JP2000221136A - Method and apparatus for tracking changes with time passage - Google Patents

Method and apparatus for tracking changes with time passage

Info

Publication number
JP2000221136A
JP2000221136A JP5749299A JP5749299A JP2000221136A JP 2000221136 A JP2000221136 A JP 2000221136A JP 5749299 A JP5749299 A JP 5749299A JP 5749299 A JP5749299 A JP 5749299A JP 2000221136 A JP2000221136 A JP 2000221136A
Authority
JP
Japan
Prior art keywords
cell
flow
infrared
atr
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5749299A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nagoshi
利之 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP5749299A priority Critical patent/JP2000221136A/en
Publication of JP2000221136A publication Critical patent/JP2000221136A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Abstract

PROBLEM TO BE SOLVED: To measure a stopped-flow infrared absorption, even when light does not pass a normal flow-through cell by adopting attenuated total reflectance(ATR) method for measuring infrared rays, and obtaining an infrared absorption signal without measuring the intensity of passing light. SOLUTION: A buffer solution, which includes a protein to be measured and a modifier solution, is prepared respectively to different solutions and stored in a sample reservoir of a stopped-flow apparatus 3. The sample solutions are sent by a constant flow rate to an ATR flow-through cell 2, mixed by a mixer in the cell 2 and supplied to a cell chamber to measure an infrared absorption. The protein of the sample is modified from the moment when it is mixed with the modifier, starting a change in secondary structure. Since the cell chamber is located immediately behind the mixer, an infrared absorption signal corresponding to the structure at a time point after a considerably short time has passed can be detected. Thereafter, the supply of the solutions by the stopped-flow apparatus is stopped, and in synchronism the infrared absorption signal is started to be obtained. An elapsed time of the secondary structure change subsequent to the modification is captured as an infrared absorption time change of an amide group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶液中の試料分子
の化学変化・構造変化の過程を経時的に追跡する技術に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for tracking the course of chemical and structural changes of sample molecules in a solution over time.

【0002】[0002]

【従来の技術】研究の対象となる試料を含む溶液に適当
な反応試薬を添加して反応させ、それによって生ずる化
学構造の変化、立体構造の変化などを経時的に追跡する
測定が、反応のプロセスを解析する手段として行われて
いる。
2. Description of the Related Art An appropriate reaction reagent is added to a solution containing a sample to be studied to cause a reaction, and a change in a chemical structure or a change in a three-dimensional structure caused by the reaction is measured over time. It is performed as a means to analyze the process.

【0003】この反応の速度が、概略ミリ秒乃至サブミ
リ秒のオーダーである場合には、ストップドフロー測定
と呼ばれるテクニックが用いられている。これは、試
料、反応試薬などを別々の溶液で用意しておき、それら
をそれぞれ一定流量で送液し、直前で混合して測定手段
に設けたフロースルーセルに供給し、その混合液の供給
を急激に停止し、それに同期してそれ以後の測定信号の
変化を経時的に記録するというものである。
When the speed of this reaction is on the order of milliseconds to sub-milliseconds, a technique called stopped flow measurement is used. This involves preparing samples, reaction reagents, etc. in separate solutions, sending them at a constant flow rate, mixing them immediately before supplying them to the flow-through cell provided in the measuring means, and supplying the mixed solution. Is stopped suddenly, and the subsequent change of the measurement signal is recorded with time in synchronization with the stop.

【0004】測定手段には紫外・可視吸収、蛍光強度、
円二色性などが汎用されている。ところがこれらの測定
手段は、基本的に試料物質・分子の電子状態を反映する
ものであり、試料物質・分子に対して普遍性はあるもの
の、構造に対する特異性が小さい、即ち、構造変化が生
じていることを検知することはできるが、それがどのよ
うなものかを知るには情報が少ないという弱点がある。
どのような構造変化が生じているかを見ようとすると、
分子構造を直接に反映する測定手段を採用することが有
利あり、そのような手段としてもっとも手軽な測定手段
としては赤外吸収がある。
[0004] Measurement means include ultraviolet / visible absorption, fluorescence intensity,
Circular dichroism is widely used. However, these measurement means basically reflect the electronic state of the sample substance / molecule, and although they are universal to the sample substance / molecule, their specificity to the structure is small, that is, a structural change occurs. Can be detected, but there is a weak point that there is little information to know what it is.
When trying to see what kind of structural change is occurring,
It is advantageous to employ a measuring means that directly reflects the molecular structure, and the simplest such measuring means is infrared absorption.

【0005】ところがこのような測定系に用いられる通
常の溶媒は、それ自身が赤外吸収を示すことが一般的で
あり、赤外に吸収を示さないような溶媒は極めて限られ
ており、そのような溶媒に限定して構成される反応系は
ほとんど皆無に等しい。逆によく用いられる溶媒、特に
水は、非常に強い赤外吸収を示ために、ストップドフロ
ー法に組み合わせたフロースルーセルでは赤外光がほと
んど完全に吸収されてしまって全く透過せず、測定不可
能である。測定赤外光がそれなりに透過して、赤外吸収
測定が可能となるようにするためには、セル厚を薄く
し、光路長を適切に短くするという手があるが、信頼で
きる赤外吸収測定に必要な光透過率を確保するために
は、光路長は数十ミクロン以下にすることが不可欠であ
るが、このようなセル厚のフロースルーセルでは、混合
試料溶液をストップドフロー測定が可能な流量で流すこ
とが出来ず、今度はストップドフロー測定ができなくな
る。このような事情から、ストップドフロー赤外吸収と
いう測定系の構成は実現困難なものと考えられていた。
However, ordinary solvents used in such a measurement system generally show infrared absorption by themselves, and solvents that do not show infrared absorption are extremely limited. There is almost no reaction system constituted only by such a solvent. On the other hand, a commonly used solvent, especially water, has a very strong infrared absorption.In the flow-through cell combined with the stopped flow method, the infrared light is almost completely absorbed and is not transmitted at all, Measurement is not possible. In order to allow the measurement infrared light to pass through as it is and to be able to perform infrared absorption measurement, there are ways to reduce the cell thickness and appropriately shorten the optical path length. In order to ensure the light transmittance required for measurement, it is essential that the optical path length be several tens of microns or less. It is not possible to flow at the possible flow rate, and the stopped flow measurement cannot be performed this time. Under such circumstances, it has been considered that the configuration of a measurement system called stopped-flow infrared absorption is difficult to realize.

【0006】[0006]

【発明が解決しようとする課題】ストップドフローと赤
外吸収を組み合わせた、構造変化の解析に好適なシステ
ムが事実上実現されないのは、反応系を構成するために
通常使われる溶媒のほとんどが、赤外に強い吸収を示す
ために、ストップドフローに用いられるようなフロース
ルーセルでは光が透過せず、測定にならないことによ
る。
A system that combines stopped flow with infrared absorption and that is suitable for analyzing structural changes has not been practically realized because most of the solvents usually used for constructing a reaction system are used. This is because flow-through cells such as those used for stopped flow do not transmit light and do not perform measurement because they exhibit strong infrared absorption.

【0007】本発明は、ストップドフロー法に適当な赤
外測定法を組み合わせ、赤外吸収が強くて、通常のフロ
ースルーセルでは光が透過しなくて測定不能の系でも、
赤外吸収に相当する信号を得られるようにして、ストッ
プドフロー赤外吸収測定を可能とし、反応に伴う構造変
化の経時的な追跡をおこない、その解析を可能とするシ
ステムを提供することにある。
The present invention combines a stopped-flow method with an appropriate infrared measurement method, so that even in a system in which infrared absorption is strong and light cannot pass through a normal flow-through cell and cannot be measured,
To provide a system that enables the measurement of stopped-flow infrared absorption by obtaining a signal corresponding to infrared absorption, tracks structural changes over time with the reaction, and enables its analysis. is there.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明では、赤外測定にATR法(減衰全反射
法)を採用し、透過光強度測定によらない赤外吸収信号
を取得するようにする。
In order to solve the above-mentioned problems, the present invention employs an ATR method (attenuated total reflection method) for infrared measurement, and obtains an infrared absorption signal not based on transmitted light intensity measurement. Get it.

【0009】静的な状態の測定では知られているよう
に、赤外ATR法では、測定光はプリズムの界面の内側
で全反射するよう光学系が構成されるが、プリズムの外
側にも波長分程度滲みだし、そこに存在する物質による
吸収をうけて減衰する。この減衰分を透過光の減衰のよ
うに見なして吸光度を計算すると、概ね波長レベルの光
路長を持つ測定セルを用いたときに相当する試料の吸光
度を得ることができる。一方、プリズム面から波長程度
以上離れた部位は、全反射光強度に影響を及ぼさないの
で、混合試料溶液を供給するときの溶液が流れる部分を
ここに確保すれば、ストップドフローを行うのに十分な
透過断面積、即ち溶液を適当な流量で送液するのに必要
なセル断面積を確保することが可能となる。
As is known in static state measurement, in the infrared ATR method, an optical system is configured such that measurement light is totally reflected inside the interface of the prism, but the wavelength is also outside the prism. It exudes to the extent of a minute and is attenuated by absorption by substances present there. When the absorbance is calculated by regarding this attenuation as the attenuation of transmitted light, it is possible to obtain the absorbance of the sample corresponding to the case where a measurement cell having an optical path length of approximately a wavelength level is used. On the other hand, a portion separated from the prism surface by about a wavelength or more does not affect the intensity of the total reflected light.Therefore, if a portion where the solution flows when the mixed sample solution is supplied is secured here, the stopped flow can be performed. It is possible to secure a sufficient permeation cross-sectional area, that is, a cell cross-sectional area necessary for sending the solution at an appropriate flow rate.

【0010】さらに、ストップドフロー測定を効果的に
行うためには、測光部位であるセル室の直前で効率よく
試料溶液が混合されること、混合した後セル室に至るま
での時間経過をできるだけ短くすること、溶液溜から流
路を経てセル室までの間を効果的に恒温に保つことが必
要となる。これらの最後の項目は、構造変化をもたらす
反応の速度は、温度に依存するため、再現性のよい測定
を行うためには、反応を一定温度下で行わせる必要があ
るためである。
Further, in order to effectively perform the stopped flow measurement, it is necessary to efficiently mix the sample solution immediately before the cell chamber, which is a photometry site, and to minimize the time lapse from mixing to the cell chamber. It is necessary to shorten the length and to effectively maintain a constant temperature from the solution reservoir to the cell chamber via the flow path. The last of these items is that the rate of the reaction that causes a structural change depends on the temperature, and therefore it is necessary to perform the reaction at a constant temperature in order to perform measurement with good reproducibility.

【0011】このようなストップドフロー−赤外ATR
法測定の必要事項を満たすために、フロースルーセルを
ATRプリズム、スペーサ、セルボディで構成し、試料
溶液を効率よく混合し、測定部に到達させる流路とミキ
サーを内蔵させた新しい専用のATRフロースルーセル
を構成する。またこのセルには、恒温水などを循環させ
る流路を備えたり、ペルチェ素子を用いた加温/冷却デ
バイスを取り付けるなどして一定温度にコントロールで
きる機能を付与する。
[0011] Such a stopped flow-infrared ATR
In order to satisfy the requirements of the method measurement, the flow-through cell is composed of an ATR prism, spacer and cell body, mixes the sample solution efficiently, and has a built-in ATR flow with a built-in channel and mixer to reach the measuring section. Construct a through cell. The cell is provided with a function of controlling a constant temperature by providing a flow path for circulating constant-temperature water or the like, or by attaching a heating / cooling device using a Peltier element.

【0012】[0012]

【発明の実施の形態】本発明の実施例を図1に示すシス
テムの概略を例にとり、かつそれを蛋白質の変成過程の
解析に応用する場合を例にとって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to an example of a system shown in FIG. 1 and an application of the system to the analysis of a protein denaturation process.

【0013】システムはストップドフロー測定用に最適
に構成された赤外ATR用フロースルーセル2を組み込
んだ赤外分光光度計1、ストップドフロー装置3、及び
データ処理装置9を組み合わせて構成される。この赤外
ATR用フロースルーセル2については後述する。
The system comprises an infrared spectrophotometer 1 incorporating an infrared ATR flow-through cell 2 optimally configured for stopped flow measurement, a stopped flow device 3, and a data processing device 9. You. This infrared ATR flow-through cell 2 will be described later.

【0014】対象とする蛋白質を含む緩衝溶液と、変成
を引き起こす尿素やグアニジンなどの変成剤溶液をそれ
ぞれ別の溶液に調製し、ストップドフロー装置の試料溜
に納める。試料溜は通常シリンジで構成されることが多
い。ストップドフロー装置は、これらの試料溶液を一定
の流量でATRフロースルーセルに送り出し、それらは
セル内に設けられたミキサーで混合し、セル室に供給さ
れ、そこでその赤外吸収が赤外ATR法によって測定さ
れる。
A buffer solution containing the protein of interest and a denaturing agent solution such as urea or guanidine which cause denaturation are prepared as separate solutions, and placed in a sample reservoir of a stopped flow apparatus. The sample reservoir is usually composed of a syringe. The stopped-flow apparatus sends these sample solutions at a constant flow rate to the ATR flow-through cell, where they are mixed by a mixer provided in the cell and supplied to the cell chamber, where the infrared absorption is converted to the infrared ATR. It is measured by the method.

【0015】試料の蛋白質の側からみると、ミキサーで
変成剤と混合すると、その瞬間から変成が始まり、その
2次構造の変化が始まる。セル室はミキサーの直後に設
置されていて、溶液を流している状態では、ミキサーか
らこのセル室に到達するまでの極短い時間を経過した時
点での構造に相当する赤外吸収信号が検知されているこ
とになる。赤外吸収を検知する波数としては、この場
合、変成に伴う2次構造の変化に着目し、それを反映す
るアミド基の1650cm−1付近を選択する。
From the viewpoint of the protein of the sample, when the mixture is mixed with the denaturing agent by the mixer, the denaturation starts from the moment, and the change of the secondary structure starts. The cell chamber is installed immediately after the mixer, and in the state where the solution is flowing, an infrared absorption signal corresponding to the structure at the time when a very short time elapses from the mixer to reach the cell chamber is detected. Will be. In this case, as the wave number for detecting the infrared absorption, attention is paid to the change in the secondary structure due to the metamorphism, and the vicinity of 1650 cm −1 of the amide group reflecting the change is selected.

【0016】次にストップドフロー装置による送液を停
止する。これに同期して赤外吸収信号の取得を開始す
る。あるいは赤外吸収信号の取得を開始すると同時に、
送液を停止してもよい。こうすると、変成に伴う2次構
造の変化の時間経過がアミド基の赤外吸収の時間変化と
して捉えられる。
Next, the liquid feeding by the stopped flow device is stopped. In synchronization with this, acquisition of an infrared absorption signal is started. Or at the same time as starting the acquisition of the infrared absorption signal,
The liquid feeding may be stopped. In this case, the time course of the change of the secondary structure due to the modification is regarded as the time change of the infrared absorption of the amide group.

【0017】ストップドフロー−赤外ATR法のシステ
ムを実現するために、キーとなるのは、ATRフロース
ルーセルである。そのための構成例を図2に示す。また
その各部の詳細を図3に示す。ATRフロースルーセル
はATRプリズム11、スペーサ12、セル基板13で
構成される。ATRプリズムには、ストップドフロー測
定に用いる溶媒に不溶で、赤外透過性で、比較的高い屈
折率を有するゲルマニウムやセレン化亜鉛などが用いら
れる。このATRプリズムとセル基板で、測定溶液試料
を容れる空間を持たせたスペーサを挟んでセルを構成す
る。この空間はセルセル室19を構成するもので、その
サイズは赤外測定のための入射光のサイズとストップド
フローの溶液の流量とを勘案して決定されることにな
る。
The key to realizing the stopped flow-infrared ATR system is the ATR flow-through cell. FIG. 2 shows a configuration example for that purpose. FIG. 3 shows details of each part. The ATR flow-through cell includes an ATR prism 11, a spacer 12, and a cell substrate 13. For the ATR prism, germanium, zinc selenide, or the like, which is insoluble in a solvent used for the stopped flow measurement, has an infrared transmittance, and has a relatively high refractive index, is used. The ATR prism and the cell substrate constitute a cell with a spacer having a space for accommodating the measurement solution sample interposed therebetween. This space constitutes the cell cell chamber 19, and its size is determined in consideration of the size of incident light for infrared measurement and the flow rate of the stopped flow solution.

【0018】セル基板には、ストップドフロー装置から
送液される試料を受け入れる試料導入ポート21、それ
らを混合するミキサー18、不要となった試料溶液を排
出する試料排出ポート22を備えている。試料導入ポー
トの数は、用いる溶液の数とする。図2における試料導
入ポート21からミキサー18を経てセル室に至り、そ
こから試料排出ポート22に至る流路は概念であり、実
施形態としては図3のセル基板上面図33、セル基板正
面図34に示すように、セル基板の下面にストップドフ
ロー装置からの送液配管を取り付ける試料導入ポート2
1を設け、セル基板を上下に貫通する細孔でセル基板の
上面までの流路とし、そこからセル基板上面に細い溝を
掘ってミキサー18までの試料溶液流路35とし、この
流路を180゜以下で交わるようにしてミキサー18を
形成し、そこから概ね交わりの2等分線の方向に溝を設
けてセル室19までの流路とするようにした。
The cell substrate is provided with a sample introduction port 21 for receiving a sample sent from the stopped flow device, a mixer 18 for mixing them, and a sample discharge port 22 for discharging unnecessary sample solution. The number of sample introduction ports is the number of solutions to be used. The flow path from the sample introduction port 21 to the cell chamber via the mixer 18 in FIG. 2 through the mixer 18 and from there to the sample discharge port 22 is a concept. As an embodiment, the cell substrate top view 33 and the cell substrate front view 34 in FIG. As shown in the figure, the sample introduction port 2 for attaching a liquid feed pipe from the stopped flow device to the lower surface of the cell substrate
1 is provided, and a channel extending up and down through the cell substrate is used as a flow path to the upper surface of the cell substrate, and a thin groove is dug from the upper surface of the cell substrate to form a sample solution flow path 35 to the mixer 18. The mixer 18 was formed so as to intersect at 180 ° or less, and a groove was provided in the direction of a bisector of the intersection from the mixer 18 so as to provide a flow path to the cell chamber 19.

【0019】[0019]

【発明の効果】各種反応の過程を、分子の構造を直接反
映する赤外吸収でストップドフロー測定出来るようにな
った。即ち、これまでストップドフロー装置に組み合わ
せて用いられてきた紫外・可視吸収は、対象化学種の電
子状態の変化に伴う吸光度の変化を観測するもので、化
学種が変化したという証拠は得られるが、それがどんな
化学変化、構造変化か直接的に示唆するものではない。
ストップドフロー−蛍光測定も、蛋白質の変成の追跡に
用いられた実績はあるが、蛋白質内の蛍光性アミノ酸残
基、即ちトリプトファン、フェニルアラニン、チロシン
の近傍の状態の変化を観測するもので、やはり、どのよ
うに変化したかを示すものではない。円二色性(CD)
測定が組み合わされた場合も、対象化学種の電子状態の
立体的非対称性の変化を観測するもので、構造、特に化
学結合の変化が直接示されるものではない。これに対し
て赤外吸収は、化学結合そのものを反映するので、その
生成、消滅、変化を直接観測することができ、推定によ
らない構造の変化を追跡できるようになった。
According to the present invention, the stopped-flow measurement of various reaction processes can be performed by infrared absorption which directly reflects the structure of a molecule. In other words, the UV-visible absorption that has been used in combination with the stopped-flow device is to observe the change in absorbance associated with the change in the electronic state of the target chemical species, providing evidence that the chemical species has changed. However, it does not directly suggest what kind of chemical or structural change it is.
Stopped flow-fluorescence measurement has also been used to track protein denaturation, but it also observes changes in the state of fluorescent amino acid residues in proteins, that is, tryptophan, phenylalanine, and tyrosine. It does not indicate how it has changed. Circular dichroism (CD)
Even when the measurement is combined, the change in the electronic state of the target chemical species is observed as a steric asymmetry, and the change in the structure, particularly, the change in the chemical bond is not directly indicated. In contrast, infrared absorption reflects the chemical bond itself, so that its formation, extinction, and change can be directly observed, and it is now possible to track structural changes that are not estimated.

【0020】また蛋白質の変成過程の追跡に、ストップ
ドフロー−円二色性(CD)測定を応用した場合、ある
種の蛋白質では変成に伴って凝集析出して濁りが生じる
ため、光散乱の影響を受けやすいCD測定では、測定が
妨害されるという問題が生じていた。赤外ATR法で
は、このような散乱の影響を本質的に受けないため、正
確かつ信頼性の高い測定が可能となった。
Further, when the stopped flow-circular dichroism (CD) measurement is applied to the tracking of the denaturation process of a protein, a certain protein aggregates and precipitates due to the denaturation and turbidity is generated. In the case of a sensitive CD measurement, there has been a problem that the measurement is disturbed. The infrared ATR method is not substantially affected by such scattering, so that accurate and highly reliable measurement is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ストップドフロー装置とATR装置を組み込ん
だ赤外分光光度計を組み合わせたシステムの概念図であ
る。
FIG. 1 is a conceptual diagram of a system in which a stopped flow device and an infrared spectrophotometer incorporating an ATR device are combined.

【図2】ストップドフロー測定のために構成した赤外A
TR用フロースルーセルの模式図である。
FIG. 2 Infrared A configured for stopped flow measurement
It is a schematic diagram of a flow-through cell for TR.

【図3】ストップドフロー測定のために構成した赤外A
TR用フロースルーセルの実施例の分解図である。
FIG. 3 Infrared A configured for stopped flow measurement
FIG. 3 is an exploded view of an embodiment of a flow-through cell for TR.

【符号の説明】[Explanation of symbols]

1 赤外分光光度計 2 ATRフロー
スルーセル 3 ストップドフロー装置 4 送液流路及び
温度調節部 5 廃液溜 6 ストップドフ
ロー装置I/F 7 温度コントローラ 8 赤外分光光度
計I/F 11 ATRプリズム 12 スペーサ 13 セル基板 14 測定入射光 15 測定全反射光 16 試料溶液導
入流路 17 試料排出流路 18 ミキサー 19 セル室 20 セル恒温デ
バイス 21 試料導入ポート 22 試料排出ポ
ート 31 スペーサ上面図 32 スペーサ正
面図 33 セル基板上面図 34 セル基板正
面図 35 セル基板正面図
DESCRIPTION OF SYMBOLS 1 Infrared spectrophotometer 2 ATR flow-through cell 3 Stopped flow device 4 Liquid sending flow path and temperature control unit 5 Waste liquid reservoir 6 Stopped flow device I / F 7 Temperature controller 8 Infrared spectrophotometer I / F 11 ATR Prism 12 Spacer 13 Cell substrate 14 Measurement incident light 15 Measurement total reflection light 16 Sample solution introduction flow path 17 Sample discharge flow path 18 Mixer 19 Cell chamber 20 Cell constant temperature device 21 Sample introduction port 22 Sample discharge port 31 Spacer top view 32 Spacer front Figure 33 Top view of cell board 34 Front view of cell board 35 Front view of cell board

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G054 AA06 AB10 BB10 BB13 CB02 CD03 CE01 EA04 EA05 EB10 FA08 FA18 FA36 GA01 GB01 JA01 2G057 AA01 AB02 AB09 AC01 BA05 DA03 DB05 DC01 DC07 EA06 2G059 AA01 BB04 DD05 DD12 DD13 DD17 EE01 EE02 EE12 FF03 HH01 JJ12 KK01 MM01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G054 AA06 AB10 BB10 BB13 CB02 CD03 CE01 EA04 EA05 EB10 FA08 FA18 FA36 GA01 GB01 JA01 2G057 AA01 AB02 AB09 AC01 BA05 DA03 DB05 DC01 DC07 EA06 2G059 AA01 BB04 DD17EE12 DD13 FF03 HH01 JJ12 KK01 MM01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 変化を測定しようとする試料を含む
溶液に、1乃至それ以上の溶液を一定比率で混合しなが
ら赤外分光光度計のフロースルーセルに供給し、このフ
ロースルーセル内の混合試料の赤外吸収信号乃至赤外反
射信号を検出するようにし、混合溶液の供給を停止する
ことに同期して信号の経時変化を測定することにより、
混合溶液の混合によって生起する化学変化、構造変化な
どの過程を追跡する方法。
1. A solution containing a sample whose change is to be measured is supplied to a flow-through cell of an infrared spectrophotometer while one or more solutions are mixed at a fixed ratio. By detecting the infrared absorption signal or infrared reflection signal of the sample, by measuring the change over time of the signal in synchronization with stopping the supply of the mixed solution,
A method to track processes such as chemical and structural changes caused by mixing mixed solutions.
【請求項2】 請求項1に関わる経時変化を追跡する方
法で、試料の赤外吸収信号乃至赤外反射信号をATR法
で検出する方法。
2. A method according to claim 1, wherein an infrared absorption signal or an infrared reflection signal of the sample is detected by an ATR method.
【請求項3】 請求項1に関わる赤外分光光度計のフロ
ースルーセルで、2以上の試料溶液導入ポートと、そこ
から導入された溶液が混合して測定セルに到達するミキ
サーと、セル部にゲルマニウム、セレン化亜鉛などのよ
うな高屈折率で赤外線透過性の材質で構成したプリズム
を設け、このプリズムの接液面で測定赤外光を全反射さ
せるように構成した赤外ATR法測定装置。
3. A flow-through cell of the infrared spectrophotometer according to claim 1, wherein two or more sample solution introduction ports, a mixer for mixing the solution introduced therefrom to reach the measurement cell, and a cell unit. Is provided with a prism made of a material having a high refractive index and transmitting infrared light such as germanium, zinc selenide, etc., and measuring the infrared ATR method so that infrared light is totally reflected at a liquid contact surface of the prism. apparatus.
【請求項4】 請求項3に関わる赤外分光光度計のAT
Rフロースルーセルで、試料溶液導入ポート以降の溶液
の流路、ミキサー、混合溶液をセル部へ導く流路、セル
から溶液を排出するための流路などを、セル基板に溝を
掘ることにより構成したATRフロースルーセル。
4. The AT of the infrared spectrophotometer according to claim 3.
By digging grooves in the cell substrate, the flow path of the solution after the sample solution introduction port, the mixer, the flow path for guiding the mixed solution to the cell part, the flow path for discharging the solution from the cell, etc. are formed in the R flow-through cell. Configured ATR flow-through cell.
【請求項5】 請求項3に関わる赤外分光光度計のAT
Rフロースルーセルで、セル部を恒温に保つ機構を持た
せた恒温ATRフロースルーセル。
5. The AT of the infrared spectrophotometer according to claim 3.
A constant temperature ATR flow-through cell with an R flow-through cell and a mechanism for keeping the cell section at a constant temperature.
【請求項6】 請求項5に関わる赤外分光光度計の恒温
ATRフロースルーセルで、セル基板に恒温水を循環す
る流路を別途設け、そこに恒温水などを循環させること
によりセル部を恒温に保つようにしたATRフロースル
ーセル。
6. A constant temperature ATR flow-through cell of the infrared spectrophotometer according to claim 5, wherein a flow path for circulating constant temperature water is separately provided in the cell substrate, and a constant temperature water or the like is circulated therein to form a cell portion. ATR flow-through cell maintained at a constant temperature.
【請求項7】 請求項5に関わる赤外分光光度計の恒温
ATRフロースルーセルで、セル基板にペルチェ素子を
用いた温度制御機構を付属させ、セル部を恒温に保つよ
うにしたATRフロースルーセル。
7. A constant temperature ATR flow-through cell of the infrared spectrophotometer according to claim 5, wherein a temperature control mechanism using a Peltier element is attached to a cell substrate so that the cell portion is kept at a constant temperature. cell.
JP5749299A 1999-01-29 1999-01-29 Method and apparatus for tracking changes with time passage Pending JP2000221136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5749299A JP2000221136A (en) 1999-01-29 1999-01-29 Method and apparatus for tracking changes with time passage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5749299A JP2000221136A (en) 1999-01-29 1999-01-29 Method and apparatus for tracking changes with time passage

Publications (1)

Publication Number Publication Date
JP2000221136A true JP2000221136A (en) 2000-08-11

Family

ID=13057235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5749299A Pending JP2000221136A (en) 1999-01-29 1999-01-29 Method and apparatus for tracking changes with time passage

Country Status (1)

Country Link
JP (1) JP2000221136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011346A1 (en) * 2004-07-30 2006-02-02 National University Corporation NARA Institute of Science and Technology Microarray reader
US8900829B2 (en) 2005-04-15 2014-12-02 Epigenomics Ag Methods and nucleic acids for analyses of cellular proliferative disorders
WO2022203007A1 (en) * 2021-03-26 2022-09-29 浜松ホトニクス株式会社 Dispersion stability evaluation method, and dispersion stability comparison method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011346A1 (en) * 2004-07-30 2006-02-02 National University Corporation NARA Institute of Science and Technology Microarray reader
JP2006038816A (en) * 2004-07-30 2006-02-09 Nara Institute Of Science & Technology Microarray reading apparatus
US8900829B2 (en) 2005-04-15 2014-12-02 Epigenomics Ag Methods and nucleic acids for analyses of cellular proliferative disorders
WO2022203007A1 (en) * 2021-03-26 2022-09-29 浜松ホトニクス株式会社 Dispersion stability evaluation method, and dispersion stability comparison method
WO2022201862A1 (en) * 2021-03-26 2022-09-29 浜松ホトニクス株式会社 Attenuated total reflectance spectroscopy apparatus, and attenuated total reflectance spectroscopy method
GB2618736A (en) * 2021-03-26 2023-11-15 Hamamatsu Photonics Kk Dispersion stability evaluation method, and dispersion stability comparison method
GB2619247A (en) * 2021-03-26 2023-11-29 Hamamatsu Photonics Kk Attenuated total reflectance spectroscopy apparatus, and attenuated total reflectance spectroscopy method

Similar Documents

Publication Publication Date Title
US8488120B2 (en) Polarization based interferometric detector
ES2231460T3 (en) PROCEDURE AND DEVICE FOR THE DETERMINATION OF PARAMETERS DEPENDING ON TEMPERATURE, SUCH AS THE PARAMETERS OF ASSOCIATION / DISPOSAL AND / OR THE CONSTANT OF BALANCE OF COMPLEXES CONSTITUTED BY AT LEAST TWO COMPONENTS.
US5811312A (en) Optical measurement apparatus and method therefor
US20060043301A1 (en) Infrared measuring device, especially for the spectrometry of aqueous systems, preferably multiple component systems
KR20000053341A (en) Analytical apparatus
US20080019876A1 (en) Sensing Apparatus with Noble Metal and Sensing System and Method Thereof
JP2003529076A (en) Ultra high throughput microfluidic analysis systems and methods
JP2006242916A (en) Sensor unit using total reflection attenuation, and measuring method
WO1983001112A1 (en) Method for the determination of species in solution with an optical wave-guide
JP3447360B2 (en) Method for performing an analytical assay and its reaction vessel
US8310676B2 (en) Method and apparatus for detecting small biomolecules
JP2003232725A (en) Chemical reaction analysis sensor using surface plasmon resonance measuring method
JP3935317B2 (en) Flow-through shear analyzer for biologically active molecules in a liquid layer on a surface
CA2076033C (en) Phase sensitive differential polarimetry technique and apparatus
JP2000221136A (en) Method and apparatus for tracking changes with time passage
US7710571B2 (en) Optical membrane formation system and method
US7551270B2 (en) Differential refractive index detector
JPH07243973A (en) Detecting material for acid gas or alkaline gas, manufacture thereof, and detecting device therefor
US20190072485A1 (en) System and method for monitoring reagent concentrations
JP4740010B2 (en) Liquid feeding device, liquid feeding method thereof, and measuring device using total reflection attenuation
JP2001108621A (en) Ion optode and ion optode meter
JP2004061222A (en) Micro biochemical evaluation apparatus
JP2000162124A (en) Sensor chip for surface plasmon resonance angle detecting device
JP2006105677A (en) Measuring instrument using total reflection attenuation
JP2007071838A (en) Dispensing device