WO2006009138A1 - Semiconductor laser device and optical pickup device provided with the same - Google Patents

Semiconductor laser device and optical pickup device provided with the same Download PDF

Info

Publication number
WO2006009138A1
WO2006009138A1 PCT/JP2005/013241 JP2005013241W WO2006009138A1 WO 2006009138 A1 WO2006009138 A1 WO 2006009138A1 JP 2005013241 W JP2005013241 W JP 2005013241W WO 2006009138 A1 WO2006009138 A1 WO 2006009138A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
semiconductor laser
tilt
slide holder
optical base
Prior art date
Application number
PCT/JP2005/013241
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Takasu
Yukihiro Iwata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006009138A1 publication Critical patent/WO2006009138A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC

Definitions

  • the present invention relates to a semiconductor laser device.
  • the present invention relates to a semiconductor laser device mounted on an optical pickup device for recording or reproducing an information signal on an optical information recording medium, and an optical pickup device including the semiconductor laser device.
  • An optical pickup device is a device that records and reproduces information signals such as audio signals, character signals, and video signals on an optical disc that is an optical information recording medium.
  • the optical pickup device records information signals by irradiating a signal recording surface such as an optical disk with laser light to fill in a recording mark.
  • the optical pickup device performs reproduction by irradiating the signal recording surface with laser light and receiving the reflected light of the laser light with a photodetector.
  • the optical pickup device includes a semiconductor laser device that defines the emission direction of the laser light, and a semiconductor laser element that emits the laser light is mounted on the semiconductor laser device.
  • optical pickup devices such as those used in thin notebook personal computers, have been reduced in size and density. As a result, the entire optical pickup device is also affected by the heat generated by the semiconductor laser element, and may operate under high temperature conditions.
  • the semiconductor laser element is further deteriorated due to an increase in driving current in addition to deterioration due to high temperature, and the element life is further shortened. It is also used in optical pickup devices or semiconductor laser devices due to high temperatures.
  • the adhesive for fixing each component softens, and the fixing position of each component varies. As a result, the performance of the semiconductor laser device and the optical pickup device may be deteriorated.
  • Patent Document 1 discloses a method of bringing a casing or frame structure of a semiconductor laser element having a resin or ceramic power into contact with a metal body or the like (heat sink) having a large heat capacity.
  • a movable bobbin housing an optical system including a semiconductor laser element, a light receiving element, a prism, a lens, and the like and a heat radiating plate are integrally molded.
  • Patent Document 2 also discloses a method of promoting heat dissipation using a heat sink.
  • a method using a heat sink is expensive because a separate heat sink is provided and the structure is complicated, and the number of steps in the manufacturing process increases.
  • Patent Document 4 discloses a conventional semiconductor laser device that holds an optical axis direction by pressing an optical unit including a semiconductor laser element against an optical base.
  • FIG. 42 is an exploded perspective view showing a configuration of a conventional semiconductor laser device. As shown in FIG. 42, in a conventional semiconductor laser device, an optical unit 210 including a semiconductor laser element 206 is fitted into a mounting portion 218 of an optical base 202. At that time, the protruding section 212 of the holding metal plate 217 attached to the optical base 202 comes into contact with the semiconductor laser element 206, and the pressing bent piece 216 presses the optical unit 210 against the optical base 202.
  • FIG. 43 is a side view schematically showing the configuration of a conventional semiconductor laser device
  • FIG. 44 is a perspective view schematically showing the configuration of a conventional semiconductor laser device. As shown in FIGS.
  • an optical unit including a slide holder 204 and a tilt holder 203 is installed inside an optical base 202.
  • the slide holder 204 is in contact with the inner surface of the optical base 202, and the tilt holder 203 is installed in contact with the slide holder 204.
  • the slide holder 204 has a concave portion 204a that is substantially spherical.
  • the cavity holder 203 has a convex portion 203a having a substantially spherical shape, and a semiconductor package 205 which is a space is formed therein.
  • a semiconductor laser element 206 is installed!
  • a heat radiating plate 212 is installed on a surface opposite to the convex portion 203 a via heat radiating grease 211.
  • the heat radiating plate 212 is connected to the optical base 202 and dissipates heat by transferring the heat generated by the semiconductor laser element 206 to the optical base 202.
  • the heat generated by the semiconductor laser element 206 is also radiated to the optical base 202 through the tilt holder 203 and the slide holder 204.
  • a method for adjusting the optical axis of the laser beam 207 emitted from the semiconductor laser element 206 in the semiconductor laser device 201 will be described.
  • the heat dissipation grease 211 and the heat dissipation plate 212 are not installed.
  • the X-axis is the left-right direction
  • the Y-axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the tilt holder 203 and the slide holder 204 are pressed against the optical base 202.
  • the slide holder 204 can be slid along the optical base 202, and can be moved freely along the ZX plane with force S.
  • a tilt holder 203, a slide holder 204, and an optical base 202 are sequentially arranged in the direction in which the laser beam 207 of the semiconductor laser element 206 is emitted. These include through-holes 213, 214 and 21 that are the optical path of the laser beam 207. 5 is formed.
  • the tilt holder 203 and the slide holder 204, and the slide holder 204 and the optical base 202 are fixed so that the optical axis does not fluctuate.
  • an adhesive is filled between the tilt holder 203 and the slide holder 204 and between the slide holder 204 and the optical base 202, and they are fixed so that they are not powered.
  • the heat radiating plate 212 is installed in the tilt holder 203, and the heat radiating grease 215 is filled in the gap between the heat radiating plate 212 and the tilt holder 203.
  • the thermal power generated from the semiconductor laser element 206 is emitted from the optical holder 203 to the optical base 202 through the slide holder 204.
  • heat is dissipated to the optical base 202 from the surface where the heat dissipating grease 211 and the heat dissipating plate 212 are installed in the tilt holder 203.
  • Patent Document 1 JP-A-8-287499
  • Patent Document 2 Japanese Patent Laid-Open No. 11-16202
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-22555
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-123297
  • the position where the tilt holder 203 is in contact with the slide holder 204 is only the convex portion 203a, and its area is small. Further, since the plane parallel to the XY plane and the plane parallel to the YZ plane of the holder 120 are not connected to the optical base 202, heat is not radiated from these planes. In addition, when heat is radiated to the optical base 202 through the heat radiating grease 211 and the heat radiating plate 212, the thermal resistance is higher than when heat is radiated to the optical base 202 through the tilt holder 203 and the slide holder 204.
  • the heat dissipation from the heat sink 212 side is smaller than the heat dissipation from the slide holder 204 side.
  • the semiconductor laser device 201 will run out of temperature as soon as the semiconductor laser device 201 reaches a high temperature due to heat generated by the semiconductor laser element 206 having low heat dissipation efficiency.
  • the present invention has been made in view of the above-described problems, and is a semiconductor laser having high heat dissipation efficiency. It is an object to provide a single device and an optical pickup device.
  • the first semiconductor laser device includes a slide holder having a space in which a semiconductor laser element is installed, a slide holder into which the slide holder is fitted, a tilt holder having a groove larger than the outer shape of the slide holder, and the tilt holder is fitted into the slide holder.
  • An optical base having a hole, the tilt holder is fitted and fixed in the hole of the optical base, and the slide holder is fitted and fixed in a groove of the tilt holder.
  • the second semiconductor laser device includes a tilt holder having a space in which a semiconductor laser element is installed, a slide holder having a hole into which the tilt holder is fitted, and the slide holder into which the slide holder is fitted. Larger than the outer shape! And an optical base having a gutter groove, wherein the slide holder is fitted and fixed in the groove of the optical base, and the tilt holder is fitted and fixed in the hole of the slide holder.
  • an optical pickup device including the first or second semiconductor laser device.
  • FIG. 1 is a plan view showing a configuration of a semiconductor laser device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is an exploded perspective view of the semiconductor laser device according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view showing the configuration of the semiconductor laser device according to the first embodiment of the present invention.
  • FIG. 5 is a plan view showing a configuration of a semiconductor laser device according to Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional view taken along the line BB in FIG. 7]
  • FIG. 7 is an exploded perspective view of the semiconductor laser device according to the second embodiment of the present invention. 8]
  • FIG. 8 is a perspective view showing the configuration of the semiconductor laser device according to the second embodiment of the present invention.
  • FIG. 9 is a plan view showing the configuration of the semiconductor laser device according to the third embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along the arrow CC in FIG.
  • FIG. 11 is an exploded perspective view of the semiconductor laser device according to the third embodiment of the present invention.
  • FIG. 12 is a perspective view showing the configuration of the semiconductor laser device according to the third embodiment of the present invention. .
  • FIG. 13 is a plan view showing the configuration of the semiconductor laser device according to the fourth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along the arrow D-D in FIG.
  • FIG. 15 is an exploded perspective view of the semiconductor laser device according to the fourth embodiment of the present invention.
  • FIG. 16 is a perspective view showing the configuration of the semiconductor laser device according to the fourth embodiment of the present invention. .
  • FIG. 17 is a plan view showing the configuration of the semiconductor laser device according to the fifth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view taken along the line EE in FIG.
  • FIG. 19 is an exploded perspective view of the semiconductor laser device according to the fifth embodiment of the present invention.
  • FIG. 20 is a perspective view showing the configuration of the semiconductor laser device according to the fifth embodiment of the present invention. .
  • FIG. 21 is a plan view showing the configuration of the semiconductor laser device according to the sixth embodiment of the present invention.
  • FIG. 22 is a cross-sectional view taken along the line FF in FIG.
  • FIG. 23 is an exploded perspective view of the semiconductor laser device according to the sixth embodiment of the present invention.
  • FIG. 24 is a perspective view showing the configuration of the semiconductor laser device according to the sixth embodiment of the present invention.
  • FIG. 25 is a plan view showing the configuration of the semiconductor laser device according to the seventh embodiment of the present invention.
  • FIG. 26 is a cross-sectional view taken along the line GG in FIG.
  • FIG. 27 is an exploded perspective view of the semiconductor laser device according to the seventh embodiment of the present invention.
  • FIG. 28 is a perspective view showing the configuration of the semiconductor laser device according to the seventh embodiment of the present invention. .
  • FIG. 29 is a plan view showing the configuration of the semiconductor laser device according to the eighth embodiment of the present invention.
  • FIG. 30 is a cross-sectional view taken along arrows H—H in FIG.
  • FIG. 31 is an exploded perspective view of the semiconductor laser device according to the eighth embodiment of the present invention.
  • FIG. 32 is a perspective view showing the configuration of the semiconductor laser device according to the eighth embodiment of the present invention. .
  • FIG. 33 is a plan view showing the configuration of the semiconductor laser device according to the ninth embodiment of the present invention.
  • FIG. 34 is a cross-sectional view taken along the line II of FIG.
  • FIG. 35 is an exploded perspective view of the semiconductor laser device according to the ninth embodiment of the present invention.
  • FIG. 36 is a perspective view showing the configuration of the semiconductor laser device according to the ninth embodiment of the present invention. .
  • FIG. 37 is a plan view showing the configuration of the semiconductor laser device according to the tenth embodiment of the present invention.
  • FIG. 38 is a cross-sectional view taken along the arrow J J in FIG.
  • FIG. 39 is an exploded perspective view of the semiconductor laser device according to the tenth embodiment of the present invention.
  • FIG. 40 is a perspective view showing the configuration of the semiconductor laser apparatus according to the tenth embodiment of the present invention.
  • FIG. 41 is a plan view showing the configuration of the optical pickup device according to the eleventh embodiment of the present invention.
  • FIG. 42 is an exploded perspective view showing a configuration of a conventional semiconductor laser device.
  • FIG. 43 is a side view schematically showing a configuration of a conventional semiconductor laser device.
  • FIG. 44 is a perspective view schematically showing a configuration of a conventional semiconductor laser device. BEST MODE FOR CARRYING OUT THE INVENTION
  • the first or second semiconductor laser device has a high heat dissipation efficiency, and the temperature rise is small. Therefore, it is possible to reduce the cost without using a heat sink or the like. In addition, it has a long service life with little deterioration due to heat. In addition, since the structure is simple and the optical axis can be easily adjusted, the manufacturing cost is low.
  • the fitting portion between the hole of the optical base and the tilt holder has a shape that allows the tilt holder to rotate about at least one axis with respect to the optical base.
  • the slide holder is fitted in a groove of the tilt holder, and the tilt holder and the slide holder are fixed to! /, NA! /.
  • the fitting portion between the slide holder and the groove of the tilt holder has a shape that allows the slide holder to move parallel to at least one surface with respect to the tilt holder.
  • the fitting portion between the hole of the optical base and the tilt holder has a shape in which the tilt holder can rotate around at least one axis with respect to the optical base, and the groove is formed in the groove of the tilt holder.
  • the slide holder fits in and When the slider and the slide holder are fixed to form a small ridge, the fitting portion between the slide holder and the groove of the tilt holder is parallel to at least one surface of the slide holder with respect to the tilt holder.
  • the fitting portion between the hole of the optical base and the tilt holder is a state in which the tilt holder is fitted into the hole of the optical base.
  • the tilt holder has a shape rotatable around at least one axis with respect to the optical base, and after the optical axis is adjusted, the optical base and the tilt holder are fixed.
  • the fitting portion between the slide holder and the groove of the tilt holder is in a state where the slide holder is fitted in the groove of the tilt holder.
  • the slide holder has a shape that can move in parallel to at least one surface with respect to the tilt holder, and after the optical axis is adjusted, the tilt holder and the slide holder are fixed.
  • the fitting portion between the hole of the optical base and the tilt holder is a state in which the tilt holder is fitted into the hole of the optical base.
  • the tilt holder has a shape rotatable around at least one axis with respect to the optical base, and a fitting portion between the slide holder and the groove of the tilt holder has the slide in the groove of the tilt holder.
  • the slide holder has a shape that can move in parallel to at least one surface with respect to the tilt holder, and the optical base and the tilt holder are fixed after the optical axis is adjusted. The tilt holder and the slide holder are fixed.
  • the tilt holder has a shape obtained by dividing a substantially spherical body by a plane, and an inner surface of the hole of the optical base is substantially spherical.
  • the substantially spherical convex portion of the tilt holder is fitted in the hole of the optical base.
  • the tilt holder has a substantially cylindrical shape having a substantially spherical concave portion on a bottom surface, and a hole portion of the optical base is substantially on a bottom surface. It has a convex portion that is spherical, the side surface is substantially cylindrical, and the convex portion fits into the concave portion. It is crowded.
  • the tilt holder has a substantially columnar shape, and the inner surface of the hole of the optical base has a substantially cylindrical surface shape.
  • the slide holder has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including the axis thereof, and an inner surface of the groove of the tilt holder includes: A convex portion that is substantially cylindrical and has a substantially cylindrical side surface of the slide holder is fitted in the groove of the tilt holder.
  • the slide holder has a concave portion having a substantially cylindrical shape on a bottom surface, and the groove of the tilt holder has a substantially cylindrical side surface shape on the bottom surface. It has a certain convex part, and the convex part is fitted in the concave part.
  • the slide holder is fitted in a groove of the optical base, and the optical base and the slide holder are not fixed.
  • the fitting portion between the groove of the optical base and the slide holder has a shape in which the slide holder can move in parallel to at least one surface with respect to the optical base.
  • the tilt holder is fitted into the hole of the slide holder, and the slide holder and the tilt holder are fixed to form a small bowl.
  • the fitting portion between the hole of the slide holder and the tilt holder has a shape that allows the tilt holder to rotate about at least one axis with respect to the slide holder.
  • the slide holder is fitted in a groove of the optical base, and the optical base and the slide holder are not fixed.
  • the fitting portion between the groove of the optical base and the slide holder has a shape in which the slide holder can move in parallel to at least one surface with respect to the optical base, and the slide holder
  • the fitting portion between the hole portion of the slide holder and the tilt holder is the The slide holder has a shape that can rotate around at least one axis.
  • the fitting portion between the groove of the optical base and the slide holder is a state in which the slide holder is fitted in the groove of the optical base.
  • the slide holder has a shape movable in parallel to at least one surface with respect to the optical base, and the optical base and the slide holder are fixed after the optical axis is adjusted.
  • the fitting portion between the hole portion of the slide holder and the tilt holder is in a state where the tilt holder is fitted in the hole portion of the slide holder.
  • the tilt holder has a shape rotatable about at least one axis with respect to the slide holder, and after the optical axis is adjusted, the slide holder and the tilt holder are fixed.
  • the fitting portion between the groove of the optical base and the slide holder is a state in which the slide holder is fitted in the groove of the optical base.
  • the slide holder has a shape that can move in parallel to at least one surface with respect to the optical base, and the fitting portion between the hole of the slide holder and the tilt holder is a hole of the slide holder.
  • the tilt holder has a shape rotatable around at least one axis with respect to the slide holder in a state in which the tilt holder is fitted in a portion, and the optical base and the slide are adjusted after the optical axis is adjusted. A holder is fixed, and the slide holder and the tilt holder are fixed.
  • the tilt holder has a shape obtained by dividing a substantially spherical body by a plane, and an inner surface of the hole of the slide holder is substantially spherical, A convex portion having a substantially spherical shape of the tilt holder is fitted in the hole of the slide holder.
  • the tilt holder has a substantially columnar shape, and an inner surface of the hole of the slide holder has a substantially cylindrical surface shape.
  • the tilt holder has a substantially cylindrical shape having a substantially spherical concave portion on a bottom surface, and the hole portion of the slide holder is substantially on the bottom surface.
  • a convex portion having a spherical shape is provided, a side surface is substantially cylindrical, and the convex portion is fitted in the concave portion.
  • the tilt holder is substantially cylindrical, and the hole of the slide holder has a depth equal to or greater than a thickness of the tilt holder, Is substantially cylindrical.
  • the slide holder has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including the axis thereof, and an inner surface of a groove of the optical base Is a substantially cylindrical surface, and is a convex portion which is a substantially cylindrical side surface of the slide holder. The force is fitted in the groove of the optical base.
  • the slide holder has a concave portion having a substantially cylindrical surface shape on a bottom surface, and the groove of the optical base has a substantially cylindrical side surface shape on the bottom surface. And the convex portion is fitted into the concave portion.
  • the optical pickup device since the optical pickup device includes the first or second semiconductor laser device, the optical pickup device has high heat dissipation efficiency and little temperature rise. Therefore, malfunction due to temperature rise does not occur.
  • FIG. 1 is a plan view showing the configuration of the semiconductor laser device according to the first embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is an exploded perspective view of the semiconductor laser device according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 1 of the present invention.
  • the X-axis is the left-right direction
  • the Y-axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the semiconductor laser device 1 includes an optical base 2, a tilt holder 3, and a slide holder 4.
  • a semiconductor package 5 which is a space is formed in the slide holder 4. Inside the semiconductor package 5, electronic components such as the semiconductor laser element 6 are installed. The semiconductor laser element 6 emits laser light 7. Laser light 7 emitted from the semiconductor laser element 6 is emitted to the outside of the optical base 2.
  • the optical base 2 is formed with a hole 2a whose inner surface is substantially spherical.
  • the rudder 3 has a shape that is obtained by dividing a substantially spherical body by a plane, and includes a convex portion 3a that is substantially spherical.
  • the groove holder 3 is formed with a substantially rectangular groove 3b.
  • the convex portion 3 a of the tilt holder 3 is fitted and fixed in the hole 2 a of the optical base 2, and the slide holder 4 is fitted and fixed in the groove 3 b of the tilt holder 3.
  • the groove 3b is larger than the outer shape of the slide holder 4. That is, the length of the groove 3b in the X-axis direction is longer than the length of the slide holder 4 in the X-axis direction.
  • the length (depth) of the groove 3b in the Z-axis direction is longer than the length (thickness) of the slide holder 4 in the Z-axis direction.
  • the semiconductor laser device 1 transmits heat from the semiconductor laser element 6 that generates heat by emitting the laser light 7 to the slide holder 4 and the tilt holder 3 in this order, and heat radiation grease. Directly transmitted from the tilt holder 3 to the optical base 2 without using a heat sink or the like. With this configuration, the semiconductor laser device 1 can achieve high heat dissipation efficiency. In addition, since the majority of the surface area of the holder holder 3 is in contact with the optical base 2, the amount of heat released to the optical base 2 is large.
  • the laser beam 7 emitted from the semiconductor laser element 6 installed inside the semiconductor package 5 is emitted to the outside of the optical base 2.
  • the slide holder 4, the tilt holder 3 and the optical base 2 are respectively formed with through holes (not shown) which are optical paths of the laser light 7.
  • the convex portion 3 a of the tilt holder 3 is fitted into the hole portion 2 a of the optical base 2. Then, the protrusion 3a can be slid with respect to the hole 2a, and the tilt holder 3 can be rotated about the X-axis, Y-axis, and Z-axis directions in the figure. Thereby, since the semiconductor laser element 6 also rotates, the direction of the optical axis of the laser light 7 can be changed. In this way, when the direction of the optical axis of the laser beam 7 becomes a desired direction, the rotation of the tilt holder 3 is stopped.
  • the contact area between the protrusion 3a and the hole 2a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the slide holder 4 is fitted in the groove 3 b of the tilt holder 3. Then, the length of the groove 3b and the slide holder 4 in the Y-axis direction are almost equal.
  • the length of the groove 3b in the X-axis and Z-axis directions is larger than the length of the slide holder 4 in the X-axis and Z-axis directions. Therefore, the slide holder 4 can be moved in the direction parallel to the ZX plane along the inner surface of the groove 3b. Thereby, the position of the optical axis of the laser beam 7 can be changed. In this way, when the direction of the optical axis of the laser beam 7 becomes a desired direction, the movement of the slide holder 4 is stopped.
  • the contact area between the slide holder 4 and the groove 3b is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the optical base 2, the tilt holder 3, the tilt holder 3, and the slide holder 4 And are fixed respectively.
  • the semiconductor laser device 1 according to the first embodiment has an effect that the emission direction of the laser light 7 can be easily adjusted and the heat dissipation efficiency is high. .
  • FIG. 5 is a plan view showing the configuration of the semiconductor laser device according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 7 is an exploded perspective view of the semiconductor laser device according to the second embodiment of the present invention.
  • FIG. 8 is a perspective view showing the configuration of the semiconductor laser device according to Embodiment 2 of the present invention.
  • the X-axis is the left-right direction
  • the Y-axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the same reference numerals are given to the same configurations as those of the semiconductor laser device 1 described in the first embodiment, and the description thereof is omitted.
  • the semiconductor laser device 11 includes an optical base 12, a tilt holder 13, and a slide holder 4.
  • the optical base 12 is formed with a hole 12a whose inner surface is substantially cylindrical. Further, the tilt holder 13 has a substantially cylindrical shape, and is formed with a substantially rectangular groove 13a.
  • the tilt holder 13 is fitted and fixed in the hole 12 a of the optical base 12, and the slide holder 4 is fitted and fixed in the groove 13 a of the tilt holder 13.
  • the groove 13a is larger than the outer shape of the slide holder 4. That is, the length of the groove 13a in the X-axis direction is longer than the length of the slide holder 4 in the X-axis direction. Further, the length (depth) of the groove 13a in the Z-axis direction is longer than the length (thickness) of the slide holder 4 in the Z-axis direction.
  • the semiconductor laser device 11 transmits heat from the semiconductor laser element 6 that generates heat by emitting the laser light 7 to the slide holder 4 and the tilt holder 13 in this order, and heat radiation grease. It is transmitted directly from the tilt holder 13 to the optical base 12 without using a heat sink or the like. With this configuration, the semiconductor laser device 11 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the tilt holder 13 is in contact with the optical base 12, the heat radiation to the optical base 12 is large.
  • the laser light 7 emitted from the semiconductor laser element 6 installed inside the semiconductor package 5 is emitted outside the optical base 12.
  • the slide holder 4, the tilt holder 13, and the optical base 12 are each formed with a through hole (not shown) that is an optical path of the laser beam 7.
  • the tilt holder 13 is fitted into the hole 12 a of the optical base 12. Then, the tilt holder 13 can be slid with respect to the hole 12a, and the tilt holder 13 can be rotated about the Z-axis direction in the figure. Thereby, since the semiconductor laser element 6 also rotates, the direction of the optical axis of the laser light 7 can be changed. In this way, when the direction of the optical axis of the laser beam 7 becomes a desired direction, the rotation of the tilt holder 13 is stopped.
  • the contact area between the tilt holder 13 and the hole 12a is relatively large, the desired frictional force between the two is desired. It is easy to stop at the position.
  • the slide holder 4 is fitted into the groove 13 a of the tilt holder 13. Then, the lengths of the groove 13a and the slide holder 4 in the Y-axis direction are almost equal.
  • the length of the groove 13a in the X-axis and Z-axis directions is longer than the length of the slide holder 4 in the X-axis and Z-axis directions. Therefore, the slide holder 4 can be moved in a direction parallel to the ZX plane along the inner surface of the groove 13a. Thereby, the position of the optical axis of the laser beam 7 can be changed. In this manner, when the direction of the optical axis of the laser beam 7 becomes a desired direction, the movement of the slide holder 4 is stopped.
  • the contact area between the slide holder 4 and the groove 13a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the optical base 12, the tilt holder 13, the tilt holder 13 and the slide holder 4 are fixed respectively.
  • an adhesive may be filled between the optical base 12 and the tilt holder 13 and between the tilt holder 13 and the slide holder 4, respectively.
  • the semiconductor laser device 11 according to the second embodiment has an effect that the emission direction of the laser light 7 can be easily adjusted and the heat dissipation efficiency is high. .
  • FIG. 9 is a plan view showing the configuration of the semiconductor laser device according to the third embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along the line CC in FIG.
  • FIG. 11 is an exploded perspective view of the semiconductor laser device according to the third embodiment of the present invention.
  • FIG. 15 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 3 of the present invention.
  • the X-axis is the left-right direction
  • the Y-axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the same reference numerals are given to the same configurations as those of the semiconductor laser device 1 described in the first embodiment, and the description thereof is omitted.
  • the semiconductor laser device 21 includes an optical base 22, a tilt holder 23, and a slide holder 4.
  • the laser beam 7 emitted from the semiconductor laser element 6 installed inside the semiconductor package 5 formed on the slide holder 4 is emitted to the outside of the optical base 22.
  • the optical base 22 is formed with a hole 22a having a substantially spherical surface on the bottom surface and a substantially cylindrical surface on the side surface. Further, the tilt holder 23 has a substantially cylindrical shape having a substantially spherical concave portion 23a on the bottom surface. Furthermore, the hollow holder 23 is formed with a substantially rectangular groove 23b.
  • a tilt holder 23 is fitted and fixed in the hole 22 a of the optical base 22.
  • the convex portion 22 b of the optical base 22 is fitted into the concave portion 23 a of the tilt holder 23.
  • the slide holder 4 is fitted and fixed in the groove 23b of the air holder 23.
  • the groove 23b is larger than the outer shape of the slide holder 4. That is, the length of the groove 23b in the X-axis direction is longer than the length of the slide holder 4 in the X-axis direction. Also, the length (depth) of the groove 23b in the Z-axis direction is longer than the length (thickness) of the slide holder 4 in the Z-axis direction!
  • the semiconductor laser device 21 of the third embodiment transmits heat from the semiconductor laser element 6 that generates heat by emitting the laser light 7 to the slide holder 4 and the tilt holder 23 in this order, Directly transmitted from the tilt holder 23 to the optical base 22 without using a heat sink or the like.
  • the semiconductor laser device 21 can achieve high heat dissipation efficiency.
  • the majority of the surface area of the tilt holder 23 is in contact with the optical base 22, the amount of heat radiation to the optical base 22 is large.
  • the laser light 7 emitted from the semiconductor laser element 6 installed inside the semiconductor package 5 is emitted to the outside of the optical base 22.
  • the slide holder 4, the tilt holder 23 and the optical base 22 are each formed with a through hole (not shown) which is an optical path of the laser beam 7.
  • a method for adjusting the optical axis of the laser beam 7 emitted from the semiconductor laser element 6 in the semiconductor laser device 21 having such a configuration will be described.
  • the optical base 22 and the tilt holder 23, and the tilt holder 23 and the slide holder 4 are not fixed, respectively.
  • the convex portion 22 b of the optical base 22 is fitted into the concave portion 23 a of the tilt holder 23.
  • the concave portion 23a is slid with respect to the convex portion 22b, and the tilt holder 23 is moved to the X-axis, Y-axis, and And can be rotated around the Z-axis direction.
  • the semiconductor laser element 6 also rotates, so that the direction of the optical axis of the laser light 7 can be changed.
  • the rotation of the tilt holder 23 is stopped.
  • the contact area between the convex portion 22b and the concave portion 23a is relatively large, it is easy to stop at a desired position by the frictional force between them.
  • the slide holder 4 is fitted into the groove 23b of the tilt holder 23. Then, the lengths of the groove 23b and the slide holder 4 in the Y-axis direction are almost equal.
  • the length of the groove 23b in the X-axis and Z-axis directions is longer than the length of the slide holder 4 in the X-axis and Z-axis directions. Therefore, in the groove 23b, the slide holder 4 can be moved in a direction parallel to the ZX plane. As a result, the position of the optical axis of the laser beam 7 can be changed. In this way, the movement of the slide holder 4 is stopped when the direction of the optical axis of the laser beam 7 becomes a desired direction.
  • the contact area between the slide holder 4 and the groove 23b is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the optical axis of the semiconductor laser device 21 is adjusted by the above-described method so that the laser beam 7 reaches a desired position, and then the optical base 22 and the tilt holder 23, the tilt holder 23 and the slide holder 4 Are fixed respectively.
  • an adhesive may be filled between the optical base 22 and the tilt holder 23 and between the tilt holder 23 and the slide holder 4, respectively.
  • the semiconductor laser device 21 according to the third embodiment has an effect that the emission direction of the laser light 7 can be easily adjusted and the heat dissipation efficiency is high. .
  • FIG. 13 is a plan view showing the configuration of the semiconductor laser device according to the fourth embodiment of the present invention.
  • 14 is a cross-sectional view taken along the line DD in FIG.
  • FIG. 15 is an exploded perspective view of the semiconductor laser device according to Embodiment 4 of the present invention.
  • FIG. 16 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 4 of the present invention.
  • the X-axis is the left-right direction
  • the Y-axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the semiconductor laser device 31 according to the fourth embodiment includes an optical base 32, a tilt holder 33, and a slide holder 34! /.
  • a semiconductor package 35 that is a space is formed in the air holder 33. Inside the semiconductor package 35, electronic components such as the semiconductor laser element 36 are installed. The semiconductor laser element 36 emits laser light 37. Laser light 37 emitted from the semiconductor laser element 36 is emitted to the outside of the optical base 32.
  • the optical base 32 is formed with a substantially rectangular groove 32a. Further, the slide holder 34 is formed with a hole 34a whose inner surface is substantially spherical.
  • the hollow holder 33 has a shape obtained by dividing a substantially spherical body by a plane, and includes a convex portion 33a having a substantially spherical shape.
  • the slide holder 34 is fitted and fixed in the groove 32 a of the optical base 32.
  • the groove 32 a is larger than the outer shape of the slide holder 34. That is, the length of the groove 32a in the X-axis direction is longer than the length of the slide holder 34 in the X-axis direction. Further, the length (depth) of the groove 32a in the Z-axis direction is longer than the length (thickness) of the slide holder 34 in the Z-axis direction. Further, the projection 33a of the tilt holder 33 is fitted and fixed in the hole 34a of the slide holder 34.
  • the semiconductor laser device 31 of the fourth embodiment transmits heat from the semiconductor laser element 36, which generates heat by emitting the laser light 37, to the tilt holder 33 and the slide holder 34 in this order, and dissipates heat.
  • the light is transmitted directly from the slide holder 34 to the optical base 32 without using grease or a heat sink.
  • the semiconductor laser device 31 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the slide holder 34 is in contact with the optical base 32, the amount of heat released to the optical base 32 is large.
  • the laser light 37 emitted from the semiconductor laser element 36 installed inside the semiconductor package 35 is emitted outside the optical base 32.
  • a through-hole (not shown) that is an optical path of the laser beam 37 is formed in each of the tilt holder 33, the slide holder 34, and the optical base 32.
  • a method of adjusting the optical axis of the laser light 37 emitted from the semiconductor laser element 36 in the semiconductor laser device 31 having the above configuration will be described.
  • the optical base 32 and the slide holder 34, and the slide holder 34 and the tilt holder 33 are not fixed, respectively.
  • the convex portion 33 a of the tilt holder 33 is fitted into the hole 34 a of the slide holder 34.
  • the convex portion 33a can be slid with respect to the hole portion 34a, and the tilt holder 33 can be rotated about the X-axis, Y-axis, and Z-axis directions in the figure.
  • the semiconductor laser element 36 since the semiconductor laser element 36 also rotates, the direction of the optical axis of the laser light 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the rotation of the tilt holder 33 is stopped.
  • the contact area between the convex portion 33a and the hole portion 34a is relatively large, it is easy to stop at a desired position due to the frictional force therebetween.
  • the slide holder 34 is fitted into the groove 32 a of the optical base 32. Then, the length in the Y-axis direction of each of the groove 32a and the slide holder 34 is almost equal.
  • the length in the X-axis and Z-axis direction of the groove 32a is larger than the length of the slide holder 34 in the X-axis and Z-axis direction. Since it is long, the slide holder 34 can be moved in the direction parallel to the ZX plane in the groove 32a. Thereby, the position of the optical axis of the laser beam 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the movement of the slide holder 34 is stopped.
  • the contact area between the slide holder 34 and the groove 32a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the optical axis of the semiconductor laser device 31 is adjusted by the above-described method so that the laser light 37 reaches a desired position, and then the optical base 32 and the slide holder 34, the slide holder 34, and the tilt holder 33. And are fixed respectively.
  • an adhesive may be filled between the optical base 32 and the slide holder 34 and between the slide holder 34 and the tilt holder 33, respectively.
  • the semiconductor laser device 31 according to the fourth embodiment has the effects that the emission direction of the laser light 37 can be easily adjusted and the heat dissipation efficiency is high.
  • FIG. 17 is a plan view showing the configuration of the semiconductor laser device according to the fifth embodiment of the present invention.
  • 18 is a cross-sectional view taken along the line E-E in FIG.
  • FIG. 19 is an exploded perspective view of the semiconductor laser device according to Embodiment 5 of the present invention.
  • FIG. 20 shows an embodiment of the present invention.
  • FIG. 6 is a perspective view showing a configuration of a semiconductor laser device according to mode 5.
  • the X axis is the left-right direction
  • the Y axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the same reference numerals are given to the same components as those of the semiconductor laser device 31 described in the fourth embodiment, and the description thereof is omitted.
  • the semiconductor laser device 41 includes an optical base 32, a tilt holder 43, and a slide holder 44.
  • a semiconductor package 35 that is a space is formed in the air holder 43. Inside the semiconductor package 35, electronic components such as the semiconductor laser element 36 are installed. The semiconductor laser element 36 emits laser light 37. Laser light 37 emitted from the semiconductor laser element 36 is emitted to the outside of the optical base 32.
  • the optical base 32 is formed with a substantially rectangular groove 32a.
  • Slide holder 4
  • the hollow holder 43 has a substantially cylindrical shape.
  • a slide holder 44 is fitted and fixed in the groove 32a of the optical base 32.
  • the groove 32 a is larger than the outer shape of the slide holder 44. That is, the length of the groove 32a in the X-axis direction is longer than the length of the slide holder 44 in the X-axis direction.
  • the length (depth) of the groove 32a in the Z-axis direction is longer than the length (thickness) of the slide holder 44 in the Z-axis direction.
  • the tilt holder 43 is fitted and fixed in the hole 44 a of the slide holder 44.
  • the semiconductor laser device 41 of the fifth embodiment transmits heat from the semiconductor laser element 36, which generates heat by emitting the laser light 37, to the tilt holder 43 and the slide holder 44 in this order, and dissipates heat.
  • the light is transmitted directly from the slide holder 44 to the optical base 32 without using grease or a heat sink.
  • the semiconductor laser device 41 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the slide holder 44 is in contact with the optical base 32, the amount of heat radiation to the optical base 32 is large.
  • the laser light 37 emitted from the semiconductor laser element 36 installed inside the semiconductor package 35 is emitted outside the optical base 32.
  • the hollow holder 43, the slide holder 44, and the optical base 32 have through holes (not shown) that are optical paths of the laser light 37. Are formed respectively.
  • the tilt holder 43 is fitted into the hole 44 a of the slide holder 44. Then, the tilt holder 43 can be slid with respect to the slide holder 44 and the tilt holder 33 can be rotated around the Z-axis direction in the figure. Thereby, the semiconductor laser element 36 also rotates, so that the direction of the optical axis of the laser light 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the rotation of the tilt holder 43 is stopped.
  • the contact area between the tilt holder 43 and the hole 44a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the slide holder 44 is fitted into the groove 32 a of the optical base 32. Then, the length in the Y-axis direction of each of the groove 32a and the slide holder 44 is almost equal.
  • the length in the X-axis and Z-axis direction of the groove 32a is larger than the length of the slide holder 44 in the X-axis and Z-axis direction. Since it is long, the slide holder 44 can be moved in the direction parallel to the ZX plane in the groove 32a. Thereby, the position of the optical axis of the laser beam 37 can be changed. In this way, the movement of the slide holder 44 is stopped when the optical axis direction of the laser beam 37 becomes a desired direction.
  • the contact area between the slide holder 44 and the groove 32a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the optical axis of the semiconductor laser device 41 is adjusted by the above-described method so that the laser beam 37 reaches a desired position, and then the optical base 32 and the slide holder 44, and the slide holder 44 and the tilt holder 43 And are fixed respectively.
  • an adhesive may be filled between the optical base 32 and the slide holder 44 and between the slide holder 44 and the tilt holder 43, respectively.
  • the semiconductor laser device 41 according to the fifth embodiment has an effect that the emission direction of the laser light 37 can be easily adjusted and the heat dissipation efficiency is high.
  • FIG. 21 is a plan view showing the configuration of the semiconductor laser device according to the sixth embodiment of the present invention. 22 is a cross-sectional view taken along the line FF in FIG.
  • FIG. 23 is an exploded perspective view of the semiconductor laser device according to Embodiment 6 of the present invention.
  • FIG. 24 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 6 of the present invention.
  • the X axis is the left-right direction
  • the Y axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the same reference numerals are given to the same components as those of the semiconductor laser device 31 described in the fourth embodiment, and the description thereof is omitted.
  • the semiconductor laser device 51 includes an optical base 32, a tilt holder 53, and a slide holder 54! /.
  • a semiconductor package 35 as a space is formed in the air holder 53. Inside the semiconductor package 35, electronic components such as the semiconductor laser element 36 are installed. The semiconductor laser element 36 emits laser light 37. Laser light 37 emitted from the semiconductor laser element 36 is emitted to the outside of the optical base 32.
  • the optical base 32 is formed with a substantially rectangular groove 32a.
  • Slide holder 5
  • the tilt holder 53 has a concave portion 53a having a substantially spherical shape on the bottom surface.
  • a slide holder 54 is fitted and fixed in the groove 32a of the optical base 32.
  • the groove 32a is larger than the outer shape of the slide holder 54. That is, the length of the groove 32a in the X-axis direction is longer than the length of the slide holder 54 in the X-axis direction. Further, the length (depth) of the groove 32a in the Z-axis direction is longer than the length (thickness) of the slide holder 54 in the Z-axis direction.
  • a tilt holder 53 is fitted and fixed in the hole 54a of the slide holder 54. At this time, the convex portion 54 b of the slide holder 54 is fitted into the concave portion 53 a of the tilt holder 53.
  • the semiconductor laser device 51 of the sixth embodiment transmits heat from the semiconductor laser element 36, which generates heat by emitting the laser light 37, in the order of the tilt holder 53 and the slide holder 54.
  • the semiconductor laser device 51 can achieve high heat dissipation efficiency.
  • the heat radiation to the optical base 32 is large.
  • the laser light 37 emitted from the semiconductor laser element 36 installed inside the semiconductor package 35 is emitted to the outside of the optical base 32.
  • a through-hole (not shown) that is an optical path of the laser beam 37 is formed in each of the tilt holder 53, the slide holder 54, and the optical base 32.
  • a method of adjusting the optical axis of the laser beam 37 emitted from the semiconductor laser element 36 in the semiconductor laser device 51 having such a configuration will be described.
  • the optical base 32 and the slide holder 54, and the slide holder 54 and the tilt holder 53 are not fixed, respectively.
  • the recess 53 a of the tilt holder 53 is fitted into the projection 54 b of the slide holder 54.
  • the concave portion 53a can be slid with respect to the convex portion 54b, and the carrier holder 53 can be rotated about the X-axis, Y-axis, and Z-axis directions in the figure.
  • the semiconductor laser element 36 since the semiconductor laser element 36 also rotates, the direction of the optical axis of the laser light 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the rotation of the tilt holder 53 is stopped.
  • the contact area between the convex portion 54b and the concave portion 53a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the slide holder 54 is fitted into the groove 32a of the optical base 32. Then, the lengths of the groove 32a and the slide holder 54 in the Y-axis direction are almost equal.
  • the length of the groove 32a in the X-axis and Z-axis directions is larger than the length of the slide holder 54 in the X-axis and Z-axis directions. Since it is long, the slide holder 54 can be moved in the direction parallel to the ZX plane in the groove 32a. Thereby, the position of the optical axis of the laser beam 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the movement of the slide holder 54 is stopped.
  • the contact area between the slide holder 54 and the groove 32a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the optical axis of the semiconductor laser device 51 is adjusted by the method described above, and the laser is placed at a desired position. After the light 37 reaches, the optical base 32 and the slide holder 54, and the slide holder 54 and the tilt holder 53 are fixed, respectively. For example, an adhesive may be filled between the optical base 32 and the slide holder 54 and between the slide holder 54 and the tilt holder 53, respectively.
  • the semiconductor laser device 51 according to the sixth embodiment has an effect that the emission direction of the laser light 37 can be easily adjusted and the heat dissipation efficiency is high.
  • FIG. 25 is a plan view showing the configuration of the semiconductor laser device according to the seventh embodiment of the present invention.
  • FIG. 26 is a cross-sectional view taken along line GG in FIG.
  • FIG. 27 is an exploded perspective view of the semiconductor laser device according to the seventh embodiment of the present invention.
  • FIG. 28 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 7 of the present invention.
  • the X-axis is the left-right direction
  • the Y-axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the semiconductor laser device 61 includes an optical base 62, a tilt holder 63, and a slide holder 64! /.
  • the slide holder 64 has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including its axis, and includes a convex portion 64a that is a side surface of the substantially cylindrical shape.
  • a semiconductor package 65 that is a space is formed in the slide holder 64. Inside the semiconductor package 65, electronic components such as a semiconductor laser element 66 are installed. The semiconductor laser element 66 emits laser light 67. Laser light 67 emitted from the semiconductor laser element 66 is emitted outside the optical base 62.
  • the optical base 62 is formed with a hole 62a whose inner surface is substantially cylindrical. Further, the tilt holder 63 has a substantially cylindrical shape. A groove 63a is formed in the tilt holder 63. The inner surface of the groove 63a is substantially cylindrical.
  • the tilt holder 63 is fitted and fixed in the hole 62a of the optical base 62, and the convex portion 64a of the slide holder 64 is fitted and fixed in the groove 63a of the tilt holder 63.
  • the groove 63a is larger than the outer shape of the slide holder 64. That is, the length of the groove 63a in the X-axis direction is It is longer than the length of the holder 64 in the X-axis direction. Further, the inner surface of the groove 63a and the slide holder 64 are substantially in contact with each other.
  • the semiconductor laser device 61 of the seventh embodiment transmits heat from the semiconductor laser element 66, which generates heat by emitting the laser light 67, to the slide holder 64 and the tilt holder 63 in this order, and thus heat radiation grease. Then, the light is directly transmitted from the tilt holder 63 to the optical base 62 without using a heat sink or the like.
  • the semiconductor laser device 61 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the tilt holder 63 is in contact with the optical base 62, the amount of heat released to the optical base 62 is large.
  • the laser beam 67 emitted from the semiconductor laser element 66 installed inside the semiconductor package 65 is emitted outside the optical base 62.
  • the slide holder 64, the tilt holder 63, and the optical base 62 are formed with through holes (not shown) that are optical paths of the laser light 67, respectively.
  • a method of adjusting the optical axis of the laser beam 67 emitted from the semiconductor laser element 66 in the semiconductor laser device 61 having such a configuration will be described.
  • the optical base 62 and the tilt holder 63, and the tilt holder 63 and the slide holder 64 are not fixed, respectively.
  • the tilt holder 63 is fitted into the hole 62 a of the optical base 62. Then, the hollow roller 63 can be slid against the hole 62a, and the hollow roller 63 can be rotated around the Z-axis direction in the figure. As a result, the semiconductor laser element 66 also rotates, so that the direction of the optical axis of the laser light 67 can be changed. In this way, when the direction of the optical axis of the laser beam 67 becomes a desired direction, the rotation of the tilt holder 63 is stopped.
  • the contact area between the tilt holder 63 and the hole 62a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the slide holder 64 is fitted into the groove 63a of the tilt holder 63. Then, since the length of the groove 63a in the X-axis direction is longer than the length of the slide holder 64 in the X-axis direction, the slide holder 64 can be slid in the X-axis direction in the groove 63a. Further, the slide holder 64 can be rotated about the X-axis direction by sliding the convex portion 64a of the slide holder 64 against the inner surface of the groove 63a. As a result, the semiconductor laser element 66 is also rotated and linearly Since it moves, the position and direction of the optical axis of the laser beam 67 can be changed.
  • the optical axis of the semiconductor laser device 61 is adjusted by the above-described method so that the laser beam 67 reaches a desired position, and then the optical base 62 and the tilt holder 63, the tilt holder 63 and the slide holder 64 are connected. Fix each one.
  • an adhesive may be filled between the optical base 62 and the holder 69 and between the holder 63 and the slide holder 64, respectively.
  • the semiconductor laser device 61 according to the seventh embodiment has an effect that the emission direction of the laser light 67 can be easily adjusted and the heat dissipation efficiency is high.
  • FIG. 29 is a plan view showing the configuration of the semiconductor laser device according to the eighth embodiment of the present invention.
  • FIG. 30 is a cross-sectional view taken along line HH in FIG.
  • FIG. 31 is an exploded perspective view of the semiconductor laser device according to Embodiment 8 of the present invention.
  • FIG. 32 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 8 of the present invention.
  • the X-axis is the left-right direction
  • the Y-axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the same reference numerals are given to the same configurations as those of the semiconductor laser device 61 described in the seventh embodiment, and the description thereof is omitted.
  • the semiconductor laser device 71 includes an optical base 62, a tilt holder 73, and a slide holder 74! /.
  • a recess 74a is formed on the bottom surface of the slide holder 74.
  • the recess 74a has a substantially cylindrical surface shape.
  • a semiconductor package 65 that is a space is formed in the slide holder 74. Inside the semiconductor package 65, electronic components such as a semiconductor laser element 66 are installed.
  • the semiconductor laser element 66 emits laser light 67. From semiconductor laser element 66 The emitted laser beam 67 is emitted to the outside of the optical base 62.
  • the optical base 62 is formed with a hole 62a whose inner surface is substantially cylindrical. Further, the tilt holder 73 is substantially cylindrical. A groove 73a is formed in the tilt holder 73. On the bottom surface of the groove 73a, a convex portion 73b having a substantially cylindrical side surface shape is formed.
  • a tilt holder 73 is fitted and fixed in the hole 62a of the optical base 62.
  • a slide holder 74 is fitted and fixed in the groove 73a of the carrier holder 73.
  • the convex portion 73b formed on the bottom surface of the groove 73a fits into the concave portion 74a of the slide holder 74.
  • the groove 73a is larger than the outer shape of the slide holder 74. That is, the length of the groove 73a in the X-axis direction is longer than the length of the slide holder 74 in the X-axis direction.
  • the semiconductor laser device 71 of the eighth embodiment transmits heat from the semiconductor laser element 66, which generates heat by emitting the laser light 67, to the slide holder 74 and the tilt holder 73 in this order, and thus heat radiation grease. Then, the light is transmitted directly from the tilt holder 73 to the optical base 62 without using a heat sink or the like.
  • the semiconductor laser device 71 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the tilt holder 73 is in contact with the optical base 62, the amount of heat released to the optical base 62 is large.
  • the laser beam 67 emitted from the semiconductor laser element 66 installed inside the semiconductor package 65 is emitted outside the optical base 62.
  • the slide holder 74, the tilt holder 73, and the optical base 62 are formed with through holes (not shown) that are optical paths of the laser light 67, respectively.
  • a method of adjusting the optical axis of the laser beam 67 emitted from the semiconductor laser element 66 in the semiconductor laser device 71 having such a configuration will be described.
  • the optical base 62 and the tilt holder 73, and the tilt holder 73 and the slide holder 74 are not fixed, respectively.
  • the tilt holder 73 is fitted into the hole 62 a of the optical base 62. Then, the tilt holder 73 can be slid with respect to the hole 62a and rotated around the Z-axis direction in the figure. As a result, the semiconductor laser element 66 also rotates, so that the direction of the optical axis of the laser light 67 can be changed. In this way, when the direction of the optical axis of the laser beam 67 becomes a desired direction, the rotation of the tilt holder 73 is stopped. Where Since the contact area of the hole 62a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the slide holder 74 is fitted into the groove 73 a of the tilt holder 73. Then, since the length of the groove 73a in the X-axis direction is longer than the length of the slide holder 74 in the X-axis direction, the slide holder 74 can be slid in the X-axis direction in the groove 73a. Further, the slide holder 74 can be rotated about the X-axis direction by sliding the recess 74a of the slide holder 74 with respect to the projection 73b on the bottom surface of the groove 73a. As a result, the semiconductor laser element 66 also rotates and linearly moves, so that the position and direction of the optical axis of the laser light 67 can be changed.
  • the optical axis of the semiconductor laser device 71 is adjusted by the above-described method so that the laser beam 67 reaches a desired position, and then the optical base 62, the tilt holder 73, the tilt holder 73, and the slide holder 74 are moved. Fix each one.
  • an adhesive may be filled between the optical base 62 and the carrier holder 73 and between the carrier holder 73 and the slide holder 74, respectively.
  • the semiconductor laser device 71 according to the eighth embodiment has the effect that the emission direction of the laser light 67 can be easily adjusted and the heat dissipation efficiency is high.
  • FIG. 33 is a plan view showing the configuration of the semiconductor laser device according to the ninth embodiment of the present invention.
  • FIG. 34 is a cross-sectional view taken along the line II in FIG.
  • FIG. 35 is an exploded perspective view of the semiconductor laser device according to the ninth embodiment of the present invention.
  • FIG. 36 is a perspective view showing the configuration of the semiconductor laser apparatus according to the ninth embodiment of the present invention.
  • the X-axis is the left-right direction
  • the Y-axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • a semiconductor laser device 81 according to the ninth embodiment includes an optical base 82, a tilt holder 83, and a slurry. Id holder 84!
  • the slide holder 84 has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including its axis, and includes a convex portion 84b that is a side surface of the substantially circular cylinder. Further, the slide holder 84 is formed with a hole 84a having an inner surface that is substantially cylindrical.
  • the hollow holder 83 is substantially cylindrical.
  • the cavity holder 83 is formed with a semiconductor package 85 which is a space. Inside the semiconductor package 85, electronic components such as the semiconductor laser element 86 are installed. The semiconductor laser element 86 emits laser light 87. Laser light 87 emitted from the semiconductor laser element 86 is emitted to the outside of the optical base 82.
  • a groove 82a is formed in the optical base 82.
  • the inner surface of the groove 82a is substantially cylindrical.
  • the convex portion 84b of the slide holder 84 is fitted and fixed in the groove 82a of the optical base 82, and the tilt holder 83 is fitted and fixed in the hole portion 84a of the slide holder 84.
  • the groove 82a is larger than the outer shape of the slide holder 84. That is, the length of the groove 82a in the X-axis direction is longer than the length of the slide holder 84 in the X-axis direction.
  • the semiconductor laser device 81 of the ninth embodiment transmits heat from the semiconductor laser element 86, which generates heat by emitting the laser light 87, to the tilt holder 83 and the slide holder 84 in this order, and dissipates heat. Then, the light is transmitted directly from the slide holder 84 to the optical base 82 without using a heat sink or the like.
  • the semiconductor laser device 81 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the slide holder 84 is in contact with the optical base 82, the heat radiation to the optical base 82 is large.
  • the laser light 87 emitted from the semiconductor laser element 86 installed inside the semiconductor package 85 is emitted outside the optical base 82.
  • the slide holder 84, the tilt holder 83, and the optical base 82 are formed with through holes (not shown) that are optical paths of the laser light 87, respectively.
  • the tilt holder 83 is fitted into the hole 84 a of the slide holder 84. Then The holder 83 can be rotated about the Z-axis direction in the figure by sliding the holder 83 with respect to the hole 84a. Further, the length (depth) of the hole portion 84a in the Z-axis direction is longer than the length (thickness) of the tilt holder 83 in the Z-axis direction. Therefore, the tilt holder 83 can be slid in the Z-axis direction with respect to the hole 84a. As a result, the semiconductor laser element 86 also rotates and linearly moves, so that the direction and position of the optical axis of the laser light 87 can be changed.
  • the slide holder 84 is fitted into the groove 82a of the optical base 82. Then, since the length of the groove 82a in the X-axis direction is longer than the length of the slide holder 84 in the X-axis direction, the slide holder 84 can be slid in the X-axis direction in the groove 82a. Further, the slide holder 84 can be rotated around the X-axis direction by sliding the convex portion 84b of the slide holder 84 with respect to the groove 82a. As a result, the semiconductor laser element 86 also rotates and linearly moves, so that the position and direction of the optical axis of the laser light 87 can be changed.
  • the optical axis of the semiconductor laser device 81 is adjusted by the above-described method so that the laser beam 87 reaches a desired position, and then the optical base 82 and the slide holder 84, and the slide holder 84 and the tilt holder 83 are used. And are fixed respectively.
  • an adhesive may be filled between the optical base 82 and the slide holder 84 and between the slide holder 84 and the tilt holder 83, respectively.
  • the semiconductor laser device 81 according to the ninth embodiment has the effect that the emission direction of the laser light 87 can be easily adjusted and the heat dissipation efficiency is high.
  • FIG. 37 is a plan view showing the configuration of the semiconductor laser device according to the tenth embodiment of the present invention. is there.
  • FIG. 38 is a cross-sectional view taken along the line JJ in FIG.
  • FIG. 39 is an exploded perspective view of the semiconductor laser device according to the tenth embodiment of the present invention.
  • FIG. 40 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 10 of the present invention.
  • the X axis is the left-right direction
  • the Y axis is the up-down direction
  • the Z-axis is the direction perpendicular to the page.
  • the same reference numerals are given to the same configurations as those of the semiconductor laser device 81 described in the ninth embodiment, and the description thereof is omitted.
  • the semiconductor laser device 91 includes an optical base 92, a tilt holder 83, and a slide holder 94.
  • a concave portion 94a having a substantially cylindrical surface shape is formed on the bottom surface of the slide holder 94. Further, the slide holder 94 is formed with a hole 94b whose inner surface is substantially cylindrical.
  • the air holder 83 is substantially cylindrical.
  • the cavity holder 83 is formed with a semiconductor package 85 which is a space. Inside the semiconductor package 85, electronic components such as a semiconductor laser element 86 are installed. The semiconductor laser element 86 emits laser light 87. Laser light 87 emitted from the semiconductor laser element 86 is emitted to the outside of the optical base 92.
  • the optical base 92 is formed with a groove 92a in which a convex portion 92b having a substantially cylindrical side surface is formed on the bottom surface.
  • a slide holder 94 is fitted and fixed in the groove 92a of the optical base 92. At that time, the convex portion 92b fits into the concave portion 94a.
  • a tilt holder 83 is fitted and fixed in the hole 94b of the slide holder 94.
  • the groove 92a is larger than the outer shape of the slide holder 94. That is, the length of the groove 92a in the X-axis direction is longer than the length of the slide holder 94 in the X-axis direction.
  • the semiconductor laser device 91 of the tenth embodiment transmits heat from the semiconductor laser element 86, which generates heat by emitting the laser light 87, to the tilt holder 83 and the slide holder 94 in this order, and dissipates heat.
  • the light is transmitted directly from the slide holder 94 to the optical base 92 without using a heat sink or the like.
  • the semiconductor laser device 91 can achieve high heat dissipation efficiency.
  • the amount of heat released to the optical base 92 is large.
  • the laser beam 87 emitted from the semiconductor laser element 86 installed inside the semiconductor package 85 is emitted outside the optical base 92.
  • the slide holder 94, the tilt holder 83, and the optical base 92 are formed with through holes (not shown) that are optical paths of the laser light 87, respectively.
  • the tilt holder 83 is fitted into the hole 94b of the slide holder 94. Then, the tilt holder 83 can be slid with respect to the hole 94b, and the tilt holder 83 can be rotated around the Z-axis direction in the figure. Further, the length (depth) of the hole 94b in the Z-axis direction is longer than the length (thickness) of the tilt holder 83 in the Z-axis direction. Therefore, the tilt holder 83 can be slid in the Z-axis direction with respect to the hole 94b. As a result, the semiconductor laser element 86 also rotates and linearly moves, so that the direction and position of the optical axis of the laser light 87 can be changed.
  • the slide holder 94 is fitted into the groove 92a of the optical base 92. Then, since the length in the X-axis direction of the groove 92a is longer than the length in the X-axis direction of the slide holder 94, the slide holder 94 can be slid in the X-axis direction in the groove 92a. Further, since the convex portion 92b is fitted in the concave portion 94a, the concave portion 94a of the slide holder 94 can be rotated about the X-axis direction by sliding the concave portion 94a with respect to the convex portion 92b.
  • the semiconductor laser element 86 also rotates and linearly moves, so that the position and direction of the optical axis of the laser light 87 can be changed. In this way, when the direction of the optical axis of the laser beam 87 becomes a desired direction, the rotation and linear motion of the slide holder 94 are stopped.
  • the contact area between the concave portion 94a and the convex portion 92b is relatively large, it is easy to stop at a desired position due to the frictional force between them.
  • the optical axis of the semiconductor laser device 91 is adjusted by the above-described method, and the laser is moved to a desired position. After the light 87 reaches, the optical base 92 and the slide holder 94, and the slide holder 94 and the tilt holder 83 are fixed, respectively. For example, an adhesive may be filled between the optical base 92 and the slide holder 94 and between the slide holder 94 and the tilt holder 83, respectively.
  • the semiconductor laser device 91 according to the tenth embodiment has the effect that the emission direction of the laser light 87 can be easily adjusted and the heat dissipation efficiency is high.
  • FIG. 41 is a plan view showing the configuration of the optical pickup device according to the eleventh embodiment of the present invention.
  • an optical pickup device includes a semiconductor laser device 101, an optical lens 106 and an optical base 104 having an actuator 105, a heat radiating plate 103 for radiating the heat of the optical base 104 to the outside, an optical lens 106, and the like. And a guide shaft 107 for driving in the tracking direction.
  • FIG. 41 shows a state where an optical disc 100 which is an optical information recording medium is loaded.
  • any one of the semiconductor laser devices shown in the first embodiment to L0 may be used.
  • the semiconductor laser device 101 emits laser light.
  • Laser light emitted from the semiconductor laser device 101 is incident on the optical lens 106 through an optical element (not shown) such as a reflecting mirror or a diffraction grating.
  • the actuator 105 drives the optical lens 106 in the focus direction or the tracking direction. As a result, the laser beam is focused on the optical disc 100.
  • a laser beam emitted from the semiconductor laser device 101 is irradiated to a predetermined portion of the optical disc 100 through the optical lens 106.
  • a recording mark is written at the location irradiated with the laser beam.
  • Information is reproduced by detecting the reflected light of the laser light irradiated to the optical disc 100 through the optical lens 106 by a detection element (not shown).
  • any one of the embodiments 1 to 10 used in the optical pickup device is used.
  • the semiconductor laser device 101 has high heat generation efficiency. Therefore, while the optical pickup device is being driven, the temperature rise is small although the laser beam is constantly emitted from the semiconductor laser device 101. As a result, the semiconductor laser device 101 and the optical pickup device do not run out of temperature and are less deteriorated!
  • Embodiments 1 to 11 are merely examples, and the present invention is not limited to these specific examples.
  • the semiconductor laser device and the optical pickup device of the present invention can be used for an optical information recording / reproducing apparatus or the like that enables recording medium having a large capacity and high-speed recording.

Abstract

A semiconductor laser device (1) is provided with a slide holder (4) having a space (5) wherein a semiconductor laser element (6) is arranged, a swing/tilt mechanism holder (3) having a groove (3b) which is for fitting the slide holder (4) and is larger than the outer shape of the slide holder (4), and an optical base (2) having a hole part wherein the swing/tilt mechanism holder (3) fits. In the hole part of the optical base (2), the swing/tilt mechanism holder (3) is fitted and fixed, and the slide holder (4) is fitted and fixed in the groove (3b) of the swing/tilt mechanism holder (3). Thus, heat dissipating efficiency of the semiconductor laser device and an optical pickup device can be improved.

Description

明 細 書  Specification
半導体レーザ装置およびそれを備えた光ピックアップ装置  Semiconductor laser device and optical pickup device having the same
技術分野  Technical field
[0001] 本発明は、半導体レーザ装置に関する。特に、光学式情報記録媒体に情報信号を 記録もしくは再生するための光ピックアップ装置に搭載される半導体レーザ装置およ びそれを備えた光ピックアップ装置に関するものである。  [0001] The present invention relates to a semiconductor laser device. In particular, the present invention relates to a semiconductor laser device mounted on an optical pickup device for recording or reproducing an information signal on an optical information recording medium, and an optical pickup device including the semiconductor laser device.
背景技術  Background art
[0002] 光ピックアップ装置は、光学式情報記録媒体である光ディスク等にオーディオ信号 、文字信号および映像信号等の情報信号を記録し、再生する装置である。光ピック アップ装置は、レーザ光を光ディスク等の信号記録面に照射することで記録マークを 記入して、情報信号の記録を行う。また、光ピックアップ装置は、信号記録面にレー ザ光を照射し、レーザ光の反射光を光検出器で受光することにより再生を行う。その ため、光ピックアップ装置は、レーザ光の出射方向を規定する半導体レーザ装置を 備え、半導体レーザ装置にはレーザ光を出射する半導体レーザ素子が搭載されて いる。  An optical pickup device is a device that records and reproduces information signals such as audio signals, character signals, and video signals on an optical disc that is an optical information recording medium. The optical pickup device records information signals by irradiating a signal recording surface such as an optical disk with laser light to fill in a recording mark. In addition, the optical pickup device performs reproduction by irradiating the signal recording surface with laser light and receiving the reflected light of the laser light with a photodetector. For this reason, the optical pickup device includes a semiconductor laser device that defines the emission direction of the laser light, and a semiconductor laser element that emits the laser light is mounted on the semiconductor laser device.
[0003] 近年情報の高密度化が進むにしたがって記録再生の高速ィ匕が要求されている。記 録再生の高速ィ匕のためには、出力の高い半導体レーザ素子を用いる必要がある。そ のため、半導体レーザ発振時に発生する熱量も大きくなる。例えば、現在の光ピック アップ装置に使用されている半導体レーザ素子では、発振時の温度は 80〜90° C程 度に達する。  In recent years, as information density has increased, a high-speed recording / reproduction is required. For high-speed recording / reproduction, it is necessary to use a semiconductor laser element having a high output. As a result, the amount of heat generated during semiconductor laser oscillation also increases. For example, in the semiconductor laser element used in the current optical pickup device, the temperature during oscillation reaches about 80 to 90 ° C.
[0004] また、近年、薄型ノートパソコンに用いられる等、光ピックアップ装置の小型化およ び高密度化が進んでいる。それにより、光ピックアップ装置全体も半導体レーザ素子 の発熱の影響を受け、高温条件下で動作することになる可能性もある。  [0004] Further, in recent years, optical pickup devices, such as those used in thin notebook personal computers, have been reduced in size and density. As a result, the entire optical pickup device is also affected by the heat generated by the semiconductor laser element, and may operate under high temperature conditions.
[0005] し力も、半導体レーザ素子は、動作温度が高温になると出力が減少するため、その 分駆動電流を増大させなければならない。したがって、半導体レーザ素子は高温に よる劣化に加え、駆動電流の増大による劣化が加わり素子寿命がさらに短くなる。ま た、高温になることで、光ピックアップ装置または半導体レーザ装置に用いられている 、各部品を固定するための接着剤が軟ィ匕し、各部品の固定位置が変動する。それに より、半導体レーザ装置および光ピックアップ装置の性能が劣化する可能性もある。 [0005] However, since the output of the semiconductor laser device decreases when the operating temperature becomes high, the drive current must be increased accordingly. Therefore, the semiconductor laser element is further deteriorated due to an increase in driving current in addition to deterioration due to high temperature, and the element life is further shortened. It is also used in optical pickup devices or semiconductor laser devices due to high temperatures. The adhesive for fixing each component softens, and the fixing position of each component varies. As a result, the performance of the semiconductor laser device and the optical pickup device may be deteriorated.
[0006] このように、半導体レーザ装置にお!、て、半導体レーザ素子で発生する熱を 、かに 放熱するかは極めて重要な課題であり、従来力 種々の提案がなされている。例え ば、特許文献 1には、榭脂またはセラミック力 なる半導体レーザ素子の筐体部ある いはフレーム構造を、熱容量の大きい金属体等 (放熱板)に接触させる方法が開示さ れている。具体的には、半導体レーザ素子、受光素子、プリズムおよびレンズ等から なる光学系を収納した可動ボビンと放熱板とを一体に成型している。また、特許文献 2にも放熱板を用いて放熱を促す方法が開示されている。しかし、このように放熱板を 用いる方法は、別途放熱板を形成し配備するために構造が複雑になる上、製造工程 における工数が増大するため高コストである。  [0006] As described above, it is an extremely important issue whether or not the heat generated in the semiconductor laser element is dissipated in the semiconductor laser device, and various proposals have been made in the past. For example, Patent Document 1 discloses a method of bringing a casing or frame structure of a semiconductor laser element having a resin or ceramic power into contact with a metal body or the like (heat sink) having a large heat capacity. Specifically, a movable bobbin housing an optical system including a semiconductor laser element, a light receiving element, a prism, a lens, and the like and a heat radiating plate are integrally molded. Patent Document 2 also discloses a method of promoting heat dissipation using a heat sink. However, such a method using a heat sink is expensive because a separate heat sink is provided and the structure is complicated, and the number of steps in the manufacturing process increases.
[0007] このような問題を解決する方法として、金属等の熱伝導性を有する材料により形成 された光ピックアップ装置のカバーを放熱板として用いる方法もある(例えば、特許文 献 3参照)。しかし、この構成では、光ピックアップ装置のカバーの面積により放熱量 が決定されるので、光ピックアップ装置の小型化および薄型化の障害になる。  [0007] As a method for solving such a problem, there is a method in which a cover of an optical pickup device formed of a material having thermal conductivity such as metal is used as a heat radiating plate (for example, see Patent Document 3). However, in this configuration, since the amount of heat radiation is determined by the area of the cover of the optical pickup device, it becomes an obstacle to miniaturization and thinning of the optical pickup device.
[0008] 特許文献 4には、半導体レーザ素子を備えている光学ユニットを、光学基台に押し 付けることにより光軸の方向を保持する、従来の半導体レーザ装置が開示されている 。図 42は従来の半導体レーザ装置の構成を示す分解斜視図である。図 42に示すよ うに、従来の半導体レーザ装置において、光学基台 202の装着部 218に、半導体レ 一ザ素子 206を備えた光学ユニット 210が嵌め込まれている。その際、光学基台 202 に取り付けられる保持板金 217の弹発切片 212が半導体レーザ素子 206に接触し、 かつ押し当て屈曲片 216が光学ユニット 210を光学基台 202に押さえ付ける。このよ うな従来の半導体レーザ装置では、半導体レーザ素子 206から発生する熱は、放熱 板である弾発切片 212を介して放出される。また、押し当て屈曲片 216により、光学 ユニット 210は光学基台 202に押さえ付けられて保持されているため、半導体レーザ 素子 206の光軸がずれることがない。しかし、この従来の光ピックアップ装置では、弹 発切片 212と半導体レーザ素子 206との接触面積を十分に得ることができず、十分 な放熱効率を得ることはできな 、。 [0009] 次に、このような半導体レーザ装置について模式図を用いて説明する。図 43は従 来の半導体レーザ装置の構成を模式的に示した側面図であり、図 44は従来の半導 体レーザ装置の構成を模式的に示した斜視図である。図 43および図 44に示すよう に、半導体レーザ装置 201において、光学基台 202の内部に、スライドホルダ 204お よびァオリホルダ 203を備える光学ユニットが設置されて!、る。スライドホルダ 204は 光学基台 202の内部の面に接触し、ァオリホルダ 203はスライドホルダ 204に接触し て設置されている。また、スライドホルダ 204は、略球面状である凹部 204aを有して いる。ァオリホルダ 203は、略球面状である凸部 203aを有し、内部には空間である半 導体パッケージ 205が形成されている。半導体パッケージ 205内には、半導体レー ザ素子 206力設置されて! /、る。ァ才リホノレダ 203の凸咅 203aiま、スライドホノレダ 204 の凹部 204aに嵌り込んでいる。ァオリホルダ 203において、凸部 203aと反対側の面 には、放熱板 212が放熱グリス 211を介して設置されている。放熱板 212は、光学基 台 202につながっており、半導体レーザ素子 206が発した熱を、光学基台 202に伝 えることで放熱している。また、半導体レーザ素子 206が発した熱は、ァオリホルダ 20 3およびスライドホルダ 204を介しても光学基台 202に放熱されている。 [0008] Patent Document 4 discloses a conventional semiconductor laser device that holds an optical axis direction by pressing an optical unit including a semiconductor laser element against an optical base. FIG. 42 is an exploded perspective view showing a configuration of a conventional semiconductor laser device. As shown in FIG. 42, in a conventional semiconductor laser device, an optical unit 210 including a semiconductor laser element 206 is fitted into a mounting portion 218 of an optical base 202. At that time, the protruding section 212 of the holding metal plate 217 attached to the optical base 202 comes into contact with the semiconductor laser element 206, and the pressing bent piece 216 presses the optical unit 210 against the optical base 202. In such a conventional semiconductor laser device, heat generated from the semiconductor laser element 206 is released through the elastic piece 212 which is a heat radiating plate. Further, since the optical unit 210 is pressed against and held by the optical base 202 by the pressing and bending piece 216, the optical axis of the semiconductor laser element 206 is not shifted. However, in this conventional optical pickup device, a sufficient contact area between the emitting section 212 and the semiconductor laser element 206 cannot be obtained, and sufficient heat radiation efficiency cannot be obtained. Next, such a semiconductor laser device will be described with reference to schematic views. FIG. 43 is a side view schematically showing the configuration of a conventional semiconductor laser device, and FIG. 44 is a perspective view schematically showing the configuration of a conventional semiconductor laser device. As shown in FIGS. 43 and 44, in the semiconductor laser device 201, an optical unit including a slide holder 204 and a tilt holder 203 is installed inside an optical base 202. The slide holder 204 is in contact with the inner surface of the optical base 202, and the tilt holder 203 is installed in contact with the slide holder 204. The slide holder 204 has a concave portion 204a that is substantially spherical. The cavity holder 203 has a convex portion 203a having a substantially spherical shape, and a semiconductor package 205 which is a space is formed therein. In the semiconductor package 205, a semiconductor laser element 206 is installed! It fits into the concave 203a of the slide Honoreda 204 until the convex 203a of the old Rihonoreda 203. In the air holder 203, a heat radiating plate 212 is installed on a surface opposite to the convex portion 203 a via heat radiating grease 211. The heat radiating plate 212 is connected to the optical base 202 and dissipates heat by transferring the heat generated by the semiconductor laser element 206 to the optical base 202. The heat generated by the semiconductor laser element 206 is also radiated to the optical base 202 through the tilt holder 203 and the slide holder 204.
[0010] この半導体レーザ装置 201において、半導体レーザ素子 206から出射されるレー ザ光 207の光軸を調整する方法について説明する。なお、光軸の調整前は、放熱グ リス 211および放熱板 212は設置されていない。ここで、図 43において、 X軸は左右 方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。ァオリホルダ 20 3およびスライドホルダ 204は、光学基台 202に押し付けられている。スライドホルダ 2 04は光学基台 202に沿って滑らせることが可能であり、 ZX面に沿って自由に動かす こと力 Sでさる。また、ァ才リホノレダ 203の凸咅 203a力 Sスライド、ホノレダ 204の 咅 204a に嵌り込んでいるので、ァオリホルダ 203をスライドホルダ 204に対して滑らせて、 Z 軸、 Y軸および X軸方向を中心にして回転運動をさせることができる。以上のように、 レーザ光 207の光軸の方向を調整することが容易にでき、レーザ光 207の到達位置 を所望の位置とすることができる。なお、半導体レーザ素子 206のレーザ光 207を出 射する方向には、ァオリホルダ 203、スライドホルダ 204および光学基台 202が順次 配置されている。これらには、レーザ光 207の光路である貫通孔 213、 214および 21 5が形成されている。 A method for adjusting the optical axis of the laser beam 207 emitted from the semiconductor laser element 206 in the semiconductor laser device 201 will be described. Before adjusting the optical axis, the heat dissipation grease 211 and the heat dissipation plate 212 are not installed. In FIG. 43, the X-axis is the left-right direction, the Y-axis is the up-down direction, and the Z-axis is the direction perpendicular to the page. The tilt holder 203 and the slide holder 204 are pressed against the optical base 202. The slide holder 204 can be slid along the optical base 202, and can be moved freely along the ZX plane with force S. In addition, since it fits into the convex slide 203a force S slide of Honorida Rehonoreda 203 and 咅 204a of Honoreda 204, slide the tilt holder 203 with respect to the slide holder 204, centering on the Z-axis, Y-axis and X-axis directions. Can be rotated. As described above, the direction of the optical axis of the laser beam 207 can be easily adjusted, and the arrival position of the laser beam 207 can be set to a desired position. Note that a tilt holder 203, a slide holder 204, and an optical base 202 are sequentially arranged in the direction in which the laser beam 207 of the semiconductor laser element 206 is emitted. These include through-holes 213, 214 and 21 that are the optical path of the laser beam 207. 5 is formed.
[0011] 光軸調整を行った後は、光軸が変動しないように、ァオリホルダ 203およびスライド ホルダ 204と、スライドホルダ 204および光学基台 202とをそれぞれ固定する。例え ば、ァオリホルダ 203およびスライドホルダ 204間とスライドホルダ 204および光学基 台 202間とにそれぞれ接着剤を充填して、それらが動力ないように固定する。その後 、ァオリホルダ 203に放熱板 212を設置し、放熱板 212とァオリホルダ 203との間隙 に放熱グリス 215を充填する。  After the optical axis adjustment, the tilt holder 203 and the slide holder 204, and the slide holder 204 and the optical base 202 are fixed so that the optical axis does not fluctuate. For example, an adhesive is filled between the tilt holder 203 and the slide holder 204 and between the slide holder 204 and the optical base 202, and they are fixed so that they are not powered. Thereafter, the heat radiating plate 212 is installed in the tilt holder 203, and the heat radiating grease 215 is filled in the gap between the heat radiating plate 212 and the tilt holder 203.
[0012] 図 43および図 44に示した従来の半導体レーザ装置 201では、半導体レーザ素子 206から発生した熱力 ァオリホルダ 203からスライドホルダ 204を介して、光学基台 202に放出される。また、ァオリホルダ 203において、放熱グリス 211および放熱板 2 12が設置されている面からも光学基台 202に放熱される。  In the conventional semiconductor laser device 201 shown in FIGS. 43 and 44, the thermal power generated from the semiconductor laser element 206 is emitted from the optical holder 203 to the optical base 202 through the slide holder 204. In addition, heat is dissipated to the optical base 202 from the surface where the heat dissipating grease 211 and the heat dissipating plate 212 are installed in the tilt holder 203.
特許文献 1:特開平 8 - 287499号公報  Patent Document 1: JP-A-8-287499
特許文献 2:特開平 11― 16202号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-16202
特許文献 3:特開 2003 - 22555号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-22555
特許文献 4:特開 2003— 123297号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2003-123297
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] し力し、上記従来の半導体レーザ装置 201において、ァオリホルダ 203がスライドホ ルダ 204と接している個所は凸部 203aだけであり、その面積は小さい。また、ァオリ ホルダ 203の XY面に平行な面および YZ面に平行な面は、光学基台 202につなが つていないので、これらの面からはあまり放熱されない。また、放熱グリス 211および 放熱板 212を介して光学基台 202へ放熱される場合は、ァオリホルダ 203およびスラ イドホルダ 204を介して光学基台 202に放熱される場合に比べて熱抵抗が高 ヽ。つ まり、放熱板 212側からの放熱量は、スライドホルダ 204側からの放熱量に比べて小 さい。このように、従来の半導体レーザ装置 201では放熱効率が低ぐ半導体レーザ 素子 206の発熱により半導体レーザ装置 201が高温になりやすぐ半導体レーザ素 子 206が温度暴走する可能性がある。  However, in the conventional semiconductor laser device 201, the position where the tilt holder 203 is in contact with the slide holder 204 is only the convex portion 203a, and its area is small. Further, since the plane parallel to the XY plane and the plane parallel to the YZ plane of the holder 120 are not connected to the optical base 202, heat is not radiated from these planes. In addition, when heat is radiated to the optical base 202 through the heat radiating grease 211 and the heat radiating plate 212, the thermal resistance is higher than when heat is radiated to the optical base 202 through the tilt holder 203 and the slide holder 204. In other words, the heat dissipation from the heat sink 212 side is smaller than the heat dissipation from the slide holder 204 side. As described above, in the conventional semiconductor laser device 201, there is a possibility that the semiconductor laser device 201 will run out of temperature as soon as the semiconductor laser device 201 reaches a high temperature due to heat generated by the semiconductor laser element 206 having low heat dissipation efficiency.
[0014] 本発明は、上述の問題点に鑑みなされたものであって、放熱効率の高い半導体レ 一ザ装置および光ピックアップ装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and is a semiconductor laser having high heat dissipation efficiency. It is an object to provide a single device and an optical pickup device.
課題を解決するための手段  Means for solving the problem
[0015] 上記目的のうち 1つは、以下の半導体レーザ装置により達成される。第 1の半導体 レーザ装置は、半導体レーザ素子が設置された空間を有するスライドホルダと、前記 スライドホルダが嵌り込む、前記スライドホルダの外形よりも大き 、溝を有するァオリホ ルダと、前記ァオリホルダが嵌り込む孔部を有する光学基台とを備え、前記光学基台 の孔部に前記ァオリホルダが嵌り込み固定されていて、前記ァオリホルダの溝に前 記スライドホルダが嵌り込み固定されている。  One of the above objects is achieved by the following semiconductor laser device. The first semiconductor laser device includes a slide holder having a space in which a semiconductor laser element is installed, a slide holder into which the slide holder is fitted, a tilt holder having a groove larger than the outer shape of the slide holder, and the tilt holder is fitted into the slide holder. An optical base having a hole, the tilt holder is fitted and fixed in the hole of the optical base, and the slide holder is fitted and fixed in a groove of the tilt holder.
[0016] また、第 2の半導体レーザ装置は、半導体レーザ素子が設置された空間を有する ァオリホルダと、前記ァオリホルダが嵌り込む孔部を有するスライドホルダと、前記スラ イドホルダが嵌り込む、前記スライドホルダの外形よりも大き!ヽ溝を有する光学基台と を備え、前記光学基台の溝に前記スライドホルダが嵌り込み固定されていて、前記ス ライドホルダの孔部に前記ァオリホルダが嵌り込み固定されている。  [0016] Further, the second semiconductor laser device includes a tilt holder having a space in which a semiconductor laser element is installed, a slide holder having a hole into which the tilt holder is fitted, and the slide holder into which the slide holder is fitted. Larger than the outer shape! And an optical base having a gutter groove, wherein the slide holder is fitted and fixed in the groove of the optical base, and the tilt holder is fitted and fixed in the hole of the slide holder.
[0017] また、上記目的のうち 1つは、上記第 1または第 2の半導体レーザ装置を備えている 光ピックアップ装置により達成される。  [0017] Further, one of the objects is achieved by an optical pickup device including the first or second semiconductor laser device.
発明の効果  The invention's effect
[0018] 本発明によれば、放熱効率の高!、半導体レーザ装置および光ピックアップ装置を 提供することができる。  [0018] According to the present invention, it is possible to provide a semiconductor laser device and an optical pickup device with high heat dissipation efficiency.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は本発明の実施の形態 1に係る半導体レーザ装置の構成を示す平面図で ある。  FIG. 1 is a plan view showing a configuration of a semiconductor laser device according to Embodiment 1 of the present invention.
[図 2]図 2は図 1の A— A矢視断面図である。  FIG. 2 is a cross-sectional view taken along the line AA in FIG.
[図 3]図 3は本発明の実施の形態 1に係る半導体レーザ装置の分解斜視図である。  FIG. 3 is an exploded perspective view of the semiconductor laser device according to the first embodiment of the present invention.
[図 4]図 4は本発明の実施の形態 1に係る半導体レーザ装置の構成を示す斜視図で ある。  FIG. 4 is a perspective view showing the configuration of the semiconductor laser device according to the first embodiment of the present invention.
[図 5]図 5は本発明の実施の形態 2に係る半導体レーザ装置の構成を示す平面図で ある。  FIG. 5 is a plan view showing a configuration of a semiconductor laser device according to Embodiment 2 of the present invention.
[図 6]図 6は図 5の B— B矢視断面図である。 圆 7]図 7は本発明の実施の形態 2に係る半導体レーザ装置の分解斜視図である。 圆 8]図 8は本発明の実施の形態 2に係る半導体レーザ装置の構成を示す斜視図で ある。 FIG. 6 is a cross-sectional view taken along the line BB in FIG. 7] FIG. 7 is an exploded perspective view of the semiconductor laser device according to the second embodiment of the present invention. 8] FIG. 8 is a perspective view showing the configuration of the semiconductor laser device according to the second embodiment of the present invention.
圆 9]図 9は本発明の実施の形態 3に係る半導体レーザ装置の構成を示す平面図で ある。 9] FIG. 9 is a plan view showing the configuration of the semiconductor laser device according to the third embodiment of the present invention.
[図 10]図 10は図 9の C C矢視断面図である。  FIG. 10 is a cross-sectional view taken along the arrow CC in FIG.
圆 11]図 11は本発明の実施の形態 3に係る半導体レーザ装置の分解斜視図である 圆 12]図 12は本発明の実施の形態 3に係る半導体レーザ装置の構成を示す斜視図 である。 FIG. 11 is an exploded perspective view of the semiconductor laser device according to the third embodiment of the present invention. 圆 12] FIG. 12 is a perspective view showing the configuration of the semiconductor laser device according to the third embodiment of the present invention. .
圆 13]図 13は本発明の実施の形態 4に係る半導体レーザ装置の構成を示す平面図 である。 13] FIG. 13 is a plan view showing the configuration of the semiconductor laser device according to the fourth embodiment of the present invention.
[図 14]図 14は図 13の D— D矢視断面図である。  FIG. 14 is a cross-sectional view taken along the arrow D-D in FIG.
圆 15]図 15は本発明の実施の形態 4に係る半導体レーザ装置の分解斜視図である 圆 16]図 16は本発明の実施の形態 4に係る半導体レーザ装置の構成を示す斜視図 である。 15] FIG. 15 is an exploded perspective view of the semiconductor laser device according to the fourth embodiment of the present invention. FIG. 16] FIG. 16 is a perspective view showing the configuration of the semiconductor laser device according to the fourth embodiment of the present invention. .
圆 17]図 17は本発明の実施の形態 5に係る半導体レーザ装置の構成を示す平面図 である。 FIG. 17 is a plan view showing the configuration of the semiconductor laser device according to the fifth embodiment of the present invention.
[図 18]図 18は図 17の E— E矢視断面図である。  FIG. 18 is a cross-sectional view taken along the line EE in FIG.
圆 19]図 19は本発明の実施の形態 5に係る半導体レーザ装置の分解斜視図である 圆 20]図 20は本発明の実施の形態 5に係る半導体レーザ装置の構成を示す斜視図 である。 FIG. 19 is an exploded perspective view of the semiconductor laser device according to the fifth embodiment of the present invention. FIG. 20 is a perspective view showing the configuration of the semiconductor laser device according to the fifth embodiment of the present invention. .
圆 21]図 21は本発明の実施の形態 6に係る半導体レーザ装置の構成を示す平面図 である。 21] FIG. 21 is a plan view showing the configuration of the semiconductor laser device according to the sixth embodiment of the present invention.
[図 22]図 22は図 21の F— F矢視断面図である。  FIG. 22 is a cross-sectional view taken along the line FF in FIG.
圆 23]図 23は本発明の実施の形態 6に係る半導体レーザ装置の分解斜視図である 圆 24]図 24は本発明の実施の形態 6に係る半導体レーザ装置の構成を示す斜視図 である。 FIG. 23 is an exploded perspective view of the semiconductor laser device according to the sixth embodiment of the present invention. 24] FIG. 24 is a perspective view showing the configuration of the semiconductor laser device according to the sixth embodiment of the present invention.
圆 25]図 25は本発明の実施の形態 7に係る半導体レーザ装置の構成を示す平面図 である。 25] FIG. 25 is a plan view showing the configuration of the semiconductor laser device according to the seventh embodiment of the present invention.
[図 26]図 26は図 25の G— G矢視断面図である。  FIG. 26 is a cross-sectional view taken along the line GG in FIG.
圆 27]図 27は本発明の実施の形態 7に係る半導体レーザ装置の分解斜視図である 圆 28]図 28は本発明の実施の形態 7に係る半導体レーザ装置の構成を示す斜視図 である。 FIG. 27 is an exploded perspective view of the semiconductor laser device according to the seventh embodiment of the present invention. FIG. 28 is a perspective view showing the configuration of the semiconductor laser device according to the seventh embodiment of the present invention. .
[図 29]図 29は本発明の実施の形態 8に係る半導体レーザ装置の構成を示す平面図 である。  FIG. 29 is a plan view showing the configuration of the semiconductor laser device according to the eighth embodiment of the present invention.
[図 30]図 30は図 29の H— H矢視断面図である。  FIG. 30 is a cross-sectional view taken along arrows H—H in FIG.
圆 31]図 31は本発明の実施の形態 8に係る半導体レーザ装置の分解斜視図である 圆 32]図 32は本発明の実施の形態 8に係る半導体レーザ装置の構成を示す斜視図 である。 FIG. 31 is an exploded perspective view of the semiconductor laser device according to the eighth embodiment of the present invention. FIG. 32 is a perspective view showing the configuration of the semiconductor laser device according to the eighth embodiment of the present invention. .
圆 33]図 33は本発明の実施の形態 9に係る半導体レーザ装置の構成を示す平面図 である。 FIG. 33 is a plan view showing the configuration of the semiconductor laser device according to the ninth embodiment of the present invention.
[図 34]図 34は図 33の I I矢視断面図である。  FIG. 34 is a cross-sectional view taken along the line II of FIG.
圆 35]図 35は本発明の実施の形態 9に係る半導体レーザ装置の分解斜視図である 圆 36]図 36は本発明の実施の形態 9に係る半導体レーザ装置の構成を示す斜視図 である。 FIG. 35 is an exploded perspective view of the semiconductor laser device according to the ninth embodiment of the present invention. FIG. 36 is a perspective view showing the configuration of the semiconductor laser device according to the ninth embodiment of the present invention. .
圆 37]図 37は本発明の実施の形態 10に係る半導体レーザ装置の構成を示す平面 図である。 37] FIG. 37 is a plan view showing the configuration of the semiconductor laser device according to the tenth embodiment of the present invention.
[図 38]図 38は図 37の J J矢視断面図である。  FIG. 38 is a cross-sectional view taken along the arrow J J in FIG.
圆 39]図 39は本発明の実施の形態 10に係る半導体レーザ装置の分解斜視図であ る。 FIG. 39 is an exploded perspective view of the semiconductor laser device according to the tenth embodiment of the present invention. The
[図 40]図 40は本発明の実施の形態 10に係る半導体レーザ装置の構成を示す斜視 図である。  FIG. 40 is a perspective view showing the configuration of the semiconductor laser apparatus according to the tenth embodiment of the present invention.
[図 41]図 41は本発明の実施の形態 11に係る光ピックアップ装置の構成を示す平面 図である。  FIG. 41 is a plan view showing the configuration of the optical pickup device according to the eleventh embodiment of the present invention.
[図 42]図 42は従来の半導体レーザ装置の構成を示す分解斜視図である。  FIG. 42 is an exploded perspective view showing a configuration of a conventional semiconductor laser device.
[図 43]図 43は従来の半導体レーザ装置の構成を模式的に示した側面図である。  FIG. 43 is a side view schematically showing a configuration of a conventional semiconductor laser device.
[図 44]図 44は従来の半導体レーザ装置の構成を模式的に示した斜視図である。 発明を実施するための最良の形態  FIG. 44 is a perspective view schematically showing a configuration of a conventional semiconductor laser device. BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 上記第 1または第 2の半導体レーザ装置は、高い放熱効率を有しており、温度上昇 が少ない。そのため、放熱板等を用いる必要がなぐ低コストィ匕が可能となる。また、 熱による劣化も少なく長寿命である。また、構造が簡単であり、光軸調整が容易に行 える構成であるため、製造コストも低い。  [0020] The first or second semiconductor laser device has a high heat dissipation efficiency, and the temperature rise is small. Therefore, it is possible to reduce the cost without using a heat sink or the like. In addition, it has a long service life with little deterioration due to heat. In addition, since the structure is simple and the optical axis can be easily adjusted, the manufacturing cost is low.
[0021] また、上記第 1の半導体レーザ装置において、好ましくは、前記光学基台の孔部に 前記ァオリホルダが嵌り込み、かつ前記光学基台と前記ァオリホルダとが固定されて いないとした場合に、前記光学基台の孔部と前記ァオリホルダとの嵌合部は、前記ァ オリホルダが前記光学基台に対して、少なくとも一つの軸を中心に回転可能な形状 を有している。  [0021] Further, in the first semiconductor laser device, preferably, when the tilt holder is fitted in the hole of the optical base and the optical base and the tilt holder are not fixed, The fitting portion between the hole of the optical base and the tilt holder has a shape that allows the tilt holder to rotate about at least one axis with respect to the optical base.
[0022] また、上記第 1の半導体レーザ装置において、好ましくは、前記ァオリホルダの溝に 前記スライドホルダが嵌り込み、かつ前記ァオリホルダと前記スライドホルダとが固定 されて!/、な!/、とした場合に、前記スライドホルダと前記ァオリホルダの溝との嵌合部は 、前記スライドホルダが前記ァオリホルダに対して、少なくとも一つの面に平行に移動 可能な形状を有している。  [0022] Further, in the first semiconductor laser device, preferably, the slide holder is fitted in a groove of the tilt holder, and the tilt holder and the slide holder are fixed to! /, NA! /. In this case, the fitting portion between the slide holder and the groove of the tilt holder has a shape that allows the slide holder to move parallel to at least one surface with respect to the tilt holder.
[0023] また、上記第 1の半導体レーザ装置において、好ましくは、前記光学基台の孔部に 前記ァオリホルダが嵌り込み、かつ前記光学基台と前記ァオリホルダとが固定されて いないとした場合に、前記光学基台の孔部と前記ァオリホルダとの嵌合部は、前記ァ オリホルダが前記光学基台に対して、少なくとも一つの軸を中心に回転可能な形状 を有し、前記ァオリホルダの溝に前記スライドホルダが嵌り込み、かつ前記ァオリホル ダと前記スライドホルダとが固定されて ヽな ヽとした場合に、前記スライドホルダと前 記ァオリホルダの溝との嵌合部は、前記スライドホルダが前記ァオリホルダに対して、 少なくとも一つの面に平行に移動可能な形状を有している。 [0023] Further, in the first semiconductor laser device, preferably, when the tilt holder is fitted in the hole of the optical base and the optical base and the tilt holder are not fixed, The fitting portion between the hole of the optical base and the tilt holder has a shape in which the tilt holder can rotate around at least one axis with respect to the optical base, and the groove is formed in the groove of the tilt holder. The slide holder fits in and When the slider and the slide holder are fixed to form a small ridge, the fitting portion between the slide holder and the groove of the tilt holder is parallel to at least one surface of the slide holder with respect to the tilt holder. Has a movable shape.
[0024] また、上記第 1の半導体レーザ装置において、好ましくは、前記光学基台の孔部と 前記ァオリホルダとの嵌合部は、前記光学基台の孔部に前記ァオリホルダが嵌り込 んだ状態で、前記ァオリホルダが前記光学基台に対して、少なくとも一つの軸を中心 に回転可能な形状を有し、光軸調整された後に前記光学基台と前記ァオリホルダと が固定される。  [0024] In the first semiconductor laser device, preferably, the fitting portion between the hole of the optical base and the tilt holder is a state in which the tilt holder is fitted into the hole of the optical base. Thus, the tilt holder has a shape rotatable around at least one axis with respect to the optical base, and after the optical axis is adjusted, the optical base and the tilt holder are fixed.
[0025] また、上記第 1の半導体レーザ装置において、好ましくは、前記スライドホルダと前 記ァオリホルダの溝との嵌合部は、前記ァオリホルダの溝に前記スライドホルダが嵌 り込んだ状態で、前記スライドホルダが前記ァオリホルダに対して、少なくとも一つの 面に平行に移動可能な形状を有し、光軸調整された後に前記ァオリホルダと前記ス ライドホルダとが固定される。  [0025] Further, in the first semiconductor laser device, preferably, the fitting portion between the slide holder and the groove of the tilt holder is in a state where the slide holder is fitted in the groove of the tilt holder. The slide holder has a shape that can move in parallel to at least one surface with respect to the tilt holder, and after the optical axis is adjusted, the tilt holder and the slide holder are fixed.
[0026] また、上記第 1の半導体レーザ装置において、好ましくは、前記光学基台の孔部と 前記ァオリホルダとの嵌合部は、前記光学基台の孔部に前記ァオリホルダが嵌り込 んだ状態で、前記ァオリホルダが前記光学基台に対して、少なくとも一つの軸を中心 に回転可能な形状を有し、前記スライドホルダと前記ァオリホルダの溝との嵌合部は 、前記ァオリホルダの溝に前記スライドホルダが嵌り込んだ状態で、前記スライドホル ダが前記ァオリホルダに対して、少なくとも一つの面に平行に移動可能な形状を有し 、光軸調整された後に前記光学基台と前記ァオリホルダとが固定され、かつ前記ァ オリホルダと前記スライドホルダとが固定される。  [0026] In the first semiconductor laser device, preferably, the fitting portion between the hole of the optical base and the tilt holder is a state in which the tilt holder is fitted into the hole of the optical base. The tilt holder has a shape rotatable around at least one axis with respect to the optical base, and a fitting portion between the slide holder and the groove of the tilt holder has the slide in the groove of the tilt holder. With the holder fitted, the slide holder has a shape that can move in parallel to at least one surface with respect to the tilt holder, and the optical base and the tilt holder are fixed after the optical axis is adjusted. The tilt holder and the slide holder are fixed.
[0027] また、上記第 1の半導体レーザ装置において、好ましくは、前記ァオリホルダは、略 球体を平面で分割した形状を有し、前記光学基台の孔部の内面は、略球面状であり 、前記ァオリホルダの略球面状である凸部が、前記光学基台の孔部に嵌り込んでい る。  [0027] In the first semiconductor laser device, preferably, the tilt holder has a shape obtained by dividing a substantially spherical body by a plane, and an inner surface of the hole of the optical base is substantially spherical. The substantially spherical convex portion of the tilt holder is fitted in the hole of the optical base.
[0028] また、上記第 1の半導体レーザ装置において、好ましくは、前記ァオリホルダは、底 面に略球面状である凹部を有する略円柱状であり、前記光学基台の孔部は、底面に 略球面状である凸部を有し、側面は略円筒面状であり、前記凹部に前記凸部が嵌り 込んでいる。 [0028] In the first semiconductor laser device, preferably, the tilt holder has a substantially cylindrical shape having a substantially spherical concave portion on a bottom surface, and a hole portion of the optical base is substantially on a bottom surface. It has a convex portion that is spherical, the side surface is substantially cylindrical, and the convex portion fits into the concave portion. It is crowded.
[0029] また、上記第 1の半導体レーザ装置において、好ましくは、前記ァオリホルダは、略 円柱状であり、前記光学基台の孔部の内面は、略円筒面状である。  [0029] In the first semiconductor laser device, it is preferable that the tilt holder has a substantially columnar shape, and the inner surface of the hole of the optical base has a substantially cylindrical surface shape.
[0030] また、上記第 1の半導体レーザ装置において、好ましくは、前記スライドホルダは、 略円柱をその軸を含む平面と平行な平面で分割した形状を有し、前記ァオリホルダ の溝の内面は、略円筒面状であり、前記スライドホルダの略円柱の側面状である凸 部が、前記ァオリホルダの溝に嵌り込んでいる。  [0030] In the first semiconductor laser device, it is preferable that the slide holder has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including the axis thereof, and an inner surface of the groove of the tilt holder includes: A convex portion that is substantially cylindrical and has a substantially cylindrical side surface of the slide holder is fitted in the groove of the tilt holder.
[0031] また、上記第 1の半導体レーザ装置において、好ましくは、前記スライドホルダは、 底面に略円筒面状である凹部を有し、前記ァオリホルダの溝は、底面に略円柱の側 面状である凸部を有し、前記凸部が前記凹部に嵌り込んでいる。  [0031] In the first semiconductor laser device, preferably, the slide holder has a concave portion having a substantially cylindrical shape on a bottom surface, and the groove of the tilt holder has a substantially cylindrical side surface shape on the bottom surface. It has a certain convex part, and the convex part is fitted in the concave part.
[0032] また、上記第 2の半導体レーザ装置において、好ましくは、前記光学基台の溝に前 記スライドホルダが嵌り込み、かつ前記光学基台と前記スライドホルダとが固定されて いないとした場合に、前記光学基台の溝と前記スライドホルダとの嵌合部は、前記ス ライドホルダが前記光学基台に対して、少なくとも一つの面に平行に移動可能な形 状を有している。  [0032] In the second semiconductor laser device, it is preferable that the slide holder is fitted in a groove of the optical base, and the optical base and the slide holder are not fixed. In addition, the fitting portion between the groove of the optical base and the slide holder has a shape in which the slide holder can move in parallel to at least one surface with respect to the optical base.
[0033] また、上記第 2の半導体レーザ装置において、好ましくは、前記スライドホルダの孔 部に前記ァオリホルダが嵌り込み、かつ前記スライドホルダと前記ァオリホルダとが固 定されて ヽな ヽとした場合に、前記スライドホルダの孔部と前記ァオリホルダとの嵌合 部は、前記ァオリホルダが前記スライドホルダに対して、少なくとも一つの軸を中心に 回転可能な形状を有して!/、る。  [0033] In the second semiconductor laser device, preferably, the tilt holder is fitted into the hole of the slide holder, and the slide holder and the tilt holder are fixed to form a small bowl. The fitting portion between the hole of the slide holder and the tilt holder has a shape that allows the tilt holder to rotate about at least one axis with respect to the slide holder.
[0034] また、上記第 2の半導体レーザ装置において、好ましくは、前記光学基台の溝に前 記スライドホルダが嵌り込み、かつ前記光学基台と前記スライドホルダとが固定されて いないとした場合に、前記光学基台の溝と前記スライドホルダとの嵌合部は、前記ス ライドホルダが前記光学基台に対して、少なくとも一つの面に平行に移動可能な形 状を有し、前記スライドホルダの孔部に前記ァオリホルダが嵌り込み、かつ前記スライ ドホルダと前記ァオリホルダとが固定されて 、な 、とした場合に、前記スライドホルダ の孔部と前記ァオリホルダとの嵌合部は、前記ァオリホルダが前記スライドホルダに 対して、少なくとも一つの軸を中心に回転可能な形状を有して!/、る。 [0035] また、上記第 2の半導体レーザ装置において、好ましくは、前記光学基台の溝と前 記スライドホルダとの嵌合部は、前記光学基台の溝に前記スライドホルダが嵌り込ん だ状態で、前記スライドホルダが前記光学基台に対して、少なくとも一つの面に平行 に移動可能な形状を有し、光軸調整された後に前記光学基台と前記スライドホルダ とが固定される。 In the second semiconductor laser device, preferably, the slide holder is fitted in a groove of the optical base, and the optical base and the slide holder are not fixed. In addition, the fitting portion between the groove of the optical base and the slide holder has a shape in which the slide holder can move in parallel to at least one surface with respect to the optical base, and the slide holder In the case where the tilt holder is fitted in the hole portion and the slide holder and the tilt holder are fixed, the fitting portion between the hole portion of the slide holder and the tilt holder is the The slide holder has a shape that can rotate around at least one axis. [0035] In the second semiconductor laser device, preferably, the fitting portion between the groove of the optical base and the slide holder is a state in which the slide holder is fitted in the groove of the optical base. Thus, the slide holder has a shape movable in parallel to at least one surface with respect to the optical base, and the optical base and the slide holder are fixed after the optical axis is adjusted.
[0036] また、上記第 2の半導体レーザ装置において、好ましくは、前記スライドホルダの孔 部と前記ァオリホルダとの嵌合部は、前記スライドホルダの孔部に前記ァオリホルダ が嵌り込んだ状態で、前記ァオリホルダが前記スライドホルダに対して、少なくとも一 つの軸を中心に回転可能な形状を有し、光軸調整された後に前記スライドホルダと 前記ァオリホルダとが固定される。  [0036] In the second semiconductor laser device, preferably, the fitting portion between the hole portion of the slide holder and the tilt holder is in a state where the tilt holder is fitted in the hole portion of the slide holder. The tilt holder has a shape rotatable about at least one axis with respect to the slide holder, and after the optical axis is adjusted, the slide holder and the tilt holder are fixed.
[0037] また、上記第 2の半導体レーザ装置において、好ましくは、前記光学基台の溝と前 記スライドホルダとの嵌合部は、前記光学基台の溝に前記スライドホルダが嵌り込ん だ状態で、前記スライドホルダが前記光学基台に対して、少なくとも一つの面に平行 に移動可能な形状を有し、前記スライドホルダの孔部と前記ァオリホルダとの嵌合部 は、前記スライドホルダの孔部に前記ァオリホルダが嵌り込んだ状態で、前記ァオリ ホルダが前記スライドホルダに対して、少なくとも一つの軸を中心に回転可能な形状 を有し、光軸調整された後に前記光学基台と前記スライドホルダとが固定され、かつ 前記スライドホルダと前記ァオリホルダとが固定される。  [0037] Also, in the second semiconductor laser device, preferably, the fitting portion between the groove of the optical base and the slide holder is a state in which the slide holder is fitted in the groove of the optical base. The slide holder has a shape that can move in parallel to at least one surface with respect to the optical base, and the fitting portion between the hole of the slide holder and the tilt holder is a hole of the slide holder. The tilt holder has a shape rotatable around at least one axis with respect to the slide holder in a state in which the tilt holder is fitted in a portion, and the optical base and the slide are adjusted after the optical axis is adjusted. A holder is fixed, and the slide holder and the tilt holder are fixed.
[0038] また、上記第 2の半導体レーザ装置において、好ましくは、前記ァオリホルダは、略 球体を平面で分割した形状を有し、前記スライドホルダの孔部の内面は、略球面状 であり、前記ァオリホルダの略球面状である凸部が、前記スライドホルダの孔部に嵌り 込んでいる。 [0038] In the second semiconductor laser device, preferably, the tilt holder has a shape obtained by dividing a substantially spherical body by a plane, and an inner surface of the hole of the slide holder is substantially spherical, A convex portion having a substantially spherical shape of the tilt holder is fitted in the hole of the slide holder.
[0039] また、上記第 2の半導体レーザ装置において、好ましくは、前記ァオリホルダは、略 円柱状であり、前記スライドホルダの孔部の内面は、略円筒面状である。  [0039] In the second semiconductor laser device, it is preferable that the tilt holder has a substantially columnar shape, and an inner surface of the hole of the slide holder has a substantially cylindrical surface shape.
[0040] また、上記第 2の半導体レーザ装置において、好ましくは、前記ァオリホルダは、底 面に略球面状である凹部を有する略円柱状であり、前記スライドホルダの孔部は、底 面に略球面状である凸部を有し、側面は略円筒面状であり、前記凹部に前記凸部が 嵌り込んでいる。 [0041] また、上記第 2の半導体レーザ装置において、好ましくは、前記ァオリホルダは、略 円柱状であり、前記スライドホルダの前記孔部は、前記ァオリホルダの厚さ以上の深 さを有し、内部が略円筒面状である。 [0040] In the second semiconductor laser device, preferably, the tilt holder has a substantially cylindrical shape having a substantially spherical concave portion on a bottom surface, and the hole portion of the slide holder is substantially on the bottom surface. A convex portion having a spherical shape is provided, a side surface is substantially cylindrical, and the convex portion is fitted in the concave portion. [0041] In the second semiconductor laser device, preferably, the tilt holder is substantially cylindrical, and the hole of the slide holder has a depth equal to or greater than a thickness of the tilt holder, Is substantially cylindrical.
[0042] また、上記第 2の半導体レーザ装置において、好ましくは、前記スライドホルダは、 略円柱をその軸を含む平面と平行な平面で分割した形状を有し、前記光学基台の 溝の内面は、略円筒面状であり、前記スライドホルダの略円柱の側面状である凸部 力 前記光学基台の溝に嵌り込んでいる。  [0042] Also, in the second semiconductor laser device, preferably, the slide holder has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including the axis thereof, and an inner surface of a groove of the optical base Is a substantially cylindrical surface, and is a convex portion which is a substantially cylindrical side surface of the slide holder. The force is fitted in the groove of the optical base.
[0043] また、上記第 2の半導体レーザ装置において、好ましくは、前記スライドホルダは、 底面に略円筒面状である凹部を有し、前記光学基台の溝は、底面に略円柱の側面 状である凸部を有し、前記凸部が前記凹部に嵌り込んでいる。  [0043] In the second semiconductor laser device, preferably, the slide holder has a concave portion having a substantially cylindrical surface shape on a bottom surface, and the groove of the optical base has a substantially cylindrical side surface shape on the bottom surface. And the convex portion is fitted into the concave portion.
[0044] また、上記光ピックアップ装置は、上記第 1または第 2の半導体レーザ装置を備えて いるので、高い放熱効率を有しており、温度上昇が少ない。そのため、温度上昇によ る誤動作が生じない。  [0044] In addition, since the optical pickup device includes the first or second semiconductor laser device, the optical pickup device has high heat dissipation efficiency and little temperature rise. Therefore, malfunction due to temperature rise does not occur.
[0045] 以下、本発明の具体的な実施形態について図面を用いて説明する。  Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[0046] (実施の形態 1)  [Embodiment 1]
本発明の実施の形態 1に係る半導体レーザ装置について、図を用いて説明する。 図 1は本発明の実施の形態 1に係る半導体レーザ装置の構成を示す平面図である。 また、図 2は、図 1の A— A矢視断面図である。また、図 3は本発明の実施の形態 1に 係る半導体レーザ装置の分解斜視図である。また、図 4は本発明の実施の形態 1に 係る半導体レーザ装置の構成を示す斜視図である。なお、図 1において、 X軸は左 右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。  A semiconductor laser device according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing the configuration of the semiconductor laser device according to the first embodiment of the present invention. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is an exploded perspective view of the semiconductor laser device according to the first embodiment of the present invention. FIG. 4 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 1 of the present invention. In Fig. 1, the X-axis is the left-right direction, the Y-axis is the up-down direction, and the Z-axis is the direction perpendicular to the page.
[0047] 実施の形態 1に係る半導体レーザ装置 1は、光学基台 2とァオリホルダ 3とスライドホ ルダ 4を備えている。  The semiconductor laser device 1 according to the first embodiment includes an optical base 2, a tilt holder 3, and a slide holder 4.
[0048] スライドホルダ 4には、空間である半導体パッケージ 5が形成されている。半導体パ ッケージ 5の内部には、半導体レーザ素子 6等の電子部品が設置されている。半導 体レーザ素子 6は、レーザ光 7を出射する。半導体レーザ素子 6より出射されたレー ザ光 7は、光学基台 2の外部へと出射される。  [0048] A semiconductor package 5 which is a space is formed in the slide holder 4. Inside the semiconductor package 5, electronic components such as the semiconductor laser element 6 are installed. The semiconductor laser element 6 emits laser light 7. Laser light 7 emitted from the semiconductor laser element 6 is emitted to the outside of the optical base 2.
[0049] 光学基台 2には、内面が略球面状である孔部 2aが形成されている。また、ァオリホ ルダ 3は、略球体を平面により分割したような形状であり、略球面状である凸部 3aを 備えている。さらに、ァオリホルダ 3には、略矩形状である溝 3bが形成されている。 The optical base 2 is formed with a hole 2a whose inner surface is substantially spherical. Also, The rudder 3 has a shape that is obtained by dividing a substantially spherical body by a plane, and includes a convex portion 3a that is substantially spherical. Furthermore, the groove holder 3 is formed with a substantially rectangular groove 3b.
[0050] 光学基台 2の孔部 2aにはァオリホルダ 3の凸部 3aが嵌り込み固定され、ァオリホル ダ 3の溝 3bにはスライドホルダ 4が嵌り込み固定されている。溝 3bは、スライドホルダ 4の外形よりも大きい。すなわち、溝 3bの X軸方向の長さは、スライドホルダ 4の X軸方 向の長さよりも長い。また、溝 3bの Z軸方向の長さ(深さ)は、スライドホルダ 4の Z軸方 向の長さ(厚さ)よりも長い。  The convex portion 3 a of the tilt holder 3 is fitted and fixed in the hole 2 a of the optical base 2, and the slide holder 4 is fitted and fixed in the groove 3 b of the tilt holder 3. The groove 3b is larger than the outer shape of the slide holder 4. That is, the length of the groove 3b in the X-axis direction is longer than the length of the slide holder 4 in the X-axis direction. The length (depth) of the groove 3b in the Z-axis direction is longer than the length (thickness) of the slide holder 4 in the Z-axis direction.
[0051] 実施の形態 1の半導体レーザ装置 1は上述のように、レーザ光 7を出射することで 発熱する半導体レーザ素子 6からの熱を、スライドホルダ 4、ァオリホルダ 3と順に伝 達し、放熱グリスや放熱板等を介さずに、ァオリホルダ 3から直接光学基台 2に直接 伝達する。このような構成なので、半導体レーザ装置 1は高い放熱効率を実現するこ とができる。さらに、ァオリホルダ 3の表面積の大部分が光学基台 2と接しているため、 光学基台 2への放熱量が多 、。  [0051] As described above, the semiconductor laser device 1 according to the first embodiment transmits heat from the semiconductor laser element 6 that generates heat by emitting the laser light 7 to the slide holder 4 and the tilt holder 3 in this order, and heat radiation grease. Directly transmitted from the tilt holder 3 to the optical base 2 without using a heat sink or the like. With this configuration, the semiconductor laser device 1 can achieve high heat dissipation efficiency. In addition, since the majority of the surface area of the holder holder 3 is in contact with the optical base 2, the amount of heat released to the optical base 2 is large.
[0052] また、半導体パッケージ 5の内部に設置されている半導体レーザ素子 6から出射さ れたレーザ光 7は、光学基台 2の外部に出射される。なお、スライドホルダ 4、ァオリホ ルダ 3および光学基台 2にはレーザ光 7の光路である貫通孔(図示せず)がそれぞれ 形成されている。  In addition, the laser beam 7 emitted from the semiconductor laser element 6 installed inside the semiconductor package 5 is emitted to the outside of the optical base 2. The slide holder 4, the tilt holder 3 and the optical base 2 are respectively formed with through holes (not shown) which are optical paths of the laser light 7.
[0053] このような構成の半導体レーザ装置 1において、半導体レーザ素子 6から出射され るレーザ光 7の光軸調整の方法について説明する。なお、光軸調整時には、光学基 台 2およびァオリホルダ 3と、ァオリホルダ 3およびスライドホルダ 4とはそれぞれ固定さ れていない。  A method of adjusting the optical axis of the laser beam 7 emitted from the semiconductor laser element 6 in the semiconductor laser device 1 having such a configuration will be described. Note that the optical base 2 and the tilt holder 3, and the tilt holder 3 and the slide holder 4 are not fixed at the time of optical axis adjustment.
[0054] まず、ァオリホルダ 3の凸部 3aを、光学基台 2の孔部 2aに嵌り込ませる。すると、凸 部 3aを孔部 2aに対して滑らせて、ァオリホルダ 3を、図中の X軸、 Y軸および Z軸方 向を中心にして回転させることができる。それにより、半導体レーザ素子 6も回転する ので、レーザ光 7の光軸の方向を変化させることができる。このようにして、レーザ光 7 の光軸の方向が所望の方向になったところで、ァオリホルダ 3の回転を停止する。ここ で、凸部 3aと孔部 2aの接触面積が比較的大きいため、両者間の摩擦力により、所望 の位置での停止が容易である。 [0055] また、ァオリホルダ 3の溝 3bにはスライドホルダ 4を嵌り込ませる。すると、溝 3bおよ びスライドホルダ 4それぞれの Y軸方向の長さはほぼ等しぐ溝 3bの X軸および Z軸 方向の長さは、スライドホルダ 4の X軸および Z軸方向の長さよりも長いため、溝 3bの 内面に沿って、スライドホルダ 4を ZX面に平行な方向に移動させることができる。それ により、レーザ光 7の光軸の位置を変化させることができる。このようにして、レーザ光 7の光軸の方向が所望の方向になったところで、スライドホルダ 4の移動を停止する。 ここで、スライドホルダ 4と溝 3bの接触面積が比較的大きいため、両者間の摩擦力に より、所望の位置での停止が容易である。 First, the convex portion 3 a of the tilt holder 3 is fitted into the hole portion 2 a of the optical base 2. Then, the protrusion 3a can be slid with respect to the hole 2a, and the tilt holder 3 can be rotated about the X-axis, Y-axis, and Z-axis directions in the figure. Thereby, since the semiconductor laser element 6 also rotates, the direction of the optical axis of the laser light 7 can be changed. In this way, when the direction of the optical axis of the laser beam 7 becomes a desired direction, the rotation of the tilt holder 3 is stopped. Here, since the contact area between the protrusion 3a and the hole 2a is relatively large, it is easy to stop at a desired position due to the frictional force between them. Further, the slide holder 4 is fitted in the groove 3 b of the tilt holder 3. Then, the length of the groove 3b and the slide holder 4 in the Y-axis direction are almost equal. The length of the groove 3b in the X-axis and Z-axis directions is larger than the length of the slide holder 4 in the X-axis and Z-axis directions. Therefore, the slide holder 4 can be moved in the direction parallel to the ZX plane along the inner surface of the groove 3b. Thereby, the position of the optical axis of the laser beam 7 can be changed. In this way, when the direction of the optical axis of the laser beam 7 becomes a desired direction, the movement of the slide holder 4 is stopped. Here, since the contact area between the slide holder 4 and the groove 3b is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0056] 上述の方法により半導体レーザ装置 1の光軸調整を行い、所望の位置にレーザ光 7が到達するようにしてから、光学基台 2およびァオリホルダ 3と、ァオリホルダ 3およ びスライドホルダ 4とをそれぞれ固定する。例えば、光学基台 2およびァオリホルダ 3 間と、ァオリホルダ 3およびスライドホルダ 4間とにそれぞれ接着剤を充填すればょ ヽ  [0056] After the optical axis of the semiconductor laser device 1 is adjusted by the above-described method so that the laser beam 7 reaches a desired position, the optical base 2, the tilt holder 3, the tilt holder 3, and the slide holder 4 And are fixed respectively. For example, fill the adhesive between the optical base 2 and the tilt holder 3 and between the tilt holder 3 and the slide holder 4 respectively.
[0057] 以上説明したように、実施の形態 1に係る半導体レーザ装置 1は、レーザ光 7の出 射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有してい る。 As described above, the semiconductor laser device 1 according to the first embodiment has an effect that the emission direction of the laser light 7 can be easily adjusted and the heat dissipation efficiency is high. .
[0058] (実施の形態 2)  [0058] (Embodiment 2)
本発明の実施の形態 2に係る半導体レーザ装置について、図を用いて説明する。 図 5は本発明の実施の形態 2に係る半導体レーザ装置の構成を示す平面図である。 また、図 6は、図 5の B— B矢視断面図である。また、図 7は、本発明の実施の形態 2 に係る半導体レーザ装置の分解斜視図である。また、図 8は本発明の実施の形態 2 に係る半導体レーザ装置の構成を示す斜視図である。なお、図 5において、 X軸は 左右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。また、実施 の形態 2の半導体レーザ装置 11において、実施の形態 1で説明した半導体レーザ 装置 1と同様の構成については、図において同様の符号を付し説明を省略する。  A semiconductor laser device according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a plan view showing the configuration of the semiconductor laser device according to the second embodiment of the present invention. FIG. 6 is a cross-sectional view taken along the line BB in FIG. FIG. 7 is an exploded perspective view of the semiconductor laser device according to the second embodiment of the present invention. FIG. 8 is a perspective view showing the configuration of the semiconductor laser device according to Embodiment 2 of the present invention. In FIG. 5, the X-axis is the left-right direction, the Y-axis is the up-down direction, and the Z-axis is the direction perpendicular to the page. Further, in the semiconductor laser device 11 of the second embodiment, the same reference numerals are given to the same configurations as those of the semiconductor laser device 1 described in the first embodiment, and the description thereof is omitted.
[0059] 実施の形態 2に係る半導体レーザ装置 11は、光学基台 12とァオリホルダ 13とスラ イドホルダ 4を備えている。  The semiconductor laser device 11 according to the second embodiment includes an optical base 12, a tilt holder 13, and a slide holder 4.
[0060] スライドホルダ 4に形成された半導体パッケージ 5の内部に設置された半導体レー ザ素子 6より出射されたレーザ光 7は、光学基台 12の外部へと出射される。 [0060] The semiconductor array installed in the semiconductor package 5 formed in the slide holder 4 Laser light 7 emitted from the element 6 is emitted to the outside of the optical base 12.
[0061] 光学基台 12には、内面が略円筒面状である孔部 12aが形成されている。また、ァ オリホルダ 13は略円柱状であり、略矩形状である溝 13aが形成されている。  The optical base 12 is formed with a hole 12a whose inner surface is substantially cylindrical. Further, the tilt holder 13 has a substantially cylindrical shape, and is formed with a substantially rectangular groove 13a.
[0062] 光学基台 12の孔部 12aにはァオリホルダ 13が嵌り込み固定され、ァオリホルダ 13 の溝 13aにはスライドホルダ 4が嵌り込み固定されている。溝 13aは、スライドホルダ 4 の外形よりも大きい。すなわち、溝 13aの X軸方向の長さは、スライドホルダ 4の X軸方 向の長さよりも長い。また、溝 13aの Z軸方向の長さ(深さ)は、スライドホルダ 4の Z軸 方向の長さ(厚さ)よりも長い。  The tilt holder 13 is fitted and fixed in the hole 12 a of the optical base 12, and the slide holder 4 is fitted and fixed in the groove 13 a of the tilt holder 13. The groove 13a is larger than the outer shape of the slide holder 4. That is, the length of the groove 13a in the X-axis direction is longer than the length of the slide holder 4 in the X-axis direction. Further, the length (depth) of the groove 13a in the Z-axis direction is longer than the length (thickness) of the slide holder 4 in the Z-axis direction.
[0063] 実施の形態 2の半導体レーザ装置 11は上述のように、レーザ光 7を出射することで 発熱する半導体レーザ素子 6からの熱を、スライドホルダ 4、ァオリホルダ 13と順に伝 達し、放熱グリスや放熱板等を介さずに、ァオリホルダ 13から直接光学基台 12に伝 達する。このような構成なので、半導体レーザ装置 11は高い放熱効率を実現するこ とができる。さらに、ァオリホルダ 13の表面積の大部分が光学基台 12と接しているた め、光学基台 12への放熱量が多い。  [0063] As described above, the semiconductor laser device 11 according to the second embodiment transmits heat from the semiconductor laser element 6 that generates heat by emitting the laser light 7 to the slide holder 4 and the tilt holder 13 in this order, and heat radiation grease. It is transmitted directly from the tilt holder 13 to the optical base 12 without using a heat sink or the like. With this configuration, the semiconductor laser device 11 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the tilt holder 13 is in contact with the optical base 12, the heat radiation to the optical base 12 is large.
[0064] また、半導体パッケージ 5の内部に設置されている半導体レーザ素子 6から出射さ れたレーザ光 7は、光学基台 12の外部に出射される。なお、スライドホルダ 4、ァオリ ホルダ 13および光学基台 12にはレーザ光 7の光路である貫通孔(図示せず)がそれ ぞれ形成されている。  In addition, the laser light 7 emitted from the semiconductor laser element 6 installed inside the semiconductor package 5 is emitted outside the optical base 12. The slide holder 4, the tilt holder 13, and the optical base 12 are each formed with a through hole (not shown) that is an optical path of the laser beam 7.
[0065] このような構成の半導体レーザ装置 11において、半導体レーザ素子 6から出射さ れるレーザ光 7の光軸調整の方法について説明する。なお、光軸調整時には、光学 基台 12およびァオリホルダ 13と、ァオリホルダ 13およびスライドホルダ 4とはそれぞ れ固定されていない。  A method for adjusting the optical axis of the laser beam 7 emitted from the semiconductor laser element 6 in the semiconductor laser device 11 having such a configuration will be described. It should be noted that the optical base 12 and the tilt holder 13, and the tilt holder 13 and the slide holder 4 are not fixed at the time of optical axis adjustment.
[0066] まず、ァオリホルダ 13を、光学基台 12の孔部 12aに嵌り込ませる。すると、ァオリホ ルダ 13を孔部 12aに対して滑らせて、ァオリホルダ 13を、図中の Z軸方向を中心にし て回転させることができる。それにより、半導体レーザ素子 6も回転するので、レーザ 光 7の光軸の方向を変化させることができる。このようにして、レーザ光 7の光軸の方 向が所望の方向になったところで、ァオリホルダ 13の回転を停止する。ここで、ァオリ ホルダ 13と孔部 12aの接触面積が比較的大きいため、両者間の摩擦力により、所望 の位置での停止が容易である。 First, the tilt holder 13 is fitted into the hole 12 a of the optical base 12. Then, the tilt holder 13 can be slid with respect to the hole 12a, and the tilt holder 13 can be rotated about the Z-axis direction in the figure. Thereby, since the semiconductor laser element 6 also rotates, the direction of the optical axis of the laser light 7 can be changed. In this way, when the direction of the optical axis of the laser beam 7 becomes a desired direction, the rotation of the tilt holder 13 is stopped. Here, since the contact area between the tilt holder 13 and the hole 12a is relatively large, the desired frictional force between the two is desired. It is easy to stop at the position.
[0067] また、ァオリホルダ 13の溝 13aにはスライドホルダ 4を嵌り込ませる。すると、溝 13a およびスライドホルダ 4それぞれの Y軸方向の長さはほぼ等しぐ溝 13aの X軸および Z軸方向の長さは、スライドホルダ 4の X軸および Z軸方向の長さよりも長いため、溝 1 3aの内面に沿って、スライドホルダ 4を ZX面に平行な方向に移動させることができる 。それにより、レーザ光 7の光軸の位置を変化させることができる。このようにして、レ 一ザ光 7の光軸の方向が所望の方向になったところで、スライドホルダ 4の移動を停 止する。ここで、スライドホルダ 4と溝 13aとの接触面積が比較的大きいため、両者間 の摩擦力により、所望の位置での停止が容易である。  Further, the slide holder 4 is fitted into the groove 13 a of the tilt holder 13. Then, the lengths of the groove 13a and the slide holder 4 in the Y-axis direction are almost equal. The length of the groove 13a in the X-axis and Z-axis directions is longer than the length of the slide holder 4 in the X-axis and Z-axis directions. Therefore, the slide holder 4 can be moved in a direction parallel to the ZX plane along the inner surface of the groove 13a. Thereby, the position of the optical axis of the laser beam 7 can be changed. In this manner, when the direction of the optical axis of the laser beam 7 becomes a desired direction, the movement of the slide holder 4 is stopped. Here, since the contact area between the slide holder 4 and the groove 13a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0068] 上述の方法により半導体レーザ装置 11の光軸調整を行い、所望の位置にレーザ 光 7が到達するようにしてから、光学基台 12およびァオリホルダ 13と、ァオリホルダ 1 3およびスライドホルダ 4とをそれぞれ固定する。例えば、光学基台 12およびァオリホ ルダ 13間と、ァオリホルダ 13およびスライドホルダ 4間とにそれぞれ接着剤を充填す ればよい。  [0068] After the optical axis of the semiconductor laser device 11 is adjusted by the above-described method so that the laser light 7 reaches a desired position, the optical base 12, the tilt holder 13, the tilt holder 13 and the slide holder 4 Are fixed respectively. For example, an adhesive may be filled between the optical base 12 and the tilt holder 13 and between the tilt holder 13 and the slide holder 4, respectively.
[0069] 以上説明したように、実施の形態 2に係る半導体レーザ装置 11は、レーザ光 7の出 射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有してい る。  As described above, the semiconductor laser device 11 according to the second embodiment has an effect that the emission direction of the laser light 7 can be easily adjusted and the heat dissipation efficiency is high. .
[0070] (実施の形態 3)  [Embodiment 3]
本発明の実施の形態 3に係る半導体レーザ装置について、図を用いて説明する。 図 9は本発明の実施の形態 3に係る半導体レーザ装置の構成を示す平面図である。 また、図 10は、図 9の C— C矢視断面図である。また、図 11は本発明の実施の形態 3 に係る半導体レーザ装置の分解斜視図である。また、図 15は本発明の実施の形態 3 に係る半導体レーザ装置の構成を示す斜視図である。なお、図 9において、 X軸は 左右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。また、実施 の形態 3の半導体レーザ装置 21において、実施の形態 1で説明した半導体レーザ 装置 1と同様の構成については、図において同様の符号を付し説明を省略する。  A semiconductor laser device according to Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 9 is a plan view showing the configuration of the semiconductor laser device according to the third embodiment of the present invention. FIG. 10 is a cross-sectional view taken along the line CC in FIG. FIG. 11 is an exploded perspective view of the semiconductor laser device according to the third embodiment of the present invention. FIG. 15 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 3 of the present invention. In FIG. 9, the X-axis is the left-right direction, the Y-axis is the up-down direction, and the Z-axis is the direction perpendicular to the page. Further, in the semiconductor laser device 21 of the third embodiment, the same reference numerals are given to the same configurations as those of the semiconductor laser device 1 described in the first embodiment, and the description thereof is omitted.
[0071] 実施の形態 3に係る半導体レーザ装置 21は、光学基台 22とァオリホルダ 23とスラ イドホルダ 4を備えている。 [0072] スライドホルダ 4に形成された半導体パッケージ 5の内部に設置された半導体レー ザ素子 6より出射されたレーザ光 7は、光学基台 22の外部へと出射される。 The semiconductor laser device 21 according to the third embodiment includes an optical base 22, a tilt holder 23, and a slide holder 4. The laser beam 7 emitted from the semiconductor laser element 6 installed inside the semiconductor package 5 formed on the slide holder 4 is emitted to the outside of the optical base 22.
[0073] 光学基台 22には、底面に略球面状である凸部 22bを有する、側面が略円筒面状 である孔部 22aが形成されている。また、ァオリホルダ 23は、底面に略球面状である 凹部 23aを有する略円柱状である。さらに、ァオリホルダ 23には、略矩形状である溝 23bが形成されている。  The optical base 22 is formed with a hole 22a having a substantially spherical surface on the bottom surface and a substantially cylindrical surface on the side surface. Further, the tilt holder 23 has a substantially cylindrical shape having a substantially spherical concave portion 23a on the bottom surface. Furthermore, the hollow holder 23 is formed with a substantially rectangular groove 23b.
[0074] 光学基台 22の孔部 22aにはァオリホルダ 23が嵌り込み固定されている。その際に 、ァオリホルダ 23の凹部 23aに光学基台 22の凸部 22bが嵌り込む。また、ァオリホル ダ 23の溝 23bにはスライドホルダ 4が嵌り込み固定されている。溝 23bは、スライドホ ルダ 4の外形よりも大きい。すなわち、溝 23bの X軸方向の長さは、スライドホルダ 4の X軸方向の長さよりも長い。また、溝 23bの Z軸方向の長さ(深さ)は、スライドホルダ 4 の Z軸方向の長さ(厚さ)よりも長!、。  A tilt holder 23 is fitted and fixed in the hole 22 a of the optical base 22. At this time, the convex portion 22 b of the optical base 22 is fitted into the concave portion 23 a of the tilt holder 23. Further, the slide holder 4 is fitted and fixed in the groove 23b of the air holder 23. The groove 23b is larger than the outer shape of the slide holder 4. That is, the length of the groove 23b in the X-axis direction is longer than the length of the slide holder 4 in the X-axis direction. Also, the length (depth) of the groove 23b in the Z-axis direction is longer than the length (thickness) of the slide holder 4 in the Z-axis direction!
[0075] 実施の形態 3の半導体レーザ装置 21は上述のように、レーザ光 7を出射することで 発熱する半導体レーザ素子 6からの熱をスライドホルダ 4、ァオリホルダ 23と順に伝達 し、放熱グリスや放熱板等を介さずに、ァオリホルダ 23から直接光学基台 22に伝達 する。このような構成なので、半導体レーザ装置 21は高い放熱効率を実現することが できる。さらに、ァオリホルダ 23の表面積の大部分が光学基台 22と接しているため、 光学基台 22への放熱量が多 、。  [0075] As described above, the semiconductor laser device 21 of the third embodiment transmits heat from the semiconductor laser element 6 that generates heat by emitting the laser light 7 to the slide holder 4 and the tilt holder 23 in this order, Directly transmitted from the tilt holder 23 to the optical base 22 without using a heat sink or the like. With this configuration, the semiconductor laser device 21 can achieve high heat dissipation efficiency. In addition, since the majority of the surface area of the tilt holder 23 is in contact with the optical base 22, the amount of heat radiation to the optical base 22 is large.
[0076] また、半導体パッケージ 5の内部に設置されている半導体レーザ素子 6から出射さ れたレーザ光 7は、光学基台 22の外部に出射される。なお、スライドホルダ 4、ァオリ ホルダ 23および光学基台 22にはレーザ光 7の光路である貫通孔(図示せず)がそれ ぞれ形成されている。  In addition, the laser light 7 emitted from the semiconductor laser element 6 installed inside the semiconductor package 5 is emitted to the outside of the optical base 22. The slide holder 4, the tilt holder 23 and the optical base 22 are each formed with a through hole (not shown) which is an optical path of the laser beam 7.
[0077] このような構成の半導体レーザ装置 21において、半導体レーザ素子 6から出射さ れるレーザ光 7の光軸調整の方法について説明する。なお、光軸調整時には、光学 基台 22およびァオリホルダ 23と、ァオリホルダ 23およびスライドホルダ 4とはそれぞ れ固定されていない。  A method for adjusting the optical axis of the laser beam 7 emitted from the semiconductor laser element 6 in the semiconductor laser device 21 having such a configuration will be described. At the time of optical axis adjustment, the optical base 22 and the tilt holder 23, and the tilt holder 23 and the slide holder 4 are not fixed, respectively.
[0078] まず、光学基台 22の凸部 22bを、ァオリホルダ 23の凹部 23aに嵌り込ませる。する と、凹部 23aを凸部 22bに対して滑らせて、ァオリホルダ 23を、図中の X軸、 Y軸およ び Z軸方向を中心にして回転させることができる。それにより、半導体レーザ素子 6も 回転するので、レーザ光 7の光軸の方向を変化させることができる。このようにして、レ 一ザ光 7の光軸の方向が所望の方向になったところで、ァオリホルダ 23の回転を停 止する。ここで、凸部 22bと凹部 23aの接触面積が比較的大きいため、両者間の摩 擦力により、所望の位置での停止が容易である。 First, the convex portion 22 b of the optical base 22 is fitted into the concave portion 23 a of the tilt holder 23. Then, the concave portion 23a is slid with respect to the convex portion 22b, and the tilt holder 23 is moved to the X-axis, Y-axis, and And can be rotated around the Z-axis direction. Thereby, the semiconductor laser element 6 also rotates, so that the direction of the optical axis of the laser light 7 can be changed. In this way, when the direction of the optical axis of the laser beam 7 becomes a desired direction, the rotation of the tilt holder 23 is stopped. Here, since the contact area between the convex portion 22b and the concave portion 23a is relatively large, it is easy to stop at a desired position by the frictional force between them.
[0079] また、ァオリホルダ 23の溝 23bにはスライドホルダ 4を嵌り込ませる。すると、溝 23b およびスライドホルダ 4それぞれの Y軸方向の長さはほぼ等しぐ溝 23bの X軸および Z軸方向の長さは、スライドホルダ 4の X軸および Z軸方向の長さよりも長いため、溝 2 3b中において、スライドホルダ 4を ZX面に平行な方向に移動させることができる。そ れにより、レーザ光 7の光軸の位置を変化させることができる。このようにして、レーザ 光 7の光軸の方向が所望の方向になったところで、スライドホルダ 4の移動を停止す る。ここで、スライドホルダ 4と溝 23bの接触面積が比較的大きいため、両者間の摩擦 力により、所望の位置での停止が容易である。  Further, the slide holder 4 is fitted into the groove 23b of the tilt holder 23. Then, the lengths of the groove 23b and the slide holder 4 in the Y-axis direction are almost equal. The length of the groove 23b in the X-axis and Z-axis directions is longer than the length of the slide holder 4 in the X-axis and Z-axis directions. Therefore, in the groove 23b, the slide holder 4 can be moved in a direction parallel to the ZX plane. As a result, the position of the optical axis of the laser beam 7 can be changed. In this way, the movement of the slide holder 4 is stopped when the direction of the optical axis of the laser beam 7 becomes a desired direction. Here, since the contact area between the slide holder 4 and the groove 23b is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0080] 上述の方法により半導体レーザ装置 21の光軸調整を行い、所望の位置にレーザ 光 7が到達するようにしてから、光学基台 22およびァオリホルダ 23と、ァオリホルダ 2 3およびスライドホルダ 4とをそれぞれ固定する。例えば、光学基台 22およびァオリホ ルダ 23間と、ァオリホルダ 23およびスライドホルダ 4間とにそれぞれ接着剤を充填す ればよい。  The optical axis of the semiconductor laser device 21 is adjusted by the above-described method so that the laser beam 7 reaches a desired position, and then the optical base 22 and the tilt holder 23, the tilt holder 23 and the slide holder 4 Are fixed respectively. For example, an adhesive may be filled between the optical base 22 and the tilt holder 23 and between the tilt holder 23 and the slide holder 4, respectively.
[0081] 以上説明したように、実施の形態 3に係る半導体レーザ装置 21は、レーザ光 7の出 射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有してい る。  As described above, the semiconductor laser device 21 according to the third embodiment has an effect that the emission direction of the laser light 7 can be easily adjusted and the heat dissipation efficiency is high. .
[0082] (実施の形態 4)  [0082] (Embodiment 4)
本発明の実施の形態 4に係る半導体レーザ装置について、図を用いて説明する。 図 13は本発明の実施の形態 4に係る半導体レーザ装置の構成を示す平面図である 。また、図 14は、図 13の D—D矢視断面図である。また、図 15は本発明の実施の形 態 4に係る半導体レーザ装置の分解斜視図である。また、図 16は本発明の実施の形 態 4に係る半導体レーザ装置の構成を示す斜視図である。なお、図 13において、 X 軸は左右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。 [0083] 実施の形態 4に係る半導体レーザ装置 31は、光学基台 32とァオリホルダ 33とスラ イドホルダ 34を備えて!/、る。 A semiconductor laser device according to Embodiment 4 of the present invention will be described with reference to the drawings. FIG. 13 is a plan view showing the configuration of the semiconductor laser device according to the fourth embodiment of the present invention. 14 is a cross-sectional view taken along the line DD in FIG. FIG. 15 is an exploded perspective view of the semiconductor laser device according to Embodiment 4 of the present invention. FIG. 16 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 4 of the present invention. In FIG. 13, the X-axis is the left-right direction, the Y-axis is the up-down direction, and the Z-axis is the direction perpendicular to the page. The semiconductor laser device 31 according to the fourth embodiment includes an optical base 32, a tilt holder 33, and a slide holder 34! /.
[0084] ァオリホルダ 33には、空間である半導体パッケージ 35が形成されている。半導体 パッケージ 35の内部には、半導体レーザ素子 36等の電子部品が設置されている。 半導体レーザ素子 36は、レーザ光 37を出射する。半導体レーザ素子 36より出射さ れたレーザ光 37は、光学基台 32の外部へと出射される。  A semiconductor package 35 that is a space is formed in the air holder 33. Inside the semiconductor package 35, electronic components such as the semiconductor laser element 36 are installed. The semiconductor laser element 36 emits laser light 37. Laser light 37 emitted from the semiconductor laser element 36 is emitted to the outside of the optical base 32.
[0085] 光学基台 32には、略矩形状である溝 32aが形成されて 、る。また、スライドホルダ 3 4には、内面が略球面状である孔部 34aが形成されている。ァオリホルダ 33は、略球 体を平面により分割したような形状であり、略球面状である凸部 33aを備えている。  [0085] The optical base 32 is formed with a substantially rectangular groove 32a. Further, the slide holder 34 is formed with a hole 34a whose inner surface is substantially spherical. The hollow holder 33 has a shape obtained by dividing a substantially spherical body by a plane, and includes a convex portion 33a having a substantially spherical shape.
[0086] 光学基台 32の溝 32aにはスライドホルダ 34が嵌り込み固定されている。溝 32aは、 スライドホルダ 34の外形よりも大きい。すなわち、溝 32aの X軸方向の長さは、スライド ホルダ 34の X軸方向の長さよりも長い。また、溝 32aの Z軸方向の長さ(深さ)は、スラ イドホルダ 34の Z軸方向の長さ(厚さ)よりも長い。また、スライドホルダ 34の孔部 34a には、ァオリホルダ 33の凸部 33aが嵌り込み固定されている。  The slide holder 34 is fitted and fixed in the groove 32 a of the optical base 32. The groove 32 a is larger than the outer shape of the slide holder 34. That is, the length of the groove 32a in the X-axis direction is longer than the length of the slide holder 34 in the X-axis direction. Further, the length (depth) of the groove 32a in the Z-axis direction is longer than the length (thickness) of the slide holder 34 in the Z-axis direction. Further, the projection 33a of the tilt holder 33 is fitted and fixed in the hole 34a of the slide holder 34.
[0087] 実施の形態 4の半導体レーザ装置 31は上述のように、レーザ光 37を出射すること で発熱する半導体レーザ素子 36からの熱を、ァオリホルダ 33、スライドホルダ 34と順 に伝達し、放熱グリスや放熱板等を介さずに、スライドホルダ 34から直接光学基台 32 に伝達する。このような構成なので、半導体レーザ装置 31は高い放熱効率を実現す ることができる。さらに、スライドホルダ 34の表面積の大部分が光学基台 32と接して いるため、光学基台 32への放熱量が多い。  As described above, the semiconductor laser device 31 of the fourth embodiment transmits heat from the semiconductor laser element 36, which generates heat by emitting the laser light 37, to the tilt holder 33 and the slide holder 34 in this order, and dissipates heat. The light is transmitted directly from the slide holder 34 to the optical base 32 without using grease or a heat sink. With this configuration, the semiconductor laser device 31 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the slide holder 34 is in contact with the optical base 32, the amount of heat released to the optical base 32 is large.
[0088] また、半導体パッケージ 35の内部に設置されている半導体レーザ素子 36から出射 されたレーザ光 37は、光学基台 32の外部に出射される。なお、ァオリホルダ 33、スラ イドホルダ 34および光学基台 32にはレーザ光 37の光路である貫通孔(図示せず) がそれぞれ形成されている。  Further, the laser light 37 emitted from the semiconductor laser element 36 installed inside the semiconductor package 35 is emitted outside the optical base 32. Note that a through-hole (not shown) that is an optical path of the laser beam 37 is formed in each of the tilt holder 33, the slide holder 34, and the optical base 32.
[0089] このような構成の半導体レーザ装置 31において、半導体レーザ素子 36から出射さ れるレーザ光 37の光軸調整の方法について説明する。なお、光軸調整時には、光 学基台 32およびスライドホルダ 34と、スライドホルダ 34およびァオリホルダ 33とはそ れぞれ固定されていない。 [0090] まず、ァオリホルダ 33の凸部 33aを、スライドホルダ 34の孔部 34aに嵌り込ませる。 すると、凸部 33aを孔部 34aに対して滑らせて、ァオリホルダ 33を、図中の X軸、 Y軸 および Z軸方向を中心にして回転させることができる。それにより、半導体レーザ素子 36も回転するので、レーザ光 37の光軸の方向を変化させることができる。このように して、レーザ光 37の光軸の方向が所望の方向になったところで、ァオリホルダ 33の 回転を停止する。ここで、凸部 33aと孔部 34aの接触面積が比較的大きいため、両者 間の摩擦力により、所望の位置での停止が容易である。 A method of adjusting the optical axis of the laser light 37 emitted from the semiconductor laser element 36 in the semiconductor laser device 31 having the above configuration will be described. At the time of optical axis adjustment, the optical base 32 and the slide holder 34, and the slide holder 34 and the tilt holder 33 are not fixed, respectively. First, the convex portion 33 a of the tilt holder 33 is fitted into the hole 34 a of the slide holder 34. Then, the convex portion 33a can be slid with respect to the hole portion 34a, and the tilt holder 33 can be rotated about the X-axis, Y-axis, and Z-axis directions in the figure. Thereby, since the semiconductor laser element 36 also rotates, the direction of the optical axis of the laser light 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the rotation of the tilt holder 33 is stopped. Here, since the contact area between the convex portion 33a and the hole portion 34a is relatively large, it is easy to stop at a desired position due to the frictional force therebetween.
[0091] また、光学基台 32の溝 32aにはスライドホルダ 34を嵌り込ませる。すると、溝 32aお よびスライドホルダ 34それぞれの Y軸方向の長さはほぼ等しぐ溝 32aの X軸および Z軸方向の長さは、スライドホルダ 34の X軸および Z軸方向の長さよりも長いため、溝 32a中において、スライドホルダ 34を ZX面に平行な方向に移動させることができる。 それにより、レーザ光 37の光軸の位置を変化させることができる。このようにして、レ 一ザ光 37の光軸の方向が所望の方向になったところで、スライドホルダ 34の移動を 停止する。ここで、スライドホルダ 34と溝 32aの接触面積が比較的大きいため、両者 間の摩擦力により、所望の位置での停止が容易である。  Further, the slide holder 34 is fitted into the groove 32 a of the optical base 32. Then, the length in the Y-axis direction of each of the groove 32a and the slide holder 34 is almost equal. The length in the X-axis and Z-axis direction of the groove 32a is larger than the length of the slide holder 34 in the X-axis and Z-axis direction. Since it is long, the slide holder 34 can be moved in the direction parallel to the ZX plane in the groove 32a. Thereby, the position of the optical axis of the laser beam 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the movement of the slide holder 34 is stopped. Here, since the contact area between the slide holder 34 and the groove 32a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0092] 上述の方法により半導体レーザ装置 31の光軸調整を行い、所望の位置にレーザ 光 37が到達するようにしてから、光学基台 32およびスライドホルダ 34と、スライドホル ダ 34およびァオリホルダ 33とをそれぞれ固定する。例えば、光学基台 32およびスラ イドホルダ 34間と、スライドホルダ 34およびァオリホルダ 33間とにそれぞれ接着剤を 充填すればよい。  The optical axis of the semiconductor laser device 31 is adjusted by the above-described method so that the laser light 37 reaches a desired position, and then the optical base 32 and the slide holder 34, the slide holder 34, and the tilt holder 33. And are fixed respectively. For example, an adhesive may be filled between the optical base 32 and the slide holder 34 and between the slide holder 34 and the tilt holder 33, respectively.
[0093] 以上説明したように、実施の形態 4に係る半導体レーザ装置 31は、レーザ光 37の 出射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有して いる。  As described above, the semiconductor laser device 31 according to the fourth embodiment has the effects that the emission direction of the laser light 37 can be easily adjusted and the heat dissipation efficiency is high.
[0094] (実施の形態 5)  [0094] (Embodiment 5)
本発明の実施の形態 5に係る半導体レーザ装置について、図を用いて説明する。 図 17は本発明の実施の形態 5に係る半導体レーザ装置の構成を示す平面図である 。また、図 18は、図 17の E—E矢視断面図である。また、図 19は本発明の実施の形 態 5に係る半導体レーザ装置の分解斜視図である。また、図 20は本発明の実施の形 態 5に係る半導体レーザ装置の構成を示す斜視図である。なお、図 17において、 X 軸は左右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。また、 実施の形態 5の半導体レーザ装置 41において、実施の形態 4で説明した半導体レ 一ザ装置 31と同様の構成については、図において同様の符号を付し説明を省略す る。 A semiconductor laser device according to Embodiment 5 of the present invention will be described with reference to the drawings. FIG. 17 is a plan view showing the configuration of the semiconductor laser device according to the fifth embodiment of the present invention. 18 is a cross-sectional view taken along the line E-E in FIG. FIG. 19 is an exploded perspective view of the semiconductor laser device according to Embodiment 5 of the present invention. FIG. 20 shows an embodiment of the present invention. FIG. 6 is a perspective view showing a configuration of a semiconductor laser device according to mode 5. In FIG. 17, the X axis is the left-right direction, the Y axis is the up-down direction, and the Z-axis is the direction perpendicular to the page. Further, in the semiconductor laser device 41 of the fifth embodiment, the same reference numerals are given to the same components as those of the semiconductor laser device 31 described in the fourth embodiment, and the description thereof is omitted.
[0095] 実施の形態 5に係る半導体レーザ装置 41は、光学基台 32とァオリホルダ 43とスラ イドホルダ 44を備えて!/、る。  The semiconductor laser device 41 according to the fifth embodiment includes an optical base 32, a tilt holder 43, and a slide holder 44.
[0096] ァオリホルダ 43には、空間である半導体パッケージ 35が形成されている。半導体 パッケージ 35の内部には、半導体レーザ素子 36等の電子部品が設置されている。 半導体レーザ素子 36は、レーザ光 37を出射する。半導体レーザ素子 36より出射さ れたレーザ光 37は、光学基台 32の外部へと出射される。 A semiconductor package 35 that is a space is formed in the air holder 43. Inside the semiconductor package 35, electronic components such as the semiconductor laser element 36 are installed. The semiconductor laser element 36 emits laser light 37. Laser light 37 emitted from the semiconductor laser element 36 is emitted to the outside of the optical base 32.
[0097] 光学基台 32には、略矩形状である溝 32aが形成されて 、る。また、スライドホルダ 4The optical base 32 is formed with a substantially rectangular groove 32a. Slide holder 4
4には、内面が略円筒面状である孔部 44aが形成されている。ァオリホルダ 43は略円 柱状である。 4 is formed with a hole 44a whose inner surface is substantially cylindrical. The hollow holder 43 has a substantially cylindrical shape.
[0098] 光学基台 32の溝 32aにはスライドホルダ 44が嵌り込み固定されている。溝 32aは、 スライドホルダ 44の外形よりも大きい。すなわち、溝 32aの X軸方向の長さは、スライド ホルダ 44の X軸方向の長さよりも長い。また、溝 32aの Z軸方向の長さ(深さ)は、スラ イドホルダ 44の Z軸方向の長さ(厚さ)よりも長い。また、スライドホルダ 44の孔部 44a には、ァオリホルダ 43が嵌り込み固定されている。  A slide holder 44 is fitted and fixed in the groove 32a of the optical base 32. The groove 32 a is larger than the outer shape of the slide holder 44. That is, the length of the groove 32a in the X-axis direction is longer than the length of the slide holder 44 in the X-axis direction. The length (depth) of the groove 32a in the Z-axis direction is longer than the length (thickness) of the slide holder 44 in the Z-axis direction. Further, the tilt holder 43 is fitted and fixed in the hole 44 a of the slide holder 44.
[0099] 実施の形態 5の半導体レーザ装置 41は上述のように、レーザ光 37を出射すること で発熱する半導体レーザ素子 36からの熱を、ァオリホルダ 43、スライドホルダ 44と順 に伝達し、放熱グリスや放熱板等を介さずに、スライドホルダ 44から直接光学基台 32 に伝達する。このような構成なので、半導体レーザ装置 41は高い放熱効率を実現す ることができる。さらに、スライドホルダ 44の表面積の大部分が光学基台 32と接して いるため、光学基台 32への放熱量が多い。  [0099] As described above, the semiconductor laser device 41 of the fifth embodiment transmits heat from the semiconductor laser element 36, which generates heat by emitting the laser light 37, to the tilt holder 43 and the slide holder 44 in this order, and dissipates heat. The light is transmitted directly from the slide holder 44 to the optical base 32 without using grease or a heat sink. With this configuration, the semiconductor laser device 41 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the slide holder 44 is in contact with the optical base 32, the amount of heat radiation to the optical base 32 is large.
[0100] また、半導体パッケージ 35の内部に設置されている半導体レーザ素子 36から出射 されたレーザ光 37は、光学基台 32の外部に出射される。なお、ァオリホルダ 43、スラ イドホルダ 44および光学基台 32にはレーザ光 37の光路である貫通孔(図示せず) がそれぞれ形成されている。 Further, the laser light 37 emitted from the semiconductor laser element 36 installed inside the semiconductor package 35 is emitted outside the optical base 32. The hollow holder 43, the slide holder 44, and the optical base 32 have through holes (not shown) that are optical paths of the laser light 37. Are formed respectively.
[0101] このような構成の半導体レーザ装置 41において、半導体レーザ素子 36から出射さ れるレーザ光 37の光軸調整の方法について説明する。なお、光軸調整時には、光 学基台 32およびスライドホルダ 44と、スライドホルダ 44およびァオリホルダ 43とはそ れぞれ固定されていない。  A method of adjusting the optical axis of the laser beam 37 emitted from the semiconductor laser element 36 in the semiconductor laser device 41 having such a configuration will be described. Note that the optical base 32 and the slide holder 44, and the slide holder 44 and the tilt holder 43 are not fixed at the time of optical axis adjustment.
[0102] まず、スライドホルダ 44の孔部 44aにァオリホルダ 43を嵌り込ませる。すると、スライ ドホルダ 44に対してァオリホルダ 43を滑らせて、ァオリホルダ 33を図中の Z軸方向を 中心にして回転させることができる。それにより、半導体レーザ素子 36も回転するの で、レーザ光 37の光軸の方向を変化させることができる。このようにして、レーザ光 3 7の光軸の方向が所望の方向になったところで、ァオリホルダ 43の回転を停止する。 ここで、ァオリホルダ 43と孔部 44aの接触面積が比較的大きいため、両者間の摩擦 力により、所望の位置での停止が容易である。  First, the tilt holder 43 is fitted into the hole 44 a of the slide holder 44. Then, the tilt holder 43 can be slid with respect to the slide holder 44 and the tilt holder 33 can be rotated around the Z-axis direction in the figure. Thereby, the semiconductor laser element 36 also rotates, so that the direction of the optical axis of the laser light 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the rotation of the tilt holder 43 is stopped. Here, since the contact area between the tilt holder 43 and the hole 44a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0103] また、光学基台 32の溝 32aにはスライドホルダ 44を嵌り込ませる。すると、溝 32aお よびスライドホルダ 44それぞれの Y軸方向の長さはほぼ等しぐ溝 32aの X軸および Z軸方向の長さは、スライドホルダ 44の X軸および Z軸方向の長さよりも長いため、溝 32a中において、スライドホルダ 44を ZX面に平行な方向に運動させることができる。 それにより、レーザ光 37の光軸の位置を変化させることができる。このようにして、レ 一ザ光 37の光軸の方向が所望の方向になったところで、スライドホルダ 44の移動を 停止する。ここで、スライドホルダ 44と溝 32aの接触面積が比較的大きいため、両者 間の摩擦力により、所望の位置での停止が容易である。  In addition, the slide holder 44 is fitted into the groove 32 a of the optical base 32. Then, the length in the Y-axis direction of each of the groove 32a and the slide holder 44 is almost equal. The length in the X-axis and Z-axis direction of the groove 32a is larger than the length of the slide holder 44 in the X-axis and Z-axis direction. Since it is long, the slide holder 44 can be moved in the direction parallel to the ZX plane in the groove 32a. Thereby, the position of the optical axis of the laser beam 37 can be changed. In this way, the movement of the slide holder 44 is stopped when the optical axis direction of the laser beam 37 becomes a desired direction. Here, since the contact area between the slide holder 44 and the groove 32a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0104] 上述の方法により半導体レーザ装置 41の光軸調整を行い、所望の位置にレーザ 光 37が到達するようにしてから、光学基台 32およびスライドホルダ 44と、スライドホル ダ 44およびァオリホルダ 43とをそれぞれ固定する。例えば、光学基台 32およびスラ イドホルダ 44間と、スライドホルダ 44およびァオリホルダ 43間とにそれぞれ接着剤を 充填すればよい。  The optical axis of the semiconductor laser device 41 is adjusted by the above-described method so that the laser beam 37 reaches a desired position, and then the optical base 32 and the slide holder 44, and the slide holder 44 and the tilt holder 43 And are fixed respectively. For example, an adhesive may be filled between the optical base 32 and the slide holder 44 and between the slide holder 44 and the tilt holder 43, respectively.
[0105] 以上説明したように、実施の形態 5に係る半導体レーザ装置 41は、レーザ光 37の 出射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有して いる。 [0106] (実施の形態 6) As described above, the semiconductor laser device 41 according to the fifth embodiment has an effect that the emission direction of the laser light 37 can be easily adjusted and the heat dissipation efficiency is high. [Embodiment 6]
本発明の実施の形態 6に係る半導体レーザ装置について、図を用いて説明する。 図 21は本発明の実施の形態 6に係る半導体レーザ装置の構成を示す平面図である 。また、図 22は、図 21の F—F矢視断面図である。また、図 23は本発明の実施の形 態 6に係る半導体レーザ装置の分解斜視図である。また、図 24は本発明の実施の形 態 6に係る半導体レーザ装置の構成を示す斜視図である。なお、図 21において、 X 軸は左右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。また、 実施の形態 6の半導体レーザ装置 51において、実施の形態 4で説明した半導体レ 一ザ装置 31と同様の構成については、図において同様の符号を付し説明を省略す る。  A semiconductor laser device according to the sixth embodiment of the present invention will be described with reference to the drawings. FIG. 21 is a plan view showing the configuration of the semiconductor laser device according to the sixth embodiment of the present invention. 22 is a cross-sectional view taken along the line FF in FIG. FIG. 23 is an exploded perspective view of the semiconductor laser device according to Embodiment 6 of the present invention. FIG. 24 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 6 of the present invention. In FIG. 21, the X axis is the left-right direction, the Y axis is the up-down direction, and the Z-axis is the direction perpendicular to the page. Further, in the semiconductor laser device 51 of the sixth embodiment, the same reference numerals are given to the same components as those of the semiconductor laser device 31 described in the fourth embodiment, and the description thereof is omitted.
[0107] 実施の形態 6に係る半導体レーザ装置 51は、光学基台 32とァオリホルダ 53とスラ イドホルダ 54を備えて!/、る。  The semiconductor laser device 51 according to the sixth embodiment includes an optical base 32, a tilt holder 53, and a slide holder 54! /.
[0108] ァオリホルダ 53には、空間である半導体パッケージ 35が形成されている。半導体 パッケージ 35の内部には、半導体レーザ素子 36等の電子部品が設置されている。 半導体レーザ素子 36は、レーザ光 37を出射する。半導体レーザ素子 36より出射さ れたレーザ光 37は、光学基台 32の外部へと出射される。 A semiconductor package 35 as a space is formed in the air holder 53. Inside the semiconductor package 35, electronic components such as the semiconductor laser element 36 are installed. The semiconductor laser element 36 emits laser light 37. Laser light 37 emitted from the semiconductor laser element 36 is emitted to the outside of the optical base 32.
[0109] 光学基台 32には、略矩形状である溝 32aが形成されている。また、スライドホルダ 5The optical base 32 is formed with a substantially rectangular groove 32a. Slide holder 5
4には、底面に略球面状である凸部 54bを有する、側面が略円筒面状である孔部 54 aが形成されている。また、ァオリホルダ 53は、底面に略球面状である凹部 53aを有 している。 4 is formed with a hole 54a having a substantially spherical surface on the bottom surface and a substantially cylindrical surface on the side surface. In addition, the tilt holder 53 has a concave portion 53a having a substantially spherical shape on the bottom surface.
[0110] 光学基台 32の溝 32aにはスライドホルダ 54が嵌り込み固定されている。溝 32aは、 スライドホルダ 54の外形よりも大きい。すなわち、溝 32aの X軸方向の長さは、スライド ホルダ 54の X軸方向の長さよりも長い。また、溝 32aの Z軸方向の長さ(深さ)は、スラ イドホルダ 54の Z軸方向の長さ(厚さ)よりも長い。また、スライドホルダ 54の孔部 54a には、ァオリホルダ 53が嵌り込み固定されている。その際に、ァオリホルダ 53の凹部 53aには、スライドホルダ 54の凸部 54bが嵌り込む。  [0110] A slide holder 54 is fitted and fixed in the groove 32a of the optical base 32. The groove 32a is larger than the outer shape of the slide holder 54. That is, the length of the groove 32a in the X-axis direction is longer than the length of the slide holder 54 in the X-axis direction. Further, the length (depth) of the groove 32a in the Z-axis direction is longer than the length (thickness) of the slide holder 54 in the Z-axis direction. Further, a tilt holder 53 is fitted and fixed in the hole 54a of the slide holder 54. At this time, the convex portion 54 b of the slide holder 54 is fitted into the concave portion 53 a of the tilt holder 53.
[0111] 実施の形態 6の半導体レーザ装置 51は上述のように、レーザ光 37を出射すること で発熱する半導体レーザ素子 36からの熱をァオリホルダ 53、スライドホルダ 54と順 に伝達し、放熱グリスや放熱板等を介さずに、スライドホルダ 54から直接光学基台 32 に伝達する。このような構成なので、半導体レーザ装置 51は高い放熱効率を実現す ることができる。さらに、スライドホルダ 54の表面積の大部分が光学基台 32と接して いるため、光学基台 32への放熱量が多い。 [0111] As described above, the semiconductor laser device 51 of the sixth embodiment transmits heat from the semiconductor laser element 36, which generates heat by emitting the laser light 37, in the order of the tilt holder 53 and the slide holder 54. To the optical base 32 directly from the slide holder 54 without passing through heat dissipation grease or a heat dissipation plate. With such a configuration, the semiconductor laser device 51 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the slide holder 54 is in contact with the optical base 32, the heat radiation to the optical base 32 is large.
[0112] また、半導体パッケージ 35の内部に設置されている半導体レーザ素子 36から出射 されたレーザ光 37は、光学基台 32の外部に出射される。なお、ァオリホルダ 53、スラ イドホルダ 54および光学基台 32にはレーザ光 37の光路である貫通孔(図示せず) がそれぞれ形成されている。  Further, the laser light 37 emitted from the semiconductor laser element 36 installed inside the semiconductor package 35 is emitted to the outside of the optical base 32. Note that a through-hole (not shown) that is an optical path of the laser beam 37 is formed in each of the tilt holder 53, the slide holder 54, and the optical base 32.
[0113] このような構成の半導体レーザ装置 51において、半導体レーザ素子 36から出射さ れるレーザ光 37の光軸調整の方法について説明する。なお、光軸調整時には、光 学基台 32およびスライドホルダ 54と、スライドホルダ 54およびァオリホルダ 53とはそ れぞれ固定されていない。  A method of adjusting the optical axis of the laser beam 37 emitted from the semiconductor laser element 36 in the semiconductor laser device 51 having such a configuration will be described. During optical axis adjustment, the optical base 32 and the slide holder 54, and the slide holder 54 and the tilt holder 53 are not fixed, respectively.
[0114] まず、ァオリホルダ 53の凹部 53aを、スライドホルダ 54の凸部 54bに嵌り込ませる。  First, the recess 53 a of the tilt holder 53 is fitted into the projection 54 b of the slide holder 54.
すると、凹部 53aを凸部 54bに対して滑らせて、ァォリホルダ 53を、図中の X軸、 Y軸 および Z軸方向を中心にして回転させることができる。それにより、半導体レーザ素子 36も回転するので、レーザ光 37の光軸の方向を変化させることができる。このように して、レーザ光 37の光軸の方向が所望の方向になったところで、ァオリホルダ 53の 回転を停止する。ここで、凸部 54bと凹部 53aの接触面積が比較的大きいため、両者 間の摩擦力により、所望の位置での停止が容易である。  Then, the concave portion 53a can be slid with respect to the convex portion 54b, and the carrier holder 53 can be rotated about the X-axis, Y-axis, and Z-axis directions in the figure. Thereby, since the semiconductor laser element 36 also rotates, the direction of the optical axis of the laser light 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the rotation of the tilt holder 53 is stopped. Here, since the contact area between the convex portion 54b and the concave portion 53a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0115] また、光学基台 32の溝 32aにはスライドホルダ 54を嵌り込ませる。すると、溝 32aお よびスライドホルダ 54それぞれの Y軸方向の長さはほぼ等しぐ溝 32aの X軸および Z軸方向の長さは、スライドホルダ 54の X軸および Z軸方向の長さよりも長いため、溝 32a中において、スライドホルダ 54を ZX面に平行な方向に移動させることができる。 それにより、レーザ光 37の光軸の位置を変化させることができる。このようにして、レ 一ザ光 37の光軸の方向が所望の方向になったところで、スライドホルダ 54の移動を 停止する。ここで、スライドホルダ 54と溝 32aの接触面積が比較的大きいため、両者 間の摩擦力により、所望の位置での停止が容易である。  [0115] Further, the slide holder 54 is fitted into the groove 32a of the optical base 32. Then, the lengths of the groove 32a and the slide holder 54 in the Y-axis direction are almost equal. The length of the groove 32a in the X-axis and Z-axis directions is larger than the length of the slide holder 54 in the X-axis and Z-axis directions. Since it is long, the slide holder 54 can be moved in the direction parallel to the ZX plane in the groove 32a. Thereby, the position of the optical axis of the laser beam 37 can be changed. In this way, when the direction of the optical axis of the laser beam 37 becomes a desired direction, the movement of the slide holder 54 is stopped. Here, since the contact area between the slide holder 54 and the groove 32a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0116] 上述の方法により半導体レーザ装置 51の光軸調整を行い、所望の位置にレーザ 光 37が到達するようにしてから、光学基台 32およびスライドホルダ 54と、スライドホル ダ 54およびァオリホルダ 53とをそれぞれ固定する。例えば、光学基台 32およびスラ イドホルダ 54間と、スライドホルダ 54およびァオリホルダ 53間とにそれぞれ接着剤を 充填すればよい。 [0116] The optical axis of the semiconductor laser device 51 is adjusted by the method described above, and the laser is placed at a desired position. After the light 37 reaches, the optical base 32 and the slide holder 54, and the slide holder 54 and the tilt holder 53 are fixed, respectively. For example, an adhesive may be filled between the optical base 32 and the slide holder 54 and between the slide holder 54 and the tilt holder 53, respectively.
[0117] 以上説明したように、実施の形態 6に係る半導体レーザ装置 51は、レーザ光 37の 出射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有して いる。  As described above, the semiconductor laser device 51 according to the sixth embodiment has an effect that the emission direction of the laser light 37 can be easily adjusted and the heat dissipation efficiency is high.
[0118] (実施の形態 7)  [0118] (Embodiment 7)
本発明の実施の形態 7に係る半導体レーザ装置について、図を用いて説明する。 図 25は本発明の実施の形態 7に係る半導体レーザ装置の構成を示す平面図である 。また、図 26は、図 25の G— G矢視断面図である。また、図 27は本発明の実施の形 態 7に係る半導体レーザ装置の分解斜視図である。また、図 28は本発明の実施の形 態 7に係る半導体レーザ装置の構成を示す斜視図である。なお、図 25において、 X 軸は左右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。  A semiconductor laser device according to a seventh embodiment of the present invention will be described with reference to the drawings. FIG. 25 is a plan view showing the configuration of the semiconductor laser device according to the seventh embodiment of the present invention. FIG. 26 is a cross-sectional view taken along line GG in FIG. FIG. 27 is an exploded perspective view of the semiconductor laser device according to the seventh embodiment of the present invention. FIG. 28 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 7 of the present invention. In FIG. 25, the X-axis is the left-right direction, the Y-axis is the up-down direction, and the Z-axis is the direction perpendicular to the page.
[0119] 実施の形態 7に係る半導体レーザ装置 61は、光学基台 62とァオリホルダ 63とスラ イドホルダ 64を備えて!/、る。  The semiconductor laser device 61 according to the seventh embodiment includes an optical base 62, a tilt holder 63, and a slide holder 64! /.
[0120] スライドホルダ 64は略円柱をその軸を含む平面と平行な平面で分割した形状であ り、略円柱の側面状である凸部 64aを備えている。スライドホルダ 64には、空間であ る半導体パッケージ 65が形成されている。半導体パッケージ 65の内部には、半導体 レーザ素子 66等の電子部品が設置されている。半導体レーザ素子 66は、レーザ光 67を出射する。半導体レーザ素子 66より出射されたレーザ光 67は、光学基台 62の 外部へと出射される。  [0120] The slide holder 64 has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including its axis, and includes a convex portion 64a that is a side surface of the substantially cylindrical shape. A semiconductor package 65 that is a space is formed in the slide holder 64. Inside the semiconductor package 65, electronic components such as a semiconductor laser element 66 are installed. The semiconductor laser element 66 emits laser light 67. Laser light 67 emitted from the semiconductor laser element 66 is emitted outside the optical base 62.
[0121] 光学基台 62には、内面が略円筒面状である孔部 62aが形成されている。また、ァ オリホルダ 63は略円柱状である。ァオリホルダ 63には溝 63aが形成されている。溝 6 3aの内面は、略円筒面状である。  [0121] The optical base 62 is formed with a hole 62a whose inner surface is substantially cylindrical. Further, the tilt holder 63 has a substantially cylindrical shape. A groove 63a is formed in the tilt holder 63. The inner surface of the groove 63a is substantially cylindrical.
[0122] 光学基台 62の孔部 62aにはァオリホルダ 63が嵌り込み固定され、ァオリホルダ 63 の溝 63aにはスライドホルダ 64の凸部 64aが嵌り込み固定されている。溝 63aは、ス ライドホルダ 64の外形よりも大きい。すなわち、溝 63aの X軸方向の長さは、スライド ホルダ 64の X軸方向の長さよりも長い。また、溝 63aの内面とスライドホルダ 64とは略 接している。 [0122] The tilt holder 63 is fitted and fixed in the hole 62a of the optical base 62, and the convex portion 64a of the slide holder 64 is fitted and fixed in the groove 63a of the tilt holder 63. The groove 63a is larger than the outer shape of the slide holder 64. That is, the length of the groove 63a in the X-axis direction is It is longer than the length of the holder 64 in the X-axis direction. Further, the inner surface of the groove 63a and the slide holder 64 are substantially in contact with each other.
[0123] 実施の形態 7の半導体レーザ装置 61は上述のように、レーザ光 67を出射すること で発熱する半導体レーザ素子 66からの熱をスライドホルダ 64、ァオリホルダ 63と順 に伝達し、放熱グリスや放熱板等を介さずに、ァオリホルダ 63から直接光学基台 62 に伝達する。このような構成なので、半導体レーザ装置 61は高い放熱効率を実現す ることができる。さらに、ァオリホルダ 63の表面積の大部分が光学基台 62と接してい るため、光学基台 62への放熱量が多い。  As described above, the semiconductor laser device 61 of the seventh embodiment transmits heat from the semiconductor laser element 66, which generates heat by emitting the laser light 67, to the slide holder 64 and the tilt holder 63 in this order, and thus heat radiation grease. Then, the light is directly transmitted from the tilt holder 63 to the optical base 62 without using a heat sink or the like. With this configuration, the semiconductor laser device 61 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the tilt holder 63 is in contact with the optical base 62, the amount of heat released to the optical base 62 is large.
[0124] また、半導体パッケージ 65の内部に設置されている半導体レーザ素子 66から出射 されたレーザ光 67は、光学基台 62の外部に出射される。なお、スライドホルダ 64、ァ オリホルダ 63および光学基台 62にはレーザ光 67の光路である貫通孔(図示せず) がそれぞれ形成されている。  In addition, the laser beam 67 emitted from the semiconductor laser element 66 installed inside the semiconductor package 65 is emitted outside the optical base 62. The slide holder 64, the tilt holder 63, and the optical base 62 are formed with through holes (not shown) that are optical paths of the laser light 67, respectively.
[0125] このような構成の半導体レーザ装置 61において、半導体レーザ素子 66から出射さ れるレーザ光 67の光軸調整の方法について説明する。なお、光軸調整時には、光 学基台 62およびァオリホルダ 63と、ァオリホルダ 63およびスライドホルダ 64とはそれ ぞれ固定されていない。  A method of adjusting the optical axis of the laser beam 67 emitted from the semiconductor laser element 66 in the semiconductor laser device 61 having such a configuration will be described. During optical axis adjustment, the optical base 62 and the tilt holder 63, and the tilt holder 63 and the slide holder 64 are not fixed, respectively.
[0126] まず、ァオリホルダ 63を、光学基台 62の孔部 62aに嵌り込ませる。すると、ァオリホ ノレダ 63を孔部 62a〖こ対して滑らせて、ァォリホノレダ 63を、図中の Z軸方向を中心にし て回転させることができる。これらにより、半導体レーザ素子 66も回転するので、レー ザ光 67の光軸の方向を変化させることができる。このようにして、レーザ光 67の光軸 の方向が所望の方向になったところで、ァオリホルダ 63の回転を停止する。ここで、 ァオリホルダ 63と孔部 62aの接触面積が比較的大きいため、両者間の摩擦力により 、所望の位置での停止が容易である。  First, the tilt holder 63 is fitted into the hole 62 a of the optical base 62. Then, the hollow roller 63 can be slid against the hole 62a, and the hollow roller 63 can be rotated around the Z-axis direction in the figure. As a result, the semiconductor laser element 66 also rotates, so that the direction of the optical axis of the laser light 67 can be changed. In this way, when the direction of the optical axis of the laser beam 67 becomes a desired direction, the rotation of the tilt holder 63 is stopped. Here, since the contact area between the tilt holder 63 and the hole 62a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0127] また、ァオリホルダ 63の溝 63aにはスライドホルダ 64を嵌り込ませる。すると、溝 63a の X軸方向の長さは、スライドホルダ 64の X軸方向の長さよりも長いため、溝 63a中に おいて、スライドホルダ 64を X軸方向に滑らせることができる。また、スライドホルダ 64 の凸部 64aを溝 63aの内面に対して滑らすことで、スライドホルダ 64を、 X軸方向を中 心に回転させることができる。これらにより、半導体レーザ素子 66も回転および直線 運動をするので、レーザ光 67の光軸の位置および方向を変化させることができる。こ のようにして、レーザ光 67の光軸の方向が所望の方向になったところで、スライドホル ダ 64の回転および移動を停止する。ここで、スライドホルダ 64と溝 63aの接触面積が 比較的大きいため、両者間の摩擦力により、所望の位置での停止が容易である。 [0127] Further, the slide holder 64 is fitted into the groove 63a of the tilt holder 63. Then, since the length of the groove 63a in the X-axis direction is longer than the length of the slide holder 64 in the X-axis direction, the slide holder 64 can be slid in the X-axis direction in the groove 63a. Further, the slide holder 64 can be rotated about the X-axis direction by sliding the convex portion 64a of the slide holder 64 against the inner surface of the groove 63a. As a result, the semiconductor laser element 66 is also rotated and linearly Since it moves, the position and direction of the optical axis of the laser beam 67 can be changed. In this way, when the direction of the optical axis of the laser beam 67 becomes a desired direction, the rotation and movement of the slide holder 64 are stopped. Here, since the contact area between the slide holder 64 and the groove 63a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0128] 上述の方法により半導体レーザ装置 61の光軸調整を行い、所望の位置にレーザ 光 67が到達するようにしてから、光学基台 62およびァオリホルダ 63と、ァオリホルダ 63およびスライドホルダ 64とをそれぞれ固定する。例えば、光学基台 62およびァォ リホルダ 63間と、ァオリホルダ 63およびスライドホルダ 64間とにそれぞれ接着剤を充 填すればよい。 The optical axis of the semiconductor laser device 61 is adjusted by the above-described method so that the laser beam 67 reaches a desired position, and then the optical base 62 and the tilt holder 63, the tilt holder 63 and the slide holder 64 are connected. Fix each one. For example, an adhesive may be filled between the optical base 62 and the holder 69 and between the holder 63 and the slide holder 64, respectively.
[0129] 以上説明したように、実施の形態 7に係る半導体レーザ装置 61は、レーザ光 67の 出射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有して いる。  As described above, the semiconductor laser device 61 according to the seventh embodiment has an effect that the emission direction of the laser light 67 can be easily adjusted and the heat dissipation efficiency is high.
[0130] (実施の形態 8)  [0130] (Embodiment 8)
本発明の実施の形態 8に係る半導体レーザ装置について、図を用いて説明する。 図 29は本発明の実施の形態 8に係る半導体レーザ装置の構成を示す平面図である 。また、図 30は、図 29の H—H矢視断面図である。また、図 31は本発明の実施の形 態 8に係る半導体レーザ装置の分解斜視図である。また、図 32は本発明の実施の形 態 8に係る半導体レーザ装置の構成を示す斜視図である。なお、図 29において、 X 軸は左右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。また、 実施の形態 8の半導体レーザ装置 71において、実施の形態 7で説明した半導体レ 一ザ装置 61と同様の構成については、図において同様の符号を付し説明を省略す る。  A semiconductor laser device according to the eighth embodiment of the present invention will be described with reference to the drawings. FIG. 29 is a plan view showing the configuration of the semiconductor laser device according to the eighth embodiment of the present invention. FIG. 30 is a cross-sectional view taken along line HH in FIG. FIG. 31 is an exploded perspective view of the semiconductor laser device according to Embodiment 8 of the present invention. FIG. 32 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 8 of the present invention. In FIG. 29, the X-axis is the left-right direction, the Y-axis is the up-down direction, and the Z-axis is the direction perpendicular to the page. Also, in the semiconductor laser device 71 of the eighth embodiment, the same reference numerals are given to the same configurations as those of the semiconductor laser device 61 described in the seventh embodiment, and the description thereof is omitted.
[0131] 実施の形態 8に係る半導体レーザ装置 71は、光学基台 62とァオリホルダ 73とスラ イドホルダ 74を備えて!/、る。  The semiconductor laser device 71 according to the eighth embodiment includes an optical base 62, a tilt holder 73, and a slide holder 74! /.
[0132] スライドホルダ 74の底面には凹部 74aが形成されている。凹部 74aは、略円筒面状 である。スライドホルダ 74には、空間である半導体パッケージ 65が形成されている。 半導体パッケージ 65の内部には、半導体レーザ素子 66等の電子部品が設置されて いる。半導体レーザ素子 66は、レーザ光 67を出射する。半導体レーザ素子 66より出 射されたレーザ光 67は、光学基台 62の外部へと出射される。 [0132] On the bottom surface of the slide holder 74, a recess 74a is formed. The recess 74a has a substantially cylindrical surface shape. A semiconductor package 65 that is a space is formed in the slide holder 74. Inside the semiconductor package 65, electronic components such as a semiconductor laser element 66 are installed. The semiconductor laser element 66 emits laser light 67. From semiconductor laser element 66 The emitted laser beam 67 is emitted to the outside of the optical base 62.
[0133] 光学基台 62には、内面が略円筒面状である孔部 62aが形成されている。また、ァ オリホルダ 73は略円柱状である。ァオリホルダ 73には溝 73aが形成されている。溝 7 3aの底面には、略円柱の側面状である凸部 73bが形成されている。  [0133] The optical base 62 is formed with a hole 62a whose inner surface is substantially cylindrical. Further, the tilt holder 73 is substantially cylindrical. A groove 73a is formed in the tilt holder 73. On the bottom surface of the groove 73a, a convex portion 73b having a substantially cylindrical side surface shape is formed.
[0134] 光学基台 62の孔部 62aにはァオリホルダ 73が嵌り込み固定されている。また、ァォ リホルダ 73の溝 73aにはスライドホルダ 74が嵌り込み固定されている。その際に、溝 73aの底面に形成された凸部 73bがスライドホルダ 74の凹部 74aに嵌り込む。溝 73a は、スライドホルダ 74の外形よりも大きい。すなわち、溝 73aの X軸方向の長さは、ス ライドホルダ 74の X軸方向の長さよりも長い。  A tilt holder 73 is fitted and fixed in the hole 62a of the optical base 62. A slide holder 74 is fitted and fixed in the groove 73a of the carrier holder 73. At this time, the convex portion 73b formed on the bottom surface of the groove 73a fits into the concave portion 74a of the slide holder 74. The groove 73a is larger than the outer shape of the slide holder 74. That is, the length of the groove 73a in the X-axis direction is longer than the length of the slide holder 74 in the X-axis direction.
[0135] 実施の形態 8の半導体レーザ装置 71は上述のように、レーザ光 67を出射すること で発熱する半導体レーザ素子 66からの熱をスライドホルダ 74、ァオリホルダ 73と順 に伝達し、放熱グリスや放熱板等を介さずに、ァオリホルダ 73から直接光学基台 62 に伝達する。このような構成なので、半導体レーザ装置 71は高い放熱効率を実現す ることができる。さらに、ァオリホルダ 73の表面積の大部分が光学基台 62と接してい るため、光学基台 62への放熱量が多い。  As described above, the semiconductor laser device 71 of the eighth embodiment transmits heat from the semiconductor laser element 66, which generates heat by emitting the laser light 67, to the slide holder 74 and the tilt holder 73 in this order, and thus heat radiation grease. Then, the light is transmitted directly from the tilt holder 73 to the optical base 62 without using a heat sink or the like. With this configuration, the semiconductor laser device 71 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the tilt holder 73 is in contact with the optical base 62, the amount of heat released to the optical base 62 is large.
[0136] また、半導体パッケージ 65の内部に設置されている半導体レーザ素子 66から出射 されたレーザ光 67は、光学基台 62の外部に出射される。なお、スライドホルダ 74、ァ オリホルダ 73および光学基台 62にはレーザ光 67の光路である貫通孔(図示せず) がそれぞれ形成されている。  Further, the laser beam 67 emitted from the semiconductor laser element 66 installed inside the semiconductor package 65 is emitted outside the optical base 62. The slide holder 74, the tilt holder 73, and the optical base 62 are formed with through holes (not shown) that are optical paths of the laser light 67, respectively.
[0137] このような構成の半導体レーザ装置 71において、半導体レーザ素子 66から出射さ れるレーザ光 67の光軸調整の方法について説明する。なお、光軸調整時には、光 学基台 62およびァオリホルダ 73と、ァオリホルダ 73およびスライドホルダ 74とはそれ ぞれ固定されていない。  A method of adjusting the optical axis of the laser beam 67 emitted from the semiconductor laser element 66 in the semiconductor laser device 71 having such a configuration will be described. At the time of optical axis adjustment, the optical base 62 and the tilt holder 73, and the tilt holder 73 and the slide holder 74 are not fixed, respectively.
[0138] まず、ァオリホルダ 73を、光学基台 62の孔部 62aに嵌り込ませる。すると、ァオリホ ルダ 73を孔部 62aに対して滑らせて、図中の Z軸方向を中心にして回転させることが できる。これらにより、半導体レーザ素子 66も回転をするので、レーザ光 67の光軸の 方向を変化させることができる。このようにして、レーザ光 67の光軸の方向が所望の 方向になったところで、ァオリホルダ 73の回転を停止する。ここで、ァオリホルダ 73と 孔部 62aの接触面積が比較的大きいため、両者間の摩擦力により、所望の位置での 停止が容易である。 First, the tilt holder 73 is fitted into the hole 62 a of the optical base 62. Then, the tilt holder 73 can be slid with respect to the hole 62a and rotated around the Z-axis direction in the figure. As a result, the semiconductor laser element 66 also rotates, so that the direction of the optical axis of the laser light 67 can be changed. In this way, when the direction of the optical axis of the laser beam 67 becomes a desired direction, the rotation of the tilt holder 73 is stopped. Where Since the contact area of the hole 62a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0139] また、ァオリホルダ 73の溝 73aにはスライドホルダ 74を嵌り込ませる。すると、溝 73a の X軸方向の長さは、スライドホルダ 74の X軸方向の長さよりも長いため、溝 73a中に おいて、スライドホルダ 74を X軸方向に滑らせることができる。また、スライドホルダ 74 の凹部 74aを溝 73aの底面の凸部 73bに対して滑らすことで、スライドホルダ 74を、 X 軸方向を中心に回転させることができる。これらにより、半導体レーザ素子 66も回転 および直線運動をするので、レーザ光 67の光軸の位置および方向を変化させること ができる。このようにして、レーザ光 67の光軸の方向が所望の方向になったところで、 スライドホルダ 74の回転および直線運動を停止する。ここで、凹部 74aと凸部 73bの 接触面積が比較的大きいため、両者間の摩擦力により、所望の位置での停止が容 易である。  Further, the slide holder 74 is fitted into the groove 73 a of the tilt holder 73. Then, since the length of the groove 73a in the X-axis direction is longer than the length of the slide holder 74 in the X-axis direction, the slide holder 74 can be slid in the X-axis direction in the groove 73a. Further, the slide holder 74 can be rotated about the X-axis direction by sliding the recess 74a of the slide holder 74 with respect to the projection 73b on the bottom surface of the groove 73a. As a result, the semiconductor laser element 66 also rotates and linearly moves, so that the position and direction of the optical axis of the laser light 67 can be changed. In this way, when the direction of the optical axis of the laser beam 67 becomes a desired direction, the rotation and linear motion of the slide holder 74 are stopped. Here, since the contact area between the concave portion 74a and the convex portion 73b is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0140] 上述の方法により半導体レーザ装置 71の光軸調整を行い、所望の位置にレーザ 光 67が到達するようにしてから、光学基台 62およびァオリホルダ 73と、ァオリホルダ 73およびスライドホルダ 74とをそれぞれ固定する。例えば、光学基台 62およびァォ リホルダ 73間と、ァオリホルダ 73およびスライドホルダ 74間とにそれぞれ接着剤を充 填すればよい。  [0140] The optical axis of the semiconductor laser device 71 is adjusted by the above-described method so that the laser beam 67 reaches a desired position, and then the optical base 62, the tilt holder 73, the tilt holder 73, and the slide holder 74 are moved. Fix each one. For example, an adhesive may be filled between the optical base 62 and the carrier holder 73 and between the carrier holder 73 and the slide holder 74, respectively.
[0141] 以上説明したように、実施の形態 8に係る半導体レーザ装置 71は、レーザ光 67の 出射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有して いる。  As described above, the semiconductor laser device 71 according to the eighth embodiment has the effect that the emission direction of the laser light 67 can be easily adjusted and the heat dissipation efficiency is high.
[0142] (実施の形態 9)  [0142] (Embodiment 9)
本発明の実施の形態 9に係る半導体レーザ装置について、図を用いて説明する。 図 33は本発明の実施の形態 9に係る半導体レーザ装置の構成を示す平面図である 。また、図 34は、図 33の I—I矢視断面図である。また、図 35は本発明の実施の形態 9に係る半導体レーザ装置の分解斜視図である。また、図 36は本発明の実施の形態 9に係る半導体レーザ装置の構成を示す斜視図である。なお、図 33において、 X軸 は左右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。  A semiconductor laser device according to the ninth embodiment of the present invention will be described with reference to the drawings. FIG. 33 is a plan view showing the configuration of the semiconductor laser device according to the ninth embodiment of the present invention. FIG. 34 is a cross-sectional view taken along the line II in FIG. FIG. 35 is an exploded perspective view of the semiconductor laser device according to the ninth embodiment of the present invention. FIG. 36 is a perspective view showing the configuration of the semiconductor laser apparatus according to the ninth embodiment of the present invention. In FIG. 33, the X-axis is the left-right direction, the Y-axis is the up-down direction, and the Z-axis is the direction perpendicular to the page.
[0143] 実施の形態 9に係る半導体レーザ装置 81は、光学基台 82とァオリホルダ 83とスラ イドホルダ 84を備えて!/、る。 A semiconductor laser device 81 according to the ninth embodiment includes an optical base 82, a tilt holder 83, and a slurry. Id holder 84!
[0144] スライドホルダ 84は、略円柱をその軸を含む平面と平行な平面で分割した形状で あり、略円柱の側面状である凸部 84bを備えている。また、スライドホルダ 84には内 面が略円筒面状である孔部 84aが形成されている。ァオリホルダ 83は略円柱状であ る。また、ァオリホルダ 83には、空間である半導体パッケージ 85が形成されている。 半導体パッケージ 85の内部には、半導体レーザ素子 86等の電子部品が設置されて いる。半導体レーザ素子 86は、レーザ光 87を出射する。半導体レーザ素子 86より出 射されたレーザ光 87は、光学基台 82の外部へと出射される。  [0144] The slide holder 84 has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including its axis, and includes a convex portion 84b that is a side surface of the substantially circular cylinder. Further, the slide holder 84 is formed with a hole 84a having an inner surface that is substantially cylindrical. The hollow holder 83 is substantially cylindrical. In addition, the cavity holder 83 is formed with a semiconductor package 85 which is a space. Inside the semiconductor package 85, electronic components such as the semiconductor laser element 86 are installed. The semiconductor laser element 86 emits laser light 87. Laser light 87 emitted from the semiconductor laser element 86 is emitted to the outside of the optical base 82.
[0145] 光学基台 82には、溝 82aが形成されている。溝 82aの内面は略円筒面状である。  In the optical base 82, a groove 82a is formed. The inner surface of the groove 82a is substantially cylindrical.
[0146] 光学基台 82の溝 82aにはスライドホルダ 84の凸部 84bが嵌り込み固定され、スライ ドホルダ 84の孔部 84aにはァオリホルダ 83が嵌り込み固定されている。溝 82aは、ス ライドホルダ 84の外形よりも大きい。すなわち、溝 82aの X軸方向の長さは、スライド ホルダ 84の X軸方向の長さよりも長い。  The convex portion 84b of the slide holder 84 is fitted and fixed in the groove 82a of the optical base 82, and the tilt holder 83 is fitted and fixed in the hole portion 84a of the slide holder 84. The groove 82a is larger than the outer shape of the slide holder 84. That is, the length of the groove 82a in the X-axis direction is longer than the length of the slide holder 84 in the X-axis direction.
[0147] 実施の形態 9の半導体レーザ装置 81は上述のように、レーザ光 87を出射すること で発熱する半導体レーザ素子 86からの熱をァオリホルダ 83、スライドホルダ 84と順 に伝達し、放熱グリスや放熱板等を介さずに、スライドホルダ 84から直接光学基台 82 に伝達する。このような構成なので、半導体レーザ装置 81は高い放熱効率を実現す ることができる。さらに、スライドホルダ 84の表面積の大部分が光学基台 82と接して いるため、光学基台 82への放熱量が多い。  [0147] As described above, the semiconductor laser device 81 of the ninth embodiment transmits heat from the semiconductor laser element 86, which generates heat by emitting the laser light 87, to the tilt holder 83 and the slide holder 84 in this order, and dissipates heat. Then, the light is transmitted directly from the slide holder 84 to the optical base 82 without using a heat sink or the like. With this configuration, the semiconductor laser device 81 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the slide holder 84 is in contact with the optical base 82, the heat radiation to the optical base 82 is large.
[0148] また、半導体パッケージ 85の内部に設置されている半導体レーザ素子 86から出射 されたレーザ光 87は、光学基台 82の外部に出射される。なお、スライドホルダ 84、ァ オリホルダ 83および光学基台 82にはレーザ光 87の光路である貫通孔(図示せず) がそれぞれ形成されている。  In addition, the laser light 87 emitted from the semiconductor laser element 86 installed inside the semiconductor package 85 is emitted outside the optical base 82. The slide holder 84, the tilt holder 83, and the optical base 82 are formed with through holes (not shown) that are optical paths of the laser light 87, respectively.
[0149] このような構成の半導体レーザ装置 81において、半導体レーザ素子 86から出射さ れるレーザ光 87の光軸調整の方法について説明する。なお、光軸調整時には、光 学基台 82およびスライドホルダ 84と、スライドホルダ 84およびァオリホルダ 83とはそ れぞれ固定されていない。  A method of adjusting the optical axis of the laser beam 87 emitted from the semiconductor laser element 86 in the semiconductor laser device 81 having such a configuration will be described. Note that, at the time of optical axis adjustment, the optical base 82 and the slide holder 84, and the slide holder 84 and the tilt holder 83 are not fixed, respectively.
[0150] まず、ァオリホルダ 83を、スライドホルダ 84の孔部 84aに嵌り込ませる。すると、ァォ リホルダ 83を孔部 84aに対して滑らせて、ァオリホルダ 83を、図中の Z軸方向を中心 にして回転させることができる。さらに、孔部 84aの Z軸方向の長さ(深さ)はァオリホ ルダ 83の Z軸方向の長さ(厚さ)よりも長い。そのため、ァオリホルダ 83は、孔部 84a に対して Z軸方向に滑らせることができる。これらにより、半導体レーザ素子 86も回転 および直線運動をするので、レーザ光 87の光軸の方向および位置を変化させること ができる。このようにして、レーザ光 87の光軸の方向が所望の方向になったところで、 ァオリホルダ 83の回転を停止する。ここで、ァオリホルダ 83と孔部 84aの接触面積が 比較的大きいため、両者間の摩擦力により、所望の位置での停止が容易である。 First, the tilt holder 83 is fitted into the hole 84 a of the slide holder 84. Then The holder 83 can be rotated about the Z-axis direction in the figure by sliding the holder 83 with respect to the hole 84a. Further, the length (depth) of the hole portion 84a in the Z-axis direction is longer than the length (thickness) of the tilt holder 83 in the Z-axis direction. Therefore, the tilt holder 83 can be slid in the Z-axis direction with respect to the hole 84a. As a result, the semiconductor laser element 86 also rotates and linearly moves, so that the direction and position of the optical axis of the laser light 87 can be changed. In this way, when the direction of the optical axis of the laser beam 87 becomes a desired direction, the rotation of the tilt holder 83 is stopped. Here, since the contact area between the tilt holder 83 and the hole 84a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0151] また、光学基台 82の溝 82aにはスライドホルダ 84を嵌り込ませる。すると、溝 82aの X軸方向の長さは、スライドホルダ 84の X軸方向の長さよりも長いため、溝 82a中にお いて、スライドホルダ 84を X軸方向に滑らせることができる。また、スライドホルダ 84の 凸部 84bを溝 82aに対して滑らすことで、スライドホルダ 84を X軸方向を中心に回転 させることができる。これらにより、半導体レーザ素子 86も回転および直線運動をする ので、レーザ光 87の光軸の位置および方向を変化させることができる。このようにし て、レーザ光 87の光軸の方向が所望の方向になったところで、スライドホルダ 84の 回転および直線運動を停止する。ここで、凸部 84bと溝 82aの接触面積が比較的大 きいため、両者間の摩擦力により、所望の位置での停止が容易である。  [0151] Further, the slide holder 84 is fitted into the groove 82a of the optical base 82. Then, since the length of the groove 82a in the X-axis direction is longer than the length of the slide holder 84 in the X-axis direction, the slide holder 84 can be slid in the X-axis direction in the groove 82a. Further, the slide holder 84 can be rotated around the X-axis direction by sliding the convex portion 84b of the slide holder 84 with respect to the groove 82a. As a result, the semiconductor laser element 86 also rotates and linearly moves, so that the position and direction of the optical axis of the laser light 87 can be changed. In this way, when the direction of the optical axis of the laser beam 87 becomes a desired direction, the rotation and linear motion of the slide holder 84 are stopped. Here, since the contact area between the convex portion 84b and the groove 82a is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0152] 上述の方法により半導体レーザ装置 81の光軸調整を行い、所望の位置にレーザ 光 87が到達するようにしてから、光学基台 82およびスライドホルダ 84と、スライドホル ダ 84およびァオリホルダ 83とをそれぞれ固定する。例えば、光学基台 82およびスラ イドホルダ 84間と、スライドホルダ 84およびァオリホルダ 83間とにそれぞれ接着剤を 充填すればよい。  [0152] The optical axis of the semiconductor laser device 81 is adjusted by the above-described method so that the laser beam 87 reaches a desired position, and then the optical base 82 and the slide holder 84, and the slide holder 84 and the tilt holder 83 are used. And are fixed respectively. For example, an adhesive may be filled between the optical base 82 and the slide holder 84 and between the slide holder 84 and the tilt holder 83, respectively.
[0153] 以上説明したように、実施の形態 9に係る半導体レーザ装置 81は、レーザ光 87の 出射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有して いる。  As described above, the semiconductor laser device 81 according to the ninth embodiment has the effect that the emission direction of the laser light 87 can be easily adjusted and the heat dissipation efficiency is high.
[0154] (実施の形態 10)  [Embodiment 10]
本発明の実施の形態 10に係る半導体レーザ装置について、図を用いて説明する 。図 37は本発明の実施の形態 10に係る半導体レーザ装置の構成を示す平面図で ある。また、図 38は、図 37の J J矢視断面図である。また、図 39は本発明の実施の 形態 10に係る半導体レーザ装置の分解斜視図である。また、図 40は本発明の実施 の形態 10に係る半導体レーザ装置の構成を示す斜視図である。なお、図 37におい て、 X軸は左右方向とし、 Y軸は上下方向とし、 Z軸は紙面に対して垂直方向とする。 また、実施の形態 10の半導体レーザ装置 91において、実施の形態 9で説明した半 導体レーザ装置 81と同様の構成については、図において同様の符号を付し説明を 省略する。 A semiconductor laser device according to Embodiment 10 of the present invention will be described with reference to the drawings. FIG. 37 is a plan view showing the configuration of the semiconductor laser device according to the tenth embodiment of the present invention. is there. FIG. 38 is a cross-sectional view taken along the line JJ in FIG. FIG. 39 is an exploded perspective view of the semiconductor laser device according to the tenth embodiment of the present invention. FIG. 40 is a perspective view showing the configuration of the semiconductor laser apparatus according to Embodiment 10 of the present invention. In FIG. 37, the X axis is the left-right direction, the Y axis is the up-down direction, and the Z-axis is the direction perpendicular to the page. Also, in the semiconductor laser device 91 of the tenth embodiment, the same reference numerals are given to the same configurations as those of the semiconductor laser device 81 described in the ninth embodiment, and the description thereof is omitted.
[0155] 実施の形態 10に係る半導体レーザ装置 91は、光学基台 92とァオリホルダ 83とスラ イドホルダ 94を備えて!/、る。  The semiconductor laser device 91 according to the tenth embodiment includes an optical base 92, a tilt holder 83, and a slide holder 94.
[0156] スライドホルダ 94の底面には、略円筒面状である凹部 94aが形成されている。また 、スライドホルダ 94には内面が略円筒面状である孔部 94bが形成されている。ァオリ ホルダ 83は略円柱状である。また、ァオリホルダ 83には、空間である半導体パッケ一 ジ 85が形成されている。半導体パッケージ 85の内部には、半導体レーザ素子 86等 の電子部品が設置されている。半導体レーザ素子 86は、レーザ光 87を出射する。半 導体レーザ素子 86より出射されたレーザ光 87は、光学基台 92の外部へと出射され る。  [0156] On the bottom surface of the slide holder 94, a concave portion 94a having a substantially cylindrical surface shape is formed. Further, the slide holder 94 is formed with a hole 94b whose inner surface is substantially cylindrical. The air holder 83 is substantially cylindrical. In addition, the cavity holder 83 is formed with a semiconductor package 85 which is a space. Inside the semiconductor package 85, electronic components such as a semiconductor laser element 86 are installed. The semiconductor laser element 86 emits laser light 87. Laser light 87 emitted from the semiconductor laser element 86 is emitted to the outside of the optical base 92.
[0157] 光学基台 92には、底面に略円柱の側面状である凸部 92bが形成された溝 92aが 形成されている。  [0157] The optical base 92 is formed with a groove 92a in which a convex portion 92b having a substantially cylindrical side surface is formed on the bottom surface.
[0158] 光学基台 92の溝 92aにはスライドホルダ 94が嵌り込み固定されている。その際、凸 部 92bが凹部 94aに嵌り込む。スライドホルダ 94の孔部 94bにはァオリホルダ 83が嵌 り込み固定されている。溝 92aは、スライドホルダ 94の外形よりも大きい。すなわち、 溝 92aの X軸方向の長さは、スライドホルダ 94の X軸方向の長さよりも長い。  A slide holder 94 is fitted and fixed in the groove 92a of the optical base 92. At that time, the convex portion 92b fits into the concave portion 94a. A tilt holder 83 is fitted and fixed in the hole 94b of the slide holder 94. The groove 92a is larger than the outer shape of the slide holder 94. That is, the length of the groove 92a in the X-axis direction is longer than the length of the slide holder 94 in the X-axis direction.
[0159] 実施の形態 10の半導体レーザ装置 91は上述のように、レーザ光 87を出射すること で発熱する半導体レーザ素子 86からの熱をァオリホルダ 83、スライドホルダ 94と順 に伝達し、放熱グリスや放熱板等を介さずに、スライドホルダ 94から直接光学基台 92 に伝達する。このような構成なので、半導体レーザ装置 91は高い放熱効率を実現す ることができる。さらに、スライドホルダ 94の表面積の大部分が光学基台 92と接して いるため、光学基台 92への放熱量が多い。 [0160] また、半導体パッケージ 85の内部に設置されている半導体レーザ素子 86から出射 されたレーザ光 87は、光学基台 92の外部に出射される。なお、スライドホルダ 94、ァ オリホルダ 83および光学基台 92にはレーザ光 87の光路である貫通孔(図示せず) がそれぞれ形成されている。 [0159] As described above, the semiconductor laser device 91 of the tenth embodiment transmits heat from the semiconductor laser element 86, which generates heat by emitting the laser light 87, to the tilt holder 83 and the slide holder 94 in this order, and dissipates heat. The light is transmitted directly from the slide holder 94 to the optical base 92 without using a heat sink or the like. With such a configuration, the semiconductor laser device 91 can achieve high heat dissipation efficiency. Furthermore, since most of the surface area of the slide holder 94 is in contact with the optical base 92, the amount of heat released to the optical base 92 is large. In addition, the laser beam 87 emitted from the semiconductor laser element 86 installed inside the semiconductor package 85 is emitted outside the optical base 92. The slide holder 94, the tilt holder 83, and the optical base 92 are formed with through holes (not shown) that are optical paths of the laser light 87, respectively.
[0161] このような構成の半導体レーザ装置 91において、半導体レーザ素子 86から出射さ れるレーザ光 87の光軸調整の方法について説明する。なお、光軸調整時には、光 学基台 92およびスライドホルダ 94と、スライドホルダ 94およびァオリホルダ 83とはそ れぞれ固定されていない。  A method of adjusting the optical axis of the laser beam 87 emitted from the semiconductor laser element 86 in the semiconductor laser device 91 having such a configuration will be described. Note that the optical base 92 and the slide holder 94, and the slide holder 94 and the tilt holder 83 are not fixed at the time of optical axis adjustment.
[0162] まず、ァオリホルダ 83をスライドホルダ 94の孔部 94bに嵌り込ませる。すると、ァオリ ホルダ 83を孔部 94bに対して滑らせて、ァオリホルダ 83を、図中の Z軸方向を中心 にして回転させることができる。さらに、孔部 94bの Z軸方向の長さ(深さ)はァオリホ ルダ 83の Z軸方向の長さ(厚さ)よりも長い。そのため、ァオリホルダ 83は、孔部 94b に対して Z軸方向に滑らせることができる。これらにより、半導体レーザ素子 86も回転 および直線運動をするので、レーザ光 87の光軸の方向および位置を変化させること ができる。このようにして、レーザ光 87の光軸の方向が所望の方向になったところで、 ァオリホルダ 83の回転を停止する。ここで、ァオリホルダ 83と孔部 94bの接触面積が 比較的大きいため、両者間の摩擦力により、所望の位置での停止が容易である。  First, the tilt holder 83 is fitted into the hole 94b of the slide holder 94. Then, the tilt holder 83 can be slid with respect to the hole 94b, and the tilt holder 83 can be rotated around the Z-axis direction in the figure. Further, the length (depth) of the hole 94b in the Z-axis direction is longer than the length (thickness) of the tilt holder 83 in the Z-axis direction. Therefore, the tilt holder 83 can be slid in the Z-axis direction with respect to the hole 94b. As a result, the semiconductor laser element 86 also rotates and linearly moves, so that the direction and position of the optical axis of the laser light 87 can be changed. In this way, when the direction of the optical axis of the laser beam 87 becomes a desired direction, the rotation of the tilt holder 83 is stopped. Here, since the contact area between the tilt holder 83 and the hole 94b is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0163] また、光学基台 92の溝 92aにはスライドホルダ 94を嵌り込ませる。すると、溝 92aの X軸方向の長さは、スライドホルダ 94の X軸方向の長さよりも長いため、溝 92a中にお いて、スライドホルダ 94を X軸方向に滑らせることができる。また、凸部 92bが凹部 94 aに嵌り込んでいるため、スライドホルダ 94の凹部 94aを凸部 92bに対して滑らすこと で、 X軸方向を中心に回転させることができる。これらにより、半導体レーザ素子 86も 回転および直線運動をするので、レーザ光 87の光軸の位置および方向を変化させ ることができる。このようにして、レーザ光 87の光軸の方向が所望の方向になったとこ ろで、スライドホルダ 94の回転および直線運動を停止する。ここで、凹部 94aと凸部 9 2bの接触面積が比較的大きいため、両者間の摩擦力により、所望の位置での停止 が容易である。  [0163] Further, the slide holder 94 is fitted into the groove 92a of the optical base 92. Then, since the length in the X-axis direction of the groove 92a is longer than the length in the X-axis direction of the slide holder 94, the slide holder 94 can be slid in the X-axis direction in the groove 92a. Further, since the convex portion 92b is fitted in the concave portion 94a, the concave portion 94a of the slide holder 94 can be rotated about the X-axis direction by sliding the concave portion 94a with respect to the convex portion 92b. As a result, the semiconductor laser element 86 also rotates and linearly moves, so that the position and direction of the optical axis of the laser light 87 can be changed. In this way, when the direction of the optical axis of the laser beam 87 becomes a desired direction, the rotation and linear motion of the slide holder 94 are stopped. Here, since the contact area between the concave portion 94a and the convex portion 92b is relatively large, it is easy to stop at a desired position due to the frictional force between them.
[0164] 上述の方法により半導体レーザ装置 91の光軸調整を行い、所望の位置にレーザ 光 87が到達するようにしてから、光学基台 92およびスライドホルダ 94と、スライドホル ダ 94およびァオリホルダ 83とをそれぞれ固定する。例えば、光学基台 92およびスラ イドホルダ 94間と、スライドホルダ 94およびァオリホルダ 83間とにそれぞれ接着剤を 充填すればよい。 [0164] The optical axis of the semiconductor laser device 91 is adjusted by the above-described method, and the laser is moved to a desired position. After the light 87 reaches, the optical base 92 and the slide holder 94, and the slide holder 94 and the tilt holder 83 are fixed, respectively. For example, an adhesive may be filled between the optical base 92 and the slide holder 94 and between the slide holder 94 and the tilt holder 83, respectively.
[0165] 以上説明したように、実施の形態 10に係る半導体レーザ装置 91は、レーザ光 87の 出射方向の調整を容易に行うことができ、さらに放熱効率が高いという効果を有して いる。  As described above, the semiconductor laser device 91 according to the tenth embodiment has the effect that the emission direction of the laser light 87 can be easily adjusted and the heat dissipation efficiency is high.
[0166] (実施の形態 11)  [Embodiment 11]
本発明の実施の形態 11に係る光ピックアップ装置について図を用いて説明する。 図 41は本発明の実施の形態 11に係る光ピックアップ装置の構成を示す平面図であ る。図 41において、光ピックアップ装置は、半導体レーザ装置 101、光学レンズ 106 およびァクチユエータ 105を有する光学基台 104と、光学基台 104の熱を外部に放 熱するための放熱板 103と、光学レンズ 106をトラッキング方向に駆動するためのガ イドシャフト 107とを備えている。図 41では、光学式情報記録媒体である光ディスク 1 00が装着されて 、る状態を示して 、る。  An optical pickup device according to Embodiment 11 of the present invention will be described with reference to the drawings. FIG. 41 is a plan view showing the configuration of the optical pickup device according to the eleventh embodiment of the present invention. In FIG. 41, an optical pickup device includes a semiconductor laser device 101, an optical lens 106 and an optical base 104 having an actuator 105, a heat radiating plate 103 for radiating the heat of the optical base 104 to the outside, an optical lens 106, and the like. And a guide shaft 107 for driving in the tracking direction. FIG. 41 shows a state where an optical disc 100 which is an optical information recording medium is loaded.
[0167] 光ピックアップ装置の動作について説明する。半導体レーザ装置 101は、本実施 の形態 1〜: L0に示した半導体レーザ装置の 、ずれかを用いればょ 、。半導体レー ザ装置 101は、レーザ光を出射する。半導体レーザ装置 101から出射されたレーザ 光は、例えば反射鏡や回折格子等の光学素子(図示せず)を介して、光学レンズ 10 6に入射される。ァクチユエータ 105は、光学レンズ 106をフォーカス方向あるいはト ラッキング方向に駆動させる。それにより、レーザ光は、光ディスク 100上に焦点が合  [0167] The operation of the optical pickup device will be described. As the semiconductor laser device 101, any one of the semiconductor laser devices shown in the first embodiment to L0 may be used. The semiconductor laser device 101 emits laser light. Laser light emitted from the semiconductor laser device 101 is incident on the optical lens 106 through an optical element (not shown) such as a reflecting mirror or a diffraction grating. The actuator 105 drives the optical lens 106 in the focus direction or the tracking direction. As a result, the laser beam is focused on the optical disc 100.
[0168] 光ディスク 100に情報を記録する場合には、光ディスク 100の所定の個所に、光学 レンズ 106を介して、半導体レーザ装置 101より出射されたレーザ光が照射される。 それにより、レーザ光を照射した個所に記録マークが記入される。また、情報の再生 は、光学レンズ 106を介して、光ディスク 100に照射されたレーザ光の反射光を検出 素子(図示せず)により検出することにより行う。 When information is recorded on the optical disc 100, a laser beam emitted from the semiconductor laser device 101 is irradiated to a predetermined portion of the optical disc 100 through the optical lens 106. As a result, a recording mark is written at the location irradiated with the laser beam. Information is reproduced by detecting the reflected light of the laser light irradiated to the optical disc 100 through the optical lens 106 by a detection element (not shown).
[0169] このように、光ピックアップ装置に用いた、実施の形態 1〜 10に示したいずれかの 半導体レーザ装置 101は、発熱効率が高い。そのため、光ピックアップ装置の駆動 中には、半導体レーザ装置 101から絶えずレーザ光が出射されているにもかかわら ず、温度上昇が少ない。そのため、半導体レーザ装置 101および光ピックアップ装置 が温度暴走することもなく、かつ劣化が少な!/、ため寿命も長 、。 [0169] As described above, any one of the embodiments 1 to 10 used in the optical pickup device is used. The semiconductor laser device 101 has high heat generation efficiency. Therefore, while the optical pickup device is being driven, the temperature rise is small although the laser beam is constantly emitted from the semiconductor laser device 101. As a result, the semiconductor laser device 101 and the optical pickup device do not run out of temperature and are less deteriorated!
[0170] なお、実施の形態 1〜11で具体的に示した構造はあくまでも一例であり、本発明は これらの具体例のみに限定されるものではない。  [0170] The structures specifically shown in Embodiments 1 to 11 are merely examples, and the present invention is not limited to these specific examples.
産業上の利用可能性  Industrial applicability
[0171] 本発明の半導体レーザ装置および光ピックアップ装置は、記録媒体の大容量化や 高倍速記録を可能とする光学式情報記録再生機器等に用いればょ 、。  [0171] The semiconductor laser device and the optical pickup device of the present invention can be used for an optical information recording / reproducing apparatus or the like that enables recording medium having a large capacity and high-speed recording.

Claims

請求の範囲 The scope of the claims
[1] 半導体レーザ素子が設置された空間を有するスライドホルダと、  [1] a slide holder having a space in which a semiconductor laser element is installed;
前記スライドホルダが嵌り込む、前記スライドホルダの外形よりも大き ヽ溝を有する ァオリホルダと、  A slide holder into which the slide holder fits, a hollow holder having a groove that is larger than the outer shape of the slide holder,
前記ァオリホルダが嵌り込む孔部を有する光学基台とを備え、  An optical base having a hole into which the tilt holder is fitted,
前記光学基台の孔部に前記ァオリホルダが嵌り込み固定されていて、  The tilt holder is fitted and fixed in the hole of the optical base,
前記ァオリホルダの溝に前記スライドホルダが嵌り込み固定されている半導体レー ザ装置。  A semiconductor laser device in which the slide holder is fitted and fixed in a groove of the tilt holder.
[2] 前記光学基台の孔部に前記ァオリホルダが嵌り込み、かつ前記光学基台と前記ァ オリホルダとが固定されていないとした場合に、前記光学基台の孔部と前記ァオリホ ルダとの嵌合部は、前記ァオリホルダが前記光学基台に対して、少なくとも一つの軸 を中心に回転可能な形状を有して!/、る請求項 1に記載の半導体レーザ装置。  [2] When the tilt holder is fitted in the hole of the optical base and the optical base and the tilt holder are not fixed, the hole of the optical base and the tilt holder 2. The semiconductor laser device according to claim 1, wherein the fitting portion has a shape in which the tilt holder is rotatable about at least one axis with respect to the optical base.
[3] 前記ァオリホルダの溝に前記スライドホルダが嵌り込み、かつ前記ァオリホルダと前 記スライドホルダとが固定されて 、な ヽとした場合に、前記スライドホルダと前記ァオリ ホルダの溝との嵌合部は、前記スライドホルダが前記ァオリホルダに対して、少なくと も一つの面に平行に移動可能な形状を有している請求項 1に記載の半導体レーザ 装置。  [3] When the slide holder is fitted in the groove of the tilt holder, and the tilt holder and the slide holder are fixed, the fitting portion between the slide holder and the groove of the tilt holder 2. The semiconductor laser device according to claim 1, wherein the slide holder has a shape capable of moving parallel to at least one surface with respect to the tilt holder.
[4] 前記光学基台の孔部に前記ァオリホルダが嵌り込み、かつ前記光学基台と前記ァ オリホルダとが固定されていないとした場合に、前記光学基台の孔部と前記ァオリホ ルダとの嵌合部は、前記ァオリホルダが前記光学基台に対して、少なくとも一つの軸 を中心に回転可能な形状を有し、  [4] When the tilt holder is fitted in the hole of the optical base and the optical base and the tilt holder are not fixed, the hole of the optical base and the tilt holder The fitting portion has a shape in which the tilt holder is rotatable about at least one axis with respect to the optical base,
前記ァオリホルダの溝に前記スライドホルダが嵌り込み、かつ前記ァオリホルダと前 記スライドホルダとが固定されて 、な ヽとした場合に、前記スライドホルダと前記ァオリ ホルダの溝との嵌合部は、前記スライドホルダが前記ァオリホルダに対して、少なくと も一つの面に平行に移動可能な形状を有している請求項 1に記載の半導体レーザ 装置。  When the slide holder is fitted in the groove of the tilt holder and the tilt holder and the slide holder are fixed, the fitting portion between the slide holder and the groove of the tilt holder is 2. The semiconductor laser device according to claim 1, wherein the slide holder has a shape capable of moving parallel to at least one surface with respect to the tilt holder.
[5] 前記光学基台の孔部と前記ァオリホルダとの嵌合部は、前記光学基台の孔部に前 記ァオリホルダが嵌り込んだ状態で、前記ァオリホルダが前記光学基台に対して、少 なくとも一つの軸を中心に回転可能な形状を有し、 [5] The fitting portion between the hole portion of the optical base and the tilt holder has a small amount of the tilt holder with respect to the optical base in a state where the tilt holder is fitted in the hole portion of the optical base. It has a shape that can rotate around at least one axis,
光軸調整された後に前記光学基台と前記ァオリホルダとが固定される請求項 1に記 載の半導体レーザ装置。  2. The semiconductor laser device according to claim 1, wherein the optical base and the tilt holder are fixed after the optical axis is adjusted.
[6] 前記スライドホルダと前記ァオリホルダの溝との嵌合部は、前記ァオリホルダの溝に 前記スライドホルダが嵌り込んだ状態で、前記スライドホルダが前記ァオリホルダに対 して、少なくとも一つの面に平行に移動可能な形状を有し、  [6] The fitting portion between the slide holder and the groove of the tilt holder is parallel to at least one surface of the slide holder with the slide holder fitted in the groove of the tilt holder. Has a movable shape,
光軸調整された後に前記ァオリホルダと前記スライドホルダとが固定される請求項 1 に記載の半導体レーザ装置。  The semiconductor laser device according to claim 1, wherein the tilt holder and the slide holder are fixed after the optical axis is adjusted.
[7] 前記光学基台の孔部と前記ァオリホルダとの嵌合部は、前記光学基台の孔部に前 記ァオリホルダが嵌り込んだ状態で、前記ァオリホルダが前記光学基台に対して、少 なくとも一つの軸を中心に回転可能な形状を有し、 [7] The fitting portion between the hole portion of the optical base and the tilt holder is such that the tilt holder is small relative to the optical base in a state in which the tilt holder is fitted in the hole portion of the optical base. It has a shape that can rotate around at least one axis,
前記スライドホルダと前記ァオリホルダの溝との嵌合部は、前記ァオリホルダの溝に 前記スライドホルダが嵌り込んだ状態で、前記スライドホルダが前記ァオリホルダに対 して、少なくとも一つの面に平行に移動可能な形状を有し、  The fitting portion between the slide holder and the groove of the tilt holder can move in parallel with at least one surface of the slide holder with the slide holder fitted in the groove of the tilt holder. Have a shape,
光軸調整された後に前記光学基台と前記ァオリホルダとが固定され、かつ前記ァ オリホルダと前記スライドホルダとが固定される請求項 1に記載の半導体レーザ装置  2. The semiconductor laser device according to claim 1, wherein the optical base and the tilt holder are fixed after the optical axis is adjusted, and the tilt holder and the slide holder are fixed.
[8] 前記ァオリホルダは、略球体を平面で分割した形状を有し、 [8] The tilt holder has a shape obtained by dividing a substantially spherical body by a plane,
前記光学基台の孔部の内面は、略球面状であり、  The inner surface of the hole of the optical base is substantially spherical,
前記ァオリホルダの略球面状である凸部が、前記光学基台の孔部に嵌り込んでい る請求項 1に記載の半導体レーザ装置。  2. The semiconductor laser device according to claim 1, wherein a convex portion having a substantially spherical shape of the tilt holder is fitted into a hole of the optical base.
[9] 前記ァオリホルダは、底面に略球面状である凹部を有する略円柱状であり、 [9] The tilt holder has a substantially cylindrical shape having a substantially spherical concave portion on the bottom surface,
前記光学基台の孔部は、底面に略球面状である凸部を有し、側面は略円筒面状 であり、  The hole of the optical base has a convex portion that is substantially spherical on the bottom surface, and the side surface is substantially cylindrical.
前記凹部に前記凸部が嵌り込んでいる請求項 1に記載の半導体レーザ装置。  2. The semiconductor laser device according to claim 1, wherein the convex portion is fitted in the concave portion.
[10] 前記ァオリホルダは、略円柱状であり、 [10] The tilt holder is substantially cylindrical.
前記光学基台の孔部の内面は、略円筒面状である請求項 1に記載の半導体レー ザ装置。 2. The semiconductor laser device according to claim 1, wherein an inner surface of the hole portion of the optical base is substantially cylindrical.
[11] 前記スライドホルダは、略円柱をその軸を含む平面と平行な平面で分割した形状を 有し、 [11] The slide holder has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including its axis,
前記ァオリホルダの溝の内面は、略円筒面状であり、  The inner surface of the groove of the hollow holder is substantially cylindrical,
前記スライドホルダの略円柱の側面状である凸部が、前記ァオリホルダの溝に嵌り 込んでいる請求項 10に記載の半導体レーザ装置。  11. The semiconductor laser device according to claim 10, wherein a convex portion having a substantially cylindrical side surface of the slide holder is fitted in a groove of the tilt holder.
[12] 前記スライドホルダは、底面に略円筒面状である凹部を有し、 [12] The slide holder has a concave portion having a substantially cylindrical shape on a bottom surface,
前記ァオリホルダの溝は、底面に略円柱の側面状である凸部を有し、  The groove of the hollow holder has a convex portion which is a substantially cylindrical side surface on the bottom surface,
前記凸部が前記凹部に嵌り込んでいる請求項 10に記載の半導体レーザ装置。  11. The semiconductor laser device according to claim 10, wherein the convex portion is fitted into the concave portion.
[13] 半導体レーザ素子が設置された空間を有するァオリホルダと、 [13] A hollow holder having a space in which the semiconductor laser element is installed;
前記ァオリホルダが嵌り込む孔部を有するスライドホルダと、  A slide holder having a hole into which the tilt holder is fitted;
前記スライドホルダが嵌り込む、前記スライドホルダの外形よりも大き ヽ溝を有する 光学基台とを備え、  An optical base having a groove that is larger than the outer shape of the slide holder, into which the slide holder fits,
前記光学基台の溝に前記スライドホルダが嵌り込み固定されていて、  The slide holder is fitted and fixed in the groove of the optical base,
前記スライドホルダの孔部に前記ァオリホルダが嵌り込み固定されている半導体レ 一ザ装置。  A semiconductor laser device in which the tilt holder is fitted and fixed in a hole of the slide holder.
[14] 前記光学基台の溝に前記スライドホルダが嵌り込み、かつ前記光学基台と前記スラ イドホルダとが固定されていないとした場合に、前記光学基台の溝と前記スライドホル ダとの嵌合部は、前記スライドホルダが前記光学基台に対して、少なくとも一つの面 に平行に移動可能な形状を有している請求項 13に記載の半導体レーザ装置。  [14] When the slide holder is fitted in the groove of the optical base and the optical base and the slide holder are not fixed, the groove of the optical base and the slide holder 14. The semiconductor laser device according to claim 13, wherein the fitting portion has a shape in which the slide holder is movable in parallel to at least one surface with respect to the optical base.
[15] 前記スライドホルダの孔部に前記ァオリホルダが嵌り込み、かつ前記スライドホルダ と前記ァオリホルダとが固定されていないとした場合に、前記スライドホルダの孔部と 前記ァオリホルダとの嵌合部は、前記ァオリホルダが前記スライドホルダに対して、少 なくとも一つの軸を中心に回転可能な形状を有して!/、る請求項 13に記載の半導体レ 一ザ装置。  [15] When the tilt holder is fitted in the hole of the slide holder and the slide holder and the tilt holder are not fixed, the fitting portion between the hole of the slide holder and the tilt holder is: 14. The semiconductor laser device according to claim 13, wherein the tilt holder has a shape rotatable about at least one axis with respect to the slide holder.
[16] 前記光学基台の溝に前記スライドホルダが嵌り込み、かつ前記光学基台と前記スラ イドホルダとが固定されていないとした場合に、前記光学基台の溝と前記スライドホル ダとの嵌合部は、前記スライドホルダが前記光学基台に対して、少なくとも一つの面 に平行に移動可能な形状を有し、 前記スライドホルダの孔部に前記ァオリホルダが嵌り込み、かつ前記スライドホルダ と前記ァオリホルダとが固定されていないとした場合に、前記スライドホルダの孔部と 前記ァオリホルダとの嵌合部は、前記ァオリホルダが前記スライドホルダに対して、少 なくとも一つの軸を中心に回転可能な形状を有して!/、る請求項 13に記載の半導体レ 一ザ装置。 [16] When the slide holder is fitted in the groove of the optical base and the optical base and the slide holder are not fixed, the groove of the optical base and the slide holder The fitting portion has a shape in which the slide holder is movable in parallel to at least one surface with respect to the optical base, When the tilt holder is fitted into the hole of the slide holder and the slide holder and the tilt holder are not fixed, the fitting portion between the hole of the slide holder and the tilt holder is 14. The semiconductor laser device according to claim 13, wherein the semiconductor laser device has a shape rotatable about at least one axis with respect to the slide holder.
[17] 前記光学基台の溝と前記スライドホルダとの嵌合部は、前記光学基台の溝に前記 スライドホルダが嵌り込んだ状態で、前記スライドホルダが前記光学基台に対して、 少なくとも一つの面に平行に移動可能な形状を有し、  [17] The fitting portion between the groove of the optical base and the slide holder is in a state where the slide holder is fitted into the groove of the optical base, and the slide holder is at least with respect to the optical base. It has a shape that can move parallel to one surface,
光軸調整された後に前記光学基台と前記スライドホルダとが固定される請求項 13 に記載の半導体レーザ装置。  The semiconductor laser device according to claim 13, wherein the optical base and the slide holder are fixed after the optical axis is adjusted.
[18] 前記スライドホルダの孔部と前記ァオリホルダとの嵌合部は、前記スライドホルダの 孔部に前記ァオリホルダが嵌り込んだ状態で、前記ァオリホルダが前記スライドホル ダに対して、少なくとも一つの軸を中心に回転可能な形状を有し、 [18] The fitting portion between the hole portion of the slide holder and the tilt holder is such that the tilt holder is fitted into the hole portion of the slide holder and the tilt holder is at least one shaft with respect to the slide holder. Has a shape that can rotate around
光軸調整された後に前記スライドホルダと前記ァオリホルダとが固定される請求項 1 3に記載の半導体レーザ装置。  14. The semiconductor laser device according to claim 13, wherein the slide holder and the tilt holder are fixed after the optical axis is adjusted.
[19] 前記光学基台の溝と前記スライドホルダとの嵌合部は、前記光学基台の溝に前記 スライドホルダが嵌り込んだ状態で、前記スライドホルダが前記光学基台に対して、 少なくとも一つの面に平行に移動可能な形状を有し、 [19] The fitting portion between the groove of the optical base and the slide holder has at least the slide holder with respect to the optical base in a state where the slide holder is fitted in the groove of the optical base. It has a shape that can move parallel to one surface,
前記スライドホルダの孔部と前記ァオリホルダとの嵌合部は、前記スライドホルダの 孔部に前記ァオリホルダが嵌り込んだ状態で、前記ァオリホルダが前記スライドホル ダに対して、少なくとも一つの軸を中心に回転可能な形状を有し、  The fitting portion between the hole portion of the slide holder and the tilt holder is in a state where the tilt holder is fitted in the hole portion of the slide holder and the tilt holder is centered on at least one axis with respect to the slide holder. Having a rotatable shape,
光軸調整された後に前記光学基台と前記スライドホルダとが固定され、かつ前記ス ライドホルダと前記ァオリホルダとが固定される請求項 13に記載の半導体レーザ装 置。  14. The semiconductor laser device according to claim 13, wherein the optical base and the slide holder are fixed after the optical axis is adjusted, and the slide holder and the tilt holder are fixed.
[20] 前記ァオリホルダは、略球体を平面で分割した形状を有し、  [20] The hollow holder has a shape obtained by dividing a substantially spherical body by a plane,
前記スライドホルダの孔部の内面は、略球面状であり、  The inner surface of the hole of the slide holder is substantially spherical,
前記ァオリホルダの略球面状である凸部力 前記スライドホルダの孔部に嵌り込ん で 、る請求項 13に記載の半導体レーザ装置。 14. The semiconductor laser device according to claim 13, wherein a convex force of the spherical holder that is substantially spherical is fitted into a hole of the slide holder.
[21] 前記ァオリホルダは、略円柱状であり、 [21] The tilt holder is substantially cylindrical,
前記スライドホルダの孔部の内面は、略円筒面状である請求項 13に記載の半導体 レーザ装置。  14. The semiconductor laser device according to claim 13, wherein an inner surface of the hole portion of the slide holder is substantially cylindrical.
[22] 前記ァオリホルダは、底面に略球面状である凹部を有する略円柱状であり、  [22] The tilt holder has a substantially cylindrical shape with a substantially spherical recess on the bottom surface,
前記スライドホルダの孔部は、底面に略球面状である凸部を有し、側面は略円筒面 状であり、  The hole of the slide holder has a convex portion that is substantially spherical on the bottom surface, and the side surface is substantially cylindrical.
前記凹部に前記凸部が嵌り込んでいる請求項 13に記載の半導体レーザ装置。  14. The semiconductor laser device according to claim 13, wherein the convex portion is fitted in the concave portion.
[23] 前記ァオリホルダは、略円柱状であり、 [23] The tilt holder is substantially cylindrical,
前記スライドホルダの前記孔部は、前記ァオリホルダの厚さ以上の深さを有し、内 部が略円筒面状である請求項 13に記載の半導体レーザ装置。  14. The semiconductor laser device according to claim 13, wherein the hole portion of the slide holder has a depth equal to or greater than a thickness of the tilt holder, and an inner portion thereof has a substantially cylindrical surface shape.
[24] 前記スライドホルダは、略円柱をその軸を含む平面と平行な平面で分割した形状を 有し、 [24] The slide holder has a shape obtained by dividing a substantially circular cylinder by a plane parallel to a plane including its axis,
前記光学基台の溝の内面は、略円筒面状であり、  The inner surface of the groove of the optical base is substantially cylindrical,
前記スライドホルダの略円柱の側面状である凸部が、前記光学基台の溝に嵌り込 んで 、る請求項 23に記載の半導体レーザ装置。  24. The semiconductor laser device according to claim 23, wherein a convex portion that is a substantially cylindrical side surface of the slide holder is fitted in a groove of the optical base.
[25] 前記スライドホルダは、底面に略円筒面状である凹部を有し、 [25] The slide holder has a concave portion having a substantially cylindrical shape on a bottom surface,
前記光学基台の溝は、底面に略円柱の側面状である凸部を有し、  The groove of the optical base has a convex portion that is a substantially cylindrical side surface on the bottom surface,
前記凸部が前記凹部に嵌り込んでいる請求項 23に記載の半導体レーザ装置。  24. The semiconductor laser device according to claim 23, wherein the convex portion is fitted in the concave portion.
[26] 請求項 1な!、し請求項 25の 、ずれかに記載の半導体レーザ装置を備えた光ピック アップ装置。 [26] An optical pickup device comprising the semiconductor laser device according to any one of claims 1 to 25.
PCT/JP2005/013241 2004-07-20 2005-07-19 Semiconductor laser device and optical pickup device provided with the same WO2006009138A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004212071 2004-07-20
JP2004-212071 2004-07-20

Publications (1)

Publication Number Publication Date
WO2006009138A1 true WO2006009138A1 (en) 2006-01-26

Family

ID=35785247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013241 WO2006009138A1 (en) 2004-07-20 2005-07-19 Semiconductor laser device and optical pickup device provided with the same

Country Status (1)

Country Link
WO (1) WO2006009138A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794938A (en) * 1980-12-01 1982-06-12 Mitsubishi Electric Corp Semiconductor laser light source device
JPS6057151U (en) * 1983-09-26 1985-04-20 富士電気化学株式会社 Semiconductor laser element support structure
JPH01117615U (en) * 1988-01-30 1989-08-09
JPH11185281A (en) * 1997-12-18 1999-07-09 Toshiba Corp Optical head device and its adjustment method
JP2003022542A (en) * 2001-07-10 2003-01-24 Nec Corp Fixing mechanism of semiconductor laser and optical head device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794938A (en) * 1980-12-01 1982-06-12 Mitsubishi Electric Corp Semiconductor laser light source device
JPS6057151U (en) * 1983-09-26 1985-04-20 富士電気化学株式会社 Semiconductor laser element support structure
JPH01117615U (en) * 1988-01-30 1989-08-09
JPH11185281A (en) * 1997-12-18 1999-07-09 Toshiba Corp Optical head device and its adjustment method
JP2003022542A (en) * 2001-07-10 2003-01-24 Nec Corp Fixing mechanism of semiconductor laser and optical head device

Similar Documents

Publication Publication Date Title
JP4253559B2 (en) Optical pickup device and optical disk device
US8045425B2 (en) Optical disk apparatus and optical pickup
WO2006009138A1 (en) Semiconductor laser device and optical pickup device provided with the same
JP2003187477A (en) Optical pickup device
US7440361B2 (en) Optical pickup apparatus
JPWO2005091277A1 (en) Optical pickup device
EP1496504A1 (en) Optical pickup device and optical disk device
JP2007012138A (en) Optical head device
JP4084206B2 (en) Optical pickup and disk drive using the same
US20020150024A1 (en) Optical head apparatus
JP4389642B2 (en) Optical information recording / reproducing apparatus and electronic equipment such as personal computer
JP2008192215A (en) Lens holding structure, optical pickup device, and optical information recording and reproducing device
JP4112504B2 (en) Optical pickup device
US20070121474A1 (en) Optical pickup apparatus and electronic equipment having the same
JP2004005824A (en) Optical head device
JP2008299973A (en) Optical pickup device, optical disk drive provided with the same, and manufacturing method thereof
JP2000163756A (en) Optical pickup
JPH10283650A (en) Laser beam generating device, optical disk reading and writing device provided with the same device and production for the laser beam generating device
JP2005310319A (en) Fixed holder for light emitting element, optical pickup, and information processing apparatus
JP2004145921A (en) Optical pickup and disk device using the same
JP2006040399A (en) Optical disk device
JPH09185835A (en) Optical pickup device
JP2006202405A (en) Optical pickup device and optical information recording and reproducing device
JP2002279782A (en) Disk unit
JPH08221782A (en) Heat radiating mechanism of optical head device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP