WO2006013864A1 - Metal ion adsorbent - Google Patents

Metal ion adsorbent Download PDF

Info

Publication number
WO2006013864A1
WO2006013864A1 PCT/JP2005/014125 JP2005014125W WO2006013864A1 WO 2006013864 A1 WO2006013864 A1 WO 2006013864A1 JP 2005014125 W JP2005014125 W JP 2005014125W WO 2006013864 A1 WO2006013864 A1 WO 2006013864A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal ion
ion adsorbent
photoresponsive
metal
glass fiber
Prior art date
Application number
PCT/JP2005/014125
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Suzuki
Masamichi Kezuka
Tetsuro Yoshii
Original Assignee
Nippon Sheet Glass Co., Ltd.
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co., Ltd., Tokyo Denki University filed Critical Nippon Sheet Glass Co., Ltd.
Priority to JP2006531497A priority Critical patent/JPWO2006013864A1/en
Publication of WO2006013864A1 publication Critical patent/WO2006013864A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3251Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3255Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. heterocyclic or heteroaromatic structures

Definitions

  • the present invention relates to a metal ion adsorbent carrying a photoresponsive metal ion adsorbing material, and more specifically, a metal carrying a material that reversibly forms a complex in response to visible light irradiation to adsorb and desorb metal ions. It relates to an ion adsorbent.
  • the collection agent In order to recover the metal ions adsorbed to the collection agent after the collection treatment, the collection agent is generally soluble in the solution, so the collection agent is separated from the metal ions through a chemical reaction treatment such as oxidation treatment. After that, the metal is isolated as a cation in the solution and purified and recovered.
  • a metal ion responds to visible light irradiation in a compound that exhibits photochromism (hereinafter referred to as a photochromic compound) that changes color reversibly depending on whether or not the compound is irradiated with light.
  • a photochromic compound that changes color reversibly depending on whether or not the compound is irradiated with light.
  • photoresponsive metal ion adsorbing materials that have both functions of collecting and recovering metal ions in solution and are easy to operate (for example, patent documents) 1).
  • the photoresponsive metal ion adsorbing material can repeatedly absorb and desorb metal ions by light irradiation. Since the color of the material changes, there is an advantage that it can be easily confirmed visually.
  • the photoresponsive metal ion adsorbing material itself usually has a powdery form, it is difficult for light to reach inside, the adsorption / desorption efficiency of metal ions is reduced, and handling is not easy! / ⁇ There was a hard problem.
  • Patent Document 2 a gel-like light and heat-responsive metal ion adsorbing material including specific segments reversibly showing transparency and opacity due to temperature changes in water.
  • the powerful adsorbent material is in the form of a gel that shows expansion and contraction due to changes in temperature, and the irradiated light that is easy to form can be desorbed to metal ions complexed inside. And the desorption rate of metal ions can be improved.
  • the skin layer which is a thin and dense film that prevents the passage of solutes and the like, is present on the surface of the gel, so that an aqueous solution containing metal ions stays in the gel and is detached. There was a problem that it was not easy to extract metal ions out of the gel, that is, out of the system.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-53185
  • Patent Document 2 JP-A-2005-103534
  • FIG. 1 is a diagram showing the temperature dependence of the shape of the metal ion adsorbent of Example 1.
  • FIG. 2 is a graph showing the concentration of lead ions in the solution in the solution of Example 1.
  • FIG. 3 is a diagram showing the temperature dependence of the shape of the metal ion adsorbent of Comparative Example 1.
  • FIG. 4 is a transmittance spectrum of the metal ion adsorbent of Example 4.
  • FIG. 5 is a transmittance spectrum of the metal ion adsorbent of Reference Example 1.
  • the present invention provides a use form capable of maximizing the characteristics of the photoresponsive metal ion adsorbing material disclosed in Patent Document 1, and the adsorbing material disclosed in Patent Document 2. It solves the above-mentioned problem that the present invention has. In other words, it is easy to handle, can efficiently receive light with high contact efficiency between the metal ions contained in the aqueous solution and the photoresponsive metal ion adsorbing material, and it is easy to determine the color change during adsorption / desorption. Use repeatedly for a long time
  • the present invention provides a use form that can be used and that allows the desorbed metal ions to be easily taken out of the system.
  • the present inventors have found that the above problem can be solved by supporting a photoresponsive metal ion adsorbing material on a substrate.
  • the present invention has been completed based on the findings.
  • the present invention provides:
  • a metal ion adsorbent characterized in that a photoresponsive metal ion adsorbing material is supported on a substrate,
  • R, R and R are independently H or CH, R is an alkyl group or an amide group, X is a carbon Elemental atom, nitrogen atom or sulfur atom, Y is an oxygen atom or sulfur atom. )
  • the metal ion adsorbent of the present invention By using the metal ion adsorbent of the present invention, practical handling of the photoresponsive metal ion adsorbing material is facilitated, and the contact efficiency with the metal ions contained in the aqueous solution is increased. be able to. In addition, since light can be received efficiently, efficient metal ion adsorption / desorption is possible. Furthermore, the metal ion adsorbent of the present invention has high durability and can be used repeatedly for a long period of time, and the desorbed metal ions can be efficiently taken out of the system.
  • the substrate in the metal ion adsorbent of the present invention is not particularly limited as long as it can support the photoresponsive metal ion adsorbing material.
  • the photoresponsive metal ion adsorbing material is reversible. Considering that metal ions can be adsorbed / desorbed and used repeatedly, it is important that the substrate as a carrier is a material having high mechanical stability and chemical stability. Inorganic materials are suitable for satisfying these requirements.
  • inorganic materials include glass, alumina, silica, silica'alumina, magnesia, zirca, zinc oxide, crystalline aluminosilicate, clay mineral (including intercalation compounds), carbon such as activated carbon, silicon carbide, and mixtures thereof. Is mentioned.
  • the adsorption / desorption of metal ions is determined by the color change of the material depending on the type of the photoresponsive metal ion adsorbing material used, and the desorption of the adsorbed metal ions is caused by irradiation with visible light. Therefore, it is preferable to use glass, which is a transparent material.
  • a glass material having a high porosity is preferable from the viewpoint of increasing the surface area and increasing the light transmission performance.
  • Specific examples of materials that satisfy these requirements include glass plates and substrates with glass fiber strength (hereinafter referred to as “glass fiber molded products”), but they can easily provide a large surface area and high porosity.
  • glass fiber molded bodies such as glass fiber nonwoven fabrics are preferred!
  • a high affinity with a metal ion-containing solution is preferable from the viewpoint of improving the contact efficiency between the metal ions and the metal ion adsorbing material.
  • the metal ion-containing solution is often an aqueous solution, it preferably has a hydrophilic group such as a hydroxyl group on the surface of the substrate.
  • the glass fiber molded body is preferable from the viewpoint of high density of silanol groups on the surface and high affinity with an aqueous solution.
  • the skin layer was difficult to break and it was difficult to conduct the inside and outside, but by using a glass fiber molded body, the interface between the adsorbent gel and glass fiber exists.
  • the interface has a property that it is easier to break than the skin layer, and the inside and outside of the skin are screened, it is easy to take out the desorbed metal ions out of the system, and the contact efficiency is improved.
  • the adsorption performance of metal ions can also be improved.
  • the form of the substrate is not particularly limited, and can be appropriately selected according to the intended use or usage form. For example, a sheet-like form, a granular form, a tubular form, and the like can be given.
  • the glass fiber molded body can take various shapes such as a sheet shape, a granular molded body, and a tube shape depending on the application or use form.
  • the surface area is preferably 2m 2 / g or more in view of increasing the loading efficiency of the photoresponsive metal ion adsorbing material as mentioned above, and more preferably 5m 2 Zg or more It is preferable that There is no upper limit, but it is usually less than 20m 2 Zg due to manufacturing restrictions.
  • the porosity of the glass fiber molded body is preferably 80 to 98%, more preferably 90 to 98%, which is also preferable from the viewpoint of obtaining sufficient light transmission performance.
  • the fiber diameter is not particularly limited as long as the above-mentioned preferable surface area and porosity can be obtained, and the fiber diameter matches the use form, but it is usually 0.1 to 20 / ⁇ ⁇ . If it is 0.1 ⁇ m or more, a practical strength can be obtained, and if it is 20 m or less, a sufficient surface area can be obtained. Also, good moldability can be obtained within this range.
  • an appropriate thickness may be obtained depending on the purpose of use and usage, such as whether the metal adsorption rate is given priority or the metal adsorption amount is given priority. Although it exists, it is preferable that it is usually 50-500 m. If it is 50 m or more, a practically sufficient strength as a carrier can be obtained, and if it is 500 m or less, it can be supported while sufficiently maintaining the characteristics of the photoresponsive metal ion adsorbing material.
  • an appropriate particle size can be selected as appropriate depending on the purpose of use and the form of use in the same manner as in the case of a sheet, but considering the ease of handling, Usually, it is preferably 1 mm or more. On the other hand, there is no particular upper limit for the particle size, but if it is 15 mm or less, a material that allows light to reach the inside of the particle can be easily designed by controlling the fiber diameter, fiber density, and the like.
  • the photoresponsive metal ion adsorbing material used in the present invention is a photochromic that reversibly adsorbs and desorbs metal ions in liquid and reversibly changes color in response to light such as visible light. It refers to a compound, for example, using a spiropyran or spiroxazine molecule that can take a merocyanine structure.
  • the photoresponsive metal ion adsorbing material used in the present invention it is preferable to use a polymer having a segment represented by the following general formula (1), that is, a spiropyran segment or a spiroxazine segment.
  • the polymer may be a spiropyran or a homopolymer of spiroxazine, or may be a copolymer of spiropyran and spiroxazine. Furthermore, it may be a spiropyran and / or a copolymer of spiroxazine and another monomer within the scope of the effects of the present invention.
  • Preferred examples of the monomer that forms a copolymer with spiropyran and Z or spiroxazine include monomers that can form polymers such as polyamide, polyarynoleamine, polyglycolanol, polyanololecore, and polyester.
  • the content of the spiropyran segment and z or spiroxazine segment in the copolymer is not particularly limited as long as the effect of the present invention is achieved, but it is preferably 2 to 80 mol%. More preferably, it is mol%.
  • the photoresponsive metal ion adsorbing material of the present invention contains other components, for example, a cross-linking agent such as alkyl dimetatalylate, a photosensitizer and the like as long as the adsorption and desorption action of the polymer is not hindered. It ’s good.
  • R, R and R are independently H or CH, and the polymer has R as H If it is CH, it is a metatalylate polymer.
  • R is a methyl group
  • alkyl group such as a til group or a dodecyl group, or an amide group
  • X is a carbon atom, nitrogen atom or sulfur atom
  • Y is an oxygen atom or sulfur atom.
  • the copolymer is not particularly limited as long as the segment represented by the formula (1) and the other segment may be a block polymer or an alternating polymer.
  • X is a carbon atom and Y is an oxygen atom, that is, the case where a spirobilane segment is included as a segment shown in Formula (1) will be described.
  • the spiropyran segment in the polymer has a photoresponse that reversibly differentiates in liquid into an electrically neutral colorless spiropyran structure and a merocyanine structure having a zwitterion in the molecule.
  • a spiropyran structure and a merocyanine structure are shown in the following formula (2).
  • M represents a metal capable of cationization
  • R to R, X and Y are
  • This complex formation disappears when the merocyanine structure returns to the spiropyran structure by irradiation with visible light. That is, when the copolymer in the dark place is irradiated with visible light from the outside, the merocyanine structure closes and isomerizes to the spiropyran structure, so the copolymer becomes colorless (white). . The metal ions that have been complexed so far are released into the liquid. Next, when the irradiation with visible light is stopped and the copolymer is placed under the saddle, the spiropyran segment in the copolymer again becomes a merocyanine structure, which is complexed with the released metal ions and co-polymerized.
  • the photoresponsive metal ion adsorbing material of the present invention includes a copolymer that undergoes this irreversible complex formation and discoloration, so that metal ion solution force metal ions can be adsorbed and recovered.
  • a monomer that forms silane coupling may be added.
  • the monomer that forms a silane coupling include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -atalyloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -acryloxypropyltriethoxysilane, and methacrylate.
  • Loxypropenyltrimethoxysilane, methacryloxypropenyltrie Preferable examples include toxisilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, methacryloxypropyltris (methoxyethoxy) silane, ⁇ -methacryloxypropyl dimethoxymethylsilane, and ⁇ -methacryloxypropyljetoxymethylsilane. These monomers that form silane couplings may be used alone or in combination of two or more.
  • the content of the monomer for forming the silane coupling in the copolymer is preferably 10 to 50 mol%, more preferably 30 to 50 mol%! /.
  • spiropyran (meth) atalylate or spiroxazine (meth) atalylate is synthesized in advance and a polymerization initiator is added thereto.
  • the copolymer can be obtained by adding a polymerization initiator in the coexistence of spiropyran (meth) acrylate and ⁇ or spiroxazine (meth) acrylate and other monomers.
  • the polymerization initiator is not particularly limited, and for example, a radical polymerization initiator such as ⁇ (2,2′-azobisisobutyl-tolyl) can be preferably used.
  • a photoresponsive metal ion adsorbing material on a substrate sheet.
  • the substrate is polymerized.
  • the photoresponsive metal ion adsorbing material is dissolved in a solvent to prepare a solution, and the substrate is immersed in the solution, and further impregnated. Examples thereof include a method of evaporating the solvent to dryness and a method of applying the above solution to a sheet-like substrate.
  • the method of supporting the monomer simultaneously with the polymerization of the monomer is preferable because the process can be simplified. Also, the impregnation method is preferable because it is simple and can be efficiently supported. Furthermore, the supporting method of adding the monomer for forming the silane coupling into the copolymer is preferable because it is efficient in production because the silane coupling portion is firmly supported by a chemical bond with a substrate such as glass. In this case, for example, when spiropyran (meth) acrylate is combined, a monomer for forming a silane coupling is added at the same time to obtain a copolymer, and then supported on the substrate, or a silane cup on the substrate.
  • Spiropyran (meth) atalylate or spiroxazine (meth) atalylate after supporting the ring-forming monomer For example, a method of adding the substrate to the polymerization system and supporting the substrate on the substrate at the same time as the polymerization of the monomer may be mentioned.
  • a hydrophilic solvent such as water or alcohol can be preferably used as the solvent used for the polymerization of the monomer and the solvent for dissolving the photoresponsive metal ion adsorbing material.
  • the amount of the photoresponsive metal ion adsorbing material supported on the substrate is not particularly limited as long as the effect of the present invention is achieved, and may be appropriately selected depending on the application or use form. Is possible. For example, when a glass fiber nonwoven fabric with a porosity of about 90% is used as the substrate and a photoresponsive metal ion adsorbing material is supported on the surface and used as a porous filter, a relatively small amount is supported.
  • a viewpoint power of 0.15% by mass or more is preferable, and it is preferably 2% by mass or more in order to exert practical effects as a photoresponsive metal ion adsorbing material.
  • a glass fiber nonwoven fabric with a porosity of about 90% is used as a structural support, for example, when the glass fiber nonwoven fabric is used as a core and a photoresponsive metal ion adsorbing material is supported around it, It is used at a relatively high loading, and specifically, it can be suitably used at a loading of 80% by mass or less.
  • the method for recovering metal ions in the present invention includes a step of complexing the above (co) polymer and metal ions supported on a metal ion adsorbing sheet under a certain place, and irradiating visible light with gold. And (co) polymer force releasing step.
  • the metal ions are adsorbed on the (co) polymer and the (co) polymer is taken out and irradiated with visible light to release the metal ions. .
  • the metal ion that can be adsorbed and recovered by the adsorbent material of the present invention is not particularly limited. Specifically, from the viewpoint of environmental protection and the like, it is preferable to apply it to heavy metals. ), Zinc (II), copper (II), nickel (II), palladium (III), lithium (I), manganese (II), iron (II), iron (III) and the like.
  • Zinc (II) copper (II), nickel (II), palladium (III), lithium (I), manganese (II), iron (II), iron (III) and the like.
  • Formula (2) there is no limitation on the valence, especially the force for which divalent ions are shown.
  • the shape change with temperature change in water was visually observed.
  • the shape at 10 ° C and the shape at 40 ° C were compared.
  • the metal ion adsorbent obtained in each example was immersed in a mixed solvent of 9 mL of methanol and 1 mL of pure water, and left in the dark at room temperature. Then Pb a (II), was added to the liquid to a concentration of 4. 0 X 10- 5 M (about 0. 2 mg as perchlorate, lead trihydrate), dark, allowed to stand at room temperature for 20 minutes The color change of the metal ion adsorbent was confirmed. After sufficient change, visible light (> 420 nm) was irradiated for 30 seconds.
  • the light source used was a 500W xenon lamp, which was illuminated through a color filter.
  • the concentration of lead ions in the light irradiation state and dark state in the metal ion adsorbent obtained in each example was electrochemically quantified by rectangular wave voltammetry. Electrochemical quantification is used to determine the amount of Pb (II) in the solution.
  • the Pb (II) concentration ( ⁇ ) was measured immediately after the metal ion adsorbent was irradiated with visible light.
  • Adsorption rate (%) (peak value of ⁇ mouthful peak value) peak value of Z ⁇
  • Desorption rate (%) (peak value of ⁇ peak value of one bite) z (peak value of ⁇ peak value of one bite)
  • An ultrafine glass fiber cotton having an average fiber diameter of 1 ⁇ m was unwound in water with a pulper (“PU-20 1” manufactured by Tester Sangyo Co., Ltd.), fully dissociated and dispersed to prepare a papermaking slurry.
  • the paper slurry was diluted to a predetermined concentration according to the paper thickness shown below to obtain a glass fiber dispersion.
  • three types of glass fiber nonwoven fabrics were produced using a manual wet papermaking machine ("PU-301" manufactured by Tester Sangyo Co., Ltd.).
  • TAA triethylamine
  • Wako Pure Chemical Industries, Ltd. used after distillation
  • purity 99% product number 202-02646
  • 5 units were prepared using 1 mL of 400 mL pure water lOOmL solution as an ammonia (manufactured by Kanto Chemical Co., Ltd., purity 28.0 to 30.0%, product number 01266-00).
  • reaction solution was diluted with toluene 10 mL to remove unreacted acrylic acid chloride and TEA, and then transferred to a separatory funnel, and the aqueous ammonia solution (c) was 1 Added units.
  • the separatory funnel was shaken and allowed to stand to take out the lower ammonia aqueous solution, and 1 unit of the remaining ammonia aqueous solution (c) was collected, and the liquid separation was repeated a total of 5 times in the same manner.
  • NIPAAm N-isopropylacrylamide
  • the glass fiber nonwoven fabric (B) produced by the method described in Production Example 1 is placed in the opening of a 0.05 mm thick Teflon sheet (outer frame: 5 X 5 cm, inner frame: 3 X 3 cm) with the center opened. , Sandwiched between two 2mm thick glass plates (5 x 5cm). Next, the solution in the flask was sufficiently injected between the glass plates with a syringe, and the glass plate was clamped with a clip, and then placed in an electric furnace and reacted at 50 ° C. for 4 hours. After completion of the reaction, the obtained glass fiber nonwoven fabric was immersed in pure water for 1 week. The pure water was changed once a day to remove unreacted substances and each of the compounds adsorbed physically, and then dried under reduced pressure.
  • Figure 1 shows the shape retention evaluation results for the resulting metal ion adsorbent. From the shape of 10 ° C. and 40 ° C., the metal ion adsorbent according to the present invention is remarkably maintained in shape even when the temperature is raised. The obtained metal ion adsorbent was evaluated for the adsorption and desorption of lead ions. Regarding the color change, yellow color was exhibited by the adsorption of Pb (II), and the yellow color was erased by irradiation with visible light. As shown in Fig. 2, it can be seen that the photoreversible adsorption of Pb (II) has been achieved in the electrochemical method.
  • Example 1 a metal ion adsorbing material having no carrier was obtained in the same manner as in Example 1 except that the glass fiber nonwoven fabric (B) was not used.
  • the shape retention was evaluated in the same manner as in Example 1. The results are shown in Figure 3. From the shapes of 10 ° C. and 40 ° C., the metal ion adsorbing material having no carrier is surely shrunk by the temperature rise and can not hold the shape f * i.
  • Example 2 From Table 1, comparing the Pb (II) ion desorption rate of Example 1 and Comparative Example 1, the desorption rate of the adsorbent of Example 1 using a glass fiber nonwoven fabric as a substrate is about twice or more. It was confirmed that In addition, it was confirmed that the adsorption rate increased not only by the desorption rate. [0034] Example 2
  • the SPAA monomer ⁇ , 3 ′, 3′-trimethyl-6- (atallyloyloxy) spiro (2H-1-benzopyran-1,2,2 ′ indole) (molecular weight 347. 41) obtained in Example 1 was 52. lmg (0.150 mmol) was prepared. Further, 757 mg (6.69 mmol) of N-isopropylacrylamide (NIPAAm) (molecular weight 1 13. 15) was prepared.
  • NIPAAm N-isopropylacrylamide
  • the obtained metal ion adsorbent was evaluated for adsorption / desorption of lead ions. Color change As for ⁇ , yellow color was observed by the adsorption of Pb (II), and the yellow color disappeared by irradiation with visible light.
  • a metal ion adsorbent was obtained and evaluated in the same manner as in Example 2 except that the glass fiber nonwoven fabric (A) produced in Production Example 1 was used as the substrate. Regarding the color change, yellow color was exhibited by the adsorption of Pb (ll), and the yellow color was erased by irradiation with visible light.
  • a metal ion adsorbent was obtained and the transmittance of visible light was measured in the same manner as in Example 1 except that the glass fiber nonwoven fabric (C) produced in Production Example 1 was used as the substrate. The results are shown in Fig. 4.
  • the metal ion adsorbent according to the present invention has a high transmittance in water. This is because glass is originally transparent and has high transmittance in the absence of bubbles, but in the nonwoven fabric state, the refractive index of air and glass is different, so light is scattered at the interface, and apparent transmittance is Due to the decline. On the other hand, in an aqueous solution, since the refractive index of water and the refractive index of glass are substantially equal, in the glass fiber nonwoven fabric carrier, the scattering is reduced and the apparent transmittance is increased. From comparison with Reference Example 1 described later, it is understood that it is preferable to use a glass fiber material as the substrate.
  • hydrochloric acid 15mL, nitric acid 5mL, ethanol 8mL, polymerization initiator AIBN54.7 7mg (1Z60 of the total number of moles of SPAA and NIPAAm), polymerization inhibitor Hydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd., purity 99.0%, No. H0186), acetone, isopropyl alcohol, diethyl ether, and ultrapure water were prepared.
  • a ball cooler in one mouth and a Pasteur pipette with a rubber stopper in the other mouth In a two-necked flask equipped with, three types of solutions obtained by dissolving SPAA in ethanol (4 mL), NIPPAm in ethanol (2 mL), and MBAAm in ethanol (2 mL) were mixed and mixed. Moisture and air were removed from the apparatus by flowing dry nitrogen from the Pasteur pipette into the flask for 30 minutes. Next !, raised the temperature of the flask to 60 ° C in an oil bath, added AIBN and allowed to react for 1 hour, then added hydroquinone and stopped the reaction.
  • the glass fiber nonwoven fabric (B) produced by the method described in Production Example 1 is placed in the opening of a 0.05 mm thick Teflon sheet (outer frame: 5 X 5 cm, inner frame: 3 X 3 cm) with the center opened. , Sandwiched with a glass plate washed as above. Next, a solution of P (SPAA-NIPAAm-MPTMS) lOOmg obtained as described above in 1.064 mL of acetone is sufficiently poured between glass plates using a syringe, and the glass plate is clamped with a clip. The reaction was allowed to proceed for 12 hours at room temperature.
  • P SPAA-NIPAAm-MPTMS
  • the obtained metal ion adsorbent was evaluated for adsorption / desorption of lead ions.
  • yellow color was exhibited by the adsorption of Pb (II), and the yellow color was erased by irradiation with visible light.
  • the glass fiber nonwoven fabric (B) produced by the method described in Production Example 1 is placed in the opening of a 0.05 mm thick Teflon sheet (outer frame: 5 X 5 cm, inner frame: 3 X 3 cm) with the center opened. , Sandwiched with a glass plate washed as above. Next, a solution of MPTMS 4.1 mg in 1.05 mL of acetone was sufficiently injected between the glass plates using a syringe, the glass plate was clamped and allowed to react at room temperature for 12 hours.
  • one of the glass plates is peeled off and immersed in a large amount of acetone to wash away unreacted MPTMS and physically adsorbed MPTMS and dried under reduced pressure to carry ⁇ -methacryloxypropyltrimethoxysilane.
  • a glass fiber nonwoven was obtained.
  • SPAA was added to ethanol 0.6 mL NIPPAm in a two-necked flask equipped with a ball cooler in one neck and a Pasteur pipette with a rubber stopper in the other.
  • Two types of solutions obtained by dissolving in 0.6 mL of knoll were added and mixed. Dry nitrogen was allowed to flow from the Pasteur pipette into the flask for 30 minutes to remove the internal moisture and air. AIBN was then collected and dry nitrogen was allowed to flow through the Pasteur pipette for 30 minutes.
  • the obtained glass fiber nonwoven fabric was immersed in a large amount of acetone to remove unreacted substances and each of the compounds adsorbed physically, and then dried under reduced pressure.
  • the glass fiber nonwoven fabric (A) was coated with y-methacryloxypropyltrimethoxysilane and ⁇ , 3 ', 3'-trimethyl 6- (atalyloyloxy) spiro (2H-1 benzopyran 2, 2' A metal ion adsorbent carrying a copolymer of indole) and N-isopropylacrylamide was obtained.
  • the obtained metal ion adsorbent was evaluated for adsorption / desorption of lead ions.
  • yellow color was exhibited by the adsorption of Pb (II), and the yellow color was erased by irradiation with visible light.
  • a metal ion adsorbent can also be obtained by a supporting method in which a monomer for forming a silane coupling is added to a copolymer according to the above procedure.
  • a metal ion adsorbent was obtained and the visible light transmittance was measured in the same manner as in Example 4 except that a non-woven fabric made of Teflon (manufactured by Japan Gore-Tex Co., Ltd.) was used as the substrate. The results are shown in Fig. 5. Compared to glass fiber non-woven fabric, light is scattered at the interface between the material and the aqueous solution, so no increase in transmittance is observed.
  • the metal ion adsorbent of the present invention can be used for purification and recovery of metal ions, can be used as a sensor for metal ions, a checker for metal ions, and can also be used as a metal ion filter. You can also. Furthermore, it can be used for concentration of metal ions in quantitative analysis of trace amounts of metal ions.
  • the metal ion adsorbing sheet of the present invention By using the metal ion adsorbing sheet of the present invention, practical handling of the photoresponsive metal ion adsorbing material becomes easy, and the contact efficiency with the metal ions contained in the aqueous solution is improved. Can be increased. In addition, since light can be received efficiently, it is possible to efficiently absorb and desorb metal ions. Furthermore, the metal ion adsorbing sheet of the present invention is highly durable and can be used repeatedly for a long time, and the desorbed metal ions can be taken out of the system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A metal ion adsorptive sheet carrying a photoresponsive metal ion adsorbent material that ensures easy handling, excelling in the efficiency of contact between metal ions contained in an aqueous solution and the photoresponsive metal ion adsorbent material to thereby realize efficient light receiving, and that facilitates discrimination of a color change at adsorption/desorption, permitting repeated use for a prolonged period of time, and that permits taking out of desorbed metal ions from the system. There is provided a metal ion adsorptive sheet characterized in that a photoresponsive metal ion adsorbent material is borne on a base sheet.

Description

明 細 書  Specification
金属イオン吸着体  Metal ion adsorbent
技術分野  Technical field
[0001] 本発明は光応答性金属イオン吸着材料を担持した金属イオン吸着体、詳しくは、 可視光照射に応答して可逆的に錯形成して金属イオンを吸脱着する材料を担持し た金属イオン吸着体に関する。  [0001] The present invention relates to a metal ion adsorbent carrying a photoresponsive metal ion adsorbing material, and more specifically, a metal carrying a material that reversibly forms a complex in response to visible light irradiation to adsorb and desorb metal ions. It relates to an ion adsorbent.
背景技術  Background art
[0002] 近年、工場等から排出される産業廃液や産業廃棄物から、効率良く金属イオン、特 に鉛イオン等の重金属イオンを回収する方法が、環境汚染防止、産業廃棄物の減量 、資源再利用の理由から望まれている。金属イオンを含む廃液を浄化する方法として 、中和凝集沈殿法 ·硫化ソーダ法 ·重金属捕集剤法 ·フ ライト法等が実用化されて いる。これらの方法で廃液を処理した後、金属を回収するステップ、さらに再利用す るステップが設けられている。このうち、重金属捕集剤法は、重金属イオンと錯ィ匕合物 を形成する捕集剤 (例えばシアン化合物)を用いる。捕集処理後の捕集剤に吸着し た金属イオンを回収するには、該捕集剤が一般に溶液に可溶なため、捕集剤を酸化 処理等の化学反応処理を経て金属イオンから分離した後、金属を陽イオンとして溶 液中に単離させて精製 ·回収して 、る。  [0002] In recent years, methods for efficiently recovering metal ions, especially heavy metal ions such as lead ions, from industrial waste liquids and industrial waste discharged from factories, etc. have prevented environmental pollution, reduced industrial waste, and reused resources. Desired for reasons of use. As a method for purifying waste liquid containing metal ions, neutralization coagulation sedimentation method / sodium sulfide method / heavy metal scavenger method / flight method have been put into practical use. After the waste liquid is treated by these methods, a step of recovering the metal and a step of reusing it are provided. Among these, the heavy metal scavenger method uses a scavenger (for example, a cyanide compound) that forms a complex compound with heavy metal ions. In order to recover the metal ions adsorbed to the collection agent after the collection treatment, the collection agent is generally soluble in the solution, so the collection agent is separated from the metal ions through a chemical reaction treatment such as oxidation treatment. After that, the metal is isolated as a cation in the solution and purified and recovered.
[0003] し力しながら、上記のような捕集剤による重金属捕集後の重金属回収ステップにお ける化学反応処理の実施にあたっては、煩雑な操作と、それによる長い処理時間や 多大な処理コストとを要するという問題があった。さらには、安全な操業のためには、 専門的な知識や技術が要求される。 [0003] However, in carrying out the chemical reaction process in the heavy metal recovery step after heavy metal collection by the above-described collection agent, complicated operations, a long treatment time and a large treatment cost are caused. There was a problem that required. Furthermore, specialized knowledge and skills are required for safe operation.
そこで、本発明者の一人は、化合物への光の照射の有無により可逆的に変色する フォトクロミズムを示すィ匕合物(以下、フォトクロミック化合物という。 )に、金属イオンが 可視光照射に応答して可逆的に錯形成して吸着することに着目し、溶液中の金属ィ オンの捕集と回収の両機能を備え、操作が簡便な光応答性金属イオン吸着材料を 開発した (例えば、特許文献 1)。該光応答性金属イオン吸着材料は、光の照射によ つて金属イオンをくりかえし吸脱着することができ、し力も、金属イオン吸脱着時に材 料の色が変化するため、目視にて容易に確認ができるという利点を有する。しかしな がら、光応答性金属イオン吸着材料そのものでは、通常粉末状の形態を有するため 、光が内部に届きにくくなり、金属イオンの吸脱着効率が低下したり、取り扱いが容易 ではな!/ヽと!ヽつた課題があった。 Accordingly, one of the inventors of the present invention is that a metal ion responds to visible light irradiation in a compound that exhibits photochromism (hereinafter referred to as a photochromic compound) that changes color reversibly depending on whether or not the compound is irradiated with light. Focusing on reversibly complexing and adsorbing, we developed photoresponsive metal ion adsorbing materials that have both functions of collecting and recovering metal ions in solution and are easy to operate (for example, patent documents) 1). The photoresponsive metal ion adsorbing material can repeatedly absorb and desorb metal ions by light irradiation. Since the color of the material changes, there is an advantage that it can be easily confirmed visually. However, since the photoresponsive metal ion adsorbing material itself usually has a powdery form, it is difficult for light to reach inside, the adsorption / desorption efficiency of metal ions is reduced, and handling is not easy! / ヽThere was a hard problem.
[0004] 一方、水中において温度変化により透明 ·不透明を可逆的に示す特定のセグメント を含むゲル状の光及び熱応答性金属イオン吸着材料が開示されている (例えば、特 許文献 2)。力かる吸着材料は温度変化により膨順と収縮を示すゲル状であり、成形 加工がし易ぐ照射した光が内部まで行き渡ることによって、内部に錯形成している 金属イオンまで脱離させることができ、金属イオンの脱離率を向上させることができる 。しカゝしながら、溶質などの透過を阻止する薄い緻密な膜であるスキン層がゲルの表 面に存在することによって、ゲル内に金属イオンを含む水溶液が滞留してしまうため 、脱離した金属イオンをゲル外に、すなわち系外に取り出すことが容易ではないとい つた課題があった。  [0004] On the other hand, a gel-like light and heat-responsive metal ion adsorbing material including specific segments reversibly showing transparency and opacity due to temperature changes in water has been disclosed (for example, Patent Document 2). The powerful adsorbent material is in the form of a gel that shows expansion and contraction due to changes in temperature, and the irradiated light that is easy to form can be desorbed to metal ions complexed inside. And the desorption rate of metal ions can be improved. However, the skin layer, which is a thin and dense film that prevents the passage of solutes and the like, is present on the surface of the gel, so that an aqueous solution containing metal ions stays in the gel and is detached. There was a problem that it was not easy to extract metal ions out of the gel, that is, out of the system.
[0005] 特許文献 1 :特開 2003— 53185号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-53185
特許文献 2 :特開 2005— 103534号公報  Patent Document 2: JP-A-2005-103534
図面の簡単な説明  Brief Description of Drawings
[0006] [図 1]実施例 1の金属イオン吸着体における形状の温度依存性を示す図である。  FIG. 1 is a diagram showing the temperature dependence of the shape of the metal ion adsorbent of Example 1.
[図 2]実施例 1の溶液における鉛イオンの液中濃度を示すグラフである。  FIG. 2 is a graph showing the concentration of lead ions in the solution in the solution of Example 1.
[図 3]比較例 1の金属イオン吸着体における形状の温度依存性を示す図である。  FIG. 3 is a diagram showing the temperature dependence of the shape of the metal ion adsorbent of Comparative Example 1.
[図 4]実施例 4の金属イオン吸着体の透過率スペクトルである。  FIG. 4 is a transmittance spectrum of the metal ion adsorbent of Example 4.
[図 5]参考例 1の金属イオン吸着体の透過率スペクトルである。  FIG. 5 is a transmittance spectrum of the metal ion adsorbent of Reference Example 1.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、特許文献 1に開示される光応答性金属イオン吸着材料の特徴を最大限 に発揮できる使用形態を提供するものであり、かつ、特許文献 2に開示される吸着材 料が有する上記課題を解決するものである。すなわち、取り扱いが容易で、水溶液中 に含まれる金属イオンと光応答性金属イオン吸着材料の接触効率が高ぐ光を効率 よく受光することができ、吸脱着時の色の変化の判別が容易で、長期間繰り返して使 用でき、かつ、脱離した金属イオンを系外に取り出すことが容易である使用形態を提 供するものである。 [0007] The present invention provides a use form capable of maximizing the characteristics of the photoresponsive metal ion adsorbing material disclosed in Patent Document 1, and the adsorbing material disclosed in Patent Document 2. It solves the above-mentioned problem that the present invention has. In other words, it is easy to handle, can efficiently receive light with high contact efficiency between the metal ions contained in the aqueous solution and the photoresponsive metal ion adsorbing material, and it is easy to determine the color change during adsorption / desorption. Use repeatedly for a long time The present invention provides a use form that can be used and that allows the desorbed metal ions to be easily taken out of the system.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、光応答性金属 イオン吸着材料を、基体に担持させることで上記課題を解決し得ることを見出し、そ の知見に基づいて本発明を完成するに至った。  As a result of intensive studies to achieve the above object, the present inventors have found that the above problem can be solved by supporting a photoresponsive metal ion adsorbing material on a substrate. The present invention has been completed based on the findings.
[0009] すなわち、本発明は、  That is, the present invention provides:
(1)基体に光応答性金属イオン吸着材料を担持したことを特徴とする金属イオン吸 着体、  (1) A metal ion adsorbent characterized in that a photoresponsive metal ion adsorbing material is supported on a substrate,
(2)光応答性金属イオン吸着材料が、下記一般式 (I)に示すセグメントを必須セグメ ントとする重合体を含有する上記(1)に記載の金属イオン吸着体、  (2) The metal ion adsorbent according to the above (1), wherein the photoresponsive metal ion adsorbing material contains a polymer having a segment represented by the following general formula (I) as an essential segment,
[0010] [化 1]  [0010] [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
[0011] (R、 R及び Rは独立に Hまたは CHであり、 Rはアルキル基又はアミド基、 Xは炭 素原子、窒素原子又は硫黄原子、 Yは酸素原子又は硫黄原子である。 ) [0011] (R, R and R are independently H or CH, R is an alkyl group or an amide group, X is a carbon Elemental atom, nitrogen atom or sulfur atom, Y is an oxygen atom or sulfur atom. )
(3)上記重合体と上記基体とがシランカップリングを形成して!/ヽることを特徴とする上 記(2)に記載の金属イオン吸着体、  (3) The metal ion adsorbent according to (2) above, wherein the polymer and the substrate form a silane coupling!
(4)基体が無機材料力もなる上記(1)〜(3)の 、ずれかに記載の金属イオン吸着体  (4) The metal ion adsorbent according to any one of (1) to (3) above, wherein the substrate also has an inorganic material strength
(5)無機材料がガラス材料である上記 (4)に記載の金属イオン吸着体、 (5) The metal ion adsorbent according to (4) above, wherein the inorganic material is a glass material,
(6)ガラス材料がガラス繊維材料である上記(5)に記載の金属イオン吸着体、及び (6) The metal ion adsorbent according to (5) above, wherein the glass material is a glass fiber material, and
(7)金属イオンが重金属イオンである上記(1)〜(6)の 、ずれかに記載の金属イオン 吸着体、 (7) The metal ion adsorbent according to any one of (1) to (6) above, wherein the metal ion is a heavy metal ion,
を提供するものである。  Is to provide.
発明の効果  The invention's effect
[0012] 本発明の金属イオン吸着体を用いることによって、光応答性金属イオン吸着材料の 実用上の取り扱!/、が容易となり、水溶液中に含有される金属イオンとの接触効率を 増大させることができる。また光を効率よく受光することができるため、効率的な金属 イオンの吸脱着が可能である。さらに本発明の金属イオン吸着体は、耐久性が高ぐ 長期間繰り返して使用することができ、かつ、脱離した金属イオンを系外に効率良く 取り出すことができる。  [0012] By using the metal ion adsorbent of the present invention, practical handling of the photoresponsive metal ion adsorbing material is facilitated, and the contact efficiency with the metal ions contained in the aqueous solution is increased. be able to. In addition, since light can be received efficiently, efficient metal ion adsorption / desorption is possible. Furthermore, the metal ion adsorbent of the present invention has high durability and can be used repeatedly for a long period of time, and the desorbed metal ions can be efficiently taken out of the system.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明の金属イオン吸着体における基体は、光応答性金属イオン吸着材料を担持 することができるものであれば特に限定されな 、が、光応答性金属イオン吸着材料が 、可逆的に金属イオンを吸脱着でき、繰り返し使用されることを考慮すると、担体であ る基体は、機械的安定性、化学的安定性の高い材料であることが重要である。これら の要件を満足するものとして無機材料が好適である。 [0013] The substrate in the metal ion adsorbent of the present invention is not particularly limited as long as it can support the photoresponsive metal ion adsorbing material. However, the photoresponsive metal ion adsorbing material is reversible. Considering that metal ions can be adsorbed / desorbed and used repeatedly, it is important that the substrate as a carrier is a material having high mechanical stability and chemical stability. Inorganic materials are suitable for satisfying these requirements.
無機材料としては、ガラス、アルミナ、シリカ、シリカ'アルミナ、マグネシア、ジルコ- ァ、酸化亜鉛、結晶性アルミノシリケート、粘土鉱物 (層間化合物を含む)、活性炭等 のカーボン、炭化珪素及びこれらの混合物などが挙げられる。本発明においては、 用いる光応答性金属イオン吸着材料の種類によって、金属イオンの吸脱着を該材料 の色の変化で判定するため、また、吸着した金属イオンの脱着が可視光の照射によ つて行われるため、透明材料であるガラスを材料とすることが好ま U、。 Examples of inorganic materials include glass, alumina, silica, silica'alumina, magnesia, zirca, zinc oxide, crystalline aluminosilicate, clay mineral (including intercalation compounds), carbon such as activated carbon, silicon carbide, and mixtures thereof. Is mentioned. In the present invention, the adsorption / desorption of metal ions is determined by the color change of the material depending on the type of the photoresponsive metal ion adsorbing material used, and the desorption of the adsorbed metal ions is caused by irradiation with visible light. Therefore, it is preferable to use glass, which is a transparent material.
[0014] さらに、光応答性金属イオン吸着材料の担持効率を高めるとの観点から、表面積は 大きいほうがよぐまた光の透過性能を高めるとの観点から、高い空隙率を有するガラ ス材料が好ましい。これらの要件を満足する材料として、具体的には、ガラス板や、ガ ラス繊維力もなる基体 (以下「ガラス繊維成形体」という)があるが、大表面積、高い空 隙率が容易に得られること、及び光を効率よく取り入れ得るとの観点から、特にガラス 繊維不織布等のガラス繊維成形体が好まし!/ヽ。 [0014] Further, from the viewpoint of increasing the carrying efficiency of the photoresponsive metal ion adsorbing material, a glass material having a high porosity is preferable from the viewpoint of increasing the surface area and increasing the light transmission performance. . Specific examples of materials that satisfy these requirements include glass plates and substrates with glass fiber strength (hereinafter referred to as “glass fiber molded products”), but they can easily provide a large surface area and high porosity. In particular, from the viewpoint of efficiently incorporating light, glass fiber molded bodies such as glass fiber nonwoven fabrics are preferred!
また、金属イオンを吸着 ·回収するに際し、金属イオン含有溶液との親和性が高い ことが、金属イオンと金属イオン吸着材料との接触効率を高めるとの観点力 好まし い。具体的には、金属イオン含有溶液は水溶液であることが多いため、基体の表面 に水酸基等の親水性基を有することが好ましい。ガラス繊維成形体は、表面のシラノ ール基の密度が高 、ため、水溶液との親和性が高 、と 、う点からも好適である。 また、従来のゲル状の吸着材料のみの場合には、スキン層が破壊されにくぐ内外 に導通しにくかったが、ガラス繊維成形体とすることで、吸着材料のゲルとガラス繊維 の界面が存在し、該界面がスキン層に比べて破壊しやすい性質を有し、内外に導通 しゃすいことから、脱離した金属イオンを系外に取り出すことが容易となり、また、接 触効率を向上させることで、金属イオンの吸着性能をも向上させることができる。 なお、基体の形態としては特に制限されるものではなぐ用途または使用形態に応 じて適宜選択できるものである。例えば、シート状の形態、粒状の形態、チューブ状 の形態等が挙げられる。  In addition, when adsorbing and recovering metal ions, a high affinity with a metal ion-containing solution is preferable from the viewpoint of improving the contact efficiency between the metal ions and the metal ion adsorbing material. Specifically, since the metal ion-containing solution is often an aqueous solution, it preferably has a hydrophilic group such as a hydroxyl group on the surface of the substrate. The glass fiber molded body is preferable from the viewpoint of high density of silanol groups on the surface and high affinity with an aqueous solution. In addition, in the case of only the conventional gel-like adsorbent material, the skin layer was difficult to break and it was difficult to conduct the inside and outside, but by using a glass fiber molded body, the interface between the adsorbent gel and glass fiber exists. However, since the interface has a property that it is easier to break than the skin layer, and the inside and outside of the skin are screened, it is easy to take out the desorbed metal ions out of the system, and the contact efficiency is improved. Thus, the adsorption performance of metal ions can also be improved. The form of the substrate is not particularly limited, and can be appropriately selected according to the intended use or usage form. For example, a sheet-like form, a granular form, a tubular form, and the like can be given.
[0015] 本発明において、ガラス繊維成形体は上述のように、用途または使用形態に応じて シート状、粒状成型体、チューブ状など種々の形状をとり得るため、その物性につい ても最適な範囲は使用形態によって変化する力 通常、表面積は、上述のように光 応答性金属イオン吸着材料の担持効率を高めるとの観点力 2m2/g以上であること が好ましぐさらには 5m2Zg以上であることが好ましい。上限は特にないが、製造上 の制約により、通常は 20m2Zg以下である。 [0015] In the present invention, as described above, the glass fiber molded body can take various shapes such as a sheet shape, a granular molded body, and a tube shape depending on the application or use form. Usually, the surface area is preferably 2m 2 / g or more in view of increasing the loading efficiency of the photoresponsive metal ion adsorbing material as mentioned above, and more preferably 5m 2 Zg or more It is preferable that There is no upper limit, but it is usually less than 20m 2 Zg due to manufacturing restrictions.
また、ガラス繊維成形体の空隙率は 80〜98%であることが、十分な光透過性能を 得るとの観点力も好ましぐ 90〜98%であることがさらに好ましい。 繊維径については、上述の好ましい表面積、空隙率を得ることができ、また使用形 態に合致するものであれば、特に限定されないが、通常は 0. 1〜20 /ζ πιである。 0. 1 μ m以上であれば実用的な強度が得られ、一方、 20 m以下であれば十分な表 面積を得ることができる。またこの範囲であると良好な成形性が得られる。 Further, the porosity of the glass fiber molded body is preferably 80 to 98%, more preferably 90 to 98%, which is also preferable from the viewpoint of obtaining sufficient light transmission performance. The fiber diameter is not particularly limited as long as the above-mentioned preferable surface area and porosity can be obtained, and the fiber diameter matches the use form, but it is usually 0.1 to 20 / ζ πι. If it is 0.1 μm or more, a practical strength can be obtained, and if it is 20 m or less, a sufficient surface area can be obtained. Also, good moldability can be obtained within this range.
次に、ガラス繊維成形体をシート状で使用する場合には、例えば金属の吸着速度 を優先するか、または金属の吸着量を優先するか等の使用目的および使用形態に よって、適当な厚みが存在するが、通常は 50〜500 mであることが好ましい。 50 m以上であれば担体としての実用的に十分な強度を得ることができ、 500 m以下 であれば、光応答性金属イオン吸着材料の特性を十分維持したまま担持することが できる。  Next, when the glass fiber molded body is used in the form of a sheet, an appropriate thickness may be obtained depending on the purpose of use and usage, such as whether the metal adsorption rate is given priority or the metal adsorption amount is given priority. Although it exists, it is preferable that it is usually 50-500 m. If it is 50 m or more, a practically sufficient strength as a carrier can be obtained, and if it is 500 m or less, it can be supported while sufficiently maintaining the characteristics of the photoresponsive metal ion adsorbing material.
また、ガラス繊維成形体を粒状で使用する場合には、シート状の場合と同様に使用 目的および使用形態によって、適宜適当な粒径を選択することができるが、取り扱い の容易さを考慮すると、通常は lmm以上であることが好ましい。一方、粒径の上限は 特にないが、 15mm以下であると、繊維径、繊維密度等の制御により、粒子内部まで 光が届く材料を容易に設計することができる。  In addition, when the glass fiber molded body is used in a granular form, an appropriate particle size can be selected as appropriate depending on the purpose of use and the form of use in the same manner as in the case of a sheet, but considering the ease of handling, Usually, it is preferably 1 mm or more. On the other hand, there is no particular upper limit for the particle size, but if it is 15 mm or less, a material that allows light to reach the inside of the particle can be easily designed by controlling the fiber diameter, fiber density, and the like.
[0016] 次に、本発明で用いる光応答性金属イオン吸着材料とは、可視光等の光に応答し て、金属イオンを可逆的に液中で吸脱着し、かつ可逆的に変色するフォトクロミック化 合物をいい、例えば、メロシアニン構造を取り得るスピロピランゃスピロォキサジン分 子を利用するものである。  Next, the photoresponsive metal ion adsorbing material used in the present invention is a photochromic that reversibly adsorbs and desorbs metal ions in liquid and reversibly changes color in response to light such as visible light. It refers to a compound, for example, using a spiropyran or spiroxazine molecule that can take a merocyanine structure.
すなわち、本発明で用いる光応答性金属イオン吸着材料としては、下記一般式(1 )で示されるセグメント、すなわちスピロピランセグメント又はスピロォキサジンセグメン トを有する重合体を用いることが好まし 、。  That is, as the photoresponsive metal ion adsorbing material used in the present invention, it is preferable to use a polymer having a segment represented by the following general formula (1), that is, a spiropyran segment or a spiroxazine segment.
[0017] [化 1] [0017] [Chemical 1]
Figure imgf000009_0001
この重合体は、スピロピラン又はスピロォキサジンの単独重合体であってもよいし、 またスピロピランとスピロォキサジンの共重合体であってもよ 、。さらには本発明の効 果を奏する範囲で、スピロピラン及び/又はスピロォキサジンと他のモノマーの共重 合体であってもよ 、。スピロピラン及び Z又はスピロォキサジンと共重合体を形成す るモノマーとしては、ポリアミド、ポリアリノレアミン、ポリグリコーノレ、ポリアノレコーノレ、ポリ エステル等のポリマーを形成し得るモノマーなどが好適に挙げられる。
Figure imgf000009_0001
The polymer may be a spiropyran or a homopolymer of spiroxazine, or may be a copolymer of spiropyran and spiroxazine. Furthermore, it may be a spiropyran and / or a copolymer of spiroxazine and another monomer within the scope of the effects of the present invention. Preferred examples of the monomer that forms a copolymer with spiropyran and Z or spiroxazine include monomers that can form polymers such as polyamide, polyarynoleamine, polyglycolanol, polyanololecore, and polyester.
なお、共重合体におけるスピロピランセグメント及び z又はスピロォキサジンセグメ ントの含有量は、本発明の効果を奏する範囲で特に限定されないが、 2〜80モル% であることが好ましぐ 40〜60モル%であることがさらに好ましい。また、本発明の光 応答性金属イオン吸着材料は、上記重合体の吸着及び脱離作用を妨げない範囲で 他の成分、例えばアルキルジメタタリレート等の架橋剤、光増感剤等が含まれていて ちょい。  The content of the spiropyran segment and z or spiroxazine segment in the copolymer is not particularly limited as long as the effect of the present invention is achieved, but it is preferably 2 to 80 mol%. More preferably, it is mol%. Further, the photoresponsive metal ion adsorbing material of the present invention contains other components, for example, a cross-linking agent such as alkyl dimetatalylate, a photosensitizer and the like as long as the adsorption and desorption action of the polymer is not hindered. It ’s good.
式(1)中、 R、 Rおよび Rは独立に Hまたは CHであり、該重合体は、 Rが Hであ ればアタリレート重合体、 CHであればメタタリレート重合体である。 Rはメチル基、ェ In the formula (1), R, R and R are independently H or CH, and the polymer has R as H If it is CH, it is a metatalylate polymer. R is a methyl group
3 4  3 4
チル基、ドデシル基等のアルキル基またはアミド基である。 Xは炭素原子、窒素原子 又は硫黄原子であり、 Yは酸素原子又は硫黄原子である。  An alkyl group such as a til group or a dodecyl group, or an amide group; X is a carbon atom, nitrogen atom or sulfur atom, and Y is an oxygen atom or sulfur atom.
なお、上記共重合体は、式(1)に示されるセグメントと他のセグメントがブロック状の 重合体であっても、交互の重合体であっても良ぐ特に限定されない。以下、 Xが炭 素原子で Yが酸素原子の場合、すなわち式(1)に示されるセグメントとしてスピロビラ ンセグメントを有する場合にっ 、て説明する。  The copolymer is not particularly limited as long as the segment represented by the formula (1) and the other segment may be a block polymer or an alternating polymer. Hereinafter, the case where X is a carbon atom and Y is an oxygen atom, that is, the case where a spirobilane segment is included as a segment shown in Formula (1) will be described.
[0019] 上記重合体におけるスピロピランセグメントは、電気的に中性な無色のスピロピラン 構造体と、分子内に双性イオンを有するメロシアニン構造体とに、液中で可逆的に異 性化する光応答性を有する。スピロピラン構造体と、メロシアニン構造体とを次の(2) 式に示す。なお、(2)式中、 Mは陽イオンィ匕できる金属を示し、 R〜R、 X及び Yは  [0019] The spiropyran segment in the polymer has a photoresponse that reversibly differentiates in liquid into an electrically neutral colorless spiropyran structure and a merocyanine structure having a zwitterion in the molecule. Have sex. A spiropyran structure and a merocyanine structure are shown in the following formula (2). In the formula (2), M represents a metal capable of cationization, and R to R, X and Y are
1 4  14
式(1)と同様である。暗所下では、上記スピロピランセグメントが異性ィ匕して、メロシア ニン構造体をとるため着色している。このとき、上記液中に金属 Mの陽イオンが溶存 していると、メロシアニン構造における酸素原子すなわち式(1)、式(2)における Y原 子は、電子密度が高ぐこの部位で、陽イオンである金属イオンと式(2)に示すように 、錯形成を生じる。  This is the same as equation (1). In the dark, the spiropyran segment is isomerized and colored to take a merocyanine structure. At this time, if the metal M cation is dissolved in the liquid, the oxygen atom in the merocyanine structure, that is, the Y atom in the formulas (1) and (2), is at this site where the electron density is high. As shown in the formula (2), complex formation occurs with metal ions that are ions.
[0020] [化 2] [0020] [Chemical 2]
Figure imgf000011_0001
スピロピラン構造体 メロシアニン構造体
Figure imgf000011_0001
Spiropyran structure Merocyanine structure
[0021] この錯形成はメロシアニン構造体が可視光照射によりスピロピラン構造体に戻ると 解消する。すなわち、上記暗所下にあった共重合体に、外部から可視光を照射する と、メロシアニン構造体が閉環してスピロピラン構造体に異性ィ匕するため、共重合体 は無色(白色)となる。そして、これまで錯形成していた金属イオンは、液中に遊離す る。次に、可視光の照射を停止し、共重合体を喑所下に置くと、再度、共重合体中の スピロピランセグメントはメロシアニン構造となり、遊離して ヽた金属イオンと錯形成し 、かつ共重合体は再度着色する。本発明の光応答性金属イオン吸着材料は、この可 逆的な錯形成及び変色をおこなう共重合体を含むことにより、金属イオン溶液力 金 属イオンを吸着させて回収することができる。 [0021] This complex formation disappears when the merocyanine structure returns to the spiropyran structure by irradiation with visible light. That is, when the copolymer in the dark place is irradiated with visible light from the outside, the merocyanine structure closes and isomerizes to the spiropyran structure, so the copolymer becomes colorless (white). . The metal ions that have been complexed so far are released into the liquid. Next, when the irradiation with visible light is stopped and the copolymer is placed under the saddle, the spiropyran segment in the copolymer again becomes a merocyanine structure, which is complexed with the released metal ions and co-polymerized. The polymer is colored again. The photoresponsive metal ion adsorbing material of the present invention includes a copolymer that undergoes this irreversible complex formation and discoloration, so that metal ion solution force metal ions can be adsorbed and recovered.
[0022] また、ガラス等の基体への担持を強化する目的より、さらにシランカップリングを形 成するモノマーを加えても良い。シランカップリングを形成するモノマーとしては、例え ば、 Ύ—メタクリロキシプロピルトリメトキシシラン、 γ—アタリロキシプロピルトリメトキシ シラン、 γ—メタクリロキシプロピルトリエトキシシラン、 γ—アタリロキシプロピルトリエト キシシラン、メタクリロキシプロぺニルトリメトキシシラン、メタクリロキシプロぺニルトリエ トキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシ ラン、メタクリロキシプロピルトリス (メトキシエトキシ)シラン、 γ—メタクリロキシプロピル ジメトキシメチルシラン、 γ—メタクリロキシプロピルジェトキシメチルシランが好ましく 挙げられる。これらのシランカップリングを形成するモノマーは、単独で使用しても、 2 種以上組み合わせて用いてもよ!、。 [0022] For the purpose of strengthening the support on a substrate such as glass, a monomer that forms silane coupling may be added. Examples of the monomer that forms a silane coupling include Ύ-methacryloxypropyltrimethoxysilane, γ-atalyloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloxypropyltriethoxysilane, and methacrylate. Loxypropenyltrimethoxysilane, methacryloxypropenyltrie Preferable examples include toxisilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, methacryloxypropyltris (methoxyethoxy) silane, γ-methacryloxypropyl dimethoxymethylsilane, and γ-methacryloxypropyljetoxymethylsilane. These monomers that form silane couplings may be used alone or in combination of two or more.
共重合体における上記シランカップリングを形成するモノマーの含有量は、 10〜5 0モル%が好ましく、 30〜 50モル%がさらに好まし!/、。  The content of the monomer for forming the silane coupling in the copolymer is preferably 10 to 50 mol%, more preferably 30 to 50 mol%! /.
上記重合体の製造方法につ!、ては、例えばスピロピラン (メタ)アタリレートゃスピロ ォキサジン (メタ)アタリレートを合成しておき、これに重合開始剤を添加することで製 造することができる。なお、共重合体はスピロピラン (メタ)アタリレート及び Ζ又はスピ 口ォキサジン (メタ)アタリレートと、他のモノマーとの共存下、重合開始剤を添加する ことで得ることができる。ここで重合開始剤としては、特に限定されず、例えば ΑΙΒΝ ( 2, 2'—ァゾビスイソプチ口-トリル)等のラジカル重合開始剤を好適に使用すること ができる。  For example, spiropyran (meth) atalylate or spiroxazine (meth) atalylate is synthesized in advance and a polymerization initiator is added thereto. . The copolymer can be obtained by adding a polymerization initiator in the coexistence of spiropyran (meth) acrylate and Ζ or spiroxazine (meth) acrylate and other monomers. Here, the polymerization initiator is not particularly limited, and for example, a radical polymerization initiator such as ΑΙΒΝ (2,2′-azobisisobutyl-tolyl) can be preferably used.
基体シートに光応答性金属イオン吸着材料を担持させる方法としては、種々の方 法があり、例えば、スピロピラン (メタ)アタリレートゃスピロォキサジン (メタ)アタリレート 等を重合させる際に、基体を重合系に加えておいて、モノマーの重合と同時に基体 に担持させる方法、光応答性金属イオン吸着材料を溶媒に溶解させて溶液を調製し 、該溶液に基体を浸漬させる含浸法、さらに含浸させた後に溶媒を蒸発乾固させる 方法、シート状の基体に上記溶液を塗布する方法などが挙げられる。  There are various methods for supporting a photoresponsive metal ion adsorbing material on a substrate sheet. For example, when polymerizing spiropyran (meth) acrylate or spiroxazine (meth) acrylate, the substrate is polymerized. In addition to the method of supporting the monomer simultaneously with the polymerization of the monomer, the photoresponsive metal ion adsorbing material is dissolved in a solvent to prepare a solution, and the substrate is immersed in the solution, and further impregnated. Examples thereof include a method of evaporating the solvent to dryness and a method of applying the above solution to a sheet-like substrate.
上記担持方法のうち、モノマーの重合と同時に基体に担持させる方法が、工程を簡 略ィ匕できる点で好ましい。また、含浸法も簡便で効率的に担持できるので好ましい。 さらに、共重合体中に上記シランカップリングを形成するモノマーを加える担持方法 も、シランカップリング部がガラス等の基体と化学結合により強固に担持されるので、 製造上効率的で好ましい。この場合、例えば、スピロピラン (メタ)アタリレート等を重 合させる際に、シランカップリングを形成するモノマーを同時に加えて、共重合体を得 た後に、基体に担持させる方法、又は基体にシランカップリングを形成するモノマー を担持させた後、スピロピラン (メタ)アタリレートゃスピロォキサジン (メタ)アタリレート 等を重合させる際に、該基体を重合系に加えておいて、モノマーの重合と同時に基 体に担持させる方法等が挙げられる。 Of the above-mentioned supporting methods, the method of supporting the monomer simultaneously with the polymerization of the monomer is preferable because the process can be simplified. Also, the impregnation method is preferable because it is simple and can be efficiently supported. Furthermore, the supporting method of adding the monomer for forming the silane coupling into the copolymer is preferable because it is efficient in production because the silane coupling portion is firmly supported by a chemical bond with a substrate such as glass. In this case, for example, when spiropyran (meth) acrylate is combined, a monomer for forming a silane coupling is added at the same time to obtain a copolymer, and then supported on the substrate, or a silane cup on the substrate. Spiropyran (meth) atalylate or spiroxazine (meth) atalylate after supporting the ring-forming monomer For example, a method of adding the substrate to the polymerization system and supporting the substrate on the substrate at the same time as the polymerization of the monomer may be mentioned.
[0024] モノマーの重合の際に用いる溶媒、及び光応答性金属イオン吸着材料を溶解させ る溶媒としては、水もしくはアルコール等の親水性溶媒を好適に用いることができる。 本発明にお 、て、基体上の光応答性金属イオン吸着材料の担持量にっ 、ては、 本発明の効果を奏する範囲で特に限定されず、用途、又は使用形態によって適宜 選択することが可能である。例えば、基材として空隙率 90%程度のガラス繊維不織 布を用い、その表面に光応答性金属イオン吸着材料を担持して、ポーラスなフィルタ 一として用いる場合などは、比較的少量の担持量でよぐ具体的には、光応答性金 属イオン吸着材料として実用的に効果を発揮させるとの観点力 0. 15質量%以上 が好ましぐさらには 2質量%以上であることが好ましい。一方、空隙率 90%程度のガ ラス繊維不織布を構造支持体として用いる場合、例えば該ガラス繊維不織布を芯材 として用い、その周囲に光応答性金属イオン吸着材料を担持して用いる場合などは 、比較的高担持量で使用され、具体的には 80質量%以下の担持量で好適に使用 することができる。  [0024] A hydrophilic solvent such as water or alcohol can be preferably used as the solvent used for the polymerization of the monomer and the solvent for dissolving the photoresponsive metal ion adsorbing material. In the present invention, the amount of the photoresponsive metal ion adsorbing material supported on the substrate is not particularly limited as long as the effect of the present invention is achieved, and may be appropriately selected depending on the application or use form. Is possible. For example, when a glass fiber nonwoven fabric with a porosity of about 90% is used as the substrate and a photoresponsive metal ion adsorbing material is supported on the surface and used as a porous filter, a relatively small amount is supported. Specifically, a viewpoint power of 0.15% by mass or more is preferable, and it is preferably 2% by mass or more in order to exert practical effects as a photoresponsive metal ion adsorbing material. On the other hand, when a glass fiber nonwoven fabric with a porosity of about 90% is used as a structural support, for example, when the glass fiber nonwoven fabric is used as a core and a photoresponsive metal ion adsorbing material is supported around it, It is used at a relatively high loading, and specifically, it can be suitably used at a loading of 80% by mass or less.
[0025] 本発明における金属イオンの回収方法は、金属イオン吸着シートに担持された上 記 (共)重合体と金属イオンとを喑所下で錯形成させる工程と、可視光を照射して金 属イオンを (共)重合体力 遊離させる工程とを含む。この金属イオンを回収する工程 は、該 (共)重合体に金属イオンを吸着させたまま、該 (共)重合体を取り出し、これに 可視光を照射して金属イオンを遊離させればょ ヽ。  [0025] The method for recovering metal ions in the present invention includes a step of complexing the above (co) polymer and metal ions supported on a metal ion adsorbing sheet under a certain place, and irradiating visible light with gold. And (co) polymer force releasing step. In the step of recovering the metal ions, the metal ions are adsorbed on the (co) polymer and the (co) polymer is taken out and irradiated with visible light to release the metal ions. .
[0026] 本発明の吸着材料により吸着して回収できる金属イオンとしては、特に限定されな いが、環境保全等の観点から、重金属に適用することが好ましぐ具体的には、鉛 (II )、亜鉛 (II)、銅 (II)、ニッケル (II)、パラジウム (III)、リチウム (I)、マンガン (II)、鉄 (II) 、鉄 (III)等が例示される。また、式(2)では 2価のイオンが示されている力 特に価数 に限定はない。  [0026] The metal ion that can be adsorbed and recovered by the adsorbent material of the present invention is not particularly limited. Specifically, from the viewpoint of environmental protection and the like, it is preferable to apply it to heavy metals. ), Zinc (II), copper (II), nickel (II), palladium (III), lithium (I), manganese (II), iron (II), iron (III) and the like. In addition, in Formula (2), there is no limitation on the valence, especially the force for which divalent ions are shown.
実施例  Example
[0027] 以下、本発明を実施例及び比較例によりさらに詳しく説明するが、本発明はこれら の実施例によって何ら限定されるものではない。 (評価方法) [0027] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. (Evaluation methods)
1.形状保持の評価  1.Evaluation of shape retention
各実施例で得られた金属イオン吸着体と、基体を用いな ヽ光応答性金属イオン吸 着材料について、水中での温度変化に対する形状の変化を目視にて観察した。 10 °Cでの形状と 40°Cでの形状を比較した。  Regarding the metal ion adsorbent obtained in each example and the fluorescence-responsive metal ion adsorbent material using a substrate, the shape change with temperature change in water was visually observed. The shape at 10 ° C and the shape at 40 ° C were compared.
2.鉛イオンの吸脱着の評価  2.Evaluation of lead ion adsorption / desorption
(1)色の変化による評価  (1) Evaluation by color change
各実施例で得た金属イオン吸着体を、メタノール 9mL及び純水 lmLの混合溶剤 に浸漬し、暗所、室温で放置した。次に Pb (II)を、濃度が 4. 0 X 10— 5Mとなるように 液に添加し (過塩素酸鉛三水塩として約 0. 2mg)、暗所、室温で 20分間放置し、金 属イオン吸着体の色の変化を確認した。充分に変化した後、可視光(>420nm)を 3 0秒間照射した。用いた光源は 500Wのキセノンランプであり、カラーフィルターを介 して照射した。 The metal ion adsorbent obtained in each example was immersed in a mixed solvent of 9 mL of methanol and 1 mL of pure water, and left in the dark at room temperature. Then Pb a (II), was added to the liquid to a concentration of 4. 0 X 10- 5 M (about 0. 2 mg as perchlorate, lead trihydrate), dark, allowed to stand at room temperature for 20 minutes The color change of the metal ion adsorbent was confirmed. After sufficient change, visible light (> 420 nm) was irradiated for 30 seconds. The light source used was a 500W xenon lamp, which was illuminated through a color filter.
(2)電気化学的手法による評価  (2) Evaluation by electrochemical method
各実施例で得られた金属イオン吸着体における光照射状態および暗所状態の鉛 イオンの液中濃度を、矩形波ボルタンメトリで電気化学的に定量した。電気化学的定 量は、溶液中の Pb (II)の定量を行うものであり、 Pb (II) 40 μ
Figure imgf000014_0001
(ΐΐ) Μ 度 (〇)、金属イオン吸着体を浸潰した後の Pb (II)濃度(口)を測定した。また、金属ィ オン吸着体に可視光を照射した直後の Pb (II)濃度 (△)を測定した。
The concentration of lead ions in the light irradiation state and dark state in the metal ion adsorbent obtained in each example was electrochemically quantified by rectangular wave voltammetry. Electrochemical quantification is used to determine the amount of Pb (II) in the solution. Pb (II) 40 μ
Figure imgf000014_0001
(ii) Temperature (◯), Pb (II) concentration (mouth) after smashing metal ion adsorbent was measured. The Pb (II) concentration (△) was measured immediately after the metal ion adsorbent was irradiated with visible light.
また、得られた Pb (II)濃度から、以下の計算式を用いて吸着率及び脱離率を算出 し、その結果を表 1に示した。  The adsorption rate and desorption rate were calculated from the obtained Pb (II) concentration using the following formulas, and the results are shown in Table 1.
吸着率(%) = (〇のピーク値一口のピーク値) Z〇のピーク値  Adsorption rate (%) = (peak value of 〇 mouthful peak value) peak value of Z〇
脱離率(%) = (△のピーク値一口のピーク値) z (〇のピーク値一口のピーク値) Desorption rate (%) = (peak value of △ peak value of one bite) z (peak value of ◯ peak value of one bite)
3.可視光の透過率測定 3.Measurement of visible light transmittance
各実施例及び参考例で得られた金属イオン吸着体について、島津製作所製「MP C— 3100」を用いて、可視光の透過率を測定した。測定は大気中及び水中におい て測定した。水中での測定は、測定セルに水溶液を入れ、これに金属イオン吸着体 を浸漬させて測定した。 [0028] 製造実施例 1 (ガラス繊維不織布 (基体)の製造) About the metal ion adsorption body obtained by each Example and the reference example, the transmittance | permeability of visible light was measured using "MP C-3100" by Shimadzu Corporation. Measurements were taken in air and water. For measurement in water, an aqueous solution was placed in a measurement cell, and a metal ion adsorbent was immersed in the measurement cell. Production Example 1 (Production of glass fiber nonwoven fabric (substrate))
平均繊維径 1 μ mの極細ガラス繊維綿をパルパ一 (テスター産業 (株)製「PU— 20 1」)にて水中で解きほぐし、十分に解離、分散させ、抄紙用スラリーを調製した。該抄 紙用スラリーを、以下に示すペーパーの厚みに応じた所定の濃度に希釈し、ガラス 繊維分散液とした。次いで、手動湿式抄紙装置 (テスター産業 (株)製「PU— 301」) を用いてガラス繊維不織布を 3種類作製した。  An ultrafine glass fiber cotton having an average fiber diameter of 1 μm was unwound in water with a pulper (“PU-20 1” manufactured by Tester Sangyo Co., Ltd.), fully dissociated and dispersed to prepare a papermaking slurry. The paper slurry was diluted to a predetermined concentration according to the paper thickness shown below to obtain a glass fiber dispersion. Next, three types of glass fiber nonwoven fabrics were produced using a manual wet papermaking machine ("PU-301" manufactured by Tester Sangyo Co., Ltd.).
(A)厚み 0. 5mm、目付 70gZm2のガラス繊維不織布 (A) Glass fiber nonwoven fabric with a thickness of 0.5 mm and a basis weight of 70 gZm 2
(B)厚み 0. 05mm,目付 7gZm2のガラス繊維不織布 (B) Glass fiber nonwoven fabric with a thickness of 0.05 mm and a basis weight of 7 gZm 2
(C)厚み 0. lmm、目付 14gZm2のガラス繊維不織布 (C) Glass fiber nonwoven fabric with a thickness of 0.1 mm and a basis weight of 14 gZm 2
[0029] 実施例 1 [0029] Example 1
(1)スピロピランアタリレート(SPAA)の合成  (1) Synthesis of spiropyran acrylate (SPAA)
(a) r, 3', 3'—トリメチル 6 ヒドロキシスピロ(2H—1 ベンゾピラン一 2, 2' - インドール) 4. 72g (0. 0161mol) (ACROS ORGANICS社製、純度 99%、分 子量 293. 37、品番 42192— 0050)をトルエン (関東ィ匕学 (株)製 (蒸留後使用)、特 級、純度 99. 5%、沸点 110. 625°C) 28. 3mLに溶解させた。  (a) r, 3 ', 3'—trimethyl 6 hydroxyspiro (2H—1 benzopyran-1,2,2'-indole) 4. 72 g (0. 0161 mol) (ACROS ORGANICS, purity 99%, molecular weight 293 37, product number 42192-0050) was dissolved in 28.3 mL of toluene (manufactured by Kanto Chemical Co., Ltd. (used after distillation), special grade, purity 99.5%, boiling point 110.625 ° C).
(b)アクリル酸クロライド (東京化成工業 (株)製、品番 A0147 (蒸留後使用)分子量 9 0. 51) 1. 59g (0. 0176mol)を、トノレェン(同上) 14. 2mLに溶解させた。  (b) Acrylic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number A0147 (used after distillation), molecular weight 90.51) 1.59 g (0.0176 mol) was dissolved in 14.2 mL of Tonorene (same as above).
(c)別に、トリェチルァミン (以下、「TEA」という。 ) (和光純薬工業 (株)製 (蒸留後使 用)、純度 99%、品番 202— 02646) 1. 79g (0. 0114mol)を用意した。また、アン モ-ァ(関東ィ匕学 (株)製、純度 28. 0〜30. 0%、品番 01266— 00) 400mLの純水 lOOmL溶液を 1単位として、 5単位用意した。  (c) Separately, triethylamine (hereinafter referred to as “TEA”) (manufactured by Wako Pure Chemical Industries, Ltd. (used after distillation), purity 99%, product number 202-02646) 1. 79 g (0. 0114 mol) did. In addition, 5 units were prepared using 1 mL of 400 mL pure water lOOmL solution as an ammonia (manufactured by Kanto Chemical Co., Ltd., purity 28.0 to 30.0%, product number 01266-00).
(d)二口なすフラスコ内に上記(a)で得たスピロピランのトルエン溶液と、上記(c)の T EAとを投入し、二口なすフラスコの一つの口には球入冷却器、もう一方の口には円 筒型分液ロートを装着した。二口なすフラスコを 60°Cに保温しながら円筒型分液ロー トで上記 (b)のアクリル酸クロライドのトルエン溶液を少しずつ滴下した後、 15時間反 応させた。なお、この反応で発生した塩酸は、 TEAで中和された。 15時間後に、反 応溶液力も未反応のアクリル酸クロライドと TEAを取り除くために、反応溶液をトルェ ン lOOmLで希釈し、次いで分液ロート内に移して上記(c)のアンモニア水溶液を 1 単位加えた。分液ロートを振り混ぜ、静置して下層のアンモニア水溶液を取り出し、 残りの(c)のアンモニア水溶液の 1単位をカ卩え、同様にして分液を計 5回繰り返した。(d) Into the two-necked flask, the toluene solution of spiropyran obtained in ( a ) above and the TEA of (c) above are charged. One mouth was fitted with a cylindrical separatory funnel. While maintaining the temperature of the two-necked flask at 60 ° C., the toluene solution of acrylic acid chloride (b) above was dropped little by little with a cylindrical separatory funnel, and then reacted for 15 hours. The hydrochloric acid generated by this reaction was neutralized with TEA. After 15 hours, the reaction solution was diluted with toluene 10 mL to remove unreacted acrylic acid chloride and TEA, and then transferred to a separatory funnel, and the aqueous ammonia solution (c) was 1 Added units. The separatory funnel was shaken and allowed to stand to take out the lower ammonia aqueous solution, and 1 unit of the remaining ammonia aqueous solution (c) was collected, and the liquid separation was repeated a total of 5 times in the same manner.
(e)アンモニア水溶液の代わりに純水を 100ミリリットルカロえ、同様にして pHが 7にな るまで計 5回分液を繰り返した。 (e) 100 ml of pure water was added instead of the aqueous ammonia solution, and the liquid separation was repeated a total of 5 times until the pH reached 7.
(f)分液ロート上層の液を、エバポレータによりトルエンを蒸発させ、次いで減圧乾燥 させた。これによつて得られた褐色固体をジクロロメタンに溶力してカラムクロマトダラ フィにかけ、不純物を分離した。カラムはシリカゲル(関東ィ匕学 (株)製、品番 : 9385-4 M、 Rf : 0. 82)、展開溶媒はジクロロメタンを使用した。  (f) Toluene was evaporated from the liquid in the upper layer of the separatory funnel by an evaporator, and then dried under reduced pressure. The brown solid thus obtained was dissolved in dichloromethane and subjected to column chromatography to separate impurities. The column was silica gel (manufactured by Kanto Chemical Co., Ltd., product number: 9385-4 M, Rf: 0.82), and the developing solvent was dichloromethane.
(g)カラムより排出した液から、エバポレータでジクロロメタンを蒸発させ、次いで減圧 乾燥させて SPAA単量体である、 Γ, 3', 3'—トリメチル—6—(アタリロイルォキシ) スピロ(2H—1—べンゾピラン 2, 2 '—インドール)を 3. 10g (収率 66%)得た。  (g) From the liquid discharged from the column, the dichloromethane was evaporated with an evaporator, and then dried under reduced pressure, and the SPAA monomer, Γ, 3 ', 3'-trimethyl-6- (attalyloyloxy) spiro (2H Thus, 3.10 g (yield: 66%) of —1—benzopyran 2, 2′-indole) was obtained.
[0030] (2)金属イオン吸着体の製造  [0030] (2) Production of metal ion adsorbent
上記で得た SPAA単量体の Γ, 3', 3'—トリメチル—6—(アタリロイルォキシ)スピ 口(2H— 1—ベンゾピラン一 2, 2' インドール)(分子量 347. 41)を 104. lmg (0. 300mmol)用意した。また、 N—イソプロピルアクリルアミド(NIPAAm) (分子量 113 . 15)を 1. 661mg (14. 68mmol)用意した。  The SPAA monomer Γ, 3 ', 3'-trimethyl-6- (attalyloyloxy) spout (2H-1-benzopyran-1,2,2'indole) (molecular weight 347. 41) obtained above was used. lmg (0. 300 mmol) was prepared. Further, 1.661 mg (14.68 mmol) of N-isopropylacrylamide (NIPAAm) (molecular weight 113.15) was prepared.
他に、エタノール 6mL、重合開始剤 AIBN99. 3mg (SPAAと NIPAAmの合計モ ル数の 1Z60)、超純水を用意した。  In addition, ethanol 6mL, polymerization initiator AIBN99.3 mg (1Z60 of total number of SPAA and NIPAAm) and ultrapure water were prepared.
[0031] まず、一つの口には球入冷却器、もう一方の口にはゴム栓付きパスツールピペット を装着した二口なす形フラスコ中に、 SPAAをエタノール 3mL、 NIPPAmをエタノー ル 2mL、 MBAAmをエタノール lmLに溶解させて得た 3種類の溶液を入れて混合 した。上記フラスコ内に AIBNをカ卩えた後、乾燥窒素をパスツールピペットから 30分 間フローさせて装置内から湿気および空気を除去した。 [0031] First, in a two-necked flask equipped with a ball cooler in one mouth and a Pasteur pipette with a rubber stopper in the other mouth, SPAA is 3 mL ethanol, NIPPAm is ethanol 2 mL, MBAAm Was mixed in 3 types of solutions obtained by dissolving 1 mL of ethanol in 1 mL of ethanol. After AIBN was placed in the flask, dry nitrogen was allowed to flow from the Pasteur pipette for 30 minutes to remove moisture and air from the apparatus.
中央を開口した厚み 0. 05mmのテフロンシート(外枠: 5 X 5cm、内枠: 3 X 3cm) の開口部に製造実施例 1に記載の方法により製造したガラス繊維不織布 (B)を入れ て、 2枚の厚み 2mmのガラス板(5 X 5cm)ではさんだ。次いで、上記フラスコ内の溶 液をガラス板の間に注射器で十分に注入し、ガラス板をクリップでとめた後、これを電 気炉に入れて、 50°Cで 4時間反応させた。 反応終了後、得られたガラス繊維不織布を 1週間、純水に浸した。純水は、一日に 一回交換し、未反応物及び物理的に吸着した上記の各化合物を除去し、その後、減 圧乾燥した。 The glass fiber nonwoven fabric (B) produced by the method described in Production Example 1 is placed in the opening of a 0.05 mm thick Teflon sheet (outer frame: 5 X 5 cm, inner frame: 3 X 3 cm) with the center opened. , Sandwiched between two 2mm thick glass plates (5 x 5cm). Next, the solution in the flask was sufficiently injected between the glass plates with a syringe, and the glass plate was clamped with a clip, and then placed in an electric furnace and reacted at 50 ° C. for 4 hours. After completion of the reaction, the obtained glass fiber nonwoven fabric was immersed in pure water for 1 week. The pure water was changed once a day to remove unreacted substances and each of the compounds adsorbed physically, and then dried under reduced pressure.
このようにして、ガラス繊維不織布(B)に、 Γ, 3', 3'—トリメチル 6—(アタリロイ ルォキシ)スピロ(2H— 1—ベンゾピラン一 2, 2"—インドール)と N—イソプロピルァク リルアミドとの共重合体(以下、 P (SPAA—NIPAAm)という)が担持された金属ィォ ン吸着体を得た。  In this way, Γ, 3 ', 3'-trimethyl 6- (atarylloyoxy) spiro (2H-1-benzopyran-1,2,2 "-indole) and N-isopropylacrylamide are added to the glass fiber nonwoven fabric (B). And a metal ion adsorbent carrying a copolymer (hereinafter referred to as P (SPAA-NIPAAm)).
この共重合体中の各セグメントのモル比を、元素分析の結果力も算出したところ、 S PAA:NIPAAmは 2: 98 (スピロピランセグメント含有率が 2mol%)であった。  As a result of elemental analysis, the molar ratio of each segment in this copolymer was also calculated. As a result, S PAA: NIPAAm was 2:98 (spiropyran segment content was 2 mol%).
[0032] (3)評価結果  [0032] (3) Evaluation results
得られた金属イオン吸着体について、形状保持の評価結果を図 1に示す。 10°Cと 40°Cの形状から、昇温しても本発明に係る金属イオン吸着体は、形状を保持してい ることがわ力る。また、得られた金属イオン吸着体について、鉛イオンの吸脱着の評 価を行った。色の変化に関しては、 Pb (II)の吸着により黄色を呈し、また可視光の照 射によって黄色は消色した。電気化学的手法による評価においても、図 2に示すよう に Pb (II)の光可逆的な吸着が達成されていることがわかる。さらに、表 1に示す吸着 率及び脱離率による評価にぉ 、ても、ガラス繊維不織布に吸着材料を担持させるこ とで、吸着材料のみの場合(下記の比較例 1)に比べて性能は向上しており、吸着性 能が向上し、金属イオンを系外に取り出すことが容易であることが示された。  Figure 1 shows the shape retention evaluation results for the resulting metal ion adsorbent. From the shape of 10 ° C. and 40 ° C., the metal ion adsorbent according to the present invention is remarkably maintained in shape even when the temperature is raised. The obtained metal ion adsorbent was evaluated for the adsorption and desorption of lead ions. Regarding the color change, yellow color was exhibited by the adsorption of Pb (II), and the yellow color was erased by irradiation with visible light. As shown in Fig. 2, it can be seen that the photoreversible adsorption of Pb (II) has been achieved in the electrochemical method. Furthermore, even though the evaluation based on the adsorption rate and desorption rate shown in Table 1 is carried out, even if the adsorbent material is supported on the glass fiber nonwoven fabric, the performance is higher than the case of the adsorbent material alone (Comparative Example 1 below). It was shown that the adsorption performance was improved and it was easy to extract metal ions out of the system.
[0033] 比較例 1  [0033] Comparative Example 1
実施例 1にお ヽて、ガラス繊維不織布 (B)を用いなカゝつたこと以外は実施例 1と同 様にして、担体を有さない金属イオン吸着材料を得た。実施例 1と同様に形状保持 の評価を実施した。結果を図 3に示す。 10°Cと 40°Cの形状から、担体を有さない金 属イオン吸着材料は、昇温によって収縮し、形状を保持することができないことが確 f*i¾ れ 。  In Example 1, a metal ion adsorbing material having no carrier was obtained in the same manner as in Example 1 except that the glass fiber nonwoven fabric (B) was not used. The shape retention was evaluated in the same manner as in Example 1. The results are shown in Figure 3. From the shapes of 10 ° C. and 40 ° C., the metal ion adsorbing material having no carrier is surely shrunk by the temperature rise and can not hold the shape f * i.
表 1より、実施例 1と比較例 1の Pb (II)イオンの脱離率を比較すると、基体としてガラ ス繊維不織布を用いた実施例 1の吸着体では、脱離率が約 2倍以上に上昇すること が確認された。また、脱離率だけでなぐ吸着率も上昇していることが確認された。 [0034] 実施例 2 From Table 1, comparing the Pb (II) ion desorption rate of Example 1 and Comparative Example 1, the desorption rate of the adsorbent of Example 1 using a glass fiber nonwoven fabric as a substrate is about twice or more. It was confirmed that In addition, it was confirmed that the adsorption rate increased not only by the desorption rate. [0034] Example 2
(1)共重合体の合成  (1) Synthesis of copolymer
実施例 1で得た SPAA単量体の Γ, 3', 3'—トリメチル—6—(アタリロイルォキシ) スピロ(2H— 1—ベンゾピラン一 2, 2' インドール)(分子量 347. 41)を 52. lmg ( 0. 150mmol)用意した。また、 N—イソプロピルアクリルアミド(NIPAAm) (分子量 1 13. 15)を 757mg (6. 69mmol)用意した。  The SPAA monomer Γ, 3 ′, 3′-trimethyl-6- (atallyloyloxy) spiro (2H-1-benzopyran-1,2,2 ′ indole) (molecular weight 347. 41) obtained in Example 1 was 52. lmg (0.150 mmol) was prepared. Further, 757 mg (6.69 mmol) of N-isopropylacrylamide (NIPAAm) (molecular weight 1 13. 15) was prepared.
他に、エタノール 3mL、重合開始剤 AIBN8. 4mg (SPAAと NIPAAmの合計モ ル数の 1Z100)、重合禁止剤ハイドロキノン (東京化成工業 (株)製、純度 99. 0%、 品番 H0186) 3. 75mg、ジェチルエーテルを用意した。  In addition, ethanol 3mL, polymerization initiator AIBN 8.4mg (1Z100 of total number of SPAA and NIPAAm), polymerization inhibitor hydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd., purity 99.0%, product number H0186) 3.75mg Jetyl ether was prepared.
まず、 SPAAをエタノール 2mL、 NIPAAmをエタノール lmLに溶かして得た 2種 の溶液を、一つの口には球入冷却器、もう一方の口にはゴム栓付きノ《スツールピぺッ トを装着した二口なす形フラスコに入れて混合した。上記フラスコ内に乾燥窒素をパ スツールピペットから 30分間フローさせて装置内から湿気および空気を除去した。ォ ィルバスでフラスコの温度を 60°Cに上げ、 AIBNをカ卩えて 3時間反応させた後、ハイ ドロキノンを加えて反応を止めた。  First, two types of solutions obtained by dissolving SPAA in 2 mL of ethanol and NIPAAm in 1 mL of ethanol were fitted with a ball-in-cooler in one port and a stool pipette with a rubber stopper in the other port. Mix in a two-necked flask. Dry nitrogen was allowed to flow from the Pasteur pipette into the flask for 30 minutes to remove moisture and air from the apparatus. The temperature of the flask was raised to 60 ° C with an oil bath, AIBN was added and reacted for 3 hours, and then the reaction was stopped by adding hydroquinone.
フラスコ内の反応生成物を、大量のジェチルエーテル中に少しずつ滴下して沈殿 精製した。この沈殿を、ろ紙で濾別し、さらにメタノール中で再沈殿処理した後、減圧 乾燥して Γ, 3', 3'—トリメチル 6—(アタリロイルォキシ)スピロ(2H—1 ベンゾピ ラン 2, 2 '—インドール)と N—イソプロピルアクリルアミドとの共重合体(以下、 P (S PAA— NIPAAm)という) 255. 4mg (収率 24%)を得た。この共重合体中の各セグ メントのモル比を、元素分析の結果から算出したところ、 SPAA: NIPAAmは 2 : 98 ( スピロピランセグメント含有率が 2mol%)であった。  The reaction product in the flask was precipitated and purified by adding dropwise little by little into a large amount of jetyl ether. This precipitate was filtered off with a filter paper, further reprecipitated in methanol, and then dried under reduced pressure. Γ, 3 ', 3'-trimethyl 6- (atalyloyloxy) spiro (2H-1 benzopyran 2, A copolymer of 2′-indole) and N-isopropylacrylamide (hereinafter referred to as P (S PAA—NIPAAm)) was obtained in an amount of 255.4 mg (yield 24%). When the molar ratio of each segment in the copolymer was calculated from the results of elemental analysis, SPAA: NIPAAm was 2:98 (spiropyran segment content was 2 mol%).
[0035] (2)金属イオン吸着体の製造 [0035] (2) Production of metal ion adsorbent
上記(1)で製造した共重合体 (光応答性金属イオン吸着材料) 0. lgを 2mLのエタ ノールに溶解させ、滴下液を調製した。次いで、製造実施例 1で製造したガラス繊維 不織布 (A)に、この液を室温下で滴下、浸透させ、金属イオン吸着体を得た。  0.1 g of the copolymer (photoresponsive metal ion adsorbing material) produced in (1) above was dissolved in 2 mL of ethanol to prepare a dropping solution. Next, this liquid was dropped and infiltrated into the glass fiber nonwoven fabric (A) produced in Production Example 1 at room temperature to obtain a metal ion adsorbent.
(3)評価結果  (3) Evaluation results
得られた金属イオン吸着体について、鉛イオンの吸脱着の評価を行った。色の変 ィ匕に関しては、 Pb (II)の吸着により黄色を呈し、また可視光の照射によって黄色は消 色した。 The obtained metal ion adsorbent was evaluated for adsorption / desorption of lead ions. Color change As for 匕, yellow color was observed by the adsorption of Pb (II), and the yellow color disappeared by irradiation with visible light.
[0036] 実施例 3 [0036] Example 3
基体として、製造実施例 1で製造したガラス繊維不織布 (A)を用いた以外は実施例 2と同様にして、金属イオン吸着体を得、同様に評価した。色の変化に関して、 Pb (ll )の吸着により黄色を呈し、また可視光の照射によって黄色は消色した。  A metal ion adsorbent was obtained and evaluated in the same manner as in Example 2 except that the glass fiber nonwoven fabric (A) produced in Production Example 1 was used as the substrate. Regarding the color change, yellow color was exhibited by the adsorption of Pb (ll), and the yellow color was erased by irradiation with visible light.
[0037] 実施例 4 [0037] Example 4
基体として、製造実施例 1で製造したガラス繊維不織布 (C)を用いた以外は実施例 1と同様にして、金属イオン吸着体を得、可視光の透過率を測定した。結果を図 4に 示す。  A metal ion adsorbent was obtained and the transmittance of visible light was measured in the same manner as in Example 1 except that the glass fiber nonwoven fabric (C) produced in Production Example 1 was used as the substrate. The results are shown in Fig. 4.
本発明に係る金属イオン吸着体は、水中での透過率が高いことがわかる。これはガ ラスが元来透明であり、気泡などが存在しない状態では透過率が高いが、不織布状 態では空気とガラスの屈折率が異なるため、その界面で光が散乱し、見かけの透過 率が低下することによる。一方、水溶液中では、水の屈折率とガラスの屈折率がほぼ 等しいことから、ガラス繊維不織布担体では、上記散乱が減少し、見かけの透過率が 増大する。後述する参考例 1との対比から、基体としてガラス繊維材料を用いることが 好ましいことがわかる。  It can be seen that the metal ion adsorbent according to the present invention has a high transmittance in water. This is because glass is originally transparent and has high transmittance in the absence of bubbles, but in the nonwoven fabric state, the refractive index of air and glass is different, so light is scattered at the interface, and apparent transmittance is Due to the decline. On the other hand, in an aqueous solution, since the refractive index of water and the refractive index of glass are substantially equal, in the glass fiber nonwoven fabric carrier, the scattering is reduced and the apparent transmittance is increased. From comparison with Reference Example 1 described later, it is understood that it is preferable to use a glass fiber material as the substrate.
[0038] 実施例 5 [0038] Example 5
γ—メタクリロキシプロピルトリメトキシシラン(MPTMS) (分子量 248. 4)を 1. 488 g (5. 992mmol)と、 N—イソプロピルアクリルアミド(NIPAAm) (分子量 113. 15) を 1. 560g (13. 78mmol)を用意した。また、実施例 1で得られた SPAA単量体の 1 3', 3'—トリメチル 6—(アタリロイルォキシ)スピロ(2H—1—ベンゾピラン一 2, 2'—インドール)(分子量 347. 41)を 138. 8mg (0. 400mmol)を用意した。  1.488 g (5.9992 mmol) of γ-methacryloxypropyltrimethoxysilane (MPTMS) (molecular weight 248.4) and 1.560 g (13.78 mmol) of N-isopropylacrylamide (NIPAAm) (molecular weight 113.15) ) Was prepared. Further, the SPAA monomer 1 3 ′, 3′-trimethyl 6- (atallyloyloxy) spiro (2H-1-benzopyran-1,2,2′-indole) (molecular weight 347. 41) obtained in Example 1 was used. 138.8 mg (0. 400 mmol) was prepared.
その他、塩酸 15mL、硝酸 5mL、エタノール 8mL、重合開始剤 AIBN54. 7mg (S PAAと NIPAAmの合計モル数の 1Z60)、重合禁止剤ハイドロキノン(東京化成ェ 業 (株)製、純度 99. 0%、品番 H0186)、アセトン、イソプロピルアルコール、ジェチ ルエーテル、超純水を用意した。  In addition, hydrochloric acid 15mL, nitric acid 5mL, ethanol 8mL, polymerization initiator AIBN54.7 7mg (1Z60 of the total number of moles of SPAA and NIPAAm), polymerization inhibitor Hydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd., purity 99.0%, No. H0186), acetone, isopropyl alcohol, diethyl ether, and ultrapure water were prepared.
まず、一つの口には球入冷却器、もう一方の口にはゴム栓付きパスツールピペット を装着した二口なす形フラスコ中に、 SPAAをエタノール 4mL、 NIPPAmをエタノー ル 2mL、 MBAAmをエタノール 2mLに溶解させて得た 3種類の溶液を入れて混合 した。上記フラスコに乾燥窒素をパスツールピペットから 30分間フローさせて装置内 から湿気および空気を除去した。次!、でオイルバスでフラスコの温度を 60°Cに上げ、 AIBNをカ卩えて 1時間反応させた後、ハイドロキノンをカ卩えて反応を止めた。 First, a ball cooler in one mouth and a Pasteur pipette with a rubber stopper in the other mouth In a two-necked flask equipped with, three types of solutions obtained by dissolving SPAA in ethanol (4 mL), NIPPAm in ethanol (2 mL), and MBAAm in ethanol (2 mL) were mixed and mixed. Moisture and air were removed from the apparatus by flowing dry nitrogen from the Pasteur pipette into the flask for 30 minutes. Next !, raised the temperature of the flask to 60 ° C in an oil bath, added AIBN and allowed to react for 1 hour, then added hydroquinone and stopped the reaction.
フラスコ内の反応生成物を、大量のジェチルエーテル中に少しずつ滴下して沈殿 精製した。この沈殿を、ろ紙で濾別し、さらにメタノール中で再沈殿処理した後、減圧 乾燥して Γ, 3', 3'—トリメチル 6—(アタリロイルォキシ)スピロ(2H—1 ベンゾピ ラン一 2, 2'—インドール)と N—イソプロピルアクリルアミドと γ—メタクリロキシプロピ ルトリメトキシシランとの共重合体(以下、 P (SPAA—NIPAAm—MPTMS)という) 395. 5mg (収率 34%)を得た。この共重合体中の各セグメントのモル比を、元素分 祈の結果から算出したところ、 SPAA: NIPAAm: MPTMSは 2 : 68 : 30 (スピロビラ ンセグメント含有率が 2mol%)であった。  The reaction product in the flask was precipitated and purified by adding dropwise little by little into a large amount of jetyl ether. This precipitate was filtered off with a filter paper, further reprecipitated in methanol, and then dried under reduced pressure. Γ, 3 ', 3'-Trimethyl 6- (Ataryloyloxy) spiro (2H-1 benzopyran 1 2 , 2'-indole), N-isopropylacrylamide, and γ-methacryloxypropyltrimethoxysilane copolymer (hereinafter referred to as P (SPAA-NIPAAm-MPTMS)) 395.5 mg (yield 34%) was obtained. . When the molar ratio of each segment in this copolymer was calculated from the results of elemental dedication, SPAA: NIPAAm: MPTMS was 2:68:30 (spirobilane segment content was 2 mol%).
まず、塩酸 15mL、硝酸 5mLの混合液に厚み 2mmの 2枚のガラス板(5 X 5cm)を 10分間浸した後、塩酸、硝酸混合液をアセトンで洗い流した。次いで、イソプロピル アルコール中にガラス板を 20分浸して洗浄し、再びイソプロピルアルコール中で 10 分間の超音波洗浄と、 80°Cのイソプロピルアルコール中での洗浄を 20分間行った。 そして再度、イソプロピルアルコール中で 10分間の超音波洗浄と、 80°Cのイソプロピ ルアルコール中での洗浄を行つた。  First, two glass plates (5 × 5 cm) each having a thickness of 2 mm were immersed in a mixed solution of hydrochloric acid 15 mL and nitric acid 5 mL for 10 minutes, and then the hydrochloric acid and nitric acid mixed solution was washed away with acetone. Next, the glass plate was immersed in isopropyl alcohol for 20 minutes for cleaning, and then again subjected to ultrasonic cleaning in isopropyl alcohol for 10 minutes and cleaning in 80 ° C isopropyl alcohol for 20 minutes. Again, ultrasonic cleaning for 10 minutes in isopropyl alcohol and cleaning in isopropyl alcohol at 80 ° C were performed.
中央を開口した厚み 0. 05mmのテフロンシート(外枠: 5 X 5cm、内枠: 3 X 3cm) の開口部に製造実施例 1に記載の方法により製造したガラス繊維不織布 (B)を入れ て、上記のように洗浄したガラス板ではさんだ。次に、アセトン 1. 064mLに上記のよ うに得られた P (SPAA— NIPAAm— MPTMS) lOOmgを溶解した溶液を、注射器 を用いてガラス板の間に十分に注入し、ガラス板をクリップでとめて、室温で 12時間 反応させた。反応終了後、ガラス板の 1枚をはがし、大量のアセトンに浸して、未反応 の P (SPAA NIPAAm MPTMS)と物理的に吸着した P (SPAA NIPAAm MPTMS)を洗い流し、減圧乾燥させて Γ, 3', 3 '—トリメチルー 6—(アタリロイルォ キシ)スピロ(2H— 1—ベンゾピラン一 2, 2"—インドール)と N—イソプロピルアクリル アミドと γ—メタクリロキシプロピルトリメトキシシランとの共重合体をガラス繊維不織布 に担持させた金属イオン吸着体を得た。 The glass fiber nonwoven fabric (B) produced by the method described in Production Example 1 is placed in the opening of a 0.05 mm thick Teflon sheet (outer frame: 5 X 5 cm, inner frame: 3 X 3 cm) with the center opened. , Sandwiched with a glass plate washed as above. Next, a solution of P (SPAA-NIPAAm-MPTMS) lOOmg obtained as described above in 1.064 mL of acetone is sufficiently poured between glass plates using a syringe, and the glass plate is clamped with a clip. The reaction was allowed to proceed for 12 hours at room temperature. After completion of the reaction, one glass plate is peeled off, immersed in a large amount of acetone, unreacted P (SPAA NIPAAm MPTMS) and physically adsorbed P (SPAA NIPAAm MPTMS) are washed away, dried under reduced pressure, and Γ, 3 ', 3' —Trimethyl-6- (Ataryloyloxy) spiro (2H— 1-benzopyran-1,2,2 ”-indole) and N-isopropylacryl A metal ion adsorbent in which a copolymer of amide and γ-methacryloxypropyltrimethoxysilane was supported on a glass fiber nonwoven fabric was obtained.
得られた金属イオン吸着体について、鉛イオンの吸脱着の評価を行った。色の変 ィ匕に関しては、 Pb (II)の吸着により黄色を呈し、また可視光の照射によって黄色は消 色した。  The obtained metal ion adsorbent was evaluated for adsorption / desorption of lead ions. Regarding the color change, yellow color was exhibited by the adsorption of Pb (II), and the yellow color was erased by irradiation with visible light.
実施例 6 Example 6
γ—メタクリロキシプロピルトリメトキシシラン(MPTMS) (分子量 248. 4)を 4. lmg (0. 016mmol)と、 N—イソプロピルアクリルアミド(NIPAAm) (分子量 113. 15)を 302. 8mg (2. 676mmol)を用意した。また、実施例 1で得られた SPAA単量体の 1 γ-methacryloxypropyltrimethoxysilane (MPTMS) (molecular weight 248.4) 4. lmg (0.106 mmol) and N-isopropylacrylamide (NIPAAm) (molecular weight 113.15) 302.8 mg (2.676 mmol) Prepared. In addition, 1 of the SPAA monomer obtained in Example 1
3', 3'—トリメチル 6—(アタリロイルォキシ)スピロ(2H—1—ベンゾピラン一 2, 2'—インドール)(分子量 347. 41)を 20. 8mg (0. O599mmol)を用意した。その 他、塩酸 15mL、硝酸 5mL、エタノール 1. 2mL、重合開始剤 AIBN7. 5mg (SPA Aと NIPAAmの合計モル数の 1Z60)、アセトン、イソプロピルアルコール、超純水を 用总し 7 o 20.8 mg (0. O599 mmol) of 3 ′, 3′-trimethyl 6- (atallyloyloxy) spiro (2H-1-benzopyran-1,2,2′-indole) (molecular weight 347. 41) was prepared. In addition, hydrochloric acid 15 mL, nitric acid 5 mL, ethanol 1.2 mL, polymerization initiator AIBN 7.5 mg (1Z60 of the total number of moles of SPA A and NIPAAm), acetone, isopropyl alcohol, and ultrapure water 7 o
まず、塩酸 15mL、硝酸 5mLの混合液に厚み 2mmの 2枚のガラス板(5 X 5cm)を 10分間浸した後、塩酸、硝酸混合液をアセトンで洗い流した。次いで、イソプロピル アルコール中にガラス板を 20分浸して洗浄し、再びイソプロピルアルコール中で 10 分間の超音波洗浄と、 80°Cのイソプロピルアルコール中での洗浄を行った。  First, two glass plates (5 × 5 cm) each having a thickness of 2 mm were immersed in a mixed solution of hydrochloric acid 15 mL and nitric acid 5 mL for 10 minutes, and then the hydrochloric acid and nitric acid mixed solution was washed away with acetone. Next, the glass plate was immersed in isopropyl alcohol for 20 minutes for cleaning, and then ultrasonic cleaning for 10 minutes in isopropyl alcohol and cleaning in isopropyl alcohol at 80 ° C. were performed again.
中央を開口した厚み 0. 05mmのテフロンシート(外枠: 5 X 5cm、内枠: 3 X 3cm) の開口部に製造実施例 1に記載の方法により製造したガラス繊維不織布 (B)を入れ て、上記のように洗浄したガラス板ではさんだ。次に、アセトン 1. 05mLに MPTMS4 . lmgを溶解した溶液を、注射器を用いてガラス板の間に十分に注入し、ガラス板を クリップでとめて、室温で 12時間反応させた。反応終了後、ガラス板の 1枚をはがし、 大量のアセトンに浸して、未反応の MPTMSと物理的に吸着した MPTMSを洗い流 し、減圧乾燥させて γ—メタクリロキシプロピルトリメトキシシランを担持したガラス繊維 不織布を得た。  The glass fiber nonwoven fabric (B) produced by the method described in Production Example 1 is placed in the opening of a 0.05 mm thick Teflon sheet (outer frame: 5 X 5 cm, inner frame: 3 X 3 cm) with the center opened. , Sandwiched with a glass plate washed as above. Next, a solution of MPTMS 4.1 mg in 1.05 mL of acetone was sufficiently injected between the glass plates using a syringe, the glass plate was clamped and allowed to react at room temperature for 12 hours. After completion of the reaction, one of the glass plates is peeled off and immersed in a large amount of acetone to wash away unreacted MPTMS and physically adsorbed MPTMS and dried under reduced pressure to carry γ-methacryloxypropyltrimethoxysilane. A glass fiber nonwoven was obtained.
次に、一つの口には球入冷却器、もう一方の口にはゴム栓付きパスツールピペット を装着した二口なす形フラスコ中に、 SPAAをエタノール 0. 6mL NIPPAmをエタ ノール 0. 6mLに溶解させて得た 2種類の溶液を入れて混合した。上記フラスコに乾 燥窒素をパスツールピペットから 30分間フローさせて装置内力 湿気および空気を 除去した。次いで AIBNをカ卩えて、乾燥窒素をパスツールピペットから 30分間フロー させた。 Next, SPAA was added to ethanol 0.6 mL NIPPAm in a two-necked flask equipped with a ball cooler in one neck and a Pasteur pipette with a rubber stopper in the other. Two types of solutions obtained by dissolving in 0.6 mL of knoll were added and mixed. Dry nitrogen was allowed to flow from the Pasteur pipette into the flask for 30 minutes to remove the internal moisture and air. AIBN was then collected and dry nitrogen was allowed to flow through the Pasteur pipette for 30 minutes.
中央を開口した厚み 0. 05mmのテフロンシート(外枠: 5 X 5cm、内枠: 3 X 3cm) の開口部に上記の MPTMSを担持したガラス繊維不織布を入れて、 2枚の厚み 2m mのガラス板(5 X 5cm)ではさんだ。次いで、上記フラスコ内の溶液をガラス板の間 に注射器で十分に注入し、ガラス板をクリップでとめた後、これを電気炉に入れて、 6 0°Cで 4時間反応させた。  Put the glass fiber nonwoven fabric carrying the above MPTMS into the opening of a 0.05mm thick Teflon sheet (outer frame: 5 X 5cm, inner frame: 3 X 3cm) with a thickness of 2mm. It is sandwiched between glass plates (5 x 5cm). Next, the solution in the flask was sufficiently injected between the glass plates with a syringe, the glass plate was clamped with a clip, and then placed in an electric furnace to react at 60 ° C. for 4 hours.
反応終了後、得られたガラス繊維不織布を、大量のアセトンに浸し、未反応物及び 物理的に吸着した上記の各化合物を除去し、その後、減圧乾燥した。  After completion of the reaction, the obtained glass fiber nonwoven fabric was immersed in a large amount of acetone to remove unreacted substances and each of the compounds adsorbed physically, and then dried under reduced pressure.
このようにして、ガラス繊維不織布 (A)に、 yーメタクリロキシプロピルトリメトキシシラ ンと Γ, 3', 3'—トリメチル 6—(アタリロイルォキシ)スピロ(2H—1 ベンゾピラン 2, 2' インドール)と N—イソプロピルアクリルアミドとの共重合体が担持された金 属イオン吸着体を得た。  In this way, the glass fiber nonwoven fabric (A) was coated with y-methacryloxypropyltrimethoxysilane and Γ, 3 ', 3'-trimethyl 6- (atalyloyloxy) spiro (2H-1 benzopyran 2, 2' A metal ion adsorbent carrying a copolymer of indole) and N-isopropylacrylamide was obtained.
得られた金属イオン吸着体について、鉛イオンの吸脱着の評価を行った。色の変 ィ匕に関しては、 Pb (II)の吸着により黄色を呈し、また可視光の照射によって黄色は消 色した。  The obtained metal ion adsorbent was evaluated for adsorption / desorption of lead ions. Regarding the color change, yellow color was exhibited by the adsorption of Pb (II), and the yellow color was erased by irradiation with visible light.
上記のような手順に従って、共重合体にシランカップリングを形成するモノマーを加 える担持方法により、金属イオン吸着体を得ることもできる。  A metal ion adsorbent can also be obtained by a supporting method in which a monomer for forming a silane coupling is added to a copolymer according to the above procedure.
[0040] 参考例 1 [0040] Reference Example 1
基体として、テフロン製の不織布 (ジャパンゴァテックス (株)製)を使用したこと以外 は、実施例 4と同様にして、金属イオン吸着体を得、可視光の透過率を測定した。結 果を図 5に示す。ガラス繊維製の不織布に比較して、材料と水溶液の界面で光が散 乱することから、透過率の増加が見られない。  A metal ion adsorbent was obtained and the visible light transmittance was measured in the same manner as in Example 4 except that a non-woven fabric made of Teflon (manufactured by Japan Gore-Tex Co., Ltd.) was used as the substrate. The results are shown in Fig. 5. Compared to glass fiber non-woven fabric, light is scattered at the interface between the material and the aqueous solution, so no increase in transmittance is observed.
[0041] [表 1] 実施例 1 比較例 1 鉛イオンの 8 8 . 0 7 7 . 3 [0041] [Table 1] Example 1 Comparative Example 1 Lead ion 8 8 .0 7 7 .3
吸着率 (%)  Adsorption rate (%)
イオンの 2 8 . 1 1 3 . 9  Ionic 2 8. 1 1 3. 9
脱離率 (%)  Desorption rate (%)
[0042] 本発明の金属イオン吸着体は、金属イオンの精製 ·回収に用いることができる他、 金属イオンのセンサー、金属イオンのチェッカ一として使用することができ、また金属 イオンフィルタ一として使用することもできる。さらに、微量の金属イオンの定量分析 に際しての、金属イオンの濃縮などに利用することもできる。 [0042] The metal ion adsorbent of the present invention can be used for purification and recovery of metal ions, can be used as a sensor for metal ions, a checker for metal ions, and can also be used as a metal ion filter. You can also. Furthermore, it can be used for concentration of metal ions in quantitative analysis of trace amounts of metal ions.
産業上の利用可能性  Industrial applicability
[0043] 本発明の金属イオン吸着シートを用いることによって、光応答性金属イオン吸着材 料の実用上の取り扱!/、が容易となり、水溶液中に含有される金属イオンとの接触効 率を増大させることができる。また光を効率よく受光することができるため、効率的な 金属イオンの吸脱着が可能である。さらに本発明の金属イオン吸着シートは、耐久性 が高ぐ長期間繰り返して使用することができ、かつ、脱離した金属イオンを系外に取 り出すことが可能である。 [0043] By using the metal ion adsorbing sheet of the present invention, practical handling of the photoresponsive metal ion adsorbing material becomes easy, and the contact efficiency with the metal ions contained in the aqueous solution is improved. Can be increased. In addition, since light can be received efficiently, it is possible to efficiently absorb and desorb metal ions. Furthermore, the metal ion adsorbing sheet of the present invention is highly durable and can be used repeatedly for a long time, and the desorbed metal ions can be taken out of the system.

Claims

請求の範囲 基体に光応答性金属イオン吸着材料を担持したことを特徴とする金属イオン吸着体 光応答性金属イオン吸着材料が、下記一般式 (I)に示すセグメントを必須セグメントと する重合体を含有する請求項 1に記載の金属イオン吸着体。 Claims A metal ion adsorbent characterized in that a photoresponsive metal ion adsorbing material is supported on a substrate. The photoresponsive metal ion adsorbing material comprises a polymer having the segment represented by the following general formula (I) as an essential segment: The metal ion adsorbent according to claim 1, which is contained.
[化 1]  [Chemical 1]
Figure imgf000024_0001
Figure imgf000024_0001
(R、 R及び Rは独立に Hまたは CHであり、 Rはアルキル基又はアミド基、 Xは炭(R, R and R are independently H or CH, R is an alkyl group or amide group, X is carbon
1 2 3 3 4 1 2 3 3 4
素原子、窒素原子又は硫黄原子、 Yは酸素原子又は硫黄原子である。 )  Elemental atom, nitrogen atom or sulfur atom, Y is an oxygen atom or sulfur atom. )
[3] 上記重合体と上記基体とがシランカップリングを形成していることを特徴とする請求項[3] The polymer and the substrate form a silane coupling.
2に記載の金属イオン吸着体。 2. The metal ion adsorbent according to 2.
[4] 基体が無機材料力 なる請求項 1〜3のいずれかに記載の金属イオン吸着体。 [4] The metal ion adsorbent according to any one of claims 1 to 3, wherein the substrate has an inorganic material strength.
[5] 無機材料がガラス材料である請求項 4に記載の金属イオン吸着体。 5. The metal ion adsorbent according to claim 4, wherein the inorganic material is a glass material.
[6] ガラス材料がガラス繊維材料である請求項 5に記載の金属イオン吸着体。 [7] 金属イオンが重金属イオンである請求項 1〜6の 、ずれかに記載の金属イオン吸着 体。 6. The metal ion adsorbent according to claim 5, wherein the glass material is a glass fiber material. 7. The metal ion adsorbent according to any one of claims 1 to 6, wherein the metal ion is a heavy metal ion.
PCT/JP2005/014125 2004-08-03 2005-08-02 Metal ion adsorbent WO2006013864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531497A JPWO2006013864A1 (en) 2004-08-03 2005-08-02 Metal ion adsorbent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004226740 2004-08-03
JP2004-226740 2004-08-03

Publications (1)

Publication Number Publication Date
WO2006013864A1 true WO2006013864A1 (en) 2006-02-09

Family

ID=35787147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014125 WO2006013864A1 (en) 2004-08-03 2005-08-02 Metal ion adsorbent

Country Status (2)

Country Link
JP (1) JPWO2006013864A1 (en)
WO (1) WO2006013864A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268444A (en) * 2006-03-31 2007-10-18 Tokyo Denki Univ Photoresponsive metal ion adsorbent material and metal ion recovery process
JP2012206108A (en) * 2011-03-16 2012-10-25 National Institute For Materials Science Safety check type simple filtering method for aqueous harmful ion and instrument for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122376A (en) * 1980-03-03 1981-09-25 Sugai Kagaku Kogyo Kk Bis-crown ether derivative, its preparation, and selective ion extracting agent containing the same
JP2002316838A (en) * 2001-04-12 2002-10-31 Hiroki Koma Functional inorganic material
JP2002332480A (en) * 2001-05-09 2002-11-22 Tokyo Denki Univ Photochromic compound
JP2003053185A (en) * 2001-08-17 2003-02-25 Tokyo Denki Univ Photoresponsive metallic ion adsorbing material and method for recovering metallic ion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122376A (en) * 1980-03-03 1981-09-25 Sugai Kagaku Kogyo Kk Bis-crown ether derivative, its preparation, and selective ion extracting agent containing the same
JP2002316838A (en) * 2001-04-12 2002-10-31 Hiroki Koma Functional inorganic material
JP2002332480A (en) * 2001-05-09 2002-11-22 Tokyo Denki Univ Photochromic compound
JP2003053185A (en) * 2001-08-17 2003-02-25 Tokyo Denki Univ Photoresponsive metallic ion adsorbing material and method for recovering metallic ion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268444A (en) * 2006-03-31 2007-10-18 Tokyo Denki Univ Photoresponsive metal ion adsorbent material and metal ion recovery process
JP2012206108A (en) * 2011-03-16 2012-10-25 National Institute For Materials Science Safety check type simple filtering method for aqueous harmful ion and instrument for the same

Also Published As

Publication number Publication date
JPWO2006013864A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
Wu et al. Progress and challenges in molecularly imprinted polymers for adsorption of heavy metal ions from wastewater
Zheng et al. Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La (III) adsorption
Shamsipur et al. Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion
Zhou et al. Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application
Mafu et al. Ion-imprinted polymers for environmental monitoring of inorganic pollutants: synthesis, characterization, and applications
Rao et al. Metal ion-imprinted polymers—novel materials for selective recognition of inorganics
Pan et al. Selective recognition of 2, 4, 5-trichlorophenol by temperature responsive and magnetic molecularly imprinted polymers based on halloysite nanotubes
Zong et al. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification
Yu et al. High efficiency and fast removal of trace Pb (II) from aqueous solution by carbomethoxy-functionalized metal–organic framework
CN102527349B (en) Magnetic composite material surface imprinting thermosensitive adsorbent, and preparation method and application thereof
Ansari et al. Removal of Eosin Y, an anionic dye, from aqueous solutions using conducting electroactive polymers
RU2719736C2 (en) Granules of molecularly imprinted polymers for metal extraction and use thereof
Zhai et al. Metal ion-small molecule complex imprinted polymer membranes: Preparation and separation characteristics
RU2748350C2 (en) Molecularly imprinted polymer granules for extraction of lithium, mercury and scandium
CN108031452B (en) Porous adsorbent with surface expressed by polycarboxylic acid and preparation method and application thereof
CN105771701A (en) Preparation method for metal ion-imprinted composite film
Kim et al. Removal of Pb (II) ions from aqueous solutions using functionalized cryogels
JP2007205924A (en) Metal ion sensor and metal ion absorber
Wang et al. Self-healing hydrogel toward metal ion rapid removal via available solar-driven fashion
JP4414396B2 (en) Synthesis of ion-imprinted polymer particles
WO2006013864A1 (en) Metal ion adsorbent
JP5392902B2 (en) Photoresponsive carbon dioxide absorbing material and carbon dioxide recovery method
JP4736362B2 (en) Light and heat-responsive adsorbent material, method for recovering soluble substances
WO2016196847A1 (en) Ion exchange resins selective for the complexation of univalent anions in aqueous solutions
JP5376627B2 (en) Photoresponsive copper ion adsorbing material and copper ion recovery method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531497

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase