波数 成分力スペクトルに若干の影響を与えるので、本発明によりクロック信号を 3重に変調 (振幅変調)することにより、 副変調信号の周波数成分をある程度減衰させることがで きる。 That is, the example of FIG. 1 is an example of double modulation in which the clock signal is modulated and sub-modulated, but this example is an example of triple modulation of the clock signal. If the spectrum is observed closely, the frequency component of the sub-modulation signal is also present, which contributes to the deterioration of the spectrum. Therefore, the frequency component of the sub-modulated signal can be attenuated by triple modulation (frequency modulation) of the clock signal according to the present invention. Similarly, since amplitude modulation also has a slight effect on the frequency component force spectrum, the frequency component of the sub-modulation signal can be attenuated to some extent by modulating the clock signal in triplicate (amplitude modulation) according to the present invention. In wear.
[0062] なお、副副変調波の周波数スペクトルを減衰させるために、クロック信号を 4重又は それ以上に変調することも可能である。しかし、この場合、変調信号発生部 3の回路 規模が増大する割には、周波数スペクトルを減衰させる効果が低くなつてしまう。  [0062] It is possible to modulate the clock signal quadruple or more in order to attenuate the frequency spectrum of the sub-submodulation wave. However, in this case, the effect of attenuating the frequency spectrum is reduced for an increase in the circuit scale of the modulation signal generator 3.
[0063] また、第 1及び第 3副変調信号生成部 31及び 311が相互に異なる構成を有し、第 2 及び第 4副変調信号生成部 32及び 321が相互に異なる構成を有するようにしても良 レ、。即ち、いずれか一方が周波数変調を行う回路である場合、他方が振幅変調を行 う回路であっても良い。更に、同一又は異なる構成の第 1及び第 3副変調信号生成 部 31及び 311のみを設け、第 2及び第 4副変調信号生成部 32及び 321を省略する ようにしても良い。また、この逆であっても良い。クロック信号を 4重又はそれ以上に変 調する場合においても、同様である。  [0063] Also, the first and third sub-modulation signal generation units 31 and 311 have different configurations, and the second and fourth sub-modulation signal generation units 32 and 321 have different configurations. Also good. That is, when either one is a circuit that performs frequency modulation, the other may be a circuit that performs amplitude modulation. Furthermore, only the first and third sub-modulation signal generation units 31 and 311 having the same or different configurations may be provided, and the second and fourth sub-modulation signal generation units 32 and 321 may be omitted. Moreover, the reverse may be sufficient. The same applies when the clock signal is modulated in quadruple or higher.
[0064] このように、少なくとも 1個の副変調信号生成部に他の副変調信号生成部の出力を 入力することにより、少なくとも 1個の副変調信号生成部から、他の副変調信号生成 部の出力を更に (副)変調することにより形成した副変調信号を出力するようにすれ ば良い。  [0064] In this way, by inputting the output of another submodulation signal generation unit to at least one submodulation signal generation unit, another submodulation signal generation unit from at least one submodulation signal generation unit The sub-modulation signal formed by further (sub-) modulating the output of the signal may be output.
[0065] 図 11 (A)は更に他の信号形成回路構成図であり、本発明による更に他の信号形 成回路の構成を示す。図 11 (A)の信号形成回路 100は、図 1の信号形成回路 100 において、クロック変調部 2を、 PLLに代えて、積分器と可変遅延器とで構成した例 である。  FIG. 11A is still another signal forming circuit configuration diagram showing the configuration of still another signal forming circuit according to the present invention. A signal forming circuit 100 in FIG. 11A is an example in which, in the signal forming circuit 100 in FIG. 1, the clock modulation unit 2 is configured by an integrator and a variable delay unit instead of the PLL.
[0066] 積分器は、変調信号発生部 3から出力された最終変調信号を積分した積分信号を 出力する。積分器は、例えば周知の積分回路からなる。なお、積分器は、図 11 (B) に示すように、その出力が 2 πとなった時点で出力が 0 πになるようにリセットされ、そ の出力が Ο πとなった時点で出力が 2 πになるようにリセットされる。可変遅延器は、 発振器 1から出力されたクロック信号を入力とし、最終変調信号を積分した積分信号 を制御信号とし、出力クロック信号を出力とする。可変遅延器は、例えば周知の gmC 遅延回路、フェイズインタポレーシヨン回路、複数のインバータの直列接続回路等か らなる。  The integrator outputs an integration signal obtained by integrating the final modulation signal output from the modulation signal generation unit 3. The integrator is composed of, for example, a known integration circuit. As shown in Fig. 11 (B), the integrator is reset so that the output becomes 0 π when the output reaches 2 π, and the output is output when the output becomes Ο π. 2 Reset to π. The variable delay unit receives the clock signal output from the oscillator 1 as an input, uses an integrated signal obtained by integrating the final modulation signal as a control signal, and outputs an output clock signal. The variable delay device includes, for example, a known gmC delay circuit, a phase interpolation circuit, a series connection circuit of a plurality of inverters, and the like.
[0067] 図 1から判るように、変調信号発生部 3から出力された最終変調信号は、周波数に 相当する次元を持つ。この例では、そのような性質の最終変調信号を積分することに より、位相に相当する次元の信号を積分信号として得る。この積分信号を可変遅延 器に制御信号として与えることにより、クロック信号の遅延量を、変調信号を周波数変 調しかつ振幅変調した最終変調信号に基づいて変化させることができる。従って、こ の例の信号形成回路 100によっても、図 1の信号形成回路 100と同様の結果を得る こと力 sできる。 [0067] As can be seen from FIG. 1, the final modulation signal output from the modulation signal generator 3 is Has a corresponding dimension. In this example, by integrating the final modulation signal having such a property, a signal having a dimension corresponding to the phase is obtained as an integration signal. By providing this integration signal as a control signal to the variable delay device, the delay amount of the clock signal can be changed based on the final modulation signal obtained by frequency-modulating and amplitude-modulating the modulation signal. Therefore, the signal forming circuit 100 of this example can obtain the same result as the signal forming circuit 100 of FIG.
[0068] なお、この例のクロック変調部 2は、図 1の信号形成回路 100に限らず、前述の図 7 又は図 8の信号形成回路 100や、後述する図 17又は図 18の信号形成回路 100に 適用することができる。  Note that the clock modulation unit 2 of this example is not limited to the signal forming circuit 100 of FIG. 1, but the signal forming circuit 100 of FIG. 7 or FIG. 8 described above, or the signal forming circuit of FIG. 17 or FIG. Can be applied to 100.
[0069] 以上に述べた図 1一図 1 1は、本発明の信号形成回路をアナログ回路により構成し た例であるが、本発明の信号形成回路をデジタル回路により構成することも可能であ る。図 12—図 16は、本発明の信号形成回路をデジタル回路により構成した例を示す  FIG. 1 and FIG. 11 described above are examples in which the signal forming circuit of the present invention is configured by an analog circuit, but the signal forming circuit of the present invention can also be configured by a digital circuit. The FIG. 12 to FIG. 16 show examples in which the signal forming circuit of the present invention is configured by a digital circuit
[0070] 図 12は更に他の信号形成回路構成図であり、本発明による更に他の信号形成回 路の構成を示す。また、図 13は変調信号発生部波形図であり、図 12の信号形成回 路のデジタル回路により構成される変調信号発生部における波形の一例を示す。こ の例によれば、比較的簡易な構成のデジタル回路により、クロック信号を含む殆ど全 ての周期信号について、十分な EMIの低減効果を得ることができる。 FIG. 12 is still another signal forming circuit configuration diagram, and shows the configuration of still another signal forming circuit according to the present invention. FIG. 13 is a waveform diagram of the modulation signal generation unit, and shows an example of a waveform in the modulation signal generation unit configured by the digital circuit of the signal formation circuit of FIG. According to this example, it is possible to obtain a sufficient EMI reduction effect for almost all periodic signals including a clock signal by a digital circuit having a relatively simple configuration.
[0071] 図 12の信号形成回路 100は、図 1の信号形成回路 100の構成と類似の構成を有 する力 その変調信号発生部 3がデジタル回路により構成される点、及び、これに伴 つて PLL2の構成が変更される点が異なる。即ち、この例では、変調信号発生部 3は 、第 3分周器 35、第 1三角波生成部 36、第 2三角波生成部 37、第 4分周器 38、加減 算器 39からなる。また、 PLL2において、電圧電流変換器 25、乗算器 26及び電流 制御発振器 (ICO) 27に代えて電圧制御発振器 (VC〇) 210を備え、変調信号発生 部 3からの制御信号を第 1分周器 21 '及びループフィルター 24 'で受ける。  The signal forming circuit 100 in FIG. 12 has a force similar to that of the signal forming circuit 100 in FIG. 1. The modulation signal generating unit 3 is configured by a digital circuit, and accompanying this, The difference is that the configuration of PLL2 is changed. That is, in this example, the modulation signal generating unit 3 includes a third frequency divider 35, a first triangular wave generating unit 36, a second triangular wave generating unit 37, a fourth frequency divider 38, and an adder / subtractor 39. The PLL 2 includes a voltage-controlled oscillator (VC0) 210 instead of the voltage-current converter 25, the multiplier 26, and the current-controlled oscillator (ICO) 27, and the control signal from the modulation signal generator 3 is divided by the first frequency. Receive with vessel 21 'and loop filter 24'.
[0072] 前述のように、通常、 PLLの出力周波数 Foutは、 f (Fout ) =f (Fin) ·ΑΖΒとして 決まる。周知のように、周期的に第 1分周器 21 'の設定値を変更することにより、出力 周波数 Foutを変調すること力できる。即ち、第 1分周器 21 'に設定する値として 2個 の値 NO、 N1を用意し、時刻 t2nで値 NOを、時亥 Ijt2n+1で値 N1を第 1分周器 21 'に 設定し、ループフィルター 24'のループ定数を適切に選択する。これにより、ループ フィルター 24 'の積分特性による過渡応答を利用して、変調を行うことができる。この 場合、出力周波数 Foutは、 NO ZM ' Finから Nl ZM ' Finまで、連続的な変化を繰 り返す。 [0072] As described above, the output frequency Fout of the PLL is usually determined as f (Fout) = f (Fin) · ΑΖΒ. As is well known, the output frequency Fout can be modulated by periodically changing the set value of the first frequency divider 21 ′. That is, two values are set for the first frequency divider 21 ′. Prepare values NO and N1, and set value NO at time t2n and value N1 at time Ijt2n + 1 to first divider 21 'and select the loop constant of loop filter 24' appropriately. Thus, modulation can be performed using the transient response due to the integral characteristic of the loop filter 24 '. In this case, the output frequency Fout repeats a continuous change from NO ZM 'Fin to Nl ZM' Fin.
[0073] 図 12の例においては、この変調方法を拡張して、 NO、 N1を固定せずに、 Nk [0073] In the example of FIG. 12, this modulation method is expanded so that Nk and Nk are not fixed.
(k=0, l,2...)、及び、設定時刻 tk (k=0, l,2...)を逐次計算して、その都度、第 1分周器 21 'に設定する。これにより、出力周波数 Foutを、図 1の例等と同様に、遷移させる こと力 Sできる。 (k = 0, l, 2 ...) and set time tk (k = 0, l, 2 ...) are calculated sequentially and set to the first divider 21 'each time. As a result, the output frequency Fout can be made a transition force S as in the example of FIG.
[0074] 図 12及び図 13の例は、図 1の例等と同様に、変調波を周波数変調、振幅変調の 双方により副変調する例を示す。このために、この例において、 Nkは以下のようにし て求められる。  The examples in FIGS. 12 and 13 show examples in which the modulated wave is sub-modulated by both frequency modulation and amplitude modulation as in the example of FIG. Therefore, in this example, Nk is obtained as follows.
[0075] 基準クロック信号発生回路 4は、最終変調信号を生成するための基準となる信号( 基準信号)である変調信号 (図示せず)を生成して出力する。従って、この例は、基準 信号生成部(33)を信号形成回路 100とは独立に外部に備える例でもある。この例に おいて、基準信号即ち変調信号は、第 2のクロック信号である。第 2のクロック信号は 、副変調の効果を十分に得るために、発振器 1の出力するクロック信号 (第 1のクロッ ク信号)の整数倍でない周波数とされる。  The reference clock signal generation circuit 4 generates and outputs a modulation signal (not shown) which is a reference signal (reference signal) for generating the final modulation signal. Therefore, this example is also an example in which the reference signal generation unit (33) is provided outside the signal forming circuit 100. In this example, the reference signal or modulation signal is the second clock signal. The second clock signal has a frequency that is not an integral multiple of the clock signal (first clock signal) output from the oscillator 1 in order to sufficiently obtain the effect of submodulation.
[0076] まず、第 1三角波生成部 36が、図 13に示すように、周波数副変調波に相当する数 歹 ijFMkをアップダウンカウンター又は加減算回路などを用いて、基準クロック信号か ら作成する。次に、第 3分周器 35が、生成された数列 FMkを用いて、基準クロック信 号を分周する。これにより、分周された基準クロック信号は、周波数変調されたクロッ ク信号 tkとなる。クロック信号 tkを図 13に示す。クロック信号 tkは変調された周期を 持つ。  First, as shown in FIG. 13, the first triangular wave generator 36 creates a number ijijFMk corresponding to the frequency submodulation wave from the reference clock signal using an up / down counter or an addition / subtraction circuit. Next, the third divider 35 divides the reference clock signal using the generated sequence FMk. As a result, the divided reference clock signal becomes a frequency-modulated clock signal tk. Figure 13 shows the clock signal tk. The clock signal tk has a modulated period.
[0077] 周波数変調されたクロック信号 tkは、次段の第 2三角波生成部 37にクロック信号と して供給される。第 2三角波生成部 37は、振幅副変調波を生成する。即ち、第 2三角 波生成部 37は、周波数変調されたクロック毎に現在の第 2三角波生成部 37の出力 の値に定数 Cを加算又は減算することにより、その出力 Skを生成する。出力 Skを図 13に示す。 The frequency-modulated clock signal tk is supplied as a clock signal to the second triangular wave generation unit 37 in the next stage. The second triangular wave generator 37 generates an amplitude submodulated wave. That is, the second triangular wave generation unit 37 generates the output Sk by adding or subtracting the constant C to the current output value of the second triangular wave generation unit 37 for each frequency-modulated clock. Figure Output Sk It is shown in 13.
[0078] 第 2三角波生成部 37の内部の加減算器(図示せず)のビット数は有限であり、これ により、第 2三角波生成部 37の処理可能な最大の数値が存在する。当該数値を G maxとすると、 Gmaxは、第 2三角波生成部 37の内部の加減算器のビット数により決 まる。また、このビット数を nとすると、この第 2三角波生成部 37の扱える最小の数値 は上記最大の数値 Gmax _ (2 n_l)となる。  The number of bits of the adder / subtracter (not shown) in the second triangular wave generation unit 37 is finite, and there is a maximum numerical value that can be processed by the second triangular wave generation unit 37. Assuming that the value is G max, G max is determined by the number of bits of the adder / subtracter in the second triangular wave generator 37. When the number of bits is n, the minimum numerical value that can be handled by the second triangular wave generation unit 37 is the maximum numerical value Gmax_ (2 n_l).
[0079] 第 2三角波生成部 37が加算器として働いている場合に、周波数副変調クロック毎 に定数 Cは加算される。この加算結果が上記のビット数の制限による最大の数値に 達した時、第 2三角波生成部 37が減算器に切り替わる。これにより、定数 Cは周波数 副変調クロック毎に減算され、以降、上記のビット数の制限による最小の数値に達す るまで、減算を続ける。また、減算器の状態で、第 2三角波生成部 37の出力が、減算 結果が最小の数値に達した時、第 2三角波生成部 37が加算器に切り替わり、定数 C は周波数副変調クロック毎に加算され、同様にこの演算器の扱える最大の数値 G maxに達するまで加算される。  [0079] When the second triangular wave generator 37 functions as an adder, the constant C is added for each frequency submodulation clock. When the result of this addition reaches the maximum value due to the limitation on the number of bits, the second triangular wave generator 37 switches to a subtracter. As a result, the constant C is subtracted for each frequency sub-modulation clock, and thereafter, the subtraction is continued until the minimum value is reached due to the limitation on the number of bits. In addition, when the output of the second triangular wave generation unit 37 reaches the minimum value in the subtractor state, the second triangular wave generation unit 37 switches to an adder, and the constant C is set for each frequency submodulation clock. It is added until it reaches the maximum value G max that can be handled by this calculator.
[0080] 以上の処理を繰り返すことにより、この第 2三角波生成部 37の出力の数値は、定数 Cに応じた最大値への増加及び最小値への減少を、周波数副変調クロック毎に繰り 返し、結果的に周波数副変調された三角波を表す数列 Skが生成される。  By repeating the above processing, the numerical value of the output of the second triangular wave generator 37 repeats the increase to the maximum value and the decrease to the minimum value according to the constant C for each frequency submodulation clock. As a result, a sequence Sk representing the triangular wave subjected to frequency submodulation is generated.
[0081] 一方、周波数変調されたクロック信号 tkを 2分周することにより、 l/2tkを得る。信 号 l/2tkを図 13に示す。信号 l/2tkは、 kの値が偶数の場合には Highとなり、奇 数の場合には Lowとなる。信号 l/2tkは、加減算器 39の加算、減算を切り替えるた めに、これに入力される。即ち、加減算器 39は、 kが偶数の場合には加算器に切り 替えられ、奇数の場合には減算器に切り替えられる。これにより、加減算器 39は、数 歹 IjSkについて、設定された周波数設定値 Fnと信号 lZ2tkとを用いて、交互に加 減算を繰り返すことにより、 Nk =Fn +/-Skを得る。これにより、 Nkなる数列を生 成する。  [0081] On the other hand, l / 2tk is obtained by dividing the frequency-modulated clock signal tk by two. Figure 13 shows the signal l / 2tk. The signal l / 2tk is high when the value of k is even and low when it is odd. The signal l / 2tk is input to the adder / subtractor 39 to switch between addition and subtraction. That is, the adder / subtracter 39 is switched to an adder when k is an even number, and is switched to a subtractor when k is an odd number. As a result, the adder / subtractor 39 obtains Nk = Fn +/− Sk by repeating the addition / subtraction alternately for the number 歹 IjSk using the set frequency setting value Fn and the signal lZ2tk. This generates a sequence of Nk.
[0082] 適切なループ定数は k -Nk /FMk、又は k -Nk /tkを元のループ定数に乗ず る事により得られる。ここで、 kは比例定数である。生成された数列 Nkを生成された 周波数副変調されたクロック毎に第 1分周器 21 'に設定し、かつ、適切なループ定数 を Nk及び FMkによりループフィルター 24,に設定する。これにより、ループフィルタ 一 24'の出力 LPFoは図 13に示すようになる。この出力 LPFoを電圧制御発振器 2 10に入力することにより、周波数副変調及び振幅副変調された変調波により変調さ れたクロック信号 Fontを生成することができる。従って、本発明によれば、変調波に 周波数副変調及び振幅副変調することにより、スペクトルを効果的に拡散及び減衰 させることができ、結果的に EMIを大幅に低減することができる。 [0082] An appropriate loop constant can be obtained by multiplying the original loop constant by k -Nk / FMk or k -Nk / tk. Where k is a proportionality constant. Set the generated sequence Nk to the first divider 21 'for each generated frequency submodulated clock and set the appropriate loop constant Is set to loop filter 24 by Nk and FMk. As a result, the output LPFo of the loop filter 24 'becomes as shown in FIG. By inputting this output LPFo to the voltage controlled oscillator 210, it is possible to generate a clock signal Font that is modulated by a modulation wave subjected to frequency sub-modulation and amplitude sub-modulation. Therefore, according to the present invention, by performing frequency sub-modulation and amplitude sub-modulation on the modulated wave, the spectrum can be effectively spread and attenuated, and as a result, EMI can be greatly reduced.
[0083] 図 14は更に他の信号形成回路構成図であり、本発明による更に他の信号形成回 路の構成を示す。即ち、図 14の信号形成回路は、デジタル回路により構成すると共 に、図 7の例と同様に、変調波を周波数変調により副変調する例を示す。従って、図 12と図 14との関係は、図 1と図 7との関係に相当する。  FIG. 14 is still another signal forming circuit configuration diagram, and shows the configuration of still another signal forming circuit according to the present invention. That is, the signal forming circuit in FIG. 14 is configured by a digital circuit, and shows an example in which the modulated wave is submodulated by frequency modulation as in the example of FIG. Therefore, the relationship between FIG. 12 and FIG. 14 corresponds to the relationship between FIG. 1 and FIG.
[0084] 図 14の信号形成回路 100は、図 12の信号形成回路 100の構成と類似の構成を有 するが、その変調信号発生部 3において、第 2三角波生成部 37が省略される点が異 なる。これにより、変調信号である基準クロック信号を周波数変調することができ、この 結果、変調周波数を分散させ、そのピークを小さくすることができる。  The signal forming circuit 100 in FIG. 14 has a configuration similar to that of the signal forming circuit 100 in FIG. 12, except that the second triangular wave generating unit 37 is omitted in the modulation signal generating unit 3. Different. As a result, the reference clock signal, which is a modulation signal, can be frequency-modulated. As a result, the modulation frequency can be dispersed and the peak thereof can be reduced.
[0085] 図 15は更に他の信号形成回路構成図であり、本発明による更に他の信号形成回 路の構成を示す。即ち、図 15の信号形成回路は、デジタル回路により構成すると共 に、図 8の例と同様に、変調波を振幅変調により副変調する例を示す。従って、図 12 と図 15との関係は、図 1と図 8との関係に相当する。  FIG. 15 is still another signal forming circuit configuration diagram showing the configuration of still another signal forming circuit according to the present invention. That is, the signal forming circuit in FIG. 15 is configured by a digital circuit, and shows an example in which the modulated wave is submodulated by amplitude modulation as in the example in FIG. Therefore, the relationship between FIG. 12 and FIG. 15 corresponds to the relationship between FIG. 1 and FIG.
[0086] 図 15の信号形成回路 100は、図 12の信号形成回路 100の構成と類似の構成を有 するが、その変調信号発生部 3において、第 1三角波生成部 36が省略され、これに 伴って接続が変更される点が異なる。これにより、変調信号である基準クロック信号を 振幅変調することができ、この結果、スペクトルの両端におけるピークを減少させて、 スペクトルを平坦ィ匕することができる。  The signal forming circuit 100 in FIG. 15 has a configuration similar to that of the signal forming circuit 100 in FIG. 12, except that the first triangular wave generating unit 36 is omitted from the modulation signal generating unit 3. The connection is changed accordingly. As a result, the amplitude of the reference clock signal, which is a modulation signal, can be modulated, and as a result, the peaks at both ends of the spectrum can be reduced to flatten the spectrum.
[0087] 図 16は更に他の信号形成回路構成図であり、本発明による更に他の信号形成回 路の構成を示す。即ち、図 16の信号形成回路は、デジタル回路により構成すると共 に、図 10の例と同様に、変調波を変調するための副変調波を更に副変調する例(多 重変調の例)を示す。従って、図 12と図 16との関係は、図 1と図 10との関係に相当 する。 [0088] 図 16の信号形成回路 100は、図 12の信号形成回路 100の構成と類似の構成を有 するが、その変調信号発生部 3において、第 1三角波生成部 36の前段に第 3三角波 生成部 310が挿入され、第 2三角波生成部 37の前段に第 4三角波生成部 312が挿 入される点が異なる。これにより、変調信号である基準クロック信号は、一度(副)変調 された第 1及び第 2副変調信号により更に (副)変調される。従って、図 10と同様に、 変調信号である基準クロック信号は 3重変調される。 FIG. 16 is still another signal forming circuit configuration diagram, and shows the configuration of still another signal forming circuit according to the present invention. That is, the signal forming circuit in FIG. 16 is configured by a digital circuit, and in the same manner as in the example of FIG. 10, an example of further submodulating the submodulation wave for modulating the modulation wave (an example of multiple modulation). Show. Therefore, the relationship between FIG. 12 and FIG. 16 corresponds to the relationship between FIG. 1 and FIG. The signal forming circuit 100 in FIG. 16 has a configuration similar to that of the signal forming circuit 100 in FIG. 12, but in the modulation signal generating unit 3, the third triangular wave is placed in front of the first triangular wave generating unit 36. The difference is that the generation unit 310 is inserted and the fourth triangular wave generation unit 312 is inserted before the second triangular wave generation unit 37. As a result, the reference clock signal, which is a modulation signal, is further (sub) modulated by the first and second sub modulation signals once modulated (sub). Therefore, as in FIG. 10, the reference clock signal that is the modulation signal is triple-modulated.
[0089] このように、信号形成回路をデジタル回路により構成する場合においても、変調波 である基準クロック信号を 3重(多重)に変調することができる。前述のように、副変調 信号の周波数成分もスペクトル特性を悪化させる一因となるので、基準クロック信号 を 3重に変調することにより、 副変調信号の周波数成分をある程度減衰させることが できる。更に、前述のように、変調波である基準クロック信号を 4重又はそれ以上に変 調することも可能である。しかし、この場合、変調信号発生部 3の回路規模が増大す る割には、周波数スペクトルを減衰させる効果が低くなつてしまう。  As described above, even when the signal forming circuit is configured by a digital circuit, the reference clock signal, which is a modulated wave, can be modulated in a triple (multiplex) manner. As described above, the frequency component of the sub-modulation signal also contributes to the deterioration of the spectrum characteristics. Therefore, the frequency component of the sub-modulation signal can be attenuated to some extent by triple modulation of the reference clock signal. Furthermore, as described above, it is possible to modulate the reference clock signal, which is a modulated wave, to quadruple or more. However, in this case, the effect of attenuating the frequency spectrum is reduced for an increase in the circuit scale of the modulation signal generator 3.
[0090] 図 17は電子機器構成図であり、本発明の信号形成回路 100'を備える電子機器 2 00の構成の一例を示す。当該電子機器 200は、本発明の信号形成回路 100'と、当 該信号形成回路 100'の出力する出力クロック信号に基づいて所定の動作を行う動 作部 300とを備える。本発明の信号形成回路 100'は、図 1、図 7又は図 8に示すい ずれかの構成を備える。従って、変調信号発生部 3は少なくとも 1個の副変調信号を 出力する副変調信号生成部 31又は 32を備えていれば良い。なお、図 17において は、 2個の副変調信号生成部 31及び 32を備える例を示している。  FIG. 17 is a configuration diagram of an electronic device, and shows an example of the configuration of an electronic device 200 including the signal forming circuit 100 ′ of the present invention. The electronic device 200 includes a signal forming circuit 100 ′ according to the present invention and an operation unit 300 that performs a predetermined operation based on an output clock signal output from the signal forming circuit 100 ′. The signal forming circuit 100 ′ of the present invention has one of the configurations shown in FIG. 1, FIG. 7, or FIG. Therefore, the modulation signal generation unit 3 only needs to include the sub modulation signal generation unit 31 or 32 that outputs at least one sub modulation signal. FIG. 17 shows an example in which two sub-modulation signal generation units 31 and 32 are provided.
[0091] 例えば、動作部 300は、例えばパーソナルコンピュータ、ファクシミリ、コピー機、プ リンタからなる。これらは、その筐体が大きぐその内部をクロック信号を伝播する配線 が長く延びているので、当該配線がアンテナとして動作してしまい易レ、。そのため、 現実には、筐体の内部に電磁波吸収シートを貼って放射された電磁波を吸収するこ とにより、 EMIを低減している。本発明によれば、 EMIを低減しつつ、この電磁波吸 収シートの添付を省略したり、薄くすることができ、そのコストを削減することができる。  [0091] For example, the operation unit 300 includes, for example, a personal computer, a facsimile machine, a copier, and a printer. Since the wiring that propagates the clock signal extends long inside the large housing, these wirings can easily operate as an antenna. Therefore, in reality, EMI is reduced by attaching the electromagnetic wave absorbing sheet inside the housing and absorbing the emitted electromagnetic waves. According to the present invention, it is possible to omit or thin the attachment of the electromagnetic wave absorbing sheet while reducing EMI, and to reduce the cost.
[0092] また、動作部 300は、例えば D級アンプ力 なつていても良レ、。 D級アンプは、クロ ック信号を加工して得たデジタル信号をフィルタリングして直接スピーカに入力するた めに効率が良いとされている。 D級アンプは、大電流のスイッチングを伴うため、電磁 波を放射し易いが、本発明によれば、電磁波の放射を抑えることができ、 EMIを低減 すること力 Sできる。 [0092] In addition, the operating unit 300 may have, for example, a class D amplifier power. Class D amplifiers filter the digital signal obtained by processing the clock signal and input it directly to the speaker. It is said that it is efficient. Since the class D amplifier is accompanied by switching of a large current, it is easy to radiate electromagnetic waves. However, according to the present invention, radiation of electromagnetic waves can be suppressed and EMI can be reduced.
[0093] 図 18は他の電子機器構成図であり、本発明の信号形成回路を備える他の電子機 器 200の構成の一例を示す。図 18の電子機器は、図 17の電子機器の構成と類似の 構成を有するが、その動作部 300が、複数の PLL301a 301ηと、これに対応する 複数の動作部 302a— 302ηとからなる。信号形成回路 100'は、図 1、図 8、図 11、 図 17に示すいずれかの構成を備える。なお、図 18においては、 2個の副変調信号 生成部 31及び 32を備える例を示している。  FIG. 18 is a configuration diagram of another electronic device, and shows an example of the configuration of another electronic device 200 including the signal forming circuit of the present invention. The electronic device in FIG. 18 has a configuration similar to the configuration of the electronic device in FIG. 17, but the operation unit 300 includes a plurality of PLLs 301a 301η and a plurality of operation units 302a to 302η corresponding thereto. The signal forming circuit 100 ′ has one of the configurations shown in FIG. 1, FIG. 8, FIG. 11, and FIG. FIG. 18 shows an example in which two sub-modulation signal generation units 31 and 32 are provided.
[0094] 複数の動作部 302a— 302ηは、各々、例えば、ノート型のパーソナルコンピュータ 、ファクシミリ、コピー機、プリンタ、 D級アンプ等からなる。複数の動作部 302a 302 nは、各々、相互に異なる値の動作周波数 fa fnを有する。従って、複数の PLL30 la— 301ηは、各々、クロック変調部 2からの出力 Foutに基づいて、対応する動作部 302a— 302ηに対して、動作周波数 fa— fnを供給する。  [0094] Each of the plurality of operation units 302a to 302η includes, for example, a notebook personal computer, a facsimile, a copier, a printer, a class D amplifier, and the like. The plurality of operating units 302a 302 n each have an operating frequency fa fn having a different value. Therefore, each of the plurality of PLLs 30 la-301η supplies the operating frequency fa-fn to the corresponding operating unit 302a-302η based on the output Fout from the clock modulation unit 2.
[0095] この時、実際には、信号形成回路 100'の後段に接続される PLL301の帯域制限 により、図 21 (A)に示すと同様に、三角波の頂点の波形が鈍る結果、スペクトルの両 端に多少のピークが出現してしまう。そこで、この例では、第 2副変調信号生成部 32 による振幅変調の変化量をより大きくする。これにより、 PLL301の帯域制限による三 角波の頂点の波形が鈍る分を補完することができる。この結果、 EMIを低減しつつ、 電磁波吸収シートの添付を省略したり、薄くすることができ、そのコストを削減すること ができる。  [0095] At this time, in actuality, as shown in FIG. 21 (A), due to the band limitation of the PLL 301 connected to the subsequent stage of the signal forming circuit 100 ', the waveform of the apex of the triangular wave becomes dull. Some peaks appear at the edges. Therefore, in this example, the amount of change in amplitude modulation by the second sub modulation signal generation unit 32 is increased. As a result, it is possible to compensate for the dull waveform at the apex of the triangular wave due to the band limitation of PLL301. As a result, while reducing EMI, attachment of the electromagnetic wave absorbing sheet can be omitted or made thinner, and the cost can be reduced.
[0096] なお、本発明の信号形成回路 100'は、図 17及び図 18に示すように、その一部と して、発振器 1を備える。同様に、図 1、図 7、図 8の各々に示す本発明の信号形成回 路が、その一部として、発振器 1を備えるようにしても良い。  Note that the signal forming circuit 100 ′ of the present invention includes the oscillator 1 as a part thereof as shown in FIGS. Similarly, the signal forming circuit of the present invention shown in each of FIGS. 1, 7, and 8 may include the oscillator 1 as a part thereof.
[0097] 本発明は、クロック信号に限らず、三角波、正弦波等の周期的に変化する信号を用 レ、る回路に広く適用することができる。従って、本発明は、例えば、データインタフエ ース駆動回路(又はドライバ)、光ダイオード(即ち、レーザーダイオード又は LED)駆 動回路、モータ駆動回路、ディスプレイ駆動回路、 EL駆動回路、 CCD駆動回路等 に適用することができる。 The present invention is not limited to clock signals, and can be widely applied to circuits that use periodically changing signals such as triangular waves and sine waves. Accordingly, the present invention is, for example, a data interface driving circuit (or driver), a photodiode (ie, laser diode or LED) driving circuit, a motor driving circuit, a display driving circuit, an EL driving circuit, a CCD driving circuit, etc. Can be applied to.
[0098] データインタフェース駆動回路、例えばシングルエンド回路又は差動データ送出回 路の全般においては、配線長が一般に長ぐまた、データ送出の際に、駆動電流が 大きく交流又は脈流(プラス又はマイナスにバイアスされた交流)によって駆動される ため、電磁波を輻射しやすい。光ダイオード駆動回路は、ダイオードを点灯させる際 に、交流電流 (又は交流電圧)で駆動する場合がある。この場合、駆動電流が大きく 、また、交流又は脈流によって駆動されるので、電磁波を輻射しやすい。モータ駆動 回路は、モータ駆動電流は非常に大きぐまた、交流又は脈流によって駆動されるの で、電磁波を輻射しやすい。ディスプレイ駆動回路及び EL駆動回路は、各々のディ スプレイの面積が大きいために駆動電流は非常に大きぐまた、交流又は脈流によつ て駆動されるので、電磁波を輻射しやすい。 CCD駆動回路は、 CCDから画像信号 を送出する際に、交流又は脈流によって駆動されるので、電磁波を輻射しやすい。  [0098] In general data interface driving circuits, for example, single-ended circuits or differential data transmission circuits, the wiring length is generally long, and when data is transmitted, the driving current is large and alternating current or pulsating current (plus or minus) It is easy to radiate electromagnetic waves. The photodiode driving circuit may be driven by alternating current (or alternating voltage) when the diode is turned on. In this case, the drive current is large, and it is driven by an alternating current or a pulsating flow, so that it is easy to radiate electromagnetic waves. The motor drive circuit is apt to radiate electromagnetic waves because the motor drive current is very large and is driven by alternating current or pulsating current. Since the display drive circuit and EL drive circuit have a large display area, the drive current is very large, and the display drive circuit and the EL drive circuit are driven by an alternating current or a pulsating current, so that they easily radiate electromagnetic waves. Since the CCD drive circuit is driven by alternating current or pulsating current when sending image signals from the CCD, it easily radiates electromagnetic waves.
[0099] 従って、このような回路は、電磁波を輻射して EMI特性を劣化させてしまう。しかし、 本発明によれば、このような回路又はこのような回路を備える電子機器において、輻 射される電磁波の量を少なくして、 EMIを低減することができる。  Therefore, such a circuit radiates electromagnetic waves and deteriorates EMI characteristics. However, according to the present invention, in such a circuit or an electronic apparatus including such a circuit, the amount of radiated electromagnetic waves can be reduced and EMI can be reduced.
産業上の利用可能性  Industrial applicability
[0100] 本発明によれば、信号形成回路及び信号形成方法において、変調信号を少なくと も 1個の副変調信号を用いて、少なくとも周波数変調又は振幅変調することにより、ク ロック信号等の周期的な信号を多重に変調する。これにより、変調周波数を振動音を 発生する周波数 (約 20kHZ)より小さくしなくても、又は、三角波の頂点を強調した変 調波を用いなくても、変調周波数のピークを小さくすることができ、又は、スペクトルを 平坦ィ匕することができる。従って、スペクトルの平坦ィ匕のために、複雑な構成のクロッ ク発生回路を用いなくても良ぐ変調器の特性を考慮する必要も無い。この結果、ス ぺクトルのピークを小さくすること、又は、スペクトルを平坦ィ匕することにより、当該信号 形成回路及びこれを使用する電子機器の EMIを低減させることができる。 [0100] According to the present invention, in the signal forming circuit and the signal forming method, at least frequency modulation or amplitude modulation is performed on the modulation signal using at least one sub-modulation signal, so that the period of the clock signal or the like is increased. Multiple modulations of a typical signal. As a result, the peak of the modulation frequency can be reduced without making the modulation frequency lower than the frequency (about 20 kHz) that generates vibration noise, or without using a modulation wave that emphasizes the top of the triangular wave. Or the spectrum can be flattened. Therefore, it is not necessary to consider the characteristics of the modulator, which does not require the use of a complicated clock generation circuit, due to the flatness of the spectrum. As a result, it is possible to reduce the EMI of the signal forming circuit and the electronic device using the signal forming circuit by reducing the spectrum peak or flattening the spectrum.
[0101] 本発明によれば、電子機器において、クロック信号等の周期的な信号を多重に変 調する本発明の信号形成回路を備えることにより、少なくともスぺ外ルのピークを小 さくするカ 又は、スペクトルを平坦ィ匕することができる。従って、スペクトルの平坦ィ匕 のために、複雑な構成のクロック発生回路を用いなくても良ぐ変調器の特性を考慮 する必要も無い。この結果、少なくともスペクトルのピークを小さくする力、又は、スぺ タトルを平坦ィ匕することにより、当該電子機器の EMIを低減させることができる。 [0101] According to the present invention, the electronic device includes the signal forming circuit of the present invention that multiplexly modulates a periodic signal such as a clock signal, thereby at least reducing the peak of the spike. Alternatively, the spectrum can be flattened. Therefore, the spectral flatness Therefore, it is not necessary to consider the characteristics of the modulator, which does not require the use of a complicated clock generator circuit. As a result, EMI of the electronic device can be reduced by at least reducing the spectrum peak or flattening the spectrum.

Claims

請求の範囲 The scope of the claims
[1] EMIを低減することが可能な出力信号を形成する信号形成回路であって、  [1] A signal forming circuit that forms an output signal capable of reducing EMI,
最終変調信号を生成するための基準となる基準信号を変調する副変調信号を出力 する少なくとも 1個の副変調信号生成部からなり、前記基準信号を少なくとも 1個の前 記副変調信号により変調することにより生成した前記最終変調信号を出力する変調 信号発生部と、  It comprises at least one sub-modulation signal generator that outputs a sub-modulation signal that modulates a reference signal that is a reference for generating a final modulation signal, and modulates the reference signal with at least one sub-modulation signal. A modulation signal generator for outputting the final modulation signal generated by
周期信号形成回路から出力された周期信号を前記最終変調信号により変調するこ とにより生成した出力信号であって、当該出力信号に起因するスペクトルを低減する ことにより前記 EMIを低減することが可能な出力信号を出力する信号変調部とを備 える  An output signal generated by modulating the periodic signal output from the periodic signal forming circuit with the final modulation signal, and the EMI can be reduced by reducing the spectrum caused by the output signal. With a signal modulator that outputs output signals
ことを特徴とする信号形成回路。  A signal forming circuit.
[2] 前記変調信号発生部が、 1個の副変調信号生成部を備える [2] The modulation signal generation unit includes one sub modulation signal generation unit
ことを特徴とする請求項 1記載の信号形成回路。  The signal forming circuit according to claim 1, wherein:
[3] 前記副変調信号生成部は前記副変調信号として前記基準信号を周波数変調する 信号を出力する [3] The sub-modulation signal generation unit outputs a signal that frequency-modulates the reference signal as the sub-modulation signal.
ことを特徴とする請求項 2記載の信号形成回路。  The signal forming circuit according to claim 2, wherein:
[4] 前記副変調信号生成部は前記副変調信号として前記基準信号を振幅変調する信 号を出力する [4] The sub-modulation signal generation unit outputs a signal for amplitude-modulating the reference signal as the sub-modulation signal
ことを特徴とする請求項 2記載の信号形成回路。  The signal forming circuit according to claim 2, wherein:
[5] 前記変調信号発生部が、相互に同一又は異なる構成を有する複数の副変調信号 生成部を備える [5] The modulation signal generation unit includes a plurality of sub-modulation signal generation units having the same or different configurations.
ことを特徴とする請求項 1記載の信号形成回路。  The signal forming circuit according to claim 1, wherein:
[6] 前記変調信号発生部が、第 1副変調信号を出力する第 1副変調信号生成部と、第 [6] The modulation signal generation unit includes a first sub modulation signal generation unit that outputs a first sub modulation signal;
2副変調信号を出力する第 2副変調信号生成部とを備え、前記基準信号を前記第 1 及び第 2副変調信号により変調することにより生成した最終変調信号を出力する ことを特徴とする請求項 5記載の信号形成回路。  And a second sub-modulation signal generation unit that outputs two sub-modulation signals, and outputs a final modulation signal generated by modulating the reference signal with the first and second sub-modulation signals. Item 5. The signal forming circuit according to Item 5.
[7] 前記複数の副変調信号生成部が、当該複数の副変調信号生成部として兼用され る 1個の副変調信号生成部からなり、前記基準信号を当該 1個の副変調信号生成部 の発生した 1個の副変調信号を複数回用いて変調することにより生成した最終変調 信号を出力する [7] The plurality of sub-modulation signal generation units include one sub-modulation signal generation unit that is also used as the plurality of sub-modulation signal generation units, and the reference signal is used as the one sub-modulation signal generation unit. Outputs the final modulation signal generated by modulating one sub-modulation signal generated by multiple times.
ことを特徴とする請求項 5記載の信号形成回路。  6. The signal forming circuit according to claim 5, wherein:
[8] 少なくとも 1個の前記副変調信号生成部に他の前記副変調信号生成部の出力を入 力することにより、前記少なくとも 1個の副変調信号生成部から、前記他の副変調信 号生成部の出力を更に変調することにより形成した副変調信号を出力する [8] By inputting the output of the other sub-modulation signal generation unit to at least one sub-modulation signal generation unit, the at least one sub-modulation signal generation unit outputs the other sub-modulation signal. Outputs the sub-modulation signal formed by further modulating the output of the generator
ことを特徴とする請求項 5記載の信号形成回路。  6. The signal forming circuit according to claim 5, wherein:
[9] 前記第 1副変調信号生成部は前記第 1副変調信号として前記基準信号を周波数 変調する信号を出力する [9] The first sub-modulation signal generation unit outputs a signal that frequency-modulates the reference signal as the first sub-modulation signal.
ことを特徴とする請求項 6記載の信号形成回路。  The signal forming circuit according to claim 6.
[10] 前記変調信号生成部は、前記第 1副変調信号生成部から出力された前記第 1副変 調信号を入力されることにより、前記最終変調信号を出力する [10] The modulation signal generation unit outputs the final modulation signal by receiving the first sub modulation signal output from the first sub modulation signal generation unit.
ことを特徴とする請求項 9記載の信号形成回路。  The signal forming circuit according to claim 9.
[11] 前記第 2副変調信号生成部は前記第 2副変調信号として前記基準信号を振幅変 調する信号を出力する [11] The second sub-modulation signal generation unit outputs a signal for amplitude-modulating the reference signal as the second sub-modulation signal.
ことを特徴とする請求項 6記載の信号形成回路。  The signal forming circuit according to claim 6.
[12] 前記変調信号発生部は、更に、乗算器を備え、 [12] The modulation signal generator further includes a multiplier,
前記乗算器は、前記変調信号生成部から出力された変調信号と、前記第 2副変調 信号生成部から出力された前記第 2副変調信号とを乗算することにより、前記最終変 調信号を出力する  The multiplier outputs the final modulation signal by multiplying the modulation signal output from the modulation signal generation unit by the second sub modulation signal output from the second sub modulation signal generation unit. Do
ことを特徴とする請求項 11記載の信号形成回路。  12. The signal forming circuit according to claim 11, wherein:
[13] 前記第 1副変調信号生成部は前記第 1副変調信号として前記基準信号を周波数 変調する信号を出力し、 [13] The first sub-modulation signal generation unit outputs a signal that frequency-modulates the reference signal as the first sub-modulation signal,
前記第 2副変調信号生成部は前記第 2副変調信号として前記基準信号を振幅変 調する信号を出力する  The second sub-modulation signal generation unit outputs a signal for amplitude-modulating the reference signal as the second sub-modulation signal.
ことを特徴とする請求項 6記載の信号形成回路。  The signal forming circuit according to claim 6.
[14] 前記第 1副変調信号は前記基準信号よりも十分に長い周期を有する三角波であり 前記第 2副変調信号は前記基準信号よりも長く前記第 1副変調信号よりも短い周期 を有する三角波である [14] The first sub-modulation signal is a triangular wave having a period sufficiently longer than the reference signal. The second sub modulation signal is a triangular wave having a longer period than the reference signal and shorter than the first sub modulation signal.
ことを特徴とする請求項 13記載の信号形成回路。  The signal forming circuit according to claim 13.
[15] 前記変調信号生成部は、前記第 1副変調信号生成部から出力された前記第 1副変 調信号を入力されることにより、中間変調信号を出力し、 [15] The modulation signal generation unit outputs the intermediate modulation signal by receiving the first sub modulation signal output from the first sub modulation signal generation unit,
前記変調信号発生部は、更に、乗算器を備え、  The modulation signal generator further includes a multiplier,
前記乗算器は、前記変調信号生成部から出力された前記中間変調信号と、前記 第 2副変調信号生成部から出力された前記第 2副変調信号とを乗算することにより、 前記最終変調信号を出力する  The multiplier multiplies the intermediate modulation signal output from the modulation signal generation unit by the second sub modulation signal output from the second sub modulation signal generation unit, thereby obtaining the final modulation signal. Output
ことを特徴とする請求項 13記載の信号形成回路。  The signal forming circuit according to claim 13.
[16] 前記周期信号形成回路は発振器であり、前記周期信号はクロック信号である [16] The periodic signal forming circuit is an oscillator, and the periodic signal is a clock signal.
ことを特徴とする請求項 1記載の信号形成回路。  The signal forming circuit according to claim 1, wherein:
[17] 前記基準信号は、三角波、正弦波又はクロックのいずれかである [17] The reference signal is any one of a triangular wave, a sine wave, and a clock.
ことを特徴とする請求項 1記載の信号形成回路。  The signal forming circuit according to claim 1, wherein:
[18] 前記副変調信号は、三角波、正弦波、余弦波、整数倍の周波数の正弦波及び余 弦波の和により構成された信号、不規則過程による信号のいずれ力、又は、これらの 信号の組み合わせにより得られる信号である [18] The sub-modulation signal may be a triangular wave, a sine wave, a cosine wave, a signal composed of a sum of a sine wave having an integral multiple frequency and a cosine wave, a signal generated by an irregular process, or these signals. Is a signal obtained by combining
ことを特徴とする請求項 1記載の信号形成回路。  The signal forming circuit according to claim 1, wherein:
[19] 前記信号変調部は、前記周期信号形成回路から出力された周期信号を入力とし、 前記最終変調信号を制御信号とし、前記出力信号を出力とする位相同期回路から なる [19] The signal modulation unit includes a phase synchronization circuit that receives the periodic signal output from the periodic signal forming circuit, receives the final modulation signal as a control signal, and outputs the output signal.
ことを特徴とする請求項 1記載の信号形成回路。  The signal forming circuit according to claim 1, wherein:
[20] 前記信号変調部は、 [20] The signal modulation unit includes:
前記最終変調信号を積分した積分信号を出力する積分器と、  An integrator that outputs an integrated signal obtained by integrating the final modulation signal;
前記周期信号形成回路から出力された周期信号を入力とし、前記最終変調信号 の積分信号を制御信号とし、前記出力信号を出力とする可変遅延器とからなる ことを特徴とする請求項 1記載の信号形成回路。  2. The variable delay device according to claim 1, further comprising: a variable delay device that receives the periodic signal output from the periodic signal forming circuit as input, uses the integrated signal of the final modulation signal as a control signal, and outputs the output signal. Signal forming circuit.
[21] EMIを低減することが可能な出力信号を形成する信号形成方法であって、 少なくとも 1個の副変調信号を生成し、 [21] A signal forming method for forming an output signal capable of reducing EMI, Generate at least one submodulation signal,
最終変調信号を生成するための基準となる基準信号を前記少なくとも 1個の副変調 信号により変調することにより、前記最終変調信号を生成し、  The final modulation signal is generated by modulating a reference signal serving as a reference for generating a final modulation signal with the at least one sub-modulation signal,
周期信号を前記最終変調信号により変調することにより、当該出力信号に起因する スペクトルを低減することにより前記 EMIを低減することが可能な出力信号を生成す る  By modulating a periodic signal with the final modulation signal, an output signal capable of reducing the EMI is generated by reducing a spectrum caused by the output signal.
ことを特徴とする信号形成方法。  A signal forming method.
[22] 前記副変調信号として、第 1及び第 2副変調信号を生成し、 [22] generating the first and second submodulation signals as the submodulation signal,
変調信号を前記第 1及び第 2副変調信号により変調することにより、最終変調信号 を生成する  A final modulation signal is generated by modulating the modulation signal with the first and second sub-modulation signals.
ことを特徴とする請求項 21記載の信号形成方法。  The signal forming method according to claim 21, wherein
[23] 前記周期信号はクロック信号である [23] The periodic signal is a clock signal.
ことを特徴とする請求項 22記載の信号形成方法。  23. The signal forming method according to claim 22, wherein:
[24] 前記副変調信号は、少なくとも、前記基準信号を周波数変調する第 1副変調信号、 又は、前記基準信号を振幅変調する第 2副変調信号のいずれかを含む [24] The sub-modulation signal includes at least one of a first sub-modulation signal that frequency-modulates the reference signal, or a second sub-modulation signal that amplitude-modulates the reference signal.
ことを特徴とする請求項 22記載の信号形成方法。  23. The signal forming method according to claim 22, wherein:
[25] 周期信号を出力する周期信号形成回路と、 [25] a periodic signal forming circuit for outputting a periodic signal;
最終変調信号を生成するための基準となる基準信号を出力する基準信号生成部と 、前記基準信号を変調する少なくとも 1個の副変調信号を出力する副変調信号生成 部とを備え、前記基準信号を前記少なくとも 1個の副変調信号により変調することによ り生成した前記最終変調信号を出力する変調信号発生部と、  A reference signal generation unit that outputs a reference signal serving as a reference for generating a final modulation signal; and a sub-modulation signal generation unit that outputs at least one sub-modulation signal that modulates the reference signal. A modulation signal generator for outputting the final modulation signal generated by modulating the at least one sub-modulation signal;
前記周期信号形成回路から出力された周期信号を前記最終変調信号により変調 することにより生成した出力信号であって、当該出力信号に起因するスペクトルを低 減することにより前記 EMIを低減することが可能な出力を出力する信号変調部と、 前記出力信号に基づいて所定の動作を行う動作部とを備える  It is an output signal generated by modulating the periodic signal output from the periodic signal forming circuit with the final modulation signal, and the EMI can be reduced by reducing the spectrum caused by the output signal. A signal modulation unit that outputs an output and an operation unit that performs a predetermined operation based on the output signal
ことを特徴とする電子機器。  An electronic device characterized by that.
PCT/JP2004/011704 2004-08-13 2004-08-13 Signal forming circuit, signal forming method, and electronic device WO2006016414A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/011704 WO2006016414A1 (en) 2004-08-13 2004-08-13 Signal forming circuit, signal forming method, and electronic device
JP2006531098A JP4543042B2 (en) 2004-08-13 2004-08-13 Signal forming circuit, signal forming method, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/011704 WO2006016414A1 (en) 2004-08-13 2004-08-13 Signal forming circuit, signal forming method, and electronic device

Publications (1)

Publication Number Publication Date
WO2006016414A1 true WO2006016414A1 (en) 2006-02-16

Family

ID=35839191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011704 WO2006016414A1 (en) 2004-08-13 2004-08-13 Signal forming circuit, signal forming method, and electronic device

Country Status (2)

Country Link
JP (1) JP4543042B2 (en)
WO (1) WO2006016414A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197570A (en) * 2004-12-15 2006-07-27 Asahi Kasei Microsystems Kk Waveform generation circuit and spectrum spreading clock generation apparatus
WO2007097290A1 (en) * 2006-02-22 2007-08-30 Nichia Corporation Optical device
JP2007243911A (en) * 2006-03-03 2007-09-20 Linear Technol Corp Spread-spectrum frequency modulated oscillator circuit, frequency modulated oscillator circuit and electromagnetic interference reduction method
JP2009534889A (en) * 2006-04-19 2009-09-24 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Signal modulation method
US7786768B2 (en) 2004-12-15 2010-08-31 Asahi Kasei Microsystems Co., Ltd. Waveform generating circuit and spread spectrum clock generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10133767A (en) * 1996-10-31 1998-05-22 Tohoku Ricoh Co Ltd Digital electronic equipment, and its failure diagnosing and crosstalk discriminating method, and digital electronic equipment system
JP2001007731A (en) * 1999-06-21 2001-01-12 Matsushita Electric Ind Co Ltd Spread spectrum transmitter and receiver thereof
JP2001217694A (en) * 2000-02-04 2001-08-10 Nec Corp Delay-adjusting circuit and clock-generating circuit using same
JP2002341959A (en) * 2001-05-15 2002-11-29 Rohm Co Ltd Method and device for generating clock signal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704977A3 (en) * 1994-08-31 1996-05-29 Ibm Phase detector with no dead zone
JP3613787B2 (en) * 1999-10-18 2005-01-26 日本プレシジョン・サーキッツ株式会社 Self-modulating clock generator
JP4141247B2 (en) * 2002-12-24 2008-08-27 富士通株式会社 Spread spectrum clock generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10133767A (en) * 1996-10-31 1998-05-22 Tohoku Ricoh Co Ltd Digital electronic equipment, and its failure diagnosing and crosstalk discriminating method, and digital electronic equipment system
JP2001007731A (en) * 1999-06-21 2001-01-12 Matsushita Electric Ind Co Ltd Spread spectrum transmitter and receiver thereof
JP2001217694A (en) * 2000-02-04 2001-08-10 Nec Corp Delay-adjusting circuit and clock-generating circuit using same
JP2002341959A (en) * 2001-05-15 2002-11-29 Rohm Co Ltd Method and device for generating clock signal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197570A (en) * 2004-12-15 2006-07-27 Asahi Kasei Microsystems Kk Waveform generation circuit and spectrum spreading clock generation apparatus
US7786768B2 (en) 2004-12-15 2010-08-31 Asahi Kasei Microsystems Co., Ltd. Waveform generating circuit and spread spectrum clock generator
WO2007097290A1 (en) * 2006-02-22 2007-08-30 Nichia Corporation Optical device
JP2007257674A (en) * 2006-02-22 2007-10-04 Nichia Chem Ind Ltd Optical device
US8054735B2 (en) 2006-02-22 2011-11-08 Nichia Corporation Optical device
JP2007243911A (en) * 2006-03-03 2007-09-20 Linear Technol Corp Spread-spectrum frequency modulated oscillator circuit, frequency modulated oscillator circuit and electromagnetic interference reduction method
JP2009534889A (en) * 2006-04-19 2009-09-24 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Signal modulation method

Also Published As

Publication number Publication date
JPWO2006016414A1 (en) 2008-05-01
JP4543042B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
CN110199477B (en) Clock spread spectrum circuit, electronic device and clock spread spectrum method
US7508278B2 (en) Asymmetry triangular frequency modulation profiles for spread spectrum clock generations
US8024598B2 (en) Apparatus and method for clock generation with piecewise linear modulation
KR100367540B1 (en) Spread spectrum clock generator and associated method
US8155164B2 (en) Spread frequency spectrum waveform generating circuit
US9280928B2 (en) Apparatus and method for driving LED display
US7714666B2 (en) Phase locked loop frequency synthesizer and method for modulating the same
GB2459108A (en) Dithered clock signal generator
CN110214418B (en) Parameter determination method and device of spread spectrum circuit and clock spread spectrum method and device
US6697416B1 (en) Digital programmable, spread spectrum clock generator
JP4390646B2 (en) Spread spectrum clock generator and modulation method thereof
JP2007028597A5 (en)
US20070001882A1 (en) Method and circuit for producing spread spectrum and/or over clock signal
US20110006817A1 (en) Triangular wave generator, sscg utilizing the triangular wave generator, and related method thereof
KR100815584B1 (en) Apparatus and method for generation of noise signal
JP4543042B2 (en) Signal forming circuit, signal forming method, and electronic apparatus
KR102535645B1 (en) Low noise local oscillator for millimeter wave communication system
CN106941351B (en) Dual calibration loop for random spread spectrum modulator
WO2007023528A1 (en) Signal formation circuit, signal formation method, and electronic device
JP3548557B2 (en) Fractional-N frequency synthesizer
US8422536B2 (en) Spread spectrum clock signal generator method and system
JP2001331236A (en) Digital type programmable spectrum clock generator
JPH03265014A (en) Computer system
JP2008227861A (en) Noise signal generator
JP4655649B2 (en) Control device and control method for PWM drive device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531098

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: COMMUNICATION UNDER RULE 69 EPC ( EPO FORM 1205A DATED 26/06/07 )

122 Ep: pct application non-entry in european phase

Ref document number: 04771671

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 4771671

Country of ref document: EP