WO2006011346A1 - Microarray reader - Google Patents

Microarray reader Download PDF

Info

Publication number
WO2006011346A1
WO2006011346A1 PCT/JP2005/012607 JP2005012607W WO2006011346A1 WO 2006011346 A1 WO2006011346 A1 WO 2006011346A1 JP 2005012607 W JP2005012607 W JP 2005012607W WO 2006011346 A1 WO2006011346 A1 WO 2006011346A1
Authority
WO
WIPO (PCT)
Prior art keywords
microarray
light
substance
substrate
probe
Prior art date
Application number
PCT/JP2005/012607
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Sugiura
Kotaro Minato
Tetsuo Sato
Takashi Yoshida
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Publication of WO2006011346A1 publication Critical patent/WO2006011346A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Definitions

  • the present invention relates to a microarray reading apparatus capable of detecting a microarray with high sensitivity and high speed.
  • DNA microarrays Since being reported in 1995, DNA microarrays have been widely used in drug discovery and medical applications only in the fields of cell biology and basic medicine as a method that can comprehensively detect mRNAs working in cells and tissues. It is becoming used in the field. DNA microarrays allow you to investigate a large amount of information about each gene at once, such as what gene is transcribed in the nucleus of the cell and how much mRNA is transcribed in the cell. It has become established as the main research method for transcriptome analysis.
  • DNA microarrays in order to detect mRNA of each gene, DNA having a sequence complementary to the base sequence of each mRNA (referred to as probe DNA) is preliminarily fixed on a substrate, and the cells are fixed. MRNA of each gene is detected by hybridizing cDNA (called target DNA) generated by reverse transcription of mRNA extracted from tissue samples and tissue samples.
  • probe DNA DNA having a sequence complementary to the base sequence of each mRNA
  • the target DNA that is also single-stranded has a complementary sequence to the probe DNA that has been heat-treated into single-stranded DNA, it can be re-stable stably. Combined (no, By using the fact that the binding becomes unstable if the sequences are different, the DNA of each sequence is identified.
  • the probe DNA is fixed on the substrate as a circular spot with a diameter of about 100 to 200 ⁇ m. Probe DNAs with different base sequences are arranged in an array on the substrate, and the base position depends on the spot position. Detect if there is a DN A in the sequence. If a fluorescent dye is attached to the target DNA, the amount of target DNA that is hybridized with the intensity of fluorescence emission on the substrate can also be measured.
  • Non-Patent Document 1 the target DNA is hybridized to the probe DNA, and the V, process is observed in time series, and how much DNA of each base sequence is estimated from the time variation of the amount of hybridization.
  • the evanescent field 501 is a light field that is generated when light is incident from the glass substrate 500 side at an incident angle greater than the total reflection angle. It can be present at a thickness of about ⁇ 200 nm. In the illumination by the evanescent field 501, the incident light energy is totally reflected and returns to the glass substrate 500 side.
  • the fluorescent molecule 502 exists in the evanescent field 501, it can be excited to emit fluorescence.
  • the fluorescent molecule 502 is excited by illumination with the evanescent field 501, only the fluorescent molecule 502 existing in the vicinity of the surface of the glass substrate 500 can be fluorescently excited. Therefore, if used in the hybridization process of the DNA microarray, the probe DNA Only the molecules hybridized to can be detected by selective fluorescence excitation. [0009]
  • fluorescence excitation is performed by illumination with an evanescent field, even if fluorescent molecules are present in the solution used for flowing the target DNA, the excitation light is hardly applied and the fluorescence excitation is not performed. The knock ground at the time is small!
  • Non-Patent Document 1 discloses the concept of a real-time observation type DNA microarray detection technique in Non-Patent Document 1.
  • Non-Patent Document 1 which is powerful, discloses an abstract concept for a detection method of a real-time observation type DNA microarray, but at the stage when this Non-Patent Document 1 was issued. , The power that has not been embodied in its concrete configuration. That is, Non-Patent Document 1 does not disclose a real-time observation type DNA microarray detection method to a practical extent.
  • Non-Patent Document 2 discloses a real-time DNA microarray reader using an evanescent field. This device is also considered to be unbearable for actual use. That is, the DNA microarray reader disclosed in Non-Patent Document 2 is Since the probe DNA is spotted on the surface of the DNA array, there is a problem that it lacks versatility compared to general DNA microarray substrates. In addition, in this device, the fluorescence intensity at the spot is detected by a light detector by moving the shutter, but in this system, imaging cannot be performed and high-precision DNA microarray detection is performed. I can't. Furthermore, since this apparatus does not consider the scanning mechanism at all, it cannot be detected while scanning, and it cannot cope with a microarray having more spots. is there.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a microarray reading apparatus capable of realizing high sensitivity and further a microarray reading apparatus capable of reducing detection time. It is in.
  • the present inventor firstly arranged a means for exciting fluorescence and a means for detecting fluorescence to reduce the time required for detection of the microarray. It was found that higher accuracy can be achieved by arranging them on the same side. In addition, paying attention to the hybridization process and observing the hybridization process in real time, the test result can be obtained without waiting until the noise hybridization is completely completed, and the detection time can be reduced. I found that I could shorten it. Furthermore, it was found that the viewing angle can be expanded by irradiating the excitation excitation laser beam with the external force of the objective lens, a large number of spots can be detected at once, and the detection time can be shortened. . The present inventor has completed the present invention based on these new findings. That is, the present invention includes the following inventions (1) to (15).
  • a microarray reader for detecting an interaction comprising: a light irradiation means for irradiating light; and a probe substance on the microarray substrate.
  • a light incident means for causing the light irradiated by the light irradiation means to enter the microarray substrate so as to generate an evanescent field on a fixed surface; and a sample excited by the evanescent field.
  • a microarray reader for detecting an interaction, wherein the light irradiation means for irradiating light and the probe material on the microarray substrate are fixed to generate an evanescent field on the surface.
  • Light incident means for making the light irradiated by the means incident on the microarray substrate, and light for detecting the fluorescence emitted from the fluorescent material contained in the sample excited by the evanescent field Detecting means, and the light detecting means has an optical lens functioning as an objective lens, and the light incident means is the light illuminating means.
  • a microarray reader wherein the light from the projecting means is incident on the microarray substrate without passing through the optical lens.
  • the light incident means causes the light irradiated by the light irradiation means to be incident at an incident angle equal to or greater than an angle at which the light is totally reflected on the surface of the microarray substrate on which the probe substance is fixed.
  • the microarray reader according to (1) or (2).
  • the light incident means has at least one reflecting surface for reflecting the light irradiated by the light irradiating means, and the reflecting surface is a reflected light force by the reflecting surface.
  • the microarray reader according to (2) which is provided so as to be incident at an incident angle greater than an angle at which the probe substance on the microarray substrate is fixed.
  • the refractive index of the light incident means is substantially the same as the refractive index of the microarray substrate.
  • the light irradiation means and the light detection means are arranged on the back side of the surface of the microarray substrate on which the probe substance is fixed, according to any one of (1) to (6). Microarray reader.
  • microarray reader according to any one of 1) to (7).
  • microarray reading device according to any one of (1) to (8), further comprising temperature adjusting means for adjusting the temperature of the sample containing the target material on the microarray substrate.
  • microarray reading device according to any one of (1) to (10), further comprising position changing means for changing a relative position between the microarray substrate and the light incident means.
  • the amount of the target substance that interacts with the probe substance is estimated using detection data obtained by observing the process in which the target substance interacts with the probe substance in time series.
  • the fluorescent substance specifically binds to a substance in a state where the probe substance and the target substance interact with each other in any one of (1) to (14)
  • the microarray reader according to the description.
  • the arithmetic processing means may be realized by a computer.
  • the arithmetic processing means controls the arithmetic processing means to be realized by a computer by causing the computer to operate as the respective means.
  • ⁇ Calculation program and computer that recorded it A computer-readable recording medium also falls within the scope of the present invention.
  • FIG. 1 is a diagram schematically showing a configuration of a microarray reader according to an embodiment of the present invention.
  • FIG. 2 (a) is a view of an example of the configuration of a hybridization cell according to an embodiment of the present invention as viewed from above.
  • FIG. 2 (b) is a view showing a cross section cut along the line aa ′ in FIG. 2 (a).
  • FIG. 3 is a diagram schematically illustrating a state when light is incident on the microarray substrate according to the embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating a state where light is incident on a microarray substrate according to another embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a configuration of a microarray reader according to another embodiment of the present invention.
  • FIG. 6 is a perspective view schematically showing a part of the configuration of the microarray reader shown in FIG. 5 upside down.
  • FIG. 7 (e) is a diagram showing the results of an experiment on the nodularization in the example according to the present invention.
  • FIG. 8 is a graph showing the results of FIGS. 7 (a) to 7 (h).
  • FIG. 9 is a diagram schematically illustrating a phenomenon in which light is incident on a glass substrate to generate an evanescent field.
  • the microarray reader provides the probe substance and the target substance when the sample containing at least the fluorescent substance and the target substance is brought into contact with the microarray substrate on which the probe substance is immobilized. This is to detect a specific interaction with.
  • microarray substrate to be read and a detection target (sample) to be detected using the microarray substrate will be described.
  • the term “read” in this specification is used synonymously with detection, measurement, measurement, and the like.
  • the microarray substrate used in the present invention comes into contact with a sample containing a target substance, it specifically interacts with the target substance contained in the sample (for example, binding, hybridization, etc.), and the target
  • the specific configuration such as the type, number, amount, spot size, etc. of the probe substance is not particularly limited.
  • the microarray substrate is also configured to have at least a material strength for transmitting light.
  • a substrate made of a material having a high light transmittance such as a glass substrate, a polycarbonate, a resin made of PMMA, or the like can be suitably used, but the refractive index changes due to heat. Considering the rate, a glass substrate is most suitable.
  • a conventionally known microarray substrate having the above-mentioned conditions can be read, and there is an advantage that the application range is wide.
  • the probe substance immobilized on the microarray substrate include nucleic acids (including polynucleotides and oligonucleotides), polypeptides (including proteins, oligopeptides, and antibodies), Examples include low molecular weight substances such as molecular substances (hormones, etc.) and environmental hormones.
  • the target substance is not particularly limited as long as it interacts with the probe substance.
  • nucleic acids including polynucleotides and oligonucleotides
  • polynucleotides, and the like interact with the probe substance.
  • Peptides including proteins and oligopeptides
  • in vivo low molecular weight substances hormones etc.
  • low molecular weight substances such as environmental hormones, etc.
  • single-stranded DNA is particularly suitable as the probe substance and the target substance.
  • single-stranded RNA is also preferably used as the target substance.
  • the microarray reader generates an evanescent field and excites a fluorescent substance contained in the sample by the evanescent field to cause mutual interaction between the probe substance and the target substance. The action is detected. For this reason, the sample solution distributed on the microarray substrate 70 needs to contain! It is preferable that the strong fluorescent substance is bonded to the target substance, but this method is not limited to this method.For example, the probe substance alone or the target substance exists, and in this case, it binds to these substances. However, when the probe substance and the target substance interact with each other (for example, binding, hybridization, etc.), the probe substance and the target substance interact with each other in a specific state.
  • a fluorescent functional group eg, Cy3, Cy5, etc.
  • the target DNA can be incorporated into the target DNA, and the target DNA is not added with a fluorescent substance.
  • POPO-3 Molecular Probes, Inc
  • the sample solution to be inspected is not particularly limited as long as it contains at least the above-mentioned target substance and fluorescent substance. It is not limited.
  • the base of the solution is preferably an aqueous solution, but is not limited thereto, and may be a solution containing an organic solvent or the like.
  • a buffer solution (buffer) suitable for the substance can be preferably used.
  • the specific configuration and conditions are not particularly limited as long as the sample solution to be inspected comes into contact with the probe substance on the microarray substrate. . More preferably, it is preferable to distribute or flow the sample solution to be inspected on the microarray substrate.
  • a microarray reading apparatus 100 configured using an inverted microscope as a base and using an objective lens as a light incident means.
  • the microarray reading apparatus 100 according to the present embodiment is an observation apparatus based on an inverted microscope, illumination by the evanescent field is performed through an objective lens included in the microscope optical system, and fluorescence is transmitted through the microscope optical system. It is configured so that it can be detected.
  • An example of an inverted microscope that can be used as a base is Examples include TE-2000 made by Nikon.
  • the microarray reading apparatus according to the present invention is not limited to the one configured based on the inverted microscope, and has the configuration of the present invention as long as the effect of the present invention can be obtained. It is a matter of course that it is included in the technical scope of.
  • FIG. 1 is a diagram schematically showing the configuration of the microarray reading apparatus according to the present embodiment.
  • the microarray reader 100 includes a laser light source 11, a first lens 12, a reflecting surface 13, an objective lens 14, an excitation light cut filter 15, an imaging lens 16, and a light detection. 17, a temperature control unit 18, an arithmetic processing unit 19, and a position changing unit 21. Further, the microarray reader 100 uses the microarray substrate 70 as a reading target.
  • the laser light source 11 functions as light irradiation means for irradiating light.
  • the laser light source 11 may be any other specific configuration or condition as long as it can emit light for generating an evanescent field on the microarray substrate 70 (
  • the wavelength, intensity, type, etc. of the irradiated light are not particularly limited.
  • a laser light source for irradiating laser light of a 2 co Nd: YAG laser (wavelength: 532 nm), an LED, a mercury lamp, or the like can be suitably used as the fluorescence excitation laser.
  • the first lens 12 may be another specific configuration (for example, a material) as long as it is an optical lens for condensing the laser light emitted from the laser light source 11 and guiding it to the reflecting surface 13. , Size, thickness, etc.) are not particularly limited.
  • the reflecting surface 13 may be a reflecting means used in a conventionally known optical system device as long as it reflects the laser light from the first lens 12 to the objective lens 14.
  • the reflecting surface 13 converts the laser light from the laser light source 11 that reaches via the first lens 12 with light parallel to the optical axis of the microscope optical system (for example, the objective lens 14).
  • the light is reflected to the objective lens 14 as light offset by a certain distance from the optical axis.
  • the objective lens 14 is an optical lens that functions as an objective lens for fluorescing generated on the microarray substrate 70. Further, in the present embodiment, the objective lens 14 is a laser beam irradiated by the laser light source 11 so as to generate an evanescent field on the surface of the microarray substrate 70 on which the probe substance is fixed. It also functions as a light incident means for making the light incident on the microarray substrate 70.
  • an oil layer 20 is provided between the objective lens 14 and the microarray substrate 70.
  • the oil layer 20 is for matching the refractive index of the objective lens 14 and the refractive index of the microarray substrate 70 to reduce reflection on the boundary surface. Without the oil layer 20, the light is totally reflected on the upper surface of the objective lens 14! /, And the evanescent field cannot be generated on the surface of the microarray substrate 70.
  • the objective lens 14 force is also used to adjust the incident position of the light incident on the microarray substrate 70 so as to focus on the microarray substrate 70. .
  • the excitation light cut filter 15 may be an optical filter that cuts (removes) short-wavelength light (excitation light) and transmits only the fluorescence generated on the microarray substrate 70. What is called a so-called SC filter can be preferably used. By using this filter, fluorescence can be detected with higher accuracy.
  • the imaging lens 16 is an optical lens for causing the light transmitted through the excitation light cut filter 15 to be imaged by the photodetector 17, and an imaging lens used in a conventionally known optical device is preferably used.
  • the specific configuration (for example, material, size, thickness, etc.) is not particularly limited.
  • the objective lens 14, the excitation light cut filter 15, and the imaging lens 16 constitute a microscope optical system (optical system mechanism) in an inverted microscope as a base.
  • the photodetector 17 is a photodetector that can be used in a conventionally known optical device as long as it functions as a photodetector for detecting the light imaged by the imaging lens 16. It can be suitably used.
  • the force that can use a cooled CCD force camera (Hamamatsu Photonicas, ORCA-ER) is not limited to this.
  • the CCD control that controls the operation of the CCD camera 17 is performed.
  • a control unit or a computing device (such as a PC) for displaying or processing image data detected by the CCD camera may be provided.
  • the photo detector 17 is collectively referred to as photo detection means.
  • the temperature adjusting unit 18 may be any one for adjusting the temperature of the sample solution that exists on the microarray substrate 70 described later (more preferably, it exists by flowing or flowing on the microarray substrate 70).
  • Conventionally known temperature adjusting means can be preferably used.
  • a temperature control means consisting of a ceramic heater (50 x 50mm), a thermocouple temperature sensor (TC), and a heater control unit, PID control of the heater and TC is performed by the heater control unit.
  • the temperature of the sample on the microarray substrate 70 can be adjusted optimally.
  • the temperature control unit 18 converts the temperature of the sample solution flowing on the microarray substrate 70 to a temperature suitable for performing hybridization (for example, as will be described later). 65 ° C). For this reason, when detecting a DNA microarray, the microarray reader 100 has a configuration necessary for evaluating the hybridization process in real time. However, in the case of a microarray for detecting proteins (for example, a protein chip), since the binding may be detected in real time at room temperature, the temperature control unit 18 is not necessarily required.
  • the arithmetic processing unit 19 uses the detection data obtained by observing the process of the target DNA hybridizing to the probe DNA in time series, and the target DNA (target DNA In the case of multiple types, a calculation process is performed to estimate how much the DNA of each base sequence has been accumulated. Details of the arithmetic processing performed by the arithmetic processing unit 19 will be described later.
  • the position changing unit 21 functions as position changing means for changing the relative position between the microarray substrate 70 and the objective lens 14.
  • a moving stage or the like that is conventionally used in optical devices such as a known microscope can be suitably used.
  • the position changing unit 21 provides a po- sition provided on the microarray substrate 70. Even if there are multiple probes (regions where a large number of probe DNAs are immobilized), by changing the relative positions of the microarray substrate 70 and the objective lens 14, hybrids in different DNA spots can be obtained. The session can be easily detected.
  • the position changing unit 21 may be a mechanism capable of uniaxial scanning, but more preferably a mechanism capable of two-axis scanning capable of two-dimensional scanning. preferable.
  • the force by which the microarray substrate 70 is moved to change the relative position with the objective lens 14 is not limited to this method.
  • the microarray substrate 70 is fixed.
  • the optical system mechanism such as the objective lens 14 and the imaging lens 15 and the position of the photodetector 17 are moved, it does not matter.
  • the microarray substrate 70 to be read is set as a hybridization cell 50 with respect to the microarray reader 100.
  • the hybridization cell 50 according to the present embodiment is configured to have a temperature adjustment function for observing the hybridization in real time by combining with the temperature adjustment unit 18 described above. ing.
  • the sample solution containing the target DNA can be circulated inside the GO cell, and its flow rate is Therefore, it is preferable to use a powerful hybridization cell, and the specific configuration of the hybridization cell 50 will be described below.
  • FIG. 2 (a) is a diagram showing an example of the configuration of the hybridization cell, as viewed from above.
  • FIG. 2B is a diagram showing a cross section cut along the line aa ′ in FIG.
  • the hybridization cell 50 includes a microarray substrate 70, a slide glass 71, a spacer 72, and a fixing device 73.
  • the hybridization cell 50 has a slide glass 71 on the upper surface and a microarray substrate 70 on the lower surface, and the microarray substrate 70 also functions as a cover glass.
  • the probe DNA is disposed (immobilized) on the surface of the microarray substrate 70 on the side facing (opposing) the slide glass 71.
  • the probe DNA is arranged in a pot format as shown in Fig. 2 (a).
  • the reason for spotting the probe DNA on the side that functions as the cover glass is that, in the subsequent processing, when detecting hybridization between the probe DNA and the target DNA by illumination with an evanescent field, Fig.
  • the microarray substrate 70 is made of a cover glass suitable for the objective lens 14 in the microarray reader 100.
  • a spacer 72 having a predetermined thickness is inserted between the microarray substrate 70 and the slide glass 71.
  • the interval between the microarray substrate 70 and the slide glass 71 is not particularly limited as long as the interval is such that the sample solution containing the target DNA can be circulated. For example, if the interval of 100 m is provided, the sample solution can be circulated appropriately. In this case, the thickness of the spacer 72 is 100 m.
  • the material of the spacer 72 is not particularly limited, and a known spacer can be suitably used. For example, a packing made of Teflon (registered trademark) can be used.
  • a spacer 72 having a predetermined thickness is inserted between the microarray substrate 70 and the slide glass 71, and the vertical force is also pressed by the fixing device 73, so that the distance between the microarray substrate 70 and the slide glass 71 is 100 m. Hold at intervals. Then, the sample solution is poured into this gap.
  • the fixing device 73 a conventionally known fixing device can be used, and its specific configuration is not limited. For example, a stainless steel frame can be used.
  • the slide glass 71 is provided with two holes 74 ⁇ 74 (for example, a diameter lmm).
  • the sample solution is pressed by the stainless frame through one of the holes 74 to make contact with the probe DNA immobilized on the surface of the microarray substrate 70. Then, the sample solution is made to flow on the probe DNA by being taken out from the other hole 74. The sample solution is not shown
  • the sample can be distributed through the gap between the microarray substrate 70 and the slide glass 71 by the sample transport device.
  • a peristaltic pump can be cited. By applying a pressure with this peristaltic pump, the hybridizing senor 50 can be circulated.
  • the fixing device 73 is configured such that the temperature adjusting unit 18 can be provided on the slide glass 71 side, for example.
  • a ceramic heater is attached to the slide glass 71 side
  • a thermocouple temperature sensor (TC) is installed on the microarray substrate 70 side, and the temperature is measured.
  • the temperature of the solution can be kept constant.
  • the specific conditions of the yarn and the concentration, temperature, etc. of the buffer used as a sample solution to be circulated in the hybridization cell are not particularly limited. Buffers and conditions used for known DNA microarray experiments can be suitably used.
  • TE buffer (10 mM Tris-HC1 (pH 7.5), ImM EDTA, etc.)
  • SSC buffer (4 X SSC S 0.2% SDS, 20 X Denhart), etc. are suitable as shown in the examples described later. Can be used.
  • microarray reader 100 The operation of the microarray reader 100 will be described by taking as an example the case of performing time series observation of the hybridization process using the hybridization cell 50 including the microarray substrate 70 described above. To do.
  • a predetermined cDNA is spotted as a probe DNA! /, A sequence complementary to this cDNA on the microarray substrate 70.
  • the sample solution containing the target DNA (having a fluorescent functional group bound thereto) having a flow is passed through the hybridization cell 50 to which the sample solution is brought into contact.
  • the microarray reader 100 detects whether or not the target DNA is hybridized with the probe DNA (DNA spot) on the microarray substrate 70. Specifically, this is done as follows.
  • laser light is emitted from a laser light source 11. Irradiated The light is collected by the first lens 12 and subsequently reflected by the reflecting surface 13.
  • the reflection surface 13 is a beam parallel to the optical axis of a microscope optical system (for example, the objective lens 14), which is a laser beam from the laser light source 11 that arrives via the first lens 12.
  • the light is reflected off the objective lens 14 as light offset by a certain distance from the optical axis.
  • the laser light reflected by the reflecting surface 13 enters the objective lens 14 in a direction in which the optical axial force of the objective lens 14 is also offset. Then, the light incident on the objective lens 14 becomes light incident on the microarray substrate 70 with a large incident angle at the exit of the objective lens 14 by the function of the objective lens 14 while being a parallel ray. Illuminate the area where the probe DNA is immobilized. That is, it can be said that the objective lens 14 functions as a light incident means for causing the laser light to be incident at an incident angle that is greater than the angle at which the laser light is totally reflected on the surface of the microarray substrate 70 on which the probe DNA is fixed.
  • the sample solution containing the target DNA is an aqueous solution
  • the microarray substrate 70 is described as a glass substrate.
  • the refractive index of water is 1.33, and the glass having a refractive index of 1.5.
  • the refractive index is lower than
  • the objective lens 14 causes the incident angle ⁇ of the laser light to the microarray substrate 70 to be larger than the total reflection angle ⁇ (62 °) at the interface between water and glass.
  • the laser beam is microarrayed by adjusting
  • the evanescent field 60 generated on the surface 70a of the microarray substrate 70 exists only from the surface 70a of the microarray substrate 70 to a region of about the wavelength (region of about 100 to 200 nm). Absent. For this reason, only the fluorescent functional group 8 la of the target DNA 81 specifically hybridized with the single-stranded probe DNA 80 is fluorescently excited, and the fluorescent functional group 82 a of the free target DNA 82 is not excited. Therefore, only the target DNA 81 hybridized to the probe DNA 80 can be selectively detected in the hybridization process of the DNA microarray.
  • the process on the microarray substrate 70 side under the total reflection condition is used to excite the fluorescent material added to the target DNA. Since the evanescent field 60 is a light field localized in a region having a thickness of about a wavelength from the microarray substrate 70, when laser light is incident under total reflection conditions, the incident light is incident on the surface 70a of the microarray substrate 70. The light is totally reflected on the lower surface side and returns to the inside of the microarray substrate 70.
  • a fluorescent material is present in the region of a thickness of about a wavelength from the surface 70a of the microarray substrate 70, the fluorescent material absorbs light and causes fluorescence to be emitted. Can do.
  • a light field exists only in the immediate vicinity from the surface 70a of the microarray substrate 70, only the fluorescent material possessed by the target DNA hybridized with the probe DNA immobilized on the microarray substrate 70 is excited by fluorescence to emit light. Can be made.
  • the generated fluorescence is collected by the objective lens 14, imaged again through the excitation light cut filter 15, the imaging lens 16 t, and the mechanism of the microscope optical system, and detected by the photodetector 17.
  • the temperature control unit 18 is used to distribute the sample solution containing the target DNA in a state where the temperature of the sample solution is kept constant at 65 ° C. Is in contact with. Therefore, the hybridization process can be evaluated in real time by observing the temporal change of the fluorescence image.
  • the fluorescence intensity emitted from the substrate surface increases as the target DNA hybridizes to the probe DNA on the substrate and is immobilized. By detecting the intensity, the increase in target DNA can be monitored. Therefore, according to the microarray reading apparatus 100, the time required for hybridization can be shortened, so that the detection time can be greatly shortened as compared with the conventional apparatus.
  • a laser light source 11 that functions as a light irradiation means, an objective lens 14 that functions as an optical system mechanism, an excitation light cut filter 15, and an imaging lens 16
  • the photodetector 17 functioning as a photodetector is disposed on the back surface side of the surface 70a of the microarray substrate 70 on which the probe DNA is fixed. This is because the laser light source 11 as the light irradiation means and the objective lens 14 as the light incident means are connected to the surface 70a of the microarray substrate 70 on which the probe DNA is fixed. In order to generate a cent field, the back surface side force of the front surface 70a of the microarray substrate 70 also needs to be irradiated with laser light.
  • a surface of the slide glass 71 opposite to the surface facing the microarray substrate 70 is provided. Can be in a free state.
  • the surface of the slide glass 71 that has become free is made of an opaque material such as a temperature control unit 18 or a metal block for controlling the temperature of the protein chip, etc. Can be installed.
  • the microarray reader 100 is provided with a position changing unit 21. For this reason, if necessary, the relative position between the microarray substrate 70 and the objective lens 14 and the like can be appropriately changed by the position changing unit 21, and detection can be performed while scanning. It is also possible to correspond to a microarray having many spots.
  • microarray reading apparatus 100 observes in real time how the target DNA is hybridized to probe DNA and immobilized on the surface of microarray substrate 70.
  • the number X of target DNA molecules immobilized on the surface of the microarray substrate 70 at this time is predicted to increase as shown in the following formula (1).
  • C is the number of molecules of the target DNA contained in the sample, and is a value that is desired to be obtained by detection of the microarray substrate 70.
  • a is a constant that determines the specific force between the reaction rate and the desorption rate when the hybridization reaction occurs.
  • the value of t should be set long enough to eliminate the effect of a. It was necessary to measure the coefficient C related to the number. Therefore, take a sufficiently long time for ⁇ It was necessary to perform hybridization. For example, with a conventional DNA microarray reader, the hybridization process alone required approximately 8-12 hours or more, and the entire detection process required additional time.
  • the microarray reader 100 capable of real-time observation observes and detects the progress of the hybridization.
  • the arithmetic processing unit 19 uses the data obtained for the time series change of hybridization to fit the amount of hybridization to the above equation (1), so that the value of ⁇ in each spot is obtained. And the value of C.
  • the arithmetic processing unit 19 first integrates the fluorescence intensity with respect to each spot (DNA spot) extracted by image processing to obtain a hybridizing amount Xr for the spot. Then, C and ⁇ are determined so that the square error (Xr ⁇ X) 2 between the hybridized amount Xr and the number of molecules X in the equation (1) is minimized.
  • the steepest descent method can be used.
  • microarray reader 100 it is not always necessary to wait until the hybridization is completed, and the final amount during the progress of the hybridization. Can be estimated.
  • the merit of this method is that, in the case of a conventional DNA microarray substrate, when the amount of target DNA immobilized on the substrate is larger than the total amount of probe DNA, the probe DNA runs short on the way. If the real-time observation type is used, the number of molecules can be estimated from the rising speed at the rising part, so this problem can be avoided. For this reason, even if the pot is small and probe DNA is deficient during hybridization, the target DNA concentration can be measured accurately, even with a small spot DNA microarray.
  • the target DN is hybridized to the probe DNA, the process of the hybridization is observed in time series, and the time change power of the amount of hybridization is also the DNA of each base sequence. It is possible to estimate how long it was. For this reason, the time required for the hybridization can be shortened to shorten the inspection time. Furthermore, the detection sensitivity is improved by arranging the optical system mechanism for generating the evanescent field and the optical system mechanism for detecting fluorescence on the same side. I'll do it with you.
  • microarray reading apparatus 100 does not directly spot DNA on the prism substrate, and the member functioning as the light incident means and the microarray substrate have different configurations. Therefore, if the microarray substrate 70 is replaced, the microarray substrate 70 can be used for various types of microarray substrates, and is highly versatile. Further, the microarray reader 100 can perform imaging, and can detect a DNA microarray with high accuracy.
  • a sample containing target DNA to which a fluorescent functional group is bound is used.
  • a sample containing a fluorescent substance that specifically binds to double-stranded DNA is used. It can also be used.
  • Double-stranded DNA 81 is formed by hybridizing the target DNA 82 of the specimen to the probe DNA 80 immobilized on the surface 70a of the microarray substrate 70.
  • the fluorescent substance 83 specifically binds to the double-stranded DNA, it adheres to the double-stranded DNA 81 generated by the hybridization on the surface 70a of the microarray substrate 70.
  • the evanescent field 60 is thinly generated on the upper surface side of the surface 70a on which the probe DNA 80 is immobilized on the microarray substrate 70, only the fluorescent substance 84 attached to the double-stranded DNA 81 is caused by the evanescent field 60. Emits fluorescence when excited.
  • the free fluorescent material 83 is not excited by the evanescent field 60.
  • the fluorescent material 84 by exciting the fluorescent material 84 by illumination using the evanescent field 60, only the fluorescent material 84 near the surface 70a of the microarray substrate 70 can be selectively excited. Then, the change in fluorescence intensity over time is measured as a change in the amount of hybridization, and the final amount of hybridization can be predicted by fitting to a theoretical curve.
  • the microarray reader is configured with an inverted microscope as a base, and includes a microarray reader 200 that includes light incident means for making light incident on the microarray substrate 70 without passing through the objective lens.
  • the microarray reader 200 according to the present embodiment has substantially the same configuration as the microarray reader 100 shown in the first embodiment, except that the illumination by the evanescent field is performed without passing through the microscope objective lens.
  • the fluorescence detection is configured to be performed through a microscope optical system.
  • as an inverted microscope that can be used as a base for example, TE-2000 made by Nico can be cited as in the first embodiment.
  • FIG. 5 is a diagram schematically showing a configuration of microarray reading apparatus 200 according to the present embodiment.
  • FIG. 6 is a perspective view schematically showing a part of the configuration shown in FIG. 5 upside down.
  • the microarray reader 200 includes a laser light source 11, a first lens 12, a reflecting surface 13, an objective lens 14, an excitation light cut filter 15, an imaging lens 16, and a photodetector. 17, a temperature adjusting unit 18, an arithmetic processing unit 19, a position changing unit 21, a light incident unit 30, and a light absorbing unit 32. Further, the microarray reader 200 uses the microarray substrate 70 as a reading target.
  • the objective lens 14 has only the function of the objective lens in the microscope optical system, and does not function as a light incident means as in the first embodiment.
  • the light incident part 30 has a reflection surface 31 for reflecting light emitted from the laser light source 11 and passing through the reflection surface 13.
  • the reflecting surface 31 is light that passes from the laser light source 11 via the reflecting surface 13, that is, light that is parallel to the optical axis of the microscope optical system (for example, the objective lens 14), and the optical axis Is set to an angle at which the light that is offset by a certain distance is incident on the microarray substrate 70 at an incident angle that is greater than the angle at which the probe material on the surface of the microarray substrate 70 is fixedly reflected.
  • the light incident part 30 having the reflecting surface 31 emits the laser light emitted by the laser light source 11 so as to generate an evanescent field on the surface of the microarray substrate 70 on which the probe DNA is fixed.
  • the probe material on the microarray substrate is fixed without passing the laser light from the laser light source 11 through the objective lens 14 (by passing through the outside of the objective lens 14).
  • the incident light is incident on the microarray substrate 70 at an incident angle that is greater than the angle at which the light is totally reflected on the surface.
  • the present embodiment is a feature that is greatly different from the first embodiment in that light is incident on the microarray substrate 70 without passing through the objective lens 14 to generate an evanescent field.
  • Embodiment 1 when the incidence of light for generating an evanescent field on the surface of the microarray substrate 70 is performed by the objective lens 14 (via the objective lens 14), the viewing angle is reduced. There is a problem that many pots cannot be detected at once! /, And! /.
  • incidence of light for generating an evanescent field on the surface of the microarray substrate 70 is performed from outside the objective lens 14 without passing through the objective lens 14.
  • the viewing angle becomes larger and many DNA spots can be detected at one time.
  • the viewing angle is about 150 m ⁇ 150 m.
  • the viewing angle is about 1 mm (1000 m) ⁇ 1 mm (1000 m), and the viewing angle is greatly widened.
  • the light incident portion 30 is preferably disposed between the microarray substrate 70 and the objective lens 14. It is more preferable that the light incident portion 30 is in contact with the objective lens 14. This is because the number of apertures of the objective lens 14 can be increased because the light incident portion 30 is in contact with the objective lens 14. This makes it possible to acquire weak fluorescence efficiently with the objective lens 14.
  • the light emitted from the fluorescent substance existing in the vicinity of the microarray substrate 70 is a force that exists as a lot of light that travels through the microarray substrate 70 at a larger angle than the total reflection angle. Become. Ma An oil layer 20 is provided between the microarray substrate 70 and the light incident part 30. Such an oil layer 20 has a function similar to that of the oil layer 20 in the above-described first embodiment, and thus description thereof is omitted here.
  • the refractive index of the light incident section 30 is preferably substantially the same as the refractive index of the microarray substrate 70.
  • the light incident portion 30 is preferably composed of a glass substrate, which is a material having high light transmittance, or a resin such as polycarbonate or PMMA, but when the temperature is changed.
  • a glass substrate is more preferable because of a small change in refractive index.
  • the microarray reader 200 includes a light absorption unit 32.
  • the light absorbing unit 32 functions as a beam trap for absorbing the light totally reflected on the surface of the microarray substrate 70.
  • a conventionally known beam trap device can be suitably used as the light absorbing portion 32 that is powerful.
  • a beam diff user BD-40 manufactured by Sigma Kogyo can be used.
  • the laser light source 11 emits laser light.
  • the irradiated laser light is condensed by the first lens 12 and subsequently reflected by the reflecting surface 13.
  • the reflecting surface 13 is a beam parallel to the optical axis of the microscope optical system (for example, the objective lens 14), which is a laser beam from the laser light source 11 that arrives via the first lens 12.
  • the light is reflected from the reflecting surface 31 of the light incident part 30 as light offset by a certain distance.
  • the laser beam reflected by the reflecting surface 13 passes through the outside of the objective lens 14 (without passing through the objective lens 14) and enters the light incident portion 30.
  • the light incident on the light incident part 30 is reflected by the reflecting surface 31, passes through the inside of the light incident part 30, and enters the microarray substrate 70.
  • the light incident on the light incident portion 30 has a large incident angle with respect to the microarray substrate 70 even though it is a parallel light beam at the exit of the light incident portion 30 due to the action of the light incident portion 30. Illuminates the DNA spot.
  • the light incident part 30 converts the laser light into the probe DNA on the microarray substrate 70.
  • the microarray substrate is fixed at an angle of incidence that is greater than the angle at which it is totally reflected on the surface.
  • the refractive index of the light incident part 30 and the refractive index of the microarray substrate 70 are substantially the same, the incident angle of the incident light with respect to the microarray substrate 70 hardly changes from the angle reflected by the reflecting surface 31.
  • an evanescent field is generated thinly on the upper surface side of the surface of the microarray substrate 70.
  • the mechanism for detecting whether or not the probe DNA and the target DNA are hybridized by the evanescent field is the same as in the first embodiment, and thus the description thereof is omitted here.
  • the generated fluorescence is collected by the objective lens 14, imaged again through the excitation light cut filter 15, the imaging lens 16 t, and the mechanism of the microscope optical system, and detected by the photodetector 17.
  • the temperature control unit 18 is used to distribute the sample solution containing the target DNA in a state where the temperature of the sample solution is kept constant at 65 ° C. and the temperature is stabilized. Is in contact with. Therefore, the hybridization process can be evaluated in real time by observing the temporal change of the fluorescence image.
  • the time required for the hybridization process can be shortened, so that the detection time can be greatly reduced as compared with the conventional apparatus. Furthermore, since the viewing angle is large, many pots can be observed at one time, and the detection time can be further reduced and highly accurate detection can be performed.
  • the reading of the DNA microarray substrate has been described as an example, but the present invention is not limited to this.
  • the present invention can be used as a measurement technique for detecting not only DNA but also molecules such as proteins, small molecules in vivo, and environmental hormones. Therefore, based on the technical level at the time of filing of the present application, those skilled in the art also fully include the scope in which the DNA microarray reading technology can be applied to the protein or other substance detection technology. Let me add that just in case.
  • the arithmetic processing unit 19 may be configured by hardware logic, or may be realized by software using a CPU as follows! /. That is, the arithmetic processing unit 19 includes a CPU (.central processing unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, and a RAM (random access that expands the program). memory), a storage device (recording medium) such as a memory for storing the above programs and various data, etc.
  • the object of the present invention is to control the arithmetic processing unit 19 which is software for realizing the functions described above.
  • a recording medium in which the program code (executable program, intermediate code program, source program) of the program is recorded so as to be readable by a computer is supplied to the arithmetic processing unit 19, and the computer (or CPU or MPU) stores the recording medium in the recording medium. It can also be achieved by reading and executing the recorded program code.
  • the recording medium includes, for example, a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) Z hard disk, and an optical disk such as a CD-ROMZMOZ MD / DVD / CD-R.
  • a tape system such as a magnetic tape and a cassette tape
  • a magnetic disk such as a floppy (registered trademark) Z hard disk
  • an optical disk such as a CD-ROMZMOZ MD / DVD / CD-R.
  • Disk systems IC cards (including memory cards) Z optical cards and other card systems, or mask ROMZEPROMZEEPROMZ flash ROM and other semiconductor memory systems can be used.
  • the arithmetic processing unit 19 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network. Satellite communication networks can be used.
  • the transmission medium constituting the communication network is not particularly limited.
  • IEEE1394, USB power line carrier, cable TV line, telephone line, ADSL line, etc. (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, etc.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave, in which the program code is embodied by electronic transmission.
  • relA is a gene (length 2.2 kbp) that is important for activation and inactivation of transcription factor NF ⁇ ⁇ , which moves from the cytoplasm to the nucleus and induces the expression of target genes, and is involved in immune responses and developmental differentiation. It is known that it is widely expressed in cells!
  • this cDNA was spotted as a probe DNA on a cover glass substrate, and the same cDNA was flowed through a flow cell (hybridization 'cell) as a target DNA for detection.
  • the generated fluorescence was collected by an objective lens, imaged again through a microscope optical system, and detected by a cooled CCD camera (Hamamatsu Photonicus, ORCA-ER).
  • FIG. Bright and fluorescent light is observed in the spot where the probe DNA is spotted, which indicates that hybridization has occurred in that spot.
  • the target DNA solution prepared by mixing POPO-3 in the same manner was not heat denatured, and it was put into the hybridization cell in a state (double-stranded state). The experiment was conducted. Since it does not hybridize to the probe DNA in the double-stranded state, it may not be detected in the probe DNA spot.
  • Fig. 8 shows the results of plotting changes in the fluorescence intensity (average value in each spot) of each spot from the results of Figs. 7 (a) to 7 (h).
  • “Hybridization” indicates the result when the single-stranded DNA is hybridized
  • “Control” indicates the result of the control experiment.
  • the graph shows the force that the fluorescence intensity increases stepwise. This is because the DNA solution in the hybridization cell pulsates and the concentration of the DNA solution varies over time. thinking. Since the DNA solution flows by pushing out the buffer at the initial stage, it is speculated that the difference in the concentration of the DNA solution at this stage also caused the step. In the experiment in this example, the starting force was continuously observed until 50 minutes, but it was confirmed that the noise stabilization process was stable in about the first 10 minutes.
  • the microarray reading apparatus according to the present invention is characterized in that the time required for the hybridization process can be shortened. At present, measurement can be performed with a hybridization time of about 15 minutes. Furthermore, by completing technical issues such as flow stability during hybridization, suppression of variation in solution concentration, and high efficiency of hybridization, the degree of completeness can be further improved. I think you can.
  • the microarray reader according to the present invention has an effect that the binding between the probe substance on the microarray substrate and the target substance contained in the sample can be detected with higher accuracy and efficiency. Furthermore, according to the microarray reader, DNA is not spotted on the prism. For this reason, it can be used for many commercially available microarray substrates.
  • the light incident means for example, a high refractive index block
  • the viewing angle can be increased. Many spots can be read, and the detection time can be shortened.
  • the hybridization between the probe DNA and the target DNA can be detected in real time, so that the detection time can be shortened. Play.
  • the detection time can be greatly shortened and higher accuracy can be achieved.
  • Field-use microarray readers used in test laboratories can be provided, so they have industrial applicability in a wide range of fields such as the medical industry, food industry, pharmaceutical industry, and environment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A microarray reader (100) for detecting a specific intercalation between a probe DNA and a target DNA when a sample containing a fluorescent material and the target DNA is brought into contact with a microarray substrate (70) on which the probe DNA is immobilized. The microarray reader (100) comprises a laser light source (11), an objective lens (14) for directing the light beam projected from the laser light source (11) to a microarray substrate (70) so that an evanescent field may be produced on the surface of the microarray substrate (70) where the probe DNA is immobilized, and a photodetector (17) for detecting fluorescent light emitted from the fluorescent material contained in the sample and excited by the evanescent field. With this microarry reader, higher sensitivity is achieved and the detection time is shortened.

Description

明 細 書  Specification
マイクロアレイ読取装置  Microarray reader
技術分野  Technical field
[0001] 本発明は、マイクロアレイを高感度かつ高速にて検出可能なマイクロアレイ読取装 置に関するものである。  [0001] The present invention relates to a microarray reading apparatus capable of detecting a microarray with high sensitivity and high speed.
背景技術  Background art
[0002] DNAマイクロアレイは、 1995年に報告されて以来、細胞や組織中で働く mRNAを 網羅的に検出できる方法として、細胞生物学や基礎医学分野だけでなぐ創薬や医 療応用等の多く分野にぉ 、て用いられるようになってきて 、る。 DNAマイクロアレイ は、細胞の核内でどのような遺伝子が転写されている力 また転写された mRNAが 細胞内にどのくらい存在するのか等の情報をそれぞれの遺伝子について一度に大 量に調べることができるため、トランスクリプトーム解析の主な研究方法として定着して きている。  Since being reported in 1995, DNA microarrays have been widely used in drug discovery and medical applications only in the fields of cell biology and basic medicine as a method that can comprehensively detect mRNAs working in cells and tissues. It is becoming used in the field. DNA microarrays allow you to investigate a large amount of information about each gene at once, such as what gene is transcribed in the nucleus of the cell and how much mRNA is transcribed in the cell. It has become established as the main research method for transcriptome analysis.
[0003] mRNAを網羅的に検出することで、細胞中での遺伝子の役割を決定したり、発生 の特定段階で働く遺伝子を検出したりすることができるだけでなぐ生体各部位の細 胞のトランスクリプトームゃストレスに対する細胞応答、疾病と遺伝子との関係等につ いても調べることができる。このため、このマイクロアレイに関する技術は将来的には さらに多くの有益な情報をもたらすと考えられ、国内外で積極的に研究開発が行わ れている。  [0003] By comprehensively detecting mRNA, it is possible to determine the role of genes in cells and to detect genes that work at specific stages of development. Cryptome can also investigate cellular responses to stress, the relationship between diseases and genes. For this reason, this microarray technology is expected to bring more useful information in the future, and is actively researched and developed in Japan and overseas.
[0004] DNAマイクロアレイの原理を簡単に説明する。一般的な DNAマイクロアレイでは、 各遺伝子の mRNAを検出するために各 mRNAの塩基配列と相補的な配列を持つ DNA (プローブ DNAと呼ぶ)をあらカゝじめ基板上に固定しておき、細胞や組織試料 カゝら抽出した mRNAを逆転写して生成した cDNA (ターゲット DNAと呼ぶ)を基板上 のプローブ DNAへハイブリダィゼーシヨンさせることで各遺伝子の mRNAを検出し ている。  [0004] The principle of DNA microarray will be briefly described. In general DNA microarrays, in order to detect mRNA of each gene, DNA having a sequence complementary to the base sequence of each mRNA (referred to as probe DNA) is preliminarily fixed on a substrate, and the cells are fixed. MRNA of each gene is detected by hybridizing cDNA (called target DNA) generated by reverse transcription of mRNA extracted from tissue samples and tissue samples.
[0005] ノ、イブリダィゼーシヨンでは、熱処理して一本鎖にしたプローブ DNAに対して、同 じく一本鎖にしたターゲット DNAが相補的な配列を持って 、れば安定に再結合 (ノ、 イブリダィズ)して、配列が異なっていれば結合が不安定になることを利用して、それ ぞれの配列の DNAが識別される。通常、プローブ DNAは直径 100〜200 μ m程度 の円形のスポットとして基板上に固定されており、異なった塩基配列のプローブ DN Aを基板上にアレイ状に並べておいて、スポットの位置によってどの塩基配列の DN Aがあったかを検出する。ターゲット DNAに蛍光色素を付けておけば、基板上の蛍 光発光の強度力もハイブリダィズしたターゲット DNAの量を計測できる。 [0005] In the hybridization, if the target DNA that is also single-stranded has a complementary sequence to the probe DNA that has been heat-treated into single-stranded DNA, it can be re-stable stably. Combined (no, By using the fact that the binding becomes unstable if the sequences are different, the DNA of each sequence is identified. Usually, the probe DNA is fixed on the substrate as a circular spot with a diameter of about 100 to 200 μm. Probe DNAs with different base sequences are arranged in an array on the substrate, and the base position depends on the spot position. Detect if there is a DN A in the sequence. If a fluorescent dye is attached to the target DNA, the amount of target DNA that is hybridized with the intensity of fluorescence emission on the substrate can also be measured.
[0006] しかし、 DNAマイクロアレイが実際の医療診断の現場や農業試験場での検査、食 品検査等において用いられるようになるには、さらなる検査時間の短縮と検出の高感 度化、検査結果の再現性向上が求められている。このため、近年、本発明者らの研 究グループによって、全く新しい概念の DNAマイクロアレイ検出方法が提唱されて いる。 [0006] However, in order for DNA microarrays to be used in actual medical diagnosis, inspection at agricultural test sites, food inspection, etc., further shortening of inspection time, higher detection sensitivity, and reproducibility of inspection results There is a need for improvement. Therefore, in recent years, a completely new concept of DNA microarray detection method has been proposed by our research group.
[0007] 例えば、非特許文献 1には、ターゲット DNAがプローブ DNAにハイブリダィズして V、く過程を時系列観察して、ハイブリダィズ量の時間変化からそれぞれの塩基配列 の DNAがどのくらいあつたかを推定することにより、 DNAマイクロアレイの読み取りを 行うと 、う概念が開示されて 、る。  [0007] For example, in Non-Patent Document 1, the target DNA is hybridized to the probe DNA, and the V, process is observed in time series, and how much DNA of each base sequence is estimated from the time variation of the amount of hybridization. By doing this, the concept of DNA microarray reading is disclosed.
[0008] また、近年、 DNAマイクロアレイ基板の近傍にエバネッセント場を発生させ、このェ バネッセント場による照明で蛍光分子を励起して蛍光観察することでプローブ DNA にハイブリダィズした DNA量をリアルタイムで計測する技術が開発されて 、る(例え ば、非特許文献 2参照)。図 9に示すように、エバネッセント場 501とは、ガラス基板 50 0側から光を全反射角度以上の入射角で入射したときに生じる光の場のことで、ガラ ス基板 500の表面近傍に 100〜200nm程度の厚さで存在させることができる。エバ ネッセント場 501による照明では、入射する光のエネルギーは全反射してガラス基板 500側に戻っていくが、エバネッセント場 501中に蛍光分子 502が存在すると励起し て蛍光発光させることができる。エバネッセント場 501による照明で蛍光分子 502を 励起すると、ガラス基板 500表面近傍に存在する蛍光分子 502のみを蛍光励起する ことができるので、 DNAマイクロアレイのハイブリダィゼーシヨン過程で用いれば、プ ローブ DNAにハイブリダィズした分子のみを選択的に蛍光励起して検出することが できる。 [0009] また、エバネッセント場による照明で蛍光励起を行った場合、ターゲット DNAを流 すために用いる溶液中に蛍光分子が存在しても殆ど励起光があたらず蛍光励起さ れな 、ので、計測時のノックグラウンドが小さ!/、と 、うメリットがある。 [0008] In recent years, a technique has been developed in which an evanescent field is generated in the vicinity of a DNA microarray substrate, and the amount of DNA hybridized to the probe DNA is measured in real time by exciting fluorescent molecules with illumination by the evanescent field and observing the fluorescence. Has been developed (for example, see Non-Patent Document 2). As shown in FIG. 9, the evanescent field 501 is a light field that is generated when light is incident from the glass substrate 500 side at an incident angle greater than the total reflection angle. It can be present at a thickness of about ~ 200 nm. In the illumination by the evanescent field 501, the incident light energy is totally reflected and returns to the glass substrate 500 side. However, if the fluorescent molecule 502 exists in the evanescent field 501, it can be excited to emit fluorescence. When the fluorescent molecule 502 is excited by illumination with the evanescent field 501, only the fluorescent molecule 502 existing in the vicinity of the surface of the glass substrate 500 can be fluorescently excited. Therefore, if used in the hybridization process of the DNA microarray, the probe DNA Only the molecules hybridized to can be detected by selective fluorescence excitation. [0009] In addition, when fluorescence excitation is performed by illumination with an evanescent field, even if fluorescent molecules are present in the solution used for flowing the target DNA, the excitation light is hardly applied and the fluorescence excitation is not performed. The knock ground at the time is small!
[0010] 〔非特許文献 1〕  [Non-Patent Document 1]
春名かおり、杉浦忠男、佐藤哲大、田畑慶人、湊小太郎 共著、「DNAマイクロア レイにおけるハイブリダィゼーシヨン過程のリアルタイム検出.」、生体医工学 41 (Supp 0: 148,2003  Kaori Haruna, Tadao Sugiura, Tetsuhiro Sato, Keito Tabata, Kotaro Taki, “Real-time detection of hybridization processes in DNA microarrays”, Biomedical Engineering 41 (Supp 0: 148,2003
〔非特許文献 2〕  [Non-Patent Document 2]
Carolin Peter er al., Optical DNA— sensor chip for real-time detection of nybndiz ation events" Fresenius J Anal Chem (2001) 371: 120—127  Carolin Peter er al., Optical DNA— sensor chip for real-time detection of nybndization events ”Fresenius J Anal Chem (2001) 371: 120—127
[0011] 上述したように、従来の DNAマイクロアレイ技術に対して、さらなる検査時間の短縮 と検出の高感度化、検査結果の再現性向上が求められている。特に、 DNAマイクロ アレイではハイブリダィゼーシヨン過程を経て特定の配列を持つ DNAを検出すること になる力 このハイブリダィゼーシヨンには約 8時間〜 16時間もの時間がかかり、検出 にかかる作業開始力も検出終了まで含めるとかなりの時間を必要としていた。これは 医療分野での応用や、ハイスループットな解析を目的とする場合では、絶望的なまで の時間が掛カることを意味している。  [0011] As described above, there is a need for further shortening of inspection time, higher detection sensitivity, and improved reproducibility of inspection results with respect to the conventional DNA microarray technology. In particular, in DNA microarrays, the ability to detect DNA with a specific sequence through a hybridization process. This hybridization takes about 8 to 16 hours, and the work involved in detection When the starting force was included until the end of detection, a considerable amount of time was required. This means that it takes time to hopelessness for medical applications and high-throughput analysis purposes.
[0012] そして、上記の問題を解決する一つの手段として、本発明者らの研究グループは、 実時間観察型の DNAマイクロアレイ検出技術の概念を上記非特許文献 1に開示し ている。  [0012] As one means for solving the above problem, the research group of the present inventors discloses the concept of a real-time observation type DNA microarray detection technique in Non-Patent Document 1.
[0013] し力しながら、力かる非特許文献 1には、実時間観測型 DNAマイクロアレイの検出 方法についての抽象的な概念は開示されているが、この非特許文献 1が発行された 段階では、その具体的な構成にまで具現化されていな力つた。つまり、非特許文献 1 には、実時間観測型 DNAマイクロアレイの検出方法について、実現可能な程度に 開示されていない。  [0013] In spite of that, Non-Patent Document 1, which is powerful, discloses an abstract concept for a detection method of a real-time observation type DNA microarray, but at the stage when this Non-Patent Document 1 was issued. , The power that has not been embodied in its concrete configuration. That is, Non-Patent Document 1 does not disclose a real-time observation type DNA microarray detection method to a practical extent.
[0014] また、非特許文献 2には、エバネッセント場を用いた実時間型の DNAマイクロアレ ィ読取装置が開示されている力 この装置も現実の使用に堪え得るものではないと考 えられる。すなわち、非特許文献 2に開示の DNAマイクロアレイ読取装置は、プリズ ムの表面にプローブ DNAをスポットしており、一般的な DNAマイクロアレイ基板に対 して汎用性に欠けるという問題点がある。また、本装置では、シャッターを動かすこと により光検出器 (light detector)においてスポットにおける蛍光強度を検出しているが 、この系ではイメージングを行うことができず、高精度の DNAマイクロアレイの検出を 行うことができない。さらに、本装置には、走査機構については全く考慮されていない ため、スキャニングしながら検出することができず、より多くのスポットを有するマイクロ アレイに対応することができな 、と 、う問題点がある。 [0014] Further, Non-Patent Document 2 discloses a real-time DNA microarray reader using an evanescent field. This device is also considered to be unbearable for actual use. That is, the DNA microarray reader disclosed in Non-Patent Document 2 is Since the probe DNA is spotted on the surface of the DNA array, there is a problem that it lacks versatility compared to general DNA microarray substrates. In addition, in this device, the fluorescence intensity at the spot is detected by a light detector by moving the shutter, but in this system, imaging cannot be performed and high-precision DNA microarray detection is performed. I can't. Furthermore, since this apparatus does not consider the scanning mechanism at all, it cannot be detected while scanning, and it cannot cope with a microarray having more spots. is there.
[0015] したがって、現実の使用に堪え得るように、高感度化を実現できるマイクロアレイ読 取装置、さらには検出時間を短縮し得るマイクロアレイ読取装置の開発が強く望まれ ていた。 [0015] Therefore, there has been a strong demand for the development of a microarray reader that can realize high sensitivity and a microarray reader that can shorten the detection time so that it can withstand actual use.
発明の開示  Disclosure of the invention
[0016] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、高感度化を実 現できるマイクロアレイ読取装置、さらには検出時間を短縮し得るマイクロアレイ読取 装置を提供することにある。  The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a microarray reading apparatus capable of realizing high sensitivity and further a microarray reading apparatus capable of reducing detection time. It is in.
[0017] 本発明者は、上記課題を解決すべく鋭意検討を行った結果、マイクロアレイの検出 にかかる時間を短縮するために、まず、蛍光を励起する手段と蛍光を検出する手段と をマイクロアレイ基板に対して同じ側に配置することにより、より高精度化を実現する ことができることを見出した。また、ハイブリダィゼーシヨン過程に着目し、ハイブリダィ ゼーシヨン過程を実時間で観察することでノヽイブリダィゼーシヨンが完全に終了する まで待たなくとも検査結果が得られるようになり、検出時間を短縮ィ匕できることを見出 した。さらに、蛍光励起用のレーザ光を対物レンズの外側力 照射することにより、視 野角を拡大させることができ、一度に多量のスポットの検出を実現し、検出時間を短 縮ィ匕できることを見出した。本発明者は、これらの新規な知見に基づき、本願発明を 完成させるに至った。すなわち、本発明は、以下の発明(1)〜(15)を包含する。  [0017] As a result of intensive studies to solve the above-mentioned problems, the present inventor firstly arranged a means for exciting fluorescence and a means for detecting fluorescence to reduce the time required for detection of the microarray. It was found that higher accuracy can be achieved by arranging them on the same side. In addition, paying attention to the hybridization process and observing the hybridization process in real time, the test result can be obtained without waiting until the noise hybridization is completely completed, and the detection time can be reduced. I found that I could shorten it. Furthermore, it was found that the viewing angle can be expanded by irradiating the excitation excitation laser beam with the external force of the objective lens, a large number of spots can be detected at once, and the detection time can be shortened. . The present inventor has completed the present invention based on these new findings. That is, the present invention includes the following inventions (1) to (15).
[0018] (1)プローブ物質が固定化されたマイクロアレイ基板に対して、少なくとも蛍光物質 とターゲット物質とを含む試料を接触させた場合の、上記プローブ物質と上記ターゲ ット物質との特異的な相互作用を検出するためのマイクロアレイ読取装置であって、 光を照射するための光照射手段と、上記マイクロアレイ基板におけるプローブ物質が 固定されて 、る表面にエバネッセント場を発生させるように、上記光照射手段によつ て照射される光を上記マイクロアレイ基板に対して入射させる光入射手段と、上記ェ バネッセント場により励起された試料中に含まれる蛍光物質から出射される蛍光を検 出するための光検出手段と、を備え、上記光検出手段は、対物レンズとして機能する 光学レンズを有しており、該光学レンズが上記光入射手段として機能するマイクロア レイ読取装置。 [0018] (1) When the sample containing at least the fluorescent substance and the target substance is brought into contact with the microarray substrate on which the probe substance is immobilized, the probe substance and the target substance are specific. A microarray reader for detecting an interaction, comprising: a light irradiation means for irradiating light; and a probe substance on the microarray substrate. A light incident means for causing the light irradiated by the light irradiation means to enter the microarray substrate so as to generate an evanescent field on a fixed surface; and a sample excited by the evanescent field. A light detecting means for detecting fluorescence emitted from the fluorescent material contained therein, the light detecting means having an optical lens functioning as an objective lens, and the optical lens A microarray reader that functions as an incident means.
[0019] (2)プローブ物質が固定化されたマイクロアレイ基板に対して、少なくとも蛍光物質 とターゲット物質とを含む試料を接触させた場合の、上記プローブ物質と上記ターゲ ット物質との特異的な相互作用を検出するためのマイクロアレイ読取装置であって、 光を照射するための光照射手段と、上記マイクロアレイ基板におけるプローブ物質が 固定されて 、る表面にエバネッセント場を発生させるように、上記光照射手段によつ て照射される光を上記マイクロアレイ基板に対して入射させる光入射手段と、上記ェ バネッセント場により励起された試料中に含まれる蛍光物質から出射される蛍光を検 出するための光検出手段と、を備え、上記光検出手段は、対物レンズとして機能する 光学レンズを有しており、上記光入射手段は、上記光照射手段からの光を、上記光 学レンズを経由することなぐ上記マイクロアレイ基板に対して入射させるものである マイクロアレイ読取装置。  [0019] (2) When the sample containing at least the fluorescent substance and the target substance is brought into contact with the microarray substrate on which the probe substance is immobilized, the probe substance and the target substance are specific. A microarray reader for detecting an interaction, wherein the light irradiation means for irradiating light and the probe material on the microarray substrate are fixed to generate an evanescent field on the surface. Light incident means for making the light irradiated by the means incident on the microarray substrate, and light for detecting the fluorescence emitted from the fluorescent material contained in the sample excited by the evanescent field Detecting means, and the light detecting means has an optical lens functioning as an objective lens, and the light incident means is the light illuminating means. A microarray reader, wherein the light from the projecting means is incident on the microarray substrate without passing through the optical lens.
[0020] (3)上記光入射手段は、上記光照射手段によって照射される光を、上記マイクロア レイ基板におけるプローブ物質が固定されている面において全反射される角度以上 の入射角で入射させるものである(1)または(2)に記載のマイクロアレイ読取装置。  [0020] (3) The light incident means causes the light irradiated by the light irradiation means to be incident at an incident angle equal to or greater than an angle at which the light is totally reflected on the surface of the microarray substrate on which the probe substance is fixed. The microarray reader according to (1) or (2).
[0021] (4)上記光入射手段は、上記マイクロアレイ基板と上記光学レンズとの間に配置さ れている(2)に記載のマイクロアレイ読取装置。  (4) The microarray reading apparatus according to (2), wherein the light incident means is disposed between the microarray substrate and the optical lens.
[0022] (5)上記光入射手段は、上記光照射手段によって照射される光を反射させるため の反射面を少なくとも 1つ有するものであり、上記反射面は、該反射面による反射光 力 上記マイクロアレイ基板におけるプローブ物質が固定されている面において全反 射される角度以上の入射角で入射されるように、設けられている(2)に記載のマイク ロアレイ読取装置。  [0022] (5) The light incident means has at least one reflecting surface for reflecting the light irradiated by the light irradiating means, and the reflecting surface is a reflected light force by the reflecting surface. The microarray reader according to (2), which is provided so as to be incident at an incident angle greater than an angle at which the probe substance on the microarray substrate is fixed.
[0023] (6)上記光入射手段の屈折率は、上記マイクロアレイ基板の屈折率と略同じである (2)に記載のマイクロアレイ読取装置。 (6) The refractive index of the light incident means is substantially the same as the refractive index of the microarray substrate. The microarray reader according to (2).
[0024] (7)上記光照射手段および光検出手段は、上記マイクロアレイ基板におけるプロ一 ブ物質が固定されている面の裏面側に配置されている(1)〜(6)のいずれかに記載 のマイクロアレイ読取装置。 [0024] (7) The light irradiation means and the light detection means are arranged on the back side of the surface of the microarray substrate on which the probe substance is fixed, according to any one of (1) to (6). Microarray reader.
[0025] (8)上記マイクロアレイ基板と光入射手段との間には、オイル層が設けられている( (8) An oil layer is provided between the microarray substrate and the light incident means (
1)〜(7)の 、ずれかに記載のマイクロアレイ読取装置。 The microarray reader according to any one of 1) to (7).
[0026] (9)さらに、上記マイクロアレイ基板上の上記ターゲット物質を含む試料の温度を調 節するための温度調節手段を備える(1)〜(8)の 、ずれかに記載のマイクロアレイ読 取装置。 [0026] (9) The microarray reading device according to any one of (1) to (8), further comprising temperature adjusting means for adjusting the temperature of the sample containing the target material on the microarray substrate. .
[0027] (10)上記プローブ物質とターゲット物質との特異的な相互作用を、実時間にて検 出するものである(1)〜(9)の 、ずれかに記載のマイクロアレイ読取装置。  [0027] (10) The microarray reader according to any one of (1) to (9), wherein the specific interaction between the probe substance and the target substance is detected in real time.
[0028] (11)さらに、上記マイクロアレイ基板と上記光入射手段との相対位置を変更させる ための位置変更手段を備える(1)〜(10)のいずれかに記載のマイクロアレイ読取装 置。  [0028] (11) The microarray reading device according to any one of (1) to (10), further comprising position changing means for changing a relative position between the microarray substrate and the light incident means.
[0029] (12)さらに、上記ターゲット物質がプローブ物質と相互作用していく過程を時系列 観察することによって得られる検出データを用いて、上記プローブ物質と相互作用す るターゲット物質の量を推定するための演算処理を行う演算処理手段を備える(1)〜 [0029] (12) Further, the amount of the target substance that interacts with the probe substance is estimated using detection data obtained by observing the process in which the target substance interacts with the probe substance in time series. Computation processing means for performing computation processing to perform (1) to
( 11)の 、ずれかに記載のマイクロアレイ読取装置。 (11) The microarray reader according to any one of the above.
[0030] (13)上記プローブ物質およびターゲット物質は、 1本鎖の DNAである(1)〜(12) の!、ずれかに記載のマイクロアレイ読取装置。 [0030] (13) The microarray reader according to any one of (1) to (12), wherein the probe substance and the target substance are single-stranded DNAs.
[0031] (14)上記蛍光物質は、上記ターゲット物質と結合している(1)〜(13)のいずれか に記載のマイクロアレイ読取装置。 [0031] (14) The microarray reader according to any one of (1) to (13), wherein the fluorescent substance is bonded to the target substance.
[0032] (15)上記蛍光物質は、上記プローブ物質とターゲット物質とが相互作用している 状態の物質に対して、特異的に結合するものである(1)〜(14)のいずれかに記載の マイクロアレイ読取装置。 [0032] (15) The fluorescent substance specifically binds to a substance in a state where the probe substance and the target substance interact with each other in any one of (1) to (14) The microarray reader according to the description.
[0033] なお、上記演算処理手段は、コンピュータによって実現してもよぐこの場合には、 コンピュータを上記各手段として動作させることにより上記演算処理手段をコンビユー タにて実現させる演算処理手段の制御 ·演算プログラム、およびそれを記録したコン ピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 [0033] In this case, the arithmetic processing means may be realized by a computer. In this case, the arithmetic processing means controls the arithmetic processing means to be realized by a computer by causing the computer to operate as the respective means. · Calculation program and computer that recorded it A computer-readable recording medium also falls within the scope of the present invention.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明に係る実施の一形態のマイクロアレイ読取装置の構成を模式的に示す 図である。 FIG. 1 is a diagram schematically showing a configuration of a microarray reader according to an embodiment of the present invention.
[図 2(a)]本発明に係る実施の一形態のハイブリダィゼーシヨン'セルの構成の一例を 上方から見た図である。  FIG. 2 (a) is a view of an example of the configuration of a hybridization cell according to an embodiment of the present invention as viewed from above.
[図 2(b)]図 2 (a)における a— a'線に沿って切断した断面を示す図である。  FIG. 2 (b) is a view showing a cross section cut along the line aa ′ in FIG. 2 (a).
[図 3]本発明に係る実施の一形態のマイクロアレイ基板に対して光を入射した場合の 状態を模式的に説明する図である。  FIG. 3 is a diagram schematically illustrating a state when light is incident on the microarray substrate according to the embodiment of the present invention.
[図 4]本発明に係る実施の他の一形態のマイクロアレイ基板に対して光を入射した場 合の状態を模式的に説明する図である。  FIG. 4 is a diagram schematically illustrating a state where light is incident on a microarray substrate according to another embodiment of the present invention.
[図 5]本発明に係る実施の他の一形態のマイクロアレイ読取装置の構成を模式的に 示す図である。  FIG. 5 is a diagram schematically showing a configuration of a microarray reader according to another embodiment of the present invention.
[図 6]図 5に示すマイクロアレイ読取装置の構成の一部を上下反対にして模式的に示 した斜視図である。  6 is a perspective view schematically showing a part of the configuration of the microarray reader shown in FIG. 5 upside down.
[図 7(a)]本発明に係る実施例におけるハイブリダィゼーシヨン実験の結果を示す図で あり、本実施例に係るマイクロアレイ読取装置を用いた場合の t = 0における結果を示 す図である。  FIG. 7 (a) is a diagram showing the result of a hybridization experiment in the example according to the present invention, and shows the result at t = 0 when the microarray reader according to the present example is used. It is.
[図 7(b)]本発明に係る実施例におけるハイブリダィゼーシヨン実験の結果を示す図で あり、本実施例に係るマイクロアレイ読取装置を用いた場合の t= l (min)における結 果を示す図である。  FIG. 7 (b) is a diagram showing the result of a hybridization experiment in the example according to the present invention, and the result at t = l (min) when the microarray reader according to the example is used. FIG.
[図 7(c)]本発明に係る実施例におけるハイブリダィゼーシヨン実験の結果を示す図で あり、本実施例に係るマイクロアレイ読取装置を用いた場合の t= 5 (min)における結 果を示す図である。  FIG. 7 (c) is a diagram showing the result of a hybridization experiment in the example according to the present invention, and the result at t = 5 (min) when the microarray reader according to the example is used. FIG.
[図 7(d)]本発明に係る実施例におけるハイブリダィゼーシヨン実験の結果を示す図で あり、本実施例に係るマイクロアレイ読取装置を用いた場合の t= 20 (min)における 結果を示す図である。  FIG. 7 (d) is a diagram showing the result of a hybridization experiment in the example according to the present invention, and shows the result at t = 20 (min) when using the microarray reader according to the present example. FIG.
[図 7(e)]本発明に係る実施例におけるノ、イブリダィゼーシヨン実験の結果を示す図で あり、対照実験の t=oにおける結果を示す図である。 [FIG. 7 (e)] is a diagram showing the results of an experiment on the nodularization in the example according to the present invention. FIG. 6 is a diagram showing the results at t = o of a control experiment.
[図 7(£)]本発明に係る実施例におけるハイブリダィゼーシヨン実験の結果を示す図で あり、対照実験の t= 1 (min)における結果を示す図である。  FIG. 7 (£) is a diagram showing a result of a hybridization experiment in an example according to the present invention, and a diagram showing a result at t = 1 (min) of a control experiment.
[図 7(g)]本発明に係る実施例におけるノ、イブリダィゼーシヨン実験の結果を示す図で あり、対照実験の t= 5 (min)における結果を示す図である。  FIG. 7 (g) is a diagram showing the results of an experiment on the nodification in the example according to the present invention, and shows the results at t = 5 (min) of the control experiment.
[図 7(h)]本発明に係る実施例におけるハイブリダィゼーシヨン実験の結果を示す図で あり、対照実験の t= 20 (min)における結果を示す図である。  FIG. 7 (h) is a diagram showing a result of a hybridization experiment in an example according to the present invention, and a diagram showing a result at t = 20 (min) of a control experiment.
[図 8]図 7 (a)〜図 7 (h)の結果をグラフ化したものを示す図である。  FIG. 8 is a graph showing the results of FIGS. 7 (a) to 7 (h).
[図 9]ガラス基板に光を入射してエバネッセント場を発生させる現象を模式的に説明 する図である。  FIG. 9 is a diagram schematically illustrating a phenomenon in which light is incident on a glass substrate to generate an evanescent field.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 〔実施の形態 1〕 [Embodiment 1]
本発明の一実施形態について図 1〜図 4に基づいて説明すると以下の通りである。  An embodiment of the present invention will be described below with reference to FIGS.
[0036] くマイクロアレイ基板および検査対象 > [0036] <Microarray substrate and inspection object>
まず、本発明に係るマイクロアレイ読取装置は、プローブ物質が固定化されたマイ クロアレイ基板に対して、少なくとも蛍光物質とターゲット物質とを含む試料を接触さ せた場合の、上記プローブ物質と上記ターゲット物質との特異的な相互作用を検出 するためのものである。  First, the microarray reader according to the present invention provides the probe substance and the target substance when the sample containing at least the fluorescent substance and the target substance is brought into contact with the microarray substrate on which the probe substance is immobilized. This is to detect a specific interaction with.
[0037] このため、まず、読み取り対象となるマイクロアレイ基板およびマイクロアレイ基板を 用いて検出する検出対象 (試料)について説明する。なお、本明細書でいう文言「読 み取り(読取)」とは、検出、測定、計測等と同義に用いられるものである。  [0037] Therefore, first, a microarray substrate to be read and a detection target (sample) to be detected using the microarray substrate will be described. Note that the term “read” in this specification is used synonymously with detection, measurement, measurement, and the like.
[0038] 本発明に用いられるマイクロアレイ基板は、ターゲット物質を含む試料と接触した際 に、試料中に含まれる該ターゲット物質と特異的な相互作用(例えば、結合、ハイプリ ダイゼーシヨン等)し、該ターゲット物質を検出するためのプローブ物質が固定されて いるものであればよぐ例えば、プローブ物質の種類、数、量、スポットの大きさ等とい つた具体的な構成は特に限定されるものではない。しかし、一度に多量の試料を同 時に計測するというマイクロアレイの特徴を最大限に生かすためにも、プローブ物質 は複数種類であることが好まし 、。 [0039] また、後述するように、マイクロアレイ基板上で発生した蛍光を、マイクロアレイ基板 越しに蛍光を検出することになるため、マイクロアレイ基板は少なくとも光を透過させ る材質力も構成されている。例えば、マイクロアレイ基板としては、ガラス基板やポリ力 ーボネート、 PMMA等の樹脂からなるもの等の光透過率が高 、材質から構成される 基板を好適に用いることができるが、熱による屈折率の変化率を考慮すると、ガラス 基板が最も好適である。なお、本発明に係るマイクロアレイ読取装置によれば、上述 の条件を具備する従来公知のマイクロアレイ基板を読み取り対象とすることができ、 適用範囲が広範であるという利点がある。 [0038] When the microarray substrate used in the present invention comes into contact with a sample containing a target substance, it specifically interacts with the target substance contained in the sample (for example, binding, hybridization, etc.), and the target As long as the probe substance for detecting the substance is fixed, the specific configuration such as the type, number, amount, spot size, etc. of the probe substance is not particularly limited. However, in order to take full advantage of the microarray feature of simultaneously measuring a large number of samples at the same time, it is preferable that there are multiple types of probe substances. [0039] Further, as will be described later, since the fluorescence generated on the microarray substrate is detected through the microarray substrate, the microarray substrate is also configured to have at least a material strength for transmitting light. For example, as a microarray substrate, a substrate made of a material having a high light transmittance such as a glass substrate, a polycarbonate, a resin made of PMMA, or the like can be suitably used, but the refractive index changes due to heat. Considering the rate, a glass substrate is most suitable. According to the microarray reader according to the present invention, a conventionally known microarray substrate having the above-mentioned conditions can be read, and there is an advantage that the application range is wide.
[0040] また、マイクロアレイ基板に固定されるプローブ物質としては、具体的には、例えば 、核酸 (ポリヌクレオチド、オリゴヌクレオチドを含む)、ポリペプチド (タンパク質、オリゴ ペプチド、抗体を含む)、生体内低分子物質 (ホルモン等)、環境ホルモン等の低分 子物質を挙げることができる。また、ターゲット物質は、上記プローブ物質と相互作用 するものであればよぐ特に限定されるものではないが、プローブ物質と相互作用す る関係上、核酸 (ポリヌクレオチド、オリゴヌクレオチドを含む)、ポリペプチド (タンパク 質、オリゴペプチドを含む)、生体内低分子物質 (ホルモン等)、環境ホルモン等の低 分子物質等が好適である。なかでも、プローブ物質およびターゲット物質としては、特 に、 1本鎖の DNAが好適である。また、ターゲット物質としては、 1本鎖 RNAも好適 に用いられる。  [0040] Specific examples of the probe substance immobilized on the microarray substrate include nucleic acids (including polynucleotides and oligonucleotides), polypeptides (including proteins, oligopeptides, and antibodies), Examples include low molecular weight substances such as molecular substances (hormones, etc.) and environmental hormones. In addition, the target substance is not particularly limited as long as it interacts with the probe substance. However, nucleic acids (including polynucleotides and oligonucleotides), polynucleotides, and the like interact with the probe substance. Peptides (including proteins and oligopeptides), in vivo low molecular weight substances (hormones etc.), low molecular weight substances such as environmental hormones, etc. are suitable. Of these, single-stranded DNA is particularly suitable as the probe substance and the target substance. Moreover, single-stranded RNA is also preferably used as the target substance.
[0041] また、後述するように、本発明に係るマイクロアレイ読取装置は、エバネッセント場を 発生させ、該エバネッセント場により試料中に含まれる蛍光物質を励起させてプロ一 ブ物質とターゲット物質との相互作用を検出するものである。このため、マイクロアレイ 基板 70上を流通させる試料溶液には、蛍光物質が含まれて!/ヽることが必要である。 力かる蛍光物質は、ターゲット物質と結合させておくことが好ましいが、この手法に限 られるものではなぐ例えば、プローブ物質単独またはターゲット物質単独で存在し て 、る場合にはそれらの物質と結合しな 、が、プローブ物質とターゲット物質とが相 互作用(例えば、結合、ハイブリダィズ等)している場合に、これらプローブ物質とター ゲット物質とが相互作用している状態の物質に対して、特異的に結合する蛍光物質 であってもよい。 [0042] 例えば、プローブ物質およびターゲット物質として 1本鎖の DNAを用いる場合であ れば、蛍光性官能基 (例えば、 Cy3, Cy5等)をターゲット DNAの 5'末端に結合させ ておくこと、またはターゲット DNAに取り込ませること等が可能であり、また、ターゲッ ト DNAには蛍光物質を付加せずに、 2本鎖を形成した DNAに特異的に付着して蛍 光発光するインカレーター分子(例えば、 POPO— 3 (Molecular Probes, Inc) )を用い ることがでさる。 [0041] Further, as will be described later, the microarray reader according to the present invention generates an evanescent field and excites a fluorescent substance contained in the sample by the evanescent field to cause mutual interaction between the probe substance and the target substance. The action is detected. For this reason, the sample solution distributed on the microarray substrate 70 needs to contain! It is preferable that the strong fluorescent substance is bonded to the target substance, but this method is not limited to this method.For example, the probe substance alone or the target substance exists, and in this case, it binds to these substances. However, when the probe substance and the target substance interact with each other (for example, binding, hybridization, etc.), the probe substance and the target substance interact with each other in a specific state. It may be a fluorescent substance that binds to each other. [0042] For example, when single-stranded DNA is used as a probe substance and a target substance, a fluorescent functional group (eg, Cy3, Cy5, etc.) is bound to the 5 'end of the target DNA, Alternatively, the target DNA can be incorporated into the target DNA, and the target DNA is not added with a fluorescent substance. For example, POPO-3 (Molecular Probes, Inc)) can be used.
[0043] また、検査対象となる試料溶液は、少なくとも上述のターゲット物質と蛍光物質とが 含まれるものであればよぐその具体的な糸且成ゃ濃度、 pH等の諸条件については特 に限定されるものではない。例えば、溶液のベースも水溶液であることが好ましいが、 これに限定されず、有機溶媒等が含まれる溶液であってもよい。例えば、 DNAゃタ ンパク質等の生体高分子を検出対象とする場合は、その物質に合わせた緩衝液 (バ ッファー)を好適に用いることができる。  [0043] Further, the sample solution to be inspected is not particularly limited as long as it contains at least the above-mentioned target substance and fluorescent substance. It is not limited. For example, the base of the solution is preferably an aqueous solution, but is not limited thereto, and may be a solution containing an organic solvent or the like. For example, when a biopolymer such as DNA protein is to be detected, a buffer solution (buffer) suitable for the substance can be preferably used.
[0044] さらに、検査対象となる試料溶液は、マイクロアレイ基板上のプローブ物質と接触す るようになっていればよぐその際の具体的な構成や条件等は特に限定されるもので はない。より好ましくは、検査対象となる試料溶液をマイクロアレイ基板上に流通また は流動させることが好適である。  [0044] Furthermore, the specific configuration and conditions are not particularly limited as long as the sample solution to be inspected comes into contact with the probe substance on the microarray substrate. . More preferably, it is preferable to distribute or flow the sample solution to be inspected on the microarray substrate.
[0045] 上述したように、本発明に係るマイクロアレイ読取装置の読み取る対象となるマイク ロアレイ基板において、プローブ物質およびターゲット物質としては、 1本鎖の DNA を用いることが好適である。このため、以下、プローブ物質およびターゲット物質とし て 1本鎖の DNAを用いる場合、つまり、いわゆる DNAマイクロアレイの検出結果を読 み取る場合を例に挙げて説明する。  [0045] As described above, in the microarray substrate to be read by the microarray reader according to the present invention, it is preferable to use single-stranded DNA as the probe substance and the target substance. For this reason, the case where single-stranded DNA is used as the probe substance and the target substance, that is, the case where the so-called DNA microarray detection result is read will be described below as an example.
[0046] <マイクロアレイ読取装置の構成 >  <Configuration of microarray reader>
本実施の形態では、倒立型顕微鏡をベースとして構成したマイクロアレイ読取装置 であって、光入射手段として対物レンズを用いる場合のマイクロアレイ読取装置 100 について説明する。つまり、本実施の形態に係るマイクロアレイ読取装置 100は、倒 立型顕微鏡をベースとした観察装置となっているため、エバネッセント場による照明 は顕微鏡光学系が有する対物レンズを通して行い、顕微鏡光学系を通して蛍光検 出できるように構成されている。ベースとして利用できる倒立型顕微鏡としては、例え ば、ニコン製、 TE— 2000を挙げることができる。なお、本発明に係るマイクロアレイ 読取装置は、倒立型顕微鏡をベースとして構成したものに限られるものではなぐ本 発明の構成を有し、本発明の効果を奏することができるものであれば、本発明の技術 的範囲に含まれることは 、うまでもな 、。 In the present embodiment, a microarray reading apparatus 100 configured using an inverted microscope as a base and using an objective lens as a light incident means will be described. In other words, since the microarray reading apparatus 100 according to the present embodiment is an observation apparatus based on an inverted microscope, illumination by the evanescent field is performed through an objective lens included in the microscope optical system, and fluorescence is transmitted through the microscope optical system. It is configured so that it can be detected. An example of an inverted microscope that can be used as a base is Examples include TE-2000 made by Nikon. The microarray reading apparatus according to the present invention is not limited to the one configured based on the inverted microscope, and has the configuration of the present invention as long as the effect of the present invention can be obtained. It is a matter of course that it is included in the technical scope of.
[0047] 図 1は、本実施の形態に係るマイクロアレイ読取装置の構成を模式的に示す図であ る。同図に示すように、本実施の形態に係るマイクロアレイ読取装置 100は、レーザ 光源 11、第 1のレンズ 12、反射面 13、対物レンズ 14、励起光カットフィルタ 15、結像 レンズ 16、光検出器 17、温度調節部 18、演算処理部 19、位置変更部 21を備えて いる。また、マイクロアレイ読取装置 100は、マイクロアレイ基板 70をその読み取りの 対象とする。 FIG. 1 is a diagram schematically showing the configuration of the microarray reading apparatus according to the present embodiment. As shown in the figure, the microarray reader 100 according to the present embodiment includes a laser light source 11, a first lens 12, a reflecting surface 13, an objective lens 14, an excitation light cut filter 15, an imaging lens 16, and a light detection. 17, a temperature control unit 18, an arithmetic processing unit 19, and a position changing unit 21. Further, the microarray reader 100 uses the microarray substrate 70 as a reading target.
[0048] レーザ光源 11は、光を照射するための光照射手段として機能するものである。かか るレーザ光源 11は、後述するように、マイクロアレイ基板 70上にてエバネッセント場を 発生させるための光を照射することができるものであればよぐその他の具体的な構 成や条件等 (例えば、照射する光の波長、強度、種類等)は特に限定されるものでは ない。例えば、蛍光励起用レーザとして、 2 co Nd:YAGレーザ(波長 532nm)のレー ザ光を照射するレーザ光源、 LED,水銀ランプ等を好適に用いることができる。  [0048] The laser light source 11 functions as light irradiation means for irradiating light. As will be described later, the laser light source 11 may be any other specific configuration or condition as long as it can emit light for generating an evanescent field on the microarray substrate 70 ( For example, the wavelength, intensity, type, etc. of the irradiated light are not particularly limited. For example, a laser light source for irradiating laser light of a 2 co Nd: YAG laser (wavelength: 532 nm), an LED, a mercury lamp, or the like can be suitably used as the fluorescence excitation laser.
[0049] 第 1のレンズ 12は、レーザ光源 11から照射されたレーザ光を集光し、反射面 13に 対して導くための光学レンズであればよぐその他の具体的な構成 (例えば、材質、 大きさ、厚み等)は特に限定されるものではない。反射面 13は、第 1のレンズ 12から のレーザ光を対物レンズ 14に対して反射させるものであればよぐ従来公知の光学 系機器に使用される反射手段を用いることができる。本実施の形態では、反射面 13 は、第 1のレンズ 12を経由して到達するレーザ光源 11からのレーザ光を、顕微鏡光 学系(例えば、対物レンズ 14)の光軸と平行な光であって、該光軸から一定の距離ォ フセットされた光として、対物レンズ 14に対して反射させるものである。  [0049] The first lens 12 may be another specific configuration (for example, a material) as long as it is an optical lens for condensing the laser light emitted from the laser light source 11 and guiding it to the reflecting surface 13. , Size, thickness, etc.) are not particularly limited. The reflecting surface 13 may be a reflecting means used in a conventionally known optical system device as long as it reflects the laser light from the first lens 12 to the objective lens 14. In the present embodiment, the reflecting surface 13 converts the laser light from the laser light source 11 that reaches via the first lens 12 with light parallel to the optical axis of the microscope optical system (for example, the objective lens 14). Thus, the light is reflected to the objective lens 14 as light offset by a certain distance from the optical axis.
[0050] 対物レンズ 14は、マイクロアレイ基板 70上において発生した蛍光^^めるための 対物レンズとして機能する光学レンズである。さらに、本実施の形態において、対物 レンズ 14は、マイクロアレイ基板 70におけるプローブ物質が固定されている表面に ぉ 、てエバネッセント場を発生させるように、レーザ光源 11によって照射されるレー ザ光をマイクロアレイ基板 70に対して入射させる光入射手段としても機能する。かか る対物レンズ 14も、上述の機能を実行できるものであればよぐその他の具体的な構 成等は特に限定されるものではない。例えば、後述する実施例に示すように、対物レ ンズ 14として、ニコン製、 TIRF用対物、開口数 NA= 1. 45の光学レンズを用いるこ とがでさる。 The objective lens 14 is an optical lens that functions as an objective lens for fluorescing generated on the microarray substrate 70. Further, in the present embodiment, the objective lens 14 is a laser beam irradiated by the laser light source 11 so as to generate an evanescent field on the surface of the microarray substrate 70 on which the probe substance is fixed. It also functions as a light incident means for making the light incident on the microarray substrate 70. The objective lens 14 is not particularly limited as long as it can execute the above-described functions. For example, as shown in an example described later, as the objective lens 14, an optical lens having a numerical aperture NA = 1.45 made by Nikon, an objective for TIRF can be used.
[0051] また、対物レンズ 14とマイクロアレイ基板 70との間には、オイル層 20が設けられて いる。オイル層 20は、対物レンズ 14の屈折率とマイクロアレイ基板 70の屈折率とを整 合させ、境界面上での反射を低減させるためのものである。オイル層 20がない場合、 対物レンズ 14の上面にて光が全反射してしま!/、、マイクロアレイ基板 70の表面にお いてエバネッセント場を発生させることができない。また、これは、マイクロアレイ基板 In addition, an oil layer 20 is provided between the objective lens 14 and the microarray substrate 70. The oil layer 20 is for matching the refractive index of the objective lens 14 and the refractive index of the microarray substrate 70 to reduce reflection on the boundary surface. Without the oil layer 20, the light is totally reflected on the upper surface of the objective lens 14! /, And the evanescent field cannot be generated on the surface of the microarray substrate 70. This is also a microarray substrate
70の板厚が異なる場合であっても、対物レンズ 14力もマイクロアレイ基板 70に入射 される光の入射位置を一定に調節し、マイクロアレイ基板 70上に焦点を合わせる働 きをするためのものである。 Even if the plate thickness of 70 is different, the objective lens 14 force is also used to adjust the incident position of the light incident on the microarray substrate 70 so as to focus on the microarray substrate 70. .
[0052] 励起光カットフィルタ 15は、短波長の光 (励起光)をカット(除去)し、マイクロアレイ 基板 70上で発生した蛍光のみを透過させるための光学フィルタであればよぐ従来 公知の 、わゆる SCフィルタと称されるものを好適に使用することができる。このフィル タを用いることにより、蛍光をより高精度に検出することができる。  The excitation light cut filter 15 may be an optical filter that cuts (removes) short-wavelength light (excitation light) and transmits only the fluorescence generated on the microarray substrate 70. What is called a so-called SC filter can be preferably used. By using this filter, fluorescence can be detected with higher accuracy.
[0053] 結像レンズ 16は、励起光カットフィルタ 15を透過した光を、光検出器 17において結 像させるための光学レンズであり、従来公知の光学機器に用いられる結像レンズを好 適に用いることができ、その具体的な構成 (例えば、材質、大きさ、厚み等)は特に限 定されるものではない。なお、これら対物レンズ 14、励起光カットフィルタ 15、結像レ ンズ 16は、ベースとした倒立顕微鏡において顕微鏡光学系(光学系機構)を構成し ている。  The imaging lens 16 is an optical lens for causing the light transmitted through the excitation light cut filter 15 to be imaged by the photodetector 17, and an imaging lens used in a conventionally known optical device is preferably used. The specific configuration (for example, material, size, thickness, etc.) is not particularly limited. The objective lens 14, the excitation light cut filter 15, and the imaging lens 16 constitute a microscope optical system (optical system mechanism) in an inverted microscope as a base.
[0054] 光検出器 17は、結像レンズ 16によって結像された光を検出するための光検出装 置として機能するものであればよぐ従来公知の光学機器に使用され得る光検出器 を好適に利用することができる。例えば、後述する実施例に示すように、冷却 CCD力 メラ(浜松ホトニタス、 ORCA—ER)を用いることができる力 これに限定されるもので はない。なお、 CCDカメラを用いる場合は、 CCDカメラ 17の動作を制御する CCD制 御部や、 CCDカメラによって検出された画像データを表示したり、加工したりするた めの演算装置 (PC等)を備えていてもよい。なお、本実施の形態に係るマイクロアレ ィ読取装置 100では、上述の顕微鏡光学系(光学系機構)として機能する対物レンズ 14、励起光カットフィルタ 15、結像レンズ 16と、光検出装置として機能する光検出器 17とを合わせて、光検出手段と称する。 The photodetector 17 is a photodetector that can be used in a conventionally known optical device as long as it functions as a photodetector for detecting the light imaged by the imaging lens 16. It can be suitably used. For example, as shown in the examples described later, the force that can use a cooled CCD force camera (Hamamatsu Photonicas, ORCA-ER) is not limited to this. When a CCD camera is used, the CCD control that controls the operation of the CCD camera 17 is performed. A control unit or a computing device (such as a PC) for displaying or processing image data detected by the CCD camera may be provided. In the microarray reader 100 according to the present embodiment, the objective lens 14, the excitation light cut filter 15, the imaging lens 16, and the photodetection device that function as the above-described microscope optical system (optical system mechanism). The photo detector 17 is collectively referred to as photo detection means.
[0055] 温度調節部 18は、後述するマイクロアレイ基板 70上に存在する(より好ましくはマイ クロアレイ基板 70上を流通または流動して存在する)試料溶液の温度を調節するた めのものであればよぐ従来公知の温度調節手段を好適に用いることができる。例え ば、セラミックヒータ(50 X 50mm)、熱電対温度センサー (TC)、ヒータ制御部から構 成される温度調節手段を用いて、ヒータと TCとを、ヒータ制御部により PID制御するこ とによって、マイクロアレイ基板 70上の試料の温度を最適に調節することができる。例 えば、マイクロアレイ基板 70が DNAマイクロアレイである場合、この温度調節部 18は 、後述するように、マイクロアレイ基板 70上を流通する試料溶液の温度を、バイブリダ ィゼーシヨンが行われるのに好適な温度(例えば、 65°C)に保つことができる。このた め、 DNAマイクロアレイを検出する際には、マイクロアレイ読取装置 100において、 実時間でノ、イブリダィゼーシヨン過程を評価するために必要な構成と!/、える。ただし、 タンパク質を検出するためのマイクロアレイ (例えば、プロテインチップ等)の場合は、 常温にて実時間で結合を検出できる場合もあるため、かならずしも温度調節部 18が 必要になるわけではない。  [0055] The temperature adjusting unit 18 may be any one for adjusting the temperature of the sample solution that exists on the microarray substrate 70 described later (more preferably, it exists by flowing or flowing on the microarray substrate 70). Conventionally known temperature adjusting means can be preferably used. For example, by using a temperature control means consisting of a ceramic heater (50 x 50mm), a thermocouple temperature sensor (TC), and a heater control unit, PID control of the heater and TC is performed by the heater control unit. The temperature of the sample on the microarray substrate 70 can be adjusted optimally. For example, when the microarray substrate 70 is a DNA microarray, the temperature control unit 18 converts the temperature of the sample solution flowing on the microarray substrate 70 to a temperature suitable for performing hybridization (for example, as will be described later). 65 ° C). For this reason, when detecting a DNA microarray, the microarray reader 100 has a configuration necessary for evaluating the hybridization process in real time. However, in the case of a microarray for detecting proteins (for example, a protein chip), since the binding may be detected in real time at room temperature, the temperature control unit 18 is not necessarily required.
[0056] 演算処理部 19は、ターゲット DNAがプローブ DNAにハイブリダィズしていく過程 を時系列観察することによって得られる検出データを用いて、ハイブリダィズ量の時 間変化カゝらターゲット DNA (ターゲット DNAが複数種類の場合は、それぞれの塩基 配列の DNA)がどのくらいあつたかを推定するための演算処理を行うものである。な お、演算処理部 19が行う演算処理についての詳細は後述する。  [0056] The arithmetic processing unit 19 uses the detection data obtained by observing the process of the target DNA hybridizing to the probe DNA in time series, and the target DNA (target DNA In the case of multiple types, a calculation process is performed to estimate how much the DNA of each base sequence has been accumulated. Details of the arithmetic processing performed by the arithmetic processing unit 19 will be described later.
[0057] 位置変更部 21は、マイクロアレイ基板 70と対物レンズ 14との相対位置を変更させ るための位置変更手段として機能するものである。力かる位置変更部 21としては、従 来公知の顕微鏡等の光学機器に用いられて ヽる移動ステージ等を好適に用いること ができる。位置変更部 21により、マイクロアレイ基板 70上に設けられている ポ ット(プローブ DNAが多数固定ィ匕されている領域)が複数個存在している場合でも、 マイクロアレイ基板 70と対物レンズ 14との相対位置を変更することにより、異なる DN Aスポットにおけるハイブリダィゼーシヨンを容易に検出することができる。また、位置 変更部 21は、 1軸方向の走査が可能な機構であってもよいが、より好適には、 2次元 的な走査が可能な 2軸方向の走査が可能な機構であることが好ましい。 The position changing unit 21 functions as position changing means for changing the relative position between the microarray substrate 70 and the objective lens 14. As the position changing unit 21 to be applied, a moving stage or the like that is conventionally used in optical devices such as a known microscope can be suitably used. The position changing unit 21 provides a po- sition provided on the microarray substrate 70. Even if there are multiple probes (regions where a large number of probe DNAs are immobilized), by changing the relative positions of the microarray substrate 70 and the objective lens 14, hybrids in different DNA spots can be obtained. The session can be easily detected. Further, the position changing unit 21 may be a mechanism capable of uniaxial scanning, but more preferably a mechanism capable of two-axis scanning capable of two-dimensional scanning. preferable.
[0058] なお、本実施の形態では、マイクロアレイ基板 70を移動させて、対物レンズ 14との 相対位置を変更している力 この方式に限定されるものではなぐ例えば、マイクロア レイ基板 70を固定しておき、対物レンズ 14や結像レンズ 15等の光学系機構および 光検出器 17の位置を移動させる方式であっても力まわない。  In this embodiment, the force by which the microarray substrate 70 is moved to change the relative position with the objective lens 14 is not limited to this method. For example, the microarray substrate 70 is fixed. In addition, even if the optical system mechanism such as the objective lens 14 and the imaging lens 15 and the position of the photodetector 17 are moved, it does not matter.
[0059] <ハイブリダィゼーシヨン 'セル >  [0059] <Hybridization 'Cell>
図 1に示すように、読み取り対象となるマイクロアレイ基板 70は、マイクロアレイ読取 装置 100に対して、ハイブリダィゼーシヨン ·セル 50としてセットされることになる。本 実施の形態に係るハイブリダィゼーシヨン'セル 50は、上述の温度調節部 18と組み 合わせることによって、ハイブリダィゼーシヨンを実時間観察するために温度調整機 能を持つように構成されている。すなわち、リアルタイムにハイブリダィゼーシヨンを検 出するためには、(0温度調整が可能であること、 GOセル内部にターゲット DNAを含 む試料溶液を流通させることができて、かつ、その流量が調整可能であること、が好 ましい。このため、力かるハイブリダィゼーシヨン ·セルを用いることが好ましい。以下 に、ハイブリダィゼーシヨン'セル 50の具体的な構成について説明する。  As shown in FIG. 1, the microarray substrate 70 to be read is set as a hybridization cell 50 with respect to the microarray reader 100. The hybridization cell 50 according to the present embodiment is configured to have a temperature adjustment function for observing the hybridization in real time by combining with the temperature adjustment unit 18 described above. ing. In other words, in order to detect hybridization in real time, (0 temperature adjustment is possible, the sample solution containing the target DNA can be circulated inside the GO cell, and its flow rate is Therefore, it is preferable to use a powerful hybridization cell, and the specific configuration of the hybridization cell 50 will be described below.
[0060] 図 2 (a)はハイブリダィゼーシヨン 'セルの構成の一例を上方から見た図であり、図 2  [0060] FIG. 2 (a) is a diagram showing an example of the configuration of the hybridization cell, as viewed from above.
(b)は図 2 (a)における a— a'線に沿って切断した断面を示す図である。図 2 (b)に示 すように、本実施の形態に係るハイブリダィゼーシヨン'セル 50は、マイクロアレイ基 板 70、スライドガラス 71、スぺーサ 72、固定器具 73を備えている。  FIG. 2B is a diagram showing a cross section cut along the line aa ′ in FIG. As shown in FIG. 2 (b), the hybridization cell 50 according to the present embodiment includes a microarray substrate 70, a slide glass 71, a spacer 72, and a fixing device 73.
[0061] ハイブリダィゼーシヨン.セル 50は、図 2 (b)中、上面がスライドガラス 71、下面がマ イクロアレイ基板 70であり、マイクロアレイ基板 70はカバーガラスとしても機能する。ま た、プローブ DNAは、マイクロアレイ基板 70の表面であって、スライドガラス 71と向 かい合う(対向する)面側に配置(固定化)してある。なお、プローブ DNAは、図 2 (a) に示すように、 ポットの形式で配置されて!、る。 [0062] カバーガラスとして機能する側にプローブ DNAをスポッティングした理由は、後の 処理において、エバネッセント場による照明によりプローブ DNAとターゲット DNAと のハイブリダィゼーシヨンを検出する際、図 2 (b)に示すように、マイクロアレイ基板 70 におけるプローブ DNAを固定ィ匕した表面とは反対側から、マイクロアレイ読取装置 1 00によるレーザ光を入射するためである。つまり、図 2 (b)に示すように、マイクロアレ ィ読取装置 100の対物レンズ 14は、マイクロアレイ基板 70におけるプローブ DNAを 固定ィ匕した表面とは反対の表面側力も近接し、レーザ光を入射することになる。なお 、マイクロアレイ基板 70は、マイクロアレイ読取装置 100における対物レンズ 14に適 合したカバーガラスを用いて 、る。 In FIG. 2 (b), the hybridization cell 50 has a slide glass 71 on the upper surface and a microarray substrate 70 on the lower surface, and the microarray substrate 70 also functions as a cover glass. The probe DNA is disposed (immobilized) on the surface of the microarray substrate 70 on the side facing (opposing) the slide glass 71. The probe DNA is arranged in a pot format as shown in Fig. 2 (a). [0062] The reason for spotting the probe DNA on the side that functions as the cover glass is that, in the subsequent processing, when detecting hybridization between the probe DNA and the target DNA by illumination with an evanescent field, Fig. 2 (b) This is because laser light from the microarray reader 100 enters from the side opposite to the surface of the microarray substrate 70 on which the probe DNA is immobilized. That is, as shown in FIG. 2 (b), the objective lens 14 of the microarray reader 100 is also close to the surface side force opposite to the surface on which the probe DNA is fixed on the microarray substrate 70, and the laser beam is incident thereon. Will do. The microarray substrate 70 is made of a cover glass suitable for the objective lens 14 in the microarray reader 100.
[0063] マイクロアレイ基板 70とスライドガラス 71の間には所定の厚みのスぺーサ 72が挿入 されている。なお、マイクロアレイ基板 70とスライドガラス 71との間隔は、ターゲット D NAを含む試料溶液を流通させることができる程度の間隔であればよぐその具体的 な数値等は特に限定されるものではない。例えば、 100 mの間隔をあければ、好 適に試料溶液を流通させることができる。この場合、スぺーサ 72の厚みは 100 mに なる。また、スぺーサ 72の材質等も特に限定されるものではなぐ公知のスぺーサを 好適に用いることができる。例えば、テフロン (登録商標)製のパッキンを用いることが できる。  A spacer 72 having a predetermined thickness is inserted between the microarray substrate 70 and the slide glass 71. The interval between the microarray substrate 70 and the slide glass 71 is not particularly limited as long as the interval is such that the sample solution containing the target DNA can be circulated. For example, if the interval of 100 m is provided, the sample solution can be circulated appropriately. In this case, the thickness of the spacer 72 is 100 m. Further, the material of the spacer 72 is not particularly limited, and a known spacer can be suitably used. For example, a packing made of Teflon (registered trademark) can be used.
[0064] マイクロアレイ基板 70とスライドガラス 71の間には所定の厚みのスぺーサ 72を挿入 して、さらに、固定器具 73によって上下力も押さえつけることでマイクロアレイ基板 70 とスライドガラス 71の間を 100 mの間隔を空けて保持させる。そして、この間隙に試 料溶液を流す。この固定器具 73としては、従来公知の固定器具を用いることができ、 その具体的な構成は限定されるものではない。例えば、ステンレス製フレームを用い ることがでさる。  [0064] A spacer 72 having a predetermined thickness is inserted between the microarray substrate 70 and the slide glass 71, and the vertical force is also pressed by the fixing device 73, so that the distance between the microarray substrate 70 and the slide glass 71 is 100 m. Hold at intervals. Then, the sample solution is poured into this gap. As the fixing device 73, a conventionally known fixing device can be used, and its specific configuration is not limited. For example, a stainless steel frame can be used.
[0065] また、スライドガラス 71には、 2つの穴 74· 74 (例えば、直径 lmm)が設けられてい る。図 2 (a)および図 2 (b)に示すように、この一方の穴 74を通して試料溶液をステン レスフレーム側力 入れて、マイクロアレイ基板 70の表面に固定化されているプロ一 ブ DNAと接触させ、その後、もう一方の穴 74から出すことによって、試料溶液をプロ ーブ DNA上に流通させることができるように構成されている。試料溶液は、不図示の 試料搬送装置によってマイクロアレイ基板 70とスライドガラス 71の間隙部分に流通さ せることができる。試料搬送装置としては、例えば、ペリスタリックポンプを挙げること ができ、このペリスタックポンプによって圧力を印加することにより、ハイブリダィゼーシ ヨン'セノレ 50中を流通させることができる。 [0065] Further, the slide glass 71 is provided with two holes 74 · 74 (for example, a diameter lmm). As shown in Fig. 2 (a) and Fig. 2 (b), the sample solution is pressed by the stainless frame through one of the holes 74 to make contact with the probe DNA immobilized on the surface of the microarray substrate 70. Then, the sample solution is made to flow on the probe DNA by being taken out from the other hole 74. The sample solution is not shown The sample can be distributed through the gap between the microarray substrate 70 and the slide glass 71 by the sample transport device. As the sample transport device, for example, a peristaltic pump can be cited. By applying a pressure with this peristaltic pump, the hybridizing senor 50 can be circulated.
[0066] さらに、固定器具 73は、例えば、スライドガラス 71側に温度調節部 18を設けること ができるように構成されている。例えば、スライドガラス 71側にセラミックヒータを貼付 し、マイクロアレイ基板 70側に熱電対温度センサー (TC)を設置して温度を計測しつ つ、ヒータ制御部でセラミックヒータを PID制御することにより、試料溶液の温度を一 定に保つことができる。特に、ハイブリダィゼーシヨン処理では、試料溶液の温度が、 65°Cに保たれた状態でノヽイブリダィゼーシヨンを行えるようにすることが好ま 、。  [0066] Furthermore, the fixing device 73 is configured such that the temperature adjusting unit 18 can be provided on the slide glass 71 side, for example. For example, a ceramic heater is attached to the slide glass 71 side, a thermocouple temperature sensor (TC) is installed on the microarray substrate 70 side, and the temperature is measured. The temperature of the solution can be kept constant. In particular, in the hybridization treatment, it is preferable to perform the noise hybridization while the temperature of the sample solution is kept at 65 ° C.
[0067] また、ハイブリダィゼーシヨン'セル中に流通させる試料溶液として用いられるバッフ ァ一等の具体的な糸且成ゃ濃度、温度等の諸条件は特に限定されるものではなぐ従 来公知の DNAマイクロアレイ実験に使用されるバッファーや条件等を好適に用いる ことができる。例えば、後述する実施例に示すように、 TEバッファー(10mM Tris- HC1 (pH 7. 5)、 ImM EDTAなど)や SSCバッファー(4 X SSCゝ 0. 2%SDS、 20 X Denhart)等を好適に用いることができる。  [0067] In addition, the specific conditions of the yarn and the concentration, temperature, etc. of the buffer used as a sample solution to be circulated in the hybridization cell are not particularly limited. Buffers and conditions used for known DNA microarray experiments can be suitably used. For example, TE buffer (10 mM Tris-HC1 (pH 7.5), ImM EDTA, etc.), SSC buffer (4 X SSC S 0.2% SDS, 20 X Denhart), etc. are suitable as shown in the examples described later. Can be used.
[0068] <マイクロアレイ読取装置の動作説明 >  [0068] <Description of operation of microarray reader>
次!、で、上述したマイクロアレイ基板 70を備えるハイブリダィゼーシヨン ·セル 50を 用いて、ハイブリダィゼーシヨン過程の時系列観察を行う場合を例に挙げて、マイクロ アレイ読取装置 100の動作について説明する。  Next! The operation of the microarray reader 100 will be described by taking as an example the case of performing time series observation of the hybridization process using the hybridization cell 50 including the microarray substrate 70 described above. To do.
[0069] 本実施の形態に係るハイブリダィゼーシヨン実験では、まず、所定の cDNAがプロ ーブ DNAとしてスポットされて!/、るマイクロアレイ基板 70上に対して、この cDNAに 相補的な配列を有するターゲット DNA (蛍光性官能基が結合して 、る)を含む試料 溶液を接触させるベぐハイブリダィゼーシヨン'セル 50中に流通させる。次に、マイク ロアレイ読取装置 100によって、マイクロアレイ基板 70上のプローブ DNA (DNAス ポット)にターゲット DNAがハイブリダィズしている力否かを検出する。具体的には以 下のように行う。  [0069] In the hybridization experiment according to the present embodiment, first, a predetermined cDNA is spotted as a probe DNA! /, A sequence complementary to this cDNA on the microarray substrate 70. The sample solution containing the target DNA (having a fluorescent functional group bound thereto) having a flow is passed through the hybridization cell 50 to which the sample solution is brought into contact. Next, the microarray reader 100 detects whether or not the target DNA is hybridized with the probe DNA (DNA spot) on the microarray substrate 70. Specifically, this is done as follows.
[0070] まず、図 1に示すように、レーザ光源 11からレーザ光を照射する。照射されたレー ザ光は、第 1のレンズ 12によって集光され、続いて反射面 13によって反射される。反 射面 13は、第 1のレンズ 12を経由して到達するレーザ光源 11からのレーザ光を、顕 微鏡光学系(例えば、対物レンズ 14)の光軸と平行な光であって、該光軸から一定の 距離オフセットされた光として、対物レンズ 14に対して反射する。 First, as shown in FIG. 1, laser light is emitted from a laser light source 11. Irradiated The light is collected by the first lens 12 and subsequently reflected by the reflecting surface 13. The reflection surface 13 is a beam parallel to the optical axis of a microscope optical system (for example, the objective lens 14), which is a laser beam from the laser light source 11 that arrives via the first lens 12. The light is reflected off the objective lens 14 as light offset by a certain distance from the optical axis.
[0071] 反射面 13によって反射されたレーザ光は、対物レンズ 14の光軸力もオフセットした 方向より、対物レンズ 14に対して入射する。そして、対物レンズ 14に入射した光は、 対物レンズ 14の働きにより、対物レンズ 14の出口において、平行光線でありながら、 マイクロアレイ基板 70に対して大きな入射角を持って入射する光となり、 ポッ ト(プローブ DNAが固定されている部分)の照明を行う。つまり、対物レンズ 14は、レ 一ザ光を、マイクロアレイ基板 70におけるプローブ DNAが固定されている面におい て全反射される角度以上の入射角で入射させる光入射手段として機能するものとい える。 The laser light reflected by the reflecting surface 13 enters the objective lens 14 in a direction in which the optical axial force of the objective lens 14 is also offset. Then, the light incident on the objective lens 14 becomes light incident on the microarray substrate 70 with a large incident angle at the exit of the objective lens 14 by the function of the objective lens 14 while being a parallel ray. Illuminate the area where the probe DNA is immobilized. That is, it can be said that the objective lens 14 functions as a light incident means for causing the laser light to be incident at an incident angle that is greater than the angle at which the laser light is totally reflected on the surface of the microarray substrate 70 on which the probe DNA is fixed.
[0072] 具体的には、ターゲット DNAを含む試料溶液は、水溶液であり、マイクロアレイ基 板 70はガラス基板として説明すると、水の屈折率は 1. 33であり、屈折率 1. 5のガラ スに比べて屈折率が低い。このため、図 3に示すように、対物レンズ 14によって、マイ クロアレイ基板 70へのレーザ光の入射角 Θを、水とガラスの境界面での全反射角 Θ (62° )よりも大きくなるように調整して入射させることにより、レーザ光はマイクロアレ c  [0072] Specifically, the sample solution containing the target DNA is an aqueous solution, and the microarray substrate 70 is described as a glass substrate. The refractive index of water is 1.33, and the glass having a refractive index of 1.5. The refractive index is lower than For this reason, as shown in FIG. 3, the objective lens 14 causes the incident angle Θ of the laser light to the microarray substrate 70 to be larger than the total reflection angle Θ (62 °) at the interface between water and glass. The laser beam is microarrayed by adjusting
ィ基板 70におけるプローブ DNA80が固定化されている表面 70aの下面側で全反 射する。そしてこのとき、マイクロアレイ基板 70の表面 70aの上面側に薄くエバネッセ ント場 60が発生することになる。  Fully reflected on the lower surface side of the surface 70a where the probe DNA80 is immobilized on the substrate 70. At this time, a thin evanescent field 60 is generated on the upper surface side of the surface 70a of the microarray substrate 70.
[0073] 図 3に示すように、マイクロアレイ基板 70の表面 70aに発生したエバネッセント場 60 は、マイクロアレイ基板 70の表面 70aから、波長程度の領域(約 100〜200nm程度 の領域)までしか存在していない。このため、 1本鎖のプローブ DNA80と特異的にハ イブリダィズしたターゲット DNA81が有する蛍光性官能基 8 laのみを蛍光励起させ 、遊離のターゲット DNA82が有する蛍光性官能基 82aを励起させることはない。この ため、 DNAマイクロアレイのハイブリダィゼーシヨン過程において、プローブ DNA80 にハイブリダィズしたターゲット DNA81のみを選択的に検出することができる。  [0073] As shown in FIG. 3, the evanescent field 60 generated on the surface 70a of the microarray substrate 70 exists only from the surface 70a of the microarray substrate 70 to a region of about the wavelength (region of about 100 to 200 nm). Absent. For this reason, only the fluorescent functional group 8 la of the target DNA 81 specifically hybridized with the single-stranded probe DNA 80 is fluorescently excited, and the fluorescent functional group 82 a of the free target DNA 82 is not excited. Therefore, only the target DNA 81 hybridized to the probe DNA 80 can be selectively detected in the hybridization process of the DNA microarray.
[0074] すなわち、本実施の形態では、全反射条件でマイクロアレイ基板 70側におけるプロ ーブ DNAを固定ィ匕した表面 70aの裏面側から光を入射したときに生じるエバネッセ ント場 60を、ターゲット DNAに付加してある蛍光物質を励起させるのに用いる。エバ ネッセント場 60は、マイクロアレイ基板 70から波長程度の厚さの領域に局在する光の 場であるため、全反射条件でレーザ光を入射した場合、入射した光はマイクロアレイ 基板 70の表面 70aの下面側で全反射してマイクロアレイ基板 70内に戻っていくが、 マイクロアレイ基板 70の表面 70aから波長程度の厚さの領域に蛍光物質が存在する と、蛍光物質で光吸収が起こり蛍光発光させることができる。また、マイクロアレイ基板 70の表面 70aから極近傍にしか光の場が存在しな!、ので、マイクロアレイ基板 70に 固定されたプローブ DNAとハイブリダィズしたターゲット DNAが有する蛍光物質の みを蛍光励起して発光させることができる。 That is, in the present embodiment, the process on the microarray substrate 70 side under the total reflection condition. The evanescent field 60 generated when light enters from the back side of the surface 70a on which the DNA is immobilized is used to excite the fluorescent material added to the target DNA. Since the evanescent field 60 is a light field localized in a region having a thickness of about a wavelength from the microarray substrate 70, when laser light is incident under total reflection conditions, the incident light is incident on the surface 70a of the microarray substrate 70. The light is totally reflected on the lower surface side and returns to the inside of the microarray substrate 70. However, if a fluorescent material is present in the region of a thickness of about a wavelength from the surface 70a of the microarray substrate 70, the fluorescent material absorbs light and causes fluorescence to be emitted. Can do. In addition, since a light field exists only in the immediate vicinity from the surface 70a of the microarray substrate 70, only the fluorescent material possessed by the target DNA hybridized with the probe DNA immobilized on the microarray substrate 70 is excited by fluorescence to emit light. Can be made.
[0075] 発生した蛍光は、対物レンズ 14で集めて、励起光カットフィルタ 15、結像レンズ 16 t 、つた顕微鏡光学系の機構を通して再び結像させ、光検出器 17によって検出する 。特に、本実施の形態では、温度調節部 18を用いて、試料溶液の温度が 65°Cにて 一定に保ち温度安定ィ匕した状態でターゲット DNAを含む試料溶液を流通させ、マイ クロアレイ基板 70と接触させている。このため、蛍光像の時間変化を観察することに より、実時間でハイブリダィゼーシヨン過程を評価できる。  The generated fluorescence is collected by the objective lens 14, imaged again through the excitation light cut filter 15, the imaging lens 16 t, and the mechanism of the microscope optical system, and detected by the photodetector 17. In particular, in the present embodiment, the temperature control unit 18 is used to distribute the sample solution containing the target DNA in a state where the temperature of the sample solution is kept constant at 65 ° C. Is in contact with. Therefore, the hybridization process can be evaluated in real time by observing the temporal change of the fluorescence image.
[0076] すなわち、入射する光によってエバネッセント場を発生させてマイクロアレイを観測 するとターゲット DNAが基板上のプローブ DNAにハイブリダィズして固定化される にしたがって基板表面力 発光する蛍光強度が増加するので、蛍光強度を検出する ことでターゲット DNAの増加をモニターすることができる。したがって、マイクロアレイ 読取装置 100によれば、ハイブリダィゼーシヨンにかかる時間を短縮することができる ため、従来の装置に比べて、大幅に検出時間を短縮化できる。  [0076] That is, when an evanescent field is generated by incident light and the microarray is observed, the fluorescence intensity emitted from the substrate surface increases as the target DNA hybridizes to the probe DNA on the substrate and is immobilized. By detecting the intensity, the increase in target DNA can be monitored. Therefore, according to the microarray reading apparatus 100, the time required for hybridization can be shortened, so that the detection time can be greatly shortened as compared with the conventional apparatus.
[0077] また、図 1に示すように、マイクロアレイ読取装置 100では、光照射手段として機能 するレーザ光源 11や、光学系機構として機能する対物レンズ 14、励起光カットフィル タ 15、結像レンズ 16、および光検出装置として機能する光検出器 17は、マイクロア レイ基板 70におけるプローブ DNAが固定されている面 70aの裏面側に配置されて いる。これは、光照射手段であるレーザ光源 11や光入射手段である対物レンズ 14は 、マイクロアレイ基板 70におけるプローブ DNAが固定されている面 70aにエバネッ セント場を発生させるために、マイクロアレイ基板 70の表面 70aの裏面側力もレーザ 光を入射させる必要があるため、このように配置することが好ま 、ためである。 Further, as shown in FIG. 1, in the microarray reading apparatus 100, a laser light source 11 that functions as a light irradiation means, an objective lens 14 that functions as an optical system mechanism, an excitation light cut filter 15, and an imaging lens 16 The photodetector 17 functioning as a photodetector is disposed on the back surface side of the surface 70a of the microarray substrate 70 on which the probe DNA is fixed. This is because the laser light source 11 as the light irradiation means and the objective lens 14 as the light incident means are connected to the surface 70a of the microarray substrate 70 on which the probe DNA is fixed. In order to generate a cent field, the back surface side force of the front surface 70a of the microarray substrate 70 also needs to be irradiated with laser light.
[0078] また、マイクロアレイ基板 70の表面 70a近傍で蛍光発光が起きた場合、発光した蛍 光のエネルギーの多くは、試料溶液中ではなぐ高屈折率のマイクロアレイ基板 70 側に放射される。このため、マイクロアレイ基板 70側に放射される光を効率よく検出 するためには、蛍光を検出するための光学系機構や光検出器 17をマイクロアレイ基 板 70の表面 70aの裏面側に設けることが好ましいためである。  [0078] When fluorescence emission occurs in the vicinity of the surface 70a of the microarray substrate 70, much of the emitted fluorescence energy is radiated to the side of the microarray substrate 70 having a higher refractive index than that in the sample solution. For this reason, in order to efficiently detect the light emitted to the microarray substrate 70 side, it is necessary to provide an optical system mechanism for detecting fluorescence and the photodetector 17 on the back side of the surface 70a of the microarray substrate 70. This is because it is preferable.
[0079] さらに、マイクロアレイ基板 70側に蛍光励起のための入射光学系と観察のための光 学系を設ける構成にすることにより、スライドガラス 71におけるマイクロアレイ基板 70と 対向する面と反対側の面をフリーな状態とすることができる。そして、このフリーとなつ たスライドガラス 71の面には、ノ、イブリダィゼーションゃタンパク質チップ等に対して 重要な温度コントロールを行うための温度調節部 18や金属ブロックなどの不透明な 素材でできたものを設置することができる。  [0079] Further, by providing an incident optical system for fluorescence excitation and an optical system for observation on the side of the microarray substrate 70, a surface of the slide glass 71 opposite to the surface facing the microarray substrate 70 is provided. Can be in a free state. The surface of the slide glass 71 that has become free is made of an opaque material such as a temperature control unit 18 or a metal block for controlling the temperature of the protein chip, etc. Can be installed.
[0080] また、マイクロアレイ読取装置 100には、位置変更部 21が設けられている。このた め、必要に応じて、位置変更部 21によりマイクロアレイ基板 70と対物レンズ 14等との 相対位置を適宜変更させて、検出動作を行うことにより、スキャニングしながら検出す ることができ、より多くのスポットを有するマイクロアレイに対応することも可能である。  In addition, the microarray reader 100 is provided with a position changing unit 21. For this reason, if necessary, the relative position between the microarray substrate 70 and the objective lens 14 and the like can be appropriately changed by the position changing unit 21, and detection can be performed while scanning. It is also possible to correspond to a microarray having many spots.
[0081] さらに、本実施の形態においてマイクロアレイ読取装置 100では、ターゲット DNA がプローブ DNAにハイブリダィズしてマイクロアレイ基板 70表面に固定されていく様 子を実時間で観察する。このときのマイクロアレイ基板 70表面へ固定されたターゲッ ト DNAの分子数 Xは、下記数式(1)に示すように増加していくと予測される。  Furthermore, in the present embodiment, microarray reading apparatus 100 observes in real time how the target DNA is hybridized to probe DNA and immobilized on the surface of microarray substrate 70. The number X of target DNA molecules immobilized on the surface of the microarray substrate 70 at this time is predicted to increase as shown in the following formula (1).
[0082] X=C (l -exp ( -t/ a ) ) · · · (1)  [0082] X = C (l -exp (-t / a)) · · · (1)
ここで、 Cは、検体中に含まれるターゲット DNAの分子数であり、マイクロアレイ基 板 70の検出により求めたい値である。 aは、ハイブリダィゼーシヨン反応が起こるとき の反応速度と脱離速度の比力 決まる定数である。従来の DNAマイクロアレイ読取 装置による検出では、ノ、イブリダィゼーシヨン後に全ての遺伝子に対して読み取りを することから、 aの影響を排除するために tの値を十分に長く取って DNAの分子数に 関する係数 Cを計測する必要があった。このため、 αに対して十分長い時間を掛けて ハイブリダィゼーシヨンを行う必要があった。例えば、従来の DNAマイクロアレイ読取 装置では、ハイブリダィゼーシヨン処理だけでも、約 8〜12時間以上を要しており、検 出処理全体ではさらなる時間を要して 、た。 Here, C is the number of molecules of the target DNA contained in the sample, and is a value that is desired to be obtained by detection of the microarray substrate 70. a is a constant that determines the specific force between the reaction rate and the desorption rate when the hybridization reaction occurs. In the detection using a conventional DNA microarray reader, all genes are read after hybridization, so the value of t should be set long enough to eliminate the effect of a. It was necessary to measure the coefficient C related to the number. Therefore, take a sufficiently long time for α It was necessary to perform hybridization. For example, with a conventional DNA microarray reader, the hybridization process alone required approximately 8-12 hours or more, and the entire detection process required additional time.
[0083] これに対して、実時間観察が可能な本実施の形態に係るマイクロアレイ読取装置 1 00では、ハイブリダィゼーシヨンが進んでいく過程を観察'検出する。このため、演算 処理部 19が、ハイブリダィゼーシヨンの時系列変化について得られたデータを用い て、ハイブリダィズ量を上記数式(1)にフィッティングさせることにより、それぞれのス ポットでの αの値と Cの値とを求めることができる。具体的には、演算処理部 19は、ま ず、画像処理により抽出した各スポット(DNAスポット)に対して蛍光強度を積分し、 そのスポットに対するハイブリダィズ量 Xrとする。そして、このハイブリダィズ量 Xrと式 (1)中の分子数 Xとの 2乗誤差 (Xr—X) 2が最小になるように、 Cおよび αを決定する 。 Cと αを決定するには、例えば最急降下法を用いることができる。 On the other hand, the microarray reader 100 according to the present embodiment capable of real-time observation observes and detects the progress of the hybridization. For this reason, the arithmetic processing unit 19 uses the data obtained for the time series change of hybridization to fit the amount of hybridization to the above equation (1), so that the value of α in each spot is obtained. And the value of C. Specifically, the arithmetic processing unit 19 first integrates the fluorescence intensity with respect to each spot (DNA spot) extracted by image processing to obtain a hybridizing amount Xr for the spot. Then, C and α are determined so that the square error (Xr−X) 2 between the hybridized amount Xr and the number of molecules X in the equation (1) is minimized. To determine C and α, for example, the steepest descent method can be used.
[0084] このため、本実施の形態に係るマイクロアレイ読取装置 100によれば、必ずしもハイ ブリダィゼーシヨンが終了するまで待つ必要はなぐハイブリダィゼーシヨンが進行す る途中で最終的な量を推定できるようになる。  Therefore, according to the microarray reader 100 according to the present embodiment, it is not always necessary to wait until the hybridization is completed, and the final amount during the progress of the hybridization. Can be estimated.
[0085] また、この方法のメリットは、従来型の DNAマイクロアレイ基板では、基板上に固定 しておくターゲット DNAの量がプローブ DNAの全量よりも多い場合、途中でプロ一 ブ DNAが不足してしまうという問題点があった力 実時間観察型であれば立ち上が り部分での立ち上がり速度より分子数を推定可能になるため、このような問題点を回 避することができる。このため、 ポットが小さくハイブリダィゼーシヨン途中でプ ローブ DNAが不足する場合でも、ターゲット DNAの濃度を正確に計測でき、小さな スポットの DNAマイクロアレイでも計測可能になる。  [0085] In addition, the merit of this method is that, in the case of a conventional DNA microarray substrate, when the amount of target DNA immobilized on the substrate is larger than the total amount of probe DNA, the probe DNA runs short on the way. If the real-time observation type is used, the number of molecules can be estimated from the rising speed at the rising part, so this problem can be avoided. For this reason, even if the pot is small and probe DNA is deficient during hybridization, the target DNA concentration can be measured accurately, even with a small spot DNA microarray.
[0086] したがって、本実施の形態に係るマイクロアレイ読取装置によれば、ターゲット DN Αがプローブ DNAにハイブリダィズして 、く過程を時系列観察して、ハイブリダィズ 量の時間変化力もそれぞれの塩基配列の DNAがどのくらいあつたかを推定すること ができる。このため、ハイブリダィゼーシヨンに掛かる時間を短縮して検査時間を短縮 することができる。さらに、エバネッセント場を発生させるための光学系機構と、蛍光を 検出するための光学系機構とを同一の側に配置することにより、検出感度を向上させ ることちでさる。 [0086] Therefore, according to the microarray reader according to the present embodiment, the target DN is hybridized to the probe DNA, the process of the hybridization is observed in time series, and the time change power of the amount of hybridization is also the DNA of each base sequence. It is possible to estimate how long it was. For this reason, the time required for the hybridization can be shortened to shorten the inspection time. Furthermore, the detection sensitivity is improved by arranging the optical system mechanism for generating the evanescent field and the optical system mechanism for detecting fluorescence on the same side. I'll do it with you.
[0087] また、マイクロアレイ読取装置 100は、プリズム基板上に DN Aを直接スポットしてお らず、光入射手段として機能する部材とマイクロアレイ基板とは別々の構成となって いる。このため、マイクロアレイ基板 70を交換すれば、様々なタイプのマイクロアレイ 基板に対して利用可能であり、汎用性に優れている。さらに、マイクロアレイ読取装置 100では、イメージングを行うことも可能であり、高精度の DNAマイクロアレイの検出 を行うことができる。  [0087] In addition, microarray reading apparatus 100 does not directly spot DNA on the prism substrate, and the member functioning as the light incident means and the microarray substrate have different configurations. Therefore, if the microarray substrate 70 is replaced, the microarray substrate 70 can be used for various types of microarray substrates, and is highly versatile. Further, the microarray reader 100 can perform imaging, and can detect a DNA microarray with high accuracy.
[0088] なお、上述の説明では、蛍光性官能基を結合させたターゲット DNAを含む試料を 用いているが、例えば、 2本鎖 DNAに対して特異的に結合する蛍光物質を含む試 料を用いることもできる。この場合、図 4に示すように、プローブ DNA(1本鎖) 80が固 定されているマイクロアレイ基板 70の表面 70a上に、ターゲット DNA(1本鎖) 82と蛍 光物質 83とを含む試料溶液を流通させる。マイクロアレイ基板 70の表面 70a上に固 定されたプローブ DNA80に検体のターゲット DNA82がハイブリダィズすることで 2 本鎖 DNA81が形成される。  [0088] In the above description, a sample containing target DNA to which a fluorescent functional group is bound is used. For example, a sample containing a fluorescent substance that specifically binds to double-stranded DNA is used. It can also be used. In this case, as shown in FIG. 4, a sample containing the target DNA (single strand) 82 and the fluorescent material 83 on the surface 70a of the microarray substrate 70 on which the probe DNA (single strand) 80 is fixed. Distribute the solution. Double-stranded DNA 81 is formed by hybridizing the target DNA 82 of the specimen to the probe DNA 80 immobilized on the surface 70a of the microarray substrate 70.
[0089] ここで蛍光物質 83は、 2本鎖 DNAに特異的に結合するものであるため、マイクロア レイ基板 70の表面 70aにおいてハイブリダィズによって生じた 2本鎖 DNA81に付着 する。このとき、マイクロアレイ基板 70におけるプローブ DNA80が固定化されている 表面 70aの上面側に薄くエバネッセント場 60が発生しているため、 2本鎖 DNA81に 付着している蛍光物質 84のみがエバネッセント場 60によって蛍光励起され発光する 。一方、遊離の蛍光物質 83は、エバネッセント場 60によって励起されない。  Here, since the fluorescent substance 83 specifically binds to the double-stranded DNA, it adheres to the double-stranded DNA 81 generated by the hybridization on the surface 70a of the microarray substrate 70. At this time, since the evanescent field 60 is thinly generated on the upper surface side of the surface 70a on which the probe DNA 80 is immobilized on the microarray substrate 70, only the fluorescent substance 84 attached to the double-stranded DNA 81 is caused by the evanescent field 60. Emits fluorescence when excited. On the other hand, the free fluorescent material 83 is not excited by the evanescent field 60.
[0090] このように、エバネッセント場 60を用いた照明によって、蛍光物質 84を励起すること でマイクロアレイ基板 70の表面 70a近傍の蛍光物質 84のみを選択的に励起できる。 そして、蛍光強度の時間変化をハイブリダィズ量の変化として計測し、理論曲線にフ イツティングすることで最終的なハイブリダィズ量を予想することができる。  In this way, by exciting the fluorescent material 84 by illumination using the evanescent field 60, only the fluorescent material 84 near the surface 70a of the microarray substrate 70 can be selectively excited. Then, the change in fluorescence intensity over time is measured as a change in the amount of hybridization, and the final amount of hybridization can be predicted by fitting to a theoretical curve.
[0091] 〔実施の形態 2〕  [Embodiment 2]
本発明の他の一実施形態について図 5および図 6に基づいて説明すると以下の通 りである。なお、本実施の形態において、上記実施形態 1における構成要素と同一の 機能を有する構成要素については、同一の符号を付し、その説明を省略する。本実 施の形態では、前記実施の形態 1との相違点について説明するものとする。 Another embodiment of the present invention will be described below with reference to FIG. 5 and FIG. In the present embodiment, components having the same functions as the components in the first embodiment are given the same reference numerals, and descriptions thereof are omitted. Real In the embodiment, differences from the first embodiment will be described.
[0092] 本実施の形態においても、プローブ物質およびターゲット物質として 1本鎖の DNA を用いる場合、つまり、いわゆる DNAマイクロアレイを計測する場合を例に挙げて説 明する。 In this embodiment, the case where single-stranded DNA is used as the probe substance and the target substance, that is, the case where a so-called DNA microarray is measured will be described as an example.
[0093] 本実施の形態では、倒立型顕微鏡をベースとして構成したマイクロアレイ読取装置 であって、対物レンズを経由させることなぐマイクロアレイ基板 70に対して光を入射 する光入射手段を備えるマイクロアレイ読取装置 200について説明する。つまり、本 実施の形態に係るマイクロアレイ読取装置 200は、エバネッセント場による照明は顕 微鏡対物レンズを通さずに行う点を除いて、実施形態 1に示したマイクロアレイ読取 装置 100とほぼ同様の構成となっており、蛍光検出は顕微鏡光学系を通して行うよう に構成されている。なお、本実施の形態に係るマイクロアレイ読取装置 200において 、ベースとして利用できる倒立型顕微鏡としては、例えば、実施形態 1と同様に、ニコ ン製、 TE— 2000を挙げることができる。  In the present embodiment, the microarray reader is configured with an inverted microscope as a base, and includes a microarray reader 200 that includes light incident means for making light incident on the microarray substrate 70 without passing through the objective lens. Will be described. That is, the microarray reader 200 according to the present embodiment has substantially the same configuration as the microarray reader 100 shown in the first embodiment, except that the illumination by the evanescent field is performed without passing through the microscope objective lens. The fluorescence detection is configured to be performed through a microscope optical system. In the microarray reading apparatus 200 according to the present embodiment, as an inverted microscope that can be used as a base, for example, TE-2000 made by Nico can be cited as in the first embodiment.
[0094] 図 5は、本実施の形態に係るマイクロアレイ読取装置 200の構成を模式的に示す図 である。図 6は、図 5に示す構成の一部を上下反対にして模式的に示した斜視図で ある。これら図 5および図 6に示すように、マイクロアレイ読取装置 200は、レーザ光源 11、第 1のレンズ 12、反射面 13、対物レンズ 14、励起光カットフィルタ 15、結像レン ズ 16、光検出器 17、温度調節部 18、演算処理部 19、位置変更部 21、光入射部 30 、光吸収部 32を備えている。また、マイクロアレイ読取装置 200は、マイクロアレイ基 板 70をその読み取りの対象とする。  FIG. 5 is a diagram schematically showing a configuration of microarray reading apparatus 200 according to the present embodiment. FIG. 6 is a perspective view schematically showing a part of the configuration shown in FIG. 5 upside down. As shown in FIGS. 5 and 6, the microarray reader 200 includes a laser light source 11, a first lens 12, a reflecting surface 13, an objective lens 14, an excitation light cut filter 15, an imaging lens 16, and a photodetector. 17, a temperature adjusting unit 18, an arithmetic processing unit 19, a position changing unit 21, a light incident unit 30, and a light absorbing unit 32. Further, the microarray reader 200 uses the microarray substrate 70 as a reading target.
[0095] 本実施の形態では、対物レンズ 14は、顕微鏡光学系における対物レンズの機能の みを有し、実施形態 1のように光入射手段として機能するものではな 、。  In the present embodiment, the objective lens 14 has only the function of the objective lens in the microscope optical system, and does not function as a light incident means as in the first embodiment.
[0096] 光入射部 30は、レーザ光源 11から照射され反射面 13を経由してくる光を反射させ るための反射面 31を有する。本実施の形態では、反射面 31は、レーザ光源 11から 反射面 13を経由してくる光、つまり顕微鏡光学系(例えば、対物レンズ 14)の光軸と 平行な光であって、該光軸から一定の距離オフセットされた光を、マイクロアレイ基板 70におけるプローブ物質が固定されている面において全反射される角度以上の入 射角でマイクロアレイ基板 70に対して入射させる角度に設定されて!、る。 [0097] すなわち、反射面 31を有する光入射部 30は、マイクロアレイ基板 70におけるプロ ーブ DNAが固定されている表面にエバネッセント場を発生させるように、レーザ光源 11によって照射されるレーザ光をマイクロアレイ基板 70に対して入射させる光入射 手段であって、レーザ光源 11からのレーザ光を、対物レンズ 14を経由させることなく (対物レンズ 14の外部を通過させて)、マイクロアレイ基板におけるプローブ物質が 固定されている面において全反射される角度以上の入射角で、マイクロアレイ基板 7 0に対して入射させるように構成されている。 The light incident part 30 has a reflection surface 31 for reflecting light emitted from the laser light source 11 and passing through the reflection surface 13. In the present embodiment, the reflecting surface 31 is light that passes from the laser light source 11 via the reflecting surface 13, that is, light that is parallel to the optical axis of the microscope optical system (for example, the objective lens 14), and the optical axis Is set to an angle at which the light that is offset by a certain distance is incident on the microarray substrate 70 at an incident angle that is greater than the angle at which the probe material on the surface of the microarray substrate 70 is fixedly reflected. . That is, the light incident part 30 having the reflecting surface 31 emits the laser light emitted by the laser light source 11 so as to generate an evanescent field on the surface of the microarray substrate 70 on which the probe DNA is fixed. Light incident means for entering the substrate 70. The probe material on the microarray substrate is fixed without passing the laser light from the laser light source 11 through the objective lens 14 (by passing through the outside of the objective lens 14). The incident light is incident on the microarray substrate 70 at an incident angle that is greater than the angle at which the light is totally reflected on the surface.
[0098] つまり、本実施形態では、対物レンズ 14を経由させずに、マイクロアレイ基板 70に 対して光を入射して、エバネッセント場を発生させる点が、実施形態 1と大きく異なる 特徴点である。実施形態 1に示したように、マイクロアレイ基板 70の表面上にエバネ ッセント場を発生させるための光の入射を、対物レンズ 14によって(対物レンズ 14を 経由して)行う場合、視野角が小さくなり、一度に多くの ポットを検出すること ができな!/、と!/、う問題点がある。  That is, the present embodiment is a feature that is greatly different from the first embodiment in that light is incident on the microarray substrate 70 without passing through the objective lens 14 to generate an evanescent field. As shown in Embodiment 1, when the incidence of light for generating an evanescent field on the surface of the microarray substrate 70 is performed by the objective lens 14 (via the objective lens 14), the viewing angle is reduced. There is a problem that many pots cannot be detected at once! /, And! /.
[0099] しかし、本実施の形態に示すように、マイクロアレイ基板 70の表面上にエバネッセ ント場を発生させるための光の入射を、対物レンズ 14の外部から、対物レンズ 14を 経由させずに行う場合、より視野角が大きくなり、一度に多くの DNAスポットを検出す ることができる。具体的には、実施形態 1のように、対物レンズ 14を経由してマイクロ アレイ基板 70に対して光を入射する場合、視野角は約 150 m X 150 m程度であ る力 本実施の形態のように、対物レンズ 14を経由しないでマイクロアレイ基板 70に 対して光を入射する場合、視野角は約 1 mm ( 1000 m) X 1mm ( 1000 m)程度 となり、大幅に視野角が広がる。  However, as shown in the present embodiment, incidence of light for generating an evanescent field on the surface of the microarray substrate 70 is performed from outside the objective lens 14 without passing through the objective lens 14. In this case, the viewing angle becomes larger and many DNA spots can be detected at one time. Specifically, as in the first embodiment, when light is incident on the microarray substrate 70 via the objective lens 14, the viewing angle is about 150 m × 150 m. As described above, when light is incident on the microarray substrate 70 without passing through the objective lens 14, the viewing angle is about 1 mm (1000 m) × 1 mm (1000 m), and the viewing angle is greatly widened.
[0100] また、光入射部 30は、マイクロアレイ基板 70と対物レンズ 14との間に配置されてい ることが好ましい。また、光入射部 30が対物レンズ 14と接していることがより好適であ る。これは、光入射部 30が対物レンズ 14と接していることにより、対物レンズ 14の開 口数を大きくすることができるためである。これにより、微弱な蛍光を効率よく対物レン ズ 14で取得することが可能になる。また、マイクロアレイ基板 70近傍に存在する蛍光 物質からの発光はマイクロアレイ基板 70中を全反射角以上の大きな角度で進行する 光として放射されるものが多く存在する力 このような蛍光も取得できるようになる。ま た、マイクロアレイ基板 70と光入射部 30との間にはオイル層 20が設けられている。か 力るオイル層 20は、上述の実施形態 1におけるオイル層 20と同様の機能を有するも のであるため、ここでは、その説明を省略する。 [0100] In addition, the light incident portion 30 is preferably disposed between the microarray substrate 70 and the objective lens 14. It is more preferable that the light incident portion 30 is in contact with the objective lens 14. This is because the number of apertures of the objective lens 14 can be increased because the light incident portion 30 is in contact with the objective lens 14. This makes it possible to acquire weak fluorescence efficiently with the objective lens 14. In addition, the light emitted from the fluorescent substance existing in the vicinity of the microarray substrate 70 is a force that exists as a lot of light that travels through the microarray substrate 70 at a larger angle than the total reflection angle. Become. Ma An oil layer 20 is provided between the microarray substrate 70 and the light incident part 30. Such an oil layer 20 has a function similar to that of the oil layer 20 in the above-described first embodiment, and thus description thereof is omitted here.
[0101] 光入射部 30の屈折率は、マイクロアレイ基板 70の屈折率と略同じであることが好ま しい。光入射部 30とマイクロアレイ基板 70との屈折率を合わせることにより、光の入 射角度の調整,制御がより一層精度良く行うことができ、かつ境界面での反射を抑え ることができるためである。このため、光入射部 30は、マイクロアレイ基板 70と同様に 、光透過率の高い材質であるガラス基板や、ポリカーボネート、 PMMAといった榭脂 から構成されていることが好ましいが、温度を変化させた場合の屈折率変化の少なさ から、ガラス基板がより好適である。  [0101] The refractive index of the light incident section 30 is preferably substantially the same as the refractive index of the microarray substrate 70. By matching the refractive indices of the light incident part 30 and the microarray substrate 70, the light incident angle can be adjusted and controlled more accurately, and reflection at the interface can be suppressed. is there. Therefore, like the microarray substrate 70, the light incident portion 30 is preferably composed of a glass substrate, which is a material having high light transmittance, or a resin such as polycarbonate or PMMA, but when the temperature is changed. A glass substrate is more preferable because of a small change in refractive index.
[0102] また、マイクロアレイ読取装置 200は、光吸収部 32を備えて 、る。光吸収部 32は、 マイクロアレイ基板 70の表面にて全反射した光を吸収するためのビームトラップとし て機能するものである。力かる光吸収部 32としては、従来公知のビームトラップ装置 を好適に用いることができる。例えば、シグマ光機製ビームディフユーザー BD— 40 を用いることができる。  In addition, the microarray reader 200 includes a light absorption unit 32. The light absorbing unit 32 functions as a beam trap for absorbing the light totally reflected on the surface of the microarray substrate 70. A conventionally known beam trap device can be suitably used as the light absorbing portion 32 that is powerful. For example, a beam diff user BD-40 manufactured by Sigma Kogyo can be used.
[0103] 次 、で、上述したマイクロアレイ読取装置 200の動作にっ 、て説明する。まず、図 5 、図 6に示すように、レーザ光源 11からレーザ光を照射する。照射されたレーザ光は 、第 1のレンズ 12によって集光され、続いて反射面 13によって反射される。反射面 1 3は、第 1のレンズ 12を経由して到達するレーザ光源 11からのレーザ光を、顕微鏡 光学系(例えば、対物レンズ 14)の光軸と平行な光であって、該光軸から一定の距離 オフセットされた光として、光入射部 30が有する反射面 31に対して反射する。  Next, the operation of the above-described microarray reader 200 will be described. First, as shown in FIGS. 5 and 6, the laser light source 11 emits laser light. The irradiated laser light is condensed by the first lens 12 and subsequently reflected by the reflecting surface 13. The reflecting surface 13 is a beam parallel to the optical axis of the microscope optical system (for example, the objective lens 14), which is a laser beam from the laser light source 11 that arrives via the first lens 12. The light is reflected from the reflecting surface 31 of the light incident part 30 as light offset by a certain distance.
[0104] 反射面 13によって反射されたレーザ光は、対物レンズ 14の外部を通って(対物レ ンズ 14を通らずに)、光入射部 30に対して入射する。光入射部 30に入射した光は、 反射面 31によって反射され、光入射部 30内部を通って、マイクロアレイ基板 70に対 して入射する。ここで、光入射部 30に入射した光は、光入射部 30の働きにより、光入 射部 30の出口においても、平行光線でありながら、マイクロアレイ基板 70に対して大 きな入射角を持って入射する光となり、 DNAスポットの照明を行う。  The laser beam reflected by the reflecting surface 13 passes through the outside of the objective lens 14 (without passing through the objective lens 14) and enters the light incident portion 30. The light incident on the light incident part 30 is reflected by the reflecting surface 31, passes through the inside of the light incident part 30, and enters the microarray substrate 70. Here, the light incident on the light incident portion 30 has a large incident angle with respect to the microarray substrate 70 even though it is a parallel light beam at the exit of the light incident portion 30 due to the action of the light incident portion 30. Illuminates the DNA spot.
[0105] つまり、光入射部 30は、レーザ光を、マイクロアレイ基板 70におけるプローブ DNA が固定されて 、る面にぉ 、て全反射される角度以上の入射角で、マイクロアレイ基板[0105] That is, the light incident part 30 converts the laser light into the probe DNA on the microarray substrate 70. The microarray substrate is fixed at an angle of incidence that is greater than the angle at which it is totally reflected on the surface.
70に対して入射させる光入射手段として機能するものといえる。なお、光入射部 30 の屈折率とマイクロアレイ基板 70の屈折率とは略同じであるため、マイクロアレイ基板 70に対する入射光の入射角度は、反射面 31によって反射された角度からほとんど 変化しない。 It can be said that it functions as a light incident means for making the light incident on 70. Since the refractive index of the light incident part 30 and the refractive index of the microarray substrate 70 are substantially the same, the incident angle of the incident light with respect to the microarray substrate 70 hardly changes from the angle reflected by the reflecting surface 31.
[0106] そして、このとき、マイクロアレイ基板 70の表面の上面側に薄くエバネッセント場が 発生する。なお、エバネッセント場によって、プローブ DNAとターゲット DNAとがハイ ブリダィズした力否かを検出する機構については、実施形態 1と同様であるため、ここ ではその説明を省略する。  At this time, an evanescent field is generated thinly on the upper surface side of the surface of the microarray substrate 70. The mechanism for detecting whether or not the probe DNA and the target DNA are hybridized by the evanescent field is the same as in the first embodiment, and thus the description thereof is omitted here.
[0107] 発生した蛍光は、対物レンズ 14で集めて、励起光カットフィルタ 15、結像レンズ 16 t 、つた顕微鏡光学系の機構を通して再び結像させ、光検出器 17によって検出する 。また、本実施の形態でも、温度調節部 18を用いて、試料溶液の温度が 65°Cにて 一定に保ち温度安定化した状態で、ターゲット DNAを含む試料溶液を流通させ、マ イクロアレイ基板 70と接触させている。このため、蛍光像の時間変化を観察すること により、実時間でハイブリダィゼーシヨン過程を評価できる。  The generated fluorescence is collected by the objective lens 14, imaged again through the excitation light cut filter 15, the imaging lens 16 t, and the mechanism of the microscope optical system, and detected by the photodetector 17. Also in this embodiment, the temperature control unit 18 is used to distribute the sample solution containing the target DNA in a state where the temperature of the sample solution is kept constant at 65 ° C. and the temperature is stabilized. Is in contact with. Therefore, the hybridization process can be evaluated in real time by observing the temporal change of the fluorescence image.
[0108] したがって、マイクロアレイ読取装置 200によれば、ハイブリダィゼーシヨン処理にか 力る時間を短縮させることができるため、従来の装置に比べて、大幅に検出時間を短 縮ィ匕できる。さらに、視野角が大きいため、一度に多くの ポットを観察でき、さ らなる検出時間の短縮ィ匕および高精度な検出が可能となる。  Therefore, according to the microarray reader 200, the time required for the hybridization process can be shortened, so that the detection time can be greatly reduced as compared with the conventional apparatus. Furthermore, since the viewing angle is large, many pots can be observed at one time, and the detection time can be further reduced and highly accurate detection can be performed.
[0109] なお、本明細書では、もっぱら DNAマイクロアレイ基板の読み取りを例に挙げて説 明してきたが、本発明はこれに限られるものではない。すなわち、本発明は、 DNAの みならずタンパク質や生体内小分子、環境ホルモン等の分子を検出する計測技術と しても利用可能である。このため、当業者が、本願出願当時の技術水準に基づいて 、 DNAマイクロアレイの読み取り技術を、タンパク質またはその他の物質の検出技術 に適用できる範囲についても、十分に本願発明の技術範囲に含まれることを念のた め付言しておく。  [0109] In the present specification, the reading of the DNA microarray substrate has been described as an example, but the present invention is not limited to this. In other words, the present invention can be used as a measurement technique for detecting not only DNA but also molecules such as proteins, small molecules in vivo, and environmental hormones. Therefore, based on the technical level at the time of filing of the present application, those skilled in the art also fully include the scope in which the DNA microarray reading technology can be applied to the protein or other substance detection technology. Let me add that just in case.
[0110] 最後に、演算処理部 19は、ハードウェアロジックによって構成してもよいし、次のよう に CPUを用いてソフトウェアによって実現してもよ!/、。 [0111] すなわち、演算処理部 19は、各機能を実現する制御プログラムの命令を実行する CPU (.central processing unit)、上記プログラムを格納した ROM (read only memory 上記プログラムを展開する RAM (random access memory)、上記プログラムおよび 各種データを格納するメモリ等の記憶装置 (記録媒体)などを備えている。そして、本 発明の目的は、上述した機能を実現するソフトウェアである演算処理部 19の制御プ ログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプロ グラム)をコンピュータで読み取り可能に記録した記録媒体を、上記演算処理部 19に 供給し、そのコンピュータ (または CPUや MPU)が記録媒体に記録されているプログ ラムコードを読み出し実行することによつても、達成可能である。 [0110] Finally, the arithmetic processing unit 19 may be configured by hardware logic, or may be realized by software using a CPU as follows! /. That is, the arithmetic processing unit 19 includes a CPU (.central processing unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, and a RAM (random access that expands the program). memory), a storage device (recording medium) such as a memory for storing the above programs and various data, etc. The object of the present invention is to control the arithmetic processing unit 19 which is software for realizing the functions described above. A recording medium in which the program code (executable program, intermediate code program, source program) of the program is recorded so as to be readable by a computer is supplied to the arithmetic processing unit 19, and the computer (or CPU or MPU) stores the recording medium in the recording medium. It can also be achieved by reading and executing the recorded program code.
[0112] 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッ ピー(登録商標)ディスク Zハードディスク等の磁気ディスクや CD— ROMZMOZ MD/DVD/CD—R等の光ディスクを含むディスク系、 ICカード (メモリカードを含 む) Z光カード等のカード系、あるいはマスク ROMZEPROMZEEPROMZフラッ シュ ROM等の半導体メモリ系などを用いることができる。  [0112] The recording medium includes, for example, a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) Z hard disk, and an optical disk such as a CD-ROMZMOZ MD / DVD / CD-R. Disk systems, IC cards (including memory cards) Z optical cards and other card systems, or mask ROMZEPROMZEEPROMZ flash ROM and other semiconductor memory systems can be used.
[0113] また、演算処理部 19を通信ネットワークと接続可能に構成し、上記プログラムコード を、通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限 定されず、例えば、インターネット、イントラネット、エキストラネット、 LAN, ISDN, V AN、 CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通 信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体 としては、特に限定されず、例えば、 IEEE1394、 USB、電力線搬送、ケーブル TV 回線、電話線、 ADSL回線等の有線でも、 IrDAやリモコンのような赤外線、 Bluetoo th (登録商標)、 802. 11無線、 HDR、携帯電話網、衛星回線、地上波デジタル網 等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝 送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現 され得る。 [0113] The arithmetic processing unit 19 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network. Satellite communication networks can be used. In addition, the transmission medium constituting the communication network is not particularly limited. For example, IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc. (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, etc. can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave, in which the program code is embodied by electronic transmission.
[0114] 以下実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん 、本発明は以下の実施例に限定されるものではなぐ細部については様々な態様が 可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるも のではなぐ請求項に示した範囲で種々の変更が可能であり、それぞれ開示された 技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲 に含まれる。 [0114] Embodiments of the present invention will now be described in more detail with reference to examples. Of course, it goes without saying that the present invention is not limited to the following examples, and various modes are possible for details. Further, the present invention is limited to the above-described embodiment. Various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the disclosed technical means are also included in the technical scope of the present invention.
[0115] 〔実施例〕  [0115] [Example]
以下、本発明を具体ィ匕した実施例として、上述の実施形態 1に示すマイクロアレイ 読取装置 100を用いて、 DNA分子のハイブリダィゼーシヨン過程の時系列観察を行 つた結果を示す。本実施例では、一般的な DNAマイクロアレイ実験で汎用される遺 伝子 relAの検出に用いられる cDNAを用いてノ、イブリダィゼーシヨン実験を行った。 relAは、細胞質から核へ移行し、標的遺伝子の発現誘導を行う転写因子 NF κ Βの 活性化と不活性化に重要な遺伝子 (長さ 2. 2kbp)で、免疫反応や発生分化に関与 する細胞にぉ ヽて幅広く発現して ヽることが知られて!/ヽる。ハイブリダィゼーシヨン実 験では、この cDNAをプローブ DNAとしてカバーガラス基板にスポットしておき、そこ に同じ cDNAをターゲット DNAとしてフローセル(ハイブリダィゼーシヨン'セル)中を 流して検出した。  Hereinafter, as a specific example of the present invention, the results of time series observation of the hybridization process of DNA molecules using the microarray reader 100 shown in the first embodiment will be shown. In this example, an hybridization experiment was performed using cDNA used for the detection of the gene relA, which is widely used in general DNA microarray experiments. relA is a gene (length 2.2 kbp) that is important for activation and inactivation of transcription factor NF κ Β, which moves from the cytoplasm to the nucleus and induces the expression of target genes, and is involved in immune responses and developmental differentiation. It is known that it is widely expressed in cells! In the hybridization experiment, this cDNA was spotted as a probe DNA on a cover glass substrate, and the same cDNA was flowed through a flow cell (hybridization 'cell) as a target DNA for detection.
[0116] 本実施例では、ハイブリダィゼーシヨン'セルは倒立型顕微鏡 (ニコン製、 TE - 200 0)の試料ステージに設置しておき、エバネッセント場による照明は対物レンズ (ニコン 製、 TIRF様態物、 NA= 1. 45)側力も行った。発生した蛍光は対物レンズで集めて 顕微鏡光学系を通して再び結像し、冷却 CCDカメラ(浜松ホトニタス、 ORCA— ER) にて検出した。  [0116] In this example, the hybridization cell is placed on the sample stage of an inverted microscope (Nikon, TE-20000), and the illumination by the evanescent field is the objective lens (Nikon, TIRF mode). Things, NA = 1.45) Side force was also performed. The generated fluorescence was collected by an objective lens, imaged again through a microscope optical system, and detected by a cooled CCD camera (Hamamatsu Photonicus, ORCA-ER).
[0117] ターゲット DNAをノヽイブリダィゼーシヨンさせて検出する実験を行った。作製した D NAマイクロアレイを 98°Cのウォーターバスにつけて熱変性させて一本鎖にした後、 NaBr水溶液に浸してブロッキング処理をして乾燥させて実験に使用した。ハイブリダ ィゼーシヨン'セル中に流すターゲット DNAは、無染色の状態で TEバッファーに分 散させ、蛍光プローブを混合して濃度調整した後、 98°Cで 5分間熱変性させて一本 鎖状態にして用いた。用いた蛍光プローブは、 POPO - 3 (Molecular Probes, Inc.) で、 2本鎖 DNAが選択的に検出できることを事前に評価してある。ハイブリダィゼー シヨン'セルを 65°Cに昇温して温度安定ィ匕した状態でターゲット DNAを含む溶液を 流して、蛍光像の時間変化を観察した。 [0118] その結果を図 7 (a)〜図 7 (d)に示す。図 7 (a)は t=0、図 7 (b)は t= l (min)、図 7 ( c)は t = 5 (min)、図 7 (d)は t= 20 (min)の結果を示す図である。プローブ DNAをス ポットした部分に明る 、蛍光が観察され、その部分でハイブリダィゼーシヨンが起こつ ていることがわ力る。 [0117] An experiment was carried out to detect target DNA by carrying out noise hybridization. The prepared DNA microarray was attached to a 98 ° C water bath and thermally denatured to make a single strand, which was then immersed in a NaBr aqueous solution for blocking treatment, dried and used in the experiment. The target DNA to be flowed into the hybridization cell is dispersed in TE buffer without staining, mixed with a fluorescent probe, adjusted in concentration, and then thermally denatured at 98 ° C for 5 minutes to form a single strand. Using. The fluorescent probe used is POPO-3 (Molecular Probes, Inc.), and it has been evaluated beforehand that double-stranded DNA can be selectively detected. While the hybridization cell was heated to 65 ° C and the temperature was stabilized, a solution containing the target DNA was allowed to flow, and the change in fluorescence image over time was observed. The results are shown in FIGS. 7 (a) to 7 (d). Fig. 7 (a) is t = 0, Fig. 7 (b) is t = l (min), Fig. 7 (c) is t = 5 (min), Fig. 7 (d) is t = 20 (min) FIG. Bright and fluorescent light is observed in the spot where the probe DNA is spotted, which indicates that hybridization has occurred in that spot.
[0119] また、対象実験 (コントロール)として、 POPO— 3を混合して同様に調整したターゲ ット DNA溶液を熱変性させな 、状態(2本鎖状態)でハイブリダィゼーシヨン'セルに 流して実験を行った。 2本鎖状態ではプローブ DNAにハイブリダィズしないので、プ ローブ DNAのスポットでは検出されないと考えられる。  [0119] In addition, as a target experiment (control), the target DNA solution prepared by mixing POPO-3 in the same manner was not heat denatured, and it was put into the hybridization cell in a state (double-stranded state). The experiment was conducted. Since it does not hybridize to the probe DNA in the double-stranded state, it may not be detected in the probe DNA spot.
[0120] その観察結果を図 7 (e)〜図 7 (h)に示す。図 7 (e)は t=0、図 7 (f)は t= 1 (min)、 図 7 (g)は t= 5 (min)、図 7 (h)は t= 20 (min)の結果を示す図である。初期に少し明 るくなつている力 その後ほぼ一定の明るさになっている。  [0120] The observation results are shown in Fig. 7 (e) to Fig. 7 (h). Fig. 7 (e) is t = 0, Fig. 7 (f) is t = 1 (min), Fig. 7 (g) is t = 5 (min), Fig. 7 (h) is t = 20 (min) FIG. Initially brightening power After that, the brightness has become almost constant.
[0121] 図 7 (a)〜図 7 (h)の結果から、それぞれのスポットの蛍光強度 (スポット内の平均値 )の変化をプロットした結果を図 8に示す。なお、グラフ中、 "Hybridization"で示すも のが 1本鎖 DNAをハイブリダィズした場合の結果を示し、 "Control"で示すものが対 照実験の結果を示す。  [0121] Fig. 8 shows the results of plotting changes in the fluorescence intensity (average value in each spot) of each spot from the results of Figs. 7 (a) to 7 (h). In the graph, “Hybridization” indicates the result when the single-stranded DNA is hybridized, and “Control” indicates the result of the control experiment.
[0122] 図 8に示すように、ターゲット DNAがフローセル内を流れるにつれて、スポット内の 蛍光強度が増加していくが、あるところから強度が頭打ちになっている。これは上述 の数式(1)で予測されるようにターゲット DNA量が減少するにつれて強度変化が頭 打ちになることに対応して!/、る。  [0122] As shown in FIG. 8, as the target DNA flows in the flow cell, the intensity of fluorescence in the spot increases, but the intensity has reached a certain level. This corresponds to the peak intensity change as the target DNA amount decreases as predicted by Equation (1) above! /
[0123] また、グラフではステップ的に蛍光強度が増加する現象が見られる力 これはハイ ブリダィゼーシヨン ·セル中の DNA溶液が脈動したためと DNA溶液の濃度が時間的 にバラついたためと考えている。初期の段階でバッファーを押しのけて DNA溶液が 流れていくので、この段階で DNA溶液の濃度にバラつきが発生したこともステップが 生じた原因と推測している。なお、本実施例における実験では、開始力も 50分まで 観測を続けたが、はじめの約 10分程度でノヽイブリダィゼーシヨン過程が安定して 、る ことを確認した。  [0123] In addition, the graph shows the force that the fluorescence intensity increases stepwise. This is because the DNA solution in the hybridization cell pulsates and the concentration of the DNA solution varies over time. thinking. Since the DNA solution flows by pushing out the buffer at the initial stage, it is speculated that the difference in the concentration of the DNA solution at this stage also caused the step. In the experiment in this example, the starting force was continuously observed until 50 minutes, but it was confirmed that the noise stabilization process was stable in about the first 10 minutes.
[0124] 本実施例にも示すように、実時間観察型の DNAマイクロアレイ読取装置を用いるこ とにより、ノ、イブリダィゼーシヨン過程を観察できるようになり、従来型の DNAマイクロ アレイ読取装置に比べて、検出時間が大幅に短縮できることがわかった。本発明に 係るマイクロアレイ読取装置では、ハイブリダィゼーシヨン処理に掛かる時間を短縮で きることが特徴である。現状では 15分程度のハイブリダィゼーシヨン時間で計測が行 えるようになる。さらに、ハイブリダィゼーシヨン時のフローの安定ィ匕や、溶液濃度のバ ラツキの抑制、ハイブリダィゼーシヨンの高効率ィ匕など技術的課題をクリアすることで 、より完成度を高めることができると考える。 [0124] As shown in this example, by using a real-time observation type DNA microarray reader, it becomes possible to observe the hybridization process. It was found that the detection time can be greatly shortened compared to the array reader. The microarray reading apparatus according to the present invention is characterized in that the time required for the hybridization process can be shortened. At present, measurement can be performed with a hybridization time of about 15 minutes. Furthermore, by completing technical issues such as flow stability during hybridization, suppression of variation in solution concentration, and high efficiency of hybridization, the degree of completeness can be further improved. I think you can.
産業上の利用の可能性  Industrial applicability
[0125] 本発明に係るマイクロアレイ読取装置によれば、マイクロアレイ基板上のプローブ物 質と試料中に含まれるターゲット物質との結合を、より高精度に効率よく検出すること ができるという効果を奏する。さらに、本マイクロアレイ読取装置によれば、プリズム上 に DNAをスポットしていない。このため、市販されている多くのマイクロアレイ基板に 対して用いることができる。  [0125] The microarray reader according to the present invention has an effect that the binding between the probe substance on the microarray substrate and the target substance contained in the sample can be detected with higher accuracy and efficiency. Furthermore, according to the microarray reader, DNA is not spotted on the prism. For this reason, it can be used for many commercially available microarray substrates.
[0126] また、光入射手段 (例えば、高屈折率ブロック)によって、マイクロアレイ基板に対し て対物レンズを経由せずに光を入射させるという構成により、視野角を大きくすること ができるため、一度により多くのスポットを読み取ることができ、検出の時間を短縮さ せることができる。  [0126] Further, since the light incident means (for example, a high refractive index block) allows the light to be incident on the microarray substrate without passing through the objective lens, the viewing angle can be increased. Many spots can be read, and the detection time can be shortened.
[0127] カロえて、温度調節手段を備えることにより、プローブ DNAとターゲット DNAとのハイ ブリダィゼーシヨンを実時間にて検出することができるため、検出時間を短縮すること ができるという効果を奏する。  [0127] By providing a temperature control means, the hybridization between the probe DNA and the target DNA can be detected in real time, so that the detection time can be shortened. Play.
[0128] 以上のように、本発明によれば、検出時間を大幅に短縮することができ、さらに高精 度化も達成できるため、基礎研究といった学術的な利用だけでなぐ医療現場や農 業試験場等で用いられるフィールドユース可能なマイクロアレイ読取装置を提供する ことができるため、医療業、食品産業、製薬産業、および環境といった広範な分野に ぉ 、て産業上の利用可能性がある。  [0128] As described above, according to the present invention, the detection time can be greatly shortened and higher accuracy can be achieved. Field-use microarray readers used in test laboratories can be provided, so they have industrial applicability in a wide range of fields such as the medical industry, food industry, pharmaceutical industry, and environment.

Claims

請求の範囲 The scope of the claims
[1] プローブ物質が固定化されたマイクロアレイ基板に対して、少なくとも蛍光物質とタ 一ゲット物質とを含む試料を接触させた場合の、上記プローブ物質と上記ターゲット 物質との特異的な相互作用を検出するためのマイクロアレイ読取装置であって、 光を照射するための光照射手段と、  [1] Specific interaction between the probe substance and the target substance when a sample containing at least a fluorescent substance and a target substance is brought into contact with the microarray substrate on which the probe substance is immobilized. A microarray reader for detecting light irradiation means for irradiating light;
上記マイクロアレイ基板におけるプローブ物質が固定されている表面にエバネッセ ント場を発生させるように、上記光照射手段によって照射される光を上記マイクロアレ ィ基板に対して入射させる光入射手段と、  Light incident means for causing the light irradiated by the light irradiation means to enter the microarray substrate so as to generate an evanescent field on the surface of the microarray substrate on which the probe substance is fixed;
上記エバネッセント場により励起された試料中に含まれる蛍光物質から出射される 蛍光を検出するための光検出手段と、を備え、  Photodetection means for detecting fluorescence emitted from a fluorescent material contained in a sample excited by the evanescent field, and
上記光検出手段は、対物レンズとして機能する光学レンズを有しており、該光学レ ンズが上記光入射手段として機能することを特徴とするマイクロアレイ読取装置。  The microarray reading apparatus, wherein the light detection means includes an optical lens that functions as an objective lens, and the optical lens functions as the light incident means.
[2] プローブ物質が固定化されたマイクロアレイ基板に対して、少なくとも蛍光物質とタ 一ゲット物質とを含む試料を接触させた場合の、上記プローブ物質と上記ターゲット 物質との特異的な相互作用を検出するためのマイクロアレイ読取装置であって、 光を照射するための光照射手段と、  [2] Specific interaction between the probe substance and the target substance when a sample containing at least a fluorescent substance and a target substance is brought into contact with the microarray substrate on which the probe substance is immobilized. A microarray reader for detecting light irradiation means for irradiating light;
上記マイクロアレイ基板におけるプローブ物質が固定されている表面にエバネッセ ント場を発生させるように、上記光照射手段によって照射される光を上記マイクロアレ ィ基板に対して入射させる光入射手段と、  Light incident means for causing the light irradiated by the light irradiation means to enter the microarray substrate so as to generate an evanescent field on the surface of the microarray substrate on which the probe substance is fixed;
上記エバネッセント場により励起された試料中に含まれる蛍光物質から出射される 蛍光を検出するための光検出手段と、を備え、  Photodetection means for detecting fluorescence emitted from a fluorescent material contained in a sample excited by the evanescent field, and
上記光検出手段は、対物レンズとして機能する光学レンズを有しており、 上記光入射手段は、上記光照射手段からの光を、上記光学レンズを経由すること なぐ上記マイクロアレイ基板に対して入射させるものであることを特徴とするマイクロ アレイ読取装置。  The light detection means includes an optical lens that functions as an objective lens, and the light incidence means causes light from the light irradiation means to enter the microarray substrate without passing through the optical lens. A microarray reader characterized by being a thing.
[3] 上記光入射手段は、上記光照射手段によって照射される光を、上記マイクロアレイ 基板におけるプローブ物質が固定されている面において全反射される角度以上の入 射角で入射させるものであることを特徴とする請求項 1または 2に記載のマイクロアレ ィ読取装置。 [3] The light incident means is for causing the light irradiated by the light irradiation means to be incident at an incident angle equal to or greater than an angle at which the probe material on the surface of the microarray substrate is totally reflected. The microarray according to claim 1 or 2, wherein Reader.
[4] 上記光入射手段は、上記マイクロアレイ基板と上記光学レンズとの間に配置されて いることを特徴とする請求項 2に記載のマイクロアレイ読取装置。  4. The microarray reading apparatus according to claim 2, wherein the light incident means is disposed between the microarray substrate and the optical lens.
[5] 上記光入射手段は、上記光照射手段によって照射される光を反射させるための反 射面を少なくとも 1つ有するものであり、 [5] The light incident means has at least one reflection surface for reflecting the light irradiated by the light irradiation means,
上記反射面は、該反射面による反射光が、上記マイクロアレイ基板におけるプロ一 ブ物質が固定されて ヽる面にぉ ヽて全反射される角度以上の入射角で入射されるよ うに、設けられて 、ることを特徴とする請求項 2に記載のマイクロアレイ読取装置。  The reflecting surface is provided so that light reflected by the reflecting surface is incident at an incident angle that is greater than an angle at which the reflected light is totally reflected on the surface of the microarray substrate on which the probe substance is fixed. The microarray reader according to claim 2, wherein
[6] 上記光入射手段の屈折率は、上記マイクロアレイ基板の屈折率と略同じであること を特徴とする請求項 2に記載のマイクロアレイ読取装置。 6. The microarray reader according to claim 2, wherein the refractive index of the light incident means is substantially the same as the refractive index of the microarray substrate.
[7] 上記光照射手段および光検出手段は、上記マイクロアレイ基板におけるプローブ 物質が固定されている面の裏面側に配置されていることを特徴とする請求項 1〜6の[7] The light irradiation means and the light detection means are arranged on the back side of the surface of the microarray substrate on which the probe substance is fixed.
Vヽずれか 1項に記載のマイクロアレイ読取装置。 2. The microarray reader according to item 1.
[8] 上記マイクロアレイ基板と光入射手段との間には、オイル層が設けられていることを 特徴とする請求項 1〜7のいずれ力 1項に記載のマイクロアレイ読取装置。 8. The microarray reader according to any one of claims 1 to 7, wherein an oil layer is provided between the microarray substrate and the light incident means.
[9] さらに、上記マイクロアレイ基板上の上記ターゲット物質を含む試料の温度を調節 するための温度調節手段を備えることを特徴とする請求項 1〜8のいずれか 1項に記 載のマイクロアレイ読取装置。 [9] The microarray reader according to any one of [1] to [8], further comprising temperature adjusting means for adjusting the temperature of the sample containing the target material on the microarray substrate. .
[10] 上記プローブ物質とターゲット物質との特異的な相互作用を、実時間にて検出する ものであることを特徴とする請求項 1〜9のいずれ力 1項に記載のマイクロアレイ読取 装置。  10. The microarray reader according to any one of claims 1 to 9, wherein the specific interaction between the probe substance and the target substance is detected in real time.
[11] さらに、上記マイクロアレイ基板と上記光入射手段との相対位置を変更させるため の位置変更手段を備えることを特徴とする請求項 1〜10のいずれか 1項に記載のマ イクロアレイ読取装置。  11. The microarray reader according to any one of claims 1 to 10, further comprising position changing means for changing a relative position between the microarray substrate and the light incident means.
[12] さらに、上記ターゲット物質がプローブ物質と相互作用していく過程を時系列観察 することによって得られる検出データを用いて、上記プローブ物質と相互作用するタ 一ゲット物質の量を推定するための演算処理を行う演算処理手段を備えることを特 徴とする請求項 1〜11の 、ずれか 1項に記載のマイクロアレイ読取装置。 [12] Furthermore, in order to estimate the amount of the target substance that interacts with the probe substance, using the detection data obtained by observing the process in which the target substance interacts with the probe substance in time series. The microarray reading device according to claim 1, further comprising an arithmetic processing unit that performs the arithmetic processing.
[13] 上記プローブ物質およびターゲット物質は、 1本鎖の DNAであることを特徴とする 請求項 1〜12のいずれか 1項に記載のマイクロアレイ読取装置。 [13] The microarray reader according to any one of claims 1 to 12, wherein the probe substance and the target substance are single-stranded DNAs.
[14] 上記蛍光物質は、上記ターゲット物質と結合していることを特徴とする請求項 1〜1[14] The fluorescent substance is bonded to the target substance.
3の 、ずれか 1項に記載のマイクロアレイ読取装置。 3. The microarray reader according to item 1 above.
[15] 上記蛍光物質は、上記プローブ物質とターゲット物質とが相互作用している状態の 物質に対して、特異的に結合するものであることを特徴とする請求項 1〜14のいずれ 力 1項に記載のマイクロアレイ読取装置。 [15] The fluorescent substance according to any one of claims 1 to 14, wherein the fluorescent substance specifically binds to a substance in a state where the probe substance and the target substance interact with each other. The microarray reader according to the item.
PCT/JP2005/012607 2004-07-30 2005-07-07 Microarray reader WO2006011346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-223555 2004-07-30
JP2004223555A JP2006038816A (en) 2004-07-30 2004-07-30 Microarray reading apparatus

Publications (1)

Publication Number Publication Date
WO2006011346A1 true WO2006011346A1 (en) 2006-02-02

Family

ID=35786097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012607 WO2006011346A1 (en) 2004-07-30 2005-07-07 Microarray reader

Country Status (2)

Country Link
JP (1) JP2006038816A (en)
WO (1) WO2006011346A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092291A1 (en) * 2007-01-17 2008-08-07 Honeywell International Inc. Microarray reader based on evanescent wave detection and method of reading a microarray
US8809810B2 (en) 2010-05-20 2014-08-19 Honeywell International Inc. Microarray reader based on evanescent wave detection
WO2022008931A1 (en) * 2020-07-10 2022-01-13 Vidya Holdings Ltd Improvements in or relating to an apparatus for imaging

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882519B2 (en) * 2005-07-07 2012-02-22 ソニー株式会社 Substance information acquisition method and substance information measuring apparatus using evanescent light
EP1901057A1 (en) * 2005-07-07 2008-03-19 Sony Corporation Substance information acquisition method and substance information measurement device using evanescent light, and base arrangement decision method and device
US8917959B2 (en) 2006-03-17 2014-12-23 Denso Corporation Analyzing element and analyzing apparatus using same
WO2008032100A1 (en) * 2006-09-14 2008-03-20 Oxford Gene Technology Ip Limited Calculating a distance between a focal plane and a surface
WO2008102417A1 (en) * 2007-02-19 2008-08-28 Japan Science And Technology Agency Fluorescence reader and fluorescence reading method
JP5077872B2 (en) * 2007-03-13 2012-11-21 独立行政法人 宇宙航空研究開発機構 Defect inspection apparatus and method by photoluminescence of solar cell
JP5216318B2 (en) * 2007-12-27 2013-06-19 株式会社日立ハイテクノロジーズ Fluorescence detection device
JP5356804B2 (en) * 2008-12-26 2013-12-04 株式会社堀場製作所 Raman scattered light measurement system
WO2010111602A1 (en) * 2009-03-26 2010-09-30 Trustees Of Boston University Method for imaging on thin solid-state interface between two fluids
JP5895965B2 (en) * 2014-04-14 2016-03-30 コニカミノルタ株式会社 Surface plasmon enhanced fluorescence sensor and chip structure used for surface plasmon enhanced fluorescence sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102860A (en) * 1996-06-17 1998-01-06 Olympus Optical Co Ltd Micro-substance inspection lens device
JPH1090169A (en) * 1996-09-19 1998-04-10 Bunshi Bio Photonics Kenkyusho:Kk Microscope apparatus
JP2000221136A (en) * 1999-01-29 2000-08-11 Jasco Corp Method and apparatus for tracking changes with time passage
JP2001194310A (en) * 2000-01-17 2001-07-19 Yokogawa Electric Corp Device for reading biochip
JP2003156504A (en) * 2001-11-22 2003-05-30 Japan Advanced Inst Of Science & Technology Hokuriku Biochip, biochip array and screening method using the same
JP2004156911A (en) * 2002-11-01 2004-06-03 Osaka Industrial Promotion Organization Surface plasmon fluorescence microscope and method of measuring fluorescence excited by surface plasmon
JP2004212204A (en) * 2002-12-27 2004-07-29 Olympus Corp Fluorescence microscope, measuring method of fluorescent lifetime, and measuring program of fluorescent lifetime

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102860A (en) * 1996-06-17 1998-01-06 Olympus Optical Co Ltd Micro-substance inspection lens device
JPH1090169A (en) * 1996-09-19 1998-04-10 Bunshi Bio Photonics Kenkyusho:Kk Microscope apparatus
JP2000221136A (en) * 1999-01-29 2000-08-11 Jasco Corp Method and apparatus for tracking changes with time passage
JP2001194310A (en) * 2000-01-17 2001-07-19 Yokogawa Electric Corp Device for reading biochip
JP2003156504A (en) * 2001-11-22 2003-05-30 Japan Advanced Inst Of Science & Technology Hokuriku Biochip, biochip array and screening method using the same
JP2004156911A (en) * 2002-11-01 2004-06-03 Osaka Industrial Promotion Organization Surface plasmon fluorescence microscope and method of measuring fluorescence excited by surface plasmon
JP2004212204A (en) * 2002-12-27 2004-07-29 Olympus Corp Fluorescence microscope, measuring method of fluorescent lifetime, and measuring program of fluorescent lifetime

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092291A1 (en) * 2007-01-17 2008-08-07 Honeywell International Inc. Microarray reader based on evanescent wave detection and method of reading a microarray
US8124944B2 (en) 2007-01-17 2012-02-28 Honeywell International Inc. Microarray reader based on evanescent wave detection and method of reading a microarray
US8809810B2 (en) 2010-05-20 2014-08-19 Honeywell International Inc. Microarray reader based on evanescent wave detection
WO2022008931A1 (en) * 2020-07-10 2022-01-13 Vidya Holdings Ltd Improvements in or relating to an apparatus for imaging

Also Published As

Publication number Publication date
JP2006038816A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
WO2006011346A1 (en) Microarray reader
JP4917883B2 (en) Nucleic acid amplification and detection equipment
JP5093522B2 (en) Fluorescence reader and fluorescence reading method
CN115369157A (en) High performance fluorescence imaging module for genomic testing assays
JP5260339B2 (en) Nucleic acid analysis device and nucleic acid analysis apparatus
WO2013051651A1 (en) Method for analyzing biomolecules and biomolecule analyzer
US9770713B2 (en) Nucleic acid analysis device
EP2700935A1 (en) Quantitative determination method for target particles, photometric analysis device, and computer program for photometric analysis
JP2009074947A (en) Apparatus or method for analysis for detecting target substance, or device used for these apparatus and method
JP2006337245A (en) Fluorescence reading device
JP5822929B2 (en) Nucleic acid analyzer
JP2001268318A (en) Image reading device
JP5033820B2 (en) Total reflection microscope apparatus and fluorescent sample analysis method
WO2010137543A1 (en) Nucleic acid analysis device, nucleic acid analysis apparatus, and nucleic acid analysis method
JP2007322185A (en) Fluorescence analyzing method, fluorescence analyzer, and image detecting method
Aslan et al. Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform
JP4121762B2 (en) Fluorescence detection support
WO2007049844A1 (en) Multi-channel bio-chip scanner
JP2012023988A (en) Method for nucleic acid analysis, apparatus for implementing the method, and reagent set for nucleic acid analysis
JP2002181708A (en) Microarray chip reading method and apparatus therefor
JP2009186220A (en) Detection method for bioarray
TW202225407A (en) Slides for calibration of mfish
JP2004187607A (en) Method for obtaining information concerning nucleic acid amplification product
JP2023507809A (en) RNA detection
US20240167939A1 (en) Systems and methods for heat exchange

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase