WO2006011692A1 - Dispositif de commutation optique mettant en oeuvre une micro-commande piezo-electrique et procede de fabrication associe - Google Patents

Dispositif de commutation optique mettant en oeuvre une micro-commande piezo-electrique et procede de fabrication associe Download PDF

Info

Publication number
WO2006011692A1
WO2006011692A1 PCT/KR2004/001872 KR2004001872W WO2006011692A1 WO 2006011692 A1 WO2006011692 A1 WO 2006011692A1 KR 2004001872 W KR2004001872 W KR 2004001872W WO 2006011692 A1 WO2006011692 A1 WO 2006011692A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mirror
actuator
switching device
piezoelectric
Prior art date
Application number
PCT/KR2004/001872
Other languages
English (en)
Inventor
Young-Geun Park
Kyu-Ho Hwang
Original Assignee
M2N, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M2N, Inc. filed Critical M2N, Inc.
Priority to PCT/KR2004/001872 priority Critical patent/WO2006011692A1/fr
Publication of WO2006011692A1 publication Critical patent/WO2006011692A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means

Definitions

  • the present invention relates to an optical switching device using a micro piezoelectric actuator and a method for fabricating same; and, more particularly, to a method for fabricating an optical switching device having a stable structure, in which a polishing process is carried out after polysilicon is deposited in a stepped structure, so that succeeding deposition process and etching process can be easily performed.
  • a switching device used in an optical communication system is an important factor for determining a maximum transmission capacity of the communication system.
  • an optical switch has been widely used in order to miniaturize the switching device and increase a switching capacity.
  • a switching technology using a micro mirror which is controlled by using a MEMS (micro electro ⁇ mechanical system) technology
  • MEMS micro electro ⁇ mechanical system
  • the MEMS refers to a 3-D microstructure fabricating technology developed from a semiconductor manufacturing process and, especially, is used for fabricating a mechanical structure having a micron or nano size.
  • the optical switch fabricated by using the MEMS technology is technically classified into two types in accordance with optical channel switching methods. To be specific, one is a type using a micro mirror and the other is a type using micro fluids having different refractive indices.
  • the optical switch using the micro mirror is divided further into a 2D planar switch having a two-dimensional array and a 3D free-spatial switch having a three- dimensional array.
  • the 2D planar switch has many advantages in that it allow optical fibers to be readily arranged and has a simple structure due to its employment of an on-off operation type mirror, it is difficult to accommodate therein a large number of (e.g., 32x32 or more) ports. Therefore, the 3D switch having a greater expandability is more suitable for use in a backbone network requiring a Tbps level capacity.
  • actuators used in a micro device such as the aforementioned optical switch has been driven by an electrostatic force.
  • the actuator using the electrostatic force has the disadvantage in that it accompanies an increase of a driving voltage and has non- linear characteristics. Further, it is not preferred due to the occurrence of a pull-in phenomenon of a micro mirror being adhered to a substrate. Furthermore, it is difficult to precisely control an optical channel or change a position of a mirror by revolving the micro mirror with respect to two driving axes, i.e., the X-axis and the Y-axis.
  • Fig. 1 shows an example of an optical switching device using a micro piezoelectric actuator.
  • a micro mirror 90 rotates pivoting on the X-axis by driving a piezoelectric layer 65 of a first and a second actuator 60 and 61
  • a gimbal 160 supporting the first and the second actuator 60 and 61 can be bent due to a constriction or an expansion of the piezoelectric layer 65.
  • a change in a shape of the gimbal 160 is transmitted to a third and a fourth actuator 260 and 261 connected to the gimbal 160, thereby causing a movement of a mirror 90 on the Y-axis. Therefore, it is difficult to individually control a movement of the mirror 90 on the X-axis and that on the Y- axis.
  • a groove 75 is formed on the gimbal 160 in a length direction thereof, or another groove 70 is formed on a portion where the gimbal 160 is connected to the first and the second actuator 60 an 61.
  • the gimbal 160 can precisely transmit the movements of the first and the second actuator 60 and 61 on the X-axis to the mirror 90 without affecting, e.g., the movements of the third and the fourth actuator 260 and 261 on the Y-axis.
  • a step is formed on a driving substrate formed on a semiconductor substrate by using a dry or a wet etching process during an initial state of a fabricating process of an optical switching device using a micro piezoelectric actuator. Then, a membrane layer, a bottom electrode layer, a piezoelectric material layer and a top electrode layer are deposited and patterned on the driving substrate on which the step is formed, thereby forming the piezoelectric actuator.
  • the piezoelectric material layer is formed on the driving substrate having the step formed thereon by using a spin coating method in a state where a shape of the step is maintained even after a deposition of the membrane layer and the bottom electrode layer formed of, e.g., SiNx, the piezoelectric material layer may not be uniformly coated due to the stepped shape.
  • SiNx since an internal stress thereof is high and a film thickness thereof is comparative thin (generally, less than 1 ⁇ m) , a balance between a stress of the membrane layer of SiNx and that of a film to be deposited thereon is required in order to increase a flatness of a finally formed actuator, which makes an entire fabricating process complex.
  • an object of the present invention to provide an optical switch and a method for fabricating same, which forms a stable structure of the optical switch in a fabricating process thereof and facilitates a deposition process after a formation of a groove or a step which prevents two-axis movements of actuators from being coupled and maintains a flatness of a mirror.
  • a method for fabricating an optical switching device using a first, a second, a third and a fourth micro piezoelectric actuator comprising the steps of: forming a driving substrate including a driving circuit for generating a driving signal; forming a groove for maintaining a flatness of the optical switching device and a mirror on the driving substrate; depositing a protection layer on an upper surface of the driving substrate; depositing a polysilicon layer to bury a stepped portion formed by the groove on the protection layer; planarizing a surface of the deposited polysilicon; depositing an insulating layer on the polysilicon layer; forming a piezoelectric device layer on the insulating layer; forming a piezoelectric layers of the respective actuators by etching the piezoelectric device layer and the insulating layer; forming, by patterning the insulating layer, a mirror supporting layer positioned between the first and the second actuator, a membrane and a connecting part of the respective actuators,
  • Fig. IA is a perspective view of an optical switching device using a micro piezoelectric actuator in accordance with a prior art
  • Figs. IB to ID show diagrams depicting enlarged principal parts 210, 220 and 230 of the micro piezoelectric actuator illustrated in Fig. IA;
  • Fig. 2A illustrates a perspective view of an optical switching device using a micro piezoelectric actuator in accordance with a preferred embodiment of the present invention;
  • Figs. 2B to 2D provide diagrams describing enlarged principal parts 310, 320 and 330 of the micro piezoelectric actuator illustrated in Fig. 2A;
  • FIG. 3A presents a perspective view of an optical switching device using a micro piezoelectric actuator in accordance with another preferred embodiment of the present invention
  • Figs. 3B to 3D represent diagrams showing enlarged principal parts 410, 420 and 430 of the micro piezoelectric actuator illustrated in Fig. 3A;
  • Fig. 4 provides a plane view of the optical switching device using a micro piezoelectric actuator illustrated in Fig. 2A;
  • Figs. 5A to 5K illustrate steps of a method for fabricating an optical switching device using a micro piezoelectric actuator in accordance with a preferred embodiment of the present invention.
  • FIG. 2A illustrates a perspective view of an optical switching device using a micro piezoelectric actuator in accordance with a preferred embodiment of the present invention.
  • Figs. 2B to 2D provide diagrams describing enlarged principal parts 310, 320 and 330 of the micro piezoelectric actuator illustrated ' in Fig. 2A.
  • an optical switching device including a mirror 90; a first and a second actuator 60 and 61 for controlling a tilting angle of the mirror 90 on the X-axis; and a third and a fourth actuator 260 and 261 for controlling the tilting angle of the mirror 90 on the Y-axis by controlling the tilting angle of the first and the second actuator 60 and 61.
  • Each of the actuators 60, 61, 260 and 261 of the optical switching device is implemented in a linear shape.
  • Each of the first and the second actuator 60 and 61 includes a first membrane 60a, a second membrane 60b, a piezoelectric layer 65 formed on at least one of the first and the second membrane 60a and 60b and a connecting part 22 connected between the first and the second membrane 60a and 60b.
  • the connecting part 22 includes two elastic bodies 22b and a connecting member 22a coupled therebetween.
  • the membrane 60a or 60b is connected to one terminal of the respective elastic bodies 22b.
  • each of the elastic bodies 22b has a zigzag shape in Figs. 2B and 2C
  • the shapes of the elastic bodies 22b may be configured differently.
  • elastic bodies 22b' of a connecting part 22' may be implemented by using a vertically jagged shaped spring.
  • each of the connecting parts 22 of the first and the second actuator 60 and 61 is preferably positioned at an opposite side with respect to each other across the mirror 90. Further, each of the connecting parts 22 is connected to the mirror 90 through a transmitting part 30, so that the first and the second actuator 60 and 61 can control a tilting angle of the mirror 90 on the X-axis.
  • each of the third and the fourth actuator 260 and 261 includes a third membrane 260a, a fourth membrane 260b, a piezoelectric layer 265 formed on at least one of the third and the fourth membrane 260a and 260b and a connecting part 42 connected between the third and the fourth membrane 260a and 260b.
  • the connecting part 42 includes two elastic bodies 42b and a connecting member 42a coupled therebetween.
  • the membrane 260a or 260b is connected to one terminal of the respective elastic bodies 42b.
  • each of the elastic bodies 42b has a zigzag shape in Figs. 2B and 2C
  • the shapes of the elastic bodies 42b may be configured differently.
  • elastic bodies 42b' of a connecting part 42' may be implemented by using a vertically jagged shaped spring.
  • each of the connecting parts 42 of the third and the fourth actuator 260 and 261 is preferably positioned at an opposite side with respect to each other across the mirror 90.
  • a virtual straight line drawn between the connecting parts 42 positioned at the opposite sides with respect to each other across the mirror 90 is perpendicular to a virtual line drawn between the connecting parts 22 positioned at the opposite sides with respect to each other across the mirror 90.
  • Each of the connecting parts 42 is connected to the gimbal 160 through a transmitting part 52, so that the third and the fourth actuator 260 and 261 can control tilting angles of the first and the second actuator 60 and 61. Accordingly, a tilting of the mirror 90 can be controlled.
  • the gimbal 160 may be configured to have thereon a groove or a step 75 in its length direction.
  • the groove 75 serves to prevent the gimbal 160 from being bent when the piezoelectric layer 65 is constricted or expanded in response to a driving signal. If the gimbal 160 is bent as the piezoelectric layer 65 is constricted or expanded, the tilting of the first and the second actuator 60 and 61 can be transmitted to the third and the fourth actuator 260 and 261. Accordingly, it is difficult to control the movement of the mirror on the X- axis independently the movement thereof on the X-axis.
  • the grooves 70 and 75 formed on the gimbal 160 are formed inside the gimbal 160 so that they cannot be seen from an outside.
  • the gimbal 160 has a structure in which a plurality of layers are deposited.
  • Such multi-layered gimbal 160 can be formed by filling the grooves 70 and 75 formed on a multi-layered layer with, e.g., polysilicon; performing a chemical mechanical polishing (CMP) process on a surface of the polysilicon; and depositing at least one layer on the planarized polysilicon.
  • CMP chemical mechanical polishing
  • each of the piezoelectric layers 65 and 265 includes a top electrode, a bottom electrode and a piezoelectric material layer positioned between the top and the bottom electrode.
  • the piezoelectric material layer contains, e.g., PZT, PbTiO 3 , PLZT, PbZrO 3 , PLT, PNZT, LiNbO 3 or LiTaO 3 .
  • the top and the bottom electrode are formed of a conductive material.
  • the top electrode contains, e.g., Al, Ru, Au, Ag or RuO 2 , PT or the like
  • the bottom electrode contains, e.g., Ru or Au, PT, Ta having a high conductivity.
  • the top and the bottom electrode are connected to a driving circuit (not shown) through electrode bridges 270 and 271.
  • the mirror 90 is positioned between the first and the second actuator 60 and 61.
  • the mirror 90 can be preferably formed of a metal having a high reflexibility, e.g., Au or Pt.
  • a mirror supporting layer composed of the aforementioned insulating layer and/or piezoelectric layer can be formed in a lower portion of the mirror 90.
  • the mirror 90 having a circular shape.
  • the mirror 90 may have a rectangular shape or another polygonal shape.
  • At least one groove or step 91 may be formed for maintaining a flatness and a reflexibility of the mirror 90 itself in case the mirror 90 is tilted by the actuator.
  • the groove 91 formed on the mirror 90 is formed in a lower portion of the mirror 90 so that it cannot be seen from an outside.
  • the mirror 90 has a structure in which a plurality of layers are deposited.
  • Such multi-layered mirror 90 can be formed by filling the groove 91 with polysilicon; performing a chemical mechanical polishing (CMP) process on a surface of the polysilicon; and depositing at least one layer among the multi-layers on the planarized polysilicon. Accordingly, it is possible to maintain the flatness of the mirror 90.
  • CMP chemical mechanical polishing
  • Figs. 5A to 5K sequentially illustrate steps of the method for fabricating an optical switching device including a micro piezoelectric actuator in accordance with a preferred embodiment of the present invention.
  • Cross- sectional views shown in Figs. 5A to 5K depict a cross section of the optical switching device, which is taken along a line A-A' illustrated in Fig. 4, in accordance with the preferred embodiment of the present invention.
  • some components of the optical switching devices are illustrated out of scale in Figs. 5A to 5K.
  • a driving substrate 2 having a driving circuit for generating a driving signal is formed on a semiconductor substrate (not shown) . Further, a groove is formed on the driving substrate 2 by a dry or a wet etching. The groove formed on the driving substrate 2 becomes a groove or a step formed under or inside the mirror and a gimbal in the present optical switching device. The groove formed on the driving substrate 2 enables the optical switching device of the present invention to maintain a flatness without being affected by a constriction and an expansion of the actuator.
  • a protection layer 4 is deposited on the driving substrate 2.
  • the protection layer 4 prevents the driving substrate 2 from being damaged in succeeding processes and also prevents a layer deposited on the protection layer 4 from being etched when the driving substrate 2 is etched.
  • the protection layer 4 may be made of, e.g., Si ⁇ 2 or SiNx.
  • a polysilicon layer 199 is deposited on the protection layer 4.
  • the polysislicon layer 199 is formed as follows. That is, polysilicon is deposited on the protection layer 4 and, then, a heat treatment is performed thereon for about 2 to 3 hours at a temperature higher than about 1000°C to thereby remove a residual stress thereof. Such processed polysilicon has no residual stress and thus is not much affected by another layer or film deposited thereon.
  • a surface of the heat- treated polysilicon layer 199 is planarized by a chemical mechanical polishing (CMP) process. With the planarization of the surface of the polysilicon layer 199, a flatness of the mirror and the piezoelectric layer deposited in a succeeding process can be maintained.
  • CMP chemical mechanical polishing
  • an insulating layer 200 e.g., Si ⁇ 2 or SiNx
  • a bottom electrode 202 e.g., a platinum layer
  • a piezoelectric material layer 204 contains, e.g., PZT, PbTiO 3 , PLZT, PbZrO 3 , PLT, PNZT, LiNbO 3 or LiTaO 3
  • a top electrode layer 206 e.g., a platinum layer
  • the top and the bottom electrode layer 206 and 202 and the piezoelectric material layer 204 comprises a piezoelectric device layer.
  • predetermined portions corresponding to a piezoelectric actuator, a gimbal, a mirror or the like
  • predetermined portions corresponding to a piezoelectric actuator, a gimbal, a mirror or the like
  • the piezoelectric device layer is formed by etching the piezoelectric device layer. That is, as shown in Fig. 5G, the piezoelectric layer 65 of the first and the second actuator 60 and 61 is formed on the insulating layer 200. Moreover, a ring pattern 92 surrounding a periphery of the mirror is formed on the insulating layer 200.
  • the piezoelectric layer 265 of the third and the fourth actuator is formed on the insulating layer 200.
  • the top electrode layer 206, the piezoelectric material layer 204 and the bottom electrode layer 202 are sequentially formed by an etching.
  • the top electrode layer and the piezoelectric device layer can be formed at once by using a mask.
  • the insulating layer 200 is etched, so that a part thereof is removed.
  • the insulating layer 200 is patterned, thereby forming the membranes 60a and 60b of the first and the second actuator 60 and 61 and the membranes 260a and 260b of the third and the fourth actuator 260 and 261.
  • elastic bodies 22b (not shown) coupled between the membranes 60a and 60b and the connecting parts 22a are also formed.
  • elastic bodies 42b (not shown) coupled between the membranes 260a and 260b and the connecting part 42a are also formed.
  • a gimbal 160 supporting the first and the second actuator 60 and 61 is formed and connected to the third and the fourth actuator 260 and 261 through a transmitting part. Further, another transmitting part is formed to connect the first and the second actuator 60 and 61 to the mirror. As depicted in Fig. 5H, a mirror supporting region 200a is formed by etching the insulating layer 200. Next, the mirror 90 is formed on the mirror supporting region 200a.
  • a step for maintaining a flatness of the mirror has already been formed in a lower portion of the mirror supporting region 200a, i.e., in the driving substrate 2. Therefore, even in case the mirror is tilted in the optical switching device, the flatness of the mirror itself can be maintained. Furthermore, since a step is formed on the lower portion of the mirror, not in the mirror itself, an entire surface of the mirror can be used as a reflecting region.
  • the mirror supporting region 200a includes a single layer, i.e., a part of the insulating layer 200, in Fig. 5H, the mirror supporting region 200a may include multilayers 200, 202, 204 and 206 without etching a portion where the mirror is deposited during the etching process illustrated in Figs. 5A to 5G.
  • the mirror 90 may be formed in a different way from what has been described with reference to Fig. 5H.
  • the mirror 90 may be formed by patterning a mirror layer deposited on an entire surface of the mirror supporting region 200a, or by depositing the mirror 90 after forming a mask on the mirror supporting region 200a except where the mirror 90 will be formed.
  • a photo resist (PR) layer (not shown) is formed on the structure illustrated in Fig. 5H. Further, a developing process and a metal deposition process are carried out in order to form an electrode bridge for connecting an actuator to a pad of a driving circuit.
  • PR photo resist
  • a passivation layer 6 is formed on the structure illustrated in Fig. 5H. Further, a part of the driving substrate 2 is selectively removed such that a lower portion of the protection layer 4 is exposed through an opening 8 (see, Fig. 5J) . Finally, as depicted in Fig. 5K, the passivation layer 6 and the' protection layer 4 are etched. In thus formed optical switching device, lower portions of the mirror and the actuator are exposed and, accordingly, operations of the mirror and the actuator are not restricted.
  • the optical switching device using the piezoelectric actuator has been described.
  • the technology applied to this embodiment can be applied to an MEMS device such as an optical scanner, an optical attenuator, an optical array, an optical motor or the like.
  • the optical switching device in accordance with the present invention may be employed as one element of an M x N array of the optical switching device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

L'invention concerne un dispositif de commutation optique comprenant un miroir, des première et deuxième commandes permettant de régler l'angle d'inclinaison du miroir sur l'axe X, des troisième et quatrième commandes permettant de régler les angles d'inclinaison des première et deuxième commandes sur l'axe Y, des cadrans permettant de supporter les première et deuxième commandes et un substrat d'entraînement permettant d'appliquer un signal d'entraînement aux commandes. Les cadrans comprennent au moins une rainure dans ceux-ci, dans la direction latérale, de manière à empêcher les cadrans d'être pliés quand les couches piézo-électriques sont étranglées ou étendues. De plus, sous le miroir, au moins une rainure est formée aux fins de maintien de la planéité du miroir quand celui-ci est incliné au moyen des commandes. La formation de la rainure sous le miroir permet d'utiliser une surface complète du miroir aux fins de réflexion d'un signal optique.
PCT/KR2004/001872 2004-07-26 2004-07-26 Dispositif de commutation optique mettant en oeuvre une micro-commande piezo-electrique et procede de fabrication associe WO2006011692A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2004/001872 WO2006011692A1 (fr) 2004-07-26 2004-07-26 Dispositif de commutation optique mettant en oeuvre une micro-commande piezo-electrique et procede de fabrication associe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2004/001872 WO2006011692A1 (fr) 2004-07-26 2004-07-26 Dispositif de commutation optique mettant en oeuvre une micro-commande piezo-electrique et procede de fabrication associe

Publications (1)

Publication Number Publication Date
WO2006011692A1 true WO2006011692A1 (fr) 2006-02-02

Family

ID=35786412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2004/001872 WO2006011692A1 (fr) 2004-07-26 2004-07-26 Dispositif de commutation optique mettant en oeuvre une micro-commande piezo-electrique et procede de fabrication associe

Country Status (1)

Country Link
WO (1) WO2006011692A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704418A (zh) * 2012-09-28 2015-06-10 住友精密工业株式会社 镜装置的制造方法
JP2017211576A (ja) * 2016-05-27 2017-11-30 スタンレー電気株式会社 光偏向器及び製造方法
JP2017536754A (ja) * 2014-10-21 2017-12-07 フーバー プラス スーナー ポラティス リミテッド 光スイッチ、およびクロストーク低減方法
JP2020204695A (ja) * 2019-06-17 2020-12-24 スタンレー電気株式会社 製造方法及び光偏向器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083929A (ko) * 2002-04-23 2003-11-01 전자부품연구원 마이크로 압전 엑츄에이터를 이용한 미세 광 스위치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083929A (ko) * 2002-04-23 2003-11-01 전자부품연구원 마이크로 압전 엑츄에이터를 이용한 미세 광 스위치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704418A (zh) * 2012-09-28 2015-06-10 住友精密工业株式会社 镜装置的制造方法
JP2017536754A (ja) * 2014-10-21 2017-12-07 フーバー プラス スーナー ポラティス リミテッド 光スイッチ、およびクロストーク低減方法
JP2021036691A (ja) * 2014-10-21 2021-03-04 フーバー プラス スーナー ポラティス リミテッド 光スイッチ、およびクロストーク低減方法
JP7093822B2 (ja) 2014-10-21 2022-06-30 フーバー プラス スーナー ポラティス リミテッド 光スイッチ、およびクロストーク低減方法
JP2017211576A (ja) * 2016-05-27 2017-11-30 スタンレー電気株式会社 光偏向器及び製造方法
JP2020204695A (ja) * 2019-06-17 2020-12-24 スタンレー電気株式会社 製造方法及び光偏向器
JP7386625B2 (ja) 2019-06-17 2023-11-27 スタンレー電気株式会社 光偏向器の製造方法及び光偏向器

Similar Documents

Publication Publication Date Title
US6995499B2 (en) Micro piezoelectric actuator and method for fabricating same
US6912336B2 (en) Optical switch device
US6807332B1 (en) Piezoelectric actuated optical switch
US6967757B1 (en) Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation
KR100451409B1 (ko) 마이크로 광스위치 및 그 제조방법
US7273693B2 (en) Method for forming a planar mirror using a sacrificial oxide
US8724200B1 (en) MEMS hierarchically-dimensioned optical mirrors and methods for manufacture thereof
JP2007534017A (ja) 高フィルファクターアレイのための、連接式サスペンション構造を有する微小電子機械システム2次元ミラー
US20060057761A1 (en) Method for fabricating microstructure and microstructure
US8472098B2 (en) Manufacturing method for stress compensated X-Y gimbaled MEMS mirror array
US6265239B1 (en) Micro-electro-mechanical optical device
US20080043309A1 (en) Micro-device and electrode forming method for the same
WO2006011692A1 (fr) Dispositif de commutation optique mettant en oeuvre une micro-commande piezo-electrique et procede de fabrication associe
KR100431581B1 (ko) 미소거울 구동기
WO2003089957A2 (fr) Microactionneur piezoelectrique et son procede de fabrication
KR100596320B1 (ko) 마이크로 압전 액츄에이터를 이용한 광 스위치 소자 및 그제조 방법
WO2001094253A2 (fr) Structures massives de silicium a elements souples de film mince
KR20020068773A (ko) 초미세전기기계시스템을 이용한 자유 공간 광스위치용박막 미소거울어레이의 구조와 그의 제조방법, 그리고이를 이용한 다차원 광스위칭 방식
KR100716958B1 (ko) 마이크로미러 액추에이터 제조방법
KR100446731B1 (ko) 광스위치용 압전구동형 미소거울 및 그 제조방법
KR100492772B1 (ko) 2 자유도 스캐닝 미러 및 그 제조 방법
JP3825388B2 (ja) 光スイッチ装置
JP4405705B2 (ja) 双安定オプティカルスイッチを含むオプティカルルータおよびその方法
WO2004074903A1 (fr) Miroir de balayage avec deux degres de liberte et procede de fabrication de ce miroir
KR100451465B1 (ko) 반도체 능동 미러와 그 제조방법 및 그를 이용한 조리개겸 셔터

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020047011704

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase