JP5380116B2 - Grinding apparatus and method for producing granular detergent composition using the same - Google Patents

Grinding apparatus and method for producing granular detergent composition using the same Download PDF

Info

Publication number
JP5380116B2
JP5380116B2 JP2009058114A JP2009058114A JP5380116B2 JP 5380116 B2 JP5380116 B2 JP 5380116B2 JP 2009058114 A JP2009058114 A JP 2009058114A JP 2009058114 A JP2009058114 A JP 2009058114A JP 5380116 B2 JP5380116 B2 JP 5380116B2
Authority
JP
Japan
Prior art keywords
sieve
mass
crushing
pulverization
hole diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009058114A
Other languages
Japanese (ja)
Other versions
JP2010207749A (en
Inventor
達生 永野
章友 森田
佳子 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP2009058114A priority Critical patent/JP5380116B2/en
Publication of JP2010207749A publication Critical patent/JP2010207749A/en
Application granted granted Critical
Publication of JP5380116B2 publication Critical patent/JP5380116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crushing And Pulverization Processes (AREA)
  • Detergent Compositions (AREA)

Description

本発明は、粉砕装置及びこれを用いた粒状洗剤組成物の製造方法に関する。   The present invention relates to a pulverizing apparatus and a method for producing a granular detergent composition using the same.

衣料用洗剤等の粒状洗剤組成物は、主要な構成成分として界面活性剤含有粒子を含有している。かかる界面活性剤含有粒子は、一般に、アニオン界面活性剤等の界面活性剤やアルカリビルダー等を含有する洗剤スラリー(噴霧乾燥用スラリー)を噴霧乾燥して洗剤組成物ベース粉末(噴霧乾燥粒子)を製造し、当該ベース粉末(噴霧乾燥粒子)を高嵩密度化して製造されている。
噴霧乾燥粒子を高嵩密度化する方法としては、例えばベース粉末と液体のバインダー成分を混練機に連続的に供給し、捏和してドウ状物を得、得られたドウ状物をペレット状に押出成形し、さらに粉砕(粉砕処理)して高嵩密度の界面活性剤含有粒子を製造する方法がある。一般的に、粉砕処理は、複数台の粉砕装置を直列に連結し、段階的に小さい粒径にする方法が採られている。
Granular detergent compositions such as garment detergents contain surfactant-containing particles as a major constituent. Such surfactant-containing particles are generally obtained by spray-drying a detergent slurry (a slurry for spray-drying) containing a surfactant such as an anionic surfactant or an alkali builder to form a detergent composition base powder (a spray-dried particle). The base powder (spray-dried particles) is manufactured to have a high bulk density.
As a method for increasing the bulk density of spray-dried particles, for example, a base powder and a liquid binder component are continuously supplied to a kneader and kneaded to obtain a dough-like product. There is a method of producing surfactant-containing particles having a high bulk density by extrusion molding and further pulverizing (pulverizing treatment). In general, the pulverization is performed by connecting a plurality of pulverizers in series to reduce the particle size stepwise.

近年では、環境意識の高まりから、粒状洗剤組成物においても環境への負荷の低減が望まれるようになってきており、これに対応するために洗剤組成物中の界面活性剤濃度を低減させることが望まれている。かかる要望に対応するために、高い洗浄力を有するα−スルホ脂肪酸アルキルエステル塩を有効に活用することが必要となる。
しかし、α−スルホ脂肪酸アルキルエステル塩を多く含む粉体は、粉砕装置内部や空気輸送される配管内部に付着しやすく製造安定性が損なわれやすいという問題がある。
In recent years, due to increasing environmental awareness, it has become desirable to reduce the burden on the environment even in granular detergent compositions, and in order to respond to this, the surfactant concentration in the detergent composition must be reduced. Is desired. In order to meet such demands, it is necessary to effectively utilize α-sulfo fatty acid alkyl ester salts having high detergency.
However, the powder containing a large amount of the α-sulfo fatty acid alkyl ester salt has a problem that it tends to adhere to the inside of the pulverizing apparatus or the pipe that is pneumatically transported, and the production stability tends to be impaired.

こうした問題に対し、洗剤粒子の粘弾性と表面付着性の指標となる圧裂引張強度とを一定の範囲とすることで、粉砕装置内、輸送配管内、での洗剤粒子の付着を抑制する方法が提案されている(例えば、特許文献1、2)。また、比較的多量のゼオライトを添加し粉砕することで、洗剤粒子の粉砕装置への付着を防止する方法(例えば、特許文献3)や、無機硫酸塩を添加した洗剤原料を粉砕、造粒することで、粉砕装置等への洗剤粒子の微粉の付着を防止する方法が提案されている(例えば、特許文献4)。   In order to solve these problems, a method for suppressing the adhesion of detergent particles in the crushing apparatus and in the transportation piping by setting the viscoelasticity of the detergent particles and the crushing tensile strength as an index of surface adhesion within a certain range. Has been proposed (for example, Patent Documents 1 and 2). In addition, a method of preventing detergent particles from adhering to a pulverizer by adding a relatively large amount of zeolite and pulverizing (for example, Patent Document 3), and pulverizing and granulating a detergent raw material to which inorganic sulfate is added Thus, a method for preventing the fine particles of detergent particles from adhering to a pulverizer or the like has been proposed (for example, Patent Document 4).

特開2005−105211号公報JP 2005-105211 A 特開2007−291176号公報JP 2007-291176 A 特開2008−156409号公報JP 2008-156409 A 特開2008−179800号公報JP 2008-179800 A

しかしながら、粒状洗剤組成物には、さらなる界面活性剤の含有量の低減が求められている。かかる粒状洗剤組成物は、界面活性剤の含有量が少ないために脆く、ペレット状の成型物を粉砕装置で粉砕する際、従来に比べ粉砕の際に発生する微粉が増加する傾向にある。発生した微粉は、粉砕装置内に付着するため、該装置内の清掃の頻度が高くなり、生産効率が低下するという問題がある。
そこで、本発明は、界面活性剤の含有量が少ない粒状洗剤組成物であっても、効率的に生産できる粉砕装置及び粒状洗剤組成物の製造方法を目的とする。
However, the granular detergent composition is required to further reduce the surfactant content. Such granular detergent composition is fragile due to low surfactant content, and tends to increase the amount of fine powder generated during pulverization when pulverizing a pellet-shaped molding with a pulverizer. Since the generated fine powder adheres to the inside of the pulverizing apparatus, there is a problem that the frequency of cleaning in the apparatus increases and the production efficiency decreases.
Then, this invention aims at the manufacturing method of the grinding | pulverization apparatus and granular detergent composition which can be efficiently produced even if it is a granular detergent composition with little content of surfactant.

本発明の粉砕装置は、粉砕室と、該粉砕室の内部に設けられ、略水平方向を軸線として回転し被粉砕物を粉砕する粉砕部とを有し、前記粉砕室の下部は、前記粉砕部の先端の軌跡に近接する曲面とされ、該曲面には、前記粉砕部の回転方向に向かって段階的に異なる孔径の孔が形成されていることを特徴とする。前記粉砕部の回転方向に対し、前記曲面の下端から後方に設けられた孔の孔径が、該下端から前方に設けられた孔の孔径よりも小さいことが好ましい。   The pulverization apparatus of the present invention includes a pulverization chamber and a pulverization unit that is provided inside the pulverization chamber and rotates about the horizontal direction as an axis to pulverize the material to be pulverized. The curved surface is close to the locus of the tip of the part, and holes having different diameters are formed stepwise in the rotational direction of the grinding part. It is preferable that the hole diameter of the hole provided rearward from the lower end of the curved surface is smaller than the hole diameter of the hole provided forward from the lower end with respect to the rotation direction of the pulverization unit.

本発明の粒状洗剤組成物の製造方法は、前記の粉砕装置を用いて、界面活性剤を含有する捏和物を粉砕することを特徴とする。   The method for producing a granular detergent composition of the present invention is characterized in that a kneaded product containing a surfactant is pulverized using the pulverizing apparatus.

本発明によれば、界面活性剤の含有量が少ない粒状洗剤組成物であっても、効率的に粒状洗剤組成物を生産できる。   According to this invention, even if it is a granular detergent composition with little content of surfactant, a granular detergent composition can be produced efficiently.

本発明の粉砕装置の一例を示す断面図である。It is sectional drawing which shows an example of the grinding | pulverization apparatus of this invention. 図1の粉砕装置のII−II断面図である。It is II-II sectional drawing of the grinding | pulverization apparatus of FIG.

本発明の粉砕装置について、その一実施形態例を以下に図1、2を用いて説明する。図1は、本発明の実施形態にかかる粉砕装置8の断面図である。図2は、図1の粉砕装置8のII−II断面図である。粉砕装置8は、粉砕室10と、粉砕室10の内部に設けられた粉砕部40とを有するものである。   An embodiment of the pulverizing apparatus of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view of a pulverizing apparatus 8 according to an embodiment of the present invention. FIG. 2 is a II-II cross-sectional view of the pulverizer 8 of FIG. The crushing device 8 includes a crushing chamber 10 and a crushing unit 40 provided inside the crushing chamber 10.

粉砕室10は、その軸線が略水平となるように設けられ、粉砕室10の下方には、粉砕室10の下部を囲う筐体状のケーシング50が設けられている。粉砕室10の上部には、被粉砕物を投入する投入口12が設けられている。粉砕室10の内部には、粉砕部40が、略水平の回転軸Oをもって回転方向Aで回転可能に軸支されている。粉砕室10の下部は、粉砕部40が回転方向Aで回転した際、その先端41が描く軌跡に近接した曲面20とされ、曲面20に孔26が設けられ篩部21とされている。   The crushing chamber 10 is provided such that its axis is substantially horizontal, and a casing-like casing 50 surrounding the lower portion of the crushing chamber 10 is provided below the crushing chamber 10. In the upper part of the crushing chamber 10, there is provided an input port 12 through which a material to be crushed is input. Inside the crushing chamber 10, a crushing section 40 is pivotally supported so as to be rotatable in the rotation direction A with a substantially horizontal rotation axis O. The lower portion of the crushing chamber 10 is a curved surface 20 that is close to the locus drawn by the tip 41 when the crushing portion 40 rotates in the rotation direction A, and the curved surface 20 is provided with a hole 26 to be a sieve portion 21.

ケーシング50の下端には、被粉砕物を粉砕した粉砕物を粉砕装置8から排出する排出口52が設けられている。ケーシング50は、第一の側面54と第二の側面56と第三の側面58と第四の側面59と、第一の側面54の下端から排出口52に向かって傾斜する第一の底面55と、第二の側面56の下端から排出口52に向かって傾斜する第二の底面57とで構成されている。   The lower end of the casing 50 is provided with a discharge port 52 for discharging the pulverized material obtained by pulverizing the material to be pulverized from the pulverizing apparatus 8. The casing 50 includes a first side surface 54, a second side surface 56, a third side surface 58, a fourth side surface 59, and a first bottom surface 55 that is inclined from the lower end of the first side surface 54 toward the discharge port 52. And a second bottom surface 57 inclined from the lower end of the second side surface 56 toward the discharge port 52.

粉砕部40は、軸部44と、軸部44から径方向に突出するように設けられた粉砕刃42とで構成されている。粉砕部40は、図1に示すように4枚の粉砕刃42を周方向に90°ピッチで配置して粉砕刃集合体とし、図2に示すように2個の粉砕刃集合体を回転軸Oに沿って任意の間隔で軸部44に配置することで形成されている。軸部44は図示されない駆動部と接続されている。   The crushing part 40 includes a shaft part 44 and a crushing blade 42 provided so as to protrude in the radial direction from the shaft part 44. As shown in FIG. 1, the crushing section 40 has four crushing blades 42 arranged at a pitch of 90 ° in the circumferential direction to form a crushing blade assembly, and as shown in FIG. It is formed by arranging on the shaft portion 44 at an arbitrary interval along O. The shaft portion 44 is connected to a drive unit (not shown).

篩部21は、粉砕部40の回転方向Aに向かって段階的に異なる孔径の複数の孔26が形成されたものである。ここで「段階的」とは、回転方向Aの方向に篩部21を2以上の領域に区分けし、該領域毎には同一の孔径の孔26を形成し、任意の領域と隣接する他の任意の領域とを比較した際に形成された孔26の孔径が異なる状態、又は、領域に区分けせずに、回転方向Aに向かって徐々に孔径を変化させることを意味する。   The sieving part 21 is formed with a plurality of holes 26 having different diameters stepwise toward the rotation direction A of the pulverizing part 40. Here, “stepwise” means that the sieve portion 21 is divided into two or more regions in the direction of the rotation direction A, and a hole 26 having the same hole diameter is formed in each region, and another region adjacent to an arbitrary region is formed. This means that the hole diameter of the hole 26 formed when compared with an arbitrary region is different, or the hole diameter is gradually changed in the rotation direction A without being divided into regions.

領域単位で異なる孔径の孔26が形成された篩部21としては、例えば、粉砕部40の回転方向Aに対し曲面20の下端Pから後方の領域(後部篩)24と、下端Pから前方の曲面(前部篩)22とに区分けし、後部篩24の孔径を前部篩22の孔径よりも小さくしたものが挙げられる。あるいは、後部篩24の孔径を前部篩22の孔径よりも大きくしたものが挙げられる。また、例えば、篩部21は、篩部21を回転方向Aに向かって3以上の領域に区分けし、回転方向Aに向かうに従って、孔径が小さくなるようにしてもよいし、大きくなるようにしてもよい。
また、例えば、篩部21には、篩部21を領域分けせず、回転方向Aの方向に徐々に孔径が小さくなるように孔26を配置してもよいし、徐々に大きくなるように配置してもよい。あるいは、回転方向Aの方向で曲面20の下端に向かうに従い孔径を小さくし、次いで、上方に向かうに従って孔径を大きくしてもよい。
中でも、篩部21は、回転方向Aに向かって段階的に孔径が小さくなるように孔26が形成されていることが好ましい。例えば、後部篩24の孔径を前部篩22の孔径よりも小さくしたものが挙げられる。このように、後部篩24の孔径を前部篩22の孔径よりも小さくすることで、次のような理由により、被粉砕物から発生した微粉(洗剤微粉)が粉砕装置8内に付着することを防止できる。投入口から落下してきた被粉砕物は、重力により篩部21の下端Pに集まる様に挙動する。下端Pに至った被粉砕物は、高速で回転している粉砕部40で粉砕される。この際、発生した洗剤微粉は、粉砕部40の回転に従い後部篩24からケーシング50内に排出されるように挙動する。しかし、後部篩24の孔径を小さくしておくことで、後部篩24から排出される洗剤微粉の量は制御される。こうして、洗剤微粉が、特定の箇所に偏って付着するのを防止できる。
As the sieve portion 21 in which the holes 26 having different hole diameters in the region unit are formed, for example, a region (rear sieve) 24 on the rear side from the lower end P of the curved surface 20 with respect to the rotation direction A of the pulverizing unit 40 and a front portion from the lower end P. A curved surface (front sieve) 22 is divided and the diameter of the rear sieve 24 is smaller than the diameter of the front sieve 22. Or what made the hole diameter of the rear sieve 24 larger than the hole diameter of the front sieve 22 is mentioned. Further, for example, the sieve portion 21 may be divided into three or more regions in the rotation direction A, and the hole diameter may be decreased or increased as the rotation direction A is increased. Also good.
Further, for example, the sieve portion 21 may not be divided into regions, and the holes 26 may be arranged so that the hole diameter gradually decreases in the direction of the rotation direction A, or arranged so as to gradually increase. May be. Alternatively, the hole diameter may be reduced as it goes toward the lower end of the curved surface 20 in the direction of rotation A, and then the hole diameter may be increased as it goes upward.
Especially, it is preferable that the hole 26 is formed so that the hole diameter may become small in the sieve part 21 toward the rotation direction A in steps. For example, what made the hole diameter of the rear sieve 24 smaller than the hole diameter of the front sieve 22 is mentioned. Thus, by making the hole diameter of the rear sieve 24 smaller than the hole diameter of the front sieve 22, fine powder (detergent fine powder) generated from the object to be ground adheres to the grinding apparatus 8 for the following reason. Can be prevented. The material to be crushed that has fallen from the charging port behaves so as to gather at the lower end P of the sieve portion 21 due to gravity. The object to be crushed that has reached the lower end P is crushed by the crushing unit 40 that rotates at high speed. At this time, the generated detergent fine powder behaves so as to be discharged from the rear sieve 24 into the casing 50 according to the rotation of the pulverization unit 40. However, the amount of the fine detergent powder discharged from the rear sieve 24 is controlled by reducing the pore diameter of the rear sieve 24. In this way, it is possible to prevent the detergent fine powder from being biased to a specific location.

孔26の孔径は、所望する粉砕物の粒径に応じて決定することができ、例えば、所望する粉砕物の粒子径に対して3〜30倍の範囲で決定することが好ましく、4〜25倍の範囲で決定することがより好ましい。
各孔26の孔径の違いの程度は特に限定されないが、例えば、2種の孔径の孔26を設けた場合、その内の最も小さい孔径が、最も大きい孔径に対し、20〜80%が好ましく、30〜70%であることがより好ましい。上記範囲内であれば、粉砕物の粒度分布が広がりすぎることを防止すると共に、粉砕装置8内及び配管内への被粉砕物から発生する洗剤微粉の付着を抑制できるためである。
The hole diameter of the hole 26 can be determined according to the desired particle size of the pulverized product, and is preferably determined in a range of 3 to 30 times the particle size of the desired pulverized product, for example, 4 to 25. It is more preferable to determine within a double range.
The degree of difference in the hole diameter of each hole 26 is not particularly limited. For example, when two holes 26 having two kinds of hole diameters are provided, the smallest hole diameter is preferably 20 to 80% with respect to the largest hole diameter. More preferably, it is 30 to 70%. If it is within the above range, it is possible to prevent the particle size distribution of the pulverized product from being excessively widened and to suppress the adhesion of the detergent fine powder generated from the pulverized product in the pulverizing apparatus 8 and the pipe.

篩部21における孔径毎の孔26の合計面積の比率は、粉砕物に求める粒子径等を勘案して決定できる。例えば、2種の孔径の孔26を設けた場合、その内の小さい方の孔径の開口面積の合計値(小開口面積)/大きい方の孔径の開口面積の合計値(大開口面積)で表される大小開口面積比は、20/80〜80/20が好ましく、30/70〜70/30がより好ましい。上記範囲内であれば、粉砕装置8内及び配管内への洗剤微粉の付着を抑制できるためである。   The ratio of the total area of the holes 26 for each hole diameter in the sieving part 21 can be determined in consideration of the particle diameter required for the pulverized product. For example, in the case where the holes 26 having two kinds of hole diameters are provided, it is expressed by the total value of the opening area of the smaller one (small opening area) / the total value of the opening area of the larger hole diameter (large opening area). 20 / 80-80 / 20 is preferable and 30 / 70-70 / 30 is more preferable. This is because if it is within the above range, it is possible to suppress adhesion of the detergent fine powder into the pulverizer 8 and the pipe.

孔26の形状は、生産効率や篩部21の強度等を勘案して決定することができ、例えば、真円、楕円、矩形等が挙げられる。加えて、篩部21には異なる形状の孔26が形成されていてもよい。このような孔26が設けられた篩部21としては、板状のステンレスや鋼に貫通孔を設けたパンチングメタル、線形のステンレスや鋼製で構成されたスクリーンやメッシュ等が挙げられる。
なお、孔径は、真円の場合にはその内径を意味し、楕円の場合にはその短径を意味し、矩形の場合には短辺の長さを意味する。
The shape of the hole 26 can be determined in consideration of the production efficiency, the strength of the sieve portion 21, and the like, and examples thereof include a perfect circle, an ellipse, and a rectangle. In addition, holes 26 having different shapes may be formed in the sieve portion 21. Examples of the sieve portion 21 provided with such holes 26 include a punching metal in which a plate-like stainless steel or steel is provided with a through hole, a screen or mesh made of linear stainless steel or steel, and the like.
The hole diameter means the inner diameter in the case of a perfect circle, the minor diameter in the case of an ellipse, and the length of the short side in the case of a rectangle.

曲面20と先端41が描く軌跡との近接の程度は、粉砕部40が回転した際に曲面20と接触しないと共に、被粉砕物を効率的に粉砕できる程度に離間している範囲で決定することができる。
曲面20の形状は、被粉砕物の粉砕効率等を考慮して決定することができ、例えば、回転軸Oを基準として粉砕室10の下部全体を先端41が描く軌跡に沿った形状としてもよいし、粉砕室10の下部の一部を先端41が描く軌跡に沿った形状としてもよい。生産効率の観点からは、粉砕室10の下部全体を先端41が描く軌跡に沿った形状とすることが好ましい。
The degree of proximity between the curved surface 20 and the locus drawn by the tip 41 is determined within a range that does not come into contact with the curved surface 20 when the pulverizing unit 40 rotates and is sufficiently separated to pulverize the object to be crushed efficiently. Can do.
The shape of the curved surface 20 can be determined in consideration of the pulverization efficiency of the object to be crushed. For example, the entire lower portion of the pulverization chamber 10 may be formed along the trajectory drawn by the tip 41 on the basis of the rotation axis O. And it is good also as a shape along the locus | trajectory which the front-end | tip 41 draws a part of lower part of the crushing chamber 10. FIG. From the viewpoint of production efficiency, it is preferable that the entire lower portion of the crushing chamber 10 is shaped along the locus drawn by the tip 41.

ケーシング50の材質は、所望の耐久性を得られるものであれば特に限定されず、例えは、ステンレスや鋼等が挙げられる。   The material of the casing 50 is not particularly limited as long as desired durability can be obtained, and examples thereof include stainless steel and steel.

粉砕刃42の形状は、被粉砕物の硬度や脆さ等の物性に応じて決定することができ、例えば、回転方向A側の全体に刃を設けたものであってもよいし、回転方向A側の一部に刃を設けたものであってもよい。
粉砕刃42の材質は、その形状や被粉砕物の硬度や脆さ等の物性に応じて決定することができ、例えば、ステンレス等を挙げることができる。
The shape of the pulverizing blade 42 can be determined according to physical properties such as hardness and brittleness of the object to be crushed. For example, the pulverizing blade 42 may have a blade provided on the entire rotation direction A side, or the rotation direction. A blade may be provided on a part of the A side.
The material of the pulverizing blade 42 can be determined according to its shape and physical properties such as hardness and brittleness of the object to be crushed, and examples thereof include stainless steel.

粉砕装置8を用いた粒状洗剤組成物の製造方法を説明する。
まず、駆動部を起動し、粉砕部40を回転方向Aで回転させる。次いで、被粉砕物を投入口12から投入する。投入された被粉砕物は、回転する粉砕部40の粉砕刃42により粉砕され、任意の大きさの粉砕物となる。任意の大きさにされた粉砕物は、篩部21の孔26を通過し、ケーシング50に設けられた排出口52から排出される。排出された粉砕物は、そのまま粒状洗剤組成物としてもよいし、さらに、界面活性剤や香料等を噴霧して造粒したり、他の洗剤成分を造粒した造粒粒子と粉体混合し、粒状洗剤組成物とすることができる。
The manufacturing method of the granular detergent composition using the grinding | pulverization apparatus 8 is demonstrated.
First, the drive unit is activated to rotate the crushing unit 40 in the rotation direction A. Next, the material to be crushed is charged from the charging port 12. The charged material to be pulverized is pulverized by the pulverizing blade 42 of the rotating pulverization unit 40 to become a pulverized material having an arbitrary size. The pulverized material having an arbitrary size passes through the hole 26 of the sieve portion 21 and is discharged from a discharge port 52 provided in the casing 50. The discharged pulverized product may be used as it is as a granular detergent composition, or may be granulated by spraying a surfactant or a fragrance, or mixed with granulated particles obtained by granulating other detergent components. A granular detergent composition can be obtained.

被粉砕物は、各種界面活性剤、無機ビルダー、有機ビルダー、蛍光剤、ポリマー類、ケーキング防止剤、還元剤、金属イオン捕捉剤、pH調整剤等、洗剤の構成成分として公知の成分を含有する成型体である。被粉砕物は公知の方法により製造することができる。例えば、被粉砕物としては、界面活性剤やアルカリビルダー等を含有する噴霧乾燥用スラリーを噴霧乾燥して噴霧乾燥粒子を製造し、該噴霧乾燥粒子とバインダー成分とを混練機で捏和したドウ状物が挙げられる。また、例えば、得られたドウ状物をペレット状に押出成形したものが挙げられる。   The material to be crushed contains various components known in the art as detergent components such as various surfactants, inorganic builders, organic builders, fluorescent agents, polymers, anti-caking agents, reducing agents, metal ion scavengers, pH adjusters and the like. It is a molded body. The material to be crushed can be produced by a known method. For example, as a pulverized product, spray-dried slurry containing a surfactant, alkali builder, etc. is spray-dried to produce spray-dried particles, and the spray-dried particles and the binder component are kneaded with a kneader. A shape is mentioned. For example, what obtained by extruding the obtained dough-like thing into a pellet form is mentioned.

被粉砕物に含有される界面活性剤の種類は、アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤、両性界面活性剤を一種単独で、又は、二種以上の併用とすることができる。被粉砕物の界面活性剤の含有量は特に限定されないが、例えば、30質量%以下が好ましく、20〜30質量%がより好ましく、22〜29質量%がさらに好ましい。界面活性剤の含有量が少なすぎると、ドウ状物が得られにくいと共に、得られる粒状洗剤組成物の洗浄力が低くなる。界面活性剤の含有量が多すぎると、そもそも洗剤微粉が発生しにくく、本発明の効果が顕著に表れない傾向にある。   The kind of surfactant contained in the material to be crushed can be an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, or a combination of two or more. . The content of the surfactant in the pulverized material is not particularly limited, but is preferably 30% by mass or less, more preferably 20 to 30% by mass, and still more preferably 22 to 29% by mass. When there is too little content of surfactant, a dough-like thing will be hard to be obtained and the detergency of the granular detergent composition obtained will become low. If the content of the surfactant is too large, detergent fine powder is hardly generated in the first place, and the effects of the present invention tend not to be remarkably exhibited.

噴霧乾燥は、公知の方法で行うことができる。例えば、噴霧乾燥用スラリーを噴霧乾燥塔に移送し、該噴霧乾燥塔の塔頂付近に設置された噴霧乾燥用スラリーの微粒化装置から、所定の噴霧圧力で噴霧を行う方法により噴霧乾燥粒子を製造できる。噴霧乾燥塔は特に限定されず、向流式でも並流式でもよく、中でも、熱効率がよい向流式が好ましい。   Spray drying can be performed by a known method. For example, the spray-drying slurry is transferred to a spray-drying tower, and spray-dried particles are produced by spraying at a predetermined spray pressure from a spray-drying slurry atomizer installed near the top of the spray-drying tower. Can be manufactured. The spray-drying tower is not particularly limited, and may be a countercurrent type or a cocurrent type, and among them, a countercurrent type having good thermal efficiency is preferable.

混練機は特に限定されず、公知の装置を使用できる。例えば、密閉式の圧密化処理装置、好ましくは横型連続式のニーダーが好適に挙げられる。ニーダーの他に、一軸又は二軸スクリュー押出機等を用いることもできる。これらの装置は、回分式、連続式のいずれであってもよい。   A kneading machine is not specifically limited, A well-known apparatus can be used. For example, a hermetic consolidation apparatus, preferably a horizontal continuous kneader is preferably used. In addition to the kneader, a single screw or twin screw extruder may be used. These apparatuses may be either a batch type or a continuous type.

押出成型で成型されるペレット状の成型物の大きさは特に限定されず、粉砕装置8の能力等を勘案して決定することができ、例えば、1〜20mmφが好ましい。
押出成型に用いる押出成型機としては公知の装置を用いることができ、一軸又は二軸スクリュー型押出機やディスク型押出機やロール型押出機を使用することができ、中でも、スクリュー型、二軸型が好ましく、二軸型がより好ましい。
The size of the pellet-shaped molded product molded by extrusion molding is not particularly limited, and can be determined in consideration of the ability of the pulverizing device 8 and the like, and for example, 1 to 20 mmφ is preferable.
As an extrusion molding machine used for extrusion molding, a known apparatus can be used, and a uniaxial or biaxial screw type extruder, a disk type extruder, or a roll type extruder can be used. A mold is preferable, and a biaxial mold is more preferable.

粉砕処理は、1台の粉砕装置8を用いて粉砕処理を行ってもよいし、2台以上の粉砕装置8を用い、任意の粉砕装置8の排出口52を他の粉砕装置8の投入口12に連結し、多段に連結した粉砕装置8により粉砕処理を行ってもよい。
粉砕装置8を多段に連結する場合には、2〜3台の粉砕装置8を連結することが好ましく、3台を連結することがより好ましい。加えて、粉砕装置8を多段に連結する場合には、後段に行くほど篩部21の孔径を小さくすることが好ましい。このように粉砕装置8を多段に連結すると共に、後段に行くほど孔26の孔径を小さくすることで、粒度分布をシャープにすることができる。
The pulverization process may be performed using one pulverizer 8, or two or more pulverizers 8 may be used, and the discharge port 52 of an arbitrary pulverizer 8 may be used as the inlet of another pulverizer 8. The pulverization process may be performed by a pulverization apparatus 8 connected to 12 and connected in multiple stages.
When connecting the pulverizers 8 in multiple stages, it is preferable to connect two to three pulverizers 8, and it is more preferable to connect three. In addition, when the pulverizing apparatus 8 is connected in multiple stages, it is preferable to reduce the hole diameter of the sieve portion 21 as it goes to the subsequent stage. In this way, the particle size distribution can be sharpened by connecting the pulverizers 8 in multiple stages and reducing the hole diameter of the holes 26 toward the subsequent stage.

粉砕処理においては、粉砕装置内へ送風を行って被粉砕物の温度制御を行うことが好ましい。好ましくは、粉砕を終えた直後の粉砕物の温度が20〜40℃の範囲となるように、温度制御された冷風または温風を供給する。上記範囲内であると装置付着をより抑制できる。
送風温度は10〜40℃が好ましい。また、送風量は0.1〜5m/kg(被粉砕物の単位質量当たり)が好ましい。
In the pulverization treatment, it is preferable to control the temperature of the object to be crushed by blowing air into the pulverizer. Preferably, the temperature-controlled cold air or hot air is supplied so that the temperature of the pulverized product immediately after pulverization is in the range of 20 to 40 ° C. Device adhesion can be further suppressed within the above range.
The blowing temperature is preferably 10 to 40 ° C. Further, the blown amount is preferably 0.1 to 5 m 3 / kg (per unit mass of the object to be crushed).

粉砕処理では、粉砕助剤を添加することが好ましい。粉砕助剤は、粉砕装置8中に少量添加することにより、粉砕動力の低減、粉砕粒度の改善、粉砕物の性状の改善等の作用を奏する。粉砕助剤の平均粒径は50μm以下が好適であり、好ましくは20μm以下である。また、添加量は被粉砕物の全量に対して0.5〜10質量%が好適である。
粉砕助剤としては、例えば、ステアリン酸塩、A型ゼオライト等のアルミノ珪酸塩、炭酸カルシウム、炭酸マグネシウム等のアルカリ土類金属炭酸塩、非晶質シリカ、ケイ酸カルシウム、ケイ酸マグネシウム等のケイ酸塩、タルク、ベントナイト等の粘土鉱物、二酸化珪素、二酸化チタン、微粉砕された炭酸ナトリウム、硫酸ナトリウムが望ましく、アルミノ珪酸塩、アルカリ土類金属炭酸塩がより好ましく、A型ゼオライトがさらに好ましい。
これらの粉砕助剤が粉砕物表面に付着し、粉砕物の表面活性を低下させることにより、粉砕装置8又は配管等への付着防止を図ると共に、粉砕動力の低減や、粉砕物の流動性改善が図られる。
In the grinding treatment, it is preferable to add a grinding aid. By adding a small amount of the pulverization aid into the pulverization apparatus 8, the pulverization aid can reduce the pulverization power, improve the pulverization particle size, improve the properties of the pulverized product, and the like. The average particle size of the grinding aid is preferably 50 μm or less, and preferably 20 μm or less. Moreover, 0.5-10 mass% is suitable for the addition amount with respect to the whole quantity of a to-be-ground material.
Examples of the grinding aid include aluminosilicates such as stearate and A-type zeolite, alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate, silica such as amorphous silica, calcium silicate, and magnesium silicate. Desirable clay minerals such as acid salts, talc and bentonite, silicon dioxide, titanium dioxide, finely divided sodium carbonate and sodium sulfate are preferred, aluminosilicates and alkaline earth metal carbonates are more preferred, and A-type zeolite is more preferred.
These grinding aids adhere to the surface of the pulverized product and reduce the surface activity of the pulverized product, thereby preventing adhesion to the pulverizer 8 or piping, etc., reducing pulverization power, and improving the fluidity of the pulverized product. Is planned.

こうして得られる粉砕物の平均粒子径は、200〜1500μmが好ましく、300〜1200μmがより好ましい。平均粒径が1500μmを超えると、洗濯中での溶解性が遅くなり、布付着、洗浄力低下の問題が生じるおそれがある。200μm未満であると、微粉の増加による発塵量の増大と粉砕収率の低下、流動性の悪化につながりやすい。   200-1500 micrometers is preferable and, as for the average particle diameter of the ground material obtained in this way, 300-1200 micrometers is more preferable. When the average particle size exceeds 1500 μm, the solubility in washing becomes slow, and there is a possibility that problems such as cloth adhesion and reduction in cleaning power may occur. If it is less than 200 μm, it tends to lead to an increase in the amount of dust generation due to an increase in fine powder, a decrease in the pulverization yield, and a deterioration in fluidity.

なお平均粒子径は、目開き1680μm、1410μm、1190μm、1000μm、710μm、500μm、350μm、250μm、149μm、の9段の篩と受け皿を用いた分級操作により測定できる。分級操作は、受け皿に目開きの小さな篩から目開きの大きな篩の順に積み重ね、最上部の1680μmの篩の上から100g/回のベースサンプルを入れ、蓋をしてロータップ型ふるい振盪機(株式会社飯田製作所製、タッピング:156回/分、ローリング:290回/分)に取り付け、10分間振動させた後、それぞれの篩及び受け皿上に残留したサンプルを篩目ごとに回収する操作を行う。
この操作を繰すことによって1410〜1680μm(1410μm)、1190〜1410μm(1190μm)、1000〜1190μm(1000μm)、710〜1000μm(710μm)、500〜710μm(500μm)、350〜500μm(350μm)、250〜350μm(250μm)、149〜250μm(149μm)、皿〜149μm(149μm)の各粒子径の分級サンプルを得、質量頻度(%)を算出する。
次に、算出した質量頻度が50%以上となる最初の篩の目開きをaμmとし、またaμmよりも一段大きい篩の目開きをbμmとし、受け皿からaμmの篩までの質量頻度の積算をc%、またaμmの篩上の質量頻度をd%として、下記(1)式によって平均粒子径(質量50%)を求められる。
The average particle diameter can be measured by a classification operation using a 9-stage sieve having a mesh opening of 1680 μm, 1410 μm, 1190 μm, 1000 μm, 710 μm, 500 μm, 350 μm, 250 μm, and 149 μm and a saucer. In the classification operation, a sieve with a small opening is stacked on a tray in the order of a sieve with a large opening, and a base sample of 100 g / time is placed on the top of the top 1680 μm sieve, and a lid is put on a low-tap sieve shaker (stock) (Iida Seisakusho, Tapping: 156 times / minute, Rolling: 290 times / minute) After shaking for 10 minutes, the sample remaining on each sieve and tray is collected for each sieve.
By repeating this operation, 1410 to 1680 μm (1410 μm), 1190 to 1410 μm (1190 μm), 1000 to 1190 μm (1000 μm), 710 to 1000 μm (710 μm), 500 to 710 μm (500 μm), 350 to 500 μm (350 μm), 250 A classification sample having a particle size of ˜350 μm (250 μm), 149 to 250 μm (149 μm), and a plate to 149 μm (149 μm) is obtained, and the mass frequency (%) is calculated.
Next, the opening of the first sieve with a calculated mass frequency of 50% or more is set to a μm, the opening of the sieve that is one step larger than a μm is set to b μm, and the integration of the mass frequency from the tray to the sieve of a μm is c The average particle diameter (mass 50%) can be obtained by the following formula (1), where d is the mass frequency on the sieve of% and a μm.

Figure 0005380116
Figure 0005380116

粉砕物の嵩密度は、用途に応じて決定することができ、例えば、0.6〜1.2g/mLが好ましく、0.7〜1.0g/mLがより好ましい。なお、嵩密度はJIS K3362−1998に準じた測定で得られる値である。   The bulk density of the pulverized product can be determined according to the application, and for example, 0.6 to 1.2 g / mL is preferable, and 0.7 to 1.0 g / mL is more preferable. The bulk density is a value obtained by measurement according to JIS K3362-1998.

上述のとおり、粉砕装置8は、篩部21に回転方向Aに向かって段階的に異なる孔径の孔26が設けられているため、被粉砕物から発生した洗剤微粉が特定の位置に偏って付着することを防止し、粉砕装置8内の清掃頻度を低減し、生産効率の向上が図れる。
洗剤微粉の付着防止の原理は明らかではないが、以下のように推測できる。
粉砕装置8は、粉砕部40が高速で回転し被粉砕物を粉砕するため、粉砕室10内の空気に乱流が生じる。この乱流により粉砕室10で粉砕物が舞い上がって投入口12から排出されないように、投入口12から空気を送り込んだり、排出口52側を投入口12よりも減圧することが多い。こうして、投入口12から排出口52に向かう気流が生じる。
投入口12から排出口52に向かう気流は、粉砕部40の回転で生じる気流の影響を受け、第二の側面56側に傾いた流れとなる。この結果、洗剤微粉は、第二の側面56又は第二の底面57に吹き付けられる量が多くなり、早期に付着・堆積することとなる。
本発明は、篩部21の孔径が回転方向Aに向かって段階的に異なるため、比較的孔径の大きい孔26を投入口12から排出口52に向かう気流が優先して流通することで、該気流を整流し、洗剤微粉が第二の側面56側又は第二の底面57側に偏って流れることを防止することができる。この結果、洗剤微粉が過度に堆積することなく、粉砕装置8内での洗剤微粉の付着を防止できる。
As described above, since the crushing device 8 is provided with the holes 26 having different diameters stepwise in the rotation direction A in the sieve portion 21, the detergent fine powder generated from the object to be crushed adheres to a specific position. This reduces the frequency of cleaning in the pulverizer 8 and improves production efficiency.
Although the principle of preventing the adhesion of detergent fine powder is not clear, it can be estimated as follows.
In the pulverizing apparatus 8, the pulverization unit 40 rotates at high speed to pulverize the object to be pulverized, so that turbulent flow is generated in the air in the pulverization chamber 10. In order to prevent the pulverized material from flying up in the crushing chamber 10 and being discharged from the charging port 12 by this turbulent flow, air is often sent from the charging port 12 or the discharge port 52 side is decompressed more than the charging port 12. Thus, an air flow from the inlet 12 toward the outlet 52 is generated.
The airflow from the input port 12 toward the discharge port 52 is influenced by the airflow generated by the rotation of the crushing unit 40 and becomes a flow inclined toward the second side surface 56 side. As a result, the amount of the detergent fine powder sprayed on the second side surface 56 or the second bottom surface 57 increases, and adheres and accumulates at an early stage.
In the present invention, since the hole diameter of the sieve portion 21 varies stepwise in the rotation direction A, the air flow from the inlet 12 to the outlet 52 preferentially flows through the hole 26 having a relatively large hole diameter. The airflow is rectified, and the detergent fine powder can be prevented from flowing biased toward the second side face 56 or the second bottom face 57. As a result, the detergent fine powder can be prevented from adhering in the pulverizing apparatus 8 without excessive accumulation of the detergent fine powder.

加えて、後部篩24の孔径を前部篩22の孔径よりも小さくすることで、第二の側面56側や第二の底面57側に傾きがちな気流を制御し、洗剤微粉の付着抑制の効果をさらに向上することができる。   In addition, by making the hole diameter of the rear sieve 24 smaller than the hole diameter of the front sieve 22, the air flow that tends to be inclined toward the second side face 56 side or the second bottom face 57 side is controlled, and the adhesion of detergent fine powder is suppressed. The effect can be further improved.

このように、本発明によれば、付着した洗剤微粉の取り除く清掃頻度を低減し、粒状洗剤組成物を効率的に生産できる。   Thus, according to this invention, the cleaning frequency which removes the attached detergent fine powder can be reduced, and a granular detergent composition can be produced efficiently.

上述の実施形態では、粉砕部40を構成する粉砕刃42は、軸部44から径方向に突出するように4枚設けられているが、本発明はこれに限定されず、3枚以下であってもよいし、5枚以上であってもよい。また、粉砕刃42の周方向のピッチは90°に限定されることはない。
加えて、上述の実施形態では、4枚の粉砕刃42を周方向に4枚配置して粉砕刃集合体とし、2個の粉砕刃集合体を回転軸Oに沿って任意の間隔で軸部44に配置しているが、本発明はこれに限定されず、粉砕刃集合体は1個であってもよいし、3個以上であってもよい。
In the above-described embodiment, four crushing blades 42 constituting the crushing portion 40 are provided so as to protrude in the radial direction from the shaft portion 44. However, the present invention is not limited to this, and the number is 3 or less. It may be 5 or more. Further, the pitch in the circumferential direction of the pulverizing blade 42 is not limited to 90 °.
In addition, in the above-described embodiment, four crushing blades 42 are arranged in the circumferential direction to form a crushing blade assembly, and the two crushing blade assemblies are axial portions at arbitrary intervals along the rotation axis O. However, the present invention is not limited to this, and the number of pulverized blade assemblies may be one or three or more.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(使用原料)
・α−スルホ脂肪酸アルキルエステル塩含有ペースト(ライオン株式会社製)
組成:脂肪酸鎖長;炭素数16/18、含有質量比8/2、有効成分63質量%、ノニオン界面活性剤16質量%、ジ塩及びメチル硫酸塩等の不純物8質量%、水分13質量%
・炭酸ナトリウム:粒灰(ソーダアッシュジャパン株式会社製)
・蛍光剤:チノパールCBS−X(チバ・ジャパン株式会社製)
・水酸化カリウム:フレーク状苛性カリ(旭硝子株式会社製)
・直鎖アルキルベンゼンスルホン酸:ライポンLH−200(ライオン株式会社製)
・LAS−K:直鎖アルキルベンゼンスルホン酸(ライオン株式会社製、ライポンLH−200、AV値(LAS−Hを1g中和するに要する水酸化カリウムのmg数)=180.0)を噴霧乾燥用スラリー中で48質量%水酸化カリウム溶液で中和したもの。表中の配合量は、LAS−Kとしての質量%を示す。
・アクリル酸/マレイン酸コポリマー塩:アクアリックTL−400(株式会社日本触媒製、純分40質量%水溶液)
・ノニオン界面活性剤:ECOROL26(ECOGREEN社製炭素数12〜16のアルキル基をもつアルコール)の酸化エチレン平均15モル付加体(ライオン株式会社製、純分90質量%)
・A型ゼオライト:シルトンB(水澤化学株式会社製、純分80質量%)
・炭酸カリウム:炭酸カリウム(粉末)(旭硝子株式会社製)
・硫酸ナトリウム:中性無水芒硝A0(四国化成株式会社製)
・石鹸:炭素数12〜18の脂肪酸ナトリウム(ライオン株式会社製、純分:67質量%、タイター:40〜45℃、脂肪酸組成:C12:11.7質量%、C14:0.4質量%、C16:29.2質量%、C18F0(ステアリン酸):0.7質量%、C18F1(オレイン酸):56.8質量%、C18F2(リノール酸):1.2質量%、分子量:289)
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
(Raw materials used)
・ Α-sulfo fatty acid alkyl ester salt-containing paste (manufactured by Lion Corporation)
Composition: Fatty acid chain length; carbon number 16/18, mass ratio 8/2, active ingredient 63 mass%, nonionic surfactant 16 mass%, impurities such as di-salt and methyl sulfate, 8 mass%, moisture 13 mass%
・ Sodium carbonate: grain ash (manufactured by Soda Ash Japan)
・ Fluorescent agent: Chino Pearl CBS-X (Ciba Japan Co., Ltd.)
・ Potassium hydroxide: flake caustic potash (Asahi Glass Co., Ltd.)
-Linear alkylbenzene sulfonic acid: Raipon LH-200 (manufactured by Lion Corporation)
-LAS-K: linear alkylbenzene sulfonic acid (manufactured by Lion Corporation, Lipon LH-200, AV value (mg number of potassium hydroxide required to neutralize 1 g of LAS-H) = 180.0) for spray drying Neutralized with 48 mass% potassium hydroxide solution in slurry. The compounding quantity in a table | surface shows the mass% as LAS-K.
Acrylic acid / maleic acid copolymer salt: Aqualic TL-400 (manufactured by Nippon Shokubai Co., Ltd., pure 40% by weight aqueous solution)
Nonionic surfactant: ECOROL26 (ECOGREN Co., Ltd., alcohol having an alkyl group having 12 to 16 carbon atoms), an average of 15 moles of ethylene oxide adduct (made by Lion Co., Ltd., 90% by mass pure)
A-type zeolite: Shilton B (manufactured by Mizusawa Chemical Co., Ltd., pure content 80% by mass)
・ Potassium carbonate: Potassium carbonate (powder) (Asahi Glass Co., Ltd.)
・ Sodium sulfate: neutral anhydrous sodium sulfate A0 (manufactured by Shikoku Kasei Co., Ltd.)
Soap: Fatty acid sodium having 12 to 18 carbon atoms (manufactured by Lion Corporation, pure content: 67% by mass, titer: 40 to 45 ° C., fatty acid composition: C12: 11.7% by mass, C14: 0.4% by mass, C16: 29.2 mass%, C18F0 (stearic acid): 0.7 mass%, C18F1 (oleic acid): 56.8 mass%, C18F2 (linoleic acid): 1.2 mass%, molecular weight: 289)

(製造例1)被粉砕物の製造
[噴霧乾燥粒子の調製]
表1の組成に従い、各成分(噴霧乾燥粒子の被覆剤として用いるA型ゼオライト2質量%当量を除く)を攪拌機、ジャケットを有する反応装置内に投入し、水に溶解分散させ(攪拌機のジャケット温度75℃)、固形分濃度60質量%の噴霧乾燥用スラリーを調製した。
次いで、この噴霧乾燥用スラリーを向流式乾燥塔を用いて以下の条件で噴霧乾燥し、噴霧乾燥塔の下部より噴霧乾燥粒子コート被覆剤としてA型ゼオライトの一部(2質量%)を導入して噴霧乾燥粒子を得た。
・噴霧乾燥装置:向流式、塔径2.0m、有効長5.0m。
・微粒化方式:加圧ノズル方式。
・噴霧圧力:30kg/cm
・熱風入口温度:250℃。
・熱風出口温度:100℃。
得られた噴霧乾燥粒子の平均粒子径は約300μm、嵩密度は0.3g/mL、水分含有量は5質量%であった。
噴霧乾燥粒子中の水分含有量(質量%)の測定は、Kett水分計(商品名、株式会社ケツト科学研究所製;赤外線水分計)により測定した。測定条件は170℃、20分で行った。
(Production Example 1) Production of ground material [Preparation of spray-dried particles]
In accordance with the composition in Table 1, each component (excluding 2% by mass equivalent of zeolite A used as a coating agent for spray-dried particles) is charged into a reactor having a stirrer and a jacket, and dissolved and dispersed in water (jacket temperature of the stirrer). 75 ° C.) and a slurry for spray drying having a solid concentration of 60% by mass was prepared.
Next, this spray drying slurry is spray dried using a countercurrent drying tower under the following conditions, and a part (2% by mass) of A-type zeolite is introduced as a spray drying particle coat coating agent from the lower part of the spray drying tower. As a result, spray-dried particles were obtained.
Spray drying apparatus: countercurrent type, tower diameter 2.0 m, effective length 5.0 m.
・ Atomization method: Pressure nozzle method.
-Spray pressure: 30 kg / cm < 2 >.
-Hot air inlet temperature: 250 degreeC.
-Hot air outlet temperature: 100 ° C.
The resulting spray-dried particles had an average particle size of about 300 μm, a bulk density of 0.3 g / mL, and a water content of 5% by mass.
The moisture content (mass%) in the spray-dried particles was measured with a Kett moisture meter (trade name, manufactured by Ketto Scientific Laboratory; infrared moisture meter). The measurement conditions were 170 ° C. and 20 minutes.

Figure 0005380116
Figure 0005380116

[被粉砕物の造粒]
得られた噴霧乾燥粒子72.3質量部と、α−スルホ脂肪酸アルキルエステル塩含有ペースト15質量部、ノニオン界面活性剤2質量部、水0.5質量部を連続ニーダー(栗本鐵工所社製、KRC−S4型)に投入し、捏和して(ニーダーの回転数135rpm、ジャケット温度:ジャケット入り口5℃、出口25℃(ジャケットに通水して冷却))、ドウ状物を調製した。得られたドウ状物の温度は55±15℃であった。
次いで、得られたドウ状物を、ペレッターダブル(不二パウダル株式会社製、製品名:EXD−100型)に投入し、孔径約10mm、厚さ10mmのダイスから押し出すと同時に切断(カッター周速:5m/s)し、被粉砕物であるペレット状成形体(直径約10mm、長さ70mm以下(実質的には5mm以上))を得た。被粉砕物の界面活性剤の含有量は28.5質量%であった。
[Granulation of the material to be crushed]
72.3 parts by mass of the obtained spray-dried particles, 15 parts by mass of an α-sulfo fatty acid alkyl ester salt-containing paste, 2 parts by mass of a nonionic surfactant, and 0.5 parts by mass of water were continuously kneaded (manufactured by Kurimoto Steel Corporation). , KRC-S4 type) and kneaded (kneader rotation speed 135 rpm, jacket temperature: jacket inlet 5 ° C., outlet 25 ° C. (cooled by passing water through the jacket)) to prepare a dough-like product. The temperature of the resulting dough was 55 ± 15 ° C.
Next, the obtained dough-like product was put into a pelleter double (product name: EXD-100 type, manufactured by Fuji Powder Co., Ltd.) and extruded from a die having a hole diameter of about 10 mm and a thickness of 10 mm and simultaneously cut (cutter circumference) Speed: 5 m / s) to obtain a pellet-shaped molded body (diameter: about 10 mm, length: 70 mm or less (substantially 5 mm or more)). The surfactant content of the material to be ground was 28.5% by mass.

(実施例1〜6、比較例1)
粉砕装置として、フィッツミル(ホソカワミクロン株式会社製、DKA−3型)を三段に連結した。各段の粉砕装置には、表2に記載の条件に従って円形の孔を設けたスクリーン(図1の粉砕装置8の篩部21に相当)を設置し、図1、2の粉砕装置8と同様の粉砕装置とした。三段目の粉砕装置の排出口は、鉛直方向下方に向かって伸び、その後、略水平方向に屈曲した形状の配管(90度エルボー、60mmφ)を介してサイクロン分離器と接続した。篩部21に相当するスクリーンは前部篩と後部篩とに区分けし、前部篩に形成された孔は全て同じ孔径であり、後部篩に形成された孔は全て同じ孔径である。
粉砕装置にペレット状成形体89.8質量部及び粉砕助剤としてのA型ゼオライト6.5質量部を投入し、送風共存下で被粉砕物を粉砕して粉砕物とし、サイクロン分離器で気流中から粉砕物を分離した。粉砕開始15分後に、付着抑制の評価を行い、その結果を表2に示す。
なお、粉砕部の回転数は、回転数100%=4700rpm(周速約60m/s)に対する割合(%)として、表2に記載した。その他の粉砕条件は以下の通りとした。得られた粉砕物の温度は30±10℃、平均粒子径が350μm、嵩密度は0.85g/mLであった。表中、開口面積比とは、「前部篩の孔の開口面積の合計/後部篩の孔の開口面積の合計」で表される比率である。
・送風温度:15±3℃
・送風量(気/固の比率):2.8±0.25m/kg
・処理速度:230kg/hr
(Examples 1-6, Comparative Example 1)
As a pulverizer, Fitz Mill (manufactured by Hosokawa Micron Corporation, DKA-3 type) was connected in three stages. In each stage of the pulverizer, a screen (corresponding to the sieve portion 21 of the pulverizer 8 in FIG. 1) provided with a circular hole in accordance with the conditions described in Table 2 is installed. The pulverizer was used. The discharge port of the third-stage crusher was connected to the cyclone separator via a pipe (90-degree elbow, 60 mmφ) having a shape extending downward in the vertical direction and bent in a substantially horizontal direction. The screen corresponding to the sieve part 21 is divided into a front sieve and a rear sieve. All the holes formed in the front sieve have the same hole diameter, and all the holes formed in the rear sieve have the same hole diameter.
Into the pulverizer, 89.8 parts by mass of the pellet-shaped molded product and 6.5 parts by mass of A-type zeolite as a pulverization aid were charged, and the material to be pulverized was pulverized into a pulverized product in the presence of air blowing. The ground material was separated from the inside. After 15 minutes from the start of pulverization, adhesion suppression was evaluated and the results are shown in Table 2.
In addition, the rotation speed of the grinding | pulverization part was described in Table 2 as a ratio (%) with respect to rotation speed 100% = 4700 rpm (circumferential speed of about 60 m / s). Other grinding conditions were as follows. The temperature of the obtained pulverized product was 30 ± 10 ° C., the average particle size was 350 μm, and the bulk density was 0.85 g / mL. In the table, the opening area ratio is a ratio represented by “total opening area of holes in front sieve / total opening area of holes in rear sieve”.
・ Blower temperature: 15 ± 3 ℃
・ Blowing rate (gas / solid ratio): 2.8 ± 0.25 m 3 / kg
・ Processing speed: 230kg / hr

(付着抑制の評価方法)
[粉砕装置付着性]
被粉砕物を15分間粉砕した後、粉砕室の内壁及びケーシングの内壁(篩部を除く)に付着した付着物の質量を測定した。それらの質量の和を下記評価基準で評価した。「△」以上を合格とした。なお、下記評価基準は、粉砕装置の実用上の連続運転の期間を目安として区分した。評価基準は、連続運転が2週間以上できるレベルの付着量を「○」、連続運転が1週間以上2週間未満できるレベルの付着量を「△」、連続運転が1週間未満であるレベルの付着量を「×」とした。
(Evaluation method for adhesion suppression)
[Crushing device adhesion]
After the material to be crushed was pulverized for 15 minutes, the mass of the adhering material adhering to the inner wall of the pulverization chamber and the inner wall of the casing (excluding the sieve portion) was measured. The sum of those masses was evaluated according to the following evaluation criteria. “△” or higher was regarded as acceptable. In addition, the following evaluation criteria were classified with reference to a practical continuous operation period of the pulverizer. The evaluation criteria are “○” for the amount of adhesion that allows continuous operation for 2 weeks or more, “Δ” for the amount of adhesion that allows continuous operation for 1 week or more and less than 2 weeks, and for the level of adhesion that allows continuous operation for less than 1 week. The amount was “x”.

<評価基準>
○:0g以上10g未満
△:10g以上40g未満
×:40g以上
<Evaluation criteria>
○: 0 g or more and less than 10 g Δ: 10 g or more and less than 40 g ×: 40 g or more

[配管付着性]
被粉砕物を15分間粉砕した後、三段目の粉砕装置の排出口に設置した90度エルボー(60mmφ)に付着した付着物の質量を測定し、下記評価基準で評価した。「○」を合格とした。なお、下記評価基準は、粉砕装置の実用上の連続運転の期間を目安として区分した。評価基準は、連続運転が2週間以上できるレベルの付着量を「○」、連続運転が1週間以上2週間未満できるレベルの付着量を「△」、連続運転が1週間未満であるレベルの付着量を「×」とした。
[Piping adhesion]
After pulverizing the material to be pulverized for 15 minutes, the mass of the adhering material adhering to the 90 ° elbow (60 mmφ) installed at the discharge port of the third stage pulverizer was measured and evaluated according to the following evaluation criteria. “○” was accepted. In addition, the following evaluation criteria were classified with reference to a practical continuous operation period of the pulverizer. The evaluation criteria are “○” for the amount of adhesion that allows continuous operation for 2 weeks or more, “Δ” for the amount of adhesion that allows continuous operation for 1 week or more and less than 2 weeks, and for the level of adhesion that allows continuous operation for less than 1 week. The amount was “x”.

<評価基準>
○:0g以上0.1g未満
△:0.1g以上0.2g未満
×:0.2g以上
<Evaluation criteria>
○: 0 g or more and less than 0.1 g Δ: 0.1 g or more and less than 0.2 g ×: 0.2 g or more

Figure 0005380116
Figure 0005380116

表2に示すように、本発明の粉砕装置を用いた実施例1〜6は、粉砕装置付着性、配管付着性が共に良好であった。後部篩の孔径を前部篩の孔径よりも小さくした実施例3は、後部篩の孔の孔径を前部篩の孔の孔径よりも大きくした実施例4に比べて一段目の粉砕装置において粉砕装置付着性に優れていることが判った。
これに対し、単一の孔径の孔を設けた曲面を用いた比較例1は、一段目の粉砕装置付着性が「×」、さらに配管付着性が「×」であった。
As shown in Table 2, Examples 1 to 6 using the pulverizer of the present invention had good pulverizer adhesion and pipe adhesion. Example 3 in which the hole diameter of the rear sieve was made smaller than the hole diameter of the front sieve was pulverized in the first-stage crusher as compared with Example 4 in which the hole diameter of the rear sieve was larger than the hole diameter of the front sieve. It was found that the device adhesion was excellent.
On the other hand, in Comparative Example 1 using a curved surface provided with a hole having a single hole diameter, the first stage grinder adhesion was “x”, and the pipe adhesion was “x”.

8 粉砕装置
10 粉砕室
21 篩部
22 前部篩
24 後部篩
20 曲面
26 孔
40 粉砕部
41 先端
8 Crusher 10 Crushing chamber 21 Sieve part 22 Front sieve 24 Rear sieve 20 Curved surface 26 Hole 40 Grinding part 41 Tip

Claims (2)

粉砕室と、該粉砕室の内部に設けられ、略水平方向を軸線として回転し被粉砕物を粉砕する粉砕部とを有し、
前記粉砕室の下部は、前記粉砕部の先端の軌跡に近接する曲面とされ、
該曲面には、前記粉砕部の回転方向に向かって段階的に異なる孔径の孔が形成され、
前記粉砕部の回転方向に対し、前記曲面の下端から後方に設けられた孔の孔径は、該下端から前方に設けられた孔の孔径よりも小さいことを特徴とする粉砕装置。
A crushing chamber, and a crushing unit that is provided inside the crushing chamber and rotates about the horizontal direction as an axis to crush the material to be crushed,
The lower part of the crushing chamber is a curved surface close to the locus of the tip of the crushing part,
On the curved surface, holes having different diameters are formed stepwise toward the rotation direction of the pulverization part,
The pulverizing apparatus, wherein a diameter of a hole provided rearward from the lower end of the curved surface with respect to a rotation direction of the pulverizing unit is smaller than a diameter of a hole provided forward from the lower end .
請求項1の粉砕装置を用いて、界面活性剤を含有する捏和物を粉砕することを特徴とする、粒状洗剤組成物の製造方法。 A method for producing a granular detergent composition, wherein a kneaded product containing a surfactant is pulverized using the pulverizing apparatus according to claim 1 .
JP2009058114A 2009-03-11 2009-03-11 Grinding apparatus and method for producing granular detergent composition using the same Active JP5380116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058114A JP5380116B2 (en) 2009-03-11 2009-03-11 Grinding apparatus and method for producing granular detergent composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058114A JP5380116B2 (en) 2009-03-11 2009-03-11 Grinding apparatus and method for producing granular detergent composition using the same

Publications (2)

Publication Number Publication Date
JP2010207749A JP2010207749A (en) 2010-09-24
JP5380116B2 true JP5380116B2 (en) 2014-01-08

Family

ID=42968529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058114A Active JP5380116B2 (en) 2009-03-11 2009-03-11 Grinding apparatus and method for producing granular detergent composition using the same

Country Status (1)

Country Link
JP (1) JP5380116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949311A (en) * 2014-03-24 2014-07-30 杭州东巨机械制造有限公司 Unidirectional screen cutting draught fan

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213220B1 (en) * 2012-05-10 2012-12-20 지엠텍(주) Apparatus for smashing cooling filler
JP7172518B2 (en) 2018-11-30 2022-11-16 セイコーエプソン株式会社 Fiber deposition device and sheet manufacturing device
JP7167671B2 (en) 2018-11-30 2022-11-09 セイコーエプソン株式会社 Textile material deposition equipment and sheet manufacturing equipment
CN117073331B (en) * 2023-10-16 2023-12-12 山东百农思达生物科技有限公司 Powder pesticide drying system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816940B2 (en) * 1980-08-08 1983-04-04 株式会社 タクマ Waste bag sorting device
JPH0645014B2 (en) * 1985-03-18 1994-06-15 日本精工株式会社 Crusher
JP2004267944A (en) * 2003-03-10 2004-09-30 Endo Kogyo Kk Biaxial shear crusher
JP5401036B2 (en) * 2006-12-25 2014-01-29 ライオン株式会社 Manufacturing method of granular detergent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949311A (en) * 2014-03-24 2014-07-30 杭州东巨机械制造有限公司 Unidirectional screen cutting draught fan

Also Published As

Publication number Publication date
JP2010207749A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5380116B2 (en) Grinding apparatus and method for producing granular detergent composition using the same
KR101072911B1 (en) - powders flakes or pellets containing salts of -sulfofatty acid alkyl esters in high concentrations process for production thereof granulated detergents and process for production thereof
WO1998001544A1 (en) Process for the production of enzyme granules
JP2002266000A (en) High bulk density detergent composition and its manufacturing method
JPH04332797A (en) Production of granular detergent having high bulk density
JP2763403B2 (en) Preparation of free-flowing detergent granules
JP5401036B2 (en) Manufacturing method of granular detergent
JP4088793B2 (en) Nonionic surfactant-containing particles, method for producing the same, and detergent composition
JP2005344109A (en) Method for producing granular detergent
JP4143853B2 (en) Particles containing water-soluble inorganic substances
JP4917224B2 (en) Method for producing granular detergent composition
JP5014864B2 (en) Method for storing, transporting and producing anionic surfactant-containing granular material
JP2010155925A (en) Transporting method of granular detergent composition
JP4962689B2 (en) Pneumatic transport method for cleaning particles
JP2599702B2 (en) Granulation method of high bulk density detergent
JP4110393B2 (en) Detergent builder particles and detergent composition
JPH0816236B2 (en) Method for producing high bulk density detergent composition
JP5412138B2 (en) Detergent additive particles, detergent composition and method for producing detergent additive particles
JP2003105397A (en) Method for producing granular detergent composition having high bulk density
WO2011062234A1 (en) Method for producing detergent granules
US20110076499A1 (en) Bubble-Containing Solid a-Sulfo Fatty Acid Alkyl Ester Salt and Method for Producing the Same
JP2011116807A (en) COVERED alpha-SULFOFATTY ACID ALKYL ESTER SALT PARTICLE AND METHOD OF MANUFACTURING THE SAME
JP5143987B2 (en) Manufacturing method of powder detergent
JP2008156409A (en) Method for producing granular detergent composition
JP2006143998A (en) Method for producing particle group for addition to detergent and stirring granulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5380116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350