WO2006009320A1 - Process for production of powdery n-(long-chain acyl)- amino acids or salts thereof, powdery n-(long-chain acyl)amino acids or salts thereof, and facial cleansing powders - Google Patents

Process for production of powdery n-(long-chain acyl)- amino acids or salts thereof, powdery n-(long-chain acyl)amino acids or salts thereof, and facial cleansing powders Download PDF

Info

Publication number
WO2006009320A1
WO2006009320A1 PCT/JP2005/013891 JP2005013891W WO2006009320A1 WO 2006009320 A1 WO2006009320 A1 WO 2006009320A1 JP 2005013891 W JP2005013891 W JP 2005013891W WO 2006009320 A1 WO2006009320 A1 WO 2006009320A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
roll
less
salt
particle size
Prior art date
Application number
PCT/JP2005/013891
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Yamaguchi
Satoshi Ueda
Makoto Nishikawa
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Publication of WO2006009320A1 publication Critical patent/WO2006009320A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/49Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/02Preparation in the form of powder by spray drying
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids

Definitions

  • the present invention provides a powdery N-long chain acylamino acid or a salt thereof which enables continuous mass production of a powdery N-long chain acylamino acid or a salt thereof preferable as a raw material component for washing lj, cosmetics and the like.
  • the present invention relates to a method for producing a salt, and also relates to a powdery N-long chain acylamino acid or a salt thereof and a powdered N-long chain acylamino acid or a salt thereof particularly suitable as a raw material component of the facial powder.
  • Surfactants are used as raw material components for various washings and cosmetics, and are prepared in liquid or solid form according to their properties and applications.
  • a powdery surfactant is known as one of the solid surfactants.
  • the powdery surfactant is mainly used as a powder cleaning agent for facial cleansing powder, soap powder, etc. It is used as a liquid washing agent dissolved in a liquid such as body shampoo.
  • spray dryer products have been known as such powdery surfactants.
  • particle size particle size
  • it is the moisture content of the powder. It also affects the powder physical properties other than the particle size (particle size) such as bulk density, and it is difficult to adjust the powder physical properties of only the particle size.
  • powders produced by spray dryers generally tend to have a low bulk density and are prone to dusting.
  • it is conceivable to granulate a spray-dried product once to reduce powder formation.
  • a pulverization method for various substances a method of pulverization while cooling with dry ice or liquid nitrogen is known (Chemical Engineering Handbook 6th edition, P838). Such cooling powder is not suitable for continuous operation because of the amount of work and cost, and is not suitable for industrial mass production.
  • Powdered surfactants are required to have properties such as no gritty feel when hand-washed and less dusting. Development of such powdery surfactants is desired. ing.
  • a powdery surfactant is not known as a spray dryer product, and therefore, in order to obtain a powdery surfactant suitable for a facial cleansing powder, a spray is required.
  • There has been proposed a method of removing fine particles that cause powder formation by sieving the powder obtained with a dryer Japanese Patent Laid-Open No. 2 0 3-3 0 6 6 9 6).
  • the present invention has been made in view of the circumstances as described above, and the problem to be solved is a powdery surfactant preferable as a raw material component of cosmetics and the like, and particularly suitable as a raw material component of a facial cleansing powder.
  • the present inventors pulverized N-long chain acylamino acid or a salt thereof using a specific pulverization facility, thereby applying extra heat or cooling. Without the need to add pulverization aids, and the fact that the particle size can be reduced without substantially affecting the powder physical properties such as bulk density and moisture content. By overlapping, the present invention has been completed. That is, the present invention
  • a method for producing a powdered N-long chain acylamino acid or a salt thereof characterized by being subjected to a step of pulverizing N-long chain acylamino acid or a salt thereof with a kneader.
  • the Ronore mill has one or more gear-shaped rolls on the surface, and the pitch width of the gear in the first stage is equal to or greater than the cumulative 30% particle diameter of the feed powder, and the cumulative 95% particle
  • Ronole mill has one or more rolls with a smooth surface and the clearance between one and the other roll of the first stage roll is more than 30% of the cumulative particle size of the feed powder.
  • N-long chain acyl amino acid or a salt thereof before pulverization is a powder having a force density of 0.4 gZcm 3 or more and a particle content of less than 10 106 mm and less than 10%.
  • N-long chain acylamino using a facility equipped with a crushing mechanism that discharges the material supplied to the gap between the rotor blade and the mesh plate arranged on the side of the rotor blade from the mesh hole of the mesh plate
  • N-long chain acyl amino acid or a salt thereof before flour has a content of particles having a force density of 0.4 g / cm 3 or more and a particle size of 0.1 106 mm or less. /.
  • the material is supplied to a gap between the rotary blade and the mesh plate arranged on the side circumference of the rotary blade, and is pulverized by a facility equipped with a powder stone mechanism that discharges the mesh plate from the mesh hole.
  • a face-washing powder comprising the powdery N-long chain acylamino acid or salt thereof according to (14) above, and
  • the present invention relates to a face-washing powder characterized by containing a powdery N-long-chain acylamino acid or a salt thereof produced by the method described in (4) or (7) above.
  • N-long amino acid or a salt thereof can be pulverized without substantially changing powder physical properties such as bulk density and moisture content. Therefore, for example, it is suitable as a raw material component of a lath and washing powder that has a high bulk density but does not substantially contain coarse particles and has a very small content of fine particles that cause dusting.
  • a powdery N-long chain acyl amino acid or a salt thereof can be produced continuously.
  • the N-long chain acylamino acid used in the present invention is synthesized by a known method such as adding a fatty acid quinolide to an amino acid alkali solution.
  • the N-long chain acyl amino acid may be a single compound or a mixture of two or more compounds having an acyl group with different chain lengths.
  • As the acyl group for example, a saturated or unsaturated linear or branched aliphatic acyl group having 6 to 18 carbon atoms can be used.
  • hexanoyl, otanoinore, decanol, lauroyl, myristoylet examples include acyl groups such as panoremitoinole, stearoinole and oleoyl. It may also be a mixed acyl group such as coconut oil fatty acid acyl, palm kernel oil fatty acid acyl, and hardened beef tallow fatty acid acyl.
  • the type of amino acid constituting the N-long chain acyl amino acid is not particularly limited, and examples thereof include glutamic acid, glutamine, aspartic acid, asparagine, glycine, and alanine, and the desired N-long chain amino acid or From the viewpoint of fluidity and cost of the powder of the salt, glutamic acid, glycine and alanine are preferable, and glutamic acid is particularly preferable.
  • glutamic acid, glycine and alanine are preferable, and glutamic acid is particularly preferable.
  • an optically active substance, an arbitrary mixture of enantiomers, or a racemate may be used.
  • the type of the N-long chain acyl amino acid salt is not particularly limited, and can be appropriately selected from salts usually used in the art.
  • alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, metal salts such as ammonium salt and zinc salt, ammonium salt, monoethanolamine salt, diethanolamine salt, triethanolamine salt
  • organic amine salts such as ethanolamine salts, salts of basic amino acids such as arginine salts and lysine salts. From the viewpoint of the solubility of the salt, an alkaline metal salt or an alkaline metal salt is preferred, and an alkaline metal salt is particularly preferred.
  • one or more N-long chain acyl amino acids or salts thereof can be used as the N-long chain acyl amino acids or salts thereof to be subjected to pulverization.
  • the kneading mill used in the present invention may be one having a structure in which the powder supplied between a pair of rotating knurling is ground by being compressed and sheared, and should be pulverized.
  • N—Method for supplying long-chain acyl amino acids or their salts Method) may be a method of feeding at a constant speed between a pair of rotating rolls, variable feeding, or intermittent feeding.
  • the change in the supply speed leads to a change in the density of the powder passing between the rolls.
  • the density is high, the contact frequency between the powder and the powder increases, and the pressure on the force powder also increases. Therefore, pulverization is easier to proceed and the particle size of the powder is smaller than when the fineness is low. Therefore, from the standpoint of continuously producing products with the same particle size distribution for a long time, it is desirable to supply them at a constant speed using a screw feeder or the like.
  • the feed rate of the long-chain acylamino acid or salt thereof to the kneading mill depends on the girdle rotation speed, it is usually preferred to feed at 20 kg / hr / cra-kall or less.
  • the feed rate is higher than that of 20 kg / hr m -roll, heat generation due to overloading of the pulverizer increases, causing adhesion and softening of N-long chain acyl amino acids and their salts.
  • the feeding rate of N-long chain amino acid or its salt to the roll mill is preferably 15 kg / hr / cm-roll or less, and 13 kg / hr / cm-roll or less. Is more preferable.
  • the lower limit of the feed rate is preferably 1 kg / hr / cra-mol or more from the viewpoint of production efficiency.
  • the particle diameter of the salt is not particularly limited. This is because powders with various particle sizes can be handled by adjusting the clearance and pitch width of the roll.
  • the particle shape of the powder preferably has an aspect ratio (long side / short side) ⁇ 10. If the aspect ratio (long side / short side) is 10 or more, the particle orientation force when passing between rolls may greatly affect the particle size of the product (pulverized powder). . From the viewpoint of controllability of the particle size of the resulting product and prevention of heat generation and adhesion due to local overload, the aspect ratio (long side / short side) of the powder particles is more preferably 8 or less. The following are particularly preferred:
  • the clearance of the above-mentioned mouth is the gap width between one mouth and the other mouth, and the pitch width is the unevenness of the mouth-nose surface in a gear shape. This is the distance between mountains when they are held.
  • the aspect ratio (long side / short side) of the powder particles is 2 mg of the powder, and the aspect ratio of the individual particles constituting the powder 2 g is determined by microscopic observation. It is an average value obtained by actually measuring and calculating the average value.
  • the water content of the N-long chain acyl amino acid or salt thereof (powder before pulverization) fed to the roll mill is not particularly limited, but is 10% or less from the viewpoint of preventing increase in the viscosity of the powder. It is preferably 8.5% or less. If the water content exceeds 10%, it becomes easy to become clayey powder or roll adhesion, and the resulting product tends to be plate-like and tends to remain rough. .
  • a roll at each stage of the roll mill used in the present invention is provided with a scraping blade for scraping off the adhering powder, and a gap width (separation distance) between the roll and the scraping blade.
  • a gap width (separation distance) between the roll and the scraping blade.
  • the width exceeds 0.1 mm, the raw material powder gradually adheres to the Rhono surface due to a continuous long time of 31 $, and when this adhesion grows, the clearance between the rolls becomes narrower.
  • the particle size of the powder) may change over time, so that it is preferable.
  • the width is less than 0.01 mm, the blade may come into contact with the Rhono surface, and the blade may be chipped and mixed into the product (powdered powder).
  • the width is more preferably 0.05 to 0.08 mm, and 0.08 to 0.06 mm. Further preferred.
  • the number of stages in the roll mill used in the present invention is not particularly limited, and may be one stage or a plurality of stages, preferably a plurality of stages. This is because if there is a large body in the feed powder (powder before pulverization) or the raw material (powder before pulverization) particle size and product, When there is a large difference in the particle size (target value) of the (pulverized powder), the adhesion to the roll becomes intense, and the concentration causes overload, and it is stretched into the product (pulverized powder). This is because it may be easy to form a plate-like particle.
  • the particle size distribution of the resulting product tends to be wide, resulting in coarse particles that cause a rough feeling when washing hands and fine particles that cause dusting. It becomes easy. Therefore, it is preferable to provide two or more rolls in series so that the coarse powder is pulverized in stages, and three stages are particularly preferable.
  • the surface of the roll in the roll mill may be a smooth surface, but preferably has gear-like irregularities from the viewpoint of further improving the controllability of the particle diameter.
  • each roll of the plurality of rolls is constituted by a roll having gear-like irregularities: the roll mill roll is a roll having gear-like irregularities on the surface thereof.
  • the pitch width of the gear on the tool surface should be within the range of 30% or more and 95% or less of the particle size of the raw material (powder before pulverization). It is preferable.
  • the pitch width is less than the cumulative 30% particle diameter of the raw material (powder before powder), the equipment will be overloaded, and adhesion due to heat generation will easily occur, and if the cumulative particle diameter exceeds 95%, The particle size does not change much before and after the powder kneading, which is not preferable from the viewpoint of grinding efficiency.
  • the pitch width is preferably within the range of 40% or more cumulative particle diameter of raw material (powder before powder), 95% or less of cumulative particle diameter, and more than 50% cumulative particle diameter. A value within the range of 95% cumulative particle size or less is particularly preferable.
  • the pitch width is preferably set in the range of 0.7 times or more and 1.3 times or less of the desired maximum particle size of the product (pulverized powder).
  • the maximum particle size of the product (powdered powder) is roughly adjusted to the desired value with the pitch width of the gear-like irregularities on the roll surface, and fine adjustment of the maximum particle size and particle size distribution are achieved by clearance. Adjusted. If the pitch width is less than 0.7 times or exceeds 1.3 times, fine adjustment by clearance becomes difficult, which is not preferable.
  • the raw material (powder before powder frame) is pulverized stepwise by using two stages of rolls with gear-like irregularities on the roll surface.
  • the pitch width of the gear-shaped irregularities on the surface of the first stage mouthpiece is 30% or more of the cumulative particle size of the raw material (powder before powdering) and 95% or less of the cumulative particle size.
  • the pitch width of the gear-shaped irregularities on the first surface of the second stage mouthpiece is 0.7 times or more the desired maximum particle size (target value) of the product (powdered powder), It is preferable to set within the range of 1.3 times or less.
  • the pitch width of the gear-like irregularities on the surface of the first stage mouthpiece is equal to or greater than the cumulative 40% particle diameter of the raw material (powder before pulverization) and the cumulative 95% particle It is preferable that the particle diameter is within the range of 50% or less of the particle diameter, and 95% or less of the particle diameter.
  • the pitch width of the second stage roll is set within the range of 20% or more of the raw material (pre-ground powder) cumulative particle diameter and 85% or less of the cumulative particle diameter
  • the pitch width of the third stage roll is the product. It is preferable to be within the range of 0.7 times or more and 1.3 times or less of the desired maximum particle diameter (target value) of the (pulverized powder).
  • the clearance of the roll of the roll mill used in the present invention is not particularly limited. However, when using a roll with a roll-like uneven surface, it is usually at least 0.12 times the pitch width and 1 times the pitch width. It is set within the following range. If the clearance is less than 0.12 times the pitch width, the effect of the clearance on the particle diameter of the product (pulverized powder) becomes large, and a lot of fine particles are generated in the product. However, it is not preferable because the product tends to be consolidated into plate-like particles. On the other hand, when the clearance exceeds 1 times the pitch width, it is not preferable because a large number of particles pass without being crushed by a pair of rolls and being crushed. Therefore, from the viewpoint of particle size control, the clearance of the mouth is preferably 0.15 times or more of the pitch width and more than 1 time of the pitch width, particularly preferably 0.18 times or more and 1 time or less. .
  • the roll clearance is preferably not more than the desired maximum particle size (target value) of the product (pulverized powder).
  • the clearance of the first stage mouth should be within the range of more than 30% particle diameter of the raw material (powder before pulverization) and less than 95% particle diameter. It is preferable to set the clearance of the mouthpiece to the desired maximum particle size (target value) of the product (powdered powder).
  • the pitch width of the first stage gate is within the range of 40% particle diameter or more and 95% particle diameter or less, and 50% particle accumulation. More preferably, the particle diameter is within the range of not less than the diameter and not more than the cumulative 95% particle diameter. Furthermore, it is more desirable to use three stages of the mouthpiece, and the clearance of the second stage is the cumulative 20% particle size of the raw material. As described above, it is more preferable to set the cumulative particle size to 85% or less and set the third step pitch width to the desired maximum particle size (target value) of the product (pulverized powder).
  • the number of rotations of the roll of the roll mill is not particularly limited, but since the feed flow rate can be increased as the number of rotations increases, the pulverization processing speed is increased, which is effective.
  • the rotation speed ratio of the pair of rolls (high-speed rotation roll rotation speed / low-speed rotation roll rotation speed) is usually set in the range of 1 to 1.8. If the powder to be crushed and powdered has a strong softening property and adherence is strong, the particles of the resulting product (powdered powder) are stretched only by using the compression action of crushing with a pair of rolls.
  • the shearing action is effectively reduced by varying the degree of rotation of the pair of rolls. It is preferable that the rotation speed ratio is 1.2 or more in order to make effective use of the shearing action.
  • the rotation speed ratio of a pair of rolls becomes too large, not only will the balance as rotation ⁇ become unstable and unstable, but also the cutting action will work more strongly than the compression action, and the resulting product (powdered powder)
  • the particle diameter of the body is reduced by the pitch width and the tally balance, and the particle diameter control force S becomes difficult. Therefore, the rotational speed ratio needs to be 1.8 or less.
  • 1.6 or less is preferable. The following is more preferable.
  • the pitch width of the final stage tool it is preferable to be 0.35 mm or less. If the pitch width of the final roll exceeds 0.35 mm, the resulting product (powdered powder) will generally have a large particle size and will tend to feel rough. In addition, from the viewpoint of hand washing feeling, the product (powdered powder) preferably does not contain particles with a particle size exceeding 0.33 mm, and does not contain particles with a particle size exceeding 0.3 O mm. Particularly preferred.
  • the pitch width of the final roll is more preferably 0.33 mm or less, and particularly preferably 0.30 mm or less. If the pitch width of the roll in the final stage is too small, the resulting product (powdered powder) will have a small particle size as a whole and cause powdering. Therefore, the pitch width of the final roll is 0.16 m. m or more is preferable, and 0.150 mm or more is more preferable.
  • staged mouthpiece refers to the concept including the first stage mouthpiece in the case of a mouth mill consisting of one stage mouthpiece.
  • the upper limit of the clearance of the final roll is preferably 0.35 mm or less, more preferably 0.33 mm or less, and 0.3 O mm or less is particularly preferable, and the lower limit is preferably 0.16 mm or more, more preferably 0.15 O mm or more.
  • the mouth-no-minole used in this paper is not particularly limited as long as it is a facility equipped with a mechanism capable of directly compressing and shearing an N-long chain acyl amino acid or its salt by the rotation of a pair of opposite mouth-to-mouth.
  • a powder storage mechanism for discharging the material supplied to the gap between the rotor blade and the mesh plate arranged on the side periphery thereof, not the mouth mill, from the mesh hole of the mesh plate.
  • the desired powdery ⁇ ⁇ -long-chain acylamino acid or its salt can be continuously produced using the equipment (ie, comil (quadrone ring, trade name) type powder mash equipment).
  • the mesh hole diameter of the mesh plate in the equipment is 0.25 times the cumulative 90% particle diameter of the long-chain acylamino or its acid salt powder raw material (pre-ground powder).
  • it is preferably set within a range of 2 times or less, and if the mesh pore diameter is less than 0.25 times, it is not preferable because the powder stone hoe is overloaded and the mesh is easily clogged. If the number exceeds twice, the number of particles passing through without being dusted increases, which is not preferable from the viewpoint of dusting efficiency, from the viewpoint of more efficient and safer continuous use in actual production.
  • the mesh pore size is more preferably within the range of 0.3 to 1.5 times the cumulative 90% particle size of the pulverized raw material (pre-powder powder), 0.3 to 5 times, A range of 1.6 times or less is particularly preferable.
  • the clearance (gap width) between the rotor blades and the mesh plate in the gap between the rotor blades and the mesh plates arranged on the side (granulation region) is not less than 0.1 mm and not more than 5 mm. Within the range is preferable. If it is less than 0.0 l mm, the pulverized raw material (powder before pulverization) is kneaded into the mesh. It is not preferable because it tends to clog and the resulting product tends to become a kneaded rod.
  • the clearance is more preferably in the range of 0.05 mm or more and 3 mm or less, more preferably 0.1 mm or more from the viewpoint of more effective and safer continuous 11 hours.
  • the range of 2 mm or less is particularly preferable.
  • the shape of the powder stone structure in the equipment is not particularly limited, but it has an inverted conical shape compared to the type in which the mesh plate arranged on the side circumference of the rotor blade is cylindrical (that is, The diameter of the end on the powder supply side is large, and the diameter gradually decreases toward the end opposite to the end).
  • QUADRO C0MIL manufactured by Paulek.
  • N-long chain acyl amino acid or a salt thereof (powder before powdering) is ground, Can the particle size of the powder be reduced without substantially affecting the powder physical properties such as moisture content (ie, while minimizing fluctuations in the powder physical properties)?
  • a powdery N-acylamino acid or salt thereof having powder properties preferable as a raw material for cosmetics and the like can be continuously mass-produced.
  • N-acylaminoic acid or its salt (powder before pulverization) used for pulverization powders obtained by various production methods (drying method, fine pulverization method) can be used.
  • a powder having a bulk density of 0.4 g Z cm 3 or more it is preferable to use a powder having a bulk density of 0.4 g Z cm 3 or more. That is, by using a powder having a strength density of 0.4 g / cm 3 or more, the particles that cause powdering are limited to particles having a smaller particle diameter. Specifically, by using a powder having a bulk density of 0.4 g Z cm 3 or more, the content of particles having a particle size of 0.16 mm or less is less than 10% by weight. By crushing to a fine powder, it is possible to obtain a powder that is less prone to dusting. The more effectively suppress dusting, bulk density before milling powder 0. 4 5 cm 3 or more, more preferably, 0. 5 0 cm 3 or more is particularly preferable.
  • the powder before pulverization has a particle size of less than 0.16 mm and contains less than 10% (preferably 9.0 ° / 0 , more preferably 8.0%).
  • the content of particles having a particle diameter of 0.16 mm or less is 10 wt. /. Less than products (powdered powder) can be obtained It is preferable. If the bulk density of the powder before pulverization is too large, the particle hardness of the product obtained by pulverization (powder after pulverization) becomes high, and it becomes easy to feel a rough feeling during hand washing. Therefore, the upper limit of the bulk density is preferably 0.80 g / cm 3 or less, and more preferably 0.70 gZ cm 3 or less.
  • Powdered N-amino acid or its salt for face-washing powder that does not feel such a rough feeling when washing hands and is less prone to dusting, has a particle size of 0.16 mm or less. It is specified as a powder with a content of less than 10%, no particles with a particle size of 0.355 mm or more, and a strength density of 0.4 g / cm 3 or more.
  • the powder has a particle content of 9.06 mm or less and a content of 9.0. /.
  • the content is 8.0% or less, it is more preferable that powdering is less likely to occur.
  • the upper limit of the bulk density of the powder is preferably 0.80 gZcm 3 or less, and more preferably 0.70 g / cm 3 or less.
  • the powder of N-long chain acylamino acid or a salt thereof is pulverized so that the particle properties of the powder, such as bulk density and moisture content, are not substantially affected. It is possible to reduce the particle size by reducing the particle size by continuously reducing the particle size and producing a large amount of powdered N-acylaminoic acid or its salt that has favorable powder properties for raw materials such as detergents and cosmetics. It is also possible to increase the particle diameter to a desired range by fluidizing the powder. For example, it is desirable that the surfactant in the face-washing foam has an average particle size (cumulative 50% particle size) force SO. 500 mm or more.
  • powdered N-long chain acyl amino acids or salts thereof for face-washing foams are preferred.
  • the powder is manufactured, it is possible to easily increase the average particle size (cumulative 50% particle size) to 0.500 mm or more by using the fluidized granulation method.
  • the average particle size (cumulative 50% particle size) of the product (powdered powder) varies depending on the specific use of the product (powdered powder). It is preferably within the range of 0.16 mm or more and less than 0.35 5 mm, more preferably 0.15 Omm or more, 0.35 5 mm, or less.
  • the obtained powder is fluidized by a fluid granulation method or the like to increase the particle size thereof, and the face washing foam
  • the average particle size after accumulation is preferably 0.500 mm or more, particularly preferably 0.500 mm or more, 5.0 0 O It is desirable that the bulk density is 0.8 mm / cm 3 or less.
  • the product that is, the powder after pulverization, and the powder obtained by further flowing the powder after pulverization by a fluidized method or the like to increase the particle size thereof, are face wash powder, body shampoo, powder stone candy, Used as a raw material for washing stones, face-washing foams, etc. ⁇ iJ, cosmetics.
  • the content of particles with a particle size of 0.16 mm or less is less than 10%, and the particle size is 0.35 5 mm N-acylaminoic acid or its salt prepared in powders not containing the above particles and having a force density of 0.4 g cm 3 or more does not feel the rough feeling when pulverized by hand.
  • the composition (formulation) of the face washing powder at that time may be in accordance with conventional methods, and one or more additives may be added.
  • additives can also be appropriately selected from known additives according to the desired properties.
  • the obtained powder is fluidized by fluidized legislation to increase the particle diameter, and the average particle diameter (cumulative 50 % particle diameter) 0. 5 0 0 mm or more, 5. 0 0 0 mm below the force of density in 0. 8 g / cm 3 or less of the powder was prepared N- Ashiruamino acid or its salt Is particularly suitable as a raw material component for a face-washing foam, but the composition (formulation) of the face-washing foam at that time may be in accordance with conventional methods, and one or more additives may be combined. Such additives can be appropriately selected from known additives according to the desired properties.
  • EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further in detail, this invention is not limited to these Examples.
  • the particle size distribution, cumulative particle size, and bulk density of the raw materials and the powdered products (products) obtained in the examples and comparative examples were measured and calculated by the following methods.
  • Table 1 shows the setting conditions for the powder mill
  • Table 2 shows the bulk density, moisture content, continuous time and evaluation of the raw material (powder before powder)
  • Table 3 shows the raw material (powder before powder).
  • Table 4 shows the particle size distribution of the spread product (powdered powder), and Table 4 shows the cumulative diameter of the raw material (powder before pulverization) (20%, 30%, 40%, 50%, 85% and Table 5 shows the particle size distribution of the evaluation sample.
  • Table 6 shows the products of Examples 3, 6, and 7 (powdered powder) and the physical property evaluation of the evaluation sample.
  • the sieving method was used for the measurement, and classification was carried out by shaking with an automatic sieving machine made by Rctsch with an amplitude of 2.0 mm for 15 minutes.
  • a saucer, 0.106 mm sieve, 0.150 ram sieve, 0.212 mm sieve, 0.300 mm sieve, 0.355 mm sieve, 0.500 mm sieve, 0.710 mm sieve, 0.850 mm sieve, 1.000 mm sieve, 2.360 mm sieve were used.
  • XI, X2, X 3, X4 , X5, X 6, X7, X8 and the S X9 S X10, XI 1 expressed as a cumulative graph calculated as follows did.
  • Average particle size, cumulative 5% diameter, and cumulative 80% diameter! / Is obtained by linear approximation between the plots of the cumulative graph of the particle size distribution. The calculation is as shown in the following example.
  • Evaluation of hand-washing feeling was evaluated visually by taking 0.2 g of an evaluation sample on the palm, adding 2. Og of tap water, and mixing 20 times with fingers. Observations were made by two expert panels based on the following evaluation criteria, and the average value of the two evaluation points was calculated.
  • the evaluation criteria were 1 point or more and less than 2 points as X, 2 points or more and less than 3 points as ⁇ , 3 points or more and less than 4 points as ⁇ , and 4 points as ⁇ .
  • the results are shown in Tables 1 to 3.
  • the transportation cost was directly evaluated by the value of bulk density. The following are the evaluation criteria. 0.3g / cc or less X
  • the grinding conditions are as follows.
  • Powder feed rate 3.2 kg / hr / cra-mall
  • the body (raw material 1) was crushed (maximum particle size of powder to be manufactured (target value): 0.7 mm.
  • N-Lauroy L L-Natrium glutamate with a aspect ratio (long side / short side) of 2 or less was pulverized with a two-stage gear-shaped (Rhino surface is gear-shaped) (Maximum particle size of powder to be manufactured (target value): 0.35 resolution).
  • the grinding conditions are as follows.
  • Powder feed rate 3.2kg / hr / ctn-roll
  • the pitch width of the gear on the surface of the first stage mouthpiece 0.6 mm
  • First stage clearance (separate distance between a pair of openings): 0. 19 mm First stage opening 3 ⁇ 4i degree ratio: 1.0
  • N-Lauroyux L-Natrium glutamate having a aspect ratio (long side / short side) of 2 or less was ground with a roll gear in a single gear shape (roll surface is gear shape) (Maximum particle size of the powder to be manufactured (target value): 0 ⁇ 5 ⁇ ) 0
  • the powdering conditions are as follows.
  • Powder feed rate 3.2 kg / hr / cm-mouth
  • the grinding conditions are as follows.
  • Powder feed rate 3.2 kg / hr / cm-mouth
  • the pitch width of the gear on the surface of the first stage mouthpiece 0.6 mm
  • the pitch width of the gear on the surface of the second stage mouthpiece 0.6 mm
  • Second stage roll speed ratio 1. 22
  • Powder of N-coconut oil fatty acid acylglycine sodium having a aspect ratio (long side / short side) of 2 or less (the product obtained in Example 5) in a two-stage gear shape (roll surface) was pulverized with a roll mill with a gear shape (maximum particle size of powder to be manufactured (target value): 0.35 mm).
  • the powdering conditions are as follows.
  • Powder feed rate 1.93 kg / hr m-mouth
  • the pitch width of the gear on the surface of the first stage mouthpiece 0.6 mm
  • Second stage roll speed ratio 1. 22
  • Powder of N-coconut oil fatty acid acylglycine sodium having a aspect ratio (long side / short side) of 2 or less (the product obtained in Example 5) in a three-stage gear shape (roll surface Was milled with a roll mill (the maximum particle diameter of the powder to be manufactured (target value): 0.35 mm) 0
  • the powdering conditions are as follows.
  • Powder feed rate 1. 93 kg / hr / cm-mall
  • the pitch width of the gear on the surface of the first stage mouthpiece 0.6 mm
  • the pitch width of the gear on the surface of the mouth of the second stage mouthpiece 0.6 mm
  • Second stage mouth rotation speed ratio 1. 22
  • N The powder (raw material 3) with a aspect ratio (long side / short side) of coconut oil fatty acid acylglycine sodium of 2 or less is used in a two-stage gear shape (Rhino surface is a gear shape). (The maximum particle size of the powder to be manufactured (target value): 1.1 kg).
  • the powdering conditions are as follows.
  • Powder feed rate 4. 90 kg / hr / cra-mall
  • a powder (raw material 4) having an aspect ratio (long side / short side) of N-coconut oil fatty acid acylglycine sodium of 2 or less was pulverized with Comil (manufactured by Parec Co., Ltd.).
  • the grinding conditions are as follows.
  • N-coconut oil moon succinic acid acylglycine sodium aspect ratio (long side / short side) of 2 or less powder (raw material 5) is a vertical centrifuge pin mill (Ogino Sangyo Co., Ltd.) Made).
  • the rotation speed was 1 0 0 0 at Orpra, and the speed was 51 $.
  • the adhesion due to softening was severe and the powder passage was blocked in 5 minutes and stopped due to automatic overload prevention of the equipment. Comparative Example 2>
  • a powder (raw material 5) having an aspect ratio (long side / short side) of N-coconut oil fatty acid acylglycine sodium of 2 or less was pulverized by a vertical centrifugal pin mill as in Comparative Example 1.
  • ⁇ —Powder (raw material 6) having a palm oil fatty acid oil acylglycine sodium aspect ratio (long side / short side) of 2 or less was pulverized with a horizontal centrifugal pin mill (manufactured by Retsch GmbH & Co.) . Although the rotation speed was 100 0 Orpm and the speed was constant, adhesion due to softening was severe, and in 5 minutes the powder passage was blocked and stopped by automatic overload prevention of ⁇ . Comparative Example 4>
  • Powder of N-coconut oil fatty acid acidylaricine sodium having a aspect ratio (long side / short side) of 2 or less (raw material 6) in a horizontal centrifugal screen mill (manufactured by Retsch GmbH & Co.) Crushed.
  • Powder of N-coconut oil fatty acid acylglycine sodium with a aspect ratio (long side / short side) of 2 or less was pulverized in a horizontal centrifugal screen mill as in Comparative Example 4. did.
  • a mesh with a mesh hole diameter of 0.2 mm was operated at a constant speed with 100 000 Orptn, but the adhesion due to softening was severe and the powder passage was blocked in 4 minutes to prevent automatic overload of the equipment. did.
  • a 30% aqueous solution of N-coconut oil fatty acid acylglycine sodium was dried with a drum dryer to obtain a flaky powder having a water content of 0.6%.
  • a 30% aqueous solution of N-laureuil L-sodium glutamate was spray-dried with a spray dryer to obtain a powder having a water content of 1.0%.
  • Example 7 The powder obtained in Example 7 was used as a seed material, and a 30% 7j solution of N-coconut oil fatty acid sodium acylglycine was spray-dried with a fluid granulator to obtain a powder.
  • the powder is raw material 3.
  • Example 3 0.6 0.3 0.19 0.23 0.359 0.402 0.447 0.491 0.744 0.805 1
  • Example 4 0.6 0.07 0.359 0. 02 0.447 0.491 0.744 0.805 1
  • Example 6 0.6 0.3 0.27 0.23 0.362 0.412 0.463 0.512 0.669 0.73 1.22
  • Example 7 0.6 0.6 0.3 0.19 0.11 0.15 0.362 0.412 0.463 0.512 0.669 0.73 1.22
  • Example 8 1.0 1.0 0.99 0.51 0.717 0.75 0.783 0.816 1.351 2.1 1.22
  • a face washing powder of the following Formulation Example 1 was prepared according to a conventional method.
  • the unit of numerical values in the formulation examples is parts by weight.
  • a facial cleansing foam of the following Formulation Example 2 was prepared according to a conventional method.
  • the unit of numerical values in the prescription examples is the weight part.
  • a powder suitable for washing which has a high bulk density but does not substantially contain coarse particles, and has a small content of particles having a fine particle size that causes powdering.
  • Powdered N-long chain acylamino acids or their salts with physical properties can be continuously produced, and powdery surface activity with suitable powder properties that has been difficult in the past Continuous mass production of chemicals at the industrial level becomes possible.
  • a powdery N-long chain acylamino acid or a salt thereof that can give a cleansing powder that does not feel rough when hand-washed and hardly causes powdering.

Abstract

A process for mass-producing continuously powdery surfactants suitable for detergents or cosmetic ingredients, particularly for facial cleansing powder. This process is characterized by comprising the step of conducting the size reduction of a surfactant consisting of an N-(long-chain acyl)amino acid or a salt thereof by pulverizing the surfactant by the use of either a roll mill or equipment having a pulverization mechanism of discharging a material fed into the clearance between a rotary vane and a mesh plate placed around the periphery of the vane through openings of the mesh plate. According to the invention, N-(long-chain acyl)amino acids or salts thereof can be pulverized without extra heating or cooling the acids or salts (powder before pulverization) or adding a pulverization aid to the acids or salts to attain the size reduction of the acids or the salts with substantially no impairment in the powder characteristics (such as bulk density and water content) inherent in the acids or salts (powder before pulverization). Thus, the invention enables industrial continuous mass production of powdery N-(long-chain acyl)amino acids or salts thereof capable of giving facial cleansing powders which are free from coarseness in washing hands and little cause dusting.

Description

明 細 書  Specification
粉体状 N_長鎖ァシルァミノ酸またはその塩の製造方法、 粉体状 N—長鎖ァシ ルァミノ酸またはその塩、 及び洗顔パゥダー  Powdered N_long chain acylamino acid or a salt thereof, powdered N—long chain acylamino acid or a salt thereof, and face washing powder
技 術 分 野  Technical field
本発明は洗 lj、 ィ匕粧品等の原料成分として好ましい粉体状の N—長鎖ァシル ァミノ酸またはその塩の連続的大量生産を可能にする粉体状 N—長鎖ァシルァミ ノ酸またはその塩の製造方法に関し、 また、 洗顔パウダーの原料成分として特に 適した粉体状 N—長鎖ァシルァミノ酸またはその塩及ひ 粉体状 N—長鎖ァシル アミノ酸またはその塩を含む洗顔パウダーに関する。  The present invention provides a powdery N-long chain acylamino acid or a salt thereof which enables continuous mass production of a powdery N-long chain acylamino acid or a salt thereof preferable as a raw material component for washing lj, cosmetics and the like. The present invention relates to a method for producing a salt, and also relates to a powdery N-long chain acylamino acid or a salt thereof and a powdered N-long chain acylamino acid or a salt thereof particularly suitable as a raw material component of the facial powder.
背 景 技 術  Background technology
界面活性剤は各種の洗 やィ匕粧品等の原料成分として用いられているが、 そ の性質や用途に応じて液状または固体状に調製して使用される。 固体状の界面活 性剤の一つとしてパゥダー状の界面活性剤が知られてレ、る力 該パゥダー状の界 面活性剤は主に洗顔パウダー、 粉石けんなどの粉末洗浄剤として、 また、 ボディ シャンプーのような液体に溶解した液状洗净料として用いられている。  Surfactants are used as raw material components for various washings and cosmetics, and are prepared in liquid or solid form according to their properties and applications. A powdery surfactant is known as one of the solid surfactants. The powdery surfactant is mainly used as a powder cleaning agent for facial cleansing powder, soap powder, etc. It is used as a liquid washing agent dissolved in a liquid such as body shampoo.
このようなパウダー状の界面活性剤としては、 従来、 スプレードライヤー品が 知られているが、 スプレードライヤーは、 その運転条件によって粒径 (粒度) 調 整を行うと、 それが粉体の含水率、 かさ密度等の粒径 (粒度) 以外の粉体物性に も影響し、 粒度のみの粉体物性を調整することは難しく、 目的の洗 ljに適した 粉体物性の粉体を得ることは容易ではなく、 また、 スプレードライヤーによる粉 体は概してかさ密度が小さくなり、 粉立ちを生じやす 、傾向にある。 そこで、 例 えば、 粉立ちを抑制する目的で、 スプレードライ品を一度造粒して粉碎すること が考えられる。 各種物質の粉砕法として、 ドライアイスや液体窒素等で冷却しな がら粉砕する方法が知られており (化学工学便覧改訂六版 P838)、 該方法を用い れば界面活性剤の粉碎も比較的容易になると考えられるが、 このような冷却粉碎 は、 作業量、 コストの点から、 連続運転には不向きであり、 工業的な大量生産に 使用するには適当でない。  Conventionally, spray dryer products have been known as such powdery surfactants. When the spray dryer is adjusted in particle size (particle size) according to its operating conditions, it is the moisture content of the powder. It also affects the powder physical properties other than the particle size (particle size) such as bulk density, and it is difficult to adjust the powder physical properties of only the particle size. It is not easy, and powders produced by spray dryers generally tend to have a low bulk density and are prone to dusting. Thus, for example, it is conceivable to granulate a spray-dried product once to reduce powder formation. As a pulverization method for various substances, a method of pulverization while cooling with dry ice or liquid nitrogen is known (Chemical Engineering Handbook 6th edition, P838). Such cooling powder is not suitable for continuous operation because of the amount of work and cost, and is not suitable for industrial mass production.
また、 界面活性剤の粒子を特定粒径の粉末ビルダーと混練して硬度を上げ (特 定硬度の混練物にし)、粉碎する方法や、高いかさ密度の洗剤を得るために、ゼォ ライトのような粉砕助剤を混練して、 得られる混練物に 1 5〜2 0°Cのエアーを 当てて冷却しながら粉碎する方法が提案されているが (特開平 9— 2 3 5 5 9 8 号公報、特開平 1 0— 8 8 1 9 7号公報等)、該方法では界面活性剤単体の粉体と して取得できない。 従って、 力さ密度や粉立ち性の改善されたパウダー状の界面 活性剤を工業的に大量生産できる方法が求められている。 In addition, in order to knead the surfactant particles with a powder builder of a specific particle size to increase the hardness (to a kneaded product of a specific hardness) and to grind, or to obtain a detergent with a high bulk density, A method has been proposed in which a grinding aid such as light is kneaded, and the resulting kneaded product is aired at 15 to 20 ° C. and cooled while being cooled (Japanese Patent Laid-Open No. 9-2 3 5 5 No. 98, JP-A-10-88197, etc.), and this method cannot be obtained as a powder of a surfactant alone. Therefore, there is a need for a method capable of industrially mass-producing powdery surfactants with improved strength and powderiness.
パウダー状の界面活性剤、 特に洗顔パウダーには、 手洗い時にザラザラ感がな いこと、 粉立ちが少ないことなどの性質が求められており、 そのようなパウダー 状の界面活性剤の開発が望まれている。 し力 し、 前記のように、 従来、 パウダー 状の界面活性剤はスプレードライヤー品し力知られておらず、 そのため、 洗顔パ ウダ一に適したパウダー状の界面活性剤を得るために、 スプレードライヤーで得 られる粉体を篩にかけて粉立ちの原因となる微粒子を取り除く方法が提案されて いるが(特開 2 0 0 3— 3 0 6 6 9 6号公報)、この方法は粉立ちの原因となる粒 径が 0. 0 5 3 mm未満の粒子を篩レヽ分けするので、 長期運転では篩いの目詰ま りは避けられず、 大量の粉体を処理するにはふるいの洗浄を頻繁に行うことが必 要になり、工業的な大量生産に必ずしも適した技術とは言えない。従って、特に、 洗顔パゥダーに適したパゥダー状の界面活性剤を得るための連続的大量生産が可 能なパゥダー状の界面活性剤の製法が切に求められている。  Powdered surfactants, especially face-washing powders, are required to have properties such as no gritty feel when hand-washed and less dusting. Development of such powdery surfactants is desired. ing. However, as described above, conventionally, a powdery surfactant is not known as a spray dryer product, and therefore, in order to obtain a powdery surfactant suitable for a facial cleansing powder, a spray is required. There has been proposed a method of removing fine particles that cause powder formation by sieving the powder obtained with a dryer (Japanese Patent Laid-Open No. 2 0 3-3 0 6 6 9 6). Since particles with a particle size of less than 0.05 mm are sieved, the clogging of the sieve is unavoidable in long-term operation, and the sieve is frequently washed to process a large amount of powder. Therefore, this technology is not necessarily suitable for industrial mass production. Accordingly, there is an urgent need for a process for producing a powdery surfactant capable of continuous mass production in order to obtain a powdery surfactant suitable for a face washing powder.
発明の開示  Disclosure of the invention
本発明は、 上記のような事情に鑑みなされたもので、 その解決しょうとする課 題は、 u 化粧品等の原料成分として好ましい粉体状の界面活性剤、 特に洗 顔パウダーの原料成分として好適な粉体状の界面活性剤を連続的に大量生産でき る方法を »することであり、 さらに、 手洗い時のザラザラ感がなく、 力つ、 粉 立ちが生じ難い洗顔パゥダーを達成し得る粉体状の界面活性剤を^することに ある。  The present invention has been made in view of the circumstances as described above, and the problem to be solved is a powdery surfactant preferable as a raw material component of cosmetics and the like, and particularly suitable as a raw material component of a facial cleansing powder. A powder that can achieve a face washing powder that is strong and resistant to powdering, without the gritty feeling of hand-washing. The purpose is to remove the surface active agent.
本発明者等は、 上記課題を解決すべく鋭意検討した結果、 N—長鎖ァシルアミ ノ酸またはその塩を、 特定の粉砕設備を用いて粉砕することで、 余分な熱をかけ たり、 冷却したり、 粉砕用の助剤を加える必要なく、 そのかさ密度、 含水率等の 粉体物性に実質的に影響を与えずに、 粒子径を小さくできることを知見し、 該知 見に基づきさらに研究を重ねることにより、 本発明を完成するに到った。 すなわち、 本発明は、 As a result of intensive studies to solve the above-mentioned problems, the present inventors pulverized N-long chain acylamino acid or a salt thereof using a specific pulverization facility, thereby applying extra heat or cooling. Without the need to add pulverization aids, and the fact that the particle size can be reduced without substantially affecting the powder physical properties such as bulk density and moisture content. By overlapping, the present invention has been completed. That is, the present invention
( 1 ) N—長鎖ァシルァミノ酸またはその塩を口ールミルで粉碎する工程を経る ことを特徴とする、 粉体状 N—長鎖ァシルァミノ酸またはその塩の製造方法、 (1) A method for producing a powdered N-long chain acylamino acid or a salt thereof, characterized by being subjected to a step of pulverizing N-long chain acylamino acid or a salt thereof with a kneader.
(2) ローノレミルが、 表面が歯車状のロールを 1段または複数段有し、 1段目口 ールの歯車のピッチ幅が、 フィード粉体の累積 30 %粒子径以上、 累積 95 %粒 子径以下である、 上記 (1) 記載の方法、 (2) The Ronore mill has one or more gear-shaped rolls on the surface, and the pitch width of the gear in the first stage is equal to or greater than the cumulative 30% particle diameter of the feed powder, and the cumulative 95% particle The method according to (1) above, which is not more than the diameter,
(3) 1段の口ールまたは複数段の口一ルの各口ールにおける一方と他方の口一 ル間のクリアランスが口ール表面の歯車のピッチ幅の 0. 12倍以上、 1倍以下 である、 上記 (2) 記載の方法、  (3) The clearance between one and the other in each step of a single step or multiple steps is 0.12 times the pitch width of the gear on the surface, 1 The method described in (2) above,
(4)最終段の口ールの口ール表面の歯車のピッチ幅が 0.35 mm以下である、 上記 (2) 又は (3) 記載の方法、  (4) The method according to (2) or (3) above, wherein the pitch width of the gear on the surface of the last stage mouthpiece is 0.35 mm or less,
(5) ローノレミルが、 表面が平滑なロールを 1段または複数段有し、 1段目ロー ルの一方と他方の口ール間のクリアランスがフィード粉体の累積 30 %粒子径以 上、 累積 95%粒子径以下である、 上記 (1) 記載の方法、  (5) Ronole mill has one or more rolls with a smooth surface and the clearance between one and the other roll of the first stage roll is more than 30% of the cumulative particle size of the feed powder. The method according to (1), wherein the particle size is 95% or less,
(6) 1段のロールまたは複数段のロールの各ロールにおける一方と他方のロー ルの回転速度比が 1. 0〜1. 8である、 上記 (2) 〜 (5) のいずれか一つに 記載の方法、  (6) One of the above-mentioned (2) to (5), wherein the rotation speed ratio of one roll to the other roll in each roll of a single roll or multiple rolls is 1.0 to 1.8. The method described in
(7) 最終段のロールのクリアランスが 0. 35mm以下である、 上記 (5) 又 は (6) 記載の方法、  (7) The method according to (5) or (6) above, wherein the clearance of the final roll is 0.35 mm or less,
(8) 粉砕前の N—長鎖ァシルアミノ酸またはその塩が、 力さ密度 0. 4gZc m3以上で、 粒子径 0. 106 mm以下の粒子の含有量が 10 %未満の粉体であ る、 上記 (1) 〜(7) のいずれ力一つに記載の方法、 (8) N-long chain acyl amino acid or a salt thereof before pulverization is a powder having a force density of 0.4 gZcm 3 or more and a particle content of less than 10 106 mm and less than 10%. The method according to any one of the above (1) to (7),
(9) 回転翼と該回転翼の側周に配置されたメッシュ板間の隙間に供給される材 料をメッシュ板のメッシュ孔から排出する粉砕機構を備えた設備を用いて N—長 鎖ァシルァミノ酸またはその塩を粉砕する工程を経ることを特徴とする、 粉体状 N—長鎖ァシルァミノ酸またはその塩の製造方法、  (9) N-long chain acylamino using a facility equipped with a crushing mechanism that discharges the material supplied to the gap between the rotor blade and the mesh plate arranged on the side of the rotor blade from the mesh hole of the mesh plate A process for producing a powdered N-long chain acylamino acid or a salt thereof, characterized by being subjected to a step of pulverizing an acid or a salt thereof;
(10) メッシュ板のメッシュ孔径がフィ一ド粉体の累積 90 %粒子径の 0. 2 5〜 2倍である、 上記 (9) 記載の方法、 (11) 回転翼とメッシュ板とのクリアランスが 0. 01〜5mmである、 上記 (9) 又は (10) 記載の方法、 (10) The method according to (9) above, wherein the mesh hole diameter of the mesh plate is 0.25 to 2 times the cumulative 90% particle diameter of the feed powder, (11) The method according to (9) or (10) above, wherein the clearance between the rotor blades and the mesh plate is 0.01 to 5 mm,
(12) 粉碎前の N—長鎖ァシルアミノ酸またはその塩が、 力 ^密度 0. 4 g/ c m3以上、 粒子径 0. 106 mm以下の粒子の含有量が 10。/。未満の粉体であ る、 上記 (9) 〜 (: L 1) のいずれ力一つに記載の方法、 (12) N-long chain acyl amino acid or a salt thereof before flour has a content of particles having a force density of 0.4 g / cm 3 or more and a particle size of 0.1 106 mm or less. /. The method according to any one of the above (9) to (: L 1), which is a powder of less than
(13) ロールミル、 または、 回転翼と該回転翼の側周に配置されたメッシュ板 間の隙間に供給される材料をメッシュ板のメッシュ孔から排出する粉石權構を備 えた設備で粉砕して得られた N—長鎖ァシルァミノ酸またはその塩の粉体を流動 凝立してその粒子径を増大させる工程をさらに有する、 上記 (1) 〜 (12) の いずれか一つに記載の方法、  (13) The material is supplied to a gap between the rotary blade and the mesh plate arranged on the side circumference of the rotary blade, and is pulverized by a facility equipped with a powder stone mechanism that discharges the mesh plate from the mesh hole. The method according to any one of the above (1) to (12), further comprising a step of fluidizing and coagulating the powder of N-long chain acylamino acid or a salt thereof obtained to increase the particle size ,
(14) 粒子径 0. 106 mm以下の粒子の含有量が 10 %未満で、 粒子径 0. 355 mm以上の粒子を含有せず、 かさ密度が 0. 4 g^c m3以上の粉体であ ることを特徴とする、 粉体状 N—長鎖ァシルァミノ酸またはその塩、 (14) at a content of the particle diameter 0. 106 mm or less of the particles is less than 10%, does not contain particle diameter 0. 355 mm or more particles in a bulk density of 0. 4 g ^ cm 3 or more powder Powdered N-long chain acylamino acid or a salt thereof, characterized in that
(15) 上記 (14) 記載の粉体状 N—長鎖ァシルァミノ酸またはその塩を含有 することを特徴とする洗顔パウダー、 及び  (15) A face-washing powder comprising the powdery N-long chain acylamino acid or salt thereof according to (14) above, and
(16) 上記 (4) 又は (7) 記載の方法により製造された粉体状 N—長鎮ァシ ルァミノ酸またはその塩を含有することを特徴とする洗顔パウダー、 に関する。 本発明によれば、 N—長鎮ァシルアミノ酸またはその塩 (粉体) を、 そのかさ 密度、 含水率等の粉体物性を実質的に変動させることなく、 粉砕することができ る。 従って、 例えば、 高かさ密度でありながら、 粗大粒子を実質的に含まず、 粉 立ちの原因となる微小粒子径の粒子の含有量が可及的に少なレヽ、 洗 ^の原料成 分として好適な粉体状の N—長鎖ァシルアミノ酸またはその塩を連続的に製造す ることができる。  (16) The present invention relates to a face-washing powder characterized by containing a powdery N-long-chain acylamino acid or a salt thereof produced by the method described in (4) or (7) above. According to the present invention, N-long amino acid or a salt thereof (powder) can be pulverized without substantially changing powder physical properties such as bulk density and moisture content. Therefore, for example, it is suitable as a raw material component of a lath and washing powder that has a high bulk density but does not substantially contain coarse particles and has a very small content of fine particles that cause dusting. A powdery N-long chain acyl amino acid or a salt thereof can be produced continuously.
また、 本発明によれば、 手洗い時のザラザラ感がなく、 つ、 粉立ちが生じ難 い洗顔パウダーを与え得る、 粉体状の N—長鎖ァシルアミノ酸またはその塩を得 ることができる。  In addition, according to the present invention, it is possible to obtain a powdered N-long chain acyl amino acid or a salt thereof that can give a facial cleansing powder that does not feel rough when hand-washed and does not easily cause powdering. .
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をより詳しく説明する。 本発明に用いられる N—長鎖ァシルァミノ酸は、 例えば、 脂肪酸ク口ライドを アミノ酸アルカリ溶液に加える等の公知の方法によって合成される。 なお、 N— 長鎖ァシルアミノ酸は、 単一の化合物であっても、 鎖長の異なるァシル基を有す る 2種以上の化合物の混合物であってもよい。 ァシル基としては、 例えば炭素数 6〜 1 8の飽和又は不飽和の直鎖状又は分岐鎖状の脂肪族ァシル基を用いること ができ、 例えば、 へキサノィル、 オタタノイノレ、 デカノィル、 ラウロイル、 ミリ ストイノレ、パノレミ トイノレ、ステアロイノレ、ォレオイル等のァシル基が挙げられる。 またヤシ油脂肪酸ァシル、 パーム核油脂肪酸ァシル、 硬化牛脂脂肪酸ァシル等の 混合ァシル基でもよい。 また、 N—長鎖ァシルアミノ酸を構成するアミノ酸の種 類も特に限定されないが、例えば、グルタミン酸、グルタミン、ァスパラギン酸、 ァスパラギン、 グリシン、 ァラニン等が挙げられ、 目的の N—長鎖アシノレアミノ 酸またはその塩の粉体の流動性やコストの点からは、 グルタミン酸、 グリシン、 ァラニンが好ましく、 グルタミン酸が特に好ましい。 なお、 N—長鎖ァシルアミ ノ酸を構成するアミノ酸としては、 光学活性体、 光学対掌体の任意の混合物、 又 はラセミ体などを用いてもよい。 Hereinafter, the present invention will be described in more detail. The N-long chain acylamino acid used in the present invention is synthesized by a known method such as adding a fatty acid quinolide to an amino acid alkali solution. The N-long chain acyl amino acid may be a single compound or a mixture of two or more compounds having an acyl group with different chain lengths. As the acyl group, for example, a saturated or unsaturated linear or branched aliphatic acyl group having 6 to 18 carbon atoms can be used. For example, hexanoyl, otanoinore, decanol, lauroyl, myristoylet, Examples include acyl groups such as panoremitoinole, stearoinole and oleoyl. It may also be a mixed acyl group such as coconut oil fatty acid acyl, palm kernel oil fatty acid acyl, and hardened beef tallow fatty acid acyl. The type of amino acid constituting the N-long chain acyl amino acid is not particularly limited, and examples thereof include glutamic acid, glutamine, aspartic acid, asparagine, glycine, and alanine, and the desired N-long chain amino acid or From the viewpoint of fluidity and cost of the powder of the salt, glutamic acid, glycine and alanine are preferable, and glutamic acid is particularly preferable. As the amino acid constituting the N-long chain acylamino acid, an optically active substance, an arbitrary mixture of enantiomers, or a racemate may be used.
N—長鎖ァシルアミノ酸の塩の種類も特に限定されず、 当業界で通常使用され る塩から適宜選択することが可能である。 例えば、 ナトリウム塩、 カリウム塩等 のアルカリ金属塩、 カルシウム塩、 マグネシウム塩等のアルカリ土類金属塩、 ァ ノレミニゥム塩、亜鉛塩などの金属塩、アンモニゥム塩、モノエタノールァミン塩、 ジエタノールアミン塩、 トリエタノールアミン塩等の有機アミン塩、 アルギニン 塩、 リジン塩等の塩基性アミノ酸の塩等が挙げられる。 塩の溶解度の観点から、 アル力リ金属塩またはアル力リ土類金属塩が好ましく、 アル力リ金属塩が特に好 ましい。  The type of the N-long chain acyl amino acid salt is not particularly limited, and can be appropriately selected from salts usually used in the art. For example, alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, metal salts such as ammonium salt and zinc salt, ammonium salt, monoethanolamine salt, diethanolamine salt, triethanolamine salt Examples include organic amine salts such as ethanolamine salts, salts of basic amino acids such as arginine salts and lysine salts. From the viewpoint of the solubility of the salt, an alkaline metal salt or an alkaline metal salt is preferred, and an alkaline metal salt is particularly preferred.
本発明において、粉砕に供する N—長鎖ァシルアミノ酸またはその塩としては、 1種または 2種以上の N—長鎖ァシルアミノ酸またはその塩を用いることができ る。  In the present invention, one or more N-long chain acyl amino acids or salts thereof can be used as the N-long chain acyl amino acids or salts thereof to be subjected to pulverization.
また、 本発明で使用する口ールミルは、 一対の回転する口ール間に供給された 粉体が圧縮、 せん断作用を受けてすりつぶされる構造を持つものであればよく、 また、 粉砕すべき N—長鎖ァシルアミノ酸またはその塩の供給方法 (フィード方 法)は、一対の回転するロール間へ一定速度で投入する方法でも、可変投入でも、 断続投入でもよい。 ただし、 供給速度が変わることはロール間を通過する粉体の 密度変化につながり、密度が高いときはその分、粉体と粉体の接触頻度が上がり、 力 粉体にかかる圧力も高くなることから、 粉 度が低い時に比べて、 粉砕が より進みやすく、 粉体の粒子径は小さくなる。 従って、 長時間同じ粒径分布の製 品を連続生産するという観点からは、 スクリユーフィーダ一等を使って定速供給 することが望ましい。 In addition, the kneading mill used in the present invention may be one having a structure in which the powder supplied between a pair of rotating knurling is ground by being compressed and sheared, and should be pulverized. N—Method for supplying long-chain acyl amino acids or their salts Method) may be a method of feeding at a constant speed between a pair of rotating rolls, variable feeding, or intermittent feeding. However, the change in the supply speed leads to a change in the density of the powder passing between the rolls. When the density is high, the contact frequency between the powder and the powder increases, and the pressure on the force powder also increases. Therefore, pulverization is easier to proceed and the particle size of the powder is smaller than when the fineness is low. Therefore, from the standpoint of continuously producing products with the same particle size distribution for a long time, it is desirable to supply them at a constant speed using a screw feeder or the like.
口ールミルへの Ν—長鎖ァシルァミノ酸またその塩の供給速度は口ール回転数 にもよるが、 通常 2 0 kg/hr/cra-口ール以下で供給するのが好ましい。 2 0 kg/hr ん m -ロールよりも速い供給速度の場合、粉砕機の過負荷による発熱が大きくなり、 N—長鎖ァシルアミノ酸またその塩の付着、 軟化の原因になる。 連続安定1$云の 観点から、 ロールミルへの N—長鎖アシノレアミノ酸またその塩の供給速度は、 1 5 kg/hr/cm-ロール以下が好ましく、 1 3 kg/hr/cm-ロール以下がより好ましい。た だし、該供給速度の下限は生産効率の観点から 1 kg/hr/cra-口ール以上が好まし 、c 本発明において、 ロールミルへ供給する (フィードする) N—長鎖ァシルアミ ノ酸またはその塩の粒子径は特に限定されない。これは、ロールのクリアランス、 ピッチ幅等の調整で種々の粒子径の粉体に対応できるためである。 一方、 粉体の 粒子形状は、 ァスぺクト比(長辺/短辺) < 1 0が望ましい。 ァスぺクト比(長辺 /短辺) が 1 0以上になると、 ロール間を通過する際の粒子の向き力 製品 (粉砕 後粉体) の粒子径に大きく影響することがあり、 好ましくない。 得られる製品の 粒子径の制御性や、 局所的な過負荷による発熱や付着の防止という観点から、 粉 体粒子のァスぺクト比(長辺/短辺)は 8以下がより好ましく、 5以下が特に好ま しい。 Although the feed rate of the long-chain acylamino acid or salt thereof to the kneading mill depends on the girdle rotation speed, it is usually preferred to feed at 20 kg / hr / cra-kall or less. When the feed rate is higher than that of 20 kg / hr m -roll, heat generation due to overloading of the pulverizer increases, causing adhesion and softening of N-long chain acyl amino acids and their salts. From the viewpoint of continuous stability of 1 $, the feeding rate of N-long chain amino acid or its salt to the roll mill is preferably 15 kg / hr / cm-roll or less, and 13 kg / hr / cm-roll or less. Is more preferable. However, the lower limit of the feed rate is preferably 1 kg / hr / cra-mol or more from the viewpoint of production efficiency. C In the present invention, the N-long chain acylamino acid or feed to the roll mill (feed) The particle diameter of the salt is not particularly limited. This is because powders with various particle sizes can be handled by adjusting the clearance and pitch width of the roll. On the other hand, the particle shape of the powder preferably has an aspect ratio (long side / short side) <10. If the aspect ratio (long side / short side) is 10 or more, the particle orientation force when passing between rolls may greatly affect the particle size of the product (pulverized powder). . From the viewpoint of controllability of the particle size of the resulting product and prevention of heat generation and adhesion due to local overload, the aspect ratio (long side / short side) of the powder particles is more preferably 8 or less. The following are particularly preferred:
上記の口ールのクリアランスとは口ール (一対の口ール) の一方と他方の口一 ル間の隙間幅のことであり、 ピッチ幅とは口ーノ 面が歯車状に凹凸を持つて ヽ る場合の、 山と山の間隔のことである。 また、 粉体粒子のァスぺクト比 (長辺/ 短辺) は、 粉体 2 m gを計りとり、 顕微鏡観察にて該粉体 2 gを構成する個々粒 子のァスぺクト比を実測し、 それらの平均値を計算した平均値である。 本発明において、 ロールミルへフィードする N—長鎖ァシルアミノ酸またはそ の塩 (粉砕前粉体) の含水率は特に限定されないが、 粉体の粘性増加を防止する という観点から 1 0 %以下が好ましく、 特に好ましくは 8 . 5 %以下である。 含 水率が 1 0 %を超えると、 粘土質の粉体になったり、 ロール付着が増すことが起 りやすくなり、 また、 得られる製品も板状になってザラザラ感が残り易い傾向と なる。 The clearance of the above-mentioned mouth is the gap width between one mouth and the other mouth, and the pitch width is the unevenness of the mouth-nose surface in a gear shape. This is the distance between mountains when they are held. The aspect ratio (long side / short side) of the powder particles is 2 mg of the powder, and the aspect ratio of the individual particles constituting the powder 2 g is determined by microscopic observation. It is an average value obtained by actually measuring and calculating the average value. In the present invention, the water content of the N-long chain acyl amino acid or salt thereof (powder before pulverization) fed to the roll mill is not particularly limited, but is 10% or less from the viewpoint of preventing increase in the viscosity of the powder. It is preferably 8.5% or less. If the water content exceeds 10%, it becomes easy to become clayey powder or roll adhesion, and the resulting product tends to be plate-like and tends to remain rough. .
本発明で用いるロールミルの各段のロールには、 付着した粉体を搔き取る搔き 取り刃が付設されているのが好ましく、 また、 ロールと搔き取り刃の隙間幅 (離 間距離) は 0 . 0 0 0 1〜0 . 1 mmが好まし ヽ。 当該幅が 0 . l mmを超える と、 連続長時間 31$云により徐々にローノ 面に原料粉難が付着し、 この付着が 成長するとロール間のクリアランスが狭くなるため、得られる製品(粉砕後粉体) の粒子径の経時的変化が生じる場合があるため、 好ましくなレヽ。 また、 当該幅が 0 . 0 0 l mm未満であると刃がローノ 面に接触し、 刃が欠けて製品 (粉碎後 粉体) に混入する可能性があり、 好ましくない。 特に製品 (粉砕後粉体) の粒子 径の制御安定性という観点から、 当該幅は 0 . 0 0 5〜0 . 0 8 mmがより好ま しく、 0 . 0 0 8〜0 . 0 6 mmがさらに好ましい。  It is preferable that a roll at each stage of the roll mill used in the present invention is provided with a scraping blade for scraping off the adhering powder, and a gap width (separation distance) between the roll and the scraping blade. Is preferably 0.0 mm to 0.1 mm. When the width exceeds 0.1 mm, the raw material powder gradually adheres to the Rhono surface due to a continuous long time of 31 $, and when this adhesion grows, the clearance between the rolls becomes narrower. The particle size of the powder) may change over time, so that it is preferable. Further, if the width is less than 0.01 mm, the blade may come into contact with the Rhono surface, and the blade may be chipped and mixed into the product (powdered powder). In particular, from the viewpoint of controlling the particle diameter of the product (powdered powder), the width is more preferably 0.05 to 0.08 mm, and 0.08 to 0.06 mm. Further preferred.
本発明で用いるロールミルの口一ルの段数は特に限定されず、 1段でも複数段 でもよいが、 複数段であることが好ましい。 これは、 1段のロールのみで粉枠し ようとすると、 フィード粉体 (粉砕前粉体) の中に大きめの,体があった場合 や、 原料 (粉砕前粉体) の粒子径と製品 (粉砕後粉体) の粒子径 (目標値) の差 が大きい場合に、 ロールへの付着力激しくなり、 濃が過負荷をおこしゃすく、 また、 製品 (粉砕後粉体) 中に引き伸ばされた板状粒子が生成しやすくなる場合 があるためである。 製品 (粉碎後粉体) 中に板状粒子が大量に生成すると、 手洗 い時、 ザラザラ感が残るという問題を生じやすくなる。 また 1段のロールのみの 場合、 得られる製品 (粉碎後粉体) の粒径分布が広くなりやすく、 手洗い時のザ ラザラ感の原因になる粗大粒子や粉立ちの原因になる微小粒子を生じやすくなる。 したがって、 粗粉碎から微粉碎へと段階的に粉砕されるように、 ロールは直列に 2段以上設けるのが好ましく、 3段が特に好ましい。 ロールミルにおけるロールの表面は平滑面でも構わないが、 粒子径の制御性を より高める観点から歯車状の凹凸を有するのが好ましい。 表面が平滑面である場 合、 得られる製品が微細化された粉砕物のほかに圧密されて燐片状になつたもの が混入し易い傾向となる。 なお、 ロールミルが複数段のロールを有する場合、 複 数段のロールの各ロールを歯車状の凹凸を有するロールで構成するのが好ましい: ロールミルのロールがその表面に歯車状の凹凸を有するロールである場合、 口 ール表面の歯車のピッチ幅 (歯車の山と山の間隔) は原料 (粉砕前粉体) の累積 3 0 %粒子径以上、 累積 9 5 %粒子径以下の範囲内にすることが好ましい。 該ピ ツチ幅を原料 (粉碎前粉体) の累積 3 0 %粒子径未満にすると機器に過負荷がか 力 り、 発熱による付着が起りやすくなり、 また、 累積 9 5 %粒子径を超えると、 粉碎前後で粒子径があまり変わらず、 粉砕の効率面から好ましくない。 より安定 il云の観点から、 該ピッチ幅は原料 (粉碎前粉体) の累積 4 0 %粒子径以上、 累 積 9 5 %粒子径以下の範囲内が好ましく、 累積 5 0 %粒子径以上、 累積 9 5 %粒 子径以下の範囲内が特に好ましい。 The number of stages in the roll mill used in the present invention is not particularly limited, and may be one stage or a plurality of stages, preferably a plurality of stages. This is because if there is a large body in the feed powder (powder before pulverization) or the raw material (powder before pulverization) particle size and product, When there is a large difference in the particle size (target value) of the (pulverized powder), the adhesion to the roll becomes intense, and the concentration causes overload, and it is stretched into the product (pulverized powder). This is because it may be easy to form a plate-like particle. When a large amount of plate-like particles are formed in the product (powder after powdering), it becomes easy to cause a problem that a rough feeling remains when washing hands. In addition, when only one roll is used, the particle size distribution of the resulting product (powdered powder) tends to be wide, resulting in coarse particles that cause a rough feeling when washing hands and fine particles that cause dusting. It becomes easy. Therefore, it is preferable to provide two or more rolls in series so that the coarse powder is pulverized in stages, and three stages are particularly preferable. The surface of the roll in the roll mill may be a smooth surface, but preferably has gear-like irregularities from the viewpoint of further improving the controllability of the particle diameter. When the surface is a smooth surface, the resulting product tends to be mixed with a finely pulverized product, which is compacted and formed into flakes. When the roll mill has a plurality of rolls, it is preferable that each roll of the plurality of rolls is constituted by a roll having gear-like irregularities: the roll mill roll is a roll having gear-like irregularities on the surface thereof. In some cases, the pitch width of the gear on the tool surface (gap between the crests of the gear) should be within the range of 30% or more and 95% or less of the particle size of the raw material (powder before pulverization). It is preferable. If the pitch width is less than the cumulative 30% particle diameter of the raw material (powder before powder), the equipment will be overloaded, and adhesion due to heat generation will easily occur, and if the cumulative particle diameter exceeds 95%, The particle size does not change much before and after the powder kneading, which is not preferable from the viewpoint of grinding efficiency. From the viewpoint of more stable il, the pitch width is preferably within the range of 40% or more cumulative particle diameter of raw material (powder before powder), 95% or less of cumulative particle diameter, and more than 50% cumulative particle diameter. A value within the range of 95% cumulative particle size or less is particularly preferable.
さらに、 該ピッチ幅は製品 (粉砕後粉体) の所望とする最大粒子径の 0 . 7倍 以上、 1 . 3倍以下の範囲内に設定するのが好ましい。 こうすることで、 ロール 表面の歯車状の凹凸のピッチ幅で、 製品 (粉砕後粉体) の最大粒子径を大凡所望 する値に合わせこみ、 クリアランスによって最大粒子径の微調整および粒径分布 が調整される。 該ピッチ幅が 0 . 7倍未満であったり、 1 . 3倍を超える場合に はクリアランスによる微調整が困難になるため、 好ましくない。  Further, the pitch width is preferably set in the range of 0.7 times or more and 1.3 times or less of the desired maximum particle size of the product (pulverized powder). In this way, the maximum particle size of the product (powdered powder) is roughly adjusted to the desired value with the pitch width of the gear-like irregularities on the roll surface, and fine adjustment of the maximum particle size and particle size distribution are achieved by clearance. Adjusted. If the pitch width is less than 0.7 times or exceeds 1.3 times, fine adjustment by clearance becomes difficult, which is not preferable.
所望の粉体物性の製品をより安定に連続的に製造するという観点から、 ロール 表面が歯車状の凹凸を有するロールを2段使用して原料 (粉枠前粉体) を段階的 に粉碎するのが好ましく、 その場合、 1段目口ールの口ール表面の歯車状の凹凸 のピッチ幅は原料 (粉碎前粉体) の累積 3 0 %粒子径以上、 累積 9 5 %粒子径以 下の範囲内とし、 2段目口ールの口一ノ 面の歯車状の凹凸のピッチ幅を製品 (粉 砕後粉体) の所望最大粒子径 (目標値) の 0 . 7倍以上、 1 . 3倍以下の範囲内 に設定するのが好ましい。 より好適には、 1段目口ールの口ール表面の歯車状の 凹凸のピッチ幅は原料 (粉砕前粉体) の累積 4 0 %粒子径以上、 累積 9 5 %粒子 径以下、 さらには累積 5 0 %粒子径以上、 累積 9 5 %粒子径以下の範囲内とする のがよい。 From the viewpoint of more stable and continuous production of products with desired powder properties, the raw material (powder before powder frame) is pulverized stepwise by using two stages of rolls with gear-like irregularities on the roll surface. In this case, the pitch width of the gear-shaped irregularities on the surface of the first stage mouthpiece is 30% or more of the cumulative particle size of the raw material (powder before powdering) and 95% or less of the cumulative particle size. Within the lower range, the pitch width of the gear-shaped irregularities on the first surface of the second stage mouthpiece is 0.7 times or more the desired maximum particle size (target value) of the product (powdered powder), It is preferable to set within the range of 1.3 times or less. More preferably, the pitch width of the gear-like irregularities on the surface of the first stage mouthpiece is equal to or greater than the cumulative 40% particle diameter of the raw material (powder before pulverization) and the cumulative 95% particle It is preferable that the particle diameter is within the range of 50% or less of the particle diameter, and 95% or less of the particle diameter.
ローノレを 3段使用すると、 さらに安定した連続 »が可能となる。 この場合、 2段目ロールのピッチ幅を原料 (粉砕前粉体) の累積 2 0 %粒子径以上、 累積 8 5 %粒子径以下の範囲内に設定し、 3段目ロールのピッチ幅を製品(粉砕後粉体) の所望最大粒子径 (目標値) の 0 . 7倍以上、 1 . 3倍以下の範囲内とするのが よい。  Using three stages of Ronoré will enable more stable continuous operation. In this case, the pitch width of the second stage roll is set within the range of 20% or more of the raw material (pre-ground powder) cumulative particle diameter and 85% or less of the cumulative particle diameter, and the pitch width of the third stage roll is the product. It is preferable to be within the range of 0.7 times or more and 1.3 times or less of the desired maximum particle diameter (target value) of the (pulverized powder).
本宪明で使用するロールミルのロールのクリァランスは、特に限定されないが、 ロール表面が歯車状の凹凸面のロールを使用する場合、 通常、 ピッチ幅の 0 . 1 2倍以上、 ピッチ幅の 1倍以下の範囲内に設定される。 該クリアランスがピッチ 幅の 0 . 1 2倍未満であると、 製品 (粉砕後粉体) の粒子径への該クリアランス の影響が大きくなり、 製品に微小粒子が多く生成するようになり、 し力、も、 製品 は圧密されて板状の粒子になりやすくなり、 好ましくない。 一方、 該クリアラン スがピッチ幅の 1倍を超えると、 一対のロールでつぶされることなく、 粉碎され ずに通過してしまう粒子が多くなり好ましくない。 従って、 粒子径制御の観点か ら、 口ールのクリアランスは、 ピッチ幅の 0 . 1 5倍以上、 ピッチ幅の 1倍以下 がより好ましく、 0 . 1 8倍以上、 1倍以下が特に好ましい。  The clearance of the roll of the roll mill used in the present invention is not particularly limited. However, when using a roll with a roll-like uneven surface, it is usually at least 0.12 times the pitch width and 1 times the pitch width. It is set within the following range. If the clearance is less than 0.12 times the pitch width, the effect of the clearance on the particle diameter of the product (pulverized powder) becomes large, and a lot of fine particles are generated in the product. However, it is not preferable because the product tends to be consolidated into plate-like particles. On the other hand, when the clearance exceeds 1 times the pitch width, it is not preferable because a large number of particles pass without being crushed by a pair of rolls and being crushed. Therefore, from the viewpoint of particle size control, the clearance of the mouth is preferably 0.15 times or more of the pitch width and more than 1 time of the pitch width, particularly preferably 0.18 times or more and 1 time or less. .
ロール表面が平滑面である場合のロールのクリアランスは、製品(粉砕後粉体) の所望最大粒子径 (目標値) 以下にするのが好ましい。 また、 ロール表面が歯車 状の凹凸を有するロールを使用する場合と同様、 所望の粉体物性の製品をより安 定にかつ連続的に製造するという観点から、 2段以上のロールで段階的に粉砕す るのが好ましく、 この場合、 1段目口ールのクリアランスは原料 (粉砕前粉体) の累積 3 0 %粒子径以上、 累積 9 5 %粒子径以下の範囲内にし、 2段目口ールの クリアランスを製品 (粉砕後粉体) の所望最大粒子径 (目標値) に設定するのが 好ましい。より安定な連続¾を行うには、 1段目口ールのピッチ幅を累積 4 0 % 粒子径以上、 累積 9 5 %粒子径以下の範囲内にするのが好ましく、 累積 5 0 %粒 子径以上、 累積 9 5 %粒子径以下の範囲内にするのがより好ましい。 また、 更に 望ましくは口ールを 3段使レ、、 2段目のクリアランスは原料の累積 2 0 %粒子径 以上、 累積 8 5 %粒子径以下に設定し、 3段目のピッチ幅を製品 (粉砕後粉体) の所望最大粒子径 (目標値) に設定するのがさらに好ましい。 When the roll surface is a smooth surface, the roll clearance is preferably not more than the desired maximum particle size (target value) of the product (pulverized powder). In addition, as in the case of using a roll having a roll-like irregularities on the roll surface, from the viewpoint of more stably and continuously producing a product with desired powder physical properties, it is stepwise with two or more rolls. In this case, the clearance of the first stage mouth should be within the range of more than 30% particle diameter of the raw material (powder before pulverization) and less than 95% particle diameter. It is preferable to set the clearance of the mouthpiece to the desired maximum particle size (target value) of the product (powdered powder). In order to perform a more stable continuous operation, it is preferable that the pitch width of the first stage gate is within the range of 40% particle diameter or more and 95% particle diameter or less, and 50% particle accumulation. More preferably, the particle diameter is within the range of not less than the diameter and not more than the cumulative 95% particle diameter. Furthermore, it is more desirable to use three stages of the mouthpiece, and the clearance of the second stage is the cumulative 20% particle size of the raw material. As described above, it is more preferable to set the cumulative particle size to 85% or less and set the third step pitch width to the desired maximum particle size (target value) of the product (pulverized powder).
本発明において、 ロールミルのロールの回転数は、 特に限定されなが、 回転数 が大きレ、程フィ一ド流量を増やすことができるので、 粉砕処理速度が上がり効果 的である。 ただし、 一対のロールの回転数比 (高速回転ロール回転数/低速回転 ロール回転数) は通常 1〜1 . 8の範囲に設定される。 しカゝし、 粉碎する粉体の 軟化性が強く、 付着性が強い場合、 一対のロールでつぶす圧縮作用を利用するだ けでは、 得られる製品 (粉碎後粉体) の粒子が引き伸ばされた燐片状になりやす く、 付着性の強い粉体に対しても燐片状粒子の生成が極力軽減されるように、一 対のロールの回奉 度を相違させてせん断作用が効果的に得られるようにするの が好ましく、 せん断作用をより効果的に利用するために、 該回転数比は 1 . 2以 上にするのが好ましい。ただし、一対のロールの回転数比が大きくなり過ぎると、 回転 βとしてのバランスが悪く不安定になるだけでなく、 圧縮作用よりもせん 断作用のほうが強く働きすぎ、得られる製品 (粉砕後粉体)の粒子径はピッチ幅、 タリァランスで決められる粒子径ょりも小さくなり、 粒子径制御力 S難しくなって しまう。 よって、 該回転数比は 1 . 8以下とする必要があり、 さらに、 発熱して 粉体が軟化し、 付着することを極力避けるという観点から、 1 . 6以下が好まし く、 1 . 5以下がより好ましい。  In the present invention, the number of rotations of the roll of the roll mill is not particularly limited, but since the feed flow rate can be increased as the number of rotations increases, the pulverization processing speed is increased, which is effective. However, the rotation speed ratio of the pair of rolls (high-speed rotation roll rotation speed / low-speed rotation roll rotation speed) is usually set in the range of 1 to 1.8. If the powder to be crushed and powdered has a strong softening property and adherence is strong, the particles of the resulting product (powdered powder) are stretched only by using the compression action of crushing with a pair of rolls. In order to reduce the formation of flake particles as much as possible even for powders that are prone to flakes and have strong adhesion, the shearing action is effectively reduced by varying the degree of rotation of the pair of rolls. It is preferable that the rotation speed ratio is 1.2 or more in order to make effective use of the shearing action. However, if the rotation speed ratio of a pair of rolls becomes too large, not only will the balance as rotation β become unstable and unstable, but also the cutting action will work more strongly than the compression action, and the resulting product (powdered powder) The particle diameter of the body is reduced by the pitch width and the tally balance, and the particle diameter control force S becomes difficult. Therefore, the rotational speed ratio needs to be 1.8 or less. Further, from the viewpoint of avoiding heat generation and softening of the powder to avoid adhesion as much as possible, 1.6 or less is preferable. The following is more preferable.
本宪明方法により、 Ν—長鎖ァシルァミノ酸またはその塩の洗顔パゥダー用の 粉体を製造する場合、 表面が歯車状の凹凸を有するロールを使用し、 最終段の口 ールのピッチ幅を 0 . 3 5 mm以下にするのが好ましい。 最終段のロールのピッ チ幅が 0 . 3 5 mmを超えると、 得られる製品 (粉砕後粉体) は粒子径が総じて 大きくなり、 ザラザラ感を生じやすくなる。 また、 製品 (粉碎後粉体) は手洗い 感の観点から粒子径が 0 . 3 3 mmを超える粒子を含まないことがより好ましく、 粒子径が 0 . 3 O mmを超える粒子を含まないことが特に好ましい。 従って、 最 終段のロールのピッチ幅は 0 . 3 3 mm以下であるのがより好ましく、 0 . 3 0 mm以下であるのが特に好ましい。 なお、 最終段のロールのピッチ幅が小さ過ぎ ると、 得られる製品 (粉碎後粉体) は粒子径が総じて小さくなり、 粉立ちの原因 となるため、 好ましくない。 従って、 最終段のロールのピッチ幅は 0 . 1 0 6 m m以上が好ましく、 0 . 1 5 0 mm以上がより好ましい。 なお、 ここでいう最終 段の口ールとは、 1段の口ールからなる口ールミルの場合の該 1段の口一ルも含 む概念で使用している。 When producing powder for facial cleansing powders of long-chain acylamino acids or their salts by this method, use a roll with irregularities with gear-like surfaces, and increase the pitch width of the final stage tool. It is preferable to be 0.35 mm or less. If the pitch width of the final roll exceeds 0.35 mm, the resulting product (powdered powder) will generally have a large particle size and will tend to feel rough. In addition, from the viewpoint of hand washing feeling, the product (powdered powder) preferably does not contain particles with a particle size exceeding 0.33 mm, and does not contain particles with a particle size exceeding 0.3 O mm. Particularly preferred. Accordingly, the pitch width of the final roll is more preferably 0.33 mm or less, and particularly preferably 0.30 mm or less. If the pitch width of the roll in the final stage is too small, the resulting product (powdered powder) will have a small particle size as a whole and cause powdering. Therefore, the pitch width of the final roll is 0.16 m. m or more is preferable, and 0.150 mm or more is more preferable. Note that the term “staged mouthpiece” as used herein refers to the concept including the first stage mouthpiece in the case of a mouth mill consisting of one stage mouthpiece.
同様の観点から、 表面が平滑面のロールを使用する場合も、 最終段のロールの クリアランスの上限は 0 . 3 5 mm以下が好ましく、 0. 3 3 mm以下が更に好 ましく、 0 . 3 O mm以下が特に好ましく、 下限は 0 . 1 0 6 mm以上が好まし く、 0 . 1 5 O mm以上がより好ましい。  From the same viewpoint, even when a roll having a smooth surface is used, the upper limit of the clearance of the final roll is preferably 0.35 mm or less, more preferably 0.33 mm or less, and 0.3 O mm or less is particularly preferable, and the lower limit is preferably 0.16 mm or more, more preferably 0.15 O mm or more.
本宪明で使用する口ーノレミノレは、 相対する一対の口一ノレの回転によって N—長 鎖ァシルアミノ酸またはその塩を直接、 圧縮、 せん断し得る機構を備えた設備で あれば、特に限定されず、自体公知の設備を使用できるが、好ましい例としては、 ロールダラ二ユレ一ター(日本グラニュレーター社製)、 多段式ロールミル (三洋 貿易社、 C PM¾fc$¾、 ロールクラッシャー (ダノレトンネ: fc$¾ 等が挙げられる。 本発明では、 口ールミルでなく、 回転翼とその側周に配置されたメッシュ板間 の隙間に供給される材料をメッシュ板のメッシュ孔から排出する粉 ί權構を備え た設備(すなわち、コーミル(クアドロネ環、商品名)型の粉碎設備) を用いて、 目的の粉体状 Ν—長鎖ァシルァミノ酸またはその塩を連続的に製造することもで きる。 この場合、 当該設備におけるメッシュ板のメッシュ孔径は、 Ν—長鎖ァシ ルァミノまたはその酸塩の粉碎原料 (粉砕前粉体) の累積 9 0 %粒子径に対して 0 . 2 5倍以上、 2倍以下の範囲内に設定するのが好ましい。 該メッシュ孔径が 0 . 2 5倍未満であると、粉石權が過負荷になり、メッシュが閉塞しやすくなり、 好ましくない。 また 2倍を超えると、 粉碎されずに通過する粒子が増え、 粉碎効 率の面から好ましくない。 実生産において、 より効率的に、 また、 より長時間安 全に連続趣云をするという観点からは、 当該メッシュ孔径は粉砕原料 (粉碎前粉 体) の累積 9 0 %粒子径の 0 . 3 0倍以上、 1 . 8倍以下の範囲内がより好まし く、 0 . 3 5倍以上、' 1 . 6倍以下の範囲内が特に好ましい。  The mouth-no-minole used in this paper is not particularly limited as long as it is a facility equipped with a mechanism capable of directly compressing and shearing an N-long chain acyl amino acid or its salt by the rotation of a pair of opposite mouth-to-mouth. Although known equipment can be used, preferred examples include a roll durailleur (manufactured by Nippon Granulator Co., Ltd.), a multistage roll mill (Sanyo Trading Co., Ltd., C PM¾fc $ ¾, roll crusher (Danoretonne: fc $ ¾ In the present invention, there is provided a powder storage mechanism for discharging the material supplied to the gap between the rotor blade and the mesh plate arranged on the side periphery thereof, not the mouth mill, from the mesh hole of the mesh plate. The desired powdery 連 続 -long-chain acylamino acid or its salt can be continuously produced using the equipment (ie, comil (quadrone ring, trade name) type powder mash equipment). In this case, the mesh hole diameter of the mesh plate in the equipment is 0.25 times the cumulative 90% particle diameter of the long-chain acylamino or its acid salt powder raw material (pre-ground powder). As described above, it is preferably set within a range of 2 times or less, and if the mesh pore diameter is less than 0.25 times, it is not preferable because the powder stone hoe is overloaded and the mesh is easily clogged. If the number exceeds twice, the number of particles passing through without being dusted increases, which is not preferable from the viewpoint of dusting efficiency, from the viewpoint of more efficient and safer continuous use in actual production. The mesh pore size is more preferably within the range of 0.3 to 1.5 times the cumulative 90% particle size of the pulverized raw material (pre-powder powder), 0.3 to 5 times, A range of 1.6 times or less is particularly preferable.
また、 回転翼とその側周に配置されたメッシュ板間の隙間 (整粒領域) におけ る、 回転翼とメッシュ板間のクリアランス (隙間幅) は 0 . 0 1 mm以上、 5 m m以下の範囲内が好ましい。 0 . 0 l mm未満であると、粉砕原料(粉砕前粉体) がメッシュに練りこまれる状態となって、 その結果、 発熱によってメッシュ孔が 閉塞しやすくなり、 また、 得られる製品も混練された棒状になりやすレヽため好ま しくない。 また 5 mmを超えると、 粉碎原料 (粉砕前粉体) が粉砕されずにタリ ァランス部を循環しやすくなり粉碎処理能力が遅くなってしまうため好ましくな い。 実生産において、 より効率的に、 また、 より長時間安全に連続11云をすると いう観点からは該クリアランスは 0. 0 5 mm以上、 3 mm以下の範囲内がより 好ましく、 0 . 1 mm以上、 2 mm以下の範囲内が特に好ましい。 該設備におけ る粉石權構の形状は特に限定はされないが、 回転翼の側周に配置されたメッシュ 板が円柱状になっているタイプよりも、 逆円錐状になっている (すなわち、 粉体 供給側となる端部の径が大きく、 該端部と反対側の端部にかけて径が次第に小さ くなつている) タイプのほうが熱力 S発生しにくくてより好ましい。 このような機 器として、 QUADRO C0MIL (パゥレック社製) がある。 In addition, the clearance (gap width) between the rotor blades and the mesh plate in the gap between the rotor blades and the mesh plates arranged on the side (granulation region) is not less than 0.1 mm and not more than 5 mm. Within the range is preferable. If it is less than 0.0 l mm, the pulverized raw material (powder before pulverization) is kneaded into the mesh. It is not preferable because it tends to clog and the resulting product tends to become a kneaded rod. On the other hand, if it exceeds 5 mm, the powdered raw material (powder before pulverization) will not be pulverized and it will be easy to circulate through the talari- sion part. In actual production, the clearance is more preferably in the range of 0.05 mm or more and 3 mm or less, more preferably 0.1 mm or more from the viewpoint of more effective and safer continuous 11 hours. The range of 2 mm or less is particularly preferable. The shape of the powder stone structure in the equipment is not particularly limited, but it has an inverted conical shape compared to the type in which the mesh plate arranged on the side circumference of the rotor blade is cylindrical (that is, The diameter of the end on the powder supply side is large, and the diameter gradually decreases toward the end opposite to the end). As such a device, there is QUADRO C0MIL (manufactured by Paulek).
本発明では、 ロールミルまたはコーミル (クアドロネ;^、 商品名) 型の粉碎設 備を用いて、 N—長鎖ァシルアミノ酸またはその塩 (粉碎前粉体) を粉碎するこ とで、 かさ密度、 含水率等の粉体物性に実質的に影響を与えず (すなわち、 粉体 物性の変動を可及的に小さくしながら)、粉体の粒子径を小さくでき、?先 j、化 粧品等の原料として好ましい粉体物性を有する粉体状の N—ァシルアミノ酸また はその塩を連続的に大量生産できる。 粉砕に供する N—ァシルァミノ酸またはそ の塩 (粉砕前粉体) としては、 種々の製法 (乾燥法、 微立法) で得られた粉体を 使用できるが、 粉立ちの生じにくい粉体を製造する観点から、 かさ密度が 0 . 4 g Z c m3以上の粉体を使用するのが好ましい。 すなわち、 力さ密度が 0 . 4 g / c m3以上の粉体を使用することで、 粉立ちの原因となる粒子がより小さい粒 子径の粒子に限定される。 具体的にはかさ密度が 0 . 4 g Z c m3以上の粉体を 使用することで、それを粒子径が 0 . 1 0 6 mm以下の粒子の含有量が 1 0重量% 未満となるように粉砕することによって、 粉立ちが生じにくい粉体を得ることが できる。 より効果的に粉立ちを抑制するには、 粉砕前粉体のかさ密度は 0 . 4 5 c m3以上がより好ましく、 0 . 5 0 c m3以上が特に好ましい。 さらに 粉砕前粉体が粒子径が 0 . 1 0 6 mm以下の粒子の含有量が 1 0 %未満 (好適に は 9 . 0 °/0以下、 より好適には 8 . 0 %以下) の粉体であると、 粒子径が 0 . 1 0 6 mm以下の粒子の含有量が 1 0重量。/。未満の製品 (粉碎後粉体) が得られや すくなり、 好ましい。 なお、 該粉砕前粉体のかさ密度が大きすぎると、 粉碎して 得られる製品 (粉砕後粉体) の粒子硬度が高くなり、 手洗い時にザラザラ感を感 じやすくなる。 よって、 かさ密度の上限は 0. 80 g/ cm3以下が好ましく、 0. 70 gZ cm3以下がより好ましい。 In the present invention, by using a milling machine of a roll mill or combil (quadrone; ^, trade name) type, N-long chain acyl amino acid or a salt thereof (powder before powdering) is ground, Can the particle size of the powder be reduced without substantially affecting the powder physical properties such as moisture content (ie, while minimizing fluctuations in the powder physical properties)? (I) A powdery N-acylamino acid or salt thereof having powder properties preferable as a raw material for cosmetics and the like can be continuously mass-produced. As N-acylaminoic acid or its salt (powder before pulverization) used for pulverization, powders obtained by various production methods (drying method, fine pulverization method) can be used. From this viewpoint, it is preferable to use a powder having a bulk density of 0.4 g Z cm 3 or more. That is, by using a powder having a strength density of 0.4 g / cm 3 or more, the particles that cause powdering are limited to particles having a smaller particle diameter. Specifically, by using a powder having a bulk density of 0.4 g Z cm 3 or more, the content of particles having a particle size of 0.16 mm or less is less than 10% by weight. By crushing to a fine powder, it is possible to obtain a powder that is less prone to dusting. The more effectively suppress dusting, bulk density before milling powder 0. 4 5 cm 3 or more, more preferably, 0. 5 0 cm 3 or more is particularly preferable. Further, the powder before pulverization has a particle size of less than 0.16 mm and contains less than 10% (preferably 9.0 ° / 0 , more preferably 8.0%). In the case of a body, the content of particles having a particle diameter of 0.16 mm or less is 10 wt. /. Less than products (powdered powder) can be obtained It is preferable. If the bulk density of the powder before pulverization is too large, the particle hardness of the product obtained by pulverization (powder after pulverization) becomes high, and it becomes easy to feel a rough feeling during hand washing. Therefore, the upper limit of the bulk density is preferably 0.80 g / cm 3 or less, and more preferably 0.70 gZ cm 3 or less.
本発明方法によれば、 手洗い時のザラザラ感を感じることがなく、 力つ、 粉立 ちが生じにくい、 洗顔パウダー用の粉体状の N—ァシルァミノ酸またはその塩を 得ることができ、 し力も、 連続的に大量生産できる。 このような手洗い時のザラ ザラ感を感じることがなく、 つ、 粉立ちが生じにくい、 洗顔パウダー用の粉体 状の N—ァシノレアミノ酸またはその塩は、 粒子径が 0. 106 mm以下の粒子の 含有量が 10 %未満で、 粒子径が 0. 355 mm以上の粒子を含有せず、 力さ密 度が 0. 4 g/cm3以上の粉体として特定される。 According to the method of the present invention, it is possible to obtain a powdery N-acylamino acid or a salt thereof for facial cleansing powder that does not feel a rough feeling during hand washing, and that is hard to generate powder. Power can also be continuously mass-produced. Powdered N-amino acid or its salt for face-washing powder that does not feel such a rough feeling when washing hands and is less prone to dusting, has a particle size of 0.16 mm or less. It is specified as a powder with a content of less than 10%, no particles with a particle size of 0.355 mm or more, and a strength density of 0.4 g / cm 3 or more.
また、 該粉体は粒子径が 0. 106 mm以下の粒子の含有量が 9. 0。/。以下、 さらに 8. 0%以下である場合、 粉立ちがより起り難いものとなり、 好ましい。 なお、 該粉体のかさ密度が大きく成り過ぎると、 粒子硬度が高くなりやすく、 ザ ラザラ感を感じやすくなる。 従って、 該粉体のかさ密度の上限は 0. 80gZc m3以下が好ましく、 0. 70 g/cm3以下がより好ましい。 The powder has a particle content of 9.06 mm or less and a content of 9.0. /. In the following, when the content is 8.0% or less, it is more preferable that powdering is less likely to occur. Note that if the bulk density of the powder becomes too large, the particle hardness tends to be high, and a rough feeling tends to be felt. Therefore, the upper limit of the bulk density of the powder is preferably 0.80 gZcm 3 or less, and more preferably 0.70 g / cm 3 or less.
本発明方法では、 N—長鎖ァシルァミノ酸またはその塩の粉体を粉砕すること で、 該粉体のかさ密度、 含水率等の粉体物性に実質的に影響を与えずに、 その粒 子径を小さくでき、 洗浄剤、 ィ匕粧品等の原料成分に好ましい粉体物性を有する粉 体状の N—ァシルァミノ酸またはその塩を連続的に大量生産できるが、 このよう にして粒子径を減少させた粉体を流動 立してその粒子径を所望の範囲まで増大 させることもできる。例えば、洗顔フォームにおける界面活性剤は平均粒子径(累 積 50%粒子径) 力 SO. 500mm以上であるのが望ましいが、 洗顔フォーム用 の粉体状の N—長鎖ァシルアミノ酸またはその塩を製造する場合、 粉碎後粉体を 流動造粒法で平均粒子径 (累積 50 %粒子径) を 0. 500 mm以上に容易に増 犬させることができる。  In the method of the present invention, the powder of N-long chain acylamino acid or a salt thereof is pulverized so that the particle properties of the powder, such as bulk density and moisture content, are not substantially affected. It is possible to reduce the particle size by reducing the particle size by continuously reducing the particle size and producing a large amount of powdered N-acylaminoic acid or its salt that has favorable powder properties for raw materials such as detergents and cosmetics. It is also possible to increase the particle diameter to a desired range by fluidizing the powder. For example, it is desirable that the surfactant in the face-washing foam has an average particle size (cumulative 50% particle size) force SO. 500 mm or more. However, powdered N-long chain acyl amino acids or salts thereof for face-washing foams are preferred. When the powder is manufactured, it is possible to easily increase the average particle size (cumulative 50% particle size) to 0.500 mm or more by using the fluidized granulation method.
本発明において、 製品 (粉碎後粉体) の平均粒子径 (累積 50%粒子径) は製 品(粉砕後粉体)の具体的用途によっても異なるが、洗顔パウダー用である場合、 0 . 1 0 6 mm以上、 0 . 3 5 5 mm未満の範囲内が好ましく、 より好ましくは 0 . 1 5 O mm以上、 0 . 3 5 5 mm未、満の範囲内である。 In the present invention, the average particle size (cumulative 50% particle size) of the product (powdered powder) varies depending on the specific use of the product (powdered powder). It is preferably within the range of 0.16 mm or more and less than 0.35 5 mm, more preferably 0.15 Omm or more, 0.35 5 mm, or less.
また、 N—ァシルアミノ酸またはその塩をロールミルまたはコーミル型の粉砕 設備を用いて粉碎後、 得られた粉体を流動造粒法等で流動させてその粒子径を増 大させて、 洗顔フォーム用の粉体を製造する場合、 雜後の平均粒子径 (累積 5 0 %粒子径) は 0. 5 0 0 mm以上が好ましく、 特に好ましくは 0 . 5 0 0 mm 以上、 5 . 0 0 O mm以下の範囲内であり、 かさ密度は 0 . 8 g / c m3以下が 望ましい。 In addition, after N-acylamino acid or a salt thereof is pulverized using a roll mill or Comil type pulverizing equipment, the obtained powder is fluidized by a fluid granulation method or the like to increase the particle size thereof, and the face washing foam In the case of producing a powder for use, the average particle size after accumulation (cumulative 50% particle size) is preferably 0.500 mm or more, particularly preferably 0.500 mm or more, 5.0 0 O It is desirable that the bulk density is 0.8 mm / cm 3 or less.
本発明において、 製品、 すなわち、 粉碎後粉体、 及び、 粉碎後粉体をさらに流 動 立法等で流動させてその粒子径を増大させた粉体は、 洗顔パウダー、 ボディ シャンプー、 粉石鹼、 固形石鹼、 洗顔フォーム等の洗 ^iJ、 化粧品等の原料とし て使用される。  In the present invention, the product, that is, the powder after pulverization, and the powder obtained by further flowing the powder after pulverization by a fluidized method or the like to increase the particle size thereof, are face wash powder, body shampoo, powder stone candy, Used as a raw material for washing stones, face-washing foams, etc. ^ iJ, cosmetics.
前述したように、 ロールミルまたはコーミル型の粉碎設備を用いて粉碎して、 粒子径が 0. 1 0 6 mm以下の粒子の含有量が 1 0 %未満で、 粒子径が 0 . 3 5 5 mm以上の粒子を含有せず、 力 ^密度が 0 . 4 g c m3以上の粉体に調製し た N—ァシルァミノ酸またはその塩においては、 粉砕手洗い時のザラザラ感を感 じることがなく、 かつ、 粉立ちが生じにくレ、洗顔パゥダーを達成し得るが、 その 際の洗顔パウダーの組成 (処方) は常法に従えばよく、 添加物を 1種又は 2種以 上配合することもでき、 そのような添加物も所望の性質に応じて公知の添加物を 適宜選択可能である。 As described above, powdered using a roll mill or combil type powder mill equipment, the content of particles with a particle size of 0.16 mm or less is less than 10%, and the particle size is 0.35 5 mm N-acylaminoic acid or its salt prepared in powders not containing the above particles and having a force density of 0.4 g cm 3 or more does not feel the rough feeling when pulverized by hand. In addition, it is difficult for powdering to occur and a face washing powder can be achieved, but the composition (formulation) of the face washing powder at that time may be in accordance with conventional methods, and one or more additives may be added. Such additives can also be appropriately selected from known additives according to the desired properties.
また、 前述したように、 ロールミルまたはコーミル型の粉碎設備を用いて粉砕 した後、 得られた粉体を流動 立法等で流動させてその粒子径を増大させて、 平 均粒子径 (累積 5 0 %粒子径) が 0. 5 0 0 mm以上、 5 . 0 0 0 mm以下で、 力さ密度が 0 . 8 g / c m3以下の粉体に調製した N—ァシルアミノ酸またはそ の塩においては、 洗顔フォーム用の原料成分として特に好適であるが、 その際の 洗顔フォームの組成 (処方) は常法に従えばよく、 添加物を 1種又は 2種以上配 合することもでき、 そのような添加物も所望の性質に応じて公知の添加物を適宜 選択可能である。 以下、 実施例、 比較例を示して本発明をさらに詳細に説明するが、 本発明は、 これらの実施例に限定されるものではない。 In addition, as described above, after pulverization using a roll mill or combil type powder mill equipment, the obtained powder is fluidized by fluidized legislation to increase the particle diameter, and the average particle diameter (cumulative 50 % particle diameter) 0. 5 0 0 mm or more, 5. 0 0 0 mm below the force of density in 0. 8 g / cm 3 or less of the powder was prepared N- Ashiruamino acid or its salt Is particularly suitable as a raw material component for a face-washing foam, but the composition (formulation) of the face-washing foam at that time may be in accordance with conventional methods, and one or more additives may be combined. Such additives can be appropriately selected from known additives according to the desired properties. EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further in detail, this invention is not limited to these Examples.
原料 1〜 7には 30 %の界面活性剤溶液を流動造粒乾燥法により乾燥させて得 られた粉体を使用した。  As raw materials 1 to 7, powder obtained by drying a 30% surfactant solution by fluidized granulation drying method was used.
なお、 原料並びに実施例及び比較例で得られた粉碎物 (製品) の粒径分布、 累 積粒子径、 及びかさ密度は下記の方法で測定、 計算した。  The particle size distribution, cumulative particle size, and bulk density of the raw materials and the powdered products (products) obtained in the examples and comparative examples were measured and calculated by the following methods.
また、 表 1に粉碎装置の設定条件を示し、 表 2に原料 (粉碎前粉体) のかさ密 度、 含水率、 連続 可能時間とその評価を示し、 表 3に原料 (粉砕前粉体) 及 ぴ製品 (粉碎後粉体) の粒子径分布を示し、 表 4に原料 (粉砕前粉体) の累積径 (20%径、 30%径、 40%径、 50%径、 85%径及び 95%径) を示し、 表 5に評価用サンプルの粒径分布を示し、 表 6に実施例 3、 6、 7の製品 (粉碎 後粉体) と評価用サンプルの物性評価を記載した。  Table 1 shows the setting conditions for the powder mill, Table 2 shows the bulk density, moisture content, continuous time and evaluation of the raw material (powder before powder), and Table 3 shows the raw material (powder before powder). Table 4 shows the particle size distribution of the spread product (powdered powder), and Table 4 shows the cumulative diameter of the raw material (powder before pulverization) (20%, 30%, 40%, 50%, 85% and Table 5 shows the particle size distribution of the evaluation sample. Table 6 shows the products of Examples 3, 6, and 7 (powdered powder) and the physical property evaluation of the evaluation sample.
(1) 粒子径分布 (1) Particle size distribution
測定には篩い分け法を用い、 Rctsch製の自動篩分機で振幅 2.0瞧で 15分間振 動させて分級した。受け皿、 0.106謹篩、 0.150ram篩、 0.212瞧篩、 0.300隨篩、 0. 355mm篩、 0.500隱篩、 0.710mm篩、 0.850隨篩、 1.000mm篩、 2.360mm篩を使用し た。それぞれの篩上の粉体の重さを XI、 X2, X3、 X4、 X5、 X6、 X7、 X8S X9S X10、 XI 1とした時に、 以下のように計算して累積グラフとして表記した。 The sieving method was used for the measurement, and classification was carried out by shaking with an automatic sieving machine made by Rctsch with an amplitude of 2.0 mm for 15 minutes. A saucer, 0.106 mm sieve, 0.150 ram sieve, 0.212 mm sieve, 0.300 mm sieve, 0.355 mm sieve, 0.500 mm sieve, 0.710 mm sieve, 0.850 mm sieve, 1.000 mm sieve, 2.360 mm sieve were used. When the weight of powder on each sieve XI, X2, X 3, X4 , X5, X 6, X7, X8 and the S X9 S X10, XI 1, expressed as a cumulative graph calculated as follows did.
0.106mm= X1/(∑X1~1 l)X100 [%] 0.106mm = X1 / (∑X1 ~ 1 l) X100 [%]
0.150mm= (X1+X2) /(∑X1~11) [%] 0.150mm = (X1 + X2) / (∑X1 ~ 11) [%]
0.212隱= (X1+X2+X3)/(∑X1〜 : L 1) [%] 0.212 隱 = (X1 + X2 + X3) / (∑X1 ~: L 1) [%]
(2) 累積粒子径 (2) Cumulative particle size
平均粒子径、 累積 5 %径、 及び累積 80 %径につ!/、ては上記粒径分布の累積グ ラフのプロット間を直線近似して求めている。 計算としては以下の例のようにな る。  Average particle size, cumulative 5% diameter, and cumulative 80% diameter! / Is obtained by linear approximation between the plots of the cumulative graph of the particle size distribution. The calculation is as shown in the following example.
計算例  Calculation example
(XI = 5、 X2= 15、 X3= 35、 X4= 25 s X5= 15、 X6= 5と仮定) 0. 106ram=5/ (5+15+35+25+15+5) X 100= 5 % (Assuming XI = 5, X2 = 15, X3 = 35, X4 = 25 s X5 = 15, X6 = 5) 0. 106ram = 5 / (5 + 15 + 35 + 25 + 15 + 5) X 100 = 5%
0. 150ram= (5+15) / (5+15+35+25+15+5) X 100= 2 0 %  0. 150ram = (5 + 15) / (5 + 15 + 35 + 25 + 15 + 5) X 100 = 2 0%
0. 212瞧 = (5+ 15+35) / (5+15+35+25+15+5) X 100= 5 5 %  0.212 瞧 = (5+ 15 + 35) / (5 + 15 + 35 + 25 + 15 + 5) X 100 = 5 5%
0. 300mm= (5 + 15 + 35+25) / (5+15+35+25+15+5) X 100= 8 0 %  0.300mm = (5 + 15 + 35 + 25) / (5 + 15 + 35 + 25 + 15 + 5) X 100 = 8 0%
0. 355rnm= (5+ 15+35+25+15) I (5+15+35+25+15+5) X 100= 9 5 %  0. 355rnm = (5+ 15 + 35 + 25 + 15) I (5 + 15 + 35 + 25 + 15 + 5) X 100 = 9 5%
0. 500mm= (5 + 15 + 35+25+15+5) / (5+15+35+25+15+5) X 100 = 1 0 0 % 累積 95%粒子径 =0. 355+ (0. 500-0. 355) / (100-95) X (95-95)  0. 500mm = (5 + 15 + 35 + 25 + 15 + 5) / (5 + 15 + 35 + 25 + 15 + 5) X 100 = 1 0 0% Cumulative 95% Particle size = 0. 355+ (0 500-0.355) / (100-95) X (95-95)
累積 70%粒子径 =0. 212+ (0. 300-0. 212) / (80-55) X (70-55)  Cumulative 70% particle size = 0.212+ (0. 300-0.212) / (80-55) X (70-55)
累積 50%粒子径 =0. 150+ (0. 212-0. 150) / (50-20) X (50-20)  Cumulative 50% particle size = 0. 150+ (0. 212-0. 150) / (50-20) X (50-20)
累積 40%粒子径 =0. 150+ (0. 212—0. 150) / (55- 20) X (30-20)  Cumulative 40% particle size = 0. 150+ (0. 212—0. 150) / (55-20) X (30-20)
累積 20%粒子径 =0. 150+ (0. 212-0. 150) / (55-20) X (20-20)  Cumulative 20% particle size = 0. 150+ (0. 212-0. 150) / (55-20) X (20-20)
( 3 ) かさ密度 (3) Bulk density
かさ密度は lOOccのかさ密度測定容器 (50. 3ramO X 50. 3H) を使用し、 粉体を 上方から均一に分散するように 30cm上方からフィード速度 50g/min程度でフィー ドし、 上面をすりきって、 重量を測定した (粗充填かさ密度)。 Use a lOOcc bulk density measuring container (5. 3ramO X 50. 3H) for bulk density, feed the powder from above 30 cm at a feed rate of about 50 g / min so that the powder is evenly distributed from above, and cover the top surface. Grind and measure the weight (rough filling bulk density).
( 4 ) 製品 (粉体) の物性評価 (4) Physical property evaluation of products (powder)
( 4—1 ) 手洗い感  (4-1) Hand washing feeling
手洗い感の評価は、評価サンプル 0. 2gを手のひらにとり、水道水 2. Ogを加え、 指で 20回混合した後の状態を目視により評価した。専門パネル 2名により、下記 の評価基準により観察を行 ヽ、 2名の評価点の平均値を算出した。 評価基準は、 1点以上 2点未満を X、 2点以上 3点未満を△、 3点以上 4点未満を〇、 4点を ◎とした。 結果を表 1から表 3に示す。  Evaluation of hand-washing feeling was evaluated visually by taking 0.2 g of an evaluation sample on the palm, adding 2. Og of tap water, and mixing 20 times with fingers. Observations were made by two expert panels based on the following evaluation criteria, and the average value of the two evaluation points was calculated. The evaluation criteria were 1 point or more and less than 2 points as X, 2 points or more and less than 3 points as △, 3 points or more and less than 4 points as ◯, and 4 points as ◎. The results are shown in Tables 1 to 3.
1点:大きな凝集物が残る  1 point: Large agglomerates remain
2点:やや溶け残る  2 points: Somewhat undissolved
3点:均一に溶解する  3 points: dissolves uniformly
4点:素早く溶解する (4-2) 粉立ち 4 points: dissolves quickly (4-2) Powder standing
粉立ちの評価としては 50gのサンプルを 50cmの高さから落とした時の状態を評 ίίπし 7こ。  For the evaluation of powder standing, evaluate the condition when a 50 g sample is dropped from a height of 50 cm.
専門ノ、。ネル 2名により、 下記の評価基準により官能評価により行い、 2名の評 価点の平均点により、 1点以上 2点未満を X、 2点以上 4点未満を△、 4点以上 を〇とした。  Expertise ,. By two members, sensory evaluation was performed according to the following evaluation criteria. According to the average score of the two people, 1 or more and less than 2 points were X, 2 or more and less than 4 points were △, 4 or more points were ◯ did.
1点 非常に粉立ちする  1 point
2点 やや粉立ちがする  2 points
3点 粉立ちする  3 points
占 ほとんど粉立ちしない  Fortune telling
5占 まったく粉立ちしない  5 fortune telling
(4-3) かさ密度評価 (4-3) Bulk density evaluation
輸送コストに関してはかさ密度の数値で直接評価した。以下が評価基準である。 0.3g/cc以下 X  The transportation cost was directly evaluated by the value of bulk density. The following are the evaluation criteria. 0.3g / cc or less X
0.3〜0.4g/cc Δ  0.3-0.4g / cc Δ
0.4~0.5g/cc 〇  0.4 ~ 0.5g / cc ○
0.5g/cc以上 ◎  0.5g / cc or more ◎
(5) 連鍵 性評価 (5) Joint key evaluation
各 βΐ 0分以上粉碎しても過負荷にならないで、 一定負荷になっている場合 を〇、 各機器過負荷でストップしなくても、 10分経過後も付着量が増加し、 負 荷が増している場合△、 10分以内に過負荷でストップしてしまった場合 Xとし た。  Even if each βΐ powdered for more than 0 minutes, no overload occurs, and when the load is constant, ○, even if it does not stop at each device overload, the adhesion amount increases after 10 minutes, and the load is reduced. △ if it has increased, X if it has stopped due to overload within 10 minutes.
<実施例 1 > <Example 1>
Ν—ラウロイノレ一L—グノレタミン酸ナトリゥムのァスぺクト比(長辺/短辺)が 2以下の粉体 (原料 1) を、 1段の歯車状 (ロール表面が歯車形状) のロールミ ル(日本ダラ二ユレ一ター製) で粉砕した (製造すべき粉体の最大粒子径 (目標 値) : 0. 5mm)。 Ν—Lauroureno L-Gnoretamic acid aspect ratio (long side / short side) of 2 or less powder (raw material 1) is rolled into a single gear (roll surface is gear shape) (Maximum particle size of the powder to be manufactured (target value): 0.5 mm).
粉砕条件は以下の通り。  The grinding conditions are as follows.
粉体のフィード速度: 3. 2 kg/hr/cra-口ール  Powder feed rate: 3.2 kg / hr / cra-mall
ロール表面の歯車のピッチ幅: 0. 6匪  Pitch width of gear on roll surface: 0.6 :
ロールのクリアランス (一対のロールの離間距離): 0. 1 1醒  Roll clearance (Distance between a pair of rolls): 0.1 1 Awakening
ロール回転速度比: 1. 0  Roll rotation speed ratio: 1.0
ロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の離間距離) : 0, 05 mm ぐ実施例 2 >  Clearance between roll and scraper blade (distance between roll and scraper blade): 0, 05 mm Example 2>
口一ルのクリアランスを 0. 19mmに変更した以外は、実施例 1と同様にして、 N—ラウロイノレ一L—グノレタミン酸ナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (原料 1) を粉砕した (製造すべき粉体の最大粒子径 (目標値) : 0. 7隱リ。  A powder with an aspect ratio (long side / short side) of 2 or less of N-lauroinole-L-sodium gnoretamate as in Example 1 except that the clearance of the mouthpiece was changed to 0.19 mm. The body (raw material 1) was crushed (maximum particle size of powder to be manufactured (target value): 0.7 mm.
<実施例 3> ' <Example 3> '
N—ラウロイルー L—グルタミン酸ナトリゥムのァスぺクト比(長辺/短辺)が 2以下の粉体 (原料 1) を、 2段の歯車状 (ローノ 面が歯車形状) のローノレミ ルで粉砕した (製造すべき粉体の最大粒子径 (目標値) : 0. 35議)。  N-Lauroy L L-Natrium glutamate with a aspect ratio (long side / short side) of 2 or less (raw material 1) was pulverized with a two-stage gear-shaped (Rhino surface is gear-shaped) (Maximum particle size of powder to be manufactured (target value): 0.35 resolution).
粉砕条件は以下の通り。  The grinding conditions are as follows.
粉体のフィード速度: 3. 2kg/hr/ctn-ロール  Powder feed rate: 3.2kg / hr / ctn-roll
1段目口ールの口ール表面の歯車のピッチ幅: 0. 6 mm  The pitch width of the gear on the surface of the first stage mouthpiece: 0.6 mm
1段目口ールのクリアランス (一対の口ールの離間距離) : 0. 19 mm 1段目口ールの口一ノレ回 ¾i度比: 1. 0  First stage clearance (separate distance between a pair of openings): 0. 19 mm First stage opening ¾i degree ratio: 1.0
1段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0. 05mm  Clearance between roll of 1st-stage roll and scraper blade (separation distance between roll and scraper blade): 0.05 mm
2段目口ールの口ール表面の歯車のピッチ幅: 0. 3隨  The pitch width of the gear on the surface of the second stage mouthpiece: 0.3 mm
2段目口ールのクリアランス (一対の口ールの離間距離): 0. 23瞧 2段目ロールのロール回転速度比: 1. 0 2nd stage clearance (separate distance between a pair of openings): 0.23 瞧 Roll speed ratio of the second roll: 1.0
2段目ロールのロールと接き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0. 05mm く実施例 4 >  Clearance between the roll of the second-stage roll and the cutting blade (separation distance between the roll and the cutting blade): 0.05 mm Example 4>
N—ラウロイルー L—グルタミン酸ナトリゥムのァスぺクト比(長辺/短辺)が 2以下の粉体 (原料 1) を、 1段の歯車状 (ロール表面が歯車形状) のロールミ ルで粉碎した (製造すべき粉体の最大粒子径 (目標値) : 0· 5瞧 )0 N-Lauroyux L-Natrium glutamate having a aspect ratio (long side / short side) of 2 or less (raw material 1) was ground with a roll gear in a single gear shape (roll surface is gear shape) (Maximum particle size of the powder to be manufactured (target value): 0 · 5 瞧) 0
粉碎条件は以下の通り。  The powdering conditions are as follows.
粉体のフィード速度: 3. 2 kg/hr/cm-口ール  Powder feed rate: 3.2 kg / hr / cm-mouth
口ールの口一 面の歯車のピッチ幅: 0. 6 ram  The pitch width of the gear on one side of the mouth of the mouth: 0.6 ram
ロールのクリアランス (一対のロールの離間距離) : 0. 07ram  Roll clearance (separate distance between a pair of rolls): 0.07ram
ロール回転速度比: 1. 0  Roll rotation speed ratio: 1.0
ロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の離間距離): 0. 05mm ぐ実施例 5 >  Clearance between roll and scraper blade (distance between roll and scraper blade): 0.05 mm Example 5>
N—ヤシ油脂肪酸ァシルグリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (原料 2) を、 2段の歯車状 (ロー Λ¾面が歯車形状) のローノレミノレ で粉砕した (製造すべき粉体の最大粒子径 (目標値): 0. 85謹)。  A powder (raw material 2) with an aspect ratio (long side / short side) of N-coconut oil fatty acid acylglycine sodium of 2 or less, and a two-stage gear shape (low Λ¾ surface is a gear shape) (The maximum particle size of the powder to be manufactured (target value): 0.85 mm).
粉砕条件は以下の通り。  The grinding conditions are as follows.
粉体のフィード速度: 3. 2 kg/hr/cm-口ール  Powder feed rate: 3.2 kg / hr / cm-mouth
1段目口ールの口ール表面の歯車のピッチ幅: 0. 6 mm  The pitch width of the gear on the surface of the first stage mouthpiece: 0.6 mm
1段目口ールのクリアランス (一対の口ールの離間距離) : 0. 43mm 1段目ロール回転速度比: 1. 22  First stage clearance (separate distance between a pair of holes): 0.43mm First stage roll speed ratio: 1.22
1段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0. 05 mm  Clearance between roll of 1st-stage roll and scraper blade (separation distance between roll and scraper blade): 0.05 mm
2段目口ールの口ール表面の歯車のピッチ幅: 0. 6隱  The pitch width of the gear on the surface of the second stage mouthpiece: 0.6 mm
2段目口ールのクリアランス (一対の口ールの離間距離) : 0. 35匪 2段目ロール回転速度比: 1. 22 2nd stage clearance (separate distance between a pair of openings): 0.35 mm Second stage roll speed ratio: 1. 22
2段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0. 05mm ぐ実施例 6 >  Clearance between the roll of the second-stage roll and the scraper blade (the distance between the roll and the scraper blade): 0.05 mm Example 6>
N—ヤシ油脂肪酸ァシルグリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (実施例 5で得られた製品) を、 2段の歯車状 (ロール表面が歯車形 状) のロールミルで粉砕した (製造すべき粉体の最大粒子径(目標値): 0. 35 隱)。  Powder of N-coconut oil fatty acid acylglycine sodium having a aspect ratio (long side / short side) of 2 or less (the product obtained in Example 5) in a two-stage gear shape (roll surface) Was pulverized with a roll mill with a gear shape (maximum particle size of powder to be manufactured (target value): 0.35 mm).
粉碎条件は以下の通り。  The powdering conditions are as follows.
粉体のフィード速度: 1. 93 kg/hrん m-口ール  Powder feed rate: 1.93 kg / hr m-mouth
1段目口ールの口ール表面の歯車のピッチ幅: 0. 6隱  The pitch width of the gear on the surface of the first stage mouthpiece: 0.6 mm
1段目口ールのクリアランス (一対の口ールの離間距離) : 0. 27瞧  First stage clearance (separate distance between a pair of openings): 0.27.
1段目口ール回転速度比: 1. 22  First stage mouth rotation speed ratio: 1. 22
1段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0. 05mm  Clearance between roll of 1st-stage roll and scraper blade (separation distance between roll and scraper blade): 0.05 mm
2段目口ールの口一ノレ表面の歯車のピッチ幅: 0. 3瞧  The pitch width of the gear on the top surface of the second stage mouthpiece: 0.3 mm
2段目口ールのクリアランス (一対の口ールの離間距離): 0. 23mm 2nd stage clearance (the distance between the pair of openings): 0.23mm
2段目ロール回転速度比: 1. 22 Second stage roll speed ratio: 1. 22
2段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0. 05mm ぐ実施例 7 >  Clearance between the roll of the second stage roll and the scraper blade (the distance between the roll and the scraper blade): 0.05 mm Example 7>
N—ヤシ油脂肪酸ァシルグリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (実施例 5で得られた製品) を、 3段の歯車状 (ロール表面が齒車形 状) のロールミルで粉碎した (製造すべき粉体の最大粒子径(目標値) : 0. 35 mm)0 Powder of N-coconut oil fatty acid acylglycine sodium having a aspect ratio (long side / short side) of 2 or less (the product obtained in Example 5) in a three-stage gear shape (roll surface Was milled with a roll mill (the maximum particle diameter of the powder to be manufactured (target value): 0.35 mm) 0
粉碎条件は以下の通り。  The powdering conditions are as follows.
粉体のフィード速度: 1. 93 kg/hr/cm-口ール 1段目口ールの口ール表面の歯車のピッチ幅: 0. 6 mm Powder feed rate: 1. 93 kg / hr / cm-mall The pitch width of the gear on the surface of the first stage mouthpiece: 0.6 mm
1段目口ールのクリアランス (一対の口ールの離間距離) : 0 · 19隱  First stage clearance (separate distance between a pair of openings): 0 · 19 隱
1段目ロール回転速度比: 1. 22  First stage roll speed ratio: 1. 22
1段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離): 0. 05mm  Clearance between roll of 1st-stage roll and scraper blade (separation distance between roll and scraper blade): 0.05 mm
2段目口一ノレの口ール表面の歯車のピッチ幅: 0. 6隱  The pitch width of the gear on the surface of the mouth of the second stage mouthpiece: 0.6 mm
2段目口ールのクリアランス (一対の口ールの離間距離) : 0. 1 1mm 2nd stage clearance (separate distance between a pair of openings): 0.1 1 mm
2段目口ール回転速度比: 1. 22 Second stage mouth rotation speed ratio: 1. 22
2段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0. 05mm  Clearance between the roll of the second-stage roll and the scraper blade (the distance between the roll and the scraper blade): 0.05 mm
3段目口ールの口ール表面の歯車のピッチ幅: 0. 3■  The gear pitch on the surface of the third stage mouthpiece: 0.3
3段目口ールのクリアランス (一対の口ールの離間距離) : 0. 15 mm 3rd stage clearance (separate distance between a pair of openings): 0.15 mm
3段目ロール回転速度比: 1. 22 Third stage roll speed ratio: 1. 22
3段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0. 05 ram ぐ実施例 8 >  Clearance between the roll of the third-stage roll and the scraper blade (separation distance between the roll and the scraper blade): Example 05> 0.05 ram
N—ヤシ油脂肪酸ァシルグリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (原料 3) を、 2段の歯車状 (ローノ 面が歯車形状) のロースレミノレ で粉碎した (製造すべき粉体の最大粒子径 (目標値) : 1. 1隱)。  N—The powder (raw material 3) with a aspect ratio (long side / short side) of coconut oil fatty acid acylglycine sodium of 2 or less is used in a two-stage gear shape (Rhino surface is a gear shape). (The maximum particle size of the powder to be manufactured (target value): 1.1 kg).
粉碎条件は以下の通り。  The powdering conditions are as follows.
粉体のフィード速度: 4. 90 kg/hr/cra-口ール  Powder feed rate: 4. 90 kg / hr / cra-mall
1段目口一ノレの口一ノレ表面の歯車のピッチ幅: 1. 0隱  The pitch width of the gear on the surface of the first stage mouth and edge: 1.0 隱
1段目口ールのクリアランス (一対の口ールの離間距離) : 0 · 99瞧  1st stage clearance (separate distance between a pair of openings): 0 · 99 瞧
1段目ロール回転速度比: 1. 22  First stage roll speed ratio: 1. 22
1段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0. 05mm  Clearance between roll of 1st-stage roll and scraper blade (separation distance between roll and scraper blade): 0.05 mm
2段目口ールの口ール表面の歯車のピッチ幅: 1. 0 ram  Gear pitch on the surface of the second stage mouthpiece: 1.0 ram
2段目口ールのクリアランス (一対の口ールの離間距離) : 0. 51瞧 2段目ロール回転速度比: 1 . 2 2 2nd stage clearance (separate distance between a pair of openings): 0.51 瞧 Second stage roll speed ratio: 1.2 2
2段目ロールのロールと搔き取り刃間のクリアランス (ロールと搔き取り刃の 離間距離) : 0 . 0 5 mm ぐ実施例 9 >  Clearance between the roll of the second roll and the scraper blade (separation distance between roll and scraper blade): 0.05 mm Example 9>
N—ヤシ油脂肪酸ァシルグリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (原料 4 ) をコーミル((株)パゥレック製)で粉碎した。  A powder (raw material 4) having an aspect ratio (long side / short side) of N-coconut oil fatty acid acylglycine sodium of 2 or less was pulverized with Comil (manufactured by Parec Co., Ltd.).
粉砕条件は以下の通り。  The grinding conditions are as follows.
回転翼の回転数: 3 0 0 Orpm  Number of rotations of rotor blade: 3 0 0 Orpm
メッシュ板 (スクリーン) のメッシュ孔径: 0 . 6 mm  Mesh hole diameter of mesh plate (screen): 0.6 mm
回転翼とメッシュ板 (スクリーン) とのクリアランス 1隨  Clearance between rotor blades and mesh plate (screen) 1 隨
<比較例 1 > <Comparative Example 1>
N—ヤシ油月旨肪酸ァシルグリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (原料 5 ) を縦型の遠心ピンミル (稹野産業 (株)製) で粉碎した。 回転数 1 0 0 0 Orpraで等速 51$云したが、 軟化による付着が激しく 5分で粉体 通過部が閉塞して機器の自動過負荷防止によりストップした。 ぐ比較例 2 >  N-coconut oil moon succinic acid acylglycine sodium aspect ratio (long side / short side) of 2 or less powder (raw material 5) is a vertical centrifuge pin mill (Ogino Sangyo Co., Ltd.) Made). The rotation speed was 1 0 0 0 at Orpra, and the speed was 51 $. However, the adhesion due to softening was severe and the powder passage was blocked in 5 minutes and stopped due to automatic overload prevention of the equipment. Comparative Example 2>
N—ヤシ油脂肪酸ァシルグリシンナトリウムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (原料 5 ) を比較例 1同様に縦型の遠心ピンミルで粉砕した。  A powder (raw material 5) having an aspect ratio (long side / short side) of N-coconut oil fatty acid acylglycine sodium of 2 or less was pulverized by a vertical centrifugal pin mill as in Comparative Example 1.
回転数 7 0 0 Orpmで等速辦云したが、 軟化による付着が激しく 7分で粉体通 過部が閉塞して βの自動過負荷防止によりストップした。 <比較例 3 >  Although the speed was constant at 700 rpm, adhesion due to softening was severe and the powder passage was blocked in 7 minutes and stopped due to automatic overload prevention of β. <Comparative Example 3>
Ν—ヤシ油脂肪酸ァシルグリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体(原料 6 )を横型の遠心ピンミル (Retsch GmbH & Co.製)で粉砕した。 回転数 1 0 0 0 Orpmで等速¾したが軟化による付着が激しく 5分で粉体通 過部が閉塞して βの自動過負荷防止によりストップした。 ぐ比較例 4 > Ν—Powder (raw material 6) having a palm oil fatty acid oil acylglycine sodium aspect ratio (long side / short side) of 2 or less was pulverized with a horizontal centrifugal pin mill (manufactured by Retsch GmbH & Co.) . Although the rotation speed was 100 0 Orpm and the speed was constant, adhesion due to softening was severe, and in 5 minutes the powder passage was blocked and stopped by automatic overload prevention of β. Comparative Example 4>
N—ヤシ油脂肪酸ァシルダリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (原料 6 ) を横型の遠心スクリーンミル (Retsch GmbH & Co.製)で粉 砕した。  Powder of N-coconut oil fatty acid acidylaricine sodium having a aspect ratio (long side / short side) of 2 or less (raw material 6) in a horizontal centrifugal screen mill (manufactured by Retsch GmbH & Co.) Crushed.
メッシュ孔径が 0 . 5瞧のメッシュを用い、 1 0 0 0 Orpmで等速運転したが、 軟化による付着が激しく 3分で粉体通過部が閉塞して機器の自動過負荷防止によ りストップした。 <比較例 5 >  Using a mesh with a mesh hole diameter of 0.5 mm and operating at a constant speed of 100 rpm, the adhesion due to softening was severe, and the powder passage was blocked in 3 minutes to prevent automatic overload of the equipment. did. <Comparative Example 5>
N—ヤシ油脂肪酸ァシルグリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (原料 6 ) を、 比較例 4と同様に、 横型の遠心スクリーンミルで粉砕 した。  Powder of N-coconut oil fatty acid acylglycine sodium with a aspect ratio (long side / short side) of 2 or less (raw material 6) was pulverized in a horizontal centrifugal screen mill as in Comparative Example 4. did.
メッシュ孔径が 0. 2mmのメッシュを用い、 1 0 0 0 Orpmで等速運転したが、 軟化による付着が激しく 2分で粉体通過部が閉塞して βの自動過負荷防止によ りストップした。 ぐ比較例 6 >  Using a mesh with a mesh pore size of 0.2 mm, it was operated at a constant speed of 10:00 Orpm, but the adhesion due to softening was severe, and the powder passage was blocked in 2 minutes and stopped by preventing automatic overloading of β. . Comparative Example 6>
Ν—ヤシ油脂肪酸ァシルグリシンナトリゥムのァスぺクト比(長辺/短辺)が 2 以下の粉体 (原料 7 ) を、 比較例 4と同様に、 横型の遠心スクリーンミルで粉碎 した。  Ν—Powder (raw material 7) with the aspect ratio (long side / short side) of coconut oil fatty acid acylglycine sodium is 2 or less in the horizontal centrifuge screen mill as in Comparative Example 4. did.
メッシュ孔径が 0 . 2mmのメッシュを用レヽ、 1 0 0 0 Orptnで等速運転したが、 軟化による付着が激しく 4分で粉体通過部が閉塞して機器の自動過負荷防止によ りストップした。  A mesh with a mesh hole diameter of 0.2 mm was operated at a constant speed with 100 000 Orptn, but the adhesion due to softening was severe and the powder passage was blocked in 4 minutes to prevent automatic overload of the equipment. did.
(評価用サンプル 1 ) (Evaluation sample 1)
N—ヤシ油脂肪酸ァシルグリシンナトリウムの 3 0 %7溶液をスプレ^"ドライ ヤーにて噴霧乾燥し、 含水率 1 . 2%の粉体を得た。 (評価用サンプル 2) A 30% 7 solution of N-coconut oil fatty acid sodium acylglycine was spray-dried with a spray dryer to obtain a powder having a water content of 1.2%. (Evaluation sample 2)
N—ヤシ油脂肪酸ァシルグリシンナトリゥムの 30%水溶液をドラムドライヤ 一にて乾燥し、 含水率 0. 6%のフレーク状粉体を得た。  A 30% aqueous solution of N-coconut oil fatty acid acylglycine sodium was dried with a drum dryer to obtain a flaky powder having a water content of 0.6%.
(評価用サンプル 3) (Sample 3 for evaluation)
N—ラウロイルー L—グルタミン酸ナトリゥムの 30%水溶液をスプレードラ ィヤーにて噴霧乾燥し、 含水率 1. 0%の粉体を得た。  A 30% aqueous solution of N-laureuil L-sodium glutamate was spray-dried with a spray dryer to obtain a powder having a water content of 1.0%.
(評価用サンプル 4) (Evaluation sample 4)
実施例 7で得られた粉体を種材として使用し、 N—ヤシ油脂肪酸ァシルグリシ ンナトリウムの 30 %7j溶液を流動造粒乾燥機にて噴霧乾燥し、 粉体を得た。 な お、 該粉体が原料 3である。 The powder obtained in Example 7 was used as a seed material, and a 30% 7j solution of N-coconut oil fatty acid sodium acylglycine was spray-dried with a fluid granulator to obtain a powder. The powder is raw material 3.
表 1 黹車のピッチ幅 クリアランス フィ一に粉体 回転 累禾粒子径 速度比Table 1 Gear wheel pitch width Clearance Rotation of powder in the field Cumulative particle size Speed ratio
1段 2段 3段 1段 2段 3段 20% 30% 40% 50% 85% 95%1st 2nd 3rd 1st 2nd 3rd 20% 30% 40% 50% 85% 95%
[mmj [mm] [mm] [ram] [mm] [mm] [腿」 [nunj [應] [脆] Lmm] し腿」 [一] 実施例 1 0.6 0.11 0.359 0.402 0.447 0.491 0.744 0.805 1 [mmj [mm] [mm] [ram] [mm] [mm] [thigh] [nunj [o] [brittle] Lmm] thigh] [1] Example 1 0.6 0.11 0.359 0.402 0.447 0.491 0.744 0.805 1
― ―  ― ―
実施例 2 0.6 0.19 0.359 0.402 0.447 0.491 0.744 0.805 1 一 一 Example 2 0.6 0.19 0.359 0.402 0.447 0.491 0.744 0.805 1
実施例 3 0.6 0.3 0.19 0.23 0.359 0.402 0.447 0.491 0.744 0.805 1 実施例 4 0.6 0.07 0.359 0. 02 0.447 0.491 0.744 0.805 1 Example 3 0.6 0.3 0.19 0.23 0.359 0.402 0.447 0.491 0.744 0.805 1 Example 4 0.6 0.07 0.359 0. 02 0.447 0.491 0.744 0.805 1
 -
実施例 5 0.6 0.6 0.43 0.35 0.56 0.635 0.71 0.734 0.818 0.843 1.22 Example 5 0.6 0.6 0.43 0.35 0.56 0.635 0.71 0.734 0.818 0.843 1.22
― ―  ― ―
実施例 6 0.6 0.3 0.27 0.23 0.362 0.412 0.463 0.512 0.669 0.73 1.22 実施例 7 0.6 0.6 0.3 0.19 0.11 0.15 0.362 0.412 0.463 0.512 0.669 0.73 1.22 実施例 8 1.0 1.0 0.99 0.51 0.717 0.75 0.783 0.816 1.351 2.1 1.22 Example 6 0.6 0.3 0.27 0.23 0.362 0.412 0.463 0.512 0.669 0.73 1.22 Example 7 0.6 0.6 0.3 0.19 0.11 0.15 0.362 0.412 0.463 0.512 0.669 0.73 1.22 Example 8 1.0 1.0 0.99 0.51 0.717 0.75 0.783 0.816 1.351 2.1 1.22
表 2 Table 2
Figure imgf000027_0001
Figure imgf000027_0001
table
0.15 0.212 0.3 0.355 0.5 0.71 0.85 1 2.36 紫積 50¾0.15 0.212 0.3 0.355 0.5 0.71 0.85 1 2.36 Purple product 50¾
LmmJ [mm] Lmm] [mm] に瞧] Lmm] [mm] Lmm] Lmm] 径LmmJ [mm] Lmm] [mm] 瞧] Lmm] [mm] Lmm] Lmm] Diameter
[%] [ ] [%] [¾] [%] [%] [%] [%] [%3 [ ] [mm] 原料 1 一 ― ― 5.4 19.2 52.1 85.8 99.3 100 ― 0.49 原料 2 ― ― ― ― ― 12.1 40 98.1 100 ― 0.73 原料 3 ― ― ― ― ― 0 17.9 60.5 80.3 98.5 0.82 原料 4 6.5 17.1 25.1 48.1 65.2 84.1 98.1 100 ― ― 0.31 原料 5 ― ― ― 15.2 48.9 96.2 100 ― ― ― 0.36 ο [%] [] [%] [¾] [%] [%] [%] [%] [% 3 [] [mm] Raw material 1 ― ― 5.4 19.2 52.1 85.8 99.3 100 ― 0.49 Raw material 2 ― ― ― ― ― 12.1 40 98.1 100 ― 0.73 Raw material 3 ― ― ― ― ― 0 17.9 60.5 80.3 98.5 0.82 Raw material 4 6.5 17.1 25.1 48.1 65.2 84.1 98.1 100 ― ― 0.31 Raw material 5 ― ― ― 15.2 48.9 96.2 100 ― ― ― 0.36 ο
原料 6 〜  Raw material 6 ~
曰 ― ― ― 5.3 25.6 48.1 74.3 99.2 100 ― 0.52 原料 7 ― 12.3 48.3 89.2 98.9 100 ― ― ― ― 0.22 実施例 1 13.4 19.5 45.2 85.3 93.4 100 ― ― ― ― 0.22 実施例 2 5.5 8.6 16.8 42.2 70.7 99.9 100 ― ― ― 0.32 実施例 3 8 16.3 39.9 85.6 100 ― ― ― ― 一 0.23 実施例 4 20.3 33.3 61.6 90.9 94.3 100 ― ― ― ― 0.19 実施例 5 ― ― ― ― 18.6 47.4 94.2 99.9 100 ― 0.51 実施例 6 5.8 15.5 45.3 76.4 100 ― ― ― ― ― 0.23 実施例 7 7.5 28.1 46.3 70.5 100 ― ― ― ― ― 0.23 実施例 8 ― ― ― ― 5.7 15.3 58.2 95.4 99.1 100 0.67 実施例 9 4.7 13.9 30.5 48.9 61.3 99.5 100 ― ― ― 0.30 比較例 1 52.3 98.9 100 ― ― ― ― ― 一 ― 0.10 比較例 2 28.9 49.2 83.2 99.8 100 ― ― ― 一 ― 0.15 比較例 3 13.5 40.5 55.3 70.4 85.9 99.3 100 ― ― ― 0.19 比較例 4 50.1 99.3 100 ― ― ― ― 一 ― ― 0.11 比較例 5 85.2 93.1 100 ― ― ― ― ― ― ― 0.06 比較例 6 48.2 84.7 97.9 100 ― ― ― ― ― 一 0.11 曰 ― ― ― 5.3 25.6 48.1 74.3 99.2 100 ― 0.52 Raw material 7 ― 12.3 48.3 89.2 98.9 100 ― ― ― ― 0.22 Example 1 13.4 19.5 45.2 85.3 93.4 100 ― ― ― ― 0.22 Example 2 5.5 8.6 16.8 42.2 70.7 99.9 100 ― ― ― 0.32 Example 3 8 16.3 39.9 85.6 100 ― ― ― ― 1 0.23 Example 4 20.3 33.3 61.6 90.9 94.3 100 ― ― ― ― 0.19 Example 5 ― ― ― ― 18.6 47.4 94.2 99.9 100 ― 0.51 Example 6 5.8 15.5 45.3 76.4 100 ― ― ― ― ― 0.23 Example 7 7.5 28.1 46.3 70.5 100 ― ― ― ― ― 0.23 Example 8 ― ― ― ― 5.7 15.3 58.2 95.4 99.1 100 0.67 Example 9 4.7 13.9 30.5 48.9 61.3 99.5 100 ― ― ― 0.30 Comparative Example 1 52.3 98.9 100 ― ― ― ― ― One ― 0.10 Comparative Example 2 28.9 49.2 83.2 99.8 100 ― ― ― One ― 0.15 Comparative Example 3 13.5 40.5 55.3 70.4 85.9 99.3 100 ― ― ― 0.19 Comparative Example 4 50.1 99.3 100 ― ― ― ― One ― ― 0.11 Comparative example 5 85.2 93.1 100 ― ― ― ― ― ― ― 0.06 Comparative example 6 48.2 84.7 97.9 100 ― ― - - A 0.11
表 4 Table 4
Figure imgf000029_0001
表 5
Figure imgf000029_0001
Table 5
Figure imgf000029_0002
表 6 物質 手洗い評価 粉立ち 実施例 3 L ◎ O 実施例 6 G © 〇 実施例 7 G ◎ 〇 評価用サンプル 1 G ◎ X 評価用サンプル 2 G X Δ 評価用サンプル 3 L ◎ X 評価用サンプル 4 G X 〇 以上の結果から、 本発明の製法によれば、 k 化粧品等の原料成分として 好ましい粉体物性を有する界面活性剤を連続生産することが可能であることが分 力る。 また、 特に、 表 6力 ら、 実施例 3、 6、 7で得られた粉体状のラウロイル グルタミン酸ナトリゥム塩及ぴ N—ヤシ油脂肪酸ァシルダリシンナトリゥム塩は、 手洗い時のザラザラ感がなく、 カゝつ、 粉立ちが生じ難い、 洗顔パウダー用として 好適な粉体特性を有するものであることが分かる。
Figure imgf000029_0002
Table 6 Substance Hand-washing evaluation Powder standing Example 3 L ◎ O Example 6 G © 〇 Example 7 G ◎ 〇 Evaluation sample 1 G ◎ X Evaluation sample 2 GX Δ Evaluation sample 3 L ◎ X Evaluation sample 4 GX Yes From the above results, it can be seen that according to the production method of the present invention, it is possible to continuously produce a surfactant having preferable powder physical properties as a raw material component for cosmetics and the like. In particular, the powdery lauroyl glutamic acid sodium salt and the N-coconut oil fatty acid acylylricin sodium salt obtained in Examples 3, 6, and 7 have a rough feeling during hand washing. It can be seen that the powder has a powder characteristic that is suitable for a face-washing powder and is not prone to powdering.
上記実施例 3で製造した N—ラウロイノレ一 L一グルタミン酸ナトリウムを使用 し、 定法に従い下記処方例 1の洗顔パウダーを調製した。 処方例中の数値の単位 は重量部である。  Using the N-lauroinole L sodium monoglutamate produced in Example 3 above, a face washing powder of the following Formulation Example 1 was prepared according to a conventional method. The unit of numerical values in the formulation examples is parts by weight.
処方例 1 (洗顔パウダー) Formulation Example 1 (Face Washing Powder)
N—ラウロイルー Lーグノレタミン酸ナトリウム 1 8 . 0 N-Lauroy L-sodium gnoretamineate 18.0
N—ミリストイルー; L一グルタミン酸ナトリウム 1 2. 0 タノレク 1 0 . 0 マンニトール 2 0 . 0 コーンスターチ 3 9 . 8 メチルパラベン 0 . 2 合計 1 0 0 . 0 この洗顔パウダーを実際に使用したところ、 粉立ちしにくく、 また、 手洗い時 のザラザラ感がなく、 優れた使用感であった。 N-Myristoyl; L Monoglutamate 1 2.0 Tanorek 1 0.0 Mannitol 2 0.0 Corn Starch 3 9 8 Methylparaben 0.2 Total 1 0 0. 0 It was difficult to use, and there was no rough feeling when washing hands.
上記実施例 5で製造した N—ヤシ油脂肪酸ァシルグリシンナトリゥムを使用し、 定法に従い下記処方例 2の洗顔フォームを調製した。 処方例中の数値の単位は重 量部である。  Using the N-coconut oil fatty acid acylglycine sodium produced in Example 5 above, a facial cleansing foam of the following Formulation Example 2 was prepared according to a conventional method. The unit of numerical values in the prescription examples is the weight part.
処方例 2 (洗顔フォーム) Formulation Example 2 (Fashion Foam)
N—ヤシ油脂肪酸ァシルグリシンナトリウム 1 8 0 グリセリン 3 8 0 ヤシ油脂肪酸ァミドプロピルべタイン 1 2 ポリクオタユウムー 3 9 0 ラウリン酸 0 4 ミリスチン酸 0 ステアリン酸 0. 4 ジステアリン酸ダリコーノレ 1. 0 ベへ;^ノレ T レコ ^~ノレ 0. 3 クェン酸 0. 5 水 39. 1 合計 100. 0 この洗顔フォームを実際に製造したところ、 水及びポリオールへの溶解時に粉 立ちが少なく、 溶解性も良く作業性に優れ、 泡がみも少なく形態の良好な洗顔フ オームを得た。 さらに、 この洗顔フォームを使用したところ、 溶解性や泡立ちに 優れ、 使用感は良好であった。 N-coconut oil fatty acid sodium acylglycine 1 8 0 Glycerin 3 8 0 Coconut oil fatty acid amidpropyl betaine 1 2 Polyquaterumu 3 9 0 Lauric acid 0 4 Myristic acid 0 Stearic acid 0.4 Dariconole distearate 1. 0 Bee; ^ Nore T Reco ^ ~ Nore 0.3 Quenic acid 0.5 Water 39.1 Total 100.0 When this facial foam was actually produced, water and polyol A cleansing foam with a good shape with less dusting, good solubility and excellent workability, and no foaming. Furthermore, when this facial cleansing foam was used, it was excellent in solubility and foaming, and the usability was good.
産業上の利用の可能性  Industrial applicability
本発明によれば、 高かさ密度でありながら、 粗大粒子を実質的に含まず、 粉立 の原因となる微小粒子径の粒子の含有量も可及的に少ない、 洗^ ¾として好適な 粉体物性を有する粉体状の N—長鎖ァシルァミノ酸またはその塩を連続的に製造 することができ、 従来困難であった、 洗^^として好適な粉体物性を有する粉体 状の界面活性剤の工業レベルでの連続大量生産が可能になる。  According to the present invention, a powder suitable for washing, which has a high bulk density but does not substantially contain coarse particles, and has a small content of particles having a fine particle size that causes powdering. Powdered N-long chain acylamino acids or their salts with physical properties can be continuously produced, and powdery surface activity with suitable powder properties that has been difficult in the past Continuous mass production of chemicals at the industrial level becomes possible.
また、 本発明によれば、 手洗い時のザラザラ感がなく、 かつ、 粉立ちが生じ難 い洗顔パウダーを与え得る、 粉体状の N—長鎖ァシルァミノ酸またはその塩を提 供でさる。 本出願は日本で出願された特願 2004-216536を基礎としており、 そ の内容は本明細書に全て包含される。  In addition, according to the present invention, there is provided a powdery N-long chain acylamino acid or a salt thereof that can give a cleansing powder that does not feel rough when hand-washed and hardly causes powdering. This application is based on Japanese Patent Application No. 2004-216536 filed in Japan, the contents of which are incorporated in full herein.

Claims

請 求 の 範 囲 The scope of the claims
1. N—長鎖ァシルアミノ酸またはその塩をロールミルで粉砕する工程を経るこ とを特徴とする、 粉体状 N—長鎖ァシルァミノ酸またはその塩の製造方法。  1. A process for producing powdered N-long chain acylamino acid or a salt thereof, comprising a step of pulverizing N-long chain acyl amino acid or a salt thereof with a roll mill.
2. ロールミルが、 表面が歯車状のロールを 1段または複数段有し、 1段目ロー ルの歯車のピッチ幅が、 フィード粉体の累積 30 %粒子径以上、 累積 95 %粒子 径以下である、 請求の範囲第 1項記載の方法。  2. The roll mill has one or more rolls with a gear-like surface, and the pitch width of the gears in the first roll is at least 30% particle diameter and less than 95% particle diameter of the feed powder. The method of claim 1, wherein:
3. 1段の口ールまたは複数段の口一ルの各口ールにおける一方と他方の口ール 間のクリアランスが口ーノ 面の歯車のピッチ幅の 0. 12倍以上、 1倍以下で ある、 請求の範囲第 2項記載の方法。  3. Clearance between one and the other of each step of a single step or multiple steps is 0.12 times or more, 1 time the pitch width of the gear on the surface The method of claim 2, which is:
4. 最終段のロールのロール表面の歯車のピッチ幅が 0. 35 mm以下である、 請求の範囲第 2項又は第 3項記載の方法。 4. The method according to claim 2 or 3, wherein the pitch width of the gear on the roll surface of the final roll is 0.35 mm or less.
5. ロールミルカ、 表面が平滑なロールを 1段または複数段有し、 1段目ローノレ の一方と他方の口ール間のクリアランスがフィード粉体の累積 30 %粒子径以上、 累積 95%粒子径以下である、 請求の範囲第 1項記載の方法。  5. Roll miller, which has one or more rolls with smooth surfaces, and the clearance between one and the other of the first stage rolls is more than the cumulative 30% particle diameter of the feed powder, and the cumulative 95% particle diameter The method of claim 1, which is:
6. 1段のロールまたは複数段のロールの各ロールにおける一方と他方のロール の回転速度比が 1. 0〜; L. 8である、 請求の範囲第 2項〜第 5項のいずれか一 項記載の方法。 6. The rotation speed ratio of one roll and the other roll in each roll of a single roll or a multi-stage roll is 1.0 to L; The method described in the paragraph.
7. 最終段の口ールのクリアランスが 0. 35 mm以下である、 請求の範囲第 5 項又は第 6項記載の方法。  7. The method according to claim 5 or 6, wherein the clearance of the last stage mouthpiece is 0.35 mm or less.
8. 粉砕前の N—長鎖ァシルアミノ酸またはその塩力 S、 かさ密度 0. 4 g/cm 3以上で、粒子径 0. 106 mm以下の粒子の含有量が 10 %未満の粉体である、 請求の範囲第 1項〜第 7項のいずれ力一項記載の方法。 8. N-long chain acyl amino acid or its salt strength S before pulverization, a powder with a bulk density of 0.4 g / cm 3 or more and a particle size of 0.16 mm or less and less than 10% The method according to any one of claims 1 to 7, which is any one of claims 1 to 7.
9. 回転翼と該回転翼の側周に配置されたメッシュ板間の隙間に供給される材料 をメッシュ板のメッシュ孔から排出する粉砕機構を備えた設備を用いて N—長鎖 ァシルァミノ酸またはその塩を粉砕する工程を経ることを特徴とする、 粉体状 N 一長鎖アシノレアミノ酸またはその塩の製造方法。  9. Using equipment equipped with a crushing mechanism that discharges the material supplied to the gap between the rotor blade and the mesh plate arranged on the side of the rotor blade from the mesh hole of the mesh plate, N-long chain acylamino acid or A method for producing a powdery N long-chain amino acid or salt thereof, characterized by passing through a step of grinding the salt.
10. メッシュ板のメッシュ孔径がフィ一ド粉体の累積 90 %粒子径の 0. 25 〜 2倍である、 請求の範囲第 9項記載の方法。 10. The method according to claim 9, wherein the mesh plate has a mesh pore size of 0.25 to 2 times the cumulative 90% particle size of the field powder.
11. 回転翼とメッシュ板とのクリアランスが 0. 0 l〜5mmである、 請求の 範囲第 9項又は第 10項記載の方法。 11. The method according to claim 9 or 10, wherein a clearance between the rotor blade and the mesh plate is 0.0 l to 5 mm.
12. 粉砕前の N—長鎖ァシルアミノ酸またはその塩力 かさ密度 0. 4 g c m3以上、粒子径 0. 106 mm以下の粒子の含有量が 10 %未満の粉体である、 請求の範囲第 9項〜第 11項の 、ずれか一項記載の方法。 12. N-long chain acyl amino acid before pulverization or its salt strength Bulk density 0.4 gcm 3 or more, particle size 0.1106 mm or less The content of particles is less than 10% The method according to any one of Items 9 to 11.
13. ローノレミノレ、 または、 回転翼と該回転翼の側周に配置されたメッシュ板間 の隙間に供給される材料をメッシュ板のメッシュ孔から排出する粉石權構を備え た設備で粉砕して得られた N—長鎖ァシルァミノ酸またはその塩の粉体を流動造 粒してその粒子径を増大させる工程をさらに有する、 請求の範囲第 1項〜第 12 項のいずれか一項記載の方法。  13. Crush the material supplied to the gap between the Rono Le Minole or the rotor blades and the mesh plate arranged on the side of the rotor blades with equipment equipped with a powder stone mechanism that discharges the mesh plate from the mesh holes. The method according to any one of claims 1 to 12, further comprising a step of fluidly granulating the obtained powder of N-long chain acylamino acid or a salt thereof to increase the particle diameter thereof. .
14. 粒子径 0. 106 mm以下の粒子の含有量が 10 %未満で、 粒子径 0. 3 55 mm以上の粒子を含有せず、 カさ密度が 0. 4 gZc m3以上の粉体である ことを特徴とする、 粉体状 N—長鎖アシノレアミノ酸またはその塩。 14. Powders with a particle size of less than 0.16 mm and a particle density of less than 10%, particles with a particle size of 0.3 55 mm or more and a bulk density of 0.4 gZc m 3 or more A powdered N-long chain amino acid or a salt thereof, characterized in that:
15. 請求の範囲第 14項記載の粉体状 N—長鎖ァシルアミノ酸またはその塩を 含有することを特徴とする洗顔パウダー。  15. A facial cleansing powder comprising the powdery N-long chain acyl amino acid or a salt thereof according to claim 14.
16. 請求の範囲第 4項又は第 7項記載の方法により製造された粉体状 N—長鎖 ァシルァミノ酸またはその塩を含有することを特徴とする洗顔パウダー。  16. A face-washing powder comprising powdery N-long chain acylamino acid or a salt thereof produced by the method according to claim 4 or 7.
PCT/JP2005/013891 2004-07-23 2005-07-22 Process for production of powdery n-(long-chain acyl)- amino acids or salts thereof, powdery n-(long-chain acyl)amino acids or salts thereof, and facial cleansing powders WO2006009320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-216536 2004-07-23
JP2004216536 2004-07-23

Publications (1)

Publication Number Publication Date
WO2006009320A1 true WO2006009320A1 (en) 2006-01-26

Family

ID=35785409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013891 WO2006009320A1 (en) 2004-07-23 2005-07-22 Process for production of powdery n-(long-chain acyl)- amino acids or salts thereof, powdery n-(long-chain acyl)amino acids or salts thereof, and facial cleansing powders

Country Status (1)

Country Link
WO (1) WO2006009320A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242355A (en) * 1987-03-30 1988-10-07 住友金属鉱山株式会社 Roll crusher
JPH03285995A (en) * 1990-03-31 1991-12-17 Nissei Kagaku Kogyo Kk Production of surfactant
JPH0761957A (en) * 1993-08-25 1995-03-07 Ajinomoto Co Inc Production of n-mixed saturated fatty acid acyl neutral amino acid
JPH07278079A (en) * 1994-04-06 1995-10-24 Kao Corp Production of n-long chain acylamino acid or its salt
JPH0841002A (en) * 1994-06-07 1996-02-13 Hampshire Chem Corp Nonaqueous neutralizing method for n-acylsarcosine
JPH08120060A (en) * 1994-07-27 1996-05-14 Mitsui Toatsu Chem Inc Production of polyhydroxycarboxylic acid
JPH0940416A (en) * 1995-07-31 1997-02-10 Mitsubishi Chem Corp Production of powdery gel
JPH09323914A (en) * 1996-06-03 1997-12-16 Kanebo Ltd Cosmetic
JPH1112241A (en) * 1997-06-25 1999-01-19 Asahi Chem Ind Co Ltd N-long-chain acylamino acid-containing detergent composition
WO2001014317A1 (en) * 1999-08-19 2001-03-01 Ajinomoto Co., Inc. Nε-LONG CHAIN ACYLLYSINE CRYSTALS, PROCESS FOR PRODUCING THE SAME AND COSMETICS CONTAINING THE SAME
WO2002038721A1 (en) * 2000-11-08 2002-05-16 Ajinomoto Co., Inc. Granular surfactant and process for producing the same
JP2003002829A (en) * 2001-04-17 2003-01-08 Toyo Pharmar Kk Pharmaceutical composition
JP2003195446A (en) * 2001-12-28 2003-07-09 Konica Corp Silver salt photothermographic dry imaging material and image recording method
JP2003306696A (en) * 2002-02-15 2003-10-31 Ajinomoto Co Inc Surfactant

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242355A (en) * 1987-03-30 1988-10-07 住友金属鉱山株式会社 Roll crusher
JPH03285995A (en) * 1990-03-31 1991-12-17 Nissei Kagaku Kogyo Kk Production of surfactant
JPH0761957A (en) * 1993-08-25 1995-03-07 Ajinomoto Co Inc Production of n-mixed saturated fatty acid acyl neutral amino acid
JPH07278079A (en) * 1994-04-06 1995-10-24 Kao Corp Production of n-long chain acylamino acid or its salt
JPH0841002A (en) * 1994-06-07 1996-02-13 Hampshire Chem Corp Nonaqueous neutralizing method for n-acylsarcosine
JPH08120060A (en) * 1994-07-27 1996-05-14 Mitsui Toatsu Chem Inc Production of polyhydroxycarboxylic acid
JPH0940416A (en) * 1995-07-31 1997-02-10 Mitsubishi Chem Corp Production of powdery gel
JPH09323914A (en) * 1996-06-03 1997-12-16 Kanebo Ltd Cosmetic
JPH1112241A (en) * 1997-06-25 1999-01-19 Asahi Chem Ind Co Ltd N-long-chain acylamino acid-containing detergent composition
WO2001014317A1 (en) * 1999-08-19 2001-03-01 Ajinomoto Co., Inc. Nε-LONG CHAIN ACYLLYSINE CRYSTALS, PROCESS FOR PRODUCING THE SAME AND COSMETICS CONTAINING THE SAME
WO2002038721A1 (en) * 2000-11-08 2002-05-16 Ajinomoto Co., Inc. Granular surfactant and process for producing the same
JP2003002829A (en) * 2001-04-17 2003-01-08 Toyo Pharmar Kk Pharmaceutical composition
JP2003195446A (en) * 2001-12-28 2003-07-09 Konica Corp Silver salt photothermographic dry imaging material and image recording method
JP2003306696A (en) * 2002-02-15 2003-10-31 Ajinomoto Co Inc Surfactant

Similar Documents

Publication Publication Date Title
EP0859827B1 (en) Method for preparing an amorphous alkali silicate with impregnation
EP0337330B1 (en) Process for increasing the density of spray-dried detergents with a reduced phosphate content
EP1015550B1 (en) Method for manufacturing washing and detergent particulates
JP2021533215A (en) Methods and equipment for crushing plastic and producing powdered materials from this plastic
WO2017199894A1 (en) Microspherical particles
JP5380116B2 (en) Grinding apparatus and method for producing granular detergent composition using the same
JP2951743B2 (en) Method for producing high bulk density granular detergent
WO2006009320A1 (en) Process for production of powdery n-(long-chain acyl)- amino acids or salts thereof, powdery n-(long-chain acyl)amino acids or salts thereof, and facial cleansing powders
DE3803966A1 (en) PROCESS FOR INCREASING THE DENSITY OF DRY DETERGENTS
EP0835881B2 (en) Process for preparing methylcellulose powder with special granulometric distribution
JP6133384B2 (en) Dried agar and method for producing the same
Samanta et al. Energy-based analysis of cone milling process for the comminution of roller compacted flakes
JP4088793B2 (en) Nonionic surfactant-containing particles, method for producing the same, and detergent composition
JP6321958B2 (en) Process for producing dentifrice granules
JPS63168496A (en) Production of easily flowable peroxide concentrate
DE60012928T2 (en) PROCESS FOR PRODUCING GRANULAR DETERGENT COMPOSITIONS
JP2003129095A (en) Solid cleaning agent
EP1159392B2 (en) Moulded washing and cleaning agents with a surfactant/bleaching agent/builder combination
JP2599702B2 (en) Granulation method of high bulk density detergent
JP2017088596A (en) Microspherical particles
JP3228289B1 (en) Method for producing pharmaceutical granules containing branched-chain amino acids
EP0888428A1 (en) Method of producing granular silicates with a high bulk density
JPH026503B2 (en)
SU1523158A1 (en) Method of mincing lump materials
WO2000000581A1 (en) Method for producing detergent shaped bodies

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP