WO2006008792A1 - Image projecting method, projector and computer program - Google Patents

Image projecting method, projector and computer program Download PDF

Info

Publication number
WO2006008792A1
WO2006008792A1 PCT/JP2004/010142 JP2004010142W WO2006008792A1 WO 2006008792 A1 WO2006008792 A1 WO 2006008792A1 JP 2004010142 W JP2004010142 W JP 2004010142W WO 2006008792 A1 WO2006008792 A1 WO 2006008792A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
image
rectangular
corners
aspect ratio
Prior art date
Application number
PCT/JP2004/010142
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Arakawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to PCT/JP2004/010142 priority Critical patent/WO2006008792A1/en
Priority to TW093122960A priority patent/TWI344596B/en
Publication of WO2006008792A1 publication Critical patent/WO2006008792A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • H04N7/0122Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal the input and the output signals having different aspect ratios

Definitions

  • the present invention automatically adjusts the size of a projected image at the stage of projection preparation.
  • a projector that projects an image onto an object to be projected such as a screen, white wall, and whiteboard
  • a plurality of settings related to projection are prepared as projection preparation so that appropriate projection can be performed from the installation location of the projector. Items need to be adjusted.
  • the setting items described above include focus adjustment, color correction, image size adjustment (zoom adjustment), and keystone distortion correction (keystone correction).
  • test pattern images corresponding to the items are sequentially projected from the projector, and the state of the test pattern image projected on the projection object is fed back by imaging with an imaging device.
  • it is generally configured to make adjustments and corrections.
  • zoom adjustment the zoom of the projection lens can be adjusted based on the user's instruction or the projector's automatic judgment so that the test pattern image for dimension adjustment projected on the projection object fits on the projection object. Adjust the function to enlarge or reduce the projected image.
  • projectors generally have an optical axis that passes through the lens center of the projection lens that is offset from the center of the projected image. The optical axis passing through the center) is usually used as a reference for adjustment.
  • the projection preparation of such a projector is disclosed in Patent Document 1 below.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-241874
  • the preparation for projection of the conventional projector as described above is generally performed by recognizing the positions of the four corners of the projection target (for example, the screen) and the four corners of the projected image on the projector side.
  • the size of the projected image and the trapezoidal distortion are adjusted so that the four corners of the projected image coincide with the positions of the four corners of the projection target.
  • the aspect ratio of the projected image is generally 4:
  • 16: 9 which is the wide screen of HDTV broadcasting, has become widespread, and even when theatrical movies are broadcast on TV or played back from DVD, the flatter aspect ratio May be adopted.
  • the aspect ratio of an object to be projected, such as a screen, where the range in which the image should be projected is clearly defined is not only the conventional 1: 1 (square), but also the image or video of a TV broadcast.
  • the aspect ratio of the projected image and the aspect ratio of the object to be projected, particularly the screen is actually mixed.
  • the image size was adjusted and the trapezoidal distortion was corrected to match the four corners of the projection object.
  • an image with a aspect ratio of 16: 9 is projected onto a projection object with an aspect ratio of 1: 1
  • the image is projected in an unnatural state in which the image is extremely stretched vertically.
  • an image with an aspect ratio of 4: 3 is projected onto a projection object with an aspect ratio of 16: 9
  • the image is projected in an unnatural state stretched in the left-right direction.
  • the present invention has been made in view of the above problems, and projects a projected image onto a projection object while maintaining the aspect ratio regardless of the aspect ratio of the projection object.
  • the main object of the present invention is to provide an image projection method that can be used and a projector that projects an image using such an image projection method.
  • the present invention corrects trapezoidal distortion of a projected image and projects an image onto a virtual projection frame, and projects an image using such an image projection method.
  • the purpose is to provide a projector.
  • the present invention has an object of providing a projector in which a virtual projection frame is set with a maximum dimension. At this time, it is also an object to make it possible to easily set a virtual projection frame by using a known two-dimensional projective transformation.
  • Another object of the present invention is to provide a computer program for the projector control circuit as described above or for controlling the projector with a general-purpose computer. Means for solving the problem
  • an image projection method causes the spatial light modulation means to generate modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and When the modulated light generated by the spatial light modulator is projected onto the rectangular projection object on the projection lens, the modulated light is applied to the spatial light modulator according to information representing an image obtained by deforming the rectangular projection image.
  • the rectangular projection image has the same aspect ratio as the rectangular projection image.
  • a virtual projection frame that is rectangular when projected onto the body is set on the spatial light modulation means.
  • a projector includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the spatial A projection lens that projects the modulated light generated by the light modulation unit onto the rectangular projection target, and generates the modulated light in the spatial light modulation unit according to information representing an image obtained by deforming the rectangular projection image.
  • the projector In a projector that projects a rectangular image on the rectangular projection object, the projector has the same aspect ratio as the rectangular projection image, and is projected onto the rectangular projection object.
  • Virtual projection frame setting means for setting a rectangular virtual projection frame on the spatial light modulation means is provided.
  • the image projection method according to the present invention causes the spatial light modulation means to generate modulated light in accordance with information representing a rectangular projection image projected onto the rectangular projection object, and the spatial light modulation means When projecting the generated modulated light onto the rectangular projection object onto the projection lens, the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, thereby generating the rectangular shape.
  • the projected image has the same external ratio as that of the rectangular projected image, and is projected onto the rectangular projected object.
  • a rectangular virtual projection frame is set on the spatial light modulation means, and is projected with the four corners of the rectangular projection image aligned with the four corners of the virtual projection frame set on the spatial light modulation means. As shown in FIG. The deformation amount of the rectangular projection image represented by the light control is calculated.
  • the projector includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and a modulation generated by the spatial light modulation unit.
  • a projection lens that projects light onto the rectangular projection object, and the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, thereby generating the rectangular projection object.
  • the virtual projection frame has the same aspect ratio as the rectangular projection image and is rectangular when projected onto the rectangular projection object
  • Virtual projection frame setting means for setting the image on the spatial light modulation means, and the four corners of the rectangular projection image coincide with the four corners of the virtual projection frame set on the spatial light modulation means by the virtual projection frame setting means.
  • the image processing apparatus includes a calculation unit that calculates a deformation amount of the rectangular projection image represented by the modulated light generated by the spatial light modulation unit.
  • a virtual projection frame having the same aspect ratio as the projection image is projected even when the aspect ratio of the projection image and the aspect ratio of the projection object are different. It is set on the body, and the projected image is projected to the four corners of the set virtual projection frame with the four corners matching.
  • the image projection method according to the present invention is the image projection method invention described above, wherein the four corner positions of the projection object are imaged by an imaging means, and the four corner positions of the projection object are captured. Specified on the coordinate system set in the image means, and based on the positions of the four corners of the projection object specified on the coordinate system, the aspect ratio of the projection object, and the aspect ratio of the projection image, A virtual projection frame having a maximum size that can be projected onto the projection object with the same aspect ratio as that of the projection image is set.
  • the projector according to the present invention is configured such that the imaging unit that images the four corner positions of the projection target and the four corner positions of the projection target are set in the imaging unit.
  • Specifying means on a coordinate system and the virtual projection frame setting means includes the four corner positions of the projection object specified by the specification means on the coordinate system, the aspect ratio of the projection object, and the Based on the aspect ratio of the projected image, a virtual projection frame having a maximum size that can be projected onto the projection object with the same external ratio as that of the projected image is set.
  • the image projection method according to the present invention is the image projection method invention described above, wherein the positional relationship of the four corners of the projection object is centered on the center of the projection object and has the same aspect ratio as the projection image.
  • the virtual projection frame is set by converting the positional relationship of the four corners of the rectangle having a position using two-dimensional projective transformation.
  • the projector according to the present invention is the projector invention described above, wherein the virtual projection frame setting means sets the positional relationship of the four corners of the projection object to the center of the projection object, and the projection image The virtual projection frame is set by converting the positional relationship of the four corners of the rectangle having the same aspect ratio using two-dimensional projective transformation.
  • the positional relationship of the four corners of the projection object is centered on the center of the projection object, and the aspect of the projection image
  • a virtual projection frame is set by converting the positional relationship of the four corners of the rectangle having a ratio using a two-dimensional projective transformation.
  • the image projection method according to the present invention is the image projection method according to the invention described above.
  • the length of both the upper and lower sides and the length of both left and right sides of the projecting body are obtained on the coordinate system, and the projection target is calculated based on the obtained ratio of the lengths of the upper and lower sides and the left and right sides of the projected body. It is characterized by determining the aspect ratio of the body.
  • the projector according to the present invention is the projector invention described above, wherein the lengths of the upper and lower sides and the left and right sides of the projection object are obtained on the coordinate system, and the projection object is based on the ratio between the two.
  • the apparatus further includes means for determining the aspect ratio of the projecting body.
  • the length of both upper and lower sides and the length of both left and right sides of the projection object on the coordinate system are The aspect ratio of the projection object is automatically determined based on the ratio between the two.
  • the image projection method according to the present invention is characterized in that, in the above-described image projection method invention, it is determined whether or not the aspect ratio of the projection target is 16: 9.
  • the projector according to the present invention is the projector invention described above, wherein the means for determining the aspect ratio of the projection object determines whether or not the aspect ratio of the projection object is 16: 9. It is characterized by doing.
  • the projector includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the spatial light modulation unit A projection lens for projecting the modulated light onto the rectangular projection object; and an imaging device, wherein the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, and The spatial light modulation based on an image captured by the imaging device with a virtual projection frame having the same aspect ratio as the rectangular projection image for projecting to form a rectangular image on a rectangular projection object
  • the spatial light modulation means generates modulated light representing a test pattern indicating the four corners of the rectangle having the same aspect ratio as the rectangular projection image, and is transmitted from the projection lens to the front.
  • the test pattern is rectangular Means for causing the imaging device to image the state projected toward the projection object, means for detecting the positions of the four corners of the rectangular projection object on the image captured by the imaging device, and the imaging Means for detecting the positions of the four corners of the projected test pattern on the image captured by the apparatus; and the four corners of the rectangular projection object and the four corners of the test pattern on the image captured by the imaging apparatus.
  • test patterns indicating rectangular corners having the same aspect ratio as the projected image are projected toward the projection target, and this state is captured by the imaging device.
  • the positions of the four corners of the projection object are detected, and the positions of the four corners of the projected test pattern are detected.
  • the four corners of the virtual projection frame are determined based on the relative positional relationship between the four corners of the projection object and the four corners of the test pattern on the image captured by the imaging device.
  • the computer program according to the present invention includes a spatial light modulation unit that generates modulated light in accordance with information representing a rectangular projection image projected onto a rectangular projection body, and the spatial light modulation unit generates the spatial light.
  • a virtual projection frame having the same aspect ratio as the rectangular projection image is projected to a computer that projects a rectangular image on the rectangular projection object.
  • a computer program to be set on the spatial light modulation means wherein modulated light representing a test pattern indicating the four corners of a rectangle having the same aspect ratio as the rectangular projection image is supplied to the spatial light modulation means. And a procedure for projecting the projection lens from the projection lens toward the rectangular projection object, and a procedure for causing the imaging device to image the state in which the test pattern is projected toward the rectangular projection object. And detecting the positions of the four corners of the rectangular projection object on the image captured by the imaging device, and detecting the positions of the four corners of the projected test pattern on the image captured by the imaging device. The relative positional relationship between the four corners of the procedure and the four corners of the test pattern on the image captured by the imaging device. The computer is caused to execute a procedure for determining the four corners of the virtual projection frame set on the spatial light modulator on the basis of the relationship.
  • test patterns indicating the four corners of a rectangle having the same aspect ratio as the projected image are projected toward the projection object, and this state is captured by the imaging device. Then, the positions of the four corners of the projection object are detected on the image, and the positions of the four corners of the projected test pattern are detected. Then, the computer controls the four corners of the virtual projection frame to be determined based on the relative positional relationship between the four corners of the projection object and the four corners of the test pattern on the image captured by the imaging device.
  • the image projection method and the projector according to the present invention as described above, even when the aspect ratio of the projection image and the aspect ratio of the projection object are different, the virtual image having the same aspect ratio as that of the projection image is obtained. Since the projection frame is set on the projection object, it is possible to provide the user with an original image in which the unnaturalness is eliminated compared to the projection state that ignores the conventional external ratio. .
  • the virtual projection frame having the same aspect ratio as the projection image is projected even when the aspect ratio of the projection image and the aspect ratio of the projection object are different. Since it is set on the body and projected with the four corners of the projected image coincident with the four corners of the set virtual projection frame, unnaturalness has been eliminated compared to the projection state in which the aspect ratio is ignored.
  • the original image can be provided to the user.
  • the image projection method and projector in the image projection method and projector invention described above, the result of specifying the positions of the four corners of the projection object on the coordinate system set in the imaging means And the aspect ratio of the projected object and the aspect ratio of the projected image, a virtual projection frame of the maximum size that can be set on the projected object is set. Given the aspect ratio of the image, a virtual projection frame with the maximum size that can be set on the projection object is automatically set, and the image can be projected with the maximum size set in this way. become.
  • the positional relationship of the four corners of the projection object is determined by a known calculation method.
  • a virtual projection frame is easily set by being transformed using a certain two-dimensional projective transformation.
  • the upper and lower sides of the projection object obtained on the coordinate system set on the image captured by the imaging device Since the aspect ratio of the projection object is automatically determined based on the length of both sides and the length of both sides, the virtual projection frame is automatically set as long as the aspect ratio of the projected image is given. Projection becomes possible.
  • the image projection method and projector in the above image projection method and projector invention, when the aspect ratio of the projection object is 16: 9, the vertical length of the projection object is And the vertical length of the projected image should match, otherwise the horizontal length of the projection object and the horizontal length of the projected image should match. Subsequent processing can be performed only by determining whether or not the aspect ratio of the projection object is 16: 9.
  • the relative positions of the four corners of the projection target on the image captured by the imaging device and the four corners of the rectangular test pattern having the same aspect ratio as the aspect ratio of the projected image By examining the relationship, the projector automatically performs the process of determining the four corners of the virtual projection frame for projecting the image with the same aspect ratio as the projected image, so the image is stretched horizontally or vertically. It will not be projected in a natural state.
  • FIG. 1 is a block diagram showing an example of the internal configuration of an embodiment of a projector according to the present invention.
  • FIG. 2 is a schematic diagram showing a pixel configuration of a spatial light modulation device (panel) included in the projection device unit of the projector according to the present invention.
  • FIG. 3 Focus adjustment, zoom adjustment and trapezoidal distortion correction in the projector according to the present invention. It is a schematic diagram of the test pattern image used also for positive (keystone correction).
  • FIG. 4 is a schematic diagram showing the appearance of a remote control device for a projector according to the present invention.
  • FIG. 5 is a flowchart showing a processing procedure performed by the projector according to the present invention during normal auto adjustment.
  • FIG. 6 is a schematic diagram showing a state in which an image is projected onto a screen while maintaining the aspect ratio of the image projected by the projector according to the present invention, taking several combinations of aspect ratios as examples.
  • FIG. 7 is a schematic diagram showing a state in which a test pattern image is projected onto a screen by the projector according to the present invention.
  • FIG. 8 is a schematic diagram showing an image when a camera unit captures a state in which a test pattern image is projected onto a screen by a projector according to the present invention.
  • FIG. 9 is a schematic diagram for explaining the principle of automatically determining the screen aspect ratio in the projector according to the present invention.
  • FIG. 10 is a schematic diagram showing a state in which a virtual screen is set on the panel coordinate system in the projector according to the present invention.
  • FIG. 11 is a schematic diagram showing a state in which a virtual screen is set on the panel coordinate system in the projector according to the present invention.
  • FIG. 12 is a flowchart showing a processing procedure by the system control unit during auto adjustment by the projector according to the present invention.
  • FIG. 1 is a block diagram showing an internal configuration example of an embodiment of a projector according to the present invention.
  • the following explanation is an example when the image projection method according to the present invention is implemented by the projector according to the present invention.
  • the image projection method according to the present invention functions not only as a device configured as a projector but also as a projector.
  • the present invention can also be applied to a case where a personal computer is connected to and controlled by a device having both of the above and a projector having only a function of projecting an image.
  • the projector 1 of the present embodiment has an auto adjustment function that can automatically prepare for projection.
  • the auto adjustment function projects a test pattern image from the projection lens 2 onto the projection target screen S during projection preparation, and the camera unit 3 captures the state of the test pattern image projected onto the screen S.
  • This is a function for performing projection preparation such as the size, position, and keystone distortion (keystone) correction of the projected image based on the four corner positions of the screen S obtained as a result and the four corner positions of the test pattern image.
  • the auto adjustment function includes color correction, focus adjustment, and the like. However, since there is no direct relationship with the present invention, description thereof will be omitted.
  • the projector 1 includes an external connection unit 4 and an image conversion unit 5 as a unit that mainly performs processing on a projection image input from the outside.
  • the projector 1 includes a color control unit 6, a test pattern image switching unit 7, a projection device unit 8, a projection lens driving unit 9, and a projection lens 2 as parts that mainly perform processes related to projection.
  • the projector 1 includes a camera unit 3 and a detection unit 11 as a part for performing processing mainly related to the auto adjustment function.
  • the projector 1 receives a user operation.
  • an operation unit 12 and a remote control light receiving unit 13 of a remote controller (hereinafter referred to as a remote controller) 20 are provided.
  • the overall control of the projector 1 is performed by the system control unit 10.
  • the external connection unit 4 is connected to an external device that outputs an image for projection.
  • the external connection unit 4 inputs a rectangular image output from the external device and transmits it to the image conversion unit 5.
  • the image conversion unit 5 Based on the control of the system control unit 10, the image conversion unit 5 performs necessary conversion processing such as AZD conversion and transmits the converted image to the projection device unit 8.
  • the color control unit 6 performs a process of adjusting the color of the projected image. Specifically, the color control unit 6 adjusts the balance of each color of R (red), G (green), and B (blue) based on the control of the system control unit 10 to thereby adjust the color of the projected image. Make corrections.
  • the test pattern image switching unit 7 generates various test patterns necessary for the auto adjustment function based on the control of the system control unit 10 and transmits the test patterns to the projection device unit 8 as test pattern images.
  • the projection device unit 8 incorporates a spatial light modulation device 8a that optically modulates a projection image, that is, information (digital image data) of an image to be projected.
  • the projection device unit 8 generates modulated light obtained by optically modulating digital image data of various images transmitted from the image conversion unit 5, the test pattern image switching unit 7, and the system control unit 10 described later by the spatial light modulation device 8a. To do.
  • the modulated light generated by the spatial light modulation device 8a of the projection device unit 8 in this way is projected onto the external screen S through the projection lens 2. As a result, an image to be projected is displayed on the screen S.
  • the spatial light modulation device 8a either a liquid crystal panel or a DMD (Digital Micromirrow Device) is generally used.
  • a liquid crystal panel is used as the spatial light modulation device 8a
  • each pixel associated with the dot unit of the digital data of the image to be projected transmits the light from the light source while displaying each dot of the image.
  • modulated light for displaying an image as a whole is projected, and finally an image is displayed on the screen S.
  • DMD is used as the spatial light modulation device 8a
  • the light from the light source is reflected while switching the reflection angle of the micromirror (Micromirrow) associated with the dot unit of the digital data of the image to be projected.
  • the image to be formed is projected in a state represented by the entire reflected light (modulated light), and finally the image is displayed on the screen S.
  • an image to be projected is a liquid crystal panel as the spatial light modulation device 8a.
  • the image is projected on the screen S by transmitting the light from the light source to the displayed image and projecting it from the projection lens 2.
  • an image is displayed as reflected light (modulated light) as a whole by switching the reflection angle of a micro mirror corresponding to a pixel of digital image data. Therefore, in the same way that individual pixels can be specified in correspondence with the dots of digital image data on the liquid crystal panel, individual micromirrors are specified in correspondence with the dots of digital image data in DMD. It is possible.
  • FIG. 2 is a schematic diagram showing a pixel configuration of a spatial light modulation device (hereinafter simply referred to as a panel) 8a made of a liquid crystal panel included in the projection device unit 8 described above.
  • the panel 8a has a horizontal display range of 1024 pixels in the horizontal direction and 768 pixels in the vertical direction, that is, a rectangular display range conforming to the XGA standard, and the coordinate value (0, 0) of the upper left corner.
  • the panel coordinate system is set with the pixel of) as the origin and the horizontal direction as the X axis and the vertical direction as the y axis.
  • the projection device unit 8 when the coordinate values of the panel coordinate system corresponding to each pixel in the horizontal direction and the vertical direction are sent from the system control unit 10 to the projection device unit 8, the projection device unit 8 is based on the coordinate values of the panel coordinate system. Specifies the position and dimensions of the image to be displayed in the display range of panel 8a on the panel coordinate system. For example, if “127” is specified as the horizontal coordinate value and “127” is specified as the vertical coordinate value from the system control unit 10, the projection device unit 8 uses the pixel in the upper left corner of the panel 8a as the origin to A dot is displayed at the position of the 128th pixel in each direction and vertical direction.
  • the spatial light modulation device 8a it is possible to set the same panel coordinate system as when the above-described liquid crystal panel is used.
  • the configuration using the liquid crystal panel is employed as the spatial light modulation device 8a
  • the configuration in which the liquid crystal panel is used as the spatial light modulation device 8a is also described in the following description.
  • the idea about the panel coordinate system is spatial light modulation. The same is true when using a liquid crystal panel as the device 8a and when using a DMD.
  • the projection lens 2 is zoomed (image size) in addition to the original lens necessary for enlarging the light beam (modulated light) transmitted through the panel 8a and projecting it on the screen S as an image. It is composed of a plurality of lenses such as an adjustment lens and a focus adjustment lens.
  • the projection lens drive unit 9 has an actuator for changing the positions of the zoom adjustment lens and the focus adjustment lens of the projection lens 2. Then, the projection lens drive unit 9 performs zoom adjustment and focus adjustment by driving the actuator according to the control from the system control unit 10.
