WO2006015549A1 - Procede de transmission de signaux de trafic a faible debit dans un reseau de transmission optique et dispositif correspondant - Google Patents

Procede de transmission de signaux de trafic a faible debit dans un reseau de transmission optique et dispositif correspondant Download PDF

Info

Publication number
WO2006015549A1
WO2006015549A1 PCT/CN2005/001239 CN2005001239W WO2006015549A1 WO 2006015549 A1 WO2006015549 A1 WO 2006015549A1 CN 2005001239 W CN2005001239 W CN 2005001239W WO 2006015549 A1 WO2006015549 A1 WO 2006015549A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical channel
low
data unit
channel data
Prior art date
Application number
PCT/CN2005/001239
Other languages
English (en)
French (fr)
Inventor
Shimin Zou
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35839142&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006015549(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to AT05780739T priority Critical patent/ATE429088T1/de
Priority to DK05780739T priority patent/DK1737147T3/da
Priority to EP20050780739 priority patent/EP1737147B1/en
Priority to DE200560013941 priority patent/DE602005013941D1/de
Publication of WO2006015549A1 publication Critical patent/WO2006015549A1/zh
Priority to US11/525,332 priority patent/US9014151B2/en
Priority to US14/678,121 priority patent/US11658759B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet

Definitions

  • the present invention relates to optical communication technologies, and more particularly to a method and apparatus for transmitting low-rate traffic signals in an Optical Transport Networks (OTN).
  • OTN Optical Transport Networks
  • the core content of the G.709 recommendation is Digital Wrapper. It defines a special frame format that encapsulates the client signal into the payload unit of the frame, provides the overhead bytes (OH, Overhead) for OAM&P in the header, and provides forward error correction at the end of the frame (FEC) , Forward Error Correction ) Bytes.
  • the standard frame format used by digital encapsulation technology is shown in Figure 1. It uses 4 rows and 4080 columns of frame format, with 16 headers as overhead bytes, 255 columns as FEC check bytes, and 3808 columns as payloads.
  • the first row 1 - 7 is listed as the frame alignment byte (FAS, Frame Alignment Signal), and the 8 - 14 bytes is the kth optical channel transport unit (OTUk, Optical Channel Transport Unit) overhead.
  • the 2nd - 4th line 1 - 14 ⁇ ' J is the optical channel data unit (ODUk, Optical Channel Data Unit) overhead byte
  • the 15th, 16th column is the light Channel Payload Unit (OPUk, Optical Channel Payload Unit) overhead bytes.
  • the OTUk overhead byte provides re-amplification, reassembly, and retiming in OTN (3R, Reamplification, Reshaping, and Retiming)
  • the monitoring function of the signal state transmitted between the regenerative nodes including the segment monitoring (SM, Section Monitoring) overhead byte, the GCC0 inter-terminal communication channel overhead byte, and the RES reserved byte.
  • ODUl overhead provides cascading connection monitoring, end-to-end channel monitoring and customer signal adaptation via OPUk.
  • ODUk provides a rich overhead byte (lines 2 - 4 1 - 14 ⁇ ij ) to perform the above functions. Including: channel monitoring (PM, Path Monitoring) overhead, tandem connection monitoring (TCM, Tandem Connection Monitoring) overhead, GCC, General Communication Channel, GCC1 and GCC2 overhead, automatic protection switching and protection control channel (APS) /PCC, Auto-Protection Switching I Protection Control Channel) Overhead Byte, Fault Type and Fault Location (FTFL) information, and overhead bytes (EX, Experiment) for experiment use.
  • PM Path Monitoring
  • TCM Tandem Connection Monitoring
  • GCC General Communication Channel
  • GCC1 and GCC2 General Communication Channel
  • APS automatic protection switching and protection control channel
  • FTFL Fault Type and Fault Location
  • EX Experiment
  • OPUk is composed of the payload mapped by the client signal and its associated overhead.
  • the overhead bytes include: PSI, Payload Structure Identifier, Customer Signal Type Indication (PT, Payload Type), Reserved Byte (RES, Reserved), and Mapping Specific Overhead.
  • Constant Bit Rate (CBR), CBR10G5, CBR10G, CBR40G signals are mapped into OPUk: CBR2G5 - 2488320kbit/s ⁇ 20ppm fixed bit rate signal, such as STM-16; CBR10G - 9953280kbit/s ⁇ 20ppm Bit rate signals, such as STM-64; CBR40G - 39813120kbit/s ⁇ 20ppm fixed bit rate signals, such as STM-256.
  • the mapping can be done in two ways, asynchronous and bit synchronous.
  • the asynchronous method uses a local clock that is independent of the client signal and applies a positive/negative/zero code adjustment strategy.
  • the bit sync map uses a clock drawn from the client signal.
  • Asynchronous Transfer Mode (ATM) signal mapping In OPUk: A fixed bit stream that is multiplexed with ATM cells to match the OPUk payload capacity can be mapped into the OPUk, and the rate is adjusted by inserting idle cells or dropping cells in multiplexing. The information of the ATM cell is scrambled before mapping.
  • ATM Asynchronous Transfer Mode
  • GFP Frame Signal
  • the solution for the data service is implemented by adapting the data unit to the OPUk through GFP, such as a low-speed Gigabit Ethernet (GE) service or a fiber connection (FC). Fiber Connection) business.
  • GFP such as a low-speed Gigabit Ethernet (GE) service or a fiber connection (FC). Fiber Connection
  • GE Gigabit Ethernet
  • FC fiber Connection
  • GE service adapts to OPU1
  • the bandwidth utilization is not high. If two GEs are multiplexed to 2.5G signals through GFP adaptation and virtual concatenation to OTN, the scheduling function of ODUk of OTN has no effect on GE signals.
  • the processing of the SDH layer is increased, so that the service processing of the intermediate node is required.
  • the service scheduling must be based on the virtual concatenation scheduling; if the GE or FC service signal is directly adapted to the OPUk through the GFP, the minimum rate level of the OPUk is 2.5G, which is used to carry about 1G. Low-rate traffic signals can waste bandwidth, and scheduling minimum granularity will also be limited to 2.5G.
  • the main object of the present invention is to provide a method for transmitting a low-rate service signal in an optical transport network, so that a low-rate service signal can be mapped on the optical transport network with high bandwidth utilization, and can provide a low-rate service signal level.
  • Another main object of the present invention is to provide an apparatus for transmitting a low rate service signal in an optical transport network, which simply and conveniently implements the service of the low rate service signal in the optical transport network.
  • the present invention provides a method for transmitting a low rate service signal in an optical transport network, wherein the low rate is a rate lower than 2.5 Gbit/s, and the following steps are included: a low rate service signal to be transmitted
  • the low-rate service optical channel payload unit is mapped to the low-rate service optical channel data unit signal, and the generated overhead byte is filled in the low-rate service optical channel data unit overhead area to obtain a low-rate service optical channel data unit signal;
  • More than one low-rate service optical channel data unit signal is multiplexed into the optical channel data unit signal that satisfies the transmission rate level of the optical transport network, and transmitted through the optical transport network.
  • the low rate traffic data unit signal of the method has the same rate level as the low rate traffic signal carried by the method.
  • the method for mapping the low rate traffic signal to the low rate service optical channel payload unit is to map the low rate traffic signal to a low rate traffic signal optical channel payload by a universal framing procedure or other adaptation protocol unit.
  • the method further comprises a packet in a frame of the low rate service signal optical channel data unit signal Including: frame positioning signal, optical transmission unit overhead area and optical channel payload unit overhead area.
  • the low-rate service signal optical channel data unit of the method is 4 3824 bytes, and the bit rate is 1244160 Kbps ⁇ 20 ppm;
  • the frame positioning signal is located in the first to seventh columns of the first row, and the frame positioning signal further includes a complex frame positioning signal, where the multiframe positioning signal is located in the eighth column of the first row;
  • the optical transmission unit overhead area is located in the eighth to fourth columns of the first row, and is used for optical transmission unit management;
  • the low-rate service signal optical channel data unit overhead area is located in the first to fourth columns of the second to fourth rows, and is used for optical channel data unit management;
  • the low-rate service signal optical channel payload unit overhead area is located in the 15th and 16th columns of the first to fourth rows, and includes a payload structure indication, which is located in the fifth row and the 15th column, and is used to indicate the payload structure and type;
  • the low rate traffic signal optical channel payload unit is located in columns 17 - 3824 of the first to fourth rows.
  • the method for mapping the low rate service signal to the low rate service optical channel payload unit includes:
  • the total rate of the universal framing procedure or other adaptation protocol signal and the idle frame is a rate of the low-rate service signal optical channel payload unit, and forming the low-rate service Signal optical channel payload unit;
  • the method for filling the overhead bytes in the low-rate service optical channel data unit overhead area includes:
  • the low-rate service signal optical channel data unit overhead area is filled, and the low-rate service signal optical channel data unit signal is obtained.
  • the low-rate service signal of the method is a 1Gbit/sec rate level, and adopts an 8B/10B coding mode;
  • the low-rate service signal is a signal of 100 Mbit/s rate level, and adopts 4B/5B encoding.
  • the low-rate service signal of the method is: any one of a Gigabit Ethernet service signal, a fiber-connected service signal, a high-definition digital television service signal, and a Fast Ethernet service signal.
  • the process of multiplexing the low-rate service optical channel data unit signal into the optical channel data unit signal adopts an asynchronous multiplexing manner or a synchronous multiplexing manner.
  • the method for multiplexing the low-rate service optical channel data unit signal into the optical channel data unit signal adopts an asynchronous multiplexing manner, and includes the following steps:
  • the different low-rate service optical channel data unit signals are indicated by different multi-frame positioning indication values, and the low-rate service optical channel transmission unit adjustment overhead corresponding to each low-rate service optical channel data unit is placed in the optical channel The overhead position of the charge unit;
  • the positioning signal forms an optical channel transmission unit signal.
  • the method is configured to multiplex a low-rate service signal optical channel data unit signal of two 1 Gbit/s rate levels on the optical channel data unit at a 2.5 Gbit/sec rate level;
  • An apparatus for transmitting a low rate traffic signal in an optical transport network comprising: one or more mapping units and one Optical channel data unit terminal module;
  • the mapping unit is configured to map and encapsulate the low rate traffic signal into a low rate service optical channel data unit signal, and/or an optical channel data unit signal from the optical channel data unit terminal module;
  • the optical channel data unit terminal module is configured to multiplex the multiple low-rate service signal optical channel data unit signals from the one or more mapping units to obtain an optical channel data that satisfies the transmission rate level of the optical transmission network.
  • Each mapping unit of the device includes a general framing procedure or other adaptation protocol mapping module and a low rate service signal optical channel data unit mapping module;
  • the universal framing procedure or other adaptation protocol mapping module is configured to perform a general framing procedure or other adaptation protocol encapsulation on the input low rate traffic signal to obtain a general framing procedure or He adapts the protocol signal, and/or performs general framing procedures or other adaptation protocol decapsulation of the general framing procedure or other adaptation protocol signals from the low rate traffic signal optical channel data unit mapping module.
  • Low rate service signal ;
  • the low rate service signal optical channel data unit mapping module is configured to perform low rate service signal optical channel data on the universal framing procedure or other adaptation protocol signal from the universal framing protocol or other adaptation protocol mapping module.
  • the unit mapping obtains a low rate service optical channel data unit signal, and/or performs a low rate service signal optical channel data unit demapping on the low rate service optical channel data unit signal from the optical channel data unit terminal module to obtain the General framing procedures or other adaptation protocol signals.
  • the apparatus further includes one or more low rate traffic signal interface modules for decoding the input low rate traffic signal, converting the data stream signal input to the mapping unit, and/or encoding the signal from the mapping unit The low rate traffic signal is obtained.
  • the low rate traffic signal of the device is a 1 Gbit/sec rate level, and the encoding and decoding is an 8B/10B mode;
  • the low rate traffic signal is a signal of the 100 Mbit/sec rate level, and the encoding and decoding are 4B/5B mode.
  • the apparatus further includes: an optical channel transmission unit line module, configured to perform line correlation processing on the optical channel data unit signals of the levels from the optical channel data unit terminal module, and output optical signals are transmitted on the optical transmission network And/or performing line correlation processing on the optical signals on the optical transmission network to obtain the optical channel data unit signals of the respective levels.
  • an optical channel transmission unit line module configured to perform line correlation processing on the optical channel data unit signals of the levels from the optical channel data unit terminal module, and output optical signals are transmitted on the optical transmission network And/or performing line correlation processing on the optical signals on the optical transmission network to obtain the optical channel data unit signals of the respective levels.
  • the device for transmitting a low-rate service signal in another optical transport network is applied to a network node in a mesh or ring network, and the device includes: a split/multiplexer unit, an optical channel transmission unit line unit, An optical channel data unit scheduling unit and a low rate service signal mapping unit, where
  • the split/multiplex unit is configured to receive an optical signal on the optical transmission network to perform an optical layer signal Processing, obtaining an optical channel transmission unit signal;
  • the optical channel transmission unit line unit is configured to perform line correlation processing on the optical channel transmission unit signal from the split/multiplexer unit and the low rate service signal mapping unit to obtain the optical channel data unit signal;
  • the optical channel data unit scheduling unit is configured to perform optical channel data unit level cross scheduling on the optical channel data unit signals from at least one of the optical channel transmission unit line units;
  • the low rate service signal mapping unit is configured to decapsulate and demap the optical channel data unit signal from the optical channel data unit scheduling unit, and convert the low rate service signal to a local data network.
  • the low-rate service signal mapping unit of the device is further configured to map and encapsulate the low-rate service signal from the local data network, convert the signal into a low-rate service optical channel data unit, and send the signal to the optical channel data unit.
  • the optical channel data unit signal of the unit performs line correlation processing to obtain the optical channel transmission unit signal; and the optical channel transmission unit signal performs optical layer signal processing to obtain the optical signal for transmission on the optical transmission network.
  • the apparatus further includes: a low rate service signal optical channel data unit scheduling unit, and an adaptation unit of the low rate service signal optical channel data unit to the optical channel data unit;
  • the low-rate service signal optical channel data unit scheduling unit is configured to be adapted to the optical channel data unit scheduling unit by the adaptation unit of the low-rate service signal optical channel data unit to the optical channel data unit, and to multiple The low-rate service signal optical channel data unit signal performs cross-scheduling at a low-rate service signal level;
  • the adaptation unit of the low-rate service signal optical channel data unit to the optical channel data unit is configured to implement the low-rate service signal optical channel data unit signal on the low-rate service signal optical channel data unit scheduling unit side and the Asynchronous multiplexing and demultiplexing between the optical channel data unit signals on the optical channel data unit scheduling unit side;
  • the optical channel data unit scheduling unit is further configured to perform optical channel data unit level cross scheduling on the optical channel data unit signals from the low rate service signal optical channel data unit to the optical channel data unit.
  • the method and apparatus for transmitting a low-rate service signal in an optical transport network use a GFP mapping method to map a low-rate service signal (GE/FC) to an ODUGE signal suitable for OTN transmission;
  • the asynchronous or synchronous multiplexing method multiplexes the multi-channel ODUGE signals into one ODUk signal; the ODUGE-to-ODUk mapping and the ODUGE cross-network realize low-rate service signal-level services. Therefore, the end-to-end performance management of the data service at the GE/FC level is realized through the management overhead setting of the ODUGE frame format.
  • the GE/FC transparent multiplexer is implemented by the asynchronous multiplexing of multiple GE/FCs to the ODUk, and the GE is implemented.
  • the transparent transmission of the /FC in the OTN, and the bandwidth utilization is greatly improved.
  • the flexible scheduling and service of the GE-level data services are realized through the ODUGE low-order cross-network on the OTN device.
  • FIG. 1 is a schematic diagram of a standard frame format of a digital encapsulation technique
  • FIG. 2 is a schematic diagram of an ODUGE frame format according to an embodiment of the present invention
  • FIG. 3 is a low rate service signal (GE/FC) to
  • FIG. 4 is a schematic diagram of an asynchronous multiplexing process of an ODU2GE to an OPU1/ODU1 according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a positive adjustment byte arrangement at the time of asynchronous multiplexing according to an embodiment of the present invention
  • FIG. 6 is a flow chart of an asynchronous multiplexing method of ODUnGE to OPUk/ODUk according to an embodiment of the present invention
  • FIG. 7 is a block diagram showing the structure of a multiplex subsystem of ODUnGE to OPUk/ODUk according to an embodiment of the present invention
  • FIG. 8 is a block diagram showing the structure of an apparatus for transmitting a low rate traffic signal in an OTN according to an embodiment of the present invention
  • FIG. 9 is a diagram showing an application of an apparatus for transmitting a low rate traffic signal in an OTN and its method in various networks, in accordance with one embodiment of the present invention. Mode for carrying out the invention
  • a frame format of an optical channel data unit of a low-rate service signal or an optical channel data unit of an GE is used to carry low-speed service signals.
  • ODUGE Optical Channel Data Unit for Gigabyte Ethernet
  • GE's payload unit is OPUGE.
  • the frame format of ODUGE is shown in the figure.
  • the payload (OPUGE) area is the FEC area from the 3825th column.
  • each ODUGE OH byte is the same as the ODU OH defined by the existing digital encapsulation technology, so that the end-to-end management overhead of the GE-level service is implemented, so as to achieve end-to-end performance of the GE service. management.
  • the frame alignment signal FAS, Frame Alignment
  • the first column is the first frame multi-frame alignment signal (MFAS, Multi-Frame Alignment Signal)
  • MFAS Multi-Frame Alignment Signal
  • the PSI byte is included in the OPUGE OH, located in the 4th column of the 15th column, and the PT byte, respectively, indicating the type of the payload being carried.
  • the ODUGE has a size of 4 x 3824 bytes and a bit rate of 1244160 Kbps ⁇ 20 ppm, which is one half of the payload area rate of OPU1 in ITU-T Recommendation G.709.
  • the ODUGE payload area has an OPUGE size of 4 ⁇ 3810 bytes.
  • the OPUGE payload is 4 x 3808 bytes.
  • the bit rate corresponds to:
  • the GE or FC low-speed service is adapted to the payload area of OPUGE via CFP, so the positive and negative of OPUGE The adjustment byte can be left unused.
  • the GE or FC service signal is decoded at the 1G level through the 8B/10B of the line. According to the GFP-T mapping, the GFP transmission bandwidth is:
  • the payload area of the aforementioned ODUGE/OPUGE is also Sufficient capacity to pass the rate of GE or FC GFP-T adaptation, including information frames and idle frames; it can also pass the rate of GE or FC after GFP-F adaptation. And if necessary, you can also pass the management frame of GFP.
  • the rate of the 1G level described herein refers to a rate of about 1G.
  • the signals of the GE signal, the FC signal, and the High Definition Television (HDTV) are all at about 1G.
  • some specific encoding of these signals is also a 1G level signal.
  • the specific encoding mentioned here may be FEC encoding or other standard or custom encoding.
  • the low rates described herein also include rates at the FE level.
  • the FE line transmission rate is 125Mbps ⁇ 100ppm, which is 100Mbps ⁇ 100ppm after decoding by 4B/5B, decoding After removing the IDLE frame, the actual rate is less than 100Mbps.
  • the payload area has sufficient capacity to convey information such as FE payload and GFP-F adapted payload frame, GFP idle frame, and GFP management frame.
  • Step 301 Convert the GE service signal into a data stream signal with a rate of 1G through the 8B/10B decoding process.
  • Step 302 Encapsulate the data stream signal including the payload information and the control information into a GFP signal according to the GFP encapsulation format.
  • the GFP encapsulation method is implemented according to the link layer standard given in ITU-T Recommendation G7041. Different service data encapsulation methods are used to encapsulate different service data, including GFP-F and GFP-T.
  • the GFP-F encapsulation method is applicable to packet data, and the entire packet data is encapsulated into the GFP conformance information area, and no changes are made to the package data, and whether or not the load detection domain is added is determined as needed.
  • the GFP-T encapsulation method is suitable for block data encoded with 64B/65B, extracts a single character from the received data block, and then maps it to a fixed length GFP frame.
  • Step 303 Insert the idle frame, so that the total rate of the GFP signal and the idle frame is the rate of the OPUGE payload area, and form a payload of the OPUGE.
  • the GFP signal rate is inconsistent with the rate of the aforementioned OPUGE payload area, it is necessary to fill the idle frame to adjust the rate of the GFP signal. Since the OPUGE payload area is large enough, in addition to filling the GFP idle frame, the GFP management frame can be filled as needed.
  • Step 304 Set a load management overhead OPUGE OH to form an ODUGE.
  • the setting of the overhead bytes of OPUGE OH follows ITU-T Recommendation G.709, where PSI, The PT byte is used to indicate that the frame payload type is GE.
  • Step 305 setting and adding a data management overhead ODUGE OH, forming an OTUGE.
  • the overhead byte of the ODUGE OH is set to follow the ITU-T recommendation G.709, which is used to complete the end-to-end management of the GE service level.
  • FC and FE level service signal mapping The processing of the FC signal is the same as GE, except that the rate of the data stream converted by the FC in step 301 is 1.06 X 0.8G.
  • the difference is that the decoding of FE is 4B/5B decoding; the mapping of FE is only suitable for GFP-F mapping; the rate of ODUFE is 1/10 of ODUGE, and the other processing is exactly the same.
  • the signal of the ODUGE package is obtained, and then the multi-frame ODUGE is connected to an OPUk/ODUk for facilitating transmission, thereby forming two optical channels that can be transmitted.
  • the transmission unit OTUGE enables maximum utilization of transmission bandwidth to improve network resource utilization.
  • a preferred embodiment of the present invention asynchronously multiplexes two ODUGEs (also referred to as ODU2GE in the present invention) into one OPU1/ODU1.
  • ODU2GE also referred to as ODU2GE in the present invention
  • the specific asynchronous multiplexing process is shown in FIG.
  • the ODUGE including the overhead byte ODUGE OH is used as the payload, and each ODUGE adds the adjustment overhead (JOH, Justification Overhead) byte ODUGE JOH to obtain the first ODUGE, the first ODUGE JOH, the second ODUGE, and the second ODUGE JOH. , that is, the composition of ODU2GE.
  • JOH Justification Overhead
  • the ODU2GE is asynchronously multiplexed to the OPU1 by using the inter-byte interpolation method, and the adjustment overhead bytes are allocated according to the time slot according to the multiframe multiplexing mode.
  • the adjustment overhead byte JOH For a frame with MFAS 0, set the adjustment overhead byte JOH to be the first ODUGE JOH, which is used to adjust the frequency difference of the first ODUGE; and for the frame with MFAS 1, set the adjustment overhead byte JOH to be the second ODUGE JOH, for Adjust the frequency difference of the second ODUGE.
  • the payload area OPU1 is fixed
  • the length interval is divided into two channels for storing the first ODUGE and the second ODUGE.
  • the asynchronous multiplexing process from ODU2GE to OPU1/ODU1 includes: firstly adding two ODUGGEs to the ODTUGE to adjust the overhead ODTUGE JOH to form an ODTUGE signal;
  • the capacity is 4 X 1904 bytes; the first ODTUGE data is placed in the first channel CH1 of the OPU1, the second ODTUGE data is placed in the second channel CH2 of the OPU1; the first ODTUGE JOH is multiplexed to the MFAS 0. OPU1 JOH position, multiplex the second ODTUGE JOH to the OPU1 JOH position where MFAS is 1; set PT to indicate that the payload of OPU1 is ODTUGE; finally add OPU1 OH, OTU1 OH and FAS bytes to OPU1 to obtain OTU1, thus completing the adaptation process of two ODUGE to ODU1.
  • the figure shows the arrangement of the Positive Alignment Byte (PJ, Positive Justificaion).
  • PJ Positive Justificaion
  • the positive adjustment bytes PJ1 and PJ2 are arranged in the 4th row in the 1st and 2nd columns of the OPU1 payload area in the frame with MFAS 0, where PJ1 indicates the pair
  • PJ2 represents the adjustment byte for the second channel.
  • the adjustment overhead JOH uses only the last two bits for each byte.
  • the invention can also asynchronously multiplex 8 ODUGE (ODU8GE) into OPU2/ODU2.
  • the method is similar to the method in which the ODU2GE is connected to the OPU1/ODU1.
  • the eight ODUGEs and the corresponding eight adjustment overheads ODUGE JOH are connected to the OPU2 payload and its adjustment overhead.
  • the payload of OPU2 is divided into 8 channels by time slot, and 8 ODUGE data are arranged respectively; and the corresponding 8 ODUGE JOHs are respectively arranged in OPU2 JOH with MFAS 0-7.
  • x 9953280 Kbps ⁇ 20 ppm is much larger than the total rate of 8 ODUGE 8 xl 24 41 6 0 Kbp S ⁇ 2 Gppm, so
  • a fixed stuffing byte is added every 238 bytes, that is, the Nth 238 bytes are set as fixed stuffing bytes, where 1 ⁇ is 1 ⁇ 16.
  • the specific process of the asynchronous multiplexing from the ODU8GE to the OPU2/ODU2 includes: firstly adding the ODTUGE JOH to the eight ODUGEs to form an ODTUGE signal; then dividing the payload area of the OPU2 into eight channels, for example: the payload area
  • the first column is the first channel
  • the second column is the second channel, and so on, and one column of idle bytes is inserted every 238 columns
  • 8 ODTUGE data is put into the 8 channels of OPU2, according to MFAS In the order of 0 - 7, 8 ODTUGE JOHs are respectively multiplexed to the corresponding OPU2 JOH position;
  • PT is set to indicate that the OPU2 payload is ODTUGE;
  • OPU2 is added with ODU2 OH, OTU2 OH and FAS bytes to obtain OTU2, thus completing the adaptation process of 8 ODUGE to ODU2.
  • the positive adjustment bytes PJ1-PJ8 of 8 channels are arranged in the 4th row of the 1st to 8th columns of the OPU2 payload area in the frame with MFAS 0, Only the last two Bits are used for each byte of the adjusted overhead JOH.
  • the present invention can also asynchronously multiplex n ODUGEs into OPUk/ODUk.
  • the specific multiplexing process is shown in FIG. 6.
  • Step 601 Adapt each low-rate service signal to the payload area of the ODUGE through GFP to form n ODUGEs, and generate an overhead ODUGE OH.
  • the mapping method and the cost generation method are the same as those of the foregoing ODU2GE and ODU8GE.
  • Step 602 Add an adjustment overhead ODTUGE JOH to each ODUGE to form an ODTUnGE signal.
  • the setting and arrangement of the adjustment overhead bytes are the same as those of the aforementioned ODU2GE and ODU8GE.
  • Step 603 Divide the payload area of the OPUk into n channels according to the time slot, and put each ODTUGE data (excluding the ODTUGE JOH) into the corresponding channel.
  • Step 604 the MFAS adjusts the ODTUGE of each ODTUGE.
  • the JOH is multiplexed into the adjusted overhead position of the OPUk in the corresponding frame.
  • each frame of MFAS l - n corresponds to the l - n channel at a time.
  • Step 605 Set a payload structure indication byte PSI to indicate that the payload of the OPU1 is ODTUGE. It can be defined by the reserved byte RES in the PSI.
  • Step 606 setting the overhead OPUk OH, ODUk OH, adapting OPUk to ODUk, and adding OUT OH and FAS to form OUT to be transmitted on OTN.
  • the method includes: n GE interface modules 701, GFP mapping module 702 and ODUGE mapping module 703 respectively corresponding to each GE signal, and 1 ODUk terminal module 704 for the same processing n-way ODUGE signal, 1 for signal adaptation
  • the processed OTUk line module 705 and a timing generator are provided.
  • the GFP mapping module 702 and the ODUGE mapping module 703 together form a mapping unit.
  • the GE/FC signal is first 8B/10B encoded by the GE interface module 701 to obtain a signal with a rate of 1G, which is transmitted to the GFP mapping module 702.
  • the GFP mapping module 702 The 1G signal transmitted by the GE interface module is encapsulated by GFP, and the encapsulation mode may be GFP-T or GFP-F; the GFP signal after GFP encapsulation is transmitted by the GFP mapping module 702 to the ODUGE mapping module 703, and the ODUGE mapping module 703 It writes the payload area of the ODUGE and implements rate adaptation by inserting a GFP idle frame.
  • the ODUGE mapping module 703 will also generate ODUGE OH and FAS, and set the corresponding PT or PSI value of the low rate service. After that, each low-rate service signal is processed to obtain mutually independent ODUGE signals, but each channel ODUGE signal satisfies a frequency difference of ⁇ 20 ppm, and each ODUGE will be transmitted to the ODUk terminal module 704, and each module will be used by the module.
  • the ODUGE signal loading the low-rate service signal is asynchronously connected to the one-way ODUk signal.
  • the asynchronous multiplexing method flow refers to FIG. 6, and includes the steps of generating the adjustment overhead, dividing the channel, adjusting the allocation of bytes, and setting.
  • ODUk The ODUk signal of the multi-channel GE/FC signal outputted by the terminal module 704 is processed by the OTUk line module 705 to complete the OTUk overhead OTUk OH generation, scrambling code, FEC coding, parallel-to-serial conversion, and electro-optical conversion processing, and finally Transfer on OT.
  • the OTUk line module 705 When receiving, the OTUk line module 705 first completes the processes of photoelectric conversion, frame positioning, serial-to-parallel conversion, descrambling, FEC decoding, etc., and recovers the ODUk signal; then the ODUk terminal module 704 completes the termination of the ODUk OH, according to the PSI or PT.
  • the indication is demultiplexed to obtain multiple independent ODUGE signals, and the demultiplexing method is opposite to the foregoing asynchronous multiplexing method; each ODUGE signal is input to the respective ODUGE mapping module 703, completes the ODUGE frame positioning, and demaps the GFP.
  • the GFP signal is input to the GFP mapping module 702, decapsulating and 8B/10B decoding according to the GFP frame format, and recovering the GE/FC level low rate service signal.
  • the transparent multiplexer (TMUX, Transparent Multiplexer) of the GE/FC service signal can be implemented through the mapping of the GE/FC to the ODUGE and the multiplexing of the multi-channel ODUGE to the one-way ODUk.
  • the low-rate traffic signal can be transmitted transparently in .OTN.
  • the above embodiment is also suitable for low-speed data services of the FE level.
  • 20 FEs are mapped to their respective ODUFEs through GFP-F, and then 20 ODUFEs are asynchronously connected to 1 OPU1/ODU1.
  • Figure 8 illustrates an apparatus composition for transmitting a low rate traffic signal in an OTN in accordance with one embodiment of the present invention.
  • the device forms an apparatus form for optical add/drop multiplexing (OADM) or optical cross-connect (OXC) for transmitting low-rate service signals in an OTN.
  • OADM optical add/drop multiplexing
  • OXC optical cross-connect
  • the low-rate service signal mapping unit 806 is configured to connect the low-rate service signal (GE/FC) of the data network, complete GFP encapsulation decapsulation and ODUGE mapping demapping of the low-rate service signal, and the ODUGE overhead terminal function; ODUGE scheduling The unit 805 completes the cross-scheduling of the low-rate service signal level, and the scheduling granule is ODUGE; the ODUGE to the adaptation unit 804 of the ODUk completes the asynchronous multiplexing and demultiplexing of the ODUGE to ODUk.
  • GE/FC low-rate service signal
  • the multiplexing subsystem device is used to complete a low-rate service signal without network cross-scheduling. Multiplexed transmission for end-to-end OTN transmission.
  • the low-rate service signal mapping unit 806 first performs the GE/FC level data service to obtain the ODUGE through GFP adaptation; then the ODUGE scheduling unit 805 completes the ODUGE cross-connection scheduling of the small particles to implement the GE/FC service level.
  • the adaptation unit 804 of the ODUGE to the ODUk completes the multiplexing process of the multi-channel low-order ODUGE to the asynchronous multiplexing to the high-order OPUk/ODUk; after that, the ODUk scheduling unit 803 completes the ODUk-level service scheduling; Finally, the OTUk line unit 802 completes the adaptation of the ODUk to the optical channel, and the combiner 801 completes the combining and amplifying of the optical channels.
  • the demultiplexer 801 divides the multi-path signal into a plurality of single-wavelength signals according to the wavelength; the OTUk line unit 802 performs photoelectric conversion and frame synchronization and terminates the OTUk overhead, and separates the ODUk signal; the ODUk signal crosses through the ODUk.
  • the scheduling unit 803 completes scheduling, and schedules the ODUk loading the low-order data service to the ODUGE according to the payload identifier.
  • the rate service signal mapping unit 806 recovers the low rate traffic signal after de-mapping.
  • the scheduling processing of other levels of service signals will proceed as usual.
  • the CBR service signals are directly processed by the CBR service mapping unit 807 after the ODUk cross-network is scheduled.
  • the foregoing apparatus and method for transmitting a low rate traffic signal in an OTN are applied to a multi-channel GE, FC or High Definition Television (HDTV) signal service in three structures.
  • Transmission in the network Figure 9 illustrates an apparatus for transmitting low rate traffic signals in an OTN and its application in various networks in accordance with one embodiment of the present invention.
  • the two ends can be directly connected through the DWDM splitter/combiner and TMUX, and multi-channel GE/FC/ can be realized through mapping.
  • each node adopts the device form shown in Figure 8 to implement the services of the GE/FC/HDTV service level; As shown in Figure 9(c), the transmission of individual GE FC/HDTV services can be achieved only through GE's TMU.
  • the foregoing low-rate service signal may be any service whose rate is less than the maximum OPUk transmission rate, such as Fast Ethernet (FE) service; the above 10B/8B coding mode may be other feasible coding modes; the above mapping module may also adopt other Other adaptation protocol mapping modules of the adaptation protocol; the above setting of the specific value can be equivalently set to other values as required, for example, the value of MFAS can be For any set of mutually different values, the positive adjustment byte position can be any fixed position within the channel, etc., for the purpose of the invention, without affecting the essence and scope of the invention.
  • FE Fast Ethernet

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Optical Communication System (AREA)

Description

光传送网中传输低速率业务信号的方法及装置
技术领域
本发明涉及光通信技术, 特别是指一种光传送网 (OTN, Optical Transport Networks ) 中传输低速率业务信号的方法及装置。 发明背景
随着光传送网技术在近年来的迅猛发展, 国际电信联盟电信标准部 ( ITU-T ) 已制订出 OTN系列建议 ITU-T G.709、 G.798、 G.87X, 业界 的 OTN产品正在进入商用。 其中尤以 2001年 2月推出的 G.709建议具 有重大意义, 它指出了光联网的技术基础。 G.709 建议的核心内容就是 数字包封技术( Digital Wrapper )。 它定义了一种特殊的帧格式 , 将客户 信号封装入帧的净荷单元, 在头部提供用于 OAM&P的开销字节( OH, Overhead ), 并在帧尾提供了前向纠错 ( FEC, Forward Error Correction ) 字节。
数字包封技术采用的标准帧格式参见图 1 所示。 其采用的是 4行 4080列帧格式, 头部 16列为开销字节, 尾部 255列为 FEC校验字节, 中间 3808列为净荷。
在头部开销字节中, 第 1 行 1 - 7 列为帧定位字节 (FAS, Frame Alignment Signal ), 8 - 14字节为第 k种光通道传送单元( OTUk, Optical Channel Transport Unit )开销字节,这里 k的值不同对应不同速率的传送 模式,第 2 - 4行 1 - 14歹' J为光通道数据单元( ODUk, Optical Channel Data Unit )开销字节,第 15、 16列为光通道净荷单元(OPUk, Optical Channel Payload Unit )开销字节。
OTUk 开销字节提供了 OTN 中重放大、 重组、 重定时 (3R, Reamplification, Reshaping, and Retiming )再生节点之间传输信号状态 的监测功能, 包含段监测 (SM, Section Monitoring )开销字节、 GCC0 终端间通信信道开销字节及 RES保留字节三个部分。
ODUl 开销提供级联连接监测、 端到端的通道监测和通过 OPUk提 供客户信号适配。 ODUk提供了丰富的开销字节 (第 2 - 4行 1 - 14歹 ij ) 以完成上述功能。 包括: 通道监测(PM, Path Monitoring )开销、 串联 连接监测 (TCM, Tandem Connection Monitoring )开销、 通用通信信道 ( GCC, General Communication Channel )字节 GCC1和 GCC2开销、 自动保护切换和保护控制信道(APS/PCC, Auto-Protection Switching I Protection Control Channel )开销字节、故障类型和故障定位( FTFL, Fault Type Fault Location )信息、 供实验使用的开销字节( EXP , Experiment ) 等。
OPUk是由客户信号映射进的净荷与其相关开销組成。 其开销字节 包括: 净荷结构标识(PSI, Payload Structure Identifier ) 客户信号类型 指示 (PT, Payload Type )、 保留字节 (RES, Reserved )及映射相关开 销 ( Mapping Specific Overhead )等。
目前, 对于将客户信号映射入 OTN主要有以下三种方式:
( 1 ) 恒定比特率(CBR, Constant Bit Rate ) CBR2G5 , CBR10G、 CBR40G信号映射入 OPUk: CBR2G5 - 2488320kbit/s ± 20ppm的定比特 率信号, 如 STM - 16; CBR10G - 9953280kbit/s ± 20ppm的定比特率信 号, 如 STM - 64; CBR40G - 39813120kbit/s ± 20ppm的定比特率信号, 如 STM - 256。 映射可以采用两种方式, 异步方式和比特同步方式。 异 步方式采用与客户信号无关的局部时钟, 应用正 /负 /零码调整策略。 比 特同步映射采用从客户信号抽取的时钟。
( 2 )异步传输方式 ( ATM, Asynchronous Transfer Mode )信号映射 入 OPUk:通过将 ATM信元复用成与 OPUk净荷容量匹配的固定比特流 可以映射到 OPUk中, 在复用中通过插入空闲信元或丟掉信元来调整速 率。 ATM信元的信息在映射前要扰码。
( 3 )通用成帧规程 ( GFP, General Framing Procedure )帧信号映射 入 OPUk: GFP帧的映射通过在打包阶段插入空闲帧来达到与 OPUk相 匹配的连续比特流, 在此过程中也进行扰码。 还有其它的一些信号可以 映射进 OPUk中, 如客户信号、 测试信号、 普通的客户比特流信号等。
在目前 OTN的建议中 , 对于数据业务的解决方案都是通过 GFP将 数据单元适配到 OPUk的方式来实现, 比如低速率的千兆以太网 (GE, Gigabyte Ethernet )业务或光纤连接 ( FC, Fiber Connection )业务。 由 于 OTN的调度颗粒最小是 2.5G级别(对于不同的 k值速率分别为: k=l 对应速率 2.5G, k=2对应 10G, k=3对应 40G ), 如果 GE业务适配到 OPU1 , 再利用 ODU1 的调度, 这样做带宽利用率不高。 如果两个 GE 通过 GFP适配和虚级联复用到 2.5G信号再到 OTN,那么 OTN的 ODUk 的调度功能对 GE信号就没有作用。现有的诸多低速率业务信号,如 GE 和 FC信号作为一种客户信号会在骨干网和城域网长期存在, 特别是骨 干网络, 实现 GE级别的业务的透传, 端到端的管理能力, 在中间节点 灵活的上下业务的能力是必不可少的需求。
在实际应用中,如果 GE或 FC业务信号通过 GFP适配到 SDH的虚 级联, 复接成 STM-16信号再通过 OTN网络传送, 则增加了 SDH层的 处理, 使得中间节点的业务处理需要经过 SDH格式的转换, 而且业务 调度必须基于虚级联的调度实现; 如果 GE或 FC业务信号通过 GFP直 接适配到 OPUk, 则由于 OPUk的最小速率级别 2.5G太大, 用于承载 1G左右的低速率业务信号会造成带宽的浪费, 而且调度最小颗粒也将 限制为 2.5G级别。 因此上述方案存在以下问题: 对于通过 GFP和 SDH 虚级联的 OTN映射, 电路复杂、 成本昂贵, 不能实现基于单个低速率 业务信号级别的端到端的性能监测, 不能直接在中间节点上下业务, 业 务调度不方便; 而对于通过 FP的 θ™直接映射, 带宽利用率低, 调 度颗粒太大, 可靠性下降。 发明内容
有鉴于此, 本发明的主要目的在于提供一种光传送网中传输低速率 业务信号的方法, 使得低速率业务信号能够以高带宽利用率映射在光传 送网上, 并且能够提供低速率业务信号级别的灵活调度机制, 并能够提 供低速率业务信号级别的端到端性能管理机制。
本发明的另一主要目的在于提供一种光传送网中传输低速率业务信 号的装置, 简单方便地实现低速率业务信号在光传送网中的业务上下。
基于上述目的本发明提供的一种光传送网中传输低速率业务信号的 方法, 其中所述低速率为低于 2.5G比特 /秒的速率, 并包括以下步驟: 将待传输的低速率业务信号映射到低速率业务光通道数据单元信号 的低速率业务光通道净荷单元中, 生成开销字节填充在该低速率业务光 通道数据单元开销区中, 得到低速率业务光通道数据单元信号;
将一个以上低速率业务光通道数据单元信号复接到满足所在光传送 网传输速率级别的光通道数据单元信号中, 通过光传送网传输。
该方法所述低速率业务数据单元信号与其承载的低速率业务信号的 速率级别相同。
该方法所述低速率业务信号映射到所述低速率业务光通道净荷单元 的方法是通过通用成帧规程或其他适配协议将所述低速率业务信号映 射到低速率业务信号光通道净荷单元。
该方法所述低速率业务信号光通道数据单元信号的帧中进一步包 含: 帧定位信号、 光传送单元开销区和光通道净荷单元开销区。
该方法所述低速率业务信号光通道数据单元为 4 3824字节, 比特 率为 1244160Kbps ± 20ppm;
所述帧定位信号位于第一行的第 1 - 7列,所述帧定位信号还包含复 帧定位信号, 该复帧定位信号位于第一行第 8列;
所述光传送单元开销区位于第一行的第 8 - 14列, 用于进行光传送 单元管理;
所述低速率业务信号光通道数据单元开销区位于第二到四行的第 1 - 14列, 用于进行光通道数据单元管理;
所述低速率业务信号光通道净荷单元开销区位于第一到四行的第 15、 16列, 包含净荷结构指示, 位于第四行第 15列, 用于指示净荷结 构和类型;
所述低速率业务信号光通道净荷单元位于第一到四行的第 17 - 3824列。
该方法所述低速率业务信号映射到所述低速率业务光通道净荷单元 的方法包括:
通过解码将所述低速率业务信号转为数据流信号;
按通用成帧规程或其他适配协议封装格式将所述数据流信号封装为 通用成帧规程或其他适配协议信号;
通过插入空闲帧的方式, 使所述通用成帧规程或其他适配协议信号 和所述空闲帧的总速率为所述低速率业务信号光通道净荷单元的速率, 并形成所述低速率业务信号光通道净荷单元;
所述在该低速率业务光通道数据单元开销区中填充开销字节的方法 包括:
填充低速率业务信号光通道净荷单元开销区, 其中所述净荷结构指 示用于指示该帧净荷类型为对应的所述低速率业务信号类型;
按照所述低速率业务信号级别的端到端管理, 填充低速率业务信号 光通道数据单元开销区, 得到低速率业务信号光通道数据单元信号。
该方法所述低速率业务信号为 1G比特 /秒速率级别, 采用 8B/10B 编码方式;
或者低速率业务信号为 100M比特 /秒速率级别的信号,采用 4B/5B 编码方式。
该方法所述低速率业务信号为: 千兆以太网业务信号、 光纤连接业 务信号、 高清晰度数字电视业务信号、 快速以太网业务信号中的任意一 种。
该方法所述将低速率业务光通道数据单元信号复接到光通道数据单 元信号中的过程采用异步复接方式或同步复接方式。
该方法将低速率业务光通道数据单元信号复接到光通道数据单元信 号中的过程采用异步复接方式, 包括以下步骤:
将所述光通道数据单元信号的光通道净荷单元按时隙划分成同样数 目的多条通道, 将所述低速率业务光通道传送单元信号放入相应的通 道;
用不同的复帧定位指示值指示不同的低速率业务光通道数据单元信 号, 将每个低速率业务光通道数据单元对应的所述低速率业务光通道传 送单元调整开销放入所述光通道净荷单元的调整开销位置;
设置所述净荷结构指示来指示所述光通道净荷单元中的所述低速率 业务光通道传送单元信号类型;
填充光通道净荷单元开销区、 各级别的光通道数据单元开销区, 将 所述光通道净荷单元适配到所述光通道数据单元, 再加上光通道传送单 元开销区和所述帧定位信号形成光通道传送单元信号。 该方法在所述复接是将 2路 1G比特 /秒速率级别的低速率业务信 号光通道数据单元信号复用在一路 2.5G 比特 /秒速率级别的所述光通 道数据单元上;
或者将 8路 1G比特 /秒速率级别的低速率业务信号光通道数据单 元信号复用在一路速率为 10G比特 /秒级别的所述光通道数据单元上; 或者将 32路 1G比特 /秒速率级别的低速率业务信号光通道数据单 元信号复用在一路速率为 40G比特 /秒级别的所述光通道数据单元上; 或者将 20路 100M比特 /秒速率级别的低速率业务信号光通道数据 单元信号复用在一路速率为 2.5G 比特 /秒级别的所述光通道数据单元 上。
基于上述另一主要目的本发明提供的一种光传送网中传输低速率业 务信号的装置, 其中所述低速率为低于 2.5G比特 /秒的速率, 该装置包 括: 一个以上映射单元和一个光通道数据单元终端模块;
所述映射单元用于将低速率业务信号映射并封装为低速率业务光通 道数据单元信号,和 /或对来自所述光通道数据单元终端模块的光通道数 据单元信号;
所述光通道数据单元终端模块用于对来自一个以上所述映射单元的 多路所述低速率业务信号光通道数据单元信号进行复用得到一路满足' 所在光传送网传输速率级别的光通道数据单元信号,和 /或对输入的光通 道数据单元信号进行解复用得到一路以上所述低速率业务信号光通道 数据单元信号, 分别传送给对应的所述映射单元。
该装置所述每个映射单元中包括有一个通用成帧规程或其他适配协 议映射模块和一个低速率业务信号光通道数据单元映射模块;
所述通用成帧规程或其他适配协议映射模块用于对输入的低速率业 务信号进行通用成帧规程或其他适配协议封装得到通用成帧规程或其 他适配协议信号,和 /或对来自所述低速率业务信号光通道数据单元映射 模块的所述通用成帧规程或其他适配协议信号进行通用成帧规程或其 他适配协议解封装得到所述低速率业务信号;
所述低速率业务信号光通道数据单元映射模块用于对来自所述通用 成帧规程或其他适配协议映射模块的所述通用成帧规程或其他适配协 议信号进行低速率业务信号光通道数据单元映射得到低速率业务光通 道数据单元信号,和 /或对来自所述光通道数据单元终端模块的所述低速 率业务光通道数据单元信号进行低速率业务信号光通道数据单元解映 射得到所述通用成帧规程或其他适配协议信号。
该装置进一步包括一个以上低速率业务信号接口模块, 用于对输入 的低速率业务信号进行解码后转换成数据流信号输入至所述映射单元, 和 /或对来自所述映射单元的信号进行编码得到所述低速率业务信号。
该装置所述低速率业务信号为 1G比特 /秒速率级别, 所述编码和 解码是 8B/10B方式;
或者低速率业务信号为 100M比特 /秒速率级别的信号, 所述编码 和解码是 4B/5B方式。
该装置还包括: 光通道传送单元线路模块, 用于将来自所述光通道 数据单元终端模块的所述各级别的光通道数据单元信号进行线路相关 处理, 输出光信号在所述光传送网上传输, 和 /或将所述光传送网上的光 信号进行线路相关处理得到所述各级别的光通道数据单元信号。
本发明提供的另一种光传送网中传输低速率业务信号的装置, 应用 于网状或环状网中的网络节点, 所述装置包括: 分 /合波单元、 光通道传 送单元线路单元、 光通道数据单元调度单元和低速率业务信号映射单 元, 其中,
所述分 /合波单元用于在所述光传送网上接收光信号, 进行光层信号 处理, 得到光通道传送单元信号;
所述光通道传送单元线路单元用于对来自所述分 /合波单元和低速 率业务信号映射单元的所述光通道传送单元信号进行线路相关处理得 到所述光通道数据单元信号;
所述光通道数据单元调度单元用于对来自至少一个所述光通道传送 单元线路单元的所述光通道数据单元信号进行光通道数据单元级别的 交叉调度;
所述低速率业务信号映射单元用于对来自所述光通道数据单元调度 单元的所述光通道数据单元信号进行解封装和解映射, 转换为低速率业 务信号输出到本地数据网络。
该装置所述低速率业务信号映射单元还用于对来自所述本地数据网 络的低速率业务信号进行映射和封装, 转换成低速率业务光通道数据单 元信号, 发送到所述光通道数据单元调度单元; 元的所述光通道数据单元信号进行线路相关处理得到所述光通道传送 单元信号; , 述光通道传送单元信号进行光层信号处理得到所述光信号在所述光传 送网上传输。
该装置进一步包括: 低速率业务信号光通道数据单元调度单元, 及 低速率业务信号光通道数据单元到光通道数据单元的适配单元;
所述低速率业务信号光通道数据单元调度单元用于通过所述低速率 业务信号光通道数据单元到光通道数据单元的适配单元适配到所述光 通道数据单元调度单元, 对多个所述低速率业务信号光通道数据单元信 号进行低速率业务信号级别的交叉调度; 所述低速率业务信号光通道数据单元到光通道数据单元的适配单元 用于实现所述低速率业务信号光通道数据单元调度单元侧的所述低速 率业务信号光通道数据单元信号和所述光通道数据单元调度单元侧的 所述光通道数据单元信号之间的异步复用及解复用;
所述光通道数据单元调度单元还用于对来自所述低速率业务信号光 通道数据单元到光通道数据单元的适配单元的光通道数据单元信号进 行光通道数据单元级别的交叉调度。
从上面所述可以看出, 本发明提供的光传送网中传输低速率业务信 号的方法和装置, 采用 GFP映射方法将低速率业务信号(GE/FC )映射 到适合 OTN传送的 ODUGE信号; 采用异步或同步复接方法将多路 ODUGE信号复用到一路 ODUk信号; 通过 ODUGE到 ODUk的映射、 ODUGE 交叉网络实现低速率业务信号级别的业务上下。 从而通过 ODUGE帧格式的管理开销设定, 实现对 GE/FC级别的数据业务端到端 性能管理; 通过多路 GE/FC到 ODUk的异步复用, 实现 GE/FC透明复 用器, 实现 GE/FC在 OTN的透明传输, 同时大大提高了带宽利用率; 通过 OTN设备上 ODUGE低阶交叉网络,实现 GE级别数据业务的灵活 调度和业务上下。 附图简要说明
图 1是数字包封技术的标准帧格式示意图;
图 2是根据本发明的一个实施例的 ODUGE帧格式示意图; 图 3 是根据本发明的一个实施例的低速率业务信号 (GE/FC ) 到
ODUGE的映射方法流程图;
图 4是根据本发明的一个实施例的 ODU2GE到 OPU1/ODU1的异步 复接过程示意图; 图 5是根据本发明的一个实施例的异步复接时正调整字节安排示意 图;
6是根据本发明的一个实施例的 ODUnGE到 OPUk/ODUk的异步 复接方法流程图;
图 7是根据本发明的一个实施例的 ODUnGE到 OPUk/ODUk的复接 子系统装置结构示意图;
图 8是根据本发明的一个实施例的在 OTN中传送低速率业务信号的 装置组成结构示意图;
图 9是根据本发明的一个实施例的在 OTN中传输低速率业务信号的 装置及其方法在各种网络中的应用示意图。 实施本发明的方式
下面结合附图及具体实施例对本发明再作进一步详细的说明。
本发明的第一个实施例中,针对 GE或 FC等低速率业务信号,定义 一种低速率业务信号的光通道数据单元的帧格式或 GE的光通道数据单 元( ODUGE, Optical Channel Data Unit for Gigabyte Ethernet )用于承载 低速业务信号。 其中, GE的净荷单元为 OPUGE。 ODUGE的帧格式参 见图 所示。 在 ODUGE帧中前 14列的第 2到第 4行为 ODUGE的数 据管理开销 (ODUGE OH ) 区; 第 15、 16列为净荷管理开销 ( OPUGE OH ) 区; 第 17到 3824列的 3808列为净荷(OPUGE ) 区, 从第 3825 列以后为 FEC区。
本实施例中优选 ODUGE OH各字节的定义与现有数字包封技术所 定义的 ODU OH相同,从而使对 GE级别的业务有一个端到端的管理开 销, 以实现对 GE业务端到端的性能管理。 参考 ITU-T建议 G.709, 在 ODUGE帧的第 1 - 7列的第 1行包含帧定位信号( FAS , Frame Alignment Signal ), 其中第 Ί 列第 1 行为复帧定位信号 (MFAS , Multi-Frame Alignment Signal ), MFAS用于指示多帧承载时开销字节所对应的帧号; 第 8 - 14列的第 1行为 OTUk开销区。 在 OPUGE OH中包含 PSI字节, 位于第 15列第 4行, 以及 PT字节, 分别用于指示所承载净荷的类型。
在优选实施例中 ODUGE 的大小为 4 x 3824 字节, 比特率为 1244160Kbps±20ppm, 为 ITU-T建议 G.709中 OPU1的净荷区速率的一 半。 ODUGE净荷区 OPUGE的大小为 4 χ 3810字节; 其中 OPUGE的净 荷为 4 x 3808字节, 比特率对应为:
(3808/3824) x (1244160 + 20ppm) = (238/ 239) x (1244160士 20ppm) = 1238954.31Kbps土 20ppm 将 GE或 FC低速业务经过 CFP适配到 OPUGE的净荷区, 所以 OPUGE 的正负调整字节可以不使用。 GE或 FC 业务信号通过线路的 8B/10B解码后为 1G级别的速率, 按照 GFP-T映射, GFP传送带宽为:
1 X (65 / 64) X (95 X 8 X 67 + 4 + 4 + 4) /(95 x 8x 67) = 1.015864346Gbps 即使考虑 GE有 ±100ppm的频偏,前述 ODUGE/OPUGE的净荷区也 有足够的容量来传递 GE或 FC经 GFP-T适配的速率, 包括信息帧和空 闲帧; 也能传递 GE或 FC经过 GFP-F适配后的速率。 并根据需要, 还 可以传递 GFP的管理帧。
需要说明的是, 本文所述的 1G级别的速率是指 1G左右的速率, 例 如 GE信号、 FC 信号、 高清晰度数字电视(HDTV, High Definition Television )信号的速率都在 1G左右。 当然对这些信号做一些特定的编 码后也属于 1G級别的信号, 这里说的特定的编码可以是 FEC编码或其 他标准或自定义的编码。
本文所述的低速率还包括 FE 级别的速率。 FE 线路传输速率是 125Mbps±100ppm, 经 4B/5B解码后为 100Mbps±100ppm的数据, 解码 后去掉了 IDLE帧实际速率小于 100Mbps。 通过定义一种 100Mbps级别 的 ODUFE, 比特率为(1244.16Mbps±20ppm)/10=124.416Mbps±20ppm, ODUFE 的 净 荷 区 速 率 为 (238/239) x (124.416Mbps±20ppm) =123.8954M±20ppm, 该净荷区有足够的容量来传递 FE 净荷及 GFP-F 适配后净荷帧、 GFP空闲帧和 GFP管理帧等信息。
以 GE信号为例,本发明从 GE到 ODUGE的映射方法流程参见图 3 所示。
步骤 301 ,通过 8B/10B解码过程,将 GE业务信号转换为速率为 1G 级别的数据流信号。
步驟 302, 按 GFP封装格式将包括有净荷信息和控制信息的数据流 信号封装为 GFP信号。
GFP的封装方式按照 ITU-T建议 G7041给出的链路层标准执行,采 用不同的业务数据封装方法对不同的业务数据进行封装, 包括 GFP-F和 GFP-T两种方式。 GFP-F封装方式适用于分组数据, 把整个分组数据封 装到 GFP符合信息区中,对封装数据不做任何改动, 并根据需要来决定 是否添加负荷检测域。 GFP-T封装方式则适用于采用 64B/65B编码的块 数据, 从接收的数据块中提取出单个的字符, 然后把它映射到固定长度 的 GFP帧中。
步骤 303, 通过插入空闲帧的方式, 使得 GFP信号和空闲帧的总速 率为 OPUGE净荷区的速率, 并形成 OPUGE的净荷。
由于 GFP信号速率与前述 OPUGE净荷区的速率不一致, 需要填补 空闲帧以调整 GFP信号的速率。 由于 OPUGE净荷区足够大, 除了需要 填充 GFP空闲帧以外, 还可以根据需要填充 GFP管理帧。
步骤 304, 设置加入净荷管理开销 OPUGE OH, 组成 ODUGE。 这 里 OPUGE OH的开销字节的设置遵循 ITU-T建议 G.709, 其中, PSI、 PT字节用于指示该帧净荷类型为 GE。
步骤 305, 设置并加入数据管理开销 ODUGE OH, 組成 OTUGE。 这里 ODUGE OH的开销字节的设置遵循 ITU-T建议 G.709, 用于完成 GE业务级别的端到端管理。
以上流程也适用于 FC以及 FE级别的业务信号映射。 FC信号的处 理与 GE相同,只是在步骤 301中 FC转换成的数据流信号的速率为 1.06 X 0.8G。 对于 FE级别信号, 所不同的是 FE的解码为 4B/5B解码; FE 的映射只适合 GFP-F映射; ODUFE的速率为 ODUGE的 1/10, 其他处 理完全相同。
在完成上述从低速率业务信号 GE 到 ODUGE 的映射后, 得到 ODUGE封装的信号, 然后为便于传送还需将多帧 ODUGE复接到一个 OPUk/ODUk上, 形成可以传送的两路 GE的光通道传送单元 OTUGE, 使得最大限度的利用传输带宽, 以提高网络资源利用率。
本发明的优选实施例是将 2 个 ODUGE (本发明中也表示为 ODU2GE )异步复接到 1个 OPU1/ODU1中, 具体的异步复接过程参见 图 4所示。
将包含开销字节 ODUGE OH的 ODUGE作为净荷, 每个 ODUGE 添加调整开销 ( JOH, Justification Overhead )字节 ODUGE JOH, 得到 第一 ODUGE、 第一 ODUGE JOH、 第二 ODUGE和第二 ODUGE JOH 四部分, 即组成 ODU2GE。
如图 4所示, 采用字节间插的方法将 ODU2GE异步复接到 OPU1 , 而调整开销字节则根据复帧复用方式来按时隙分配。对于 MFAS为 0的 帧,设置调整开销字节 JOH为第一 ODUGE JOH,用于调整第一 ODUGE 的频差; 对于 MFAS为 1的帧, 设置调整开销字节 JOH为第二 ODUGE JOH, 用于调整第二 ODUGE的频差。 而之后的净荷区 OPU1则按一定 长度间隔分割为两个通道,分别用于存放第一 ODUGE和第二 ODUGE。 参见图 4所示, ODU2GE到 OPU1/ODU1的异步复用过程具体包括: 首先分别给两个 ODUGE加上 GE的支路单元组( ODTUGE )调整开销 ODTUGE JOH, 形成 ODTUGE信号; 然后将 OPU1的净荷区划分成两 个通道, 例如: 净荷区的奇数列为第一通道 CH1 , 承载第一 ODUGE, 偶数列为第二通道 CH2, 承载第二 ODUGE, 每个通道为 3808/2=1904 列, 容量为 4 X 1904字节; 将第一 ODTUGE的数据放入 OPU1的第一 通道 CH1 , 将第二 ODTUGE的数据放入 OPU1的第二通道 CH2; 将第 一 ODTUGE JOH复用到 MFAS为 0的 OPU1 JOH位置,将第二 ODTUGE JOH复用到 MFAS为 1的 OPU1 JOH位置; 设定 PT, 用于指示 OPU1 的净荷为 ODTUGE;最后将 OPU1加上 ODU1 OH、 OTU1 OH以及 FAS 字节, 得到 OTU1 , 从而完成两个 ODUGE到 ODU1的适配过程。
参见图 5 所示, 图中示出了异步复接时正调整字节 (PJ, Positive Justificaion ) 的安排。 在从 ODU2GE到 OPU1/PDU1的复接时, 将正调 整字节 PJ1和 PJ2安排在 MFAS为 0的帧中 OPU1净荷区的第 1和第 2 列中的第 4行, 其中 PJ1表示对第一通道的正调整字节, PJ2表示对第 二通道的调整字节。而调整开销 JOH的每个字节只使用了最后两个 Bit。
本发明还可以将 8个 ODUGE ( ODU8GE )异步复接到 OPU2/ODU2 中。具体与 ODU2GE复接到 OPU1/ODU1的方法类似,即将 8个 ODUGE 和对应的 8个调整开销 ODUGE JOH复接到 OPU2的净荷及其调整开销 中。其中,将 OPU2的净荷按时隙划分为 8个通道,分别安排 8个 ODUGE 的数据;而对应的 8个 ODUGE JOH则分别安排在 MFAS为 0 - 7的 OPU2 JOH中。较佳地,考虑到 OPU2净荷速率 (238/237)x 9953280Kbps ± 20 ppm 比 8个 ODUGE的总速率 8 x l244160KbpS ± 2Gppm大很多, 因此在划分 OPU2时隙时, 每 238个字节增加 1个固定的塞入字节, 即设置第 N x 238字节为固定的塞入字节, 其中 1^为 1 ~ 16。
其中,从 ODU8GE到 OPU2/ODU2的异步复用具体过程包括: 首先 分别给 8个 ODUGE加上调整开销 ODTUGE JOH,形成 ODTUGE信号; 然后将 OPU2的净荷区划分成 8个通道, 例如: 净荷区的第 1列为第一 通道, 第 2列为第二通道,依此类推, 且每隔 238列插入 1列空闲字节; 将 8个 ODTUGE的数据放入 OPU2的 8个通道,按照 MFAS从 0 - 7的 顺序,分别将 8个 ODTUGE JOH复用到对应 OPU2 JOH位置;设定 PT, 用于指示 OPU2的净荷为 ODTUGE;最后将 OPU2加上 ODU2 OH、 OTU2 OH以及 FAS字节, 得到 OTU2, 从而完成 8个 ODUGE到 ODU2的适 配过程。
较佳地, 从 ODU8GE到 OPU2/ODU2复接时, 将 8个通道的正调整 字节 PJ1-PJ8安排在 MFAS为 0的帧中 OPU2净荷区的第 1到 8列中的 第 4行, 而调整开销 JOH的每个字节只使用了最后两个 Bit。
同理, 本发明还可将 n个 ODUGE异步复接到 OPUk/ODUk中, 具 体复接过程参见图 6所示。
步骤 601,将各低速率业务信号通过 GFP适配到 ODUGE的净荷区, 形成 n个 ODUGE, 同时产生开销 ODUGE OH。 其中的映射方法和开销 产生方式与前述 ODU2GE和 ODU8GE的相同。
步骤 602, 分别给每个 ODUGE加上调整开销 ODTUGE JOH, 形成 ODTUnGE 信号。 调整开销字节的设置及安排与前述 ODU2GE 和 ODU8GE的相同。
步骤 603 , 将 OPUk 的净荷区按时隙划分成 n 个通道, 将每个 ODTUGE的数据 (不包括 ODTUGE JOH )放入相应的通道。
步骤 604,根据复帧指示 MFAS将各 ODTUGE的调整开销 ODTUGE JOH复用到对应的帧中 OPUk的调整开销位置。 比如, MFAS为 l - n 的各帧一次对应第 l - n通道。
步驟 605 , 设置净荷结构指示字节 PSI 来指示 OPU1 的净荷是 ODTUGE。 可以采用 PSI中的保留字节 RES进行定义。
步骤 606,设置开销 OPUk OH、 ODUk OH,将 OPUk适配到 ODUk, 再加上 OUT OH和 FAS即可形成 OUT在 OTN上传送。
基于上述方法,本发明从低速的 ODUnGE到 OPUk/ODUk高速信号 的复接装置结构参见图 7所示。 包括: 分别对应于每路 GE信号的 n个 GE接口模块 701、 GFP映射模块 702和 ODUGE映射模块 703, 以及 1 个用于同一处理 n路 ODUGE信号的 ODUk终端模块 704、 1个用于信 号适配处理的 OTUk线路模块 705和 1个定时发生器。 其中, GFP映射 模块 702与 ODUGE映射模块 703共同组成映射单元。
进行低速率业务信号发送时, 每路低速率 GE信号, 首先由 GE接 口模块 701对 GE/FC信号进行 8B/10B编码, 得到速率为 1G的信号, 传送给 GFP映射模块 702; GFP映射模块 702将 GE接口模块传送来的 1G信号进行 GFP封装, 封装方式可以是 GFP-T或 GFP-F; 经过 GFP 封装之后的 GFP信号由 GFP映射模块 702传送到 ODUGE映射模块 703 , 由 ODUGE映射模块 703将其写入 ODUGE的净荷区,并用插入 GFP空 闲帧的方法实现速率适配,之后 ODUGE映射模块 703还将产生 ODUGE OH和 FAS, 并设定该低速率业务相应的 PT或 PSI值。此后每一路低速 率业务信号经过处理都得到相互独立的 ODUGE信号, 但各路 ODUGE 信号之间满足 ±20 ppm的频差, 各路 ODUGE都将传送给 ODUk终端模 块 704, 由该模块将各路装载低速率业务信号的 ODUGE信号异步复接 到一路 ODUk信号, 所述异步复接方法流程参考图 6, 包含调整开销的 产生、 通道的划分、 调整字节的分配以及设置等步驟。 最后, 从 ODUk 终端模块 704输出的装载多路 GE/FC信号的 ODUk信号, 经过 OTUk 线路模块 705的处理, 完成 OTUk开销 OTUk OH的产生、 扰码、 FEC 编码、 并串转换和电光转换等处理过程, 最终在 OT 上传送。
接收时, 先由 OTUk线路模块 705完成光电转换、 帧定位、 串并转 换、 解扰、 FEC解码等处理过程, 恢复出 ODUk信号; 之后由 ODUk 终端模块 704完成 ODUk OH的终结, 根据 PSI或 PT的指示, 解复用 得到多路独立的 ODUGE信号,解复用的方法与前述异步复接方法相反; 每路 ODUGE信号输入各自的 ODUGE映射模块 703 , 完成 ODUGE的 帧定位,同时解映射出 GFP信号;所述 GFP信号输入 GFP映射模块 702 , 按照 GFP帧格式进行解封装和 8B/10B解码,恢复出 GE/FC级别的低速 率业务信号。
在本发明的一个较佳实施例中, 为了最大限度的提高带宽利用率, 将 n路 GE/FC級别的业务信号复用到 OTUk的复接子系统,其中对应与 k=l时, n=2; k=2时, n=8; k=3时, n=32。
在本发明的一个实施例中,通过上述 GE/FC到 ODUGE的映射以及 多路 ODUGE到一路 ODUk的复用, 可以实现 GE/FC业务信号的透明 复用器(TMUX, Transparent Multiplexer ), 使得多路低速率业务信号可 以在. OTN透明传输。
以上实施例也适合 FE级别的低速数据业务, 例如, 实现 20路 FE 通过 GFP-F映射到各自的 ODUFE,再将 20路 ODUFE异步复接到 1路 OPU1/ODU1.
图 8示出了根据本发明的一个实施例的在 OTN中传送低速率业务信 号的装置组成结构。 该装置构成一个 OTN 中用于传输低速率业务信号 的光分插复用 (OADM, Optical Add/Drop Multiplexing )或光交叉连接 ( OXC, Optical Cross-Connect )的设备形态。 从光层到业务层, 分别为 DWDM分 /合波单元 801 , OTUk线路单元 802, ODUk调度单元 803, ODUGE到 ODUk的适配单元 804, ODUGE调度单元 805, 低速率业务 信号映射单元 806。 其中, 低速率业务信号映射单元 806用于连接数据 网絡的低速率业务信号 (GE/FC ), 完成对低速率业务信号的 GFP封装 解封装和 ODUGE映射解映射, 以及 ODUGE开销终端功能; ODUGE 调度单元 805 完成低速率业务信号级别的交叉调度, 调度颗粒为 ODUGE; ODUGE到 ODUk的适配单元 804, 完成 ODUGE到 ODUk的 异步复用及解复用。
在图 8 所示的 OTN设备装置中, 与图 7 所示的 ODUnGE 到 OPUk/ODUk 的复接子系统装置对应的, 该复接子系统装置用于完成没 有网络交叉调度的低速率业务信号的复用传输, 实现端到端的 OTN传 输。
为详细描述该装置的工作过程, 下面给出根据本发明的一个实施例 的发送和接收动态工作过程。
在发送方向,首先由低速率业务信号映射单元 806进行 GE/FC级別 的数据业务经过 GFP适配得到 ODUGE; 接着由 ODUGE调度单元 805 完成小颗粒的 ODUGE交叉连接调度,实现 GE/FC业务级别的业务上下; 同时由 ODUGE到 ODUk的适配单元 804, 完成对多路低阶 ODUGE到 异步复用到高阶 OPUk/ODUk的复接过程; 之后, ODUk调度单元 803 完成 ODUk级别的业务调度; 最后由 OTUk线路单元 802完成 ODUk 到光通道的适配, 并由合波器 801完成对各光通道的合波及放大。
在接收方向, 首先由分波器 801把多路信号按波长分成多个单波长 信号; 经过 OTUk线路单元 802完成光电转换和帧同步及终结 OTUk开 销, 并分离出 ODUk信号; ODUk信号经过 ODUk交叉调度单元 803完 成调度, 根据净荷标识, 将装载低阶数据业务的 ODUk调度到 ODUGE 低阶交叉网络; ODUk信号经过 ODUk到 ODUGE的适配单元 804, 分 解成多路 ODUGE信号, 并进入 ODUGE交叉网絡; 由 ODUGE调度单 元 805把需要在本地下的 GE/FC级别的业务调度到低速率业务信号映射 单元 806, 经过解映射恢复出低速率业务信号。
在进行低速率业务信号的调度映射的同时, 其他级别的业务信号的 调度处理将照常进行, 比如 CBR业务信号在 ODUk交叉网络经过调度 后直接由 CBR业务映射单元 807处理。
在本发明的一个实施例中,将上述在 OTN中传输低速率业务信号的 装置及其方法应用于多路 GE、 FC或高清晰度数字电视(HDTV, High Definition Television )信号业务在三种结构网络中的传输。 图 9示出了 根据本发明的一个实施例的在 OTN 中传输低速率业务信号的装置及其 方法在各种网络中的应用。 如图 9(a)所示, 对于点到点传送多路 GE/FC/HDTV业务时, 可直接通过 DWDM分 /合波器和 TMUX进行两 端的连接, 并通过映射实现多路 GE/FC/HDTV业务的承载; 如图 9(b) 所示, 对于网状或环形的 OTN网絡, 每个节点都采用图 8所示的设备 形态, 即可实现 GE/FC/HDTV业务级别的业务上下; 如图 9(c)所示, 对 于单独 GE FC/HDTV业务的传送,则只需通过 GE的 TMU 即可实现。
熟悉本领域的技术人员可以理解, 本发明实施例所述将低速率业务 光通道数据单元信号复接到光通道数据单元信号中的过程采用异步复 接方式, 采用同步复接方式也是可以的。 上述低速率业务信号可以为任 何速率小于最大 OPUk传送速率的业务, 例如快速以太网 (FE, Fast Ethernet )业务; 上述 10B/8B编码方式可以为其他可行编码方式; 上述 映射模块也可以为采用其他适配协议的其他适配协议映射模块; 上述有 关具体值的设置可以按照要求等效地设为其他值, 比如 MFAS的值可以 为任意一组互异值、 正调整字节位置可以为通道内任意固定位置等, 完成发明目的, 而不影响本发明的实质和范围。

Claims

权利要求书
1、 一种光传送网中传输低速率业务信号的方法, 其特征在于, 所述 低速率为低于 2.5G比特 /秒的速率, 包括以下步驟:
将待传输的低速率业务信号映射到低速率业务光通道数据单元信号 的低速率业务光通道净荷单元中, 生成开销字节填充在该低速率业务光 通道数据单元开销区中, 得到低速率业务光通道数据单元信号;
将一个以上低速率业务光通道数据单元信号复接到满足所在光传送 网传输速率级别的光通道数据单元信号中, 通过光传送网传输。
2、根据权利要求 1所述的方法, 其特征在于, 所述低速率业务数据 单元信号与其承载的低速率业务信号的速率级别相同。
3、 根据权利要求 1所述的方法, 其特征在于, 所述低速率业务信号 映射到所述低速率业务光通道净荷单元的方法是通过通用成帧规程或 其他适配协议将所述低速率业务信号映射到低速率业务信号光通道净 荷单元。
4、根据权利要求 1至 3任意一项所述的方法, 其特征在于, 所述低 速率业务信号光通道数据单元信号的帧中进一步包含: 帧定位信号、 光 传送单元开销区和光通道净荷单元开销区。
5、根据权利要求 4所述的方法, 其特征在于, 所述低速率业务信号 光通道数据单元为 4 x 3824字节, 比特率为 1244160Kbps ± 20ppm; 所述帧定位信号位于第一行的第 1 - 7列,所述帧定位信号还包含复 帧定位信号, 该复帧定位信号位于第一行第 8列;
所述光传送单元开销区位于第一行的第 8 - 14列, 用于进行光传送 单元管理;
所述低速率业务信号光通道数据单元开销区位于第二到四行的第 1 - 14列, 用于进行光通道数据单元管理;
所述低速率业务信号光通道净荷单元开销区位于第一到四行的第 15、 16列, 包含净荷结构指示, 位于第四行第 15列, 用于指示净荷结 构和类型;
所述低速率业务信号光通道净荷单元位于第一到四行的第 17 - 3824列。
6、才艮据权利要求 4所述的方法, 其特征在于, 所述低速率业务信号 映射到所述低速率业务光通道净荷单元的方法包括:
通过解码将所述低速率业务信号转为数据流信号;
按通用成帧规程或其他适配协议封装格式将所述数据流信号封装为 通用成帧规程或其他适配协议信号;
通过插入空闲帧的方式, 使所述通用成帧规程或其他适配协议信号 和所述空闲帧的总速率为所述低速率业务信号光通道净荷单元的速率 , 并形成所述低速率业务信号光通道净荷单元;
所述在该低速率业务光通道数据单元开销区中填充开销字节的方法 包括:
填充低速率业务信号光通道净荷单元开销区, 其中所述净荷结构指 示用于指示该帧净荷类型为对应的所述低速率业务信号类型;
按照所述低速率业务信号级别的端到端管理, 填充低速率业务信号 光通道数据单元开销区 , 得到低速率业务信号光通道数据单元信号。
7、根据权利要求 6所述的方法, 其特征在于, 所述低速率业务信号 为 1G比特 /秒速率级别, 采用 8B/10B编码方式;
或者低速率业务信号为 100M比特 /秒速率级别的信号,采用 4Β/5Β 编码方式。
8、 根据权利要求 1所述的方法, 其特征在于, 所述低速率业务信号 为: 千兆以太网业务信号、 光纤连接业务信号、 高清晰度数字电视业务 信号、 快速以太网业务信号中的任意一种。
9、根据权利要求 1所述的方法, 其特征在于, 所述将低速率业务光 通道数据单元信号复接到光通道数据单元信号中的过程采用异步复接 方式或同步复接方式。
10、 根据权利要求 1所述的方法, 其特征在于, 将低速率业务光通 道数据单元信号复接到光通道数据单元信号中的过程采用异步复接方 式, 包括以下步骤:
将所述光通道数据单元信号的光通道净荷单元按时隙划分成同样数 目的多条通道, 将所述低速率业务光通道传送单元信号放入相应的通 道;
用不同的复帧定位指示值指示不同的低速率业务光通道数据单元信 号, 将每个低速率业务光通道数据单元对应的所述低速率业务光通道传 送单元调整开销放入所述光通道净荷单元的调整开销位置;
设置所述净荷结构指示来指示所述光通道净荷单元中的所述低速率 业务光通道传送单元信号类型;
填充光通道净荷单元开销区、 各级别的光通道数据单元开销区, 将 所述光通道净荷单元适配到所述光通道数据单元, 再加上光通道传送单 元开销区和所述帧定位信号形成光通道传送单元信号。
11、根据权利要求 1所述的光传送网中传输低速率业务信号的方法, 其特征在于, 在所述复接是将 2路 1G比特 /秒速率级别的低速率业务 信号光通道数据单元信号复用在一路 2.5G 比特 /秒速率级别的所述光 通道数据单元上;
或者将 8路 1G比特 /秒速率级别的低速率业务信号光通道数据单 元信号复用在一路速率为 10G比特 /秒级别的所述光通道数据单元上; 或者将 32路 1G比特 /秒速率级别的低速率业务信号光通道数据单 元信号复用在一路速率为 40G比特 /秒级别的所述光通道数据单元上; 或者将 20路 100M比特 /秒速率级别的低速率业务信号光通道数据 单元信号复用在一路速率为 2.5G 比特 /秒级别的所述光通道数据单元 上。
12、 一种光传送网中传输低速率业务信号的装置, 其特征在于, 所 述低速率为低于 2.5G比特 /秒的速率, 该装置包括: 一个以上映射单元 和一个光通道数据单元终端模块;
所述映射单元用于将低速率业务信号映射并封装为低速率业务光通 道数据单元信号,和 /或对来自所述光通道数据单元终端模块的光通道数 据单元信号;
所述光通道数据单元终端模块用于对来自一个以上所述映射单元的 多路所述低速率业务信号光通道数据单元信号进行复用得到一路满足 所在光传送网传输速率级别的光通道数据单元信号 ,和 /或对输入的光通 道数据单元信号进行解复用得到一路以上所述低速率业务信号光通道 数据单元信号, 分别传送给对应的所述映射单元。
13、根据权利要求 12所述的装置, 其特征在于, 所述每个映射单元 中包括有一个通用成帧规程或其他适配协议映射模块和一个低速率业 务信号光通道数据单元映射模块;
所述通用成帧规程或其他适配协议映射模块用于对输入的低速率业 务信号进行通用成帧规程或其他适配协议封装得到通用成帧规程或其 他适配协议信号,和 /或对来自所述低速率业务信号光通道数据单元映射 模块的所述通用成帧规程或其他适配协议信号进行通用成帧规程或其 他适配协议解封装得到所述低速率业务信号;
所述低速率业务信号光通道数据单元映射模块用于对来自所述通用 成帧规程或其他适配协议映射模块的所述通用成帧规程或其他适配协 议信号进行低速率业务信号光通道数据单元映射得到低速率业务光通 道数据单元信号,和 /或对来自所述光通道数据单元终端模块的所述低速 率业务光通道数据单元信号进行低速率业务信号光通道数据单元解映 射得到所述通用成帧规程或其他适配协议信号。
14、 根据权利要求 12或 13所述的装置, 其特征在于, 该装置进一 步包括一个以上低速率业务信号接口模块, 用于对输入的低速率业务信 号进行解码后转换成数据流信号输入至所述映射单元,和 /或对来自所述 映射单元的信号进行编码得到所述低速率业务信号。
15、根据权利要求 14所述的装置, 其特征在于, 所述低速率业务信 号为 1G比特 /秒速率级别, 所述编码和解码是 8B/10B方式;
或者低速率业务信号为 100M比特 /秒速率级别的信号, 所述编码 和解码是 4B/5B方式。
16、根据权利要求 12所述的装置, 其特征在于, 该装置还包括: 光 通道传送单元线路模块, 用于将来自所述光通道数据单元终端模块的所 述各级别的光通道数据单元信号进行线路相关处理, 输出光信号在所述 光传送网上传输,和 /或将所述光传送网上的光信号进行线路相关处理得 到所述各级别的光通道数据单元信号。
17、 一种光传送网中传输低速率业务信号的装置, 应用于网状或环 状网中的网络节点, 其特征在于, 所述装置包括: 分 /合波单元、 光通道 传送单元线路单元、 光通道数据单元调度单元和低速率业务信号映射单 元, 其中,
所述分 /合波单元用于在所述光传送网上接收光信号,进行光层信号 处理, 得到光通道传送单元信号; 率业务信号映射单元的所述光通道传送单元信号进行线路相关处理得 到所述光通道数据单元信号;
所述光通道数据单元调度单元用于对来自至少一个所述光通道传送 单元线路单元的所述光通道数据单元信号进行光通道数据单元级别的 交叉调度;
所述低速率业务信号映射单元用于对来自所述光通道数据单元调度 单元的所述光通道数据单元信号进行解封装和解映射, 转换为低速率业 务信号输出到本地数据网络。
18、 据权利要求 17所述的装置, 其特征在于, 所述低速率业务信 号映射单元还用于对来自所述本地数据网络的低速率业务信号进行映 射和封装, 转换成低速率业务光通道数据单元信号, 发送到所述光通道 数据单元调度单元; 元的所述光通道数据单元信号进行线路相关处理得到所述光通道传送 单元信号;
所述分 /合波单元还用于对来自所述光通道传送单元线路单元的所 述光通道传送单元信号进行光层信号处理得到所述光信号在所述光传 送网上传输。
19、根据权利要求 17所述的装置,其特征在于,该装置进一步包括: 低速率业务信号光通道数据单元调度单元, 及低速率业务信号光通道数 据单元到光通道数据单元的适配单元;
所述低速率业务信号光通道数据单元调度单元用于通过所述低速率 业务信号光通道数据单元到光通道数据单元的适配单元适配到所述光 通道数据单元调度单元, 对多个所述低速率业务信号光通道数据单元信 号进行低速率业务信号级别的交叉调度; 所述低速率业务信号光通道数据单元到光通道数据单元的适配单元 用于实现所述低速率业务信号光通道数据单元调度单元侧的所述低速 率业务信号光通道数据单元信号和所述光通道数据单元调度单元侧的 所述光通道数据单元信号之间的异步复用及解复用;
所述光通道数据单元调度单元还用于对来自所述低速率业务信号光 通道数据单元到光通道数据单元的适配单元的光通道数据单元信号进 行光通道数据单元级别的交叉调度。
PCT/CN2005/001239 2004-08-11 2005-08-11 Procede de transmission de signaux de trafic a faible debit dans un reseau de transmission optique et dispositif correspondant WO2006015549A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT05780739T ATE429088T1 (de) 2004-08-11 2005-08-11 Übertragungsverfahren für verkehrssignale mit geringer geschwindigkeitsrate in einem optischen übertragungsnetzwerk und vorrichtung
DK05780739T DK1737147T3 (da) 2004-08-11 2005-08-11 Metode til transmission af lav hastigheds trafiksignal i optisk transmissions netværk og indretning
EP20050780739 EP1737147B1 (en) 2004-08-11 2005-08-11 Low speed rate traffic signal transmission method in optical transmission network and device
DE200560013941 DE602005013941D1 (de) 2004-08-11 2005-08-11 Übertragungsverfahren für verkehrssignale mit geringer geschwindigkeitsrate in einem optischen übertragungsnetzwerk und vorrichtung
US11/525,332 US9014151B2 (en) 2004-08-11 2006-09-22 Method and apparatus for transmitting low-rate traffic signal in optical transport network
US14/678,121 US11658759B2 (en) 2004-08-11 2015-04-03 Method and apparatus for transmitting a signal in optical transport network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2004100591633A CN100349390C (zh) 2004-08-11 2004-08-11 光传送网中传输低速率业务信号的方法及其装置
CN200410059163.3 2004-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/525,332 Continuation US9014151B2 (en) 2004-08-11 2006-09-22 Method and apparatus for transmitting low-rate traffic signal in optical transport network

Publications (1)

Publication Number Publication Date
WO2006015549A1 true WO2006015549A1 (fr) 2006-02-16

Family

ID=35839142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001239 WO2006015549A1 (fr) 2004-08-11 2005-08-11 Procede de transmission de signaux de trafic a faible debit dans un reseau de transmission optique et dispositif correspondant

Country Status (9)

Country Link
US (2) US9014151B2 (zh)
EP (2) EP1737147B1 (zh)
CN (1) CN100349390C (zh)
AT (1) ATE429088T1 (zh)
DE (1) DE602005013941D1 (zh)
DK (1) DK1737147T3 (zh)
ES (1) ES2323970T3 (zh)
PT (1) PT1737147E (zh)
WO (1) WO2006015549A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063521A1 (fr) 2004-12-14 2006-06-22 Huawei Technologies Co., Ltd. Procede de transmission de signal de trafic bas debit dans un reseau de transport optique
US20100067905A1 (en) * 2007-04-17 2010-03-18 Huawei Technologies Co., Ltd. Method and devices for transmitting client signals in optical transport network
CN113949743A (zh) * 2021-11-22 2022-01-18 烽火通信科技股份有限公司 Odu净荷承载方法及系统

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349390C (zh) 2004-08-11 2007-11-14 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
ES2340162T3 (es) * 2004-11-12 2010-05-31 Alcatel Lucent Metodo y aparato para transportar una señal de capa de cliente sobre una red de transporte optico (otn).
CN100401715C (zh) 2005-12-31 2008-07-09 华为技术有限公司 局域网信号在光传送网中传输的实现方法和装置
CN101026427B (zh) * 2006-02-17 2010-08-18 中兴通讯股份有限公司 实现多路低速信号与一路高速信号双向转换的装置及方法
CN101039245A (zh) 2006-03-13 2007-09-19 华为技术有限公司 高速以太网到光传输网的数据传输方法及相关接口和设备
CN1881845B (zh) * 2006-05-15 2010-05-12 中兴通讯股份有限公司 实现多路多种数据业务汇聚传送的装置及其方法
CN100459555C (zh) * 2006-05-17 2009-02-04 华为技术有限公司 通过光传送网透传光通道传输单元信号的方法和装置
CN101155006B (zh) * 2006-09-30 2011-10-26 华为技术有限公司 一种固定速率业务传送的方法与装置
WO2008074180A1 (fr) * 2006-12-07 2008-06-26 Zte Corporation Procédé de transfert d'un signal stm/sts à faible vitesse
CN101536369B (zh) * 2006-12-26 2012-10-03 中兴通讯股份有限公司 一种在光同步网络中支持光传送网业务调度的装置及方法
CN101242232B (zh) * 2007-02-09 2013-04-17 华为技术有限公司 实现以太网信号在光传送网中传输的方法、装置及系统
CN101247200B (zh) * 2007-02-15 2013-01-09 华为技术有限公司 一种otu信号的复用/解复用系统及方法
US20080219669A1 (en) * 2007-03-05 2008-09-11 Futurewei Technologies, Inc. SDH/SONET Convergent Network
CN101051879B (zh) * 2007-04-06 2012-04-04 华为技术有限公司 低速业务复用及解复用的方法和装置
CN102098595B (zh) * 2007-04-17 2012-11-07 华为技术有限公司 一种光传送网中客户信号传送方法及相关设备
US9794605B2 (en) * 2007-06-28 2017-10-17 Apple Inc. Using time-stamped event entries to facilitate synchronizing data streams
CN100589365C (zh) * 2007-09-14 2010-02-10 中兴通讯股份有限公司 一种光传输网中光净荷单元的时隙划分与开销处理的方法
KR100922737B1 (ko) 2007-12-18 2009-10-22 한국전자통신연구원 기가비트 이더넷(GbE) 신호를 광 전송 계위(OTH)구조에 정합하는 장치
CN101615967B (zh) 2008-06-26 2011-04-20 华为技术有限公司 一种业务数据的发送、接收方法、装置和系统
CN101296244B (zh) * 2008-06-27 2011-07-13 中兴通讯股份有限公司 通用成帧规程映射封装方法
CN101355821B (zh) * 2008-09-03 2011-07-13 中兴通讯股份有限公司 10吉比特光纤信道业务在光传输网中传输的方法和装置
JP5245845B2 (ja) * 2009-01-14 2013-07-24 富士通株式会社 伝送装置、伝送方法および伝送プログラム
CN101834688B (zh) 2009-03-09 2011-08-31 华为技术有限公司 光传送网中的映射、解映射方法及装置
CN101841741B (zh) * 2009-03-16 2015-04-08 华为技术有限公司 光通道传送单元信号的传输方法和装置
CN101854220A (zh) * 2009-04-01 2010-10-06 华为技术有限公司 一种业务数据发送、接收的方法和装置
ES2523743T3 (es) * 2009-06-04 2014-12-01 Huawei Technologies Co., Ltd. Método y aparato para obtener un anillo de protección compartida de una unidad de datos de canal óptico
ES2414634T3 (es) * 2009-06-09 2013-07-22 Huawei Technologies Co., Ltd. Método de ajuste sin pérdida de un ancho de banda de un canal ODUflex y el canal ODUflex
CN101610430B (zh) 2009-06-30 2013-03-27 中兴通讯股份有限公司 一种实现ODUk交叉调度的方法和装置
EP2978149B1 (en) * 2009-07-27 2017-09-20 Huawei Technologies Co., Ltd. Signal transmission processing method and apparatus and distributed base station
CN101616341B (zh) * 2009-08-05 2012-10-10 中兴通讯股份有限公司 一种交叉保护的方法和装置
CN101998184B (zh) * 2009-08-12 2015-04-01 中兴通讯股份有限公司 适配装置及方法
CN101998185B (zh) * 2009-08-13 2015-05-20 中兴通讯股份有限公司 光电处理装置及约束信息的处理方法
CN102014312B (zh) * 2009-09-04 2014-03-12 中兴通讯股份有限公司 客户信号失效的指示方法与装置
CN101710853B (zh) * 2009-11-27 2012-12-19 中兴通讯股份有限公司 一种数据映射与解映射的方法及装置
WO2011095205A1 (en) * 2010-02-02 2011-08-11 Telefonaktiebolaget L M Ericsson (Publ) Traffic differentiation in a transport network
JP5461229B2 (ja) * 2010-02-25 2014-04-02 日本電信電話株式会社 クライアント信号収容多重処理装置、クライアント信号クロスコネクト装置、クライアント信号収容多重処理方法
WO2011121722A1 (ja) * 2010-03-30 2011-10-06 富士通株式会社 送信装置及び受信装置、並びに送信方法及び受信方法
US8743915B2 (en) 2010-05-18 2014-06-03 Electronics And Telecommunications Research Institute Method and apparatus for transmitting packet in optical transport network
US8644340B2 (en) 2011-02-07 2014-02-04 Cisco Technology, Inc. Multiplexing in an optical transport network (OTN)
US8934479B2 (en) * 2011-10-28 2015-01-13 Infinera Corporation Super optical channel transport unit signal supported by multiple wavelengths
CN103248509B (zh) * 2012-02-13 2018-09-14 中兴通讯股份有限公司 光数据单元的管理方法及装置
WO2013181826A1 (zh) * 2012-06-07 2013-12-12 华为技术有限公司 Otn开销的发送、接收方法和装置
EP3306840B1 (en) 2012-06-14 2024-05-08 Huawei Technologies Co., Ltd. Method and apparatus for transmitting and receiving client signal
CN102820951B (zh) * 2012-07-30 2016-12-21 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
US9025594B1 (en) * 2012-09-21 2015-05-05 PMC-Sierra US Inc. Multiplexing low-order to high-order ODU signals in an optical transport network
US10116403B2 (en) * 2014-08-25 2018-10-30 Ciena Corporation OTN adaptation for support of subrate granularity and flexibility and for distribution across multiple modem engines
JP6402562B2 (ja) * 2014-09-30 2018-10-10 富士通株式会社 光伝送装置および伝送フレーム生成方法
CN104540049A (zh) * 2015-02-03 2015-04-22 国家电网公司 实现不同厂家otn设备组网的方法
CN106301678B (zh) 2015-06-08 2020-02-14 华为技术有限公司 一种数据处理的方法、通信设备及通信系统
CN105282631B (zh) * 2015-09-15 2018-10-30 烽火通信科技股份有限公司 Potn中实现电层线性保护的系统及方法
US10873391B2 (en) * 2018-03-27 2020-12-22 Viavi Solutions Inc. MFAS-aligned pseudorandom binary sequence (PRBS) patterns for optical transport network (OTN) testing
EP3783820B1 (en) * 2018-05-10 2023-10-25 Huawei Technologies Co., Ltd. Method, device and system for processing low-speed service data in optical transport network
CN110557217B (zh) * 2018-06-01 2021-08-03 华为技术有限公司 一种业务数据的处理方法及装置
CN110830426B (zh) * 2018-08-13 2022-04-08 中兴通讯股份有限公司 映射开销传送/接收方法、装置、otn设备及存储介质
CN115515033A (zh) * 2019-09-30 2022-12-23 华为技术有限公司 一种光传送网中的业务处理的方法、装置和系统
CN112865910A (zh) * 2019-11-28 2021-05-28 中兴通讯股份有限公司 一种数据传输方法、装置、终端设备和存储介质
CN111083580B (zh) * 2019-12-09 2021-12-14 北京格林威尔科技发展有限公司 一种在光传输网络中对以太网链路的保护方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020031146A1 (en) * 2000-01-14 2002-03-14 Abbas Ghani A.M. Method of communicating data in communication systems
CN1499776A (zh) * 2002-11-11 2004-05-26 华为技术有限公司 一种多速率同步数字网汇聚解汇聚方法及其设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496519B1 (en) 1998-08-27 2002-12-17 Nortel Networks Limited Frame based data transmission over synchronous digital hierarchy network
US6430201B1 (en) * 1999-12-21 2002-08-06 Sycamore Networks, Inc. Method and apparatus for transporting gigabit ethernet and fiber channel signals in wavelength-division multiplexed systems
AU2002232587A1 (en) 2000-11-03 2002-05-15 Conexant Systems, Inc. Method and apparatus for configuration or diagnostics of a communication device
EP1229692A1 (en) 2001-02-02 2002-08-07 BRITISH TELECOMMUNICATIONS public limited company Method and apparatus for tunnelling data in a network
JP3586204B2 (ja) * 2001-02-19 2004-11-10 日本電信電話株式会社 多重化中継伝送装置
US20040170166A1 (en) * 2001-05-24 2004-09-02 Ron Cohen Compression methods for packetized sonet/sdh payloads
WO2003009502A2 (en) 2001-07-19 2003-01-30 Eci Telecom Ltd. Method and apparatus for converting data packets between a higher bandwidth network and lower bandwidth network
ATE281746T1 (de) 2001-07-23 2004-11-15 Cit Alcatel Netzelement für signale des optical transport networks (otn)
US6725176B1 (en) * 2001-08-03 2004-04-20 Centilliune Communications, Inc. Loop diagnostics for ADSL systems
US20030048813A1 (en) * 2001-09-05 2003-03-13 Optix Networks Inc. Method for mapping and multiplexing constant bit rate signals into an optical transport network frame
US7286487B2 (en) 2002-11-18 2007-10-23 Infinera Corporation Optical transmission network with asynchronous mapping and demapping and digital wrapper frame for the same
DE60203690T2 (de) * 2002-02-12 2006-03-02 Lucent Technologies Inc. Verfahren und Vorrichtung zur Übertragung eines SDH/SONET Client-Signals als Dienstleistung
CN1214569C (zh) * 2002-06-24 2005-08-10 华为技术有限公司 以太网数据包与sdh帧结构之间的映射和解映射方法
US7512150B2 (en) 2003-03-24 2009-03-31 Applied Micro Circuits Corporation 10 GbE LAN signal mapping to OTU2 signal
US7885186B2 (en) * 2003-10-03 2011-02-08 Ciena Corporation System and method of adaptively managing bandwidth on optical links shared by multiple-services using virtual concatenation and link capacity adjustment schemes
US7787460B2 (en) * 2003-10-08 2010-08-31 Ciena Corporation System and method for switching packet traffic over an optical transport network
JP2005236854A (ja) * 2004-02-23 2005-09-02 Kddi Corp xDSLモデム装置の制御方法及びxDSLモデム装置
US7813381B2 (en) * 2004-05-07 2010-10-12 Mindspeed Technologies, Inc. Automatic data rate detection
CN100349390C (zh) 2004-08-11 2007-11-14 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
CN100596043C (zh) 2004-08-26 2010-03-24 华为技术有限公司 实现低速信号在光传输网络中透明传送的方法和装置
ES2340162T3 (es) * 2004-11-12 2010-05-31 Alcatel Lucent Metodo y aparato para transportar una señal de capa de cliente sobre una red de transporte optico (otn).
JP4878648B2 (ja) * 2010-03-12 2012-02-15 日本電信電話株式会社 クライアント信号収容多重装置及び方法
US20140016925A1 (en) * 2011-02-16 2014-01-16 Telefonaktiebolaget I.M Ericsson (publ) Resizing a path in a connection-oriented network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020031146A1 (en) * 2000-01-14 2002-03-14 Abbas Ghani A.M. Method of communicating data in communication systems
CN1499776A (zh) * 2002-11-11 2004-05-26 华为技术有限公司 一种多速率同步数字网汇聚解汇聚方法及其设备

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063521A1 (fr) 2004-12-14 2006-06-22 Huawei Technologies Co., Ltd. Procede de transmission de signal de trafic bas debit dans un reseau de transport optique
EP1826926A1 (en) * 2004-12-14 2007-08-29 Huawei Technologies Co., Ltd. An implement method of short rate traffic signal transmitted in optical transport network
EP1826926A4 (en) * 2004-12-14 2008-07-16 Huawei Tech Co Ltd IMPLEMENTATION METHOD FOR A SHORT-RATE TRAFFIC SIGNAL SENT IN AN OPTICAL TRANSPORT NETWORK
US7848653B2 (en) 2004-12-14 2010-12-07 Huawei Technologies Co., Ltd. Method and device for transmitting low rate signals over an optical transport network
US20100067905A1 (en) * 2007-04-17 2010-03-18 Huawei Technologies Co., Ltd. Method and devices for transmitting client signals in optical transport network
US8824505B2 (en) 2007-04-17 2014-09-02 Huawei Technologies Co., Ltd. Method and apparatus for transporting client signals in an optical transport network
US9819431B2 (en) 2007-04-17 2017-11-14 Huawei Technologies Co., Ltd. Method and apparatus for transporting client signals in an optical transport network
US10374738B2 (en) 2007-04-17 2019-08-06 Huawei Technologies Co., Ltd. Method and apparatus for transporting client signals in an optical transport network
US11405123B2 (en) 2007-04-17 2022-08-02 Huawei Technologies Co., Ltd. Method and apparatus for transporting client signals in an optical transport network
US12088408B2 (en) 2007-04-17 2024-09-10 Huawei Technologies Co., Ltd. Method and apparatus for transporting client signals in an optical transport network
CN113949743A (zh) * 2021-11-22 2022-01-18 烽火通信科技股份有限公司 Odu净荷承载方法及系统

Also Published As

Publication number Publication date
EP2045934A1 (en) 2009-04-08
EP1737147A1 (en) 2006-12-27
ES2323970T3 (es) 2009-07-28
DE602005013941D1 (de) 2009-05-28
PT1737147E (pt) 2009-06-01
CN1734986A (zh) 2006-02-15
EP1737147A4 (en) 2007-08-22
US20150215060A1 (en) 2015-07-30
US11658759B2 (en) 2023-05-23
CN100349390C (zh) 2007-11-14
US9014151B2 (en) 2015-04-21
ATE429088T1 (de) 2009-05-15
DK1737147T3 (da) 2009-08-17
EP1737147B1 (en) 2009-04-15
US20070076769A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
WO2006015549A1 (fr) Procede de transmission de signaux de trafic a faible debit dans un reseau de transmission optique et dispositif correspondant
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
JP4708482B2 (ja) Otn上でdtmを伝送するための方法、装置、及び応用装置
WO2006063521A1 (fr) Procede de transmission de signal de trafic bas debit dans un reseau de transport optique
US7944928B2 (en) Method and apparatus for transporting local area network signals in optical transport network
WO2006063529A1 (fr) Dispositif et procede de transmission de services de donnees dans un reseau de transmission optique
US8180224B2 (en) Method, apparatus and system for transmitting Ethernet signals in optical transport network
WO2006021157A1 (fr) Procede et equipement pour la transmission transparente de signaux a faible vitesse dans un reseau de transmission optique
WO2006063520A1 (fr) Systeme de programmation uniforme de reseau optique synchrone et de reseau de transport optique, et procede
WO2008043227A1 (fr) Système, appareil et procédé de transport sur un réseau de fibres optiques passives
CN101217334A (zh) 光传送网中传输低速率业务信号的方法及其装置
EP2093916B1 (en) Optical transport hierarchy gateway interface
Gorshe A tutorial on ITU-T G. 709 optical transport networks (OTN)
Gorshe A Tutorial on ITU-T G. 709 Optical Transport Networks (OTN)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11525332

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005780739

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005780739

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11525332

Country of ref document: US