  • the camera unit 3 shown in FIG. 1 captures various test pattern images projected onto the screen S during the automatic adjustment for projection preparation, and transmits the captured images to the detection unit 11.
  • the test pattern image projected from the projector 1 includes zoom adjustment and trapezoidal distortion correction as shown in the schematic diagram of FIG. 3, in addition to the color correction test pattern image and the focus adjustment test pattern (not shown).
  • the test pattern image 25 has a thick frame test pattern (hereinafter referred to as a thick frame portion 25b) corresponding to the outline of the projected image, and has various aspect ratios as described later. Are available.
  • the present invention is basically irrelevant to the color correction and focus adjustment processing using the test pattern image for color correction and the test pattern image for focus adjustment. These processes will not be described.
  • the detection unit 11 analyzes the captured image sent from the camera unit 3. This image analysis is performed on the camera coordinate system.
  • the camera coordinate system is the coordinate system set for camera unit 3. More specifically, the camera coordinate system is a coordinate system set in the imaging field of view of the camera unit 3, and the camera unit 3 is the same as the panel coordinate system set in the spatial light modulation device 8a described above. This is a coordinate system with the upper left corner of the imaging field of view as the origin and the horizontal direction as the X axis and the vertical direction as the y axis. However, the camera coordinate system is actually set with the upper left corner of the image sensor panel (CCD panel) of the camera unit 3 as the origin, which means that the camera coordinates are set on the image captured by the camera unit 3. Can be considered.
  • CCD panel image sensor panel
  • the detection unit 11 uses the conventionally known method based on the image captured by the camera unit 3 to obtain the coordinate values of the four corner positions of the screen S on the camera coordinate system, and the test pattern image 25 in FIG. Coordinate values such as the positions of the four corners of the projected image are detected according to the status of the projector 1 at that time of the thick frame portion 25b. If these coordinate values are detected, the state of trapezoidal distortion of the screen S and the projected image PJ (the thick frame portion 25b of the test pattern image 25) can be obtained by calculation based on the result. Not to mention that.
  • the detection unit 11 transmits the detection result as described above to the system control unit 10.
  • the operation unit 12 provided in the projector 1 has a plurality of buttons, switches, and the like. When the user operates these buttons, switches, and the like, the operation unit 12 corresponds to the operated buttons, switches, and the like. Accepts an operation instruction and transmits it to the system control unit 10. Further, the remote control light receiving unit 13 receives an operation signal from the remote control 20 and transmits it to the system control unit 10.
  • FIG. 4 is a schematic diagram showing the external appearance of the remote controller 20. As shown in FIG. 4, the remote control 20 has up / down / left / right selection keys 20a-20d and a decision key 20e in addition to a plurality of buttons, and is displayed on an OSD (On Screen Display) menu image projected from the projector 1. A GUI that allows a user to select a required item from among the displayed items by operating the selection keys 20a to 20d and the decision key 20e is used.
  • OSD On Screen Display
  • the operation unit 12 is also provided with up / down / left / right selection keys and determination keys similar to those on the remote controller 20. Therefore, when the same operation is performed on the operation unit 12 and the remote controller 20, the same instruction is given to the system control unit 10.
  • the system control unit 10 that controls each unit described above includes a ROM10a and a RAM 10b.
  • ROMlOa is used to display a program 10p (computer program according to the present invention) that defines the contents of control performed by the system control unit 10, and various test pattern images and various menu images including the test pattern image 25 shown in FIG. This data is stored in advance.
  • RAMlOb temporarily stores various data generated during control by the system control unit 10.
  • the system control unit 10 of the projector 1 of the present embodiment configured as described above performs an adjustment to match the projected image with the screen S by the process shown in the flowchart of FIG. Do.
  • the following processing is stored in ROMlOa.
  • the system control unit 10 executes the program according to the program 10p.
  • the system control unit 10 projects, for example, an all-white image (step Sl).
  • the detection unit 11 analyzes the image captured by the camera unit 3 in this state, thereby detecting the positions of the four corners of the screen S in the camera coordinate system (step S2). This is easily possible due to the difference between the reflectivity of the screen S and the reflectivity around it (for example, a wall surface).
  • the system control unit 10 projects a test pattern image 25 for detecting a projected image frame including a thick frame portion 25b that is a test pattern for detecting a projected image frame shown in FIG. 3 (step S3).
  • the detection unit 11 analyzes the image captured by the camera unit 3 in this state, thereby detecting the positions in the camera coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting the projected image frame (step S4). ). This is also possible easily by the difference between the reflectance of the thick frame portion 25b, which is a test pattern for detecting a projected image frame, and the surrounding reflectance.
  • the system control unit 10 performs zoom adjustment based on the positional relationship in the camera coordinate system of each of the four corners of the thick frame 25b, which is a test pattern for detecting the screen S and the projected image frame (step S5).
  • This zoom adjustment is performed, for example, by enlarging or reducing the thick frame portion 25b, which is a test pattern for detecting a projected image frame, by zooming until the thick frame portion 25b, which is a test pattern for detecting a projected image frame, reaches the end point of the screen S. Is done.
  • the detection unit 11 analyzes the positions of the four corners of the thick frame 25b, which is a test pattern for detecting a projected image frame, from the image captured by the camera unit 3 again. (Step S6), the position of the four corners of the screen S detected in step S2 in the camera coordinate system and the position of the four corners of the thick frame 25b after zoom correction detected in step S6. From the relationship, the positions in the panel coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting a projected image frame after zoom correction, that is, coordinate values are determined (step S7). As a result, the image to be projected is displayed on the panel 8a by being deformed in reverse to the shape projected on the screen S.
  • the projection device unit 8 displays an image on the panel 8a according to the coordinate value given from the system control unit 10, and this is projected Includes a rectangular image with corrected keystone distortion and And projected to the full size of the screen S.
  • the projection preparation for the projector 1 is automatically completed.
  • the projection preparation process by the system control unit 10 as described above is a conventional one, and the screen S does not depend on the aspect ratio of the screen S and the aspect ratio of the projected image (projected image).
  • the size of the projected image and the correction of trapezoidal distortion are adjusted so that the four corners of the image coincide with the four corners.
  • the aspect ratio of the screen S does not match the aspect ratio of the projected image, the image projected on the screen S is not stretched in either the vertical or horizontal direction. It becomes natural.
  • the aspect ratio of both the screen S and the projected image is considered, and more specifically. It is also possible to project an image with the maximum size on the screen S while maintaining the aspect ratio of the projected image.
  • FIG. 6 shows a state in which the projector 1 according to the present invention projects an image on the screen S while maintaining the aspect ratio of an image projected (hereinafter referred to as a projected image PJ).
  • a projected image PJ It is the schematic diagram which showed the combination of ratio as an example.
  • Fig. 6 (a) shows the case where the aspect ratio of the screen S is 1: 1 and the aspect ratio of the projected image PJ is 4: 3.
  • the projected image PJ is projected so that the length in the left-right direction matches the length in the left-right direction of the screen S, and the length of the screen S in the vertical direction is A part where the image is not projected with 1/8 width.
  • Fig. 6 shows the case where the aspect ratio of the screen S is 1: 1 and the aspect ratio of the projected image PJ is 4: 3.
  • the projected image PJ is projected so that the length in the left-right direction matches the length in the left-right direction of the screen S, and the length of the screen S in the vertical direction is A part where the image is
  • FIG. 6 (b) shows the case where the aspect ratio of the screen S is 1: 1 and the aspect ratio of the projected image PJ is 16: 9.
  • the projected image PJ is projected so that the length in the left-right direction matches the length in the left-right direction of the screen S, and the length of the screen S in the vertical direction is There is a part where the image is not projected with the width of 7/32 each.
  • Fig. 6 (c) shows the case where the aspect ratio of the screen S is 4: 3 and the aspect ratio of the projected image PJ is 16: 9.
  • the projected image PJ is projected so that the length in the left-right direction matches the length in the left-right direction of the screen S, and the length of the screen S in the up-down direction is applied to the upper and lower ends of the screen S. 3Z2 The part where the image is not projected by 4 width occurs.
  • Fig. 6 (d) shows the screen S. This shows the case where the aspect ratio is 16: 9 and the projected image PJ has an aspect ratio of 4: 3.
  • the projected image PJ is projected so that the vertical length of the projected image PJ matches the vertical length of the screen S, and the horizontal length of the screen S is A part where an image is not projected with a width of 2Z16 occurs.
  • FIG. 7 and 8 are schematic diagrams for specifically explaining a state in which the thick frame portion 25b, which is a test pattern for detecting a projected image frame, is projected as a test pattern image onto the screen S by the projector 1 according to the present invention.
  • FIG. FIG. 7 is a schematic diagram when the state in which the thick frame portion 25b of the test pattern image 25 is projected onto the screen S is viewed from the front of the screen S. Since the projector 1 is not installed completely opposite to the screen S, the outline of the projection image PJ, in this case, the thick frame portion 25b of the test pattern image 25 has a trapezoidal distortion. Is projected.
  • FIG. 8 is a schematic diagram showing an image captured by the camera unit 3 of the projector 1 in the state shown in FIG.
  • the force S and the screen S are picked up in a state in which the thick frame portion 25b of the test pattern image 25 that is the outline of the projection image PJ is picked up in a substantially rectangular shape.
  • the aspect ratio of the screen S is determined when the projector 1 is installed in a general situation, for example, indoors. In the installation situation where the screen S is so large and trapezoidal distortion occurs on the image captured by the camera unit 3, it is not normal.
  • the projector 1 is used in a system called a so-called home theater system or the like, the projector 1 is considered to be installed with the screen S almost facing. Accordingly, it is possible to automatically determine the aspect ratio of the image power screen S imaged by the camera unit 3 as shown in FIG. This will be specifically described below.
  • FIG. 9 is a schematic diagram for explaining the principle of automatically determining the screen aspect ratio in the projector according to the present invention.
  • the aspect ratio of the screen S can be determined by calculating the ratio A (hereinafter referred to as the temporary aspect ratio) between the total length of the top and bottom sides (HI + H2) and the total length of the left and right sides (VI + V2). It is possible to calculate the ratio A (hereinafter referred to as the temporary aspect ratio) between the total length of the top and bottom sides (HI + H2) and the total length of the left and right sides (VI + V2). It is possible to calculate the ratio A (hereinafter referred to as the temporary aspect ratio) between the total length of the top and bottom sides (HI + H2) and the total length of the left and right sides (VI + V2). It is possible to
  • the actual aspect ratio of the screen S is determined as follows according to the temporary aspect ratio A.
  • values other than 1: 1, 4: 3, and 16: 9 as described above as the actual aspect ratio of the screen S.
  • the standard should be set appropriately according to the same concept as above.
  • the vertical length of the screen S and the vertical length of the projected image PJ are made to coincide only when the aspect ratio of the screen S shown in Fig. 6 (d) is 16: 9.
  • the aspect ratio of the screen S shown in Fig. 6 (a), (b), and (c) is 1: 1 and 4: 3
  • the horizontal length of the screen S matches the horizontal length of the projected image PJ. I try to let them. Therefore, there is no practical problem even if it is determined only whether the aspect ratio of the screen S is 16: 9.
  • the system control unit 10 Based on the positions of the four corners of the screen S on the camera coordinate system as a result of the analysis of the image taken by the camera unit 3 by the detection unit 11, the system control unit 10 performs the screen S as described above. Determine the aspect ratio. As for the aspect ratio of the image input from the external connection unit 4, some external devices connected to the external connection unit 4 may output a signal for notifying the aspect ratio of the image. When the device is connected to the external connection unit 4, the system control unit 10 can automatically set the image aspect ratio. However, if an external device that cannot notify the projector 1 of the aspect ratio of the image that it outputs is connected to the external connection unit 4, the system control unit 10 uses the default aspect ratio. You may request that the aspect ratio setting be requested in the menu image by using F or OSD.
  • the system control unit 10 responds to the set aspect ratio of the image.
  • a test pattern image 25 (actually, the thick frame portion 25b corresponds to the aspect ratio of the image) is generated by the test pattern image switching unit 7 and projected onto the screen S.
  • the result of imaging this state by the camera unit 3 is the state shown in FIGS.
  • the above-described processing for determining the actual aspect ratio of the screen S may be performed in a state where the thick frame portion 25b of the test pattern image 25 as shown in FIG. 7 is projected.
  • the thick frame 25b should be the default aspect ratio or the aspect ratio corresponding to the aspect ratio notified from the external device.
  • the system control unit 10 maintains the aspect ratio of the projected image PJ on the screen S.
  • the virtual screen Vs to be projected in step S specifically, the portion corresponding to the projected image PJ in the schematic diagram shown in Fig. 6 (a)-(d) is set by applying a known two-dimensional projective transformation. Then, a projection image PJ in which the trapezoidal distortion is corrected so as to coincide with the dimensions of the virtual screen Vs is projected.
  • the aspect ratio of the screen S is 4: 3
  • the aspect ratio of the image (projected image PJ) displayed on the screen S (same as the aspect ratio of the virtual screen Vs) is 16: 9.
  • the aspect ratio of the image (projected image PJ) displayed on the screen S is 16: 9.
  • a known two-dimensional projective transformation is applied to the positions of the four corners of the screen S on the image captured by the camera unit 3 (hereinafter referred to as coordinate values on the force coordinate system).
  • the positions of the four corners of the virtual screen Vs are obtained, and the obtained virtual Projection after correcting trapezoidal distortion to the four corner positions of the screen Vs (camera coordinate system coordinate values)
  • the known two-dimensional projections so that the four corner positions of the PJ (camera coordinate system coordinate values) match. Perform shadow conversion.
  • the coordinate values (coordinate values on the panel coordinate system) of the four corners (PI, P2, P3, P4) of the panel 8a of the projection device unit 8 are as follows.
  • the respective coordinate values (coordinate values of the screen S on the camera coordinate system) are (Pxl, Pyl), (Px2, Py2 ), (Px3, Py3), (Px4, Py4).
  • PX is defined as a coordinate value at an arbitrary position on the panel 8a (a coordinate value on the panel coordinate system), and a conversion destination thereof, that is, a coordinate value on the camera coordinate system is defined as (LXX, LYY).
  • coordinate values normalized for use in the calculation that is, the coordinates of the four corners of the panel 8a (panel coordinate system) are 0 and 1 for both the X and y axes.
  • the value obtained by converting to a value between and normalized is obtained, and the above-mentioned conversion destination coordinate value (the coordinate value in the camera coordinate system) is also normalized.
  • the coordinate values of the four corner positions pl, p2, p3, p4 of the panel represented by the coordinate values normalized on the panel coordinate system and the normalized position px on the panel are the original coordinate values (panel coordinate values )
  • the coordinate value obtained by normalizing the original coordinate value and the conversion destination coordinate value (the coordinate value of the camera coordinate system) are expressed as follows.
  • the above relation is such that the calculation is simplified by offsetting one point (xl, yl) of the conversion destination to the corresponding one point (0, 0) in the original coordinate system.
  • This is a general method for two-dimensional projective transformation.
  • the normalized destination coordinate values x, y xl, ⁇ 2, ⁇ 3, ⁇ 4 and yl, y2, y3, y4 are the coordinate values of the four corners of the screen S on the camera coordinate system described above ( Pxl, Pyl), (Px2, Py2), (Px3, Py3), (Px4, Py4) and the row and col values according to the aspect ratio of the screen S are expressed as follows.
  • the position on the panel 8a of the projection device unit 8 corresponding to the positions of the four corners of the virtual screen Vs, that is, the coordinate value in the panel coordinate system is obtained.
  • the virtual script on panel 8a Define the coordinate value of the position corresponding to the four corners of the Vs as (new xi, new yi) and its positive transformation coordinate value (coordinate value in the camera coordinate system) as (virtual xi, virtual yi).
  • i is 1, 2, 3, 4
  • the 100% coordinate value is the coordinate value of the position on the panel 8a corresponding to the position of the four corners of the screen S, specifically, the coordinate of the four corners of the panel 8a. Value.
  • the panel coordinate values (new xi, new yi) of the virtual screen Vs are obtained according to the combination of the aspect ratio of the screen S and the aspect ratio of the projected image.
  • the actual resolution of panel 8a is 1024 x 768, which is assumed to be 800 x 800 if the screen S aspect ratio is 1: 1, and 1 if the screen S aspect ratio is 4: 3
  • the aspect ratio of screen S 9
  • the panel coordinate value of virtual screen Vs 10 and 11 are schematic diagrams showing a state in which the virtual screen Vs is set on the panel coordinate system.
  • the virtual screen Vs on the camera image is obtained by performing positive conversion on the coordinate values of the four corners of the screen S in the panel coordinate system on the panel 8a. Find the coordinate values of the four corners.
  • the coordinate values LX and LY of the arbitrary point PX in the panel coordinates are the coordinate values new xl one new x4, new yl one new y4 of the virtual screen Vs, respectively.
  • Arbitrary point PX conversion coordinates (camera seat)
  • the coordinate values LXX and LYY of the standard system) are converted to positive values, and the virtual screen Vs corners VP1, VP2, VP3, and VP4 in the camera coordinate system are coordinate values virtual xl one virtual x4, virtual yl one virtual y4, and finally Specifically, the coordinate values LXX and LYY of the four corners VP1, VP2, VP3, and VP4 of the virtual screen Vs in the camera coordinate system are obtained as follows.
  • the projection image PJ can be projected in accordance with the virtual screen Vs by performing the following calculation. Needless to say, this calculation itself is executed by the system control unit 10 based on the result of the detection unit 11 analyzing the image captured by the camera unit 3.
  • the input parameters are the coordinate values of the four corners of the virtual screen Vs on the camera coordinate system, the coordinate values of the four corners of the projection image PJ, and the X-direction and y-direction resolutions of the panel 8a. Each is defined as follows. However, in the following calculations, the resolutions col and row in the X direction and y direction of the panel 8a differ from the actual panel 8a values depending on the combination of the aspect ratio of the projected image PJ and the panel resolution. Use such values.
  • VP1 (Pxl, Pyl) ⁇ (0, 0)
  • VP2 (Px2, Py2) ⁇ (col, 0)
  • VP3 (Px3, Py3) ⁇ (col, row)
  • coordinate values normalized for use in the calculation that is, the coordinate values of the four corners of the virtual screen Vs on the camera coordinate system are 0 and 1 for both the x and y axes.
  • the normalized value is obtained by converting to a value between and the panel coordinate value, which is the conversion destination coordinate value described above, is normalized in the same manner.
  • the coordinates of the four corners pl, p2, p3, p4 of the virtual screen Vs on the camera coordinate system represented by the normalized coordinate values in this way and any normalized point px on the camera coordinate system
  • the standard coordinates (camera coordinate system) and the coordinate values obtained by normalizing the coordinate values of the original coordinates and the conversion destination coordinates (coordinate values of the panel coordinate system) are expressed as follows.
  • the above relationship simplifies the calculation by offsetting one point (xl, yl) of the conversion destination to the corresponding point (0, 0) on the original coordinate system.
  • This is a general technique in the known two-dimensional projective transformation.
  • the normalized destination coordinate values x and y xl, x2, x3, x4 and yl, y2, y3, y4 are the coordinate values of the four corners of the virtual screen Vs on the camera coordinate system (Pxl, Pyl ), ( ⁇ 2, Py2), (Px3, Py3), and (Px4, Py4).
  • conversion coefficients a, b, c, al, for converting the original coordinate value (camera coordinate system) to the conversion destination coordinate value (the coordinate value of the virtual screen Vs on the panel coordinate system) a2, bl, b2, a0, b0, cO are obtained as follows. However, here, since it is a conversion coefficient for converting the original coordinate value (virtual screen Vs coordinate value on the camera coordinate system) to the conversion destination coordinate value (panel coordinate system), a positive conversion coefficient is obtained. At the same time, inverse transform coefficients n aO, n b0, n c0, n al, n b l, n a2, n b2 are also obtained. Note that a, b, and c are intermediate constants used to reduce duplicate calculations even in the known two-dimensional projective transformation.
  • n aO (aO * b2 _ a2 * b2)
  • n bO (al * bO _ aO * b l)
  • n cO (a2 * bl-al * b2)
  • the corresponding coordinate values on the panel coordinate system are calculated by inversely transforming the coordinate values of the four corners of the virtual screen Vs on the camera coordinate system.
  • the coordinate values LXX and LYY of an arbitrary point PX on the camera coordinate system original coordinates
  • the coordinate values LX and LY of the four corners on the panel coordinate system corresponding to the four corners of the virtual screen Vs are obtained as follows.
  • FIG. 12 is a flowchart showing a processing procedure by the system control unit at the time of auto adjustment by the projector according to the present invention. Specifically, FIG. 12 is a flowchart showing the processing procedure by the system control unit 10 including the processing of projecting onto the screen S while maintaining the aspect ratio of the projected image PJ as described above. The control shown in this flowchart is processed according to the program 10p stored in ROMlOa.
  • the system control unit 10 is configured to process each procedure according to the program 10p stored in the ROMlOa.
  • the projector of the present invention includes all of these procedures.
  • the user places the projector 1 in front of the screen S, and operates the operation unit 12 or the remote control 20 to give an instruction to perform automatic adjustment for projection preparation to the projector.
  • the projection adjustment is automatically adjusted to match the size of the screen S with the projection image PJ
  • One of two types can be selected: normal auto adjustment and auto adjustment that projects onto the screen S while maintaining the aspect ratio of the projected image PJ as described above.
  • the system control unit 10 monitors whether or not an instruction to perform automatic adjustment for projection preparation while maintaining the aspect ratio of the image and other instructions have been received (step S11).
  • an instruction other than an instruction to perform automatic adjustment for projection preparation while maintaining the image aspect ratio is accepted (NO in step S11)
  • the system control unit 10 executes processing corresponding to the accepted instruction (step S12). .
  • the system control unit 10 when receiving an instruction to perform automatic adjustment for projection preparation while maintaining the external ratio of the projected image PJ (YES in step S11), the system control unit 10 performs color correction and focus adjustment items.
  • automatic adjustment for projection preparation while maintaining the aspect ratio of the projection image PJ described above is started (step S13). In the following description, descriptions regarding color correction and focus adjustment are omitted.
  • the system control unit 10 first detects the positions (coordinate values) in the camera coordinate system of the four corners of the screen S from the image captured by the camera unit 3 (step S14), and then The aspect ratio of the screen S is judged (step S15). Subsequently, the system control unit 10 detects the positions (coordinate values) in the camera coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting a projected image frame (step S16). The process of detecting the positions (coordinate values) of the four corners of the screen S and the projected thick frame 25b by the system control unit 10 in the camera coordinate system is the same as in the flowchart of FIG. The aspect ratio of the screen S is determined by the method described above based on the coordinate values of the four corners of the screen S in the camera coordinate system detected by the detection unit 11.
  • the system control unit 10 determines whether or not the screen size of the projection image is set (step S17).
  • the screen size of the projected image is a size determined in accordance with a display mode for designating what aspect ratio the image to be projected is displayed on the screen. For example, when the zoom mode is specified, the screen size of the projected image with an aspect ratio of 4: 3 remains the same as 4: 3 but is enlarged as a whole. For example, when full mode is specified, the projected image with an aspect ratio of 16: 9 is horizontal ( The image is magnified by about 1.3 times in the horizontal direction, and only the central part in the horizontal direction is displayed on the screen S with an aspect ratio of 4: 3.
  • the squeeze-recorded image is displayed on the screen S with an aspect ratio of 16: 9.
  • the image that should be projected can be displayed in various modes according to the user's preference and displayed on the screen S.
  • the mode (screen size) set by the user determine the aspect ratio of the image to be displayed on the screen S.
  • step S17 If the screen size is set (YES in step S17), system control unit 10 advances the process to step S18 described later. However, if the screen size is not set (NO in step S17), the system control unit 10 requests the user to set the screen size of the projection image (step S21). As an example of a specific method, the system control unit 10 requests input of the aspect ratio of the projected image from the OSD menu image, and enters a standby state (NO in step S22). When the user operates the operation unit 12 or the remote controller 20 to input the screen size of the projection image PJ (YES in step S22), the system control unit 10 sets the input screen size as the screen size of the projection image PJ.
  • the aspect ratio of the projected image PJ is determined from the relationship between the set screen size and the aspect ratio of the image to be projected, so that the system control unit 10 uses the virtual screen Vs screen as described above.
  • Determine the coordinate values of the four corners on S (Step S18), and adjust the zoom so that the determined virtual screen Vs matches the projected image PJ, specifically, the thick frame 25b around the test pattern image 25.
  • trapezoidal distortion correction is performed (step S19).
  • various images input from the external connection unit 4 can be projected onto the virtual screen Vs on the screen S according to the user's instructions (step S20).
  • the virtual screen Vs (virtual projection frame) is set based on the image captured by the camera unit 3, but for the screen S (projected body), for example, the screen S Photodetectors such as photodiodes are installed at the four corners to detect the positions of the four corners of the screen S, and zoom operations and lens shifts are performed on the projected image (specifically, the thick frame 25b that is the test pattern).
  • the present invention can be applied.
  • the four corners of the projected image are aligned with the four corners of the virtual screen Vs (virtual projection frame), thereby reducing the trapezoidal distortion of the projected image.
  • the virtual screen Vs can be used for zoom adjustment. In this case, zoom adjustment can be performed in a state where the center of the projected image coincides with the center of the screen S (projected body).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

An image projecting method for automatically projecting an image while sustaining the aspect ratio when the aspect ratio of an image to be projected is different from that of an object to which the image is to be projected (screen). Four corner positions of a screen S are specified based on an image (3I) picked up at a camera section, an imaginary screen Vs of maximum dimensions is set on the screen S based on that result, the aspect ratio of the screen S and the aspect ratio of an image PJ to be projected with an aspect ratio identical to that of the image to be projected. The size of the image to be projected is then adjusted to coincide with that of the imaginary screen Vs and trapezoidal distortion is corrected.

Description

明 細 書  Specification
画像投射方法、プロジェクタ、及びコンピュータプログラム  Image projection method, projector, and computer program
技術分野  Technical field
[0001] 本発明は、投射準備の段階で、投射された画像の寸法を自動的に調整すると共に [0001] The present invention automatically adjusts the size of a projected image at the stage of projection preparation.
、台形歪みを補正することが可能な画像投射方法、及びそのような画像投射方法に より画像を投射するプロジェクタ、更にそのようなプロジェクタの制御回路のための、 又は汎用コンピュータでプロジェクタを制御するためのコンピュータプログラムに関す る。 , An image projection method capable of correcting trapezoidal distortion, and a projector that projects an image by such an image projection method, and for controlling a projector with a general-purpose computer for a control circuit of such a projector Concerning computer programs.
背景技術  Background art
[0002] スクリーン、白壁、及びホワイトボード等の被投射体に画像を投射するプロジェクタ では、プロジェクタの設置場所から適切な投射が行なえるように、先ず、投射準備とし て投射に関係する複数の設定項目を調整する必要がある。  [0002] In a projector that projects an image onto an object to be projected such as a screen, white wall, and whiteboard, first, a plurality of settings related to projection are prepared as projection preparation so that appropriate projection can be performed from the installation location of the projector. Items need to be adjusted.
[0003] 上述の設定項目としては、焦点調整、色味補正、画像寸法調整 (ズーム調整)、及 び台形歪み補正(キーストン補正)等がある。このような各項目の設定は、プロジェク タから各項目に応じたテストパターン画像を順次投射し、被投射体上に投射されたテ ストパターン画像の状態を撮像装置で撮像する等によりフィードバックして調整及び 補正を行なうように従来は一般的に構成されている。例えば、ズーム調整では、被投 射体上に投射された寸法調整用のテストパターン画像が被投射体に程良く収まるよ うに、ユーザの指示又はプロジェクタの自動的な判断に基づいて投射レンズのズー ム機能を調節して投射画像を拡大又は縮小する。なお、プロジェクタは、投射レンズ のレンズ中心を通る光軸が投射された画像の中心に対しオフセットされている(一致 していなレ、)ことが一般的であり、ズーム調整は、レンズ中心(レンズ中心を通る光軸) を通常、調整の基準にする。このようなプロジェクタの投射準備に関しては下記の特 許文献 1に開示されている。  [0003] The setting items described above include focus adjustment, color correction, image size adjustment (zoom adjustment), and keystone distortion correction (keystone correction). In setting such items, test pattern images corresponding to the items are sequentially projected from the projector, and the state of the test pattern image projected on the projection object is fed back by imaging with an imaging device. Conventionally, it is generally configured to make adjustments and corrections. For example, in zoom adjustment, the zoom of the projection lens can be adjusted based on the user's instruction or the projector's automatic judgment so that the test pattern image for dimension adjustment projected on the projection object fits on the projection object. Adjust the function to enlarge or reduce the projected image. Note that projectors generally have an optical axis that passes through the lens center of the projection lens that is offset from the center of the projected image. The optical axis passing through the center) is usually used as a reference for adjustment. The projection preparation of such a projector is disclosed in Patent Document 1 below.
特許文献 1 :特開 2000 - 241874号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2000-241874
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] ところで上述したような従来のプロジェクタの投射準備は一般的には、被投射体 (た とえばスクリーン)の四隅の位置及び投射される画像の四隅の位置をプロジェクタ側 で認識し、投射される画像の四隅が被投射体の四隅の位置に一致するように、投射 される画像の大きさ及び台形歪みが調整される。ところで、プロジェクタで TV放送の 画像を投射したり、ビデオテープ, DVD等から再生した画像を投射するような場合に は、投射される画像のアスペクト比が、従来の TV放送において一般的な 4 : 3のみな らず近年では HDTV放送のワイド画面のような 16: 9が普及しつつあり、更には劇場 用映画を TV放送する場合、または DVDから再生する場合等ではより扁平なァスぺ タト比が採用されていることもある。一方、画像が投射されるべき範囲が明確に規定さ れているたとえばスクリーン等の被投射体のアスペクト比も、従来一般的な 1: 1 (正方 形)のみならず、 TV放送の画像又はビデオテープ, DVD等から再生した画像を投 射することを前提とした 4 : 3、 16 : 9等も存在する。 Problems to be solved by the invention [0004] By the way, the preparation for projection of the conventional projector as described above is generally performed by recognizing the positions of the four corners of the projection target (for example, the screen) and the four corners of the projected image on the projector side. The size of the projected image and the trapezoidal distortion are adjusted so that the four corners of the projected image coincide with the positions of the four corners of the projection target. By the way, when a TV broadcast image is projected by a projector or an image reproduced from a videotape, DVD, or the like is projected, the aspect ratio of the projected image is generally 4: In addition to 3 in recent years, 16: 9, which is the wide screen of HDTV broadcasting, has become widespread, and even when theatrical movies are broadcast on TV or played back from DVD, the flatter aspect ratio May be adopted. On the other hand, the aspect ratio of an object to be projected, such as a screen, where the range in which the image should be projected is clearly defined is not only the conventional 1: 1 (square), but also the image or video of a TV broadcast. There are 4: 3, 16: 9, etc. based on the assumption that images reproduced from tape, DVD, etc. are projected.
[0005] このように現状では、投射される画像のアスペクト比と被投射体、特にスクリーンの アスペクト比とが種々混在してレ、るのが実情である力 従来のプロジェクタでは投射 する画像の四隅を被投射体の四隅に一致するように画像の大きさの調整及び台形 歪みの補正を行なっていた。このためたとえば、アスペクト比が 1 : 1の被投射体にァ スぺタト比が 16 : 9の画像を投射した場合、画像が上下方向に極端に引き伸ばされた 不自然な状態で投射され、また逆にアスペクト比が 16: 9の被投射体にアスペクト比 が 4: 3の画像を投射した場合、画像が左右方向に引き伸ばされた不自然な状態で 投射されるという問題があった。  [0005] As described above, in the present situation, the aspect ratio of the projected image and the aspect ratio of the object to be projected, particularly the screen, is actually mixed. The image size was adjusted and the trapezoidal distortion was corrected to match the four corners of the projection object. For this reason, for example, when an image with a aspect ratio of 16: 9 is projected onto a projection object with an aspect ratio of 1: 1, the image is projected in an unnatural state in which the image is extremely stretched vertically. Conversely, when an image with an aspect ratio of 4: 3 is projected onto a projection object with an aspect ratio of 16: 9, the image is projected in an unnatural state stretched in the left-right direction.
[0006] 従来、上述のような場合には被投射体の適宜の範囲に画像が本来のアスペクト比 で投射されるように人手により調整することは勿論可能であるが、その場合には画像 が被投射体上へ投射された場合の大きさの調整及び台形歪みの補正等をも人手で 行なう必要があり、非常に煩わしいとレ、う問題があった。  [0006] Conventionally, in the above case, it is of course possible to manually adjust the image so that the image is projected in an appropriate range of the projection object with the original aspect ratio. It is necessary to manually adjust the size and correct the trapezoidal distortion when projected onto the projection target, and there is a problem that it is very troublesome.
[0007] 本発明は以上のような問題点に鑑みてなされたものであり、被投射体のアスペクト 比には拘わらず、投射される画像をそのアスペクト比を維持した状態で被投射体へ 投射することが可能な画像投射方法及びそのような画像投射方法により画像を投射 するプロジェクタの提供を主たる目的とする。 [0008] また本発明は、上述の目的に加えて、投射される画像の台形歪みを補正して仮想 の投射枠へ画像を投射できる画像投射方法及びそのような画像投射方法により画像 を投射するプロジェクタの提供を目的とする。 [0007] The present invention has been made in view of the above problems, and projects a projected image onto a projection object while maintaining the aspect ratio regardless of the aspect ratio of the projection object. The main object of the present invention is to provide an image projection method that can be used and a projector that projects an image using such an image projection method. [0008] Further, in addition to the above-described object, the present invention corrects trapezoidal distortion of a projected image and projects an image onto a virtual projection frame, and projects an image using such an image projection method. The purpose is to provide a projector.
[0009] 更に本発明は、上述の目的に加えて、最大の寸法で仮想の投射枠を設定するよう にしたプロジェクタの提供を目的とする。この際、公知の二次元の射影変換を用いる ことにより容易に仮想の投射枠を設定することを可能とすることをも目的とする。  [0009] Further, in addition to the above-described object, the present invention has an object of providing a projector in which a virtual projection frame is set with a maximum dimension. At this time, it is also an object to make it possible to easily set a virtual projection frame by using a known two-dimensional projective transformation.
[0010] 更に本発明は、上述のようなプロジェクタの制御回路のための、又は汎用コンビュ ータでプロジェクタを制御するためのコンピュータプログラムの提供をも目的とする。 課題を解決するための手段  Another object of the present invention is to provide a computer program for the projector control circuit as described above or for controlling the projector with a general-purpose computer. Means for solving the problem
[0011] 上記課題を解決するために本発明に係る画像投射方法は、矩形状の被投射体へ 投射される矩形状の投射画像を表す情報に従って空間光変調手段に変調光を生成 させ、前記空間光変調手段が生成した変調光を前記矩形状の被投射体へ投射レン ズに投射させる際に、前記矩形状の投射画像を変形した画像を表す情報に従って 前記空間光変調手段に変調光を生成させて前記矩形状の被投射体上で矩形の画 像となるように投射する画像投射方法において、前記矩形状の投射画像と同一ァス ぺクト比を有し、前記矩形状の被投射体へ投射された場合に矩形状となる仮想投射 枠を前記空間光変調手段上に設定することを特徴とする。  In order to solve the above problem, an image projection method according to the present invention causes the spatial light modulation means to generate modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and When the modulated light generated by the spatial light modulator is projected onto the rectangular projection object on the projection lens, the modulated light is applied to the spatial light modulator according to information representing an image obtained by deforming the rectangular projection image. In the image projection method of generating and projecting so as to form a rectangular image on the rectangular projection object, the rectangular projection image has the same aspect ratio as the rectangular projection image. A virtual projection frame that is rectangular when projected onto the body is set on the spatial light modulation means.
[0012] 上記課題を解決するために本発明に係るプロジェクタは、矩形状の被投射体へ投 射される矩形状の投射画像を表す情報に従って変調光を生成する空間光変調手段 と、該空間光変調手段が生成した変調光を前記矩形状の被投射体へ投射する投射 レンズとを備え、前記矩形状の投射画像を変形した画像を表す情報に従って前記空 間光変調手段に変調光を生成させて前記矩形状の被投射体上で矩形の画像となる ように投射するプロジェクタにおいて、前記矩形状の投射画像と同一アスペクト比を 有し、前記矩形状の被投射体へ投射された場合に矩形状となる仮想投射枠を前記 空間光変調手段上に設定する仮想投射枠設定手段を備えることを特徴とする。  In order to solve the above-described problem, a projector according to the present invention includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the spatial A projection lens that projects the modulated light generated by the light modulation unit onto the rectangular projection target, and generates the modulated light in the spatial light modulation unit according to information representing an image obtained by deforming the rectangular projection image. In a projector that projects a rectangular image on the rectangular projection object, the projector has the same aspect ratio as the rectangular projection image, and is projected onto the rectangular projection object. Virtual projection frame setting means for setting a rectangular virtual projection frame on the spatial light modulation means is provided.
[0013] このような本発明に係る画像投射方法及びプロジェクタでは、投射画像のアスペクト 比と被投射体のアスペクト比とが異なる場合にも、投射画像と同一アスペクト比の仮 想投射枠が被投射体上に設定される。 [0014] また本発明に係る画像投射方法は、矩形状の被投射体へ投射される矩形状の投 射画像を表す情報に従って空間光変調手段に変調光を生成させ、前記空間光変調 手段が生成した変調光を前記矩形状の被投射体へ投射レンズに投射させる際に、 前記矩形状の投射画像を変形した画像を表す情報に従って前記空間光変調手段 に変調光を生成させて前記矩形状の被投射体上で矩形の画像となるように投射する 画像投射方法において、前記矩形状の投射画像と同一ァスぺ外比を有し、前記矩 形状の被投射体へ投射された場合に矩形状となる仮想投射枠を前記空間光変調手 段上に設定し、前記空間光変調手段上に設定された仮想投射枠の四隅に前記矩形 状の投射画像の四隅が一致した状態で投射されるように、前記空間光変調手段が 生成する変調光が表す前記矩形状の投射画像の変形量を演算することを特徴とす る。 In such an image projection method and projector according to the present invention, a virtual projection frame having the same aspect ratio as the projection image is projected even when the aspect ratio of the projection image and the aspect ratio of the projection object are different. Set on the body. [0014] The image projection method according to the present invention causes the spatial light modulation means to generate modulated light in accordance with information representing a rectangular projection image projected onto the rectangular projection object, and the spatial light modulation means When projecting the generated modulated light onto the rectangular projection object onto the projection lens, the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, thereby generating the rectangular shape. In the image projecting method for projecting so as to form a rectangular image on the projected object, the projected image has the same external ratio as that of the rectangular projected image, and is projected onto the rectangular projected object. A rectangular virtual projection frame is set on the spatial light modulation means, and is projected with the four corners of the rectangular projection image aligned with the four corners of the virtual projection frame set on the spatial light modulation means. As shown in FIG. The deformation amount of the rectangular projection image represented by the light control is calculated.
[0015] また本発明に係るプロジェクタは、矩形状の被投射体へ投射される矩形状の投射 画像を表す情報に従って変調光を生成する空間光変調手段と、該空間光変調手段 が生成した変調光を前記矩形状の被投射体へ投射する投射レンズとを備え、前記矩 形状の投射画像を変形した画像を表す情報に従って前記空間光変調手段に変調 光を生成させて前記矩形状の被投射体上で矩形の画像となるように投射するプロジ ェクタにおいて、前記矩形状の投射画像と同一アスペクト比を有し、前記矩形状の被 投射体へ投射された場合に矩形状となる仮想投射枠を前記空間光変調手段上に設 定する仮想投射枠設定手段と、該仮想投射枠設定手段が前記空間光変調手段上 に設定した仮想投射枠の四隅に前記矩形状の投射画像の四隅が一致した状態で 投射されるように、前記空間光変調手段が生成する変調光が表す前記矩形状の投 射画像の変形量を演算する演算手段とを備えることを特徴とする。  [0015] Further, the projector according to the present invention includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and a modulation generated by the spatial light modulation unit. A projection lens that projects light onto the rectangular projection object, and the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, thereby generating the rectangular projection object. In a projector that projects a rectangular image on the body, the virtual projection frame has the same aspect ratio as the rectangular projection image and is rectangular when projected onto the rectangular projection object Virtual projection frame setting means for setting the image on the spatial light modulation means, and the four corners of the rectangular projection image coincide with the four corners of the virtual projection frame set on the spatial light modulation means by the virtual projection frame setting means. Projected with As described above, the image processing apparatus includes a calculation unit that calculates a deformation amount of the rectangular projection image represented by the modulated light generated by the spatial light modulation unit.
[0016] このような本発明に係る画像投射方法及びプロジェクタでは、投射画像のアスペクト 比と被投射体のアスペクト比とが異なる場合にも、投射画像と同一アスペクト比の仮 想投射枠が被投射体上に設定され、この設定された仮想投射枠の四隅に投射画像 がその四隅が一致した状態で投射される。  In such an image projection method and projector according to the present invention, a virtual projection frame having the same aspect ratio as the projection image is projected even when the aspect ratio of the projection image and the aspect ratio of the projection object are different. It is set on the body, and the projected image is projected to the four corners of the set virtual projection frame with the four corners matching.
[0017] また、本発明に係る画像投射方法は上記の画像投射方法の発明において、前記 被投射体の四隅の位置を撮像手段で撮像し、前記被投射体の四隅の位置を前記撮 像手段に設定された座標系上で特定し、前記座標系上で特定された前記被投射体 の四隅の位置、前記被投射体のアスペクト比及び前記投射画像のアスペクト比に基 づいて、前記投射画像と同一アスペクト比で前記被投射体へ投射可能な最大の大き さの仮想投射枠を設定することを特徴とする。 The image projection method according to the present invention is the image projection method invention described above, wherein the four corner positions of the projection object are imaged by an imaging means, and the four corner positions of the projection object are captured. Specified on the coordinate system set in the image means, and based on the positions of the four corners of the projection object specified on the coordinate system, the aspect ratio of the projection object, and the aspect ratio of the projection image, A virtual projection frame having a maximum size that can be projected onto the projection object with the same aspect ratio as that of the projection image is set.
[0018] また、本発明に係るプロジェクタは上記のプロジェクタの発明において、前記被投 射体の四隅の位置を撮像する撮像手段と、前記被投射体の四隅の位置を前記撮像 手段に設定された座標系上で特定する特定手段とを備え、前記仮想投射枠設定手 段は、前記座標系上で前記特定手段が特定した前記被投射体の四隅の位置、前記 被投射体のアスペクト比及び前記投射画像のアスペクト比に基づいて、前記投射画 像と同一ァスぺ外比で前記被投射体へ投射可能な最大の大きさの仮想投射枠を設 定することを特徴とする。  [0018] Further, in the projector according to the invention described above, the projector according to the present invention is configured such that the imaging unit that images the four corner positions of the projection target and the four corner positions of the projection target are set in the imaging unit. Specifying means on a coordinate system, and the virtual projection frame setting means includes the four corner positions of the projection object specified by the specification means on the coordinate system, the aspect ratio of the projection object, and the Based on the aspect ratio of the projected image, a virtual projection frame having a maximum size that can be projected onto the projection object with the same external ratio as that of the projected image is set.
[0019] このような本発明に係る画像投射方法及びプロジェクタでは上記の画像投射方法 及びプロジェクタの発明において、特定手段が特定した被投射体の四隅の位置、被 投射体のアスペクト比及び投射画像のアスペクト比に基づいて、被投射体上に設定 可能な最大の大きさの仮想投射枠が設定される。  In such an image projection method and projector according to the present invention, in the above-described image projection method and projector invention, the positions of the four corners of the projection object, the aspect ratio of the projection object, and the projection image specified by the specifying means Based on the aspect ratio, a virtual projection frame of the maximum size that can be set on the projection object is set.
[0020] 更に本発明に係る画像投射方法は上記の画像投射方法の発明において、前記被 投射体の四隅の位置関係を、前記被投射体の中心を中心とし、前記投射画像と同 一アスペクト比を有する矩形の四隅の位置関係に二次元の射影変換を用いて変換 することにより前記仮想投射枠を設定することを特徴とする。  [0020] Further, the image projection method according to the present invention is the image projection method invention described above, wherein the positional relationship of the four corners of the projection object is centered on the center of the projection object and has the same aspect ratio as the projection image. The virtual projection frame is set by converting the positional relationship of the four corners of the rectangle having a position using two-dimensional projective transformation.
[0021] 更に本発明に係るプロジェクタは上記のプロジェクタの発明において、前記仮想投 射枠設定手段は、前記被投射体の四隅の位置関係を、前記被投射体の中心を中心 とし、前記投射画像と同一アスペクト比を有する矩形の四隅の位置関係に二次元の 射影変換を用いて変換することにより仮想投射枠を設定することを特徴とする。  Furthermore, the projector according to the present invention is the projector invention described above, wherein the virtual projection frame setting means sets the positional relationship of the four corners of the projection object to the center of the projection object, and the projection image The virtual projection frame is set by converting the positional relationship of the four corners of the rectangle having the same aspect ratio using two-dimensional projective transformation.
[0022] このような本発明に係る画像投射方法及びプロジェクタでは上記の画像投射方法 及びプロジェクタの発明において、被投射体の四隅の位置関係が、被投射体の中心 を中心とし、投射画像のアスペクト比を有する矩形の四隅の位置関係に二次元の射 影変換を用いて変換されることにより、仮想投射枠が設定される。  In such an image projection method and projector according to the present invention, in the image projection method and projector invention described above, the positional relationship of the four corners of the projection object is centered on the center of the projection object, and the aspect of the projection image A virtual projection frame is set by converting the positional relationship of the four corners of the rectangle having a ratio using a two-dimensional projective transformation.
[0023] 更に本発明に係る画像投射方法は上記の画像投射方法の発明において、前記被 投射体の上下両辺の長さ及び左右両辺の長さを前記座標系上で求め、求められた 前記被投射体の上下両辺の長さ及び左右両辺の長さの比率に基づいて前記被投 射体のアスペクト比を判断することを特徴とする。 [0023] Further, the image projection method according to the present invention is the image projection method according to the invention described above. The length of both the upper and lower sides and the length of both left and right sides of the projecting body are obtained on the coordinate system, and the projection target is calculated based on the obtained ratio of the lengths of the upper and lower sides and the left and right sides of the projected body. It is characterized by determining the aspect ratio of the body.
[0024] 更に本発明に係るプロジェクタは上記のプロジェクタの発明において、前記被投射 体の上下両辺の長さ及び左右両辺の長さを前記座標系上で求め、両者の比率に基 づいて前記被投射体のアスペクト比を判断する手段を更に備えたことを特徴とする。 [0024] Further, the projector according to the present invention is the projector invention described above, wherein the lengths of the upper and lower sides and the left and right sides of the projection object are obtained on the coordinate system, and the projection object is based on the ratio between the two. The apparatus further includes means for determining the aspect ratio of the projecting body.
[0025] このような本発明に係る画像投射方法及びプロジェクタでは上記の画像投射方法 及びプロジェクタの発明において、前記の座標系上で被投射体の上下両辺の長さ及 び左右両辺の長さが求められ、両者の比率に基づいて被投射体のアスペクト比が自 動的に判断される。 [0025] In such an image projection method and projector according to the present invention, in the image projection method and projector invention described above, the length of both upper and lower sides and the length of both left and right sides of the projection object on the coordinate system are The aspect ratio of the projection object is automatically determined based on the ratio between the two.
[0026] 更にまた本発明に係る画像投射方法は上記の画像投射方法の発明において、前 記被投射体のアスペクト比が 16: 9であるか否かを判断することを特徴とする。  [0026] Furthermore, the image projection method according to the present invention is characterized in that, in the above-described image projection method invention, it is determined whether or not the aspect ratio of the projection target is 16: 9.
[0027] 更にまた本発明に係るプロジェクタは上記のプロジェクタの発明において、前記被 投射体のアスペクト比を判断する手段は、前記被投射体のアスペクト比が 16 : 9であ るか否かを判断することを特徴とする。  [0027] Furthermore, the projector according to the present invention is the projector invention described above, wherein the means for determining the aspect ratio of the projection object determines whether or not the aspect ratio of the projection object is 16: 9. It is characterized by doing.
[0028] このような本発明に係る画像投射方法及びプロジェクタでは上記の画像投射方法 及びプロジェクタの発明において、被投射体のアスペクト比が自動的に判断される際 に、 16: 9であるか否かの判断のみが行なわれる。  [0028] In such an image projection method and projector according to the present invention, in the above-described image projection method and projector invention, when the aspect ratio of the projection object is automatically determined, it is 16: 9 or not. Only the judgment is made.
[0029] また、本発明に係るプロジェクタは、矩形状の被投射体へ投射される矩形状の投射 画像を表す情報に従って変調光を生成する空間光変調手段と、該空間光変調手段 が生成した変調光を前記矩形状の被投射体へ投射する投射レンズと、撮像装置とを 備え、前記矩形状の投射画像を変形した画像を表す情報に従って前記空間光変調 手段に変調光を生成させて前記矩形状の被投射体上で矩形状の画像となるように 投射させるための、前記矩形状の投射画像と同一アスペクト比の仮想投射枠を前記 撮像装置が撮像した画像に基づいて前記空間光変調手段上に設定するプロジェク タにおいて、前記矩形状の投射画像と同一アスペクト比の矩形の四隅を示すテスト パターンを表す変調光を前記空間光変調手段に生成させて前記投射レンズから前 記矩形状の被投射体へ向けて投射させる手段と、前記テストパターンが前記矩形状 の被投射体へ向けて投射された状態を前記撮像装置に撮像させる手段と、前記撮 像装置が撮像した画像上で前記矩形状の被投射体の四隅の位置を検出する手段と 、前記撮像装置が撮像した画像上で前記投射されたテストパターンの四隅の位置を 検出する手段と、前記撮像装置が撮像した画像上での、前記矩形状の被投射体の 四隅と前記テストパターンの四隅との相対的位置関係に基づいて、前記空間光変調 手段上に設定される前記仮想投射枠の四隅を決定する手段とを備えたことを特徴と する。 [0029] Further, the projector according to the present invention includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the spatial light modulation unit A projection lens for projecting the modulated light onto the rectangular projection object; and an imaging device, wherein the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, and The spatial light modulation based on an image captured by the imaging device with a virtual projection frame having the same aspect ratio as the rectangular projection image for projecting to form a rectangular image on a rectangular projection object In the projector set on the means, the spatial light modulation means generates modulated light representing a test pattern indicating the four corners of the rectangle having the same aspect ratio as the rectangular projection image, and is transmitted from the projection lens to the front. Means for projecting toward a rectangular projection object, and the test pattern is rectangular Means for causing the imaging device to image the state projected toward the projection object, means for detecting the positions of the four corners of the rectangular projection object on the image captured by the imaging device, and the imaging Means for detecting the positions of the four corners of the projected test pattern on the image captured by the apparatus; and the four corners of the rectangular projection object and the four corners of the test pattern on the image captured by the imaging apparatus. And a means for determining four corners of the virtual projection frame set on the spatial light modulation means based on the relative positional relationship.
[0030] このような本発明に係るプロジェクタでは、投射画像と同一アスペクト比の矩形の四 隅を示すテストパターンが被投射体へ向けて投射され、この状態が撮像装置により 撮像され、この画像上で被投射体の四隅の位置が検出されると共に投射されたテス トパターンの四隅の位置が検出される。そして、撮像装置が撮像した画像上での被 投射体の四隅とテストパターンの四隅との相対的位置関係に基づいて、仮想投射枠 の四隅が決定される。  [0030] In such a projector according to the present invention, test patterns indicating rectangular corners having the same aspect ratio as the projected image are projected toward the projection target, and this state is captured by the imaging device. As a result, the positions of the four corners of the projection object are detected, and the positions of the four corners of the projected test pattern are detected. Then, the four corners of the virtual projection frame are determined based on the relative positional relationship between the four corners of the projection object and the four corners of the test pattern on the image captured by the imaging device.
[0031] また、本発明に係るコンピュータプログラムは、矩形状の被投射体へ投射される矩 形状の投射画像を表す情報に従って変調光を生成する空間光変調手段と、該空間 光変調手段が生成した変調光を前記矩形状の被投射体へ投射する投射レンズと、 撮像装置とを備え、前記矩形状の投射画像を変形した画像を表す情報に従って前 記空間光変調手段に変調光を生成させて前記矩形状の被投射体上で矩形状の画 像となるように投射させるコンピュータに、前記矩形状の投射画像と同一アスペクト比 の仮想投射枠を前記撮像装置が撮像した画像に基づいて前記空間光変調手段上 に設定させるコンピュータプログラムであって、前記矩形状の投射画像と同一ァスぺ タト比の矩形の四隅を示すテストパターンを表す変調光を前記空間光変調手段に生 成させて前記投射レンズから前記矩形状の被投射体へ向けて投射させる手順と、前 記テストパターンが前記矩形状の被投射体へ向けて投射された状態を前記撮像装 置に撮像させる手順と、前記撮像装置が撮像した画像上で前記矩形状の被投射体 の四隅の位置を検出する手順と、前記撮像装置が撮像した画像上で前記投射され たテストパターンの四隅の位置を検出する手順と、前記撮像装置が撮像した画像上 での、前記矩形状の被投射体の四隅と前記テストパターンの四隅との相対的位置関 係に基づいて、前記空間光変調手段上に設定される前記仮想投射枠の四隅を決定 する手順とを前記コンピュータに実行させることを特徴とする。 [0031] Further, the computer program according to the present invention includes a spatial light modulation unit that generates modulated light in accordance with information representing a rectangular projection image projected onto a rectangular projection body, and the spatial light modulation unit generates the spatial light. A projection lens for projecting the modulated light onto the rectangular projection object, and an imaging device, and causing the spatial light modulation means to generate modulated light according to information representing an image obtained by deforming the rectangular projection image. Based on an image captured by the imaging device, a virtual projection frame having the same aspect ratio as the rectangular projection image is projected to a computer that projects a rectangular image on the rectangular projection object. A computer program to be set on the spatial light modulation means, wherein modulated light representing a test pattern indicating the four corners of a rectangle having the same aspect ratio as the rectangular projection image is supplied to the spatial light modulation means. And a procedure for projecting the projection lens from the projection lens toward the rectangular projection object, and a procedure for causing the imaging device to image the state in which the test pattern is projected toward the rectangular projection object. And detecting the positions of the four corners of the rectangular projection object on the image captured by the imaging device, and detecting the positions of the four corners of the projected test pattern on the image captured by the imaging device. The relative positional relationship between the four corners of the procedure and the four corners of the test pattern on the image captured by the imaging device The computer is caused to execute a procedure for determining the four corners of the virtual projection frame set on the spatial light modulator on the basis of the relationship.
[0032] このような本発明に係るコンピュータプログラムの制御では、投射画像と同一ァスぺ タト比の矩形の四隅を示すテストパターンが被投射体へ向けて投射され、この状態が 撮像装置により撮像され、この画像上で被投射体の四隅の位置が検出されると共に 投射されたテストパターンの四隅の位置が検出される。そして、撮像装置が撮像した 画像上での被投射体の四隅とテストパターンの四隅との相対的位置関係に基づいて 、仮想投射枠の四隅が決定されるようにコンピュータが制御する。  In the control of the computer program according to the present invention as described above, test patterns indicating the four corners of a rectangle having the same aspect ratio as the projected image are projected toward the projection object, and this state is captured by the imaging device. Then, the positions of the four corners of the projection object are detected on the image, and the positions of the four corners of the projected test pattern are detected. Then, the computer controls the four corners of the virtual projection frame to be determined based on the relative positional relationship between the four corners of the projection object and the four corners of the test pattern on the image captured by the imaging device.
発明の効果  The invention's effect
[0033] 以上のような本発明に係る画像投射方法及びプロジェクタによれば、投射画像のァ スぺタト比と被投射体のアスペクト比とが異なる場合にも、投射画像と同一アスペクト 比の仮想投射枠が被投射体上に設定されるので、従来のァスぺ外比を無視した投 射状態に比して不自然さが解消された本来の画像をユーザに提供することが可能に なる。  [0033] According to the image projection method and the projector according to the present invention as described above, even when the aspect ratio of the projection image and the aspect ratio of the projection object are different, the virtual image having the same aspect ratio as that of the projection image is obtained. Since the projection frame is set on the projection object, it is possible to provide the user with an original image in which the unnaturalness is eliminated compared to the projection state that ignores the conventional external ratio. .
[0034] また本発明に係る画像投射方法及びプロジェクタによれば、投射画像のアスペクト 比と被投射体のアスペクト比とが異なる場合にも、投射画像と同一アスペクト比の仮 想投射枠が被投射体上に設定され、この設定された仮想投射枠の四隅に投射画像 の四隅が一致した状態で投射されるので、従来のアスペクト比を無視した投射状態 に比して不自然さが解消された本来の画像をユーザに提供することが可能になる。  Further, according to the image projection method and the projector according to the present invention, the virtual projection frame having the same aspect ratio as the projection image is projected even when the aspect ratio of the projection image and the aspect ratio of the projection object are different. Since it is set on the body and projected with the four corners of the projected image coincident with the four corners of the set virtual projection frame, unnaturalness has been eliminated compared to the projection state in which the aspect ratio is ignored. The original image can be provided to the user.
[0035] また本発明に係る画像投射方法及びプロジェクタによれば上記の画像投射方法及 びプロジェクタの発明において、撮像手段に設定された座標系上での被投射体の四 隅の位置の特定結果と被投射体のアスペクト比と投射画像のアスペクト比とに基づい て、被投射体上に設定可能な最大の大きさの仮想投射枠が設定されるので、被投射 体のアスペクト比と投射される画像のアスペクト比とを与えれば被投射体上に設定可 能な最大の大きさの仮想投射枠が自動的に設定され、このようにして設定された最 大の大きさで画像の投射が可能になる。  [0035] Further, according to the image projection method and projector according to the present invention, in the image projection method and projector invention described above, the result of specifying the positions of the four corners of the projection object on the coordinate system set in the imaging means And the aspect ratio of the projected object and the aspect ratio of the projected image, a virtual projection frame of the maximum size that can be set on the projected object is set. Given the aspect ratio of the image, a virtual projection frame with the maximum size that can be set on the projection object is automatically set, and the image can be projected with the maximum size set in this way. become.
[0036] また本発明に係る画像投射方法及びプロジェクタによれば上記の画像投射方法及 びプロジェクタの発明において、被投射体の四隅の位置関係が公知の演算手法で ある二次元の射影変換を用いて変換されることにより仮想投射枠が容易に設定され る。 [0036] Further, according to the image projection method and projector according to the present invention, in the above-described image projection method and projector invention, the positional relationship of the four corners of the projection object is determined by a known calculation method. A virtual projection frame is easily set by being transformed using a certain two-dimensional projective transformation.
[0037] 更に本発明に係る画像投射方法及びプロジェクタによれば上記の画像投射方法 及びプロジェクタの発明において、撮像装置が撮像した画像上に設定された座標系 上で求められた被投射体の上下両辺の長さ及び左右両辺の長さに基づいて被投射 体のアスペクト比が自動的に判断されるので、投射される画像のアスペクト比さえ与 えれば自動的に仮想投射枠が設定されて画像の投射が可能になる。  Furthermore, according to the image projecting method and projector according to the present invention, in the above image projecting method and projector invention, the upper and lower sides of the projection object obtained on the coordinate system set on the image captured by the imaging device Since the aspect ratio of the projection object is automatically determined based on the length of both sides and the length of both sides, the virtual projection frame is automatically set as long as the aspect ratio of the projected image is given. Projection becomes possible.
[0038] また更に本発明に係る画像投射方法及びプロジェクタによれば上記の画像投射方 法及びプロジェクタの発明において、被投射体のアスペクト比が 16: 9である場合は 被投射体の上下方向長さと投射される画像の上下方向長さとを一致させるようにす ればよぐそれ以外の場合は被投射体の左右方向長さと投射される画像の左右方向 長さとを一致させればよいので、被投射体のアスペクト比が 16 : 9であるか否かのみ の判断で以降の処理が行なえる。  [0038] Further, according to the image projection method and projector according to the present invention, in the above image projection method and projector invention, when the aspect ratio of the projection object is 16: 9, the vertical length of the projection object is And the vertical length of the projected image should match, otherwise the horizontal length of the projection object and the horizontal length of the projected image should match. Subsequent processing can be performed only by determining whether or not the aspect ratio of the projection object is 16: 9.
[0039] また本発明に係るプロジェクタによれば、撮像装置が撮像した画像上での被投射 体の四隅と投射画像のアスペクト比と同一アスペクト比の矩形のテストパターンの四 隅との相対的位置関係を調べることにより、投射画像と同一のアスペクト比で画像を 投射するための仮想投射枠の四隅を決定する処理を自動的にプロジェクタが行なう ので、画像が左右方向又は上下方向に引き伸ばされた不自然な状態で投射される ことがなくなる。  [0039] Further, according to the projector of the present invention, the relative positions of the four corners of the projection target on the image captured by the imaging device and the four corners of the rectangular test pattern having the same aspect ratio as the aspect ratio of the projected image. By examining the relationship, the projector automatically performs the process of determining the four corners of the virtual projection frame for projecting the image with the same aspect ratio as the projected image, so the image is stretched horizontally or vertically. It will not be projected in a natural state.
[0040] また本発明に係るコンピュータプログラムによれば、上述のようなプロジェクタを制御 すること、又はプロジェクタを外部から汎用コンピュータで制御することにより上述のよ うな画像投射方法を実現することが可能になる。  [0040] Further, according to the computer program of the present invention, it is possible to realize the above-described image projection method by controlling the projector as described above or by controlling the projector from the outside with a general-purpose computer. Become.
図面の簡単な説明  Brief Description of Drawings
[0041] [図 1]本発明に係るプロジェクタの一実施の形態の内部構成例を示すブロック図であ る。  FIG. 1 is a block diagram showing an example of the internal configuration of an embodiment of a projector according to the present invention.
[図 2]本発明に係るプロジェクタの投射デバイス部が有する空間光変調デバイス (パ ネル)の画素構成を示す模式図である。  FIG. 2 is a schematic diagram showing a pixel configuration of a spatial light modulation device (panel) included in the projection device unit of the projector according to the present invention.
[図 3]本発明に係るプロジェクタにおいて焦点調整用、ズーム調整及び台形歪み補 正(キーストン補正)用に兼用して用いられるテストパターン画像の模式図である。 [Fig. 3] Focus adjustment, zoom adjustment and trapezoidal distortion correction in the projector according to the present invention. It is a schematic diagram of the test pattern image used also for positive (keystone correction).
[図 4]本発明に係るプロジェクタのリモートコントロール装置の外観を示す模式図であ る。  FIG. 4 is a schematic diagram showing the appearance of a remote control device for a projector according to the present invention.
[図 5]本発明に係るプロジェクタが通常のオート調整に際して行なう処理手順を示す フローチャートである。  FIG. 5 is a flowchart showing a processing procedure performed by the projector according to the present invention during normal auto adjustment.
[図 6]本発明に係るプロジェクタにより、投射される画像のアスペクト比を維持してスク リーン上へ画像を投射した状態をいくつかのアスペクト比の組み合わせを例として示 した模式図である。  FIG. 6 is a schematic diagram showing a state in which an image is projected onto a screen while maintaining the aspect ratio of the image projected by the projector according to the present invention, taking several combinations of aspect ratios as examples.
[図 7]本発明に係るプロジェクタによりスクリーンへテストパターン画像を投射した状態 を示す模式図である。  FIG. 7 is a schematic diagram showing a state in which a test pattern image is projected onto a screen by the projector according to the present invention.
[図 8]本発明に係るプロジェクタによりスクリーンへテストパターン画像を投射した状態 をカメラ部が撮像した場合の画像を示す模式図である。  FIG. 8 is a schematic diagram showing an image when a camera unit captures a state in which a test pattern image is projected onto a screen by a projector according to the present invention.
[図 9]本発明に係るプロジェクタにおいてスクリーンのアスペクト比を自動的に判断す る原理を説明するための模式図である。  FIG. 9 is a schematic diagram for explaining the principle of automatically determining the screen aspect ratio in the projector according to the present invention.
[図 10]本発明に係るプロジェクタにおいてパネル座標系上に仮想スクリーンを設定し た状態を示す模式図である。  FIG. 10 is a schematic diagram showing a state in which a virtual screen is set on the panel coordinate system in the projector according to the present invention.
[図 11]本発明に係るプロジェクタにおいてパネル座標系上に仮想スクリーンを設定し た状態を示す模式図である。  FIG. 11 is a schematic diagram showing a state in which a virtual screen is set on the panel coordinate system in the projector according to the present invention.
[図 12]本発明に係るプロジェクタによるオート調整の際のシステムコントロール部によ る処理手順を示すフローチャートである。  FIG. 12 is a flowchart showing a processing procedure by the system control unit during auto adjustment by the projector according to the present invention.
符号の説明 Explanation of symbols
1 プロジェクタ  1 Projector
2 投射レンズ  2 Projection lens
3 カメラき  3 Camera
8 投射デバイス部  8 Projection device section
8a 空間光変調デバイス (パネル)  8a Spatial light modulation device (panel)
10 システムコントロール部  10 System control section
10p プログラム 25 テストパターン画像 10p program 25 Test pattern image
25b (テストパターン画像の)太枠部  25b Thick frame (in test pattern image)
S スクリーン  S screen
Vs 仮想スクリーン  Vs virtual screen
PJ 投射画像  PJ projection image
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 以下、本発明をその最良の実施の形態を示す図面を参照して説明する。図 1は本 発明に係るプロジェクタの一実施の形態の内部構成例を示すブロック図である。なお 、以下の説明は本発明に係る画像投射方法を本発明に係るプロジェクタで実施する 場合の例である力 本発明の画像投射方法はプロジェクタとして構成された装置の みならず、プロジェクタとしての機能を併せ持つ装置、又は画像を投射する機能のみ を有するプロジェクタにたとえばパーソナルコンピュータを接続して制御するような場 合にも適用可能である。 Hereinafter, the present invention will be described with reference to the drawings showing the best mode for carrying out the invention. FIG. 1 is a block diagram showing an internal configuration example of an embodiment of a projector according to the present invention. The following explanation is an example when the image projection method according to the present invention is implemented by the projector according to the present invention. The image projection method according to the present invention functions not only as a device configured as a projector but also as a projector. For example, the present invention can also be applied to a case where a personal computer is connected to and controlled by a device having both of the above and a projector having only a function of projecting an image.
[0044] 本実施の形態のプロジェクタ 1は、投射準備を自動的に行なえるオート調整機能を 有している。オート調整機能とは具体的には、投射準備時に投射レンズ 2から被投射 体であるスクリーン Sへテストパターン画像を投射し、スクリーン Sに投射されたテスト パターン画像の状態をカメラ部 3で撮像し、その結果として得られるスクリーン Sの四 隅の位置及びテストパターン画像の四隅の位置に基づいて、投射される画像の寸法 、位置、台形歪み (キーストン)補正等の投射準備を行なう機能である。なお、オート 調整機能には他に色補正、焦点調整等もあるが、本発明には直接の関係が無いの でそれらに関する説明は省略する。 The projector 1 of the present embodiment has an auto adjustment function that can automatically prepare for projection. Specifically, the auto adjustment function projects a test pattern image from the projection lens 2 onto the projection target screen S during projection preparation, and the camera unit 3 captures the state of the test pattern image projected onto the screen S. This is a function for performing projection preparation such as the size, position, and keystone distortion (keystone) correction of the projected image based on the four corner positions of the screen S obtained as a result and the four corner positions of the test pattern image. The auto adjustment function includes color correction, focus adjustment, and the like. However, since there is no direct relationship with the present invention, description thereof will be omitted.
[0045] プロジェクタ 1は、外部から入力される投射用の画像に対する処理を主に行なう部 分として外部接続部 4及び画像変換部 5を備えている。またプロジェクタ 1は、主に投 射に関与する処理を行なう部分として、色制御部 6、テストパターン画像切替部 7、投 射デバイス部 8、投射レンズ駆動部 9、及び投射レンズ 2を備えている。更にプロジェ クタ 1は、、主にオート調整機能に関与する処理を行なう部分としてカメラ部 3及び検 出部 11を備えている。更にまた、プロジェクタ 1は、ユーザによる操作を受け付ける手 段として操作部 12と、リモートコントローラ(以下、リモコンと称す) 20のリモコン受光部 13とを備えてレヽる。なお、プロジェクタ 1の全体的な制御はシステムコントロール部 10 が行なう。 The projector 1 includes an external connection unit 4 and an image conversion unit 5 as a unit that mainly performs processing on a projection image input from the outside. In addition, the projector 1 includes a color control unit 6, a test pattern image switching unit 7, a projection device unit 8, a projection lens driving unit 9, and a projection lens 2 as parts that mainly perform processes related to projection. . Further, the projector 1 includes a camera unit 3 and a detection unit 11 as a part for performing processing mainly related to the auto adjustment function. Furthermore, the projector 1 receives a user operation. As a stage, an operation unit 12 and a remote control light receiving unit 13 of a remote controller (hereinafter referred to as a remote controller) 20 are provided. The overall control of the projector 1 is performed by the system control unit 10.
[0046] 外部接続部 4は、投射用の画像を出力する外部機器と接続されており、外部機器 から出力された矩形状の画像を入力して画像変換部 5へ伝送する。画像変換部 5は システムコントロール部 10の制御に基づいて AZD変換等の所要の変換処理を行な レ、、変換処理を施した画像を投射デバイス部 8へ伝送する。  The external connection unit 4 is connected to an external device that outputs an image for projection. The external connection unit 4 inputs a rectangular image output from the external device and transmits it to the image conversion unit 5. Based on the control of the system control unit 10, the image conversion unit 5 performs necessary conversion processing such as AZD conversion and transmits the converted image to the projection device unit 8.
[0047] 色制御部 6は投射する画像の色を調整する処理を行なう。具体的には、色制御部 6 はシステムコントロール部 10の制御に基づいて R (赤)、 G (緑)、 B (青)の各色のバラ ンスを調整することにより、投射される画像の色補正を行なう。また、テストパターン画 像切替部 7はオート調整機能に必要な種々のテストパターンをシステムコントロール 部 10の制御に基づいて生成し、テストパターン画像として投射デバイス部 8へ伝送す る。  [0047] The color control unit 6 performs a process of adjusting the color of the projected image. Specifically, the color control unit 6 adjusts the balance of each color of R (red), G (green), and B (blue) based on the control of the system control unit 10 to thereby adjust the color of the projected image. Make corrections. The test pattern image switching unit 7 generates various test patterns necessary for the auto adjustment function based on the control of the system control unit 10 and transmits the test patterns to the projection device unit 8 as test pattern images.
[0048] 投射デバイス部 8は、投射画像、即ち投射されるべき画像の情報 (デジタル画像デ ータ)を光変調する空間光変調デバイス 8aを内蔵してレ、る。そして投射デバイス部 8 は、画像変換部 5、テストパターン画像切替部 7、及び後述するシステムコントロール 部 10から伝送される各種画像のデジタル画像データを空間光変調デバイス 8aで光 変調した変調光を生成する。このようにして投射デバイス部 8の空間光変調デバイス 8aが生成した変調光は投射レンズ 2を通じて外部のスクリーン Sへ投射される。この 結果、スクリーン S上には投射されるべき画像が映し出される。  [0048] The projection device unit 8 incorporates a spatial light modulation device 8a that optically modulates a projection image, that is, information (digital image data) of an image to be projected. The projection device unit 8 generates modulated light obtained by optically modulating digital image data of various images transmitted from the image conversion unit 5, the test pattern image switching unit 7, and the system control unit 10 described later by the spatial light modulation device 8a. To do. The modulated light generated by the spatial light modulation device 8a of the projection device unit 8 in this way is projected onto the external screen S through the projection lens 2. As a result, an image to be projected is displayed on the screen S.
[0049] なお空間光変調デバイス 8aとしては、液晶パネルと DMD (Digital Micromirrow Device)とのいずれかが一般的に用いられる。空間光変調デバイス 8aとして液晶パ ネルが使用される場合は、投射されるべき画像のデジタルデータのドット単位に対応 付けられた各画素が画像の各ドットを表示した状態で光源からの光線を透過させるこ とにより、全体として画像を表示する変調光が投射され、最終的にスクリーン S上に画 像が映し出される。また空間光変調デバイス 8aとして DMDが使用される場合は、投 射されるべき画像のデジタルデータのドット単位に対応付けられた微小ミラー( Micromirrow)の反射角を切り換えつつ光源からの光線を反射させることにより、投射 されるべき画像が反射光 (変調光)全体で表された状態で投射され、最終的にスクリ ーン S上に画像が映し出される。 [0049] As the spatial light modulation device 8a, either a liquid crystal panel or a DMD (Digital Micromirrow Device) is generally used. When a liquid crystal panel is used as the spatial light modulation device 8a, each pixel associated with the dot unit of the digital data of the image to be projected transmits the light from the light source while displaying each dot of the image. As a result, modulated light for displaying an image as a whole is projected, and finally an image is displayed on the screen S. When DMD is used as the spatial light modulation device 8a, the light from the light source is reflected while switching the reflection angle of the micromirror (Micromirrow) associated with the dot unit of the digital data of the image to be projected. By projection The image to be formed is projected in a state represented by the entire reflected light (modulated light), and finally the image is displayed on the screen S.
[0050] なお、本実施の形態では空間光変調デバイス 8aとしては液晶パネルを使用する構 成を採っており、以下の説明においても、投射されるべき画像を空間光変調デバイス 8aとしての液晶パネルに画像として表示し、その表示された画像に光源からの光線 を透過させて投射レンズ 2から投射することによりスクリーン S上に画像を投射する。 但し、上述したように、 DMDを使用する場合もデジタル画像データの画素に対応し た微小ミラーの反射角を切り換えることにより反射光(変調光)全体として画像を表す ようになつている。従って、液晶パネル上において個々の画素をデジタル画像データ のドットに対応させて指定することが可能であるのと同様に、 DMDにおいても個々の 微小ミラーをデジタル画像データのドットに対応させて指定することが可能である。  [0050] In the present embodiment, a configuration using a liquid crystal panel as the spatial light modulation device 8a is adopted, and in the following description, an image to be projected is a liquid crystal panel as the spatial light modulation device 8a. The image is projected on the screen S by transmitting the light from the light source to the displayed image and projecting it from the projection lens 2. However, as described above, even when DMD is used, an image is displayed as reflected light (modulated light) as a whole by switching the reflection angle of a micro mirror corresponding to a pixel of digital image data. Therefore, in the same way that individual pixels can be specified in correspondence with the dots of digital image data on the liquid crystal panel, individual micromirrors are specified in correspondence with the dots of digital image data in DMD. It is possible.
[0051] 図 2は、上述した投射デバイス部 8が有する液晶パネル製の空間光変調デバイス( 以下、単にパネルという) 8aの画素構成を示す模式図である。本実施の形態では一 例として、パネル 8aは水平方向に 1024画素、垂直方向に 768画素、即ち XGA規格 に順じた矩形状の表示範囲を備えており、左上隅の座標値 (0, 0)の画素を原点とし て水平方向を X軸、垂直方向を y軸とするパネル座標系が設定されている。従って、 水平方向及び垂直方向の各画素に対応したパネル座標系の座標値がシステムコン トロール部 10から投射デバイス部 8へ送られると、このパネル座標系の座標値に基づ いて投射デバイス部 8はパネル 8aの表示範囲に表示する画像の位置及び寸法をパ ネル座標系上で特定する。例えば、システムコントロール部 10から水平方向の座標 値として「127」、垂直方向の座標値として「127」がそれぞれ指定されると、投射デバ イス部 8はパネル 8aの左上隅の画素を原点として水平方向及び垂直方向にそれぞ れ 128番目である画素の位置にドットを表示する。  FIG. 2 is a schematic diagram showing a pixel configuration of a spatial light modulation device (hereinafter simply referred to as a panel) 8a made of a liquid crystal panel included in the projection device unit 8 described above. As an example in the present embodiment, the panel 8a has a horizontal display range of 1024 pixels in the horizontal direction and 768 pixels in the vertical direction, that is, a rectangular display range conforming to the XGA standard, and the coordinate value (0, 0) of the upper left corner. The panel coordinate system is set with the pixel of) as the origin and the horizontal direction as the X axis and the vertical direction as the y axis. Therefore, when the coordinate values of the panel coordinate system corresponding to each pixel in the horizontal direction and the vertical direction are sent from the system control unit 10 to the projection device unit 8, the projection device unit 8 is based on the coordinate values of the panel coordinate system. Specifies the position and dimensions of the image to be displayed in the display range of panel 8a on the panel coordinate system. For example, if “127” is specified as the horizontal coordinate value and “127” is specified as the vertical coordinate value from the system control unit 10, the projection device unit 8 uses the pixel in the upper left corner of the panel 8a as the origin to A dot is displayed at the position of the 128th pixel in each direction and vertical direction.
[0052] なお、空間光変調デバイス 8aとして DMDを使用する場合にも、上述の液晶パネル を使用する場合と同様のパネル座標系を設定することが可能である。但し、前述した ように本実施の形態では空間光変調デバイス 8aとしては液晶パネルを使用した構成 を採っているので、以下の説明においても液晶パネルを空間光変調デバイス 8aとし て使用する構成について説明するが、パネル座標系に関する考え方は空間光変調 デバイス 8aとして液晶パネルを使用する場合も、 DMDを使用する場合も基本的に は同様である。 [0052] It should be noted that even when a DMD is used as the spatial light modulation device 8a, it is possible to set the same panel coordinate system as when the above-described liquid crystal panel is used. However, as described above, in the present embodiment, since the configuration using the liquid crystal panel is employed as the spatial light modulation device 8a, the configuration in which the liquid crystal panel is used as the spatial light modulation device 8a is also described in the following description. However, the idea about the panel coordinate system is spatial light modulation. The same is true when using a liquid crystal panel as the device 8a and when using a DMD.
[0053] 投射レンズ 2は図示はしないが、パネル 8aを透過した光線(変調光)を拡大してスク リーン Sに画像として投射するために必要な本来のレンズの他に、ズーム(画像寸法) 調整用レンズ及び焦点調整用のレンズ等の複数のレンズで構成されてレ、る。投射レ ンズ駆動部 9は、投射レンズ 2のズーム調整用レンズ及び焦点調整用レンズの位置を 変更させるァクチユエータを有してレ、る。そして投射レンズ駆動部 9はシステムコント口 ール部 10からの制御に従ってァクチユエータを駆動することによりズーム調整及び焦 点調整を行なう。  [0053] Although not shown, the projection lens 2 is zoomed (image size) in addition to the original lens necessary for enlarging the light beam (modulated light) transmitted through the panel 8a and projecting it on the screen S as an image. It is composed of a plurality of lenses such as an adjustment lens and a focus adjustment lens. The projection lens drive unit 9 has an actuator for changing the positions of the zoom adjustment lens and the focus adjustment lens of the projection lens 2. Then, the projection lens drive unit 9 performs zoom adjustment and focus adjustment by driving the actuator according to the control from the system control unit 10.
[0054] また、図 1に示すカメラ部 3は、投射準備のオート調整時にスクリーン Sへ投射され た各種テストパターン画像を撮像し、撮像した画像を検出部 11へ伝送する。なお、プ ロジェクタ 1から投射されるテストパターン画像としては、前述した色補正用のテストパ ターン画像、図示しない焦点調整用テストパターン以外に、図 3の模式図に示すよう なズーム調整及び台形歪み補正(キーストン補正)用に兼用して用いられるテストパ ターン画像 25が用意されている。このテストパターン画像 25は、投射される画像の外 郭に対応して周囲に設けられた太枠のテストパターン(以下、太枠部 25bという)を有 するが、後述するように種々のアスペクト比のものが用意されている。  Further, the camera unit 3 shown in FIG. 1 captures various test pattern images projected onto the screen S during the automatic adjustment for projection preparation, and transmits the captured images to the detection unit 11. Note that the test pattern image projected from the projector 1 includes zoom adjustment and trapezoidal distortion correction as shown in the schematic diagram of FIG. 3, in addition to the color correction test pattern image and the focus adjustment test pattern (not shown). There is a test pattern image 25 that is also used for (keystone correction). The test pattern image 25 has a thick frame test pattern (hereinafter referred to as a thick frame portion 25b) corresponding to the outline of the projected image, and has various aspect ratios as described later. Are available.
[0055] なお、以下の説明では、色補正用のテストパターン画像及び焦点調整用テストパタ ーン画像を使用する色補正及び焦点調整の処理に関しては本発明には基本的には 関係がないので、これらの処理についての説明は行なわない。  In the following description, the present invention is basically irrelevant to the color correction and focus adjustment processing using the test pattern image for color correction and the test pattern image for focus adjustment. These processes will not be described.
[0056] 検出部 11は、カメラ部 3から送られてくる撮像画像を解析する。この画像解析はカメ ラ座標系上で行なわれる。カメラ座標系とはカメラ部 3に設定されている座標系である 。より具体的には、カメラ座標系は、カメラ部 3の撮像視野に設定されている座標系で あり、前述した空間光変調デバイス 8aに設定されているパネル座標系と同様に、カメ ラ部 3の撮像視野の左上隅を原点として水平方向を X軸、垂直方向を y軸とする座標 系である。但し、実際にはカメラ座標系はカメラ部 3の撮像素子のパネル (CCDパネ ノレ)の左上隅を原点として設定されており、このことはカメラ部 3が撮像した画像上に カメラ座標が設定されているとみなすことができる。 [0057] 従って検出部 11は、カメラ部 3が撮像した画像に基づいて従来公知の手法により、 カメラ座標系上でのスクリーン Sの四隅の位置の座標値、図 3のテストパターン画像 2 5の太枠部 25bのその時点のプロジェクタ 1の状況に応じて投射された画像の四隅の 位置等の座標値を検出する。またこれらの座標値が検出されれば、その結果に基づ いてスクリーン S及び投射画像 PJ (テストパターン画像 25の太枠部 25b)の台形歪み の状態等もそれぞれ演算により求めることが可能であることはいうまでもなレ、。検出部 11は、以上のような検出結果をシステムコントロール部 10へ伝送する。 The detection unit 11 analyzes the captured image sent from the camera unit 3. This image analysis is performed on the camera coordinate system. The camera coordinate system is the coordinate system set for camera unit 3. More specifically, the camera coordinate system is a coordinate system set in the imaging field of view of the camera unit 3, and the camera unit 3 is the same as the panel coordinate system set in the spatial light modulation device 8a described above. This is a coordinate system with the upper left corner of the imaging field of view as the origin and the horizontal direction as the X axis and the vertical direction as the y axis. However, the camera coordinate system is actually set with the upper left corner of the image sensor panel (CCD panel) of the camera unit 3 as the origin, which means that the camera coordinates are set on the image captured by the camera unit 3. Can be considered. Therefore, the detection unit 11 uses the conventionally known method based on the image captured by the camera unit 3 to obtain the coordinate values of the four corner positions of the screen S on the camera coordinate system, and the test pattern image 25 in FIG. Coordinate values such as the positions of the four corners of the projected image are detected according to the status of the projector 1 at that time of the thick frame portion 25b. If these coordinate values are detected, the state of trapezoidal distortion of the screen S and the projected image PJ (the thick frame portion 25b of the test pattern image 25) can be obtained by calculation based on the result. Not to mention that. The detection unit 11 transmits the detection result as described above to the system control unit 10.
[0058] プロジェクタ 1に設けられた操作部 12は複数のボタン及びスィッチ等を有しており、 これらのボタン及びスィッチ等をユーザが操作した場合に、操作されたボタン及びス イッチ等に応じた操作指示を受け付けてシステムコントロール部 10へ伝送する。また 、リモコン受光部 13はリモコン 20からの操作信号を受け付けてシステムコントロール 部 10へ伝送する。図 4はリモコン 20の外観を示す模式図である。リモコン 20は図 4に 示すように、複数のボタンに加えて上下左右の選択キー 20a— 20d及び決定キー 20 eを有し、プロジェクタ 1から投射される OSD (On Screen Display)のメニュー画像に表 示される複数の項目の中から所要の項目を選択キー 20a— 20d及び決定キー 20e の操作でユーザが選択できるようにした GUIを採用してレ、る。  [0058] The operation unit 12 provided in the projector 1 has a plurality of buttons, switches, and the like. When the user operates these buttons, switches, and the like, the operation unit 12 corresponds to the operated buttons, switches, and the like. Accepts an operation instruction and transmits it to the system control unit 10. Further, the remote control light receiving unit 13 receives an operation signal from the remote control 20 and transmits it to the system control unit 10. FIG. 4 is a schematic diagram showing the external appearance of the remote controller 20. As shown in FIG. 4, the remote control 20 has up / down / left / right selection keys 20a-20d and a decision key 20e in addition to a plurality of buttons, and is displayed on an OSD (On Screen Display) menu image projected from the projector 1. A GUI that allows a user to select a required item from among the displayed items by operating the selection keys 20a to 20d and the decision key 20e is used.
[0059] なお、操作部 12にも、リモコン 20と同様な上下左右の選択キー及び決定キーが設 けられている。従って、操作部 12とリモコン 20とで同一の操作が行なわれた場合に は、システムコントロール部 10へ同一の指示が与えられる。  It should be noted that the operation unit 12 is also provided with up / down / left / right selection keys and determination keys similar to those on the remote controller 20. Therefore, when the same operation is performed on the operation unit 12 and the remote controller 20, the same instruction is given to the system control unit 10.
[0060] 上述した各部の制御を行なうシステムコントロール部 10は ROMlOa及び RAM10 bを有している。 ROMlOaにはシステムコントロール部 10が行なう制御内容を規定し たプログラム 10p (本発明に係るコンピュータプログラム)と、図 3に示すテストパターン 画像 25を含む種々のテストパターン画像及び各種メニュー画像を表示するためのデ ータが予め記憶されている。 RAMlObはシステムコントロール部 10による制御に際 して発生する種々のデータ等を一時的に記憶する。  [0060] The system control unit 10 that controls each unit described above includes a ROM10a and a RAM 10b. ROMlOa is used to display a program 10p (computer program according to the present invention) that defines the contents of control performed by the system control unit 10, and various test pattern images and various menu images including the test pattern image 25 shown in FIG. This data is stored in advance. RAMlOb temporarily stores various data generated during control by the system control unit 10.
[0061] 以上のような構成の本実施の形態のプロジェクタ 1のシステムコントロール部 10は、 通常のオート調整に際しては、図 5のフローチャートに示すような処理により投射画像 をスクリーン Sに一致させる調整を行なう。なお、以下の処理は ROMlOaに格納され ているプログラム 10pに従ってシステムコントロール部 10が実行する。 [0061] The system control unit 10 of the projector 1 of the present embodiment configured as described above performs an adjustment to match the projected image with the screen S by the process shown in the flowchart of FIG. Do. The following processing is stored in ROMlOa. The system control unit 10 executes the program according to the program 10p.
[0062] まずシステムコントロール部 10はたとえば全白の画像を投射させる(ステップ Sl)。 First, the system control unit 10 projects, for example, an all-white image (step Sl).
この状態をカメラ部 3で撮像した画像を検出部 11が解析することにより、スクリーン S の四隅のカメラ座標系での位置を検出する(ステップ S2)。これは、スクリーン Sの反 射率とその周囲(たとえば壁面等)の反射率との相違から容易に可能である。  The detection unit 11 analyzes the image captured by the camera unit 3 in this state, thereby detecting the positions of the four corners of the screen S in the camera coordinate system (step S2). This is easily possible due to the difference between the reflectivity of the screen S and the reflectivity around it (for example, a wall surface).
[0063] 次にシステムコントロール部 10は図 3に示す投射画像枠検出用のテストパターンで ある太枠部 25bを含む投射画像枠検出用のテストパターン画像 25を投射する(ステ ップ S3)。この状態をカメラ部 3で撮像した画像を検出部 11が解析することにより、投 射画像枠検出用のテストパターンである太枠部 25bの四隅のカメラ座標系での位置 を検出する(ステップ S4)。これは、投射画像枠検出用のテストパターンである太枠 部 25bの部分の反射率とその周囲の反射率との相違力も容易に可能である。次にシ ステムコントロール部 10はスクリーン S及び投射画像枠検出用のテストパターンであ る太枠部 25bそれぞれの四隅のカメラ座標系での位置関係に基づいてズーム調整 を行なう(ステップ S5)。このズーム調整はたとえば、投射画像枠検出用のテストパタ ーンである太枠部 25bがスクリーン Sの端点に達するまでズーミングにより投射画像 枠検出用のテストパターンである太枠部 25bを拡大又は縮小することにより行なわれ る。 Next, the system control unit 10 projects a test pattern image 25 for detecting a projected image frame including a thick frame portion 25b that is a test pattern for detecting a projected image frame shown in FIG. 3 (step S3). The detection unit 11 analyzes the image captured by the camera unit 3 in this state, thereby detecting the positions in the camera coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting the projected image frame (step S4). ). This is also possible easily by the difference between the reflectance of the thick frame portion 25b, which is a test pattern for detecting a projected image frame, and the surrounding reflectance. Next, the system control unit 10 performs zoom adjustment based on the positional relationship in the camera coordinate system of each of the four corners of the thick frame 25b, which is a test pattern for detecting the screen S and the projected image frame (step S5). This zoom adjustment is performed, for example, by enlarging or reducing the thick frame portion 25b, which is a test pattern for detecting a projected image frame, by zooming until the thick frame portion 25b, which is a test pattern for detecting a projected image frame, reaches the end point of the screen S. Is done.
[0064] このズーム調整が行なわれた後に再度カメラ部 3により撮像した画像から投射画像 枠検出用のテストパターンである太枠部 25bの四隅のカメラ座標系での位置を検出 部 11が解析して再検出し(ステップ S6)、ステップ S2で検出したスクリーン Sの四隅 のカメラ座標系での位置とステップ S6で検出したズーム補正後の太枠部 25bの四隅 のカメラ座標系での位置との関係から、ズーム補正後の投射画像枠検出用のテスト パターンである太枠部 25bの四隅のパネル座標系での位置、即ち座標値を決定する (ステップ S7)。この結果、パネル 8aには、投射されるべき画像がスクリーン Sへ投射 された形状とは逆に変形されて表示される。  [0064] After the zoom adjustment, the detection unit 11 analyzes the positions of the four corners of the thick frame 25b, which is a test pattern for detecting a projected image frame, from the image captured by the camera unit 3 again. (Step S6), the position of the four corners of the screen S detected in step S2 in the camera coordinate system and the position of the four corners of the thick frame 25b after zoom correction detected in step S6. From the relationship, the positions in the panel coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting a projected image frame after zoom correction, that is, coordinate values are determined (step S7). As a result, the image to be projected is displayed on the panel 8a by being deformed in reverse to the shape projected on the screen S.
[0065] 上述した一連の処理をシステムコントロール部 10が順次実行することにより、投射 デバイス部 8がシステムコントロール部 10から与えられた座標値に従ってパネル 8a上 に画像が表示され、これが投射された場合には台形歪みが補正された矩形の画像と してスクリーン Sの寸法一杯に投射される。以上により、プロジェクタ 1の投射準備が 自動的に完了する。 When the system control unit 10 sequentially executes the above-described series of processes, the projection device unit 8 displays an image on the panel 8a according to the coordinate value given from the system control unit 10, and this is projected Includes a rectangular image with corrected keystone distortion and And projected to the full size of the screen S. Thus, the projection preparation for the projector 1 is automatically completed.
[0066] 以上のようなシステムコントロール部 10による投射準備の処理は従来一般的なもの であり、スクリーン Sのアスペクト比及び投射される画像 (投射画像)のアスペクト比に は拘わらず、スクリーン Sの四隅に画像の四隅が一致するように、画像を投射する際 の大きさの調整及び台形歪みの補正が行なわれる。しかし、スクリーン Sのアスペクト 比と投射される画像のアスペクト比とがー致していない場合には、スクリーン S上へ投 射された画像は縦方向又は横方向のいずれか一方のみに引き伸ばされた不自然な 状態になる。  [0066] The projection preparation process by the system control unit 10 as described above is a conventional one, and the screen S does not depend on the aspect ratio of the screen S and the aspect ratio of the projected image (projected image). The size of the projected image and the correction of trapezoidal distortion are adjusted so that the four corners of the image coincide with the four corners. However, if the aspect ratio of the screen S does not match the aspect ratio of the projected image, the image projected on the screen S is not stretched in either the vertical or horizontal direction. It becomes natural.
[0067] そこで本発明に係るプロジェクタ 1では、上述のような従来一般的な投射準備の処 理の他に、スクリーン S及び投射される画像双方のアスペクト比を考慮して、より具体 的には投射される画像のアスペクト比を維持した状態でスクリーン S上に最大の大き さで画像を投射することも可能に構成されている。  [0067] Therefore, in the projector 1 according to the present invention, in addition to the conventional general projection preparation process as described above, the aspect ratio of both the screen S and the projected image is considered, and more specifically. It is also possible to project an image with the maximum size on the screen S while maintaining the aspect ratio of the projected image.
[0068] 図 6は本発明に係るプロジェクタ 1により、投射される画像(以下、投射画像 PJという )のアスペクト比を維持してスクリーン S上へ画像を投射した状態をいくつかのァスぺ タト比の組み合わせを例として示した模式図である。図 6 (a)はスクリーン Sのァスぺク ト比が 1 : 1、投射画像 PJのアスペクト比が 4 : 3の場合を示している。このような場合に は、投射画像 PJはその左右方向の長さがスクリーン Sの左右方向の長さに一致する ように投射され、スクリーン Sの上下両端部にスクリーン Sの上下方向の長さの 1/8ず つの幅で画像が投射されない部分が生じる。また、図 6 (b)はスクリーン Sのアスペクト 比が 1 : 1、投射画像 PJのアスペクト比が 16 : 9の場合を示している。このような場合に は、投射画像 PJはその左右方向の長さがスクリーン Sの左右方向の長さに一致する ように投射され、スクリーン Sの上下両端部にスクリーン Sの上下方向の長さの 7/32 ずつの幅で画像が投射されない部分が生じる。更に、図 6 (c)はスクリーン Sのァスぺ タト比が 4 : 3、投射画像 PJのアスペクト比が 16 : 9の場合を示している。このような場合 には、投射画像 PJはその左右方向の長さがスクリーン Sの左右方向の長さに一致す るように投射され、スクリーン Sの上下両端部にスクリーン Sの上下方向の長さの 3Z2 4ずつの幅で画像が投射されない部分が生じる。また更に、図 6 (d)はスクリーン Sの アスペクト比が 16 : 9、投射画像 PJのアスペクト比が 4 : 3の場合を示している。このよう な場合には、投射画像 PJはその上下方向の長さがスクリーン Sの上下方向の長さに 一致するように投射され、スクリーン Sの左右両端部にスクリーン Sの左右方向の長さ の 2Z16ずつの幅で画像が投射されない部分が生じる。 [0068] FIG. 6 shows a state in which the projector 1 according to the present invention projects an image on the screen S while maintaining the aspect ratio of an image projected (hereinafter referred to as a projected image PJ). It is the schematic diagram which showed the combination of ratio as an example. Fig. 6 (a) shows the case where the aspect ratio of the screen S is 1: 1 and the aspect ratio of the projected image PJ is 4: 3. In such a case, the projected image PJ is projected so that the length in the left-right direction matches the length in the left-right direction of the screen S, and the length of the screen S in the vertical direction is A part where the image is not projected with 1/8 width. Fig. 6 (b) shows the case where the aspect ratio of the screen S is 1: 1 and the aspect ratio of the projected image PJ is 16: 9. In such a case, the projected image PJ is projected so that the length in the left-right direction matches the length in the left-right direction of the screen S, and the length of the screen S in the vertical direction is There is a part where the image is not projected with the width of 7/32 each. Furthermore, Fig. 6 (c) shows the case where the aspect ratio of the screen S is 4: 3 and the aspect ratio of the projected image PJ is 16: 9. In such a case, the projected image PJ is projected so that the length in the left-right direction matches the length in the left-right direction of the screen S, and the length of the screen S in the up-down direction is applied to the upper and lower ends of the screen S. 3Z2 The part where the image is not projected by 4 width occurs. Furthermore, Fig. 6 (d) shows the screen S. This shows the case where the aspect ratio is 16: 9 and the projected image PJ has an aspect ratio of 4: 3. In such a case, the projected image PJ is projected so that the vertical length of the projected image PJ matches the vertical length of the screen S, and the horizontal length of the screen S is A part where an image is not projected with a width of 2Z16 occurs.
[0069] 図 7及び図 8は本発明に係るプロジェクタ 1によりスクリーン Sへ投射画像枠検出用 のテストパターンである太枠部 25bをテストパターン画像として投射した状態を具体 的に説明するための模式図である。図 7は、スクリーン Sへテストパターン画像 25の太 枠部 25bが投射された状態をスクリーン Sの正面から見た場合の模式図である。スクリ ーン Sに対してプロジェクタ 1が完全には正対して設置されていないために、投射画 像 PJの外郭、この場合はテストパターン画像 25の太枠部 25bが台形歪みが生じた状 態で投射されている。図 8は図 7に示す状態をプロジェクタ 1のカメラ部 3で撮像した 画像、即ちカメラ座標系上で見た状態を示す模式図である。撮像画像 31上には投射 画像 PJの外郭であるテストパターン画像 25の太枠部 25bがほぼ矩形状に撮像され ている力 S、スクリーン Sは台形歪みを生じた状態に撮像されている。  7 and 8 are schematic diagrams for specifically explaining a state in which the thick frame portion 25b, which is a test pattern for detecting a projected image frame, is projected as a test pattern image onto the screen S by the projector 1 according to the present invention. FIG. FIG. 7 is a schematic diagram when the state in which the thick frame portion 25b of the test pattern image 25 is projected onto the screen S is viewed from the front of the screen S. Since the projector 1 is not installed completely opposite to the screen S, the outline of the projection image PJ, in this case, the thick frame portion 25b of the test pattern image 25 has a trapezoidal distortion. Is projected. FIG. 8 is a schematic diagram showing an image captured by the camera unit 3 of the projector 1 in the state shown in FIG. 7, that is, a state seen on the camera coordinate system. On the picked-up image 31, the force S and the screen S are picked up in a state in which the thick frame portion 25b of the test pattern image 25 that is the outline of the projection image PJ is picked up in a substantially rectangular shape.
[0070] ところで、投射画像 PJのアスペクト比は人手で設定するとしても、スクリーン Sのァス ぺクト比は、プロジェクタ 1が一般的な設置状況、たとえば室内に設置されているよう な場合には、カメラ部 3が撮像した画像上でスクリーン Sがそれほどには大きく台形歪 みを生じるような設置状況には通常はならなレ、。たとえば、プロジェクタ 1がいわゆる ホームシアターシステム等と称されるシステムに使用される場合等には、プロジェクタ 1はほぼスクリーン Sに正対した状態で設置されると考えられる。従って、図 8に示すよ うなカメラ部 3が撮像した画像力 スクリーン Sのアスペクト比を自動的に判断すること も可能である。以下、具体的に説明する。  [0070] By the way, even if the aspect ratio of the projected image PJ is manually set, the aspect ratio of the screen S is determined when the projector 1 is installed in a general situation, for example, indoors. In the installation situation where the screen S is so large and trapezoidal distortion occurs on the image captured by the camera unit 3, it is not normal. For example, when the projector 1 is used in a system called a so-called home theater system or the like, the projector 1 is considered to be installed with the screen S almost facing. Accordingly, it is possible to automatically determine the aspect ratio of the image power screen S imaged by the camera unit 3 as shown in FIG. This will be specifically described below.
[0071] 図 9は本発明に係るプロジェクタにおいてスクリーンのアスペクト比を自動的に判断 する原理を説明するための模式図である。図 9に示すように、カメラ部 3の撮像画像 3 Iに基づいて、スクリーン Sの四隅のカメラ座標系での座標値を特定することは従来公 知の手法で可能である。スクリーン Sの四隅の座標値が特定されれば、カメラ座標系 上でのスクリーン Sの上辺の長さを Hl、同下辺の長さを H2、同左辺の長さを VI、同 右辺の長さを V2としてそれぞれ算出することが可能である。従って下記式のように、 上下両辺の長さの合計値(HI + H2)と左右両辺の長さの合計値 (VI +V2)との比 A (以下、仮アスペクト比という)を求めれば、スクリーン Sのアスペクト比を判断するこ とが可能である。 FIG. 9 is a schematic diagram for explaining the principle of automatically determining the screen aspect ratio in the projector according to the present invention. As shown in FIG. 9, it is possible by a conventionally known method to specify the coordinate values in the camera coordinate system at the four corners of the screen S based on the captured image 3 I of the camera unit 3. If the coordinate values of the four corners of the screen S are specified, the length of the upper side of the screen S on the camera coordinate system is Hl, the length of the lower side is H2, the length of the left side is VI, and the length of the right side is the same. Can be calculated as V2. Therefore, The aspect ratio of the screen S can be determined by calculating the ratio A (hereinafter referred to as the temporary aspect ratio) between the total length of the top and bottom sides (HI + H2) and the total length of the left and right sides (VI + V2). It is possible to
A= (H1 + H2) / (VI +V2)  A = (H1 + H2) / (VI + V2)
[0072] スクリーン Sの実際のアスペクト比が 1: 1である場合、上述の仮アスペクト比 Aは 1/ 1(=1.00)を中心とするある程度の範囲、たとえば 0.8-1.2程度の間の値になる と仮定してもよレ、。またたとえばスクリーン Sの実際のアスペクト比が 4 :3である場合、 上述の仮アスペクト比 Aは 4/3 ( = 1.33···)を中心とするある程度の範囲、たとえば 1.2-1.5程度の間の値になると仮定してもよい。更にたとえばスクリーン Sの実際 のアスペクト比が 16 :9である場合、上述の仮アスペクト比 Aは 16/9 ( = 1.77···)を 中心とするある程度の範囲、たとえば 1.5-1.9程度の間の値になると仮定してもよ レ、。 [0072] When the actual aspect ratio of the screen S is 1: 1, the above-mentioned temporary aspect ratio A is within a certain range centered on 1/1 (= 1.00), for example, a value between about 0.8-1.2. You can assume that. For example, when the actual aspect ratio of the screen S is 4: 3, the above-mentioned temporary aspect ratio A is in a certain range centered on 4/3 (= 1.33 ...), for example, between about 1.2-1.5. You may assume that it is a value. Further, for example, when the actual aspect ratio of the screen S is 16: 9, the temporary aspect ratio A described above is a certain range centered on 16/9 (= 1.77 ···), for example, about 1.5-1.9. You can assume that the value.
[0073] 以上のことから、仮アスペクト比 Aに応じてスクリーン Sの実際のアスペクト比を以下 のように判断することとする。なお、スクリーン Sの実際のアスペクト比として上述のよう な 1:1、 4:3、 16 :9以外の値を想定しておくことも勿論可能であり、その場合には仮 アスペクト比 Aによる判断基準を上述同様の考え方に従って適宜に設定すればよい  [0073] From the above, the actual aspect ratio of the screen S is determined as follows according to the temporary aspect ratio A. Of course, it is possible to assume values other than 1: 1, 4: 3, and 16: 9 as described above as the actual aspect ratio of the screen S. The standard should be set appropriately according to the same concept as above.
0.8≤A<1.2 → スクリーン Sのアスペクト比は 1:1 0.8≤A <1.2 → Screen S aspect ratio is 1: 1
1.2≤A<1.5 → スクリーン Sのアスペクト比は 4: 3  1.2≤A <1.5 → Screen S aspect ratio is 4: 3
1.5≤A<1.9 → スクリーン Sのアスペクト比は 16:9  1.5≤A <1.9 → Screen S aspect ratio is 16: 9
[0074] なお、図 6 (d)に示すスクリーン Sのアスペクト比が 16: 9の場合のみがスクリーン Sの 上下方向長さと投射画像 PJの上下方向長さとを一致させるようにしており、それ以外 の図 6(a)、(b)、(c)に示すスクリーン Sのアスペクト比が 1:1、 4 :3の場合はスクリー ン Sの左右方向長さと投射画像 PJの左右方向長さとを一致させるようにしている。従 つて、スクリーン Sのアスペクト比が 16 :9であるか否かの判断を行なうのみにても実用 上は問題は生じない。 [0074] It should be noted that the vertical length of the screen S and the vertical length of the projected image PJ are made to coincide only when the aspect ratio of the screen S shown in Fig. 6 (d) is 16: 9. When the aspect ratio of the screen S shown in Fig. 6 (a), (b), and (c) is 1: 1 and 4: 3, the horizontal length of the screen S matches the horizontal length of the projected image PJ. I try to let them. Therefore, there is no practical problem even if it is determined only whether the aspect ratio of the screen S is 16: 9.
[0075] システムコントロール部 10はカメラ部 3が撮像した画像を検出部 11が解析した結果 のカメラ座標系上のスクリーン Sの四隅の位置に基づいて、以上のようにスクリーン S のアスペクト比を判断する。なお、外部接続部 4から入力される画像のアスペクト比に ついては、外部接続部 4に接続されている外部機器によっては画像のアスペクト比を 通知する信号を出力するものもあるので、そのような外部機器が外部接続部 4に接続 されている場合にはシステムコントロール部 10が画像のアスペクト比を自動的に設定 することが可能である。しかし、 自身が出力する画像のアスペクト比をプロジェクタ 1へ 通知することができない外部機器が外部接続部 4に接続されている場合は、システム コントロール部 10はデフォルトで設定されているアスペクト比を使用するカ または O SDによるメニュー画像でアスペクト比の設定を要求するようにすればよい。 [0075] Based on the positions of the four corners of the screen S on the camera coordinate system as a result of the analysis of the image taken by the camera unit 3 by the detection unit 11, the system control unit 10 performs the screen S as described above. Determine the aspect ratio. As for the aspect ratio of the image input from the external connection unit 4, some external devices connected to the external connection unit 4 may output a signal for notifying the aspect ratio of the image. When the device is connected to the external connection unit 4, the system control unit 10 can automatically set the image aspect ratio. However, if an external device that cannot notify the projector 1 of the aspect ratio of the image that it outputs is connected to the external connection unit 4, the system control unit 10 uses the default aspect ratio. You may request that the aspect ratio setting be requested in the menu image by using F or OSD.
[0076] いずれにしろ、以上のようにしてスクリーン Sのアスペクト比と投射される画像のァス ぺクト比とが設定されると、システムコントロール部 10は設定された画像のアスペクト 比に応じたテストパターン画像 25 (実際にはその太枠部 25bが画像のアスペクト比に 対応している)をテストパターン画像切替部 7に生成させてスクリーン Sへ投射する。こ の状態をカメラ部 3により撮像した結果が図 7及び図 8に示した状態である。但し、スク リーン Sの実際のアスペクト比を判断する上述のような処理は、図 7に示すようなテスト パターン画像 25の太枠部 25bが投射されている状態で行なってもよレ、。この場合の 太枠部 25bはデフォルトのアスペクト比、または外部機器から通知されるアスペクト比 に対応したアスペクト比とすればょレ、。  [0076] In any case, when the aspect ratio of the screen S and the aspect ratio of the projected image are set as described above, the system control unit 10 responds to the set aspect ratio of the image. A test pattern image 25 (actually, the thick frame portion 25b corresponds to the aspect ratio of the image) is generated by the test pattern image switching unit 7 and projected onto the screen S. The result of imaging this state by the camera unit 3 is the state shown in FIGS. However, the above-described processing for determining the actual aspect ratio of the screen S may be performed in a state where the thick frame portion 25b of the test pattern image 25 as shown in FIG. 7 is projected. In this case, the thick frame 25b should be the default aspect ratio or the aspect ratio corresponding to the aspect ratio notified from the external device.
[0077] 図 7に示すような状態をカメラ部 3で撮像した図 8に示すようなカメラ画像 31に基づ いて、システムコントロール部 10はスクリーン S上に投射画像 PJがアスペクト比を維持 したままで投射されるべき仮想スクリーン Vs、具体的には図 6 (a)— (d)に示す模式 図の投射画像 PJに対応する部分を公知の二次元の射影変換を応用することにより設 定し、この仮想スクリーン Vsの寸法に一致するように、台形歪みを補正した投射画像 PJを投射する。なお、図 8にはスクリーン Sのアスペクト比が 4 : 3で、スクリーン S上に 表示される画像 (投射画像 PJ)のアスペクト比(仮想スクリーン Vsのアスペクト比と同 一)が 16: 9である場合を例示してレ、る。  [0077] Based on the camera image 31 as shown in FIG. 8 obtained by capturing the state as shown in FIG. 7 with the camera unit 3, the system control unit 10 maintains the aspect ratio of the projected image PJ on the screen S. The virtual screen Vs to be projected in step S, specifically, the portion corresponding to the projected image PJ in the schematic diagram shown in Fig. 6 (a)-(d) is set by applying a known two-dimensional projective transformation. Then, a projection image PJ in which the trapezoidal distortion is corrected so as to coincide with the dimensions of the virtual screen Vs is projected. In FIG. 8, the aspect ratio of the screen S is 4: 3, and the aspect ratio of the image (projected image PJ) displayed on the screen S (same as the aspect ratio of the virtual screen Vs) is 16: 9. Explain the case.
[0078] 具体的には、カメラ部 3で撮像された画像上のスクリーン Sの四隅の位置(以下、力 メラ座標系上の座標値という)に対して公知の二次元の射影変換を応用することによ り仮想スクリーン Vsの四隅の位置 (カメラ座標系の座標値)を求め、求められた仮想 スクリーン Vsの四隅の位置 (カメラ座標系の座標値)に台形歪みを補正した後の投射 画像 PJの四隅の位置(カメラ座標系の座標値)がー致するように、公知の二次元の射 影変換を行なう。 Specifically, a known two-dimensional projective transformation is applied to the positions of the four corners of the screen S on the image captured by the camera unit 3 (hereinafter referred to as coordinate values on the force coordinate system). Thus, the positions of the four corners of the virtual screen Vs (the coordinate values of the camera coordinate system) are obtained, and the obtained virtual Projection after correcting trapezoidal distortion to the four corner positions of the screen Vs (camera coordinate system coordinate values) The known two-dimensional projections so that the four corner positions of the PJ (camera coordinate system coordinate values) match. Perform shadow conversion.
[0079] まず最初に、仮想スクリーン Vsの四隅の座標値を決定する演算手法について説明 する。レ、うまでもないが、この演算そのものは、カメラ部 3が撮像した画像を検出部 11 が解析した結果に基づいてシステムコントロール部 10により実行される。入力パラメ ータは、カメラ座標系上でのスクリーン Sの四隅の座標値と、投射画像 PJの四隅の座 標値と、プロジェクタ 1の投射デバイス部 8のパネル 8aの X方向解像度及び y方向解 像度であり、それぞれを以下のように定義する(図 8参照)。  First, a calculation method for determining the coordinate values of the four corners of the virtual screen Vs will be described. Needless to say, this calculation itself is executed by the system control unit 10 based on the result of the detection unit 11 analyzing the image captured by the camera unit 3. The input parameters are the coordinate values of the four corners of the screen S on the camera coordinate system, the coordinate values of the four corners of the projected image PJ, and the X direction resolution and y direction solution of the panel 8a of the projection device unit 8 of the projector 1. Each image is defined as follows (see Fig. 8).
[0080] ·カメラ座標系上のスクリーン Sの四隅の座標値: [0080] · Coordinate values of the four corners of screen S on the camera coordinate system:
( sxl, syl)ズ sx2, sy2)八 sx3, sy3),( sx4, sy4)  (sxl, syl) sx2, sy2) 8 sx3, sy3), (sx4, sy4)
•カメラ座標系上の投射画像 PJの四隅の座標値:  • Coordinate values of the four corners of the projected image PJ on the camera coordinate system:
(pjxl, pjyl),(pjx2, pjy2),(pjx3, pjy3),(pjx4, pjy4)  (pjxl, pjyl), (pjx2, pjy2), (pjx3, pjy3), (pjx4, pjy4)
'パネルの x方向解像度: col  'Panel x resolution: col
•パネルの y方向解像度: row  • y resolution of the panel: row
[0081] なお、スクリーン Sのアスペクト比に対応する row, colの値は以下の通りである。 Note that the values of row and col corresponding to the aspect ratio of the screen S are as follows.
スクリーンアスペクト it : row : col  Screen aspect it: row: col
1 : 1 800 800  1: 1 800 800
4 : 3 768 1024  4: 3 768 1024
16 : 9 900 1600  16: 9 900 1600
[0082] ところで、図 2に示すように、投射デバイス部 8のパネル 8aの四隅(PI, P2, P3, P4 )の座標値 (パネル座標系上の座標値)は以下のように解像度(本実施の形態では X GA規格に順じた解像度)で表すことが可能であり、それぞれの変換先座標値 (カメラ 座標系上のスクリーン Sの座標値)を(Pxl, Pyl), (Px2, Py2), (Px3, Py3), (Px4, Py4)と する。なお、 PXをパネル 8a上の任意の位置の座標値 (パネル座標系上の座標値)と し、その変換先、即ちカメラ座標系上での座標値を (LXX, LYY)と定義する。  By the way, as shown in FIG. 2, the coordinate values (coordinate values on the panel coordinate system) of the four corners (PI, P2, P3, P4) of the panel 8a of the projection device unit 8 are as follows. In the embodiment, it is possible to express with the resolution conforming to the XGA standard), and the respective coordinate values (coordinate values of the screen S on the camera coordinate system) are (Pxl, Pyl), (Px2, Py2 ), (Px3, Py3), (Px4, Py4). Note that PX is defined as a coordinate value at an arbitrary position on the panel 8a (a coordinate value on the panel coordinate system), and a conversion destination thereof, that is, a coordinate value on the camera coordinate system is defined as (LXX, LYY).
[0083] パネルの四隅のパネル → 変換先座標 [0083] Panel at the four corners of the panel → destination coordinates
座標系での座標値 (カメラ座標系上のスクリーンの座標値) PI = ( 0, 0) → (Pxl, Pyl) Coordinate value in coordinate system (coordinate value of screen on camera coordinate system) PI = (0, 0) → (Pxl, Pyl)
P2 = (col, 0) → (Px2, Py2)  P2 = (col, 0) → (Px2, Py2)
P3 = (col, row) → (Px3, Py3)  P3 = (col, row) → (Px3, Py3)
P4 = ( 0, row) → (Px4, Py4)  P4 = (0, row) → (Px4, Py4)
PX = ( LX, Ly) → (LXX, LYY)  PX = (LX, Ly) → (LXX, LYY)
[0084] 但し、上述のパネル 8aの四隅のパネル座標系での座標値の変換先座標値はカメ ラ座標系上のスクリーン Sの座標値であるので、以下の関係が成立する。 However, since the conversion destination coordinate values of the coordinate values in the panel coordinate system at the four corners of the panel 8a described above are the coordinate values of the screen S on the camera coordinate system, the following relationship is established.
Px丄 = sxl, Pyl = syl  Px 丄 = sxl, Pyl = syl
Px2 = sx2, Py2 = sy2  Px2 = sx2, Py2 = sy2
Px3 = sx3, Py3 = sy3  Px3 = sx3, Py3 = sy3
Px4 = sx4, Py4 = sy4  Px4 = sx4, Py4 = sy4
[0085] 次に、計算に使用するために正規化された座標値 (計算用座標値)、即ちパネル 8 aの四隅の座値標 (パネル座標系)を X, y軸共に 0と 1との間の値に変換して正規化し た値を求め、上述の変換先座標値 (カメラ座標系での座標値)も同様に正規化する。 パネル座標系上で正規化された座標値で表されるパネルの四隅の位置 pl, p2, p3, p4及びパネル上の正規化された任意の位置 pxの座標値を元座標値 (パネル座標値 )とし、この元座標値と変換先座標値 (カメラ座標系の座標値)を正規化した座標値と を以下のように表す。 [0085] Next, coordinate values normalized for use in the calculation (coordinate values for calculation), that is, the coordinates of the four corners of the panel 8a (panel coordinate system) are 0 and 1 for both the X and y axes. The value obtained by converting to a value between and normalized is obtained, and the above-mentioned conversion destination coordinate value (the coordinate value in the camera coordinate system) is also normalized. The coordinate values of the four corner positions pl, p2, p3, p4 of the panel represented by the coordinate values normalized on the panel coordinate system and the normalized position px on the panel are the original coordinate values (panel coordinate values ) And the coordinate value obtained by normalizing the original coordinate value and the conversion destination coordinate value (the coordinate value of the camera coordinate system) are expressed as follows.
[0086] 元座標値:変換先座標値 [0086] Original coordinate value: Conversion coordinate value
pl : (0, 0) : (xl, yl) 但し、 (xl, yl) = (0, 0)  pl: (0, 0): (xl, yl) where (xl, yl) = (0, 0)
P2 : (l, 0) : (x2, y2) P 2: (l, 0): (x2, y2)
p3 : (l, l) : (x3, y3)  p3: (l, l): (x3, y3)
p4 : (0, 1): (x4, y4)  p4: (0, 1): (x4, y4)
px: (χ, y): (χχ, yy)  px: (χ, y): (χχ, yy)
[0087] 上記の関係は、変換先の 1点 (xl, yl)を元座標系の対応する 1点 (0, 0)にオフセット させて計算が単純化されるようにしたものであり、公知の二次元の射影変換において は一般的な手法である。正規化された変換先座標値の x, yの値 xl, χ2, χ3, χ4及び yl, y2, y3, y4はそれぞれ前述したカメラ座標系上のスクリーン Sの四隅の座標値( Pxl, Pyl) 、(Px2, Py2) 、 (Px3, Py3) 、 (Px4, Py4)及びスクリーン Sのアスペクト比に 応じた値の row, colを用いて以下のように表される。 [0087] The above relation is such that the calculation is simplified by offsetting one point (xl, yl) of the conversion destination to the corresponding one point (0, 0) in the original coordinate system. This is a general method for two-dimensional projective transformation. The normalized destination coordinate values x, y xl, χ2, χ3, χ4 and yl, y2, y3, y4 are the coordinate values of the four corners of the screen S on the camera coordinate system described above ( Pxl, Pyl), (Px2, Py2), (Px3, Py3), (Px4, Py4) and the row and col values according to the aspect ratio of the screen S are expressed as follows.
[0088] xl = 0 但し、 xl = (Pxl - Pxl)/col [0088] xl = 0 where xl = (Pxl-Pxl) / col
x2 = (Px2 - Pxl)ん ol  x2 = (Px2-Pxl) ol
x3 = (Px3 - Pxl)ん ol  x3 = (Px3-Pxl) ol
x4 = (Px4 - Pxl)ん ol  x4 = (Px4-Pxl) ol
yl = 0 但し、 yl = (Pyl - Pyl)/row  yl = 0 where yl = (Pyl-Pyl) / row
y2 = (Py2 - Pyl)/row  y2 = (Py2-Pyl) / row
y3 = (Py2 - Pyl)/row  y3 = (Py2-Pyl) / row
y4 = (Py4 - Pyl)/row  y4 = (Py4-Pyl) / row
[0089] 上記の関係から、元座標値 (パネル座標系での座標値)を変換先座標値 (カメラ座 標系上のスクリーン Sの座標値)へ変換するための変換係数 a, b, c, al, a2, bl, b2, aO, b0, cOは以下のように求められる。但し、ここでは元座標値 (パネル座標値)を変 換先座標値へ変換するための変換係数であるので、正変換係数が求められる。なお 、 a, b, cは公知の二次元の射影変換においても、重複した計算を少なくするために 使用される中間定数である。 [0089] From the above relationship, conversion coefficients a, b, c for converting the original coordinate value (the coordinate value in the panel coordinate system) into the conversion destination coordinate value (the coordinate value of the screen S on the camera coordinate system). , al, a2, bl, b2, aO, b0, cO are obtained as follows. However, here, since it is a conversion coefficient for converting the original coordinate value (panel coordinate value) to the conversion destination coordinate value, a positive conversion coefficient is obtained. Note that a, b, and c are intermediate constants that are used to reduce redundant calculations even in the known two-dimensional projective transformation.
a = (x3 * y4 - x4 * y3) :中間定数  a = (x3 * y4-x4 * y3): Intermediate constant
b = (x2 * y3 - x3 * y2) :中間定数  b = (x2 * y3-x3 * y2): Intermediate constant
c = (x2 * y4 - x4 * y2) :中間定数  c = (x2 * y4-x4 * y2): Intermediate constant
al = a * x2  al = a * x2
a2 = a * y2  a2 = a * y2
bl = b * x4  bl = b * x4
b2 = b * y4  b2 = b * y4
aO = - b + c  aO =-b + c
bO = ― a+ c  bO = ― a + c
cO = b + a - c  cO = b + a-c
次に、仮想スクリーン Vsの四隅の位置に対応する投射デバイス部 8のパネル 8a上 の位置、即ちパネル座標系での座標値を求める。なお、パネル 8a上での仮想スクリ ーン Vsの四隅の位置に対応する位置の座標値を(new xi, new yi)、またその正変換 座標値 (カメラ座標系での座標値)を (virtual xi, virtual yi)とそれぞれ定義する。ここ で、 iは 1 , 2, 3, 4であり、 100%座標値とはスクリーン Sの四隅の位置に対応するパ ネル 8a上の位置の座標値、具体的にはパネル 8aの四隅の座標値である。 Next, the position on the panel 8a of the projection device unit 8 corresponding to the positions of the four corners of the virtual screen Vs, that is, the coordinate value in the panel coordinate system is obtained. Note that the virtual script on panel 8a Define the coordinate value of the position corresponding to the four corners of the Vs as (new xi, new yi) and its positive transformation coordinate value (coordinate value in the camera coordinate system) as (virtual xi, virtual yi). . Here, i is 1, 2, 3, 4 and the 100% coordinate value is the coordinate value of the position on the panel 8a corresponding to the position of the four corners of the screen S, specifically, the coordinate of the four corners of the panel 8a. Value.
[0092] 100%座標値 → 仮想スクリーンの座標値 → 正変換座標値 [0092] 100% coordinate value → virtual screen coordinate value → forward conversion coordinate value
(パネル上) (パネル座標系) (カメラ座標系)  (On panel) (Panel coordinate system) (Camera coordinate system)
P1 : ( 0, 0)→ new xl, new yl) → (virtual xl, virtual yl)  P1: (0, 0) → new xl, new yl) → (virtual xl, virtual yl)
P2 : (col, 0)→ (new x2, new y2) → (virtual x2, virtual y2)  P2: (col, 0) → (new x2, new y2) → (virtual x2, virtual y2)
P3 : (col, row)→ (new x3, new y3) → virtual x3, virtual y3) P4 : ( 0, row)→ (new x4, new y4) → virtual x4, virtual y4)  P3: (col, row) → (new x3, new y3) → virtual x3, virtual y3) P4: (0, row) → (new x4, new y4) → virtual x4, virtual y4)
[0093] 以上の結果から、スクリーン Sのアスペクト比と投射画像のアスペクト比との組み合 わせに応じて仮想スクリーン Vsのパネル座標値(new xi, new yi)を求める。この場合 、パネル 8aの実際の解像度は 1024 X 768である力 それをスクリーン Sのアスペクト 比が 1 : 1の場合は 800 X 800と仮定し、スクリーン Sのアスペクト比が 4 : 3の場合は 1 024 X 768と仮定し、スクリーン Sのアスペクト 匕力 : 9の場合は 1600 X 900と仮定 して、仮想スクリーン Vsのパネル座標値を求める。なお図 10及び図 11は、パネル座 標系上に仮想スクリーン Vsを設定した状態を示す模式図である。 From the above results, the panel coordinate values (new xi, new yi) of the virtual screen Vs are obtained according to the combination of the aspect ratio of the screen S and the aspect ratio of the projected image. In this case, the actual resolution of panel 8a is 1024 x 768, which is assumed to be 800 x 800 if the screen S aspect ratio is 1: 1, and 1 if the screen S aspect ratio is 4: 3 Assuming 024 x 768, the aspect ratio of screen S: 9 If 1600 x 900, assume the panel coordinate value of virtual screen Vs. 10 and 11 are schematic diagrams showing a state in which the virtual screen Vs is set on the panel coordinate system.
[0094] (1)スクリーン Sのアスペクト比が 1 : 1、投射画像 PJのアスペクト比が 4 : 3の場合。この 場合、 row = 800, col = 800と仮定する。図 10 (a)参照。但し、図 10 (a)において() で示した値はパネル 8aの実際の座標値ではなぐ上記の仮定を行なった場合の値 である。 [0094] (1) When the aspect ratio of screen S is 1: 1 and the aspect ratio of projected image PJ is 4: 3. In this case, row = 800 and col = 800 are assumed. See Figure 10 (a). However, the value shown in parentheses in Fig. 10 (a) is the value when the above assumption is made, not the actual coordinate value of panel 8a.
new xl = 0, new yl = 100  new xl = 0, new yl = 100
new x2 = 799, new y2 = 100  new x2 = 799, new y2 = 100
new x3 = 799, new y3 = 699  new x3 = 799, new y3 = 699
new x4 = 0, new y4 = 699  new x4 = 0, new y4 = 699
[0095] (2)スクリーン Sのアスペクト比が 1 : 1、投射画像 PJのアスペクト比が 16 : 9の場合。こ の場合、 row = 800, col = 800と仮定する。図 10 (b)参照。但し、図 10 (b)において ( )で示した値はパネル 8aの実際の座標値ではなぐ上記の仮定を行なった場合の 値である。 [0095] (2) When the aspect ratio of screen S is 1: 1 and the aspect ratio of projected image PJ is 16: 9. In this case, assume row = 800, col = 800. See Figure 10 (b). However, the value indicated by () in Fig. 10 (b) is not the actual coordinate value of panel 8a, but the above assumption is made. Value.
new xl = 0, new yl = 175  new xl = 0, new yl = 175
new x2 = 799, new y2 = 175  new x2 = 799, new y2 = 175
new x3 = 799, new y3 = 624  new x3 = 799, new y3 = 624
new x4 = 0, new y4 = 624  new x4 = 0, new y4 = 624
[0096] (3)スクリーン Sのアスペクト比が 4 : 3、投射画像 PJのアスペクト比が 16 : 9の場合。こ の場合、 row = 768, col = 1024と仮定する。図 11 (a)参照。但し、図 11 (a)におい て()で示した値はパネル 8aの実際の座標値ではなぐ上記の仮定を行なった場合 のィ直である。 [0096] (3) When the aspect ratio of screen S is 4: 3 and the aspect ratio of projected image PJ is 16: 9. In this case, assume row = 768, col = 1024. See Figure 11 (a). However, the values shown in parentheses in Fig. 11 (a) are straightforward when the above assumptions are made, rather than the actual coordinate values of panel 8a.
new xl = 0, new yl = 96  new xl = 0, new yl = 96
new x2 = 1023, new y2 = 96  new x2 = 1023, new y2 = 96
new x3 = 1023, new y3 = 671  new x3 = 1023, new y3 = 671
new x4 = 0, new y4 = 671  new x4 = 0, new y4 = 671
[0097] (4)スクリーン Sのアスペクト比が 16 : 9、投射画像 PJのアスペクト比が 4 : 3の場合。こ の場合、 row = 900, col = 1600と仮定する。図 11 (b)参照。但し、図 11 (b)におい て()で示した値はパネル 8aの実際の座標値ではなぐ上記の仮定を行なった場合 のィ直である。 [0097] (4) When the aspect ratio of the screen S is 16: 9 and the aspect ratio of the projected image PJ is 4: 3. In this case, assume row = 900, col = 1600. See Figure 11 (b). However, the values shown in parentheses in Fig. 11 (b) are straightforward when the above assumptions are made, rather than the actual coordinate values of panel 8a.
new xl = 200, new yl = 0  new xl = 200, new yl = 0
new x2 = 1399, new y2 = 0  new x2 = 1399, new y2 = 0
new x3 = 1399, new y3 = 899  new x3 = 1399, new y3 = 899
new x4 = 200, new y4 = 899  new x4 = 200, new y4 = 899
[0098] 次に、カメラ部 3により撮像されているカメラ画像 31上での仮想スクリーン Vsの四隅 の座標値、即ちカメラ座標系での仮想スクリーン Vsの四隅の座標値を求める。 Next, the coordinate values of the four corners of the virtual screen Vs on the camera image 31 captured by the camera unit 3, that is, the coordinate values of the four corners of the virtual screen Vs in the camera coordinate system are obtained.
[0099] 具体的には、パネル 8a上のパネル座標系でのスクリーン Sの四隅の座標値に対し てそれぞれ正変換を行なうことにより、カメラ画像上の、即ちカメラ座標系での仮想ス クリーン Vsの四隅の座標値を求める。但し、パネル座標(元座標)の任意の点 PXの 座標値 LX, LYをそれぞれ仮想スクリーン Vsの四隅の座標値 new xl一 new x4, new yl一 new y4とし、このパネル座標(元座標)の任意の点 PXの変換先座標(カメラ座 標系上)の座標値 LXX, LYYをそれぞれ正変換してカメラ座標系での仮想スクリーン Vsの四隅 VP1, VP2, VP3, VP4の座標値 virtual xl一 virtual x4, virtual yl一 virtual y4として、最終的にカメラ座標系での仮想スクリーン Vsの四隅 VP1, VP2, VP3, VP4の座標値 LXX, LYYを以下のようにして得る。 [0099] Specifically, the virtual screen Vs on the camera image, that is, the camera coordinate system, is obtained by performing positive conversion on the coordinate values of the four corners of the screen S in the panel coordinate system on the panel 8a. Find the coordinate values of the four corners. However, the coordinate values LX and LY of the arbitrary point PX in the panel coordinates (original coordinates) are the coordinate values new xl one new x4, new yl one new y4 of the virtual screen Vs, respectively. Arbitrary point PX conversion coordinates (camera seat) The coordinate values LXX and LYY of the standard system) are converted to positive values, and the virtual screen Vs corners VP1, VP2, VP3, and VP4 in the camera coordinate system are coordinate values virtual xl one virtual x4, virtual yl one virtual y4, and finally Specifically, the coordinate values LXX and LYY of the four corners VP1, VP2, VP3, and VP4 of the virtual screen Vs in the camera coordinate system are obtained as follows.
[0100] LX: new x丄, new x2, new χό, new x4 [0100] LX: new x 丄, new x2, new χό, new x4
LY: new yl, new y2, new y3, new y4  LY: new yl, new y2, new y3, new y4
LXX: virtual xl, virtual x2, virtual x3, virtual x4  LXX: virtual xl, virtual x2, virtual x3, virtual x4
LYY: virtual yl, virtual y2, virtual y3, virtual y4  LYY: virtual yl, virtual y2, virtual y3, virtual y4
[0101] x = LXん ol 但し、 LX = 0 ' 'col [0101] x = LX ol where LX = 0 '' col
y = LY/row 但し、 LY = 0" -row  y = LY / row where LY = 0 "-row
z = aO * x + b0 * y + cO  z = aO * x + b0 * y + cO
xx = (al * x + bl * y)/z  xx = (al * x + bl * y) / z
yy= (a2 * x + b2 * y)/z  yy = (a2 * x + b2 * y) / z
従って、  Therefore,
LXX = col * xx + Pxl  LXX = col * xx + Pxl
LYY = row * yy + Pyl  LYY = row * yy + Pyl
[0102] 即ち、 LXを new xiとすることにより LXXとして virtual xiが、 LYを new yiとすることによ り LYYとして virtual がそれぞれ求まる。  That is, by setting LX to new xi, virtual xi can be found as LXX, and by setting LY as new yi, virtual can be found as LYY.
[0103] 以上により、カメラ座標系での仮想スクリーン Vsの四隅の座標値 (virtual xl一  [0103] As described above, the coordinate values of the four corners of the virtual screen Vs in the camera coordinate system (virtual xl
virtual x4, virtual yl一 virtual y4)が求まるので、これに対してカメラ座標系での投射 画像 PJ (具体的にはテストパターン画像 25の太枠部 25b)の四隅が一致するように 2 次元の射影変換を行なうことにより、投射画像 PJは台形歪みが補正されると共に、仮 想スクリーン Vsの寸法と同一の大きさで仮想スクリーン Vsに一致して投射されること になる。なお、この二次元の射影変換そのものは公知の技術である。  (virtual x4, virtual yl one virtual y4) is obtained, so that the two-dimensional By performing the projective transformation, the projected image PJ is corrected for trapezoidal distortion and projected in accordance with the virtual screen Vs with the same size as the virtual screen Vs. This two-dimensional projective transformation itself is a known technique.
[0104] 具体的には、以下のような演算を行なうことにより、投射画像 PJを仮想スクリーン Vs に一致させて投射することができる。レ、うまでもないが、この演算そのものは、カメラ部 3が撮像した画像を検出部 11が解析した結果に基づいてシステムコントロール部 10 により実行される。 [0105] 入力パラメータは、カメラ座標系上での仮想スクリーン Vsの四隅の座標値と、投射 画像 PJの四隅の座標値と、パネル 8aの X方向及び y方向解像度である。それぞれを 以下のように定義する。但し、以下の演算において、パネル 8aの X方向及び y方向解 像度 col及び rowは投射画像 PJのアスペクト比とパネル解像度との組み合わせに応 じて、実際のパネル 8aの値とは異なる以下のような値を用いる。 Specifically, the projection image PJ can be projected in accordance with the virtual screen Vs by performing the following calculation. Needless to say, this calculation itself is executed by the system control unit 10 based on the result of the detection unit 11 analyzing the image captured by the camera unit 3. [0105] The input parameters are the coordinate values of the four corners of the virtual screen Vs on the camera coordinate system, the coordinate values of the four corners of the projection image PJ, and the X-direction and y-direction resolutions of the panel 8a. Each is defined as follows. However, in the following calculations, the resolutions col and row in the X direction and y direction of the panel 8a differ from the actual panel 8a values depending on the combination of the aspect ratio of the projected image PJ and the panel resolution. Use such values.
•実際のパネル解像度が XGA (1024 X 768)の場合  • When the actual panel resolution is XGA (1024 X 768)
投射画像 PJのアスペクト比が 4 : 3の場合、 col= 1024, row= 768。  When the aspect ratio of the projected image PJ is 4: 3, col = 1024, row = 768.
投射画像 PJのアスペクト比が 16 : 9の場合、 col= 1024, row= 576。  When the aspect ratio of the projected image PJ is 16: 9, col = 1024, row = 576.
-実際のパネル解像度が SVGA(800 X 600)の場合  -When the actual panel resolution is SVGA (800 X 600)
投射画像 PJのアスペクト比が 4 : 3の場合、 col= 800, row = 600。  When the aspect ratio of the projected image PJ is 4: 3, col = 800, row = 600.
投射画像 PJのアスペクト比が 16 : 9の場合、 col= 800, row = 450。  When the aspect ratio of the projected image PJ is 16: 9, col = 800, row = 450.
[0106] ·カメラ座標系上の仮想スクリーン Vsの四隅の座標: [0106] · Coordinates of the four corners of the virtual screen Vs on the camera coordinate system:
(virtual xl, virtual yl), (virtual x2, virtual y2),  (virtual xl, virtual yl), (virtual x2, virtual y2),
(virtual x3, virtual y3), (virtual x4, virtual y4)  (virtual x3, virtual y3), (virtual x4, virtual y4)
'カメラ座標系上の投射画像 PJ (太枠部 25b)の四隅の座標:  'Coordinates of the four corners of the projected image PJ (bold frame 25b) on the camera coordinate system:
(pjxl, pjyl),(pjx2, pjy2),(pjx3, pjy3),(pjx4, pjy4)  (pjxl, pjyl), (pjx2, pjy2), (pjx3, pjy3), (pjx4, pjy4)
[0107] ここで、カメラ座標系上の仮想スクリーン Vsの四隅(Pl, P2, P3, P4)の座標値 [0107] Here, the coordinate values of the four corners (Pl, P2, P3, P4) of the virtual screen Vs on the camera coordinate system
virtual xl, virtual yl), ^virtual x2, virtual y2), ^virtual χό, virtual y3), ^virtual x4, virtual y4)を(Pxl, Pyl), (Px2, Py2), (Px3, Py3), (Px4, Py4)とし、それぞれの変換先 座標値 (パネル座標系上の座標値)を(0, 0), (col, 0), (col, row), (0, row)とする。なお 、 PXはカメラ座標系上の任意の位置の座標値である。  virtual xl, virtual yl), ^ virtual x2, virtual y2), ^ virtual χό, virtual y3), ^ virtual x4, virtual y4) to (Pxl, Pyl), (Px2, Py2), (Px3, Py3), ( Px4, Py4), and the conversion destination coordinate values (coordinate values on the panel coordinate system) are (0, 0), (col, 0), (col, row), (0, row). Note that PX is a coordinate value at an arbitrary position on the camera coordinate system.
カメラ座標系上の仮想スクリーンの座標値  The coordinate value of the virtual screen on the camera coordinate system
→ 変換先座標値 (パネル座標系上の座標値)  → Conversion destination coordinate value (coordinate value on the panel coordinate system)
VP1 = (Pxl, Pyl)→ ( 0, 0)  VP1 = (Pxl, Pyl) → (0, 0)
VP2 = (Px2, Py2)→ (col, 0)  VP2 = (Px2, Py2) → (col, 0)
VP3 = (Px3, Py3)→ (col, row)  VP3 = (Px3, Py3) → (col, row)
VP4 = (Px4, Py4)→ ( 0, row)  VP4 = (Px4, Py4) → (0, row)
PX = (LXX, LYY)→ ( LX, LY) [0108] 但し、上述のカメラ座標系上の仮想スクリーン Vsの四隅(VP1, VP2, VP3, VP4)の 座標値はカメラ座標系上の投射画像 PJの四隅の座標と一致すべきであるので、以下 の関係が成立する。 PX = (LXX, LYY) → (LX, LY) However, since the coordinate values of the four corners (VP1, VP2, VP3, VP4) of the virtual screen Vs on the camera coordinate system should match the coordinates of the four corners of the projected image PJ on the camera coordinate system, The following relationship holds.
P l = pj l, Pyl = pjyl  P l = pj l, Pyl = pjyl
Px2 = pjx2, Py2 = pjy2  Px2 = pjx2, Py2 = pjy2
Px3 = pjx3, Py3 = pjy3  Px3 = pjx3, Py3 = pjy3
Px4 = pjx4, Py4= pjy4  Px4 = pjx4, Py4 = pjy4
[0109] 次に、計算に使用するために正規化された座標値 (計算用座標値)、即ちカメラ座 標系上の仮想スクリーン Vsの四隅の座標値を x, y軸共に 0と 1との間の値に変換して 正規化した値を求め、上述の変換先座標値であるパネル座標値も同様に正規化す る。このように正規化された座標値で表されるカメラ座標系上の仮想スクリーン Vsの 四隅 pl, p2, p3, p4及びカメラ座標系上の正規化された任意の点 pxの座標値を元座 標 (カメラ座標系)とし、この元座標の座標値と変換先座標値 (パネル座標系の座標 値)を正規化した座標値とを以下のように表す。 [0109] Next, coordinate values normalized for use in the calculation (coordinate values for calculation), that is, the coordinate values of the four corners of the virtual screen Vs on the camera coordinate system are 0 and 1 for both the x and y axes. The normalized value is obtained by converting to a value between and the panel coordinate value, which is the conversion destination coordinate value described above, is normalized in the same manner. The coordinates of the four corners pl, p2, p3, p4 of the virtual screen Vs on the camera coordinate system represented by the normalized coordinate values in this way and any normalized point px on the camera coordinate system The standard coordinates (camera coordinate system) and the coordinate values obtained by normalizing the coordinate values of the original coordinates and the conversion destination coordinates (coordinate values of the panel coordinate system) are expressed as follows.
[0110] 元座標値:変換先座標値 [0110] Original coordinate value: Conversion destination coordinate value
pl : (0, 0) : (xl, yl) 但し、 (xl, yl) = (0, 0)  pl: (0, 0): (xl, yl) where (xl, yl) = (0, 0)
P2 : (l, 0) : (x2, y2) P 2: (l, 0): (x2, y2)
P3 : (l, l) : (x3, y3) P 3: (l, l): (x3, y3)
P4 : (0, 1): (x4, y4) P 4: (0, 1): (x4, y4)
px: (χ, y): (χχ, yy)  px: (χ, y): (χχ, yy)
[0111] 上記の関係は、変換先の 1点(xl, yl)を元座標系上の対応する 1点(0, 0)にオフ セットさせて計算が単純化されるようにしたものであり、公知の二次元の射影変換に おいては一般的な手法である。正規化された変換先座標値の x, yの値 xl, x2, x3, x4及び yl, y2, y3, y4はそれぞれ前述したカメラ座標系上の仮想スクリーン Vsの四隅 の座標値 (Pxl, Pyl), (Ρχ2, Py2), (Px3, Py3), (Px4, Py4)を用いて以下のように表さ れる。  [0111] The above relationship simplifies the calculation by offsetting one point (xl, yl) of the conversion destination to the corresponding point (0, 0) on the original coordinate system. This is a general technique in the known two-dimensional projective transformation. The normalized destination coordinate values x and y xl, x2, x3, x4 and yl, y2, y3, y4 are the coordinate values of the four corners of the virtual screen Vs on the camera coordinate system (Pxl, Pyl ), (Ρχ2, Py2), (Px3, Py3), and (Px4, Py4).
[0112] xl = 0 但し、 xl = (Pxl— Pxl)ん ol  [0112] xl = 0 However, xl = (Pxl—Pxl) ol
x2 = (Px2 - Pxl)ん ol x3 = (Px3 - PxD/col x2 = (Px2-Pxl) ol x3 = (Px3-PxD / col
x4 = (Px4 - PxD/col  x4 = (Px4-PxD / col
yl = 0 但し、 yl = (Pyl - Pyl)/row  yl = 0 where yl = (Pyl-Pyl) / row
y2 = (Py2 - Pyl)/row  y2 = (Py2-Pyl) / row
y3 = (Py2 - Pyl)/row  y3 = (Py2-Pyl) / row
y4 = (Py4 - Pyl)/row  y4 = (Py4-Pyl) / row
[0113] 上記の関係から、元座標値 (カメラ座標系)を変換先座標値 (パネル座標系上の仮 想スクリーン Vsの座標値)へ変換するための変換係数 a, b, c, al , a2, bl , b2, a0, b0, cOは以下のように求められる。但し、ここでは元座標値(カメラ座標系上の仮想ス クリーン Vsの座標値)を変換先座標値 (パネル座標系)へ変換するための変換係数 であるので、正変換係数が求められる。また、同時に逆変換係数 n aO, n b0, n c0, n al , n b l , n a2, n b2も求められる。なお、 a, b, cは公知の二次元の射影変換におい ても、重複した計算を少なくするために使用される中間定数である。 [0113] From the above relationship, conversion coefficients a, b, c, al, for converting the original coordinate value (camera coordinate system) to the conversion destination coordinate value (the coordinate value of the virtual screen Vs on the panel coordinate system) a2, bl, b2, a0, b0, cO are obtained as follows. However, here, since it is a conversion coefficient for converting the original coordinate value (virtual screen Vs coordinate value on the camera coordinate system) to the conversion destination coordinate value (panel coordinate system), a positive conversion coefficient is obtained. At the same time, inverse transform coefficients n aO, n b0, n c0, n al, n b l, n a2, n b2 are also obtained. Note that a, b, and c are intermediate constants used to reduce duplicate calculations even in the known two-dimensional projective transformation.
[0114] ·正変換係数 [0114] · Positive conversion coefficient
a = : (x3 * y4 - - x4 * y3) :中間定数  a =: (x3 * y4--x4 * y3): Intermediate constant
b = : (x2 * y3 - x3 * y2) :中間定数  b =: (x2 * y3-x3 * y2): Intermediate constant
c = : (x2 * y4 - - x4 * y2) :中間定数  c =: (x2 * y4--x4 * y2): Intermediate constant
al = a * x2  al = a * x2
a2 = a * y2  a2 = a * y2
bl = b * x4  bl = b * x4
b2 = b * y4  b2 = b * y4
aO = - b + c  aO =-b + c
bO = - a + c  bO =-a + c
cO = b + a ― c  cO = b + a ― c
[0115] ·逆変換係数  [0115] · Inverse transformation coefficient
n aO = (aO * b2 _ a2 * b2)  n aO = (aO * b2 _ a2 * b2)
n bO = (al * bO _ aO * b l)  n bO = (al * bO _ aO * b l)
n cO = (a2 * bl - al * b2) [0116] 次に、カメラ座標系上の仮想スクリーン Vsの四隅の座標値を逆変換することにより、 パネル座標系上での対応する座標値を算出する。但し、カメラ座標系上 (元座標)の 任意の点 PXの座標値 LXX, LYYをそれぞれ仮想スクリーン Vsの四隅の座標値 sxi, syiとし、これを逆変換するこにより最終的にカメラ座標系上の仮想スクリーン Vsの四 隅に対応するパネル座標系上の四隅の座標値 LX, LYを以下のようにして得る。 n cO = (a2 * bl-al * b2) Next, the corresponding coordinate values on the panel coordinate system are calculated by inversely transforming the coordinate values of the four corners of the virtual screen Vs on the camera coordinate system. However, the coordinate values LXX and LYY of an arbitrary point PX on the camera coordinate system (original coordinates) are set as the coordinate values sxi and syi of the four corners of the virtual screen Vs, respectively. The coordinate values LX and LY of the four corners on the panel coordinate system corresponding to the four corners of the virtual screen Vs are obtained as follows.
[0117] XX = (LXX - Pxl)ん ol 但し、 LXX =0- - -col [0117] XX = (LXX-Pxl) ol where LXX = 0---col
yy = (LYY - Pyl)/row 但し、 LYY =0- - -row  yy = (LYY-Pyl) / row where LYY = 0---row
zz = n aO * xx + n D0 * yy + n cO  zz = n aO * xx + n D0 * yy + n cO
x = (n al * xx + n bl * yy)/ zz  x = (n al * xx + n bl * yy) / zz
y = (n a2 * xx + n b2 * yy)/ zz  y = (n a2 * xx + n b2 * yy) / zz
従って、  Therefore,
LX = col * x  LX = col * x
LY = row * y  LY = row * y
[0118] 以上により、仮想スクリーン Vsに投射画像 PJを一致させて投射することが可能にな る。  [0118] As described above, it is possible to project the projected image PJ so as to coincide with the virtual screen Vs.
[0119] 図 12は本発明に係るプロジェクタによるオート調整の際のシステムコントロール部 による処理手順を示すフローチャートである。具体的には、図 12は上述したように、 投射画像 PJのアスペクト比を維持したままでスクリーン Sへ投射する処理をも含むシ ステムコントロール部 10による処理手順を示すフローチャートである。なお、このフロ 一チャートに示す制御は、 ROMlOaに格納されているプログラム 10pに従って処理 される。  FIG. 12 is a flowchart showing a processing procedure by the system control unit at the time of auto adjustment by the projector according to the present invention. Specifically, FIG. 12 is a flowchart showing the processing procedure by the system control unit 10 including the processing of projecting onto the screen S while maintaining the aspect ratio of the projected image PJ as described above. The control shown in this flowchart is processed according to the program 10p stored in ROMlOa.
[0120] なお、本実施の形態ではシステムコントロール部 10が ROMlOaに格納されている プログラム 10pに従って各手順を処理するように構成されているが、本発明のプロジ ェクタではこれらの各手順の内の一部又は全てをそれぞれ専用のハードウェア(専用 回路)で処理する構成を採ることも勿論可能である。  [0120] In the present embodiment, the system control unit 10 is configured to process each procedure according to the program 10p stored in the ROMlOa. However, the projector of the present invention includes all of these procedures. Of course, it is possible to adopt a configuration in which part or all of the data is processed by dedicated hardware (dedicated circuit).
[0121] 先ず、ユーザはプロジェクタ 1をスクリーン Sの前方に設置し、操作部 12又はリモコ ン 20を操作して投射準備のオート調整を行なう指示をプロジェクタに与える。この際 の投射準備のオート調整にはスクリーン Sの寸法に投射画像 PJの大きさを一致させる 通常のオート調整と、上述したような投射画像 PJのアスペクト比を維持したままでスク リーン Sへ投射するオート調整との 2種類の内のいずれかが選択可能である。 [0121] First, the user places the projector 1 in front of the screen S, and operates the operation unit 12 or the remote control 20 to give an instruction to perform automatic adjustment for projection preparation to the projector. At this time, the projection adjustment is automatically adjusted to match the size of the screen S with the projection image PJ One of two types can be selected: normal auto adjustment and auto adjustment that projects onto the screen S while maintaining the aspect ratio of the projected image PJ as described above.
[0122] システムコントロール部 10は、画像のアスペクト比を維持した投射準備のオート調 整を行なう指示及びその他の指示を受け付けたか否かを監視している(ステップ S 11 )。画像のアスペクト比を維持した投射準備のオート調整を行なう指示以外の指示を 受け付けた場合(ステップ S11で N〇)、システムコントロール部 10は受け付けた指示 に対応する処理を実行する(ステップ S 12)。これはたとえば、スクリーン Sの寸法に投 射画像 PJの大きさを一致させる通常の投射準備等が含まれる。一方、投射画像 PJの ァスぺ外比を維持した投射準備のオート調整を行なう指示を受け付けた場合 (ステ ップ S11で YES)、システムコントロール部 10は色補正及び焦点調整の項目に対す るオート調整は勿論のこと、上述した投射画像 PJのアスペクト比を維持した投射準備 のオート調整を開始する (ステップ S13)。なお、以下の説明では色補正及び焦点調 整に関する説明は省略する。  [0122] The system control unit 10 monitors whether or not an instruction to perform automatic adjustment for projection preparation while maintaining the aspect ratio of the image and other instructions have been received (step S11). When an instruction other than an instruction to perform automatic adjustment for projection preparation while maintaining the image aspect ratio is accepted (NO in step S11), the system control unit 10 executes processing corresponding to the accepted instruction (step S12). . This includes, for example, normal projection preparation for matching the size of the projected image PJ with the size of the screen S. On the other hand, when receiving an instruction to perform automatic adjustment for projection preparation while maintaining the external ratio of the projected image PJ (YES in step S11), the system control unit 10 performs color correction and focus adjustment items. In addition to the automatic adjustment, automatic adjustment for projection preparation while maintaining the aspect ratio of the projection image PJ described above is started (step S13). In the following description, descriptions regarding color correction and focus adjustment are omitted.
[0123] オート調整の開始に際してシステムコントロール部 10は、カメラ部 3が撮像した画像 から、まずスクリーン Sの四隅のカメラ座標系での位置 (座標値)を検出し(ステップ S 14)、次にスクリーン Sのアスペクト比を判断する(ステップ S 15)。またこれに引き続い てシステムコントロール部 10は投射画像枠検出用のテストパターンである太枠部 25b の四隅のカメラ座標系での位置 (座標値)を検出する(ステップ S16)。これらのシステ ムコントロール部 10によるスクリーン S及び投射された太枠部 25bの四隅のカメラ座 標系での位置 (座標値)を検出する処理は前述した図 5のフローチャートの場合と同 様に、またスクリーン Sのアスペクト比の判断は、検出部 11が検出したカメラ座標系で のスクリーン Sの四隅の座標値に基づいて前述したような手法で行なわれる。  [0123] At the start of auto adjustment, the system control unit 10 first detects the positions (coordinate values) in the camera coordinate system of the four corners of the screen S from the image captured by the camera unit 3 (step S14), and then The aspect ratio of the screen S is judged (step S15). Subsequently, the system control unit 10 detects the positions (coordinate values) in the camera coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting a projected image frame (step S16). The process of detecting the positions (coordinate values) of the four corners of the screen S and the projected thick frame 25b by the system control unit 10 in the camera coordinate system is the same as in the flowchart of FIG. The aspect ratio of the screen S is determined by the method described above based on the coordinate values of the four corners of the screen S in the camera coordinate system detected by the detection unit 11.
[0124] 次にシステムコントロール部 10は投射画像の画面サイズが設定されているか否か を判断する(ステップ S 17)。ここで、投射画像の画面サイズとは、投射されるべき画 像をどのようなアスペクト比でスクリーン上に表示させるかを指定する表示モードに応 じて定まるサイズである。たとえば、ズームモードが指定されている場合は、アスペクト 比が 4 : 3の投射画像の画面サイズも 4 : 3のままで全体的に拡大される。またたとえば フルモードが指定されている場合は、アスペクト比が 16 : 9の投射画像は水平方向( 左右方向)に約 1. 3倍拡大された上で左右方向の中央部分のみがスクリーン S上に アスペクト比 4 : 3で表示される。更にたとえばスクイーズ(フル)モードが指定されてい る場合は、スクイーズ記録された画像がスクリーン S上に 16: 9のアスペクト比で表示 される。このように、投射されるべき画像をユーザの好みに応じて種々のモードで投 射してスクリーン S上に表示することが可能である力 レ、ずれにしても投射されるべき 画像のアスペクト比とユーザが設定したモード(画面サイズ)との組み合わせに応じて スクリーン S上に表示されるべき画像のアスペクト比が決定する。 [0124] Next, the system control unit 10 determines whether or not the screen size of the projection image is set (step S17). Here, the screen size of the projected image is a size determined in accordance with a display mode for designating what aspect ratio the image to be projected is displayed on the screen. For example, when the zoom mode is specified, the screen size of the projected image with an aspect ratio of 4: 3 remains the same as 4: 3 but is enlarged as a whole. For example, when full mode is specified, the projected image with an aspect ratio of 16: 9 is horizontal ( The image is magnified by about 1.3 times in the horizontal direction, and only the central part in the horizontal direction is displayed on the screen S with an aspect ratio of 4: 3. Furthermore, for example, when the squeeze (full) mode is designated, the squeeze-recorded image is displayed on the screen S with an aspect ratio of 16: 9. In this way, the image that should be projected can be displayed in various modes according to the user's preference and displayed on the screen S. And the mode (screen size) set by the user determine the aspect ratio of the image to be displayed on the screen S.
[0125] 画面サイズが設定されている場合は(ステップ S17で YES)、システムコントロール 部 10は後述するステップ S18へ処理を進める。しかし、画面サイズが設定されていな い場合は(ステップ S 17で NO)、システムコントロール部 10は投射画像の画面サイズ の設定をユーザに要求する (ステップ S21)。具体的な方法の一例としては、システム コントロール部 10は OSDによるメニュー画像で投射画像のアスペクト比の入力を要 求し、待機状態になる(ステップ S22で NO)。ユーザが操作部 12又はリモコン 20を 操作して投射画像 PJの画面サイズを入力すると(ステップ S22で YES)、システムコン トロール部 10は入力された画面サイズを投射画像 PJの画面サイズとして設定する。  [0125] If the screen size is set (YES in step S17), system control unit 10 advances the process to step S18 described later. However, if the screen size is not set (NO in step S17), the system control unit 10 requests the user to set the screen size of the projection image (step S21). As an example of a specific method, the system control unit 10 requests input of the aspect ratio of the projected image from the OSD menu image, and enters a standby state (NO in step S22). When the user operates the operation unit 12 or the remote controller 20 to input the screen size of the projection image PJ (YES in step S22), the system control unit 10 sets the input screen size as the screen size of the projection image PJ.
[0126] これにより、設定された画面サイズと投射されるべき画像のアスペクト比との関係か ら投射画像 PJのアスペクト比が定まるので、システムコントロール部 10は前述したよう にして仮想スクリーン Vsのスクリーン S上での四隅の座標値を決定し (ステップ S18) 、決定した仮想スクリーン Vsと投射画像 PJ、具体的にはテストパターン画像 25の周 囲の太枠部 25bとが一致するようにズーム調整及び台形歪み補正を行なう(ステップ S19)。この後、外部接続部 4から入力される種々の画像を利用者の指示に従ってス クリーン S上の仮想スクリーン Vsに投射することが可能になる(ステップ S20)。  [0126] As a result, the aspect ratio of the projected image PJ is determined from the relationship between the set screen size and the aspect ratio of the image to be projected, so that the system control unit 10 uses the virtual screen Vs screen as described above. Determine the coordinate values of the four corners on S (Step S18), and adjust the zoom so that the determined virtual screen Vs matches the projected image PJ, specifically, the thick frame 25b around the test pattern image 25. Then, trapezoidal distortion correction is performed (step S19). Thereafter, various images input from the external connection unit 4 can be projected onto the virtual screen Vs on the screen S according to the user's instructions (step S20).
[0127] なお上述の実施の形態では、カメラ部 3が撮像した画像に基づいて仮想スクリーン Vs (仮想投射枠)を設定しているが、スクリーン S (被投射体)に関してはたとえばスク リーン Sの四隅にフォトダイオード等の光検出センサを設置してスクリーン Sの四隅の 位置を検出するようにし、投射画像(具体的にはテストパターンである太枠部 25b)に 関してはズーム操作、レンズシフト操作等により四隅を検出するように構成することに より、本発明を適用することが可能になる。 また、上述の実施の形態では、仮想スクリーン Vs (仮想投射枠)の四隅に投射画像 (具体的にはテストパターンである太枠部 25b)の四隅を一致させることにより、投射 画像の台形歪みを補正するようにしているが、仮想スクリーン Vsをズーム調整に利用 することも勿論可能である。この場合には、スクリーン S (被投射体)の中心に投射画 像の中心を一致させた状態でズーム調整を行なうことが可能になる。 [0127] In the above-described embodiment, the virtual screen Vs (virtual projection frame) is set based on the image captured by the camera unit 3, but for the screen S (projected body), for example, the screen S Photodetectors such as photodiodes are installed at the four corners to detect the positions of the four corners of the screen S, and zoom operations and lens shifts are performed on the projected image (specifically, the thick frame 25b that is the test pattern). By configuring so that the four corners are detected by an operation or the like, the present invention can be applied. In the above-described embodiment, the four corners of the projected image (specifically, the thick frame portion 25b, which is a test pattern) are aligned with the four corners of the virtual screen Vs (virtual projection frame), thereby reducing the trapezoidal distortion of the projected image. Of course, the virtual screen Vs can be used for zoom adjustment. In this case, zoom adjustment can be performed in a state where the center of the projected image coincides with the center of the screen S (projected body).

Claims

請求の範囲 The scope of the claims
[1] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って空間光変 調手段に変調光を生成させ、前記空間光変調手段が生成した変調光を前記矩形状 の被投射体へ投射レンズに投射させる際に、前記矩形状の投射画像を変形した画 像を表す情報に従って前記空間光変調手段に変調光を生成させて前記矩形状の 被投射体上で矩形の画像となるように投射する画像投射方法において、  [1] Spatial light modulation means generates modulated light in accordance with information representing a rectangular projection image projected onto a rectangular projection object, and the modulated light generated by the spatial light modulation means is used as the rectangular object. When projecting the projection lens onto the projection lens, the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, and the rectangular image is formed on the rectangular projection object. In the image projection method of projecting so that
前記矩形状の投射画像と同一アスペクト比を有し、前記矩形状の被投射体へ投射 された場合に矩形状となる仮想投射枠を前記空間光変調手段上に設定することを特 徴とする画像投射方法。  A virtual projection frame having the same aspect ratio as the rectangular projection image and having a rectangular shape when projected onto the rectangular projection object is set on the spatial light modulation means. Image projection method.
[2] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って空間光変 調手段に変調光を生成させ、前記空間光変調手段が生成した変調光を前記矩形状 の被投射体へ投射レンズに投射させる際に、前記矩形状の投射画像を変形した画 像を表す情報に従って前記空間光変調手段に変調光を生成させて前記矩形状の 被投射体上で矩形の画像となるように投射する画像投射方法において、  [2] According to information representing a rectangular projection image projected onto the rectangular projection object, the spatial light modulation unit generates modulated light, and the modulated light generated by the spatial light modulation unit is used as the rectangular target object. When projecting the projection lens onto the projection lens, the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, and the rectangular image is formed on the rectangular projection object. In the image projection method of projecting so that
前記矩形状の投射画像と同一アスペクト比を有し、前記矩形状の被投射体へ投射 された場合に矩形状となる仮想投射枠を前記空間光変調手段上に設定し、 前記空間光変調手段上に設定された仮想投射枠の四隅に前記矩形状の投射画 像の四隅が一致した状態で投射されるように、前記空間光変調手段が生成する変調 光が表す前記矩形状の投射画像の変形量を演算すること  A virtual projection frame having the same aspect ratio as the rectangular projection image and having a rectangular shape when projected onto the rectangular projection object is set on the spatial light modulation unit, and the spatial light modulation unit The rectangular projection image represented by the modulated light generated by the spatial light modulation means is projected so that the four corners of the rectangular projection image coincide with the four corners of the virtual projection frame set above. Calculate the amount of deformation
を特徴とする画像投射方法。  An image projection method characterized by the above.
[3] 前記被投射体の四隅の位置を撮像手段で撮像し、 [3] The four corner positions of the projection object are imaged by an imaging means,
前記被投射体の四隅の位置を前記撮像手段に設定された座標系上で特定し、 前記座標系上で特定された前記被投射体の四隅の位置、前記被投射体のァスぺ タト比及び前記投射画像のアスペクト比に基づいて、前記投射画像と同一アスペクト 比で前記被投射体へ投射可能な最大の大きさの仮想投射枠を設定すること を特徴とする請求項 1又は 2に記載の画像投射方法。  The positions of the four corners of the projection object are specified on the coordinate system set in the imaging means, the four corner positions of the projection object specified on the coordinate system, and the aspect ratio of the projection object The virtual projection frame having the maximum size that can be projected onto the projection object with the same aspect ratio as that of the projection image is set based on the aspect ratio of the projection image. Image projection method.
[4] 前記被投射体の四隅の位置関係を、前記被投射体の中心を中心とし、前記投射 画像と同一アスペクト比を有する矩形の四隅の位置関係に二次元の射影変換を用 いて変換することにより前記仮想投射枠を設定することを特徴とする請求項 3に記載 の画像投射方法。 [4] The two-dimensional projective transformation is used for the positional relationship of the four corners of the projection object with respect to the positional relationship of the four corners of the rectangle having the same aspect ratio as the projection image with the center of the projection object as the center. The image projection method according to claim 3, wherein the virtual projection frame is set by performing conversion.
[5] 前記被投射体の上下両辺の長さ及び左右両辺の長さを前記座標系上で求め、 求められた前記被投射体の上下両辺の長さ及び左右両辺の長さの比率に基づい て前記被投射体のァスぺ外比を判断すること  [5] The length of both the upper and lower sides and the length of both left and right sides of the projection object are obtained on the coordinate system, and based on the obtained ratio of the lengths of the upper and lower sides and left and right sides of the projection object. To determine the external ratio of the projection object
を特徴とする請求項 3に記載の画像投射方法。  The image projection method according to claim 3, wherein:
[6] 前記被投射体のアスペクト比が 16 : 9であるか否力 ^判断することを特徴とする請求 項 5に記載の画像投射方法。  6. The image projecting method according to claim 5, wherein it is determined whether or not the aspect ratio of the projection object is 16: 9.
[7] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って変調光を 生成する空間光変調手段と、該空間光変調手段が生成した変調光を前記矩形状の 被投射体へ投射する投射レンズとを備え、前記矩形状の投射画像を変形した画像を 表す情報に従って前記空間光変調手段に変調光を生成させて前記矩形状の被投 射体上で矩形の画像となるように投射するプロジェクタにおいて、  [7] Spatial light modulation means for generating modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the modulated light generated by the spatial light modulation means for the rectangular projection A projection lens that projects onto the body, and causes the spatial light modulation means to generate modulated light according to information representing an image obtained by deforming the rectangular projection image, thereby generating a rectangular image on the rectangular projection object. In the projector that projects so that
前記矩形状の投射画像と同一アスペクト比を有し、前記矩形状の被投射体へ投射 された場合に矩形状となる仮想投射枠を前記空間光変調手段上に設定する仮想投 射枠設定手段を備えることを特徴とするプロジェクタ。  Virtual projection frame setting means for setting, on the spatial light modulation means, a virtual projection frame having the same aspect ratio as the rectangular projection image and having a rectangular shape when projected onto the rectangular projection object A projector comprising:
[8] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って変調光を 生成する空間光変調手段と、該空間光変調手段が生成した変調光を前記矩形状の 被投射体へ投射する投射レンズとを備え、前記矩形状の投射画像を変形した画像を 表す情報に従って前記空間光変調手段に変調光を生成させて前記矩形状の被投 射体上で矩形の画像となるように投射するプロジェクタにおいて、  [8] Spatial light modulation means for generating modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the modulated light generated by the spatial light modulation means for the rectangular projection A projection lens that projects onto the body, and causes the spatial light modulation means to generate modulated light according to information representing an image obtained by deforming the rectangular projection image, thereby generating a rectangular image on the rectangular projection object. In the projector that projects so that
前記矩形状の投射画像と同一アスペクト比を有し、前記矩形状の被投射体へ投射 された場合に矩形状となる仮想投射枠を前記空間光変調手段上に設定する仮想投 射枠設定手段と、  Virtual projection frame setting means for setting, on the spatial light modulation means, a virtual projection frame having the same aspect ratio as the rectangular projection image and having a rectangular shape when projected onto the rectangular projection object When,
該仮想投射枠設定手段が前記空間光変調手段上に設定した仮想投射枠の四隅 に前記矩形状の投射画像の四隅が一致した状態で投射されるように、前記空間光 変調手段が生成する変調光が表す前記矩形状の投射画像の変形量を演算する演 算手段と を備えることを特徴とするプロジェクタ。 The modulation generated by the spatial light modulation means so that the four corners of the rectangular projection image coincide with the four corners of the virtual projection frame set on the spatial light modulation means by the virtual projection frame setting means. Calculation means for calculating the deformation amount of the rectangular projection image represented by light; A projector comprising:
[9] 前記被投射体の四隅の位置を撮像する撮像手段と、  [9] Imaging means for imaging the positions of the four corners of the projection object;
前記被投射体の四隅の位置を前記撮像手段に設定された座標系上で特定する特 定手段とを備え、  Specifying means for specifying the positions of the four corners of the projection object on a coordinate system set in the imaging means;
前記仮想投射枠設定手段は、前記座標系上で前記特定手段が特定した前記被投 射体の四隅の位置、前記被投射体のアスペクト比及び前記投射画像のアスペクト比 に基づいて、前記投射画像と同一アスペクト比で前記被投射体へ投射可能な最大 の大きさの仮想投射枠を設定すること  The virtual projection frame setting means is based on the four corner positions of the projection object specified by the specification means on the coordinate system, the aspect ratio of the projection object, and the aspect ratio of the projection image. Set the maximum virtual projection frame that can be projected onto the projection object with the same aspect ratio as
を特徴とする請求項 7又は 8に記載のプロジェクタ。  The projector according to claim 7 or 8, characterized in that.
[10] 前記仮想投射枠設定手段は、前記被投射体の四隅の位置関係を、前記被投射体 の中心を中心とし、前記投射画像と同一アスペクト比を有する矩形の四隅の位置関 係に二次元の射影変換を用いて変換することにより仮想投射枠を設定することを特 徴とする請求項 9に記載のプロジェクタ。  [10] The virtual projection frame setting means sets the positional relationship of the four corners of the projection object to the positional relationship of the rectangular four corners having the same aspect ratio as the projection image with the center of the projection target as the center. 10. The projector according to claim 9, wherein the virtual projection frame is set by performing transformation using a three-dimensional projective transformation.
[11] 前記被投射体の上下両辺の長さ及び左右両辺の長さを前記座標系上で求め、両 者の比率に基づいて前記被投射体のァスぺ外比を判断する手段を更に備えたこと を特徴とする請求項 9に記載のプロジェクタ。  [11] A means for determining the length of both upper and lower sides and the length of both right and left sides of the projection body on the coordinate system, and further determining means for determining the external ratio of the projection body based on a ratio between the two. The projector according to claim 9, comprising the projector.
[12] 前記被投射体のアスペクト比を判断する手段は、前記被投射体のアスペクト比が 1 6: 9であるか否かを判断することを特徴とする請求項 11に記載のプロジェクタ。  12. The projector according to claim 11, wherein the means for determining the aspect ratio of the projection object determines whether or not the aspect ratio of the projection object is 16: 9.
[13] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って変調光を 生成する空間光変調手段と、該空間光変調手段が生成した変調光を前記矩形状の 被投射体へ投射する投射レンズと、撮像装置とを備え、前記矩形状の投射画像を変 形した画像を表す情報に従って前記空間光変調手段に変調光を生成させて前記矩 形状の被投射体上で矩形状の画像となるように投射させるための、前記矩形状の投 射画像と同一アスペクト比の仮想投射枠を前記撮像装置が撮像した画像に基づい て前記空間光変調手段上に設定するプロジェクタにおいて、  [13] Spatial light modulation means for generating modulated light in accordance with information representing a rectangular projection image projected onto a rectangular projection object, and the modulated light generated by the spatial light modulation means for the rectangular projection A projection lens that projects onto the body, and an imaging device, wherein the spatial light modulation means generates modulated light according to information representing an image obtained by transforming the rectangular projection image on the rectangular projection object. In a projector that sets a virtual projection frame having the same aspect ratio as that of the rectangular projection image on the spatial light modulator on the basis of an image captured by the imaging device for projecting to form a rectangular image. ,
前記矩形状の投射画像と同一アスペクト比の矩形の四隅を示すテストパターンを表 す変調光を前記空間光変調手段に生成させて前記投射レンズから前記矩形状の被 投射体へ向けて投射させる手段と、 前記テストパターンが前記矩形状の被投射体へ向けて投射された状態を前記撮像 装置に撮像させる手段と、 Means for causing the spatial light modulation means to generate modulated light representing test patterns indicating the four corners of a rectangle having the same aspect ratio as the rectangular projection image, and projecting the modulated light from the projection lens toward the rectangular projection object When, Means for causing the imaging device to image the state in which the test pattern is projected toward the rectangular projection object;
前記撮像装置が撮像した画像上で前記矩形状の被投射体の四隅の位置を検出す る手段と、  Means for detecting positions of four corners of the rectangular projection object on an image captured by the imaging device;
前記撮像装置が撮像した画像上で前記投射されたテストパターンの四隅の位置を 検出する手段と、  Means for detecting positions of four corners of the projected test pattern on an image captured by the imaging device;
前記撮像装置が撮像した画像上での、前記矩形状の被投射体の四隅と前記テスト パターンの四隅との相対的位置関係に基づいて、前記空間光変調手段上に設定さ れる前記仮想投射枠の四隅を決定する手段と  The virtual projection frame set on the spatial light modulation means based on the relative positional relationship between the four corners of the rectangular projection object and the four corners of the test pattern on the image captured by the imaging device Means to determine the four corners of
を備えたことを特徴とするプロジェクタ。  A projector comprising:
矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って変調光を 生成する空間光変調手段と、該空間光変調手段が生成した変調光を前記矩形状の 被投射体へ投射する投射レンズと、撮像装置とを備え、前記矩形状の投射画像を変 形した画像を表す情報に従って前記空間光変調手段に変調光を生成させて前記矩 形状の被投射体上で矩形状の画像となるように投射させるコンピュータに、前記矩形 状の投射画像と同一ァスぺ外比の仮想投射枠を前記撮像装置が撮像した画像に 基づいて前記空間光変調手段上に設定させるコンピュータプログラムであって、 前記矩形状の投射画像と同一ァスぺ外比の矩形の四隅を示すテストパターンを表 す変調光を前記空間光変調手段に生成させて前記投射レンズから前記矩形状の被 投射体へ向けて投射させる手順と、  Spatial light modulation means for generating modulated light according to information representing a rectangular projection image projected onto the rectangular projection object, and projecting the modulated light generated by the spatial light modulation means onto the rectangular projection object A projection lens and an imaging device, wherein the spatial light modulation means generates modulated light according to information representing an image obtained by transforming the rectangular projection image, and the rectangular projection on the rectangular projection object is generated. A computer program that causes a computer to project an image so that a virtual projection frame having the same external ratio as the rectangular projection image is set on the spatial light modulation unit based on an image captured by the imaging device. The spatial projection means generates modulated light representing a test pattern indicating four corners of a rectangle having the same outer ratio as the rectangular projection image, and the rectangular projection object is generated from the projection lens. Heading A procedure for the projection Te,
前記テストパターンが前記矩形状の被投射体へ向けて投射された状態を前記撮像 装置に撮像させる手順と、  A procedure for causing the imaging device to image a state in which the test pattern is projected toward the rectangular projection object;
前記撮像装置が撮像した画像上で前記矩形状の被投射体の四隅の位置を検出す る手順と、  A procedure for detecting positions of four corners of the rectangular projection object on an image captured by the imaging device;
前記撮像装置が撮像した画像上で前記投射されたテストパターンの四隅の位置を 検出する手順と、  A procedure for detecting positions of four corners of the projected test pattern on an image captured by the imaging device;
前記撮像装置が撮像した画像上での、前記矩形状の被投射体の四隅と前記テスト パターンの四隅との相対的位置関係に基づいて、前記空間光変調手段上に設定さ れる前記仮想投射枠の四隅を決定する手順と Based on the relative positional relationship between the four corners of the rectangular projection object and the four corners of the test pattern on the image captured by the imaging device, the spatial light modulation unit is set. Determining the four corners of the virtual projection frame
を前記コンピュータに実行させることを特徴とするコンビ.  A combination characterized by causing the computer to execute.
PCT/JP2004/010142 2004-07-15 2004-07-15 Image projecting method, projector and computer program WO2006008792A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/010142 WO2006008792A1 (en) 2004-07-15 2004-07-15 Image projecting method, projector and computer program
TW093122960A TWI344596B (en) 2004-07-15 2004-07-30 Image projection method, projector, and recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/010142 WO2006008792A1 (en) 2004-07-15 2004-07-15 Image projecting method, projector and computer program

Publications (1)

Publication Number Publication Date
WO2006008792A1 true WO2006008792A1 (en) 2006-01-26

Family

ID=35784928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010142 WO2006008792A1 (en) 2004-07-15 2004-07-15 Image projecting method, projector and computer program

Country Status (2)

Country Link
TW (1) TWI344596B (en)
WO (1) WO2006008792A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1814324A1 (en) * 2004-10-20 2007-08-01 Sharp Kabushiki Kaisha Image projecting method, projector, and computer program
EP1983745A1 (en) * 2006-02-07 2008-10-22 Sharp Kabushiki Kaisha Image projecting method and projector
JP2014027457A (en) * 2012-07-26 2014-02-06 Seiko Epson Corp Image display apparatus, image display method, and image display program
JP2017203804A (en) * 2016-05-09 2017-11-16 キヤノン株式会社 Projection device and projection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352591A (en) * 1998-06-12 1999-12-24 Denso Corp Video display device
JP2001069433A (en) * 1999-08-25 2001-03-16 Ricoh Co Ltd Image projector, image projection method, and computer- readable recording medium recording program to allow computer to execute the method
JP2001083949A (en) * 1999-09-16 2001-03-30 Japan Science & Technology Corp Image projecting device
JP2004222153A (en) * 2003-01-17 2004-08-05 Seiko Epson Corp Image processing system, projector, program, information storage medium and image processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352591A (en) * 1998-06-12 1999-12-24 Denso Corp Video display device
JP2001069433A (en) * 1999-08-25 2001-03-16 Ricoh Co Ltd Image projector, image projection method, and computer- readable recording medium recording program to allow computer to execute the method
JP2001083949A (en) * 1999-09-16 2001-03-30 Japan Science & Technology Corp Image projecting device
JP2004222153A (en) * 2003-01-17 2004-08-05 Seiko Epson Corp Image processing system, projector, program, information storage medium and image processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1814324A1 (en) * 2004-10-20 2007-08-01 Sharp Kabushiki Kaisha Image projecting method, projector, and computer program
EP1814324A4 (en) * 2004-10-20 2010-01-20 Sharp Kk Image projecting method, projector, and computer program
EP1983745A1 (en) * 2006-02-07 2008-10-22 Sharp Kabushiki Kaisha Image projecting method and projector
EP1983745A4 (en) * 2006-02-07 2012-07-18 Sharp Kk Image projecting method and projector
JP2014027457A (en) * 2012-07-26 2014-02-06 Seiko Epson Corp Image display apparatus, image display method, and image display program
JP2017203804A (en) * 2016-05-09 2017-11-16 キヤノン株式会社 Projection device and projection method

Also Published As

Publication number Publication date
TW200602858A (en) 2006-01-16
TWI344596B (en) 2011-07-01

Similar Documents

Publication Publication Date Title
WO2006043541A1 (en) Image projecting method, projector, and computer program
JP3620537B2 (en) Image processing system, projector, program, information storage medium, and image processing method
US6450647B1 (en) Image processing device and image processing method
JP6164820B2 (en) Projector, control method therefor, and image projection system
EP1998572B1 (en) Image processor for converting the resolution of an image
US20090015730A1 (en) Image projecting method and projector
WO2007091340A1 (en) Image projecting method and projector
JP6645687B2 (en) Display device and control method
WO2002052844A1 (en) Projector and projection size adjusting method
JP4578341B2 (en) Image projection method, projector, and computer program
JP2017147634A (en) Projection device, projection method, and projection system
JP2006165949A (en) Projector system and projector
JP2019161397A (en) Control device, program, and control method
JP2013037082A (en) Image processing device and image processing method
JP2011188404A (en) Image processing apparatus in multi-projection system, method of processing image in multi-projection system, and multi-projection system
JP2010130385A (en) Image display method and image display device
WO2006008792A1 (en) Image projecting method, projector and computer program
JP6525612B2 (en) Image projection device
JP4508750B2 (en) projector
JP6700955B2 (en) Projection apparatus and projection method
JP2008072364A (en) Projector
JP6598633B2 (en) Projection apparatus and control method of projection apparatus
JP2020053710A (en) Information processing apparatus, projection device, control method of projection device, and program
WO2006008791A1 (en) Image projecting method, projector and computer program
JP2018180105A (en) Projection device and image projection method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase