WO2006008791A1 - Image projecting method, projector and computer program - Google Patents

Image projecting method, projector and computer program Download PDF

Info

Publication number
WO2006008791A1
WO2006008791A1 PCT/JP2004/010141 JP2004010141W WO2006008791A1 WO 2006008791 A1 WO2006008791 A1 WO 2006008791A1 JP 2004010141 W JP2004010141 W JP 2004010141W WO 2006008791 A1 WO2006008791 A1 WO 2006008791A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
image
rectangular
corners
virtual
Prior art date
Application number
PCT/JP2004/010141
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Arakawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to PCT/JP2004/010141 priority Critical patent/WO2006008791A1/en
Priority to TW093122958A priority patent/TWI244860B/en
Publication of WO2006008791A1 publication Critical patent/WO2006008791A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • H04N7/0122Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal the input and the output signals having different aspect ratios

Definitions

  • the present invention automatically adjusts the size of a projected image at the stage of projection preparation.
  • a projector that projects an image onto an object to be projected such as a screen, white wall, and whiteboard
  • a plurality of settings related to projection are prepared as projection preparation so that appropriate projection can be performed from the installation location of the projector. Items need to be adjusted.
  • the setting items described above include focus adjustment, color correction, image size adjustment (zoom adjustment), and keystone distortion correction (keystone correction).
  • test pattern images corresponding to the items are sequentially projected from the projector, and the state of the test pattern image projected on the projection object is fed back by imaging with an imaging device.
  • it is generally configured to make adjustments and corrections.
  • zoom adjustment the zoom of the projection lens can be adjusted based on the user's instruction or the projector's automatic judgment so that the test pattern image for dimension adjustment projected on the projection object fits on the projection object. Adjust the function to enlarge or reduce the projected image.
  • projectors generally have an optical axis that passes through the lens center of the projection lens that is offset from the center of the projected image. The optical axis passing through the center) is usually used as a reference for adjustment.
  • the projection preparation of such a projector is disclosed in Patent Document 1 below.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-241874
  • the preparation for projection of the conventional projector as described above is generally based on the positions of the four corners of the projection target (for example, the screen) and the four corners of the projected image (projected image).
  • the size of the projected image and the trapezoidal distortion are adjusted so that the four corners of the projected image coincide with the positions of the four corners of the projection object.
  • the present invention has been made in view of the above problems, and since a sufficient distance cannot be taken between the projection target and the projector, the projected image is In the case of projection that can only be projected with a size that is smaller than the size, a virtual projection frame is automatically set at the center of the projection object, and an image is projected onto this virtual projection frame.
  • the main purpose is to provide an image projection method and a projector that projects an image by such an image projection method.
  • the present invention corrects trapezoidal distortion of a projected image and projects an image onto a virtual projection frame, and projects an image using such an image projection method.
  • the purpose is to provide a projector.
  • the present invention has an object to provide an image projection method in which a virtual projection frame is set with the maximum size and a projector that projects an image by such an image projection method. To do. At this time, another object is to make it possible to easily set a virtual projection frame by using a known two-dimensional projective transformation.
  • Another object of the present invention is to provide a computer program for the projector control circuit as described above or for controlling the projector with a general-purpose computer. Means for solving the problem
  • an image projection method is directed to a rectangular projection object.
  • the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, and projects the rectangular image on the projection object.
  • the center of the rectangular projection object is smaller than the size of the rectangular projection object.
  • a virtual projection frame having a rectangular shape with the centers being matched is set on the spatial light modulation means.
  • a projector includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the spatial A projection lens that projects the modulated light generated by the light modulation unit onto the rectangular projection target, and generates the modulated light in the spatial light modulation unit according to information representing an image obtained by deforming the rectangular projection image.
  • the projector that projects so as to form a rectangular image on the rectangular projection object, the projector has the same aspect ratio as the rectangular projection image and is projected onto the rectangular projection object.
  • a virtual projection frame having a rectangular shape is set on the spatial light modulation unit in a state in which the center coincides with the center of the rectangular projection object smaller than the size of the rectangular projection object.
  • Provide virtual projection frame setting means The features.
  • the center of the projection object has the same aspect ratio as the projection image when projected onto the projection object and is smaller than the dimension of the projection object.
  • a rectangular virtual projection frame whose center is coincided with is set on the spatial light modulation means.
  • the image projection method causes the spatial light modulation means to generate modulated light according to information representing a rectangular projection image projected onto the rectangular projection object, and the spatial light modulation means.
  • the spatial light modulation means When projecting the modulated light generated by the projection lens onto the rectangular projection object, the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image.
  • the projection In the image projection method for projecting to form a rectangular image on the projection target, the projection has the same external ratio as the rectangular projection image and is projected onto the rectangular projection target.
  • a virtual projection frame having a rectangular shape with the center aligned with the center of the object to be projected is set on the spatial light modulation unit, and the four corners of the virtual projection frame set on the spatial light modulation unit are set.
  • the deformation amount of the rectangular projection image on the spatial light modulation means is calculated so that the four corners of the rectangular projection image coincide with each other.
  • the projector includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and a modulation generated by the spatial light modulation unit.
  • a projection lens that projects light onto the rectangular projection object, and the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, thereby generating the rectangular projection object.
  • the projected image has the same external ratio as the rectangular projected image and is projected onto the rectangular projection object when the rectangular image is projected.
  • Virtual projection frame setting means for setting, on the spatial light modulation means, a virtual projection frame that is rectangular in a state in which the center coincides with the center of the rectangular projection object that is smaller than the shape of the projection object having the shape
  • the virtual projection frame setting means Calculation means for calculating the deformation amount of the rectangular projection image on the spatial light modulation means so that the four corners of the rectangular projection image coincide with the four corners of the virtual projection frame set on the interspace light modulation means It is characterized by providing.
  • the center of the projection object having the same aspect ratio as the projection image and smaller than the dimension of the projection object when projected onto the projection object.
  • a rectangular virtual projection frame whose center is coincided with is set on the spatial light modulation means. Then, the deformation amount of the projection image is calculated so that the projection image is projected with the four corners of the virtual projection frame set on the spatial light modulation means being aligned, and the projection image is converted according to the calculation result. It is transformed and projected onto the projection target.
  • the image projection method according to the present invention is the image projection method invention described above, wherein the spatial light modulation means generates modulated light according to information representing the projection image that is not deformed, and the spatial light modulation is performed.
  • An image pickup unit that captures images including the four corner positions of the projection image and the four corner positions of the projection object when the modulated light generated by the means is projected to the projection object with the maximum size through the projection lens. From the image captured by the imaging means, the positions of the four corners of the projection object and the positions of the four corners of the projection image are captured. The position of the four corners of the projection image specified on the coordinate system is specified, and at least one of the four corner positions of the projection target specified on the coordinate system is specified on the coordinate system.
  • the virtual projection frame is set on the spatial light modulation means when it exists outside the window.
  • the projector according to the present invention is the projector according to the invention described above, wherein the modulated light generated by the spatial light modulation unit according to the information representing the projected image is not deformed and is maximized through the projection lens.
  • the image pickup means for picking up an image including the positions of the four corners of the projection image and the four corner positions of the target to be projected, and the image picked up by the image pickup means, Specifying means for specifying the positions of the four corners of the body and the positions of the four corners of the projection image on the coordinate system set in the imaging means, and the virtual projection frame setting means is configured so that the specifying means is on the coordinate system.
  • a virtual projection frame is set.
  • the projection lens according to the above-described image projection method and projector invention is further modified according to information representing a projected image having a rectangular shape.
  • the image including the four corner positions of the projected image and the four corner positions of the projection object is projected by the imaging means when projected onto the projection object with the maximum size through the projection unit.
  • the positions of the four corners of the projection object and the positions of the four corners of the projection image are specified on the coordinate system set in the imaging means, and the object specified on the coordinate system is specified.
  • a virtual projection frame is set when at least one of the four corner positions of the projecting body is located outside the four corner positions of the projected image.
  • the image projection method according to the present invention is the image projection method according to the invention described above, based on the four corner positions of the projection target and the four corner positions of the projection image specified on the coordinate system. It is characterized in that a virtual projection frame of the size is set on the spatial light modulation means.
  • the virtual projection frame setting means includes the positions of the four corners of the projection object and the front positions specified by the specifying means on the coordinate system.
  • a virtual projection frame having the maximum size is set on the spatial light modulation means based on the positions of the four corners of the projected image.
  • the positions of the four corners of the projection target and the four corner positions of the projection image specified on the coordinate system are set. Based on this, a virtual projection frame having the maximum dimension is set.
  • the image projection method according to the present invention is the virtual projection obtained by converting the aspect ratio of the projection target specified on the coordinate system into the aspect ratio of the projection image in the invention of the image projection method described above.
  • the reduction ratio at the time when all four corners of the virtual projection frame to be reduced step by step are positioned within the range of the projection image specified on the coordinate system.
  • a virtual projection frame having the maximum dimension is set on the spatial light modulation means.
  • the virtual projection frame setting means may use the aspect ratio of the projection object specified by the specifying means on the coordinate system as the aspect ratio of the projection image.
  • the virtual projection frame By reducing the converted virtual projection frame stepwise, all four corners of the virtual projection frame reduced stepwise are positioned within the range of the projection image specified by the specifying unit on the coordinate system.
  • a virtual projection frame having a maximum size is set on the spatial light modulation means based on the reduction ratio at the time point.
  • the aspect ratio of the projection object is determined by the aspect ratio of the projection target specified on the coordinate system.
  • the virtual projection frame converted into the ratio is reduced stepwise.
  • the maximum size of the virtual projection frame, which is reduced in stages, is maximized based on the reduction ratio when all the four corners of the virtual projection frame are located within the range of the projection image specified on the coordinate system.
  • a virtual projection frame is set.
  • the image projection method according to the present invention is the image projection method invention described above, wherein the positional relationship of the four corners of the projection object is centered on the center of the projection object and the same aspect as the projection image.
  • a virtual projection frame is set on the spatial light modulation means by converting the positional relationship of the four corners of the rectangle having a ratio using a two-dimensional projective transformation.
  • the virtual projection frame setting means is configured such that the positional relationship of the four corners of the projection object is centered on the center of the projection object, and A virtual projection frame is set on the spatial light modulation unit by converting the positional relationship of the four corners of the rectangle having an aspect ratio using a two-dimensional projective transformation.
  • the positional relationship of the four corners of the projection object is centered on the center of the projection object and is the same as the projection image.
  • the virtual projection frame is set by converting the positional relationship between the four corners of the rectangle having the aspect ratio using the two-dimensional projective transformation.
  • the projector includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the spatial light modulation unit A projection lens for projecting the modulated light onto the rectangular projection object; and an imaging device, wherein the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, and The projection target having the same outer ratio as the rectangular projection image for projecting to form a rectangular image on the projection target, and smaller than the dimension of the projection target
  • modulated light representing test patterns indicating four corners of the rectangular projection image is transmitted as the spatial light.
  • the modulation means generate Means for projecting from the projection lens toward the rectangular projection object, means for causing the imaging device to image the state in which the test pattern is projected toward the rectangular projection object, and Means for detecting the positions of the four corners of the rectangular projection object on the image captured by the imaging device; and means for detecting the positions of the four corners of the projected test pattern on the image captured by the imaging device.
  • test patterns indicating the four corners of the projected image are provided.
  • the image is projected toward the projection object, and this state is imaged by the imaging device.
  • the positions of the four corners of the projection object are detected, and the positions of the four corners of the projected test pattern are detected.
  • the relative positional relationship between the four corners of the projection object and the four corners of the test pattern on the image captured by the imaging device is examined, and from this result, at least one of the four corners of the projection object is projected.
  • the four corners of the virtual projection frame are determined when they are not within the range surrounded by the four corners of the test pattern.
  • the computer program according to the present invention includes a spatial light modulation unit that generates modulated light in accordance with information representing a rectangular projection image projected onto a rectangular projection body, and the spatial light modulation unit generates the spatial light.
  • the computer that projects the image to form a rectangular image on the projection object has the same aspect ratio as the rectangular projection image and is smaller than the size of the rectangular projection object.
  • a computer program for setting a rectangular virtual projection frame centered on the center of a shaped projection object based on an image captured by the imaging device, and showing four corners of the rectangular projection image test A procedure for causing the spatial light modulation means to generate modulated light representing a pattern and projecting the modulated light from the projection lens toward the rectangular projection object, and for directing the test pattern toward the rectangular projection object.
  • a procedure for causing the imaging device to capture the projected state, a procedure for detecting the positions of the four corners of the rectangular projection object on the image captured by the imaging device, and an image captured by the imaging device The procedure for detecting the positions of the four corners of the projected test pattern in step (b) and the relative positional relationship between the four corners of the rectangular projection object and the four corners of the test pattern on the image captured by the imaging device are examined.
  • test patterns indicating the four corners of the projected image are projected toward the projection target, and this state is captured by the imaging device, and the projection is performed on the image.
  • Test patterns projected as the four corners of the body are detected The positions of the four corners are detected. Then, the relative positional relationship between the four corners of the projection object and the four corners of the test pattern on the image captured by the imaging device is examined, and from this result, at least one of the four corners of the projection object is projected.
  • the computer controls so that the four corners of the virtual projection frame are determined in the case where the four corners of the virtual projection frame are located within the range surrounded by the four corners of the pattern.
  • the projection when projected onto the projection object, the projection has the same aspect ratio as the projection image and is smaller than the dimension of the projection object. Since the rectangular virtual projection frame whose center coincides with the center of the body is set on the spatial light modulation means, it becomes easy to project the projection image smaller than the projection target.
  • the center of the projection object having the same aspect ratio as the projection image when projected onto the projection object and smaller than the dimension of the projection object. Since a rectangular virtual projection frame whose center is coincided with the center is set on the spatial light modulation means and the projected image is projected on the virtual projection frame, the projection image is projected between the projection object and the projector. When the distance is not sufficient, adjustments that were previously done manually are automatically performed.
  • the image is projected to the projection object at the maximum size through the projection lens in accordance with the information representing the unmodified rectangular projection image. Since the necessity for the adjustment as described above is automatically determined from the image captured by the imaging device including the four corner positions and the four corner positions of the projection object, it requires manual labor. Without adjustment, the adjustment is automatically performed when the distance between the projection object and the projector is not sufficient.
  • the virtual projection frame that has the maximum size when projected onto the projection object is automatically obtained without requiring a manpower. Is set.
  • all of the four corners of the virtual projection frame reduced in stages are within the range of the projection image specified on the coordinate system.
  • the virtual of the maximum dimension The projection frame is automatically set on the spatial light modulation means without requiring manual work.
  • the positional relationship of the four corners of the projection object is converted by using a two-dimensional projective transformation which is a well-known calculation method.
  • the projection frame is easily set.
  • the projector of the present invention by examining the relative positional relationship between the four corners of the projection target and the four corners of the test pattern on the image captured by the imaging device, at least the four corners of the projection target are detected.
  • the projector automatically performs the process of determining the four corners of the virtual projection frame when one is located within the range surrounded by the four corners of the projected test pattern. Even when there is not enough space between them, adjustments that were previously done manually are performed automatically.
  • FIG. 1 is a block diagram showing an example of the internal configuration of an embodiment of a projector according to the present invention.
  • FIG. 2 is a schematic diagram showing a pixel configuration of a spatial light modulation device (panel) made of a liquid crystal panel included in a projection device section of a projector according to the present invention.
  • FIG. 3 is a schematic diagram of a test pattern image used for both zoom adjustment and trapezoidal distortion correction (keystone correction) in the projector according to the present invention.
  • FIG. 4 is a schematic diagram showing the appearance of a remote control device for a projector according to the present invention.
  • FIG. 5 is a flowchart showing a processing procedure performed by the projector according to the present invention during normal auto adjustment.
  • FIG. 6 is a schematic diagram when the frontal force of the screen is viewed when the thick frame portion of the test pattern image is projected onto the screen.
  • FIG. 7 is a schematic diagram showing the state shown in FIG. 6 as viewed on the camera coordinate system.
  • FIG.8 A known two-dimensional projection change for the coordinate values of the four corners of the screen on the panel coordinate system It is a schematic diagram which shows the state which applied the conversion and set the coordinate value of the virtual reduction screen.
  • FIG. 9 is a schematic diagram showing a state in which two-dimensional projective transformation is performed so that the four corners of the projected image match the coordinate values of the four corners of the virtual reduced screen in the camera coordinate system.
  • FIG. 10 is a flowchart showing a processing procedure in which the system control unit executes the computer program according to the present invention during auto adjustment by the projector according to the present invention. Explanation of symbols
  • FIG. 1 is a block diagram showing an internal configuration example of an embodiment of a projector according to the present invention.
  • the following explanation is an example when the image projection method according to the present invention is implemented by the projector according to the present invention.
  • the image projection method according to the present invention functions not only as a device configured as a projector but also as a projector.
  • the present invention can also be applied to a case where a personal computer is connected to and controlled by a device having both of the above and a projector having only a function of projecting an image.
  • the projector 1 according to the present embodiment has an auto adjustment function capable of automatically performing projection preparation.
  • the auto adjustment function projects a test pattern image from the projection lens 2 onto the projection target screen S during projection preparation, and the camera unit 3 captures the state of the test pattern image projected onto the screen S. Based on the four corner positions of the resulting screen S and the four corner positions of the test pattern image, projection preparation such as the size and position of the projected image (projected image) and keystone distortion (keystone) correction is automatically performed. This function is performed automatically.
  • the auto adjustment function includes color correction, focus adjustment, and the like. However, since there is no direct relationship with the present invention, description thereof will be omitted.
  • the projector 1 includes an external connection unit 4 and an image conversion unit 5 as units that mainly perform processing on an image for projection input from the outside.
  • the projector 1 includes a color control unit 6, a test pattern image switching unit 7, a projection device unit 8, a projection lens driving unit 9, and a projection lens 2 as parts that mainly perform processes related to projection.
  • the projector 1 includes a camera unit 3 and a detection unit 11 as a part for performing processing mainly related to the auto adjustment function.
  • the projector 1 includes an operation unit 12 and a remote control light receiving unit 13 of a remote controller (hereinafter referred to as a remote controller) 20 as means for receiving an operation by a user.
  • the overall control of the projector 1 is performed by the system control unit 10.
  • the external connection unit 4 is connected to an external device that outputs an image for projection.
  • the external connection unit 4 inputs a rectangular image output from the external device and transmits it to the image conversion unit 5.
  • the image conversion unit 5 performs necessary conversion processing such as A / D conversion based on the control of the system control unit 10, and transmits the converted image to the projection device unit 8.
  • the color control unit 6 performs a process for adjusting the color of the projected image. Specifically, the color control unit 6 adjusts the balance of each color of R (red), G (green), and B (blue) based on the control of the system control unit 10 to thereby adjust the color of the projected image. Make corrections.
  • the test pattern image switching unit 7 generates various test patterns necessary for the auto adjustment function based on the control of the system control unit 10 and transmits the test patterns to the projection device unit 8 as test pattern images.
  • the projection device unit 8 optically modulates information on the image to be projected (digital image data).
  • Built-in spatial light modulation device 8a The projection device unit 8 generates modulated light obtained by optically modulating the digital image data of various images transmitted from the image conversion unit 5, the test pattern image switching unit 7, and the system control unit 10 described later by the spatial light modulation device 8a. To do.
  • the modulated light generated by the spatial light modulation device 8a of the projection device unit 8 in this way is projected onto the external screen S through the projection lens 2. As a result, an image to be projected is displayed on the screen S.
  • the spatial light modulation device 8a either a liquid crystal panel or a DMD (Digital Micromirrow Device) is generally used.
  • a liquid crystal panel is used as the spatial light modulation device 8a
  • each pixel associated with the dot unit of the digital data of the image to be projected transmits the light from the light source while displaying each dot of the image.
  • modulated light for displaying an image as a whole is projected, and finally an image is displayed on the screen S.
  • DMD is used as the spatial light modulation device 8a
  • the light from the light source is reflected while switching the reflection angle of the micromirror (Micromirrow) associated with the dot unit of the digital data of the image to be projected.
  • the image to be projected is projected in a state represented by the entire reflected light (modulated light), and finally the image is displayed on the screen S.
  • an image to be projected is a liquid crystal panel as the spatial light modulation device 8a.
  • the image is projected on the screen S by transmitting the light from the light source to the displayed image and projecting it from the projection lens 2.
  • an image is displayed as reflected light (modulated light) as a whole by switching the reflection angle of a micro mirror corresponding to a pixel of digital image data. Therefore, in the same way that individual pixels can be specified in correspondence with the dots of digital image data on the liquid crystal panel, individual micromirrors are specified in correspondence with the dots of digital image data in DMD. It is possible.
  • FIG. 2 is a schematic diagram showing a pixel configuration of a liquid crystal panel spatial light modulation device (hereinafter simply referred to as a panel) 8 a included in the projection device unit 8 described above.
  • panel 8a has 1024 pixels in the horizontal direction and 768 pixels in the vertical direction, that is, the XGA standard.
  • a panel coordinate system is set with the pixel at the coordinate value (0, 0) in the upper left corner as the origin and the horizontal direction as the X axis and the vertical direction as the y axis. Yes.
  • the projection device unit 8 when the coordinate values of the panel coordinate system corresponding to each pixel in the horizontal direction and the vertical direction are sent from the system control unit 10 to the projection device unit 8, the projection device unit 8 is based on the coordinate values of the panel coordinate system. Specifies the position and dimensions of the image to be displayed in the display range of panel 8a on the panel coordinate system. For example, if “127” is specified as the horizontal coordinate value and “127” is specified as the vertical coordinate value from the system control unit 10, the projection device unit 8 uses the pixel in the upper left corner of the panel 8a as the origin to A dot is displayed at the position of the 128th pixel in each direction and vertical direction.
  • the spatial light modulation device 8a when a DMD is used as the spatial light modulation device 8a, it is possible to set the same panel coordinate system as when the above-described liquid crystal panel is used.
  • the configuration using the liquid crystal panel is employed as the spatial light modulation device 8a, the configuration in which the liquid crystal panel is used as the spatial light modulation device 8a is also described in the following description.
  • the concept regarding the panel coordinate system is basically the same when the liquid crystal panel is used as the spatial light modulation device 8a and when the DMD is used.
  • the projection lens 2 is zoomed (image size) in addition to the original lens necessary for enlarging the light beam (modulated light) transmitted through the panel 8a and projecting it on the screen S as an image. It is composed of a plurality of lenses such as an adjustment lens and a focus adjustment lens.
  • the projection lens drive unit 9 has an actuator for changing the positions of the zoom adjustment lens and the focus adjustment lens of the projection lens 2. Then, the projection lens drive unit 9 performs zoom adjustment and focus adjustment by driving the actuator according to the control from the system control unit 10.
  • the camera unit 3 shown in FIG. 1 captures various test pattern images projected onto the screen S during automatic adjustment for projection preparation, and transmits the captured images to the detection unit 11.
  • the test pattern image projected from the projector 1 includes zoom adjustment and trapezoidal distortion correction as shown in the schematic diagram of FIG. 3, in addition to the color correction test pattern image and the focus adjustment test pattern (not shown).
  • Test pad used for (keystone correction) Turn image 25 is provided.
  • the test pattern image 25 has a thick frame test pattern (hereinafter referred to as a thick frame portion 25b) provided in the periphery corresponding to the outline of the projected image.
  • the present invention is basically irrelevant to the color correction and focus adjustment processing using the test pattern image for color correction and the test pattern image for focus adjustment. These processes will not be described.
  • the detection unit 11 analyzes the captured image sent from the camera unit 3. This image analysis is performed on the camera coordinate system.
  • the camera coordinate system is the coordinate system set for camera unit 3. More specifically, the camera coordinate system is a coordinate system set in the imaging field of view of the camera unit 3, and the camera unit 3 is the same as the panel coordinate system set in the spatial light modulation device 8a described above. This is a coordinate system with the upper left corner of the imaging field of view as the origin and the horizontal direction as the X axis and the vertical direction as the y axis. However, the camera coordinate system is actually set with the upper left corner of the image sensor panel (CCD panel) of the camera unit 3 as the origin, which means that the camera coordinates are set on the image captured by the camera unit 3. Can be considered.
  • CCD panel image sensor panel
  • the detection unit 11 uses the conventionally known method based on the image captured by the camera unit 3 to obtain the coordinate values of the four corner positions of the screen S on the camera coordinate system, the test pattern image 25 of FIG.
  • the coordinate values of the positions of the four corners of the projected image are detected according to the situation of the projector 1 at that time of the thick frame portion 25b. If these coordinate values are detected, the state of trapezoidal distortion of the screen S and the projected image (the thick frame portion 25b of the test pattern image 25) can be obtained based on the result. Needless to say.
  • the detection unit 11 transmits the detection result as described above to the system control unit 10.
  • the operation unit 12 provided in the projector 1 has a plurality of buttons, switches, and the like. When the user operates these buttons and switches, the operation unit 12 corresponds to the operated buttons, switches, and the like. Accepts an operation instruction and transmits it to the system control unit 10.
  • the remote control light receiving unit 13 receives an operation signal from the remote control 20 of the projector 1 and transmits it to the system control unit 10.
  • FIG. 4 is a schematic diagram showing the external appearance of the remote controller 20. As shown in FIG. 4, the remote control 20 has up / down / left / right selection keys 20a-20d and a decision key 20e in addition to a plurality of buttons. A GUI is adopted that allows the user to select a required item from a plurality of items displayed on the menu image by operating the selection key 20a-20d and the decision key 20e.
  • the operation unit 12 is provided with up / down / left / right selection keys and determination keys similar to those of the remote controller 20. Therefore, when the same operation is performed on the operation unit 12 and the remote controller 20, the same instruction is given to the system control unit 10.
  • the system control unit 10 that controls each unit described above includes a ROM10a and a RAM 10b.
  • ROMlOa is used to display a program 10p (computer program according to the present invention) that defines the contents of control performed by the system control unit 10, and various test pattern images and various menu images including the test pattern image 25 shown in FIG. This data is stored in advance.
  • RAMlOb temporarily stores various data generated during control by the system control unit 10.
  • the system control unit 10 of the projector 1 of the present embodiment configured as described above performs an adjustment to match the projected image with the screen S by the process shown in the flowchart of FIG. Do.
  • the following processing is executed by the system control unit 10 according to the program 10p stored in ROMlOa.
  • the system control unit 10 projects, for example, an all-white image (step Sl).
  • the detection unit 11 analyzes the image captured by the camera unit 3 in this state, thereby detecting the positions of the four corners of the screen S in the camera coordinate system (step S2). This is easily possible due to the difference between the reflectivity of the screen S and the reflectivity around it (for example, the wall surface).
  • the system control unit 10 projects a test pattern image 25 for detecting a projected image frame including a thick frame portion 25b that is a test pattern for detecting a projected image frame shown in FIG. 3 (step S3).
  • the detection unit 11 analyzes the image captured by the camera unit 3 in this state, thereby detecting the positions in the camera coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting the projected image frame (step S4). ). This is also possible easily by the difference between the reflectance of the thick frame portion 25b, which is a test pattern for detecting a projected image frame, and the surrounding reflectance.
  • the system control unit 10 performs zoom adjustment based on the positional relationship in the camera coordinate system of each of the four corners of the thick frame 25b, which is a test pattern for detecting the screen S and the projected image frame (step S5).
  • This zoom adjustment can be performed by, for example, a test pattern for detecting a projected image frame.
  • the thick frame portion 25b which is a projected image frame detection test pattern, is enlarged or reduced by zooming until the thick frame portion 25b, which is a screen, reaches the end point of the screen S.
  • the detection unit 11 analyzes the positions of the four corners of the thick frame portion 25b, which is a test pattern for detecting a projected image frame, from the image captured by the camera unit 3 again. (Step S6), the position of the four corners of the screen S detected in step S2 in the camera coordinate system and the position of the four corners of the thick frame 25b after zoom correction detected in step S6. From the relationship, the positions in the panel coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting a projected image frame after zoom correction, that is, coordinate values are determined (step S7). As a result, the image to be projected is displayed on the panel 8a by being deformed in reverse to the shape projected on the screen S.
  • the projection device unit 8 displays an image on the panel 8a according to the coordinate value given from the system control unit 10, and this is projected. Is projected to the full size of the screen S as a rectangular image with corrected trapezoidal distortion. Thus, the projection preparation for the projector 1 is automatically completed.
  • the processing by the system control unit 10 as described above is performed in the conventional general projection condition, that is, when the distance between the screen S and the projector 1 is sufficiently large, specifically, the projected image.
  • This is a projection preparation process that is automatically performed when the size on the screen S is sufficiently larger than the size of the screen S and the keystone distortion is corrected and can be projected to the full size of the screen S. .
  • the maximum size on the screen S after correcting the trapezoidal distortion of the projected image is the dimension of the screen S. Because it may be smaller than this, the preparation process as described above cannot be performed.
  • FIG. 6 and FIG. 7 are schematic diagrams for specifically explaining the state as described above.
  • FIG. 6 is a schematic diagram when the state in which the thick frame portion 25b of the test pattern image 25 is projected onto the screen S is viewed from the front of the screen S. Since the projector 1 is not installed facing the screen S, the outline of the projected image (hereinafter referred to as the projected image PJ), in this case, the thick frame portion 25b of the test pattern image 25 has a trapezoidal distortion. Projected in the resulting state.
  • FIG. 7 is a schematic diagram showing an image captured by the camera unit 3 of the projector 1 in the state shown in FIG. 6, that is, a state seen on the camera coordinate system. On the captured image 31, the thick frame portion 25b of the test pattern image 25 that is the outline of the projection image PJ is captured in a substantially rectangular shape, but the screen S is captured in a state in which a large trapezoidal distortion has occurred.
  • the projection image PJ is projected at the maximum size
  • the projection image PJ more specifically, the thick frame portion 25b of the test pattern image 25 is displayed. It is impossible to project with the dimensions of the screen S, with the keystone distortion corrected. Therefore, in such a case, in the projector 1 according to the present invention, a known two-dimensional projective transformation is applied to the coordinate values of the four corners of the screen S on the panel coordinate system as shown in the schematic diagram of FIG.
  • a virtual screen hereinafter referred to as a virtual reduced screen Vs
  • Vs a virtual reduced screen having the same aspect ratio as that of the panel 8a with a smaller size than the screen S and the center of the screen S is set.
  • a projection image PJ in which the trapezoidal distortion is corrected is projected so as to coincide with the dimensions of the virtual reduced screen Vs.
  • a known two-dimensional projective transformation is applied to the positions of the four corners of the screen S on the image captured by the camera unit 3 (hereinafter referred to as coordinate values in the force coordinate system).
  • the four corner positions of the virtual reduced screen Vs (camera coordinate system coordinate values) are obtained as a function of the reduction ratio, and the four corner positions of the virtual reduced screen Vs according to the reduction ratio (camera coordinate system coordinate values).
  • a known two-dimensional projective transformation is performed so that the four corners of the projected image PJ coincide with the four corners of the determined virtual reduced screen Vs.
  • the input parameters are the coordinate values of the four corners of the screen S on the camera coordinate system, the coordinate values of the four corners of the projected image PJ (specifically, the thick frame portion 25b which is a test pattern for detecting the projected image frame),
  • the X and y resolutions of the panel 8a of the projection device section 8 of the projector 1 are defined as follows (see Fig. 7).
  • the coordinate values (coordinate values on the panel coordinate system) of the four corners (PI, P2, P3, P4) of the panel 8a of the projection device unit 8 are as follows.
  • the respective conversion destination coordinate values (coordinate values of the screen S on the camera coordinate system) are (Pxl, Pyl), (Px2, Py2 ), (Px3, Py3), (Px4, Py4).
  • PX is defined as a coordinate value at an arbitrary position on the panel 8a (a coordinate value on the panel coordinate system), and a conversion destination thereof, that is, a coordinate value on the camera coordinate system is defined as (LXX, LYY).
  • Coordinate value in coordinate system (coordinate value of screen on camera coordinate system)
  • normalized coordinate values for use in the calculation, that is, the coordinate values of the four corners of the panel 8a (panel coordinate system) are set to 0 and 1 for both the x and y axes.
  • a value obtained by normalizing by converting to an intermediate value is obtained, and the above-mentioned conversion destination coordinate value (coordinate value in the camera coordinate system) is also normalized in the same manner.
  • the coordinate values of the four corner positions pl, p2, p3, p4 of the panel represented by the coordinate values normalized on the panel coordinate system and the normalized position px on the panel are the original coordinate values (panel coordinate values ), And the coordinate value obtained by normalizing the original coordinate value and the conversion destination coordinate value (camera coordinate system coordinate value) are expressed as follows.
  • conversion coefficients a, b, c, al, and so on for converting the original coordinate value (the coordinate value in the panel coordinate system) to the conversion destination coordinate value (the coordinate value of the screen S on the camera coordinate system) a2, bl, b2, aO, b0, and cO are obtained as follows. However, here, since it is a conversion coefficient for converting the original coordinate value (panel coordinate value) to the conversion destination coordinate value, a positive conversion coefficient is obtained. Note that a, b, and c are intermediate constants that are used to reduce redundant calculations even in the known two-dimensional projective transformation.
  • the position on the panel 8a of the projection device unit 8 corresponding to the four corner positions of the virtual reduced screen Vs that is, the coordinate value in the panel coordinate system is obtained.
  • the coordinate values of the positions corresponding to the four corner positions of the virtual reduced screen Vs on the panel 8a are (small xi, small yi) (see Fig. 2), and their positive transformation coordinate values (in the camera coordinate system).
  • the coordinate values are defined as (virtual xi, virtual yi) (see Fig. 7). Where i is 1, 2, 3, 4 and 100.
  • the / o coordinate value is the coordinate value of the position on the panel 8a corresponding to the position of the four corners of the screen S, specifically the panel 8a The coordinate values at the four corners.
  • the coefficient ctrx col / 2
  • the coefficient ctry row / 2
  • the reduction ratio (variable value) of the virtual reduction screen Vs is scale (0% — 100%)
  • the coordinate values (small xi, small yi) at the four corners of the virtual reduced screen Vs in the panel coordinate system are expressed as follows.
  • the reduction ratio scale of the virtual reduced screen Vs is a variable value between 0% and 100%
  • the coordinate values (small xi, small yi) of the four corners of the virtual reduced screen Vs in the panel coordinate system are reduced. It becomes a function of the ratio scale.
  • the values LX and LY are the coordinate values of the four corners of the virtual reduced screen Vs, small xl—samll x4, small yl one small y4, and any point on this panel coordinate (original coordinate) PX conversion coordinate (on the camera coordinate system) )
  • Coordinate values LXX and LYY are converted to virtual and reduced in the camera coordinate system.
  • the coordinate values LXX and LYY of the four corners of screen Vs are obtained as follows.
  • the force S means that all four corners of the virtual reduction screen Vs are located inside the projected image PJ on the camera coordinate system, and vice versa. If any one of the above eight conditions is not satisfied, it means that at least one of the four corners of the virtual reduced screen Vs is located outside the projected image PJ. Therefore, the coordinate value (virtual xi, virtual yi) of the virtual reduction screen Vs in the camera coordinate system described above is obtained while reducing the reduction ratio scale from 100% step by step, for example, in increments of 1% and 5%.
  • the coordinate values (virtual xi, virtual yi) of the four corners of the virtual reduced screen Vs in the camera coordinate system are obtained.
  • the projection image PJ (specifically, the test image) in the camera coordinate system is obtained.
  • Two-dimensional projective transformation is performed so that the four corners (coordinate values are (pjxi, pjyi)) of the thick frame 25b) of the pattern image 25 match.
  • the projected image PJ is corrected for trapezoidal distortion and has the same size as the virtual reduced screen Vs.
  • the projected image PJ is corrected for trapezoidal distortion and its four corners are virtual reduced screen Vs. It will be projected in a state that matches the four corners.
  • FIG. 9 is a schematic diagram showing this state. This two-dimensional projective transformation itself is a known technique.
  • the four corners of the projected image PJ can be projected in accordance with the four corners of the virtual reduced screen Vs. It ’s no problem, but this operation This is executed by the system control unit 10 based on the result of the detection unit 11 analyzing the image captured by the camera unit 3.
  • the input parameters are the coordinate values of the four corners of the virtual reduced screen Vs on the camera coordinate system, the coordinate values of the four corners of the projection image PJ, and the X-direction and y-direction resolutions of the panel 8a. Each is defined as follows.
  • the coordinates of the four corners (VP1, VP2, VP3, VP4) of the virtual reduced screen Vs on the camera coordinate system iiXvirtual xl, virtual yl), (virtual x2, virtual y2) Avirtual x3, virtual y 3) , (virtual x4, virtual y4) are (Pxl, Pyl), (Px2, Py2), (Px3, Py3), (Px4, Py4), and each conversion target coordinate value (coordinate value on the panel coordinate system) Is (0, 0), (col, 0), (col, row), (0, row).
  • PX is a coordinate value at an arbitrary position on the camera coordinate system.
  • VP1 (Pxl, Pyl) ⁇ (0, 0)
  • VP2 (Px2, Py2) ⁇ (col, 0)
  • VP3 (Px3, Py3) ⁇ (col, row)
  • the coordinate values normalized for use in the calculation that is, the coordinates of the four corners of the virtual reduced screen Vs on the camera coordinate system are 0 and 1 for both the x and y axes.
  • the normalized value is obtained by converting to a value between and the panel coordinate value, which is the conversion destination coordinate value described above, is normalized in the same manner.
  • the above relationship is such that the calculation is simplified by offsetting one point (xl, yl) of the conversion destination to the corresponding one point (0, 0) on the original coordinate system.
  • This is a general technique in the known two-dimensional projective transformation.
  • the normalized destination coordinate values X, y xl, x2, x3, x4 and yl, y2, y3, y4 are the coordinate values of the four corners of the virtual reduced screen Vs on the camera coordinate system (Pxl, Pyl), (Px2, Py2), (Px3, Py3), and (Px4, Py4) are used as follows.
  • conversion coefficients a, b, c, al for converting the original coordinate value (camera coordinate system) to the conversion destination coordinate value (coordinate value of virtual reduced screen Vs on the panel coordinate system) , a2, bl, b2, aO, b0, cO are obtained as follows. However, here, since it is a conversion coefficient for converting the original coordinate value (the coordinate value of the virtual reduction screen Vs on the camera coordinate system) to the conversion destination coordinate value (panel coordinate system), a positive conversion coefficient is obtained. At the same time, inverse transform coefficients n aO, n b0, n cO, n al, n b l, n a2, n b2 are also obtained. Note that a, b, and c are intermediate constants that are used to reduce duplicate calculations even in the known two-dimensional projective transformation.
  • n aO (aO * b2-a2 * b2)
  • n bO (al * bO _ aO * b l)
  • n cO (a2 * b l-al * b2)
  • the corresponding coordinate values on the panel coordinate system are calculated by inversely transforming the coordinate values of the four corners of the virtual reduced screen Vs on the camera coordinate system.
  • Arbitrary point PX The coordinate values LXX and LYY of the PX are the coordinate values sxi and syi at the four corners of the virtual reduction screen Vs, respectively, and by inverse transformation, the virtual reduction screen Vs on the camera coordinate system is finally obtained.
  • the coordinate values LX and LY of the four corners on the panel coordinate system corresponding to the four corners are obtained as follows.
  • the projection image PJ can be made to coincide with the virtual reduction screen Vs, and more specifically, the four corners of the projection image PJ can be made to coincide with the four corners of the virtual reduction screen Vs.
  • FIG. 10 is a flowchart showing a processing procedure by the system control unit at the time of auto adjustment by the projector of the present invention. That is, in FIG. 10, as described above, the projected image PJ has a dimension that matches the virtual reduced screen Vs on the screen S with the trapezoidal distortion corrected. Specifically, the four corners of the projected image PJ are also trapezoidally distorted. 12 is a flowchart showing a processing procedure by the system control unit 10 including processing for displaying the corrected reduced screen Vs on the screen S so as to coincide with the four corners in a corrected state. The control shown in this flowchart is processed according to the program 10p stored in ROMlOa.
  • the system control unit 10 is configured to process each procedure in accordance with the program 10p stored in the ROMlOa.
  • the projector of the present invention includes these procedures.
  • the user places the projector 1 in front of the screen S, and operates the operation unit 12 or the remote control 20 to give an instruction to perform automatic adjustment for projection preparation to the projector.
  • System The system control unit 10 monitors whether or not an instruction to perform automatic adjustment for projection preparation and other instructions have been received (step S11). When an instruction other than an instruction for performing automatic adjustment for projection preparation is received (NO in step S11), system control unit 10 executes a process corresponding to the received instruction (step S12). When an instruction to perform automatic adjustment for projection preparation is received (YES in step S11), the system control unit 10 performs projection on the four corners of the virtual reduction screen Vs described above as well as automatic adjustment for the items of color correction and focus adjustment. The adjustment to match the four corners of the image PJ, specifically, the thick frame portion 25b of the test pattern 25 is started (step S13). In the following description, descriptions regarding color correction and focus adjustment are omitted.
  • the system control unit 10 first detects positions (coordinate values) in the camera coordinate system of the four corners of the screen S from the image captured by the camera unit 3 (step S14), and then The positions (coordinate values) of the four corners of the thick frame 25b, which is a test pattern for detecting the projected image frame, are detected in the camera coordinate system (step S15), and the positional relationship between them, ie, the four corners of the screen S in the camera coordinate system. And the positions of the four corners of the thick frame portion 25b of the test pattern for detecting the projected image frame are examined (step S16).
  • the system controller 10 detects the positions (coordinate values) of the four corners of the screen S and the projected thick frame 25b in the camera coordinate system in the same manner as in the flowchart of FIG. .
  • the system control unit 10 Normal adjustment, that is, normal auto adjustment (zoom adjustment and trapezoidal distortion correction) is performed so that the projected image PJ larger than the screen S matches the dimension of the screen S (step S21).
  • various images input from the external connection unit 4 can be projected onto the virtual reduced screen Vs on the screen S according to the user's instructions, so that the image projection is performed according to the instructions from the detection unit 11. Started (step S20).
  • the system The control unit 10 performs automatic adjustment to project an image on the center of the screen S. That is, the system control unit 10 first sets the camera coordinate system as described above.
  • the trapezoidal distortion of the projected image PJ can be corrected, so that the virtual reduced screen Vs on screen S can satisfy such conditions.
  • zoom adjustment and keystone correction are performed so that the four corners of the thick frame portion 25b of the test pattern image 25 for detecting the projected image frame coincide with the four corners of the determined virtual reduced screen Vs (step S19). ). After that, various images input from the external connection unit 4 can be projected onto the virtual reduced screen Vs on the screen S according to the user's instructions. (Step S20).
  • the virtual reduction screen Vs (virtual projection frame) is set based on the image captured by the camera unit 3, but the screen S (projected body) is related.
  • light detection sensors such as photodiodes are installed at the four corners of the screen S to detect the positions of the four corners of the screen S, and the projected image (specifically, the thick frame 25b of the test pattern 25) is zoomed.
  • the present invention can be applied.
  • the projection image (specifically, the thick frame portion 25b of the test pattern 25) is matched with the four corners of the virtual reduced screen Vs (virtual projection frame), thereby projecting the projection image.
  • Vs virtual projection frame
  • zoom adjustment can be performed in a state where the center of the projected image coincides with the center of the screen S (projected body).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

A method for projecting an image automatically to the center of an object to which the image is to be projected (screen) when a projecting image is smaller than the dimensions of the object to which the image is to be projected. When it is decided that the size of a projecting image PJ not subjected to correction of trapezoidal distortion is smaller than the dimensions of the screen S, based on an image (3I) picked up at a camera section, a virtual contraction screen Vs having an aspect ratio identical to that of the projecting image is set in the center of the screen S and then adjustment of size and correction of trapezoidal distortion are carried out such that the projecting image coincides with the virtual contraction screen Vs.

Description

明 細 書  Specification
画像投射方法、プロジェクタ、及びコンピュータプログラム  Image projection method, projector, and computer program
技術分野  Technical field
[0001] 本発明は、投射準備の段階で、投射された画像の寸法を自動的に調整すると共に [0001] The present invention automatically adjusts the size of a projected image at the stage of projection preparation.
、台形歪みを補正することが可能な画像投射方法、及びそのような画像投射方法に より画像を投射するプロジェクタ、更にそのようなプロジェクタの制御回路のための、 又は汎用コンピュータでプロジェクタを制御するためのコンピュータプログラムに関す る。 , An image projection method capable of correcting trapezoidal distortion, and a projector that projects an image by such an image projection method, and for controlling a projector with a general-purpose computer for a control circuit of such a projector Concerning computer programs.
背景技術  Background art
[0002] スクリーン、白壁、及びホワイトボード等の被投射体に画像を投射するプロジェクタ では、プロジェクタの設置場所から適切な投射が行なえるように、先ず、投射準備とし て投射に関係する複数の設定項目を調整する必要がある。  [0002] In a projector that projects an image onto an object to be projected such as a screen, white wall, and whiteboard, first, a plurality of settings related to projection are prepared as projection preparation so that appropriate projection can be performed from the installation location of the projector. Items need to be adjusted.
[0003] 上述の設定項目としては、焦点調整、色味補正、画像寸法調整 (ズーム調整)、及 び台形歪み補正(キーストン補正)等がある。このような各項目の設定は、プロジェク タから各項目に応じたテストパターン画像を順次投射し、被投射体上に投射されたテ ストパターン画像の状態を撮像装置で撮像する等によりフィードバックして調整及び 補正を行なうように従来は一般的に構成されている。例えば、ズーム調整では、被投 射体上に投射された寸法調整用のテストパターン画像が被投射体に程良く収まるよ うに、ユーザの指示又はプロジェクタの自動的な判断に基づいて投射レンズのズー ム機能を調節して投射画像を拡大又は縮小する。なお、プロジェクタは、投射レンズ のレンズ中心を通る光軸が投射された画像の中心に対しオフセットされている(一致 していなレ、)ことが一般的であり、ズーム調整は、レンズ中心(レンズ中心を通る光軸) を通常、調整の基準にする。このようなプロジェクタの投射準備に関しては下記の特 許文献 1に開示されている。  [0003] The setting items described above include focus adjustment, color correction, image size adjustment (zoom adjustment), and keystone distortion correction (keystone correction). In setting such items, test pattern images corresponding to the items are sequentially projected from the projector, and the state of the test pattern image projected on the projection object is fed back by imaging with an imaging device. Conventionally, it is generally configured to make adjustments and corrections. For example, in zoom adjustment, the zoom of the projection lens can be adjusted based on the user's instruction or the projector's automatic judgment so that the test pattern image for dimension adjustment projected on the projection object fits on the projection object. Adjust the function to enlarge or reduce the projected image. Note that projectors generally have an optical axis that passes through the lens center of the projection lens that is offset from the center of the projected image. The optical axis passing through the center) is usually used as a reference for adjustment. The projection preparation of such a projector is disclosed in Patent Document 1 below.
特許文献 1 :特開 2000 - 241874号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2000-241874
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] ところで上述したような従来のプロジェクタの投射準備は一般的には、被投射体 (た とえばスクリーン)の四隅の位置及び投射される画像(投射画像)の四隅の位置をプ ロジェクタ側で認識し、投射される画像の四隅が被投射体の四隅の位置に一致する ように、投射される画像の大きさ及び台形歪みが調整される。しかし、プロジェクタと 被投射体との間の距離を十分にとれない状況では、画像を最大の大きさで投射した としても被投射体よりも大きく投射することができない場合があり、この場合には投射 される画像の四隅を被投射体の四隅の位置に一致させることは不可能になる。 Problems to be solved by the invention [0004] By the way, the preparation for projection of the conventional projector as described above is generally based on the positions of the four corners of the projection target (for example, the screen) and the four corners of the projected image (projected image). The size of the projected image and the trapezoidal distortion are adjusted so that the four corners of the projected image coincide with the positions of the four corners of the projection object. However, in situations where there is not enough distance between the projector and the projection object, it may not be possible to project an image larger than the projection object even if the image is projected at the maximum size. It becomes impossible to match the four corners of the projected image with the positions of the four corners of the projection object.
[0005] 上述のような場合には、被投射体の中央部分に画像が投射されるように調整するこ とが望ましレ、が、従来はそのような調整を自動的に行なうプロジェクタは知られてレ、な レ、。従って、このような場合には画像の投射位置の設定、台形歪み補正 (キーストン 補正)等を人手で行なう必要があるという問題があった。  [0005] In the above case, it is desirable to adjust so that an image is projected onto the central portion of the projection target. However, conventionally, projectors that automatically perform such adjustment are known. Being les, na les. Therefore, in such a case, there is a problem that it is necessary to manually perform the setting of the projection position of the image, the keystone distortion correction (keystone correction), and the like.
[0006] 本発明は以上のような問題点に鑑みてなされたものであり、被投射体とプロジェクタ との間に十分な距離をとることができないために、投射される画像が被投射体の寸法 よりも小さレ、大きさでしか投射できなレ、場合に、被投射体の中央部に自動的に仮想 の投射枠を設定し、この仮想の投射枠へ画像が投射されるようにした画像投射方法 及びそのような画像投射方法により画像を投射するプロジェクタの提供を主たる目的 とする。  [0006] The present invention has been made in view of the above problems, and since a sufficient distance cannot be taken between the projection target and the projector, the projected image is In the case of projection that can only be projected with a size that is smaller than the size, a virtual projection frame is automatically set at the center of the projection object, and an image is projected onto this virtual projection frame. The main purpose is to provide an image projection method and a projector that projects an image by such an image projection method.
[0007] また本発明は、上述の目的に加えて、投射される画像の台形歪みを補正して仮想 の投射枠へ画像を投射できる画像投射方法及びそのような画像投射方法により画像 を投射するプロジェクタの提供を目的とする。  [0007] Further, in addition to the above-mentioned object, the present invention corrects trapezoidal distortion of a projected image and projects an image onto a virtual projection frame, and projects an image using such an image projection method. The purpose is to provide a projector.
[0008] 更に本発明は、上述の目的に加えて、最大の寸法で仮想の投射枠を設定するよう にした画像投射方法及びそのような画像投射方法により画像を投射するプロジェクタ の提供を目的とする。この際、公知の二次元の射影変換を用いることにより容易に仮 想の投射枠を設定することを可能とすることをも目的とする。  Furthermore, in addition to the above-described object, the present invention has an object to provide an image projection method in which a virtual projection frame is set with the maximum size and a projector that projects an image by such an image projection method. To do. At this time, another object is to make it possible to easily set a virtual projection frame by using a known two-dimensional projective transformation.
[0009] 更に本発明は、上述のようなプロジェクタの制御回路のための、又は汎用コンビュ ータでプロジェクタを制御するためのコンピュータプログラムの提供をも目的とする。 課題を解決するための手段  Another object of the present invention is to provide a computer program for the projector control circuit as described above or for controlling the projector with a general-purpose computer. Means for solving the problem
[0010] 上記課題を解決するために本発明に係る画像投射方法は、矩形状の被投射体へ 投射される矩形状の投射画像を表す情報に従って空間光変調手段に変調光を生成 させ、前記空間光変調手段が生成した変調光を前記矩形状の被投射体へ投射レン ズに投射させる際に、前記矩形状の投射画像を変形した画像を表す情報に従って 前記空間光変調手段に変調光を生成させて前記被投射体上で矩形状の画像となる ように投射する画像投射方法において、前記矩形状の投射画像と同一アスペクト比 を有し、前記矩形状の被投射体へ投射された場合に、前記矩形状の被投射体の寸 法よりも小さぐ前記矩形状の被投射体の中心に中心を一致させた状態で矩形状と なる仮想投射枠を前記空間光変調手段上に設定することを特徴とする。 [0010] In order to solve the above problems, an image projection method according to the present invention is directed to a rectangular projection object. When the modulated light generated by the spatial light modulator is generated in accordance with the information representing the projected rectangular projection image, and the modulated light generated by the spatial light modulator is projected onto the projection lens on the rectangular projection object. In the image projecting method, the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, and projects the rectangular image on the projection object. When projected onto the rectangular projection object having the same aspect ratio as the shape projection image, the center of the rectangular projection object is smaller than the size of the rectangular projection object. A virtual projection frame having a rectangular shape with the centers being matched is set on the spatial light modulation means.
[0011] 上記課題を解決するために本発明に係るプロジェクタは、矩形状の被投射体へ投 射される矩形状の投射画像を表す情報に従って変調光を生成する空間光変調手段 と、該空間光変調手段が生成した変調光を前記矩形状の被投射体へ投射する投射 レンズとを備え、前記矩形状の投射画像を変形した画像を表す情報に従って前記空 間光変調手段に変調光を生成させて前記矩形状の被投射体上で矩形状の画像とな るように投射するプロジェクタにおいて、前記矩形状の投射画像と同一アスペクト比を 有し、前記矩形状の被投射体へ投射された場合に、前記矩形状の被投射体の寸法 よりも小さぐ前記矩形状の被投射体の中心に中心を一致させた状態で矩形状となる 仮想投射枠を前記空間光変調手段上に設定する仮想投射枠設定手段を備えること を特徴とする。  In order to solve the above problems, a projector according to the present invention includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the spatial A projection lens that projects the modulated light generated by the light modulation unit onto the rectangular projection target, and generates the modulated light in the spatial light modulation unit according to information representing an image obtained by deforming the rectangular projection image. In the projector that projects so as to form a rectangular image on the rectangular projection object, the projector has the same aspect ratio as the rectangular projection image and is projected onto the rectangular projection object. In this case, a virtual projection frame having a rectangular shape is set on the spatial light modulation unit in a state in which the center coincides with the center of the rectangular projection object smaller than the size of the rectangular projection object. Provide virtual projection frame setting means The features.
[0012] このような本発明の画像投射方法及びプロジェクタでは、被投射体へ投射された場 合に投射画像と同一アスペクト比を有し、被投射体の寸法よりも小さぐ被投射体の 中心に中心を一致させた矩形状の仮想投射枠が空間光変調手段上に設定される。  [0012] In such an image projection method and projector of the present invention, the center of the projection object has the same aspect ratio as the projection image when projected onto the projection object and is smaller than the dimension of the projection object. A rectangular virtual projection frame whose center is coincided with is set on the spatial light modulation means.
[0013] また本発明に係る画像投射方法は、矩形状の被投射体へ投射される矩形状の投 射画像を表す情報に従って空間光変調手段に変調光を生成させ、該空間光変調手 段が生成した変調光を前記矩形状の被投射体へ投射レンズに投射させる際に、前 記矩形状の投射画像を変形した画像を表す情報に従って前記空間光変調手段に 変調光を生成させて前記被投射体上で矩形状の画像となるように投射する画像投射 方法において、前記矩形状の投射画像と同一ァスぺ外比を有し、前記矩形状の被 投射体へ投射された場合に、前記矩形状の被投射体の寸法よりも小さぐ前記矩形 状の被投射体の中心に中心を一致させた状態で矩形状となる仮想投射枠を前記空 間光変調手段上に設定し、前記空間光変調手段上に設定された仮想投射枠の四隅 に前記矩形状の投射画像の四隅が一致するように、前記空間光変調手段上での前 記矩形状の投射画像の変形量を演算することを特徴とする。 [0013] Further, the image projection method according to the present invention causes the spatial light modulation means to generate modulated light according to information representing a rectangular projection image projected onto the rectangular projection object, and the spatial light modulation means. When projecting the modulated light generated by the projection lens onto the rectangular projection object, the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image. In the image projection method for projecting to form a rectangular image on the projection target, the projection has the same external ratio as the rectangular projection image and is projected onto the rectangular projection target. The rectangle smaller than the size of the rectangular projection object A virtual projection frame having a rectangular shape with the center aligned with the center of the object to be projected is set on the spatial light modulation unit, and the four corners of the virtual projection frame set on the spatial light modulation unit are set. The deformation amount of the rectangular projection image on the spatial light modulation means is calculated so that the four corners of the rectangular projection image coincide with each other.
[0014] また本発明に係るプロジェクタは、矩形状の被投射体へ投射される矩形状の投射 画像を表す情報に従って変調光を生成する空間光変調手段と、該空間光変調手段 が生成した変調光を前記矩形状の被投射体へ投射する投射レンズとを備え、前記矩 形状の投射画像を変形した画像を表す情報に従って前記空間光変調手段に変調 光を生成させて前記矩形状の被投射体上で矩形状の画像となるように投射するプロ ジェクタにおいて、前記矩形状の投射画像と同一ァスぺ外比を有し、前記矩形状の 被投射体へ投射された場合に、前記矩形状の被投射体の寸法よりも小さぐ前記矩 形状の被投射体の中心に中心を一致させた状態で矩形状となる仮想投射枠を前記 空間光変調手段上に設定する仮想投射枠設定手段と、該仮想投射枠設定手段が 前記空間光変調手段上に設定した仮想投射枠の四隅に前記矩形状の投射画像の 四隅が一致するように、前記空間光変調手段上での前記矩形状の投射画像の変形 量を演算する演算手段とを備えることを特徴とする。 [0014] In addition, the projector according to the present invention includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and a modulation generated by the spatial light modulation unit. A projection lens that projects light onto the rectangular projection object, and the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, thereby generating the rectangular projection object. In a projector that projects a rectangular image on the body, the projected image has the same external ratio as the rectangular projected image and is projected onto the rectangular projection object when the rectangular image is projected. Virtual projection frame setting means for setting, on the spatial light modulation means, a virtual projection frame that is rectangular in a state in which the center coincides with the center of the rectangular projection object that is smaller than the shape of the projection object having the shape And the virtual projection frame setting means Calculation means for calculating the deformation amount of the rectangular projection image on the spatial light modulation means so that the four corners of the rectangular projection image coincide with the four corners of the virtual projection frame set on the interspace light modulation means It is characterized by providing.
[0015] このような本発明の画像投射方法及びプロジェクタでは、被投射体へ投射された場 合に投射画像と同一アスペクト比を有し、被投射体の寸法よりも小さぐ被投射体の 中心に中心を一致させた矩形状の仮想投射枠が空間光変調手段上に設定される。 そして、この空間光変調手段上に設定された仮想投射枠の四隅に投射画像の四隅 がー致した状態で投射されるように投射画像の変形量が演算され、この演算結果に 従って投射画像が変形されて被投射体へ投射される。  [0015] In such an image projection method and projector of the present invention, the center of the projection object having the same aspect ratio as the projection image and smaller than the dimension of the projection object when projected onto the projection object. A rectangular virtual projection frame whose center is coincided with is set on the spatial light modulation means. Then, the deformation amount of the projection image is calculated so that the projection image is projected with the four corners of the virtual projection frame set on the spatial light modulation means being aligned, and the projection image is converted according to the calculation result. It is transformed and projected onto the projection target.
[0016] また本発明に係る画像投射方法は上記の画像投射方法の発明において、変形さ れていない前記投射画像を表す情報に従って前記空間光変調手段に変調光を生 成させ、前記空間光変調手段が生成した変調光を前記投射レンズを通じて最大の 大きさで前記被投射体へ投射した場合の前記投射画像の四隅の位置と、前記被投 射体の四隅の位置とを含む画像を撮像手段で撮像し、前記撮像手段が撮像した画 像から、前記被投射体の四隅の位置及び前記投射画像の四隅の位置を前記撮像 手段に設定された座標系上で特定し、前記座標系上で特定された前記被投射体の 四隅の位置の内の少なくとも一つが前記座標系上で特定された前記投射画像の四 隅の位置の外側に存在する場合に、前記空間光変調手段上に前記仮想投射枠を 設定することを特徴とする。 [0016] The image projection method according to the present invention is the image projection method invention described above, wherein the spatial light modulation means generates modulated light according to information representing the projection image that is not deformed, and the spatial light modulation is performed. An image pickup unit that captures images including the four corner positions of the projection image and the four corner positions of the projection object when the modulated light generated by the means is projected to the projection object with the maximum size through the projection lens. From the image captured by the imaging means, the positions of the four corners of the projection object and the positions of the four corners of the projection image are captured. The position of the four corners of the projection image specified on the coordinate system is specified, and at least one of the four corner positions of the projection target specified on the coordinate system is specified on the coordinate system. The virtual projection frame is set on the spatial light modulation means when it exists outside the window.
[0017] また本発明に係るプロジェクタは上記のプロジェクタの発明において、変形されて レ、ない前記投射画像を表す情報に従って前記空間光変調手段が生成した変調光を 前記投射レンズを通じて最大の大きさで前記被投射体へ投射した場合の前記投射 画像の四隅の位置と、前記被投射体の四隅の位置とを含む画像を撮像する撮像手 段と、該撮像手段が撮像した画像から、前記被投射体の四隅の位置及び前記投射 画像の四隅の位置を前記撮像手段に設定された座標系上で特定する特定手段とを 備え、前記仮想投射枠設定手段は、前記特定手段が前記座標系上で特定した前記 被投射体の四隅の位置の内の少なくとも一つが前記特定手段が前記座標系上で特 定した前記投射画像の四隅の位置の外側に存在する場合に、前記空間光変調手段 上に仮想投射枠を設定することを特徴とする。  [0017] The projector according to the present invention is the projector according to the invention described above, wherein the modulated light generated by the spatial light modulation unit according to the information representing the projected image is not deformed and is maximized through the projection lens. From the image picked up by the image pickup means for picking up an image including the positions of the four corners of the projection image and the four corner positions of the target to be projected, and the image picked up by the image pickup means, Specifying means for specifying the positions of the four corners of the body and the positions of the four corners of the projection image on the coordinate system set in the imaging means, and the virtual projection frame setting means is configured so that the specifying means is on the coordinate system. When at least one of the specified four corner positions of the projection object is outside the four corner positions of the projection image specified on the coordinate system by the specifying means, A virtual projection frame is set.
[0018] このような本発明の画像投射方法及びプロジェクタでは上記の画像投射方法及び プロジェクタの発明におレ、て更に、変形されてレ、なレ、矩形状の投射画像を表す情報 に従って投射レンズを通じて最大の大きさで被投射体へ投射された場合の投射画像 の四隅の位置と、被投射体の四隅の位置とを含む画像が撮像手段によって撮像され る。そして、この撮像手段が撮像した画像から、被投射体の四隅の位置及び投射画 像の四隅の位置が撮像手段に設定された座標系上で特定され、この座標系上で特 定された被投射体の四隅の位置の内の少なくとも一つが投射画像の四隅の位置の 外側に位置する場合に仮想投射枠が設定される。  [0018] In such an image projection method and projector according to the present invention, the projection lens according to the above-described image projection method and projector invention is further modified according to information representing a projected image having a rectangular shape. The image including the four corner positions of the projected image and the four corner positions of the projection object is projected by the imaging means when projected onto the projection object with the maximum size through the projection unit. Then, from the image captured by the imaging means, the positions of the four corners of the projection object and the positions of the four corners of the projection image are specified on the coordinate system set in the imaging means, and the object specified on the coordinate system is specified. A virtual projection frame is set when at least one of the four corner positions of the projecting body is located outside the four corner positions of the projected image.
[0019] 更に本発明に係る画像投射方法は上記の画像投射方法の発明において、前記座 標系上で特定された前記被投射体の四隅の位置及び前記投射画像の四隅の位置 に基づいて最大の寸法の仮想投射枠を前記空間光変調手段上に設定することを特 徴とする。  [0019] Further, the image projection method according to the present invention is the image projection method according to the invention described above, based on the four corner positions of the projection target and the four corner positions of the projection image specified on the coordinate system. It is characterized in that a virtual projection frame of the size is set on the spatial light modulation means.
[0020] 更に本発明に係るプロジェクタは上記の発明において、前記仮想投射枠設定手段 は、前記特定手段が前記座標系上で特定した前記被投射体の四隅の位置及び前 記投射画像の四隅の位置に基づいて最大の寸法の仮想投射枠を前記空間光変調 手段上に設定することを特徴とする。 [0020] Furthermore, in the projector according to the present invention as set forth in the invention described above, the virtual projection frame setting means includes the positions of the four corners of the projection object and the front positions specified by the specifying means on the coordinate system. A virtual projection frame having the maximum size is set on the spatial light modulation means based on the positions of the four corners of the projected image.
[0021] このような本発明の画像投射方法及びプロジェクタでは上記の画像投射方法及び プロジェクタの発明において、前述の座標系上で特定された被投射体の四隅の位置 及び投射画像の四隅の位置に基づいて最大の寸法の仮想投射枠が設定される。  In such an image projection method and projector according to the present invention, in the image projection method and projector invention described above, the positions of the four corners of the projection target and the four corner positions of the projection image specified on the coordinate system are set. Based on this, a virtual projection frame having the maximum dimension is set.
[0022] また更に本発明に係る画像投射方法は上記の画像投射方法の発明において、前 記座標系上で特定された前記被投射体のアスペクト比を前記投射画像のアスペクト 比に変換した仮想投射枠を段階的に縮小することにより、段階的に縮小される仮想 投射枠の四隅の全てが前記座標系上で特定した前記投射画像の範囲内に位置す るようになった時点の縮小比に基づいて最大の寸法の仮想投射枠を前記空間光変 調手段上に設定することを特徴とする。  Furthermore, the image projection method according to the present invention is the virtual projection obtained by converting the aspect ratio of the projection target specified on the coordinate system into the aspect ratio of the projection image in the invention of the image projection method described above. By reducing the frame step by step, the reduction ratio at the time when all four corners of the virtual projection frame to be reduced step by step are positioned within the range of the projection image specified on the coordinate system. Based on this, a virtual projection frame having the maximum dimension is set on the spatial light modulation means.
[0023] また更に本発明に係るプロジェクタは上記の発明において、前記仮想投射枠設定 手段は、前記特定手段が前記座標系上で特定した前記被投射体のアスペクト比を 前記投射画像のアスペクト比に変換した仮想投射枠を段階的に縮小することにより、 段階的に縮小される仮想投射枠の四隅の全てが前記特定手段が前記座標系上で 特定した前記投射画像の範囲内に位置するようになった時点の縮小比に基づレ、て 最大の寸法の仮想投射枠を前記空間光変調手段上に設定することを特徴とする。  [0023] Still further, in the projector according to the invention described above, the virtual projection frame setting means may use the aspect ratio of the projection object specified by the specifying means on the coordinate system as the aspect ratio of the projection image. By reducing the converted virtual projection frame stepwise, all four corners of the virtual projection frame reduced stepwise are positioned within the range of the projection image specified by the specifying unit on the coordinate system. A virtual projection frame having a maximum size is set on the spatial light modulation means based on the reduction ratio at the time point.
[0024] このような本発明に係る画像投射方法及びプロジェクタでは上記の画像投射方法 及びプロジェクタの発明において、前記の座標系上で特定された被投射体のァスぺ タト比が投射画像のアスペクト比に変換された仮想投射枠が段階的に縮小される。そ して、段階的に縮小される仮想投射枠の四隅の全てが前記の座標系上で特定され た投射画像の範囲内に位置するようになった時点の縮小比に基づいて最大の寸法 の仮想投射枠が設定される。  [0024] In such an image projection method and projector according to the present invention, in the above-described image projection method and projector invention, the aspect ratio of the projection object is determined by the aspect ratio of the projection target specified on the coordinate system. The virtual projection frame converted into the ratio is reduced stepwise. The maximum size of the virtual projection frame, which is reduced in stages, is maximized based on the reduction ratio when all the four corners of the virtual projection frame are located within the range of the projection image specified on the coordinate system. A virtual projection frame is set.
[0025] 更にまた本発明に係る画像投射方法は前記の画像投射方法の発明において、前 記被投射体の四隅の位置関係を、前記被投射体の中心を中心とし、前記投射画像 と同一アスペクト比を有する矩形の四隅の位置関係に二次元の射影変換を用いて変 換することにより、前記空間光変調手段上に仮想投射枠を設定することを特徴とする [0026] 更にまた本発明に係るプロジェクタは前記の発明において、前記仮想投射枠設定 手段は、前記被投射体の四隅の位置関係を、前記被投射体の中心を中心とし、前 記投射画像のアスペクト比を有する矩形の四隅の位置関係に二次元の射影変換を 用いて変換することにより、前記空間光変調手段上に仮想投射枠を設定することを 特徴とする。 Furthermore, the image projection method according to the present invention is the image projection method invention described above, wherein the positional relationship of the four corners of the projection object is centered on the center of the projection object and the same aspect as the projection image. A virtual projection frame is set on the spatial light modulation means by converting the positional relationship of the four corners of the rectangle having a ratio using a two-dimensional projective transformation. [0026] Furthermore, in the projector according to the present invention as set forth in the invention described above, the virtual projection frame setting means is configured such that the positional relationship of the four corners of the projection object is centered on the center of the projection object, and A virtual projection frame is set on the spatial light modulation unit by converting the positional relationship of the four corners of the rectangle having an aspect ratio using a two-dimensional projective transformation.
[0027] このような本発明に係る画像投射方法及びプロジェクタでは上記の画像投射方法 及びプロジェクタの発明において、被投射体の四隅の位置関係が、被投射体の中心 を中心とし、投射画像と同一アスペクト比を有する矩形の四隅の位置関係に二次元 の射影変換を用いて変換されることにより、仮想投射枠が設定される。  [0027] In such an image projection method and projector according to the present invention, in the image projection method and projector invention described above, the positional relationship of the four corners of the projection object is centered on the center of the projection object and is the same as the projection image. The virtual projection frame is set by converting the positional relationship between the four corners of the rectangle having the aspect ratio using the two-dimensional projective transformation.
[0028] また、本発明に係るプロジェクタは、矩形状の被投射体へ投射される矩形状の投射 画像を表す情報に従って変調光を生成する空間光変調手段と、該空間光変調手段 が生成した変調光を前記矩形状の被投射体へ投射する投射レンズと、撮像装置とを 備え、前記矩形状の投射画像を変形した画像を表す情報に従って前記空間光変調 手段に変調光を生成させて前記被投射体上で矩形状の画像となるように投射するた めの、前記矩形状の投射画像と同一ァスぺ外比を有し、前記被投射体の寸法よりも 小さぐ前記被投射体の中心に中心を一致させた矩形状の仮想投射枠を前記撮像 装置が撮像した画像に基づいて設定するプロジェクタにおいて、前記矩形状の投射 画像の四隅を示すテストパターンを表す変調光を前記空間光変調手段に生成させ て前記投射レンズから前記矩形状の被投射体へ向けて投射させる手段と、前記テス トパターンが前記矩形状の被投射体へ向けて投射された状態を前記撮像装置に撮 像させる手段と、前記撮像装置が撮像した画像上で前記矩形状の被投射体の四隅 の位置を検出する手段と、前記撮像装置が撮像した画像上で前記投射されたテスト パターンの四隅の位置を検出する手段と、前記撮像装置が撮像した画像上での、前 記矩形状の被投射体の四隅とテストパターンの四隅との相対的位置関係を調べる手 段と、前記撮像装置が撮像した画像上で、前記矩形状の被投射体の四隅の内の少 なくとも一つが前記投射されたテストパターンの四隅で囲まれる範囲内に位置してい ない場合に、仮想投射枠の四隅を決定する手段とを備えたことを特徴とする。  [0028] Further, the projector according to the present invention includes a spatial light modulation unit that generates modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the spatial light modulation unit A projection lens for projecting the modulated light onto the rectangular projection object; and an imaging device, wherein the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image, and The projection target having the same outer ratio as the rectangular projection image for projecting to form a rectangular image on the projection target, and smaller than the dimension of the projection target In the projector that sets a rectangular virtual projection frame whose center coincides with the center of the image based on an image captured by the imaging device, modulated light representing test patterns indicating four corners of the rectangular projection image is transmitted as the spatial light. Let the modulation means generate Means for projecting from the projection lens toward the rectangular projection object, means for causing the imaging device to image the state in which the test pattern is projected toward the rectangular projection object, and Means for detecting the positions of the four corners of the rectangular projection object on the image captured by the imaging device; and means for detecting the positions of the four corners of the projected test pattern on the image captured by the imaging device. A means for examining the relative positional relationship between the four corners of the rectangular projection object and the four corners of the test pattern on the image picked up by the image pickup device, and the image picked up by the image pickup device; Means for determining the four corners of the virtual projection frame when at least one of the four corners of the rectangular projection object is not located within a range surrounded by the four corners of the projected test pattern. It is characterized by that.
[0029] このような本発明に係るプロジェクタでは、投射画像の四隅を示すテストパターンが 被投射体へ向けて投射され、この状態が撮像装置により撮像され、この画像上で被 投射体の四隅の位置が検出されると共に投射されたテストパターンの四隅の位置が 検出される。そして、撮像装置が撮像した画像上での被投射体の四隅とテストパター ンの四隅との相対的位置関係が調べられ、この結果から被投射体の四隅の内の少 なくとも一つが投射されたテストパターンの四隅で囲まれる範囲内に位置していない 場合に仮想投射枠の四隅が決定される。 [0029] In such a projector according to the present invention, test patterns indicating the four corners of the projected image are provided. The image is projected toward the projection object, and this state is imaged by the imaging device. On this image, the positions of the four corners of the projection object are detected, and the positions of the four corners of the projected test pattern are detected. Then, the relative positional relationship between the four corners of the projection object and the four corners of the test pattern on the image captured by the imaging device is examined, and from this result, at least one of the four corners of the projection object is projected. The four corners of the virtual projection frame are determined when they are not within the range surrounded by the four corners of the test pattern.
[0030] また、本発明に係るコンピュータプログラムは、矩形状の被投射体へ投射される矩 形状の投射画像を表す情報に従って変調光を生成する空間光変調手段と、該空間 光変調手段が生成した変調光を前記矩形状の被投射体へ投射する投射レンズと、 撮像装置とを備え、前記矩形状の投射画像を変形した画像を表す情報に従って前 記空間光変調手段に変調光を生成させて前記被投射体上で矩形状の画像となるよ うに投射させるコンピュータに、前記矩形状の投射画像と同一アスペクト比を有し、前 記矩形状の被投射体の寸法よりも小さぐ前記矩形状の被投射体の中心に中心を一 致させた矩形状の仮想投射枠を前記撮像装置が撮像した画像に基づいて設定させ るコンピュータプログラムであって、前記矩形状の投射画像の四隅を示すテストパタ ーンを表す変調光を前記空間光変調手段に生成させて前記投射レンズから前記矩 形状の被投射体へ向けて投射させる手順と、前記テストパターンが前記矩形状の被 投射体へ向けて投射された状態を前記撮像装置に撮像させる手順と、前記撮像装 置が撮像した画像上で前記矩形状の被投射体の四隅の位置を検出する手順と、前 記撮像装置が撮像した画像上で前記投射されたテストパターンの四隅の位置を検出 する手順と、前記撮像装置が撮像した画像上での、前記矩形状の被投射体の四隅と テストパターンの四隅との相対的位置関係を調べる手順と、前記撮像装置が撮像し た画像上で、前記矩形状の被投射体の四隅の内の少なくとも一つが前記投射された テストパターンの四隅で囲まれる範囲内に位置していない場合に、仮想投射枠の四 隅を決定する手順とを前記コンピュータに実行させることを特徴とする。  [0030] Further, the computer program according to the present invention includes a spatial light modulation unit that generates modulated light in accordance with information representing a rectangular projection image projected onto a rectangular projection body, and the spatial light modulation unit generates the spatial light. A projection lens for projecting the modulated light onto the rectangular projection object, and an imaging device, and causing the spatial light modulation means to generate modulated light according to information representing an image obtained by deforming the rectangular projection image. The computer that projects the image to form a rectangular image on the projection object has the same aspect ratio as the rectangular projection image and is smaller than the size of the rectangular projection object. A computer program for setting a rectangular virtual projection frame centered on the center of a shaped projection object based on an image captured by the imaging device, and showing four corners of the rectangular projection image test A procedure for causing the spatial light modulation means to generate modulated light representing a pattern and projecting the modulated light from the projection lens toward the rectangular projection object, and for directing the test pattern toward the rectangular projection object. A procedure for causing the imaging device to capture the projected state, a procedure for detecting the positions of the four corners of the rectangular projection object on the image captured by the imaging device, and an image captured by the imaging device The procedure for detecting the positions of the four corners of the projected test pattern in step (b) and the relative positional relationship between the four corners of the rectangular projection object and the four corners of the test pattern on the image captured by the imaging device are examined. When at least one of the four corners of the rectangular projection object is not located within the range surrounded by the four corners of the projected test pattern on the procedure and the image captured by the imaging device, Virtual projection frame Characterized in that to execute a procedure for determining four corners to the computer.
[0031] このような本発明に係るコンピュータプログラムの制御では、投射画像の四隅を示 すテストパターンが被投射体へ向けて投射され、この状態が撮像装置により撮像され 、この画像上で被投射体の四隅の位置が検出されると共に投射されたテストパターン の四隅の位置が検出される。そして、撮像装置が撮像した画像上での被投射体の四 隅とテストパターンの四隅との相対的位置関係が調べられ、この結果から被投射体 の四隅の内の少なくとも一つが投射されたテストパターンの四隅で囲まれる範囲内に 位置してレ、なレ、場合に仮想投射枠の四隅が決定されるようにコンピュータが制御す る。 In such control of the computer program according to the present invention, test patterns indicating the four corners of the projected image are projected toward the projection target, and this state is captured by the imaging device, and the projection is performed on the image. Test patterns projected as the four corners of the body are detected The positions of the four corners are detected. Then, the relative positional relationship between the four corners of the projection object and the four corners of the test pattern on the image captured by the imaging device is examined, and from this result, at least one of the four corners of the projection object is projected. The computer controls so that the four corners of the virtual projection frame are determined in the case where the four corners of the virtual projection frame are located within the range surrounded by the four corners of the pattern.
発明の効果  The invention's effect
[0032] 以上のような本発明に係る画像投射方法及びプロジェクタによれば、被投射体へ 投射された場合に投射画像と同一アスペクト比を有し、被投射体の寸法よりも小さぐ 被投射体の中心に中心を一致させた矩形状の仮想投射枠が空間光変調手段上に 設定されるので、投射画像を被投射体よりも小さく投射することが容易になる。  [0032] According to the image projection method and the projector according to the present invention as described above, when projected onto the projection object, the projection has the same aspect ratio as the projection image and is smaller than the dimension of the projection object. Since the rectangular virtual projection frame whose center coincides with the center of the body is set on the spatial light modulation means, it becomes easy to project the projection image smaller than the projection target.
[0033] また本発明に係る画像投射方法及びプロジェクタによれば、被投射体へ投射され た場合に投射画像と同一アスペクト比を有し、被投射体の寸法よりも小さぐ被投射 体の中心に中心を一致させた矩形状の仮想投射枠が空間光変調手段上に設定さ れてこの仮想投射枠に投射画像が一致した状態で投射されるので、被投射体とプロ ジェクタとの間の距離を十分にとれない場合に従来は人手で行なうしかなかった調整 が自動的に行なわれる。  [0033] Further, according to the image projection method and the projector according to the present invention, the center of the projection object having the same aspect ratio as the projection image when projected onto the projection object and smaller than the dimension of the projection object. Since a rectangular virtual projection frame whose center is coincided with the center is set on the spatial light modulation means and the projected image is projected on the virtual projection frame, the projection image is projected between the projection object and the projector. When the distance is not sufficient, adjustments that were previously done manually are automatically performed.
[0034] また本発明に係る画像投射方法及びプロジェクタによれば上記の発明において更 に、変形されていない矩形状の投射画像を表す情報に従って投射レンズを通じて最 大の大きさで被投射体へ投射されている場合の四隅の位置と被投射体の四隅の位 置とを含む撮像装置が撮像した画像から自動的に上述のような調整の必要性が判 断されるので、全く人手を要することなしに、被投射体とプロジェクタとの間の距離を 十分にとれない場合の調整が自動的に行なわれる。  [0034] Further, according to the image projecting method and the projector according to the present invention, in the above-described invention, further, the image is projected to the projection object at the maximum size through the projection lens in accordance with the information representing the unmodified rectangular projection image. Since the necessity for the adjustment as described above is automatically determined from the image captured by the imaging device including the four corner positions and the four corner positions of the projection object, it requires manual labor. Without adjustment, the adjustment is automatically performed when the distance between the projection object and the projector is not sufficient.
[0035] 更に本発明に係る画像投射方法及びプロジェクタによれば上記の発明において、 被投射体上に投射された場合に最大の大きさになる仮想投射枠が人手を要すること なしに自動的に設定される。  [0035] Further, according to the image projection method and the projector according to the present invention, in the above invention, the virtual projection frame that has the maximum size when projected onto the projection object is automatically obtained without requiring a manpower. Is set.
[0036] また本発明に係る画像投射方法及びプロジェクタによれば上記の発明において、 段階的に縮小される仮想投射枠の四隅の全てが前記の座標系上で特定された投射 画像の範囲内に位置するようになった時点の縮小比に基づレ、て最大の寸法の仮想 投射枠が空間光変調手段上に人手を要することなしに自動的に設定される。 Further, according to the image projection method and the projector according to the present invention, in the above invention, all of the four corners of the virtual projection frame reduced in stages are within the range of the projection image specified on the coordinate system. Based on the reduction ratio at the time of positioning, the virtual of the maximum dimension The projection frame is automatically set on the spatial light modulation means without requiring manual work.
[0037] また本発明に係る画像投射方法及びプロジェクタによれば上記の発明において、 被投射体の四隅の位置関係が公知の演算手法である二次元の射影変換を用いて 変換されることにより仮想投射枠が容易に設定される。  [0037] Further, according to the image projection method and projector according to the present invention, in the above invention, the positional relationship of the four corners of the projection object is converted by using a two-dimensional projective transformation which is a well-known calculation method. The projection frame is easily set.
[0038] また本発明に係るプロジェクタによれば、撮像装置が撮像した画像上での被投射 体の四隅とテストパターンの四隅との相対的位置関係を調べることにより、被投射体 の四隅の少なくとも一つが投射されたテストパターンの四隅で囲まれる範囲内に位置 してレ、なレ、場合に仮想投射枠の四隅を決定する処理を自動的にプロジェクタが行な うので、プロジェクタと被投射体との間隔が十分にとれない場合にも、従来は人手で 行なうしかなかった調整が自動的に行なわれる。  [0038] Further, according to the projector of the present invention, by examining the relative positional relationship between the four corners of the projection target and the four corners of the test pattern on the image captured by the imaging device, at least the four corners of the projection target are detected. The projector automatically performs the process of determining the four corners of the virtual projection frame when one is located within the range surrounded by the four corners of the projected test pattern. Even when there is not enough space between them, adjustments that were previously done manually are performed automatically.
[0039] また本発明に係るコンピュータプログラムによれば、上述のようなプロジェクタを制御 すること、又はプロジェクタを外部から汎用コンピュータで制御することにより上述のよ うな画像投射方法を実現することが可能になる。  [0039] Further, according to the computer program of the present invention, it is possible to realize the above-described image projection method by controlling the projector as described above or by controlling the projector with a general-purpose computer from the outside. Become.
図面の簡単な説明  Brief Description of Drawings
[0040] [図 1]本発明に係るプロジェクタの一実施の形態の内部構成例を示すブロック図であ る。  FIG. 1 is a block diagram showing an example of the internal configuration of an embodiment of a projector according to the present invention.
[図 2]本発明に係るプロジェクタの投射デバイス部が有する液晶パネル製の空間光 変調デバイス (パネル)の画素構成を示す模式図である。  FIG. 2 is a schematic diagram showing a pixel configuration of a spatial light modulation device (panel) made of a liquid crystal panel included in a projection device section of a projector according to the present invention.
[図 3]本発明に係るプロジェクタにおいてズーム調整及び台形歪み補正(キーストン 補正)用に兼用して用いられるテストパターン画像の模式図である。  FIG. 3 is a schematic diagram of a test pattern image used for both zoom adjustment and trapezoidal distortion correction (keystone correction) in the projector according to the present invention.
[図 4]本発明に係るプロジェクタのリモートコントロール装置の外観を示す模式図であ る。  FIG. 4 is a schematic diagram showing the appearance of a remote control device for a projector according to the present invention.
[図 5]本発明に係るプロジェクタが通常のオート調整に際して行なう処理手順を示す フローチャートである。  FIG. 5 is a flowchart showing a processing procedure performed by the projector according to the present invention during normal auto adjustment.
[図 6]スクリーンへテストパターン画像の太枠部が投射された状態をスクリーンの正面 力 見た場合の模式図である。  FIG. 6 is a schematic diagram when the frontal force of the screen is viewed when the thick frame portion of the test pattern image is projected onto the screen.
[図 7]図 6に示す状態をカメラ座標系上で見た状態を示す模式図である。  FIG. 7 is a schematic diagram showing the state shown in FIG. 6 as viewed on the camera coordinate system.
[図 8]パネル座標系上でスクリーンの四隅の座標値に対して公知の二次元の射影変 換を応用して仮想縮小スクリーンの座標値を設定した状態を示す模式図である。 [Fig.8] A known two-dimensional projection change for the coordinate values of the four corners of the screen on the panel coordinate system It is a schematic diagram which shows the state which applied the conversion and set the coordinate value of the virtual reduction screen.
[図 9]カメラ座標系での仮想縮小スクリーンの四隅の座標値に対して投射画像の四隅 がー致するように二次元の射影変換を行なう状態を示す模式図である。  FIG. 9 is a schematic diagram showing a state in which two-dimensional projective transformation is performed so that the four corners of the projected image match the coordinate values of the four corners of the virtual reduced screen in the camera coordinate system.
[図 10]本発明のプロジェクタによるオート調整の際に本発明に係るコンピュータプロ グラムをシステムコントロール部が実行する処理手順を示すフローチャートである。 符号の説明  FIG. 10 is a flowchart showing a processing procedure in which the system control unit executes the computer program according to the present invention during auto adjustment by the projector according to the present invention. Explanation of symbols
[0041] 1 プロジェクタ [0041] 1 Projector
2 投射レンズ  2 Projection lens
3 カメラ咅  3 Camera
8 投射デバイス部  8 Projection device section
8a 空間光変調デバイス (パネル)  8a Spatial light modulation device (panel)
10 システムコントロール部  10 System control section
10p プログラム  10p program
11 検出部  11 Detector
12 操作部  12 Operation unit
25 テストパターン画像  25 Test pattern image
25b (テストパターン画像の)太枠部  25b Thick frame (in test pattern image)
S スクリーン  S screen
Vs 仮想縮小スクリーン  Vs virtual reduced screen
PJ 投射画像  PJ projection image
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0042] 以下、本発明をその最良の実施の形態を示す図面を参照して説明する。図 1は本 発明に係るプロジェクタの一実施の形態の内部構成例を示すブロック図である。なお 、以下の説明は本発明に係る画像投射方法を本発明に係るプロジェクタで実施する 場合の例である力 本発明の画像投射方法はプロジェクタとして構成された装置の みならず、プロジェクタとしての機能を併せ持つ装置、又は画像を投射する機能のみ を有するプロジェクタにたとえばパーソナルコンピュータを接続して制御するような場 合にも適用可能である。 [0043] 本実施の形態のプロジェクタ 1は、投射準備を自動的に行なえるオート調整機能を 有している。オート調整機能とは具体的には、投射準備時に投射レンズ 2から被投射 体であるスクリーン Sへテストパターン画像を投射し、スクリーン Sに投射されたテスト パターン画像の状態をカメラ部 3で撮像し、その結果として得られるスクリーン Sの四 隅の位置及びテストパターン画像の四隅の位置に基づいて、投射される画像 (投射 画像)の寸法、位置、台形歪み (キーストン)補正等の投射準備を自動的に行なう機 能である。なお、オート調整機能には他に色補正、焦点調整等もあるが、本発明には 直接の関係が無いのでそれらに関する説明は省略する。 Hereinafter, the present invention will be described with reference to the drawings showing the best mode for carrying out the invention. FIG. 1 is a block diagram showing an internal configuration example of an embodiment of a projector according to the present invention. The following explanation is an example when the image projection method according to the present invention is implemented by the projector according to the present invention. The image projection method according to the present invention functions not only as a device configured as a projector but also as a projector. For example, the present invention can also be applied to a case where a personal computer is connected to and controlled by a device having both of the above and a projector having only a function of projecting an image. [0043] The projector 1 according to the present embodiment has an auto adjustment function capable of automatically performing projection preparation. Specifically, the auto adjustment function projects a test pattern image from the projection lens 2 onto the projection target screen S during projection preparation, and the camera unit 3 captures the state of the test pattern image projected onto the screen S. Based on the four corner positions of the resulting screen S and the four corner positions of the test pattern image, projection preparation such as the size and position of the projected image (projected image) and keystone distortion (keystone) correction is automatically performed. This function is performed automatically. The auto adjustment function includes color correction, focus adjustment, and the like. However, since there is no direct relationship with the present invention, description thereof will be omitted.
[0044] プロジェクタ 1は、外部から入力される投射用の画像に対する処理を主に行なう部 分として外部接続部 4及び画像変換部 5を備えている。またプロジェクタ 1は、主に投 射に関与する処理を行なう部分として、色制御部 6、テストパターン画像切替部 7、投 射デバイス部 8、投射レンズ駆動部 9、及び投射レンズ 2を備えている。更にプロジェ クタ 1は、、主にオート調整機能に関与する処理を行なう部分としてカメラ部 3及び検 出部 11を備えている。更にまた、プロジェクタ 1は、ユーザによる操作を受け付ける手 段として操作部 12と、リモートコントローラ(以下、リモコンと称す) 20のリモコン受光部 13とを備えてレヽる。なお、プロジェクタ 1の全体的な制御はシステムコントロール部 10 が行なう。  The projector 1 includes an external connection unit 4 and an image conversion unit 5 as units that mainly perform processing on an image for projection input from the outside. In addition, the projector 1 includes a color control unit 6, a test pattern image switching unit 7, a projection device unit 8, a projection lens driving unit 9, and a projection lens 2 as parts that mainly perform processes related to projection. . Further, the projector 1 includes a camera unit 3 and a detection unit 11 as a part for performing processing mainly related to the auto adjustment function. Furthermore, the projector 1 includes an operation unit 12 and a remote control light receiving unit 13 of a remote controller (hereinafter referred to as a remote controller) 20 as means for receiving an operation by a user. The overall control of the projector 1 is performed by the system control unit 10.
[0045] 外部接続部 4は、投射用の画像を出力する外部機器と接続されており、外部機器 から出力された矩形状の画像を入力して画像変換部 5へ伝送する。画像変換部 5は システムコントロール部 10の制御に基づいて A/D変換等の所要の変換処理を行な レ、、変換処理を施した画像を投射デバイス部 8へ伝送する。  The external connection unit 4 is connected to an external device that outputs an image for projection. The external connection unit 4 inputs a rectangular image output from the external device and transmits it to the image conversion unit 5. The image conversion unit 5 performs necessary conversion processing such as A / D conversion based on the control of the system control unit 10, and transmits the converted image to the projection device unit 8.
[0046] 色制御部 6は投射する画像の色を調整する処理を行なう。具体的には、色制御部 6 はシステムコントロール部 10の制御に基づいて R (赤)、 G (緑)、 B (青)の各色のバラ ンスを調整することにより、投射される画像の色補正を行なう。また、テストパターン画 像切替部 7はオート調整機能に必要な種々のテストパターンをシステムコントロール 部 10の制御に基づいて生成し、テストパターン画像として投射デバイス部 8へ伝送す る。  The color control unit 6 performs a process for adjusting the color of the projected image. Specifically, the color control unit 6 adjusts the balance of each color of R (red), G (green), and B (blue) based on the control of the system control unit 10 to thereby adjust the color of the projected image. Make corrections. The test pattern image switching unit 7 generates various test patterns necessary for the auto adjustment function based on the control of the system control unit 10 and transmits the test patterns to the projection device unit 8 as test pattern images.
[0047] 投射デバイス部 8は、投射されるべき画像の情報(デジタル画像データ)を光変調 する空間光変調デバイス 8aを内蔵している。そして投射デバイス部 8は、画像変換部 5、テストパターン画像切替部 7、及び後述するシステムコントロール部 10から伝送さ れる各種画像のデジタル画像データを空間光変調デバイス 8aで光変調した変調光 を生成する。このようにして投射デバイス部 8の空間光変調デバイス 8aが生成した変 調光は投射レンズ 2を通じて外部のスクリーン Sへ投射される。この結果、スクリーン S 上には投射されるべき画像が映し出される。 [0047] The projection device unit 8 optically modulates information on the image to be projected (digital image data). Built-in spatial light modulation device 8a. The projection device unit 8 generates modulated light obtained by optically modulating the digital image data of various images transmitted from the image conversion unit 5, the test pattern image switching unit 7, and the system control unit 10 described later by the spatial light modulation device 8a. To do. The modulated light generated by the spatial light modulation device 8a of the projection device unit 8 in this way is projected onto the external screen S through the projection lens 2. As a result, an image to be projected is displayed on the screen S.
[0048] なお空間光変調デバイス 8aとしては、液晶パネルと DMD (Digital Micromirrow Device)とのいずれかが一般的に用いられる。空間光変調デバイス 8aとして液晶パ ネルが使用される場合は、投射されるべき画像のデジタルデータのドット単位に対応 付けられた各画素が画像の各ドットを表示した状態で光源からの光線を透過させるこ とにより、全体として画像を表示する変調光が投射され、最終的にスクリーン S上に画 像が映し出される。また空間光変調デバイス 8aとして DMDが使用される場合は、投 射されるべき画像のデジタルデータのドット単位に対応付けられた微小ミラー( Micromirrow)の反射角を切り換えつつ光源からの光線を反射させることにより、投射 されるべき画像が反射光 (変調光)全体で表された状態で投射され、最終的にスクリ ーン S上に画像が映し出される。  [0048] As the spatial light modulation device 8a, either a liquid crystal panel or a DMD (Digital Micromirrow Device) is generally used. When a liquid crystal panel is used as the spatial light modulation device 8a, each pixel associated with the dot unit of the digital data of the image to be projected transmits the light from the light source while displaying each dot of the image. As a result, modulated light for displaying an image as a whole is projected, and finally an image is displayed on the screen S. When DMD is used as the spatial light modulation device 8a, the light from the light source is reflected while switching the reflection angle of the micromirror (Micromirrow) associated with the dot unit of the digital data of the image to be projected. As a result, the image to be projected is projected in a state represented by the entire reflected light (modulated light), and finally the image is displayed on the screen S.
[0049] なお、本実施の形態では空間光変調デバイス 8aとしては液晶パネルを使用する構 成を採っており、以下の説明においても、投射されるべき画像を空間光変調デバイス 8aとしての液晶パネルに画像として表示し、その表示された画像に光源からの光線 を透過させて投射レンズ 2から投射することによりスクリーン S上に画像を投射する。 但し、上述したように、 DMDを使用する場合もデジタル画像データの画素に対応し た微小ミラーの反射角を切り換えることにより反射光(変調光)全体として画像を表す ようになつている。従って、液晶パネル上において個々の画素をデジタル画像データ のドットに対応させて指定することが可能であるのと同様に、 DMDにおいても個々の 微小ミラーをデジタル画像データのドットに対応させて指定することが可能である。  In the present embodiment, a configuration using a liquid crystal panel as the spatial light modulation device 8a is adopted. In the following description, an image to be projected is a liquid crystal panel as the spatial light modulation device 8a. The image is projected on the screen S by transmitting the light from the light source to the displayed image and projecting it from the projection lens 2. However, as described above, even when DMD is used, an image is displayed as reflected light (modulated light) as a whole by switching the reflection angle of a micro mirror corresponding to a pixel of digital image data. Therefore, in the same way that individual pixels can be specified in correspondence with the dots of digital image data on the liquid crystal panel, individual micromirrors are specified in correspondence with the dots of digital image data in DMD. It is possible.
[0050] 図 2は、上述した投射デバイス部 8が有する液晶パネル製の空間光変調デバイス( 以下、単にパネルという) 8aの画素構成を示す模式図である。本実施の形態では一 例として、パネル 8aは水平方向に 1024画素、垂直方向に 768画素、即ち XGA規格 に順じた矩形状の表示範囲を備えており、左上隅の座標値 (0, 0)の画素を原点とし て水平方向を X軸、垂直方向を y軸とするパネル座標系が設定されている。従って、 水平方向及び垂直方向の各画素に対応したパネル座標系の座標値がシステムコン トロール部 10から投射デバイス部 8へ送られると、このパネル座標系の座標値に基づ いて投射デバイス部 8はパネル 8aの表示範囲に表示する画像の位置及び寸法をパ ネル座標系上で特定する。例えば、システムコントロール部 10から水平方向の座標 値として「127」、垂直方向の座標値として「127」がそれぞれ指定されると、投射デバ イス部 8はパネル 8aの左上隅の画素を原点として水平方向及び垂直方向にそれぞ れ 128番目である画素の位置にドットを表示する。 FIG. 2 is a schematic diagram showing a pixel configuration of a liquid crystal panel spatial light modulation device (hereinafter simply referred to as a panel) 8 a included in the projection device unit 8 described above. As an example in this embodiment, panel 8a has 1024 pixels in the horizontal direction and 768 pixels in the vertical direction, that is, the XGA standard. A panel coordinate system is set with the pixel at the coordinate value (0, 0) in the upper left corner as the origin and the horizontal direction as the X axis and the vertical direction as the y axis. Yes. Therefore, when the coordinate values of the panel coordinate system corresponding to each pixel in the horizontal direction and the vertical direction are sent from the system control unit 10 to the projection device unit 8, the projection device unit 8 is based on the coordinate values of the panel coordinate system. Specifies the position and dimensions of the image to be displayed in the display range of panel 8a on the panel coordinate system. For example, if “127” is specified as the horizontal coordinate value and “127” is specified as the vertical coordinate value from the system control unit 10, the projection device unit 8 uses the pixel in the upper left corner of the panel 8a as the origin to A dot is displayed at the position of the 128th pixel in each direction and vertical direction.
[0051] なお、空間光変調デバイス 8aとして DMDを使用する場合にも、上述の液晶パネル を使用する場合と同様のパネル座標系を設定することが可能である。但し、前述した ように本実施の形態では空間光変調デバイス 8aとしては液晶パネルを使用した構成 を採っているので、以下の説明においても液晶パネルを空間光変調デバイス 8aとし て使用する構成について説明するが、パネル座標系に関する考え方は空間光変調 デバイス 8aとして液晶パネルを使用する場合も、 DMDを使用する場合も基本的に は同様である。 [0051] Note that, when a DMD is used as the spatial light modulation device 8a, it is possible to set the same panel coordinate system as when the above-described liquid crystal panel is used. However, as described above, in the present embodiment, since the configuration using the liquid crystal panel is employed as the spatial light modulation device 8a, the configuration in which the liquid crystal panel is used as the spatial light modulation device 8a is also described in the following description. However, the concept regarding the panel coordinate system is basically the same when the liquid crystal panel is used as the spatial light modulation device 8a and when the DMD is used.
[0052] 投射レンズ 2は図示はしないが、パネル 8aを透過した光線(変調光)を拡大してスク リーン Sに画像として投射するために必要な本来のレンズの他に、ズーム(画像寸法) 調整用レンズ及び焦点調整用のレンズ等の複数のレンズで構成されてレ、る。投射レ ンズ駆動部 9は、投射レンズ 2のズーム調整用レンズ及び焦点調整用レンズの位置を 変更させるァクチユエータを有してレ、る。そして投射レンズ駆動部 9はシステムコント口 ール部 10からの制御に従ってァクチユエータを駆動することによりズーム調整及び焦 点調整を行なう。  [0052] Although not shown, the projection lens 2 is zoomed (image size) in addition to the original lens necessary for enlarging the light beam (modulated light) transmitted through the panel 8a and projecting it on the screen S as an image. It is composed of a plurality of lenses such as an adjustment lens and a focus adjustment lens. The projection lens drive unit 9 has an actuator for changing the positions of the zoom adjustment lens and the focus adjustment lens of the projection lens 2. Then, the projection lens drive unit 9 performs zoom adjustment and focus adjustment by driving the actuator according to the control from the system control unit 10.
[0053] また、図 1に示すカメラ部 3は、投射準備のオート調整時にスクリーン Sへ投射され た各種テストパターン画像を撮像し、撮像した画像を検出部 11へ伝送する。なお、プ ロジェクタ 1から投射されるテストパターン画像としては、前述した色補正用のテストパ ターン画像、図示しない焦点調整用テストパターン以外に、図 3の模式図に示すよう なズーム調整及び台形歪み補正(キーストン補正)用に兼用して用いられるテストパ ターン画像 25が用意されている。このテストパターン画像 25は、投射される画像の外 郭に対応して周囲に設けられた太枠のテストパターン(以下、太枠部 25bという)を有 する。 In addition, the camera unit 3 shown in FIG. 1 captures various test pattern images projected onto the screen S during automatic adjustment for projection preparation, and transmits the captured images to the detection unit 11. Note that the test pattern image projected from the projector 1 includes zoom adjustment and trapezoidal distortion correction as shown in the schematic diagram of FIG. 3, in addition to the color correction test pattern image and the focus adjustment test pattern (not shown). Test pad used for (keystone correction) Turn image 25 is provided. The test pattern image 25 has a thick frame test pattern (hereinafter referred to as a thick frame portion 25b) provided in the periphery corresponding to the outline of the projected image.
[0054] なお、以下の説明では、色補正用のテストパターン画像及び焦点調整用テストバタ ーン画像を使用する色補正及び焦点調整の処理に関しては本発明には基本的には 関係がないので、これらの処理についての説明は行なわない。  [0054] In the following description, the present invention is basically irrelevant to the color correction and focus adjustment processing using the test pattern image for color correction and the test pattern image for focus adjustment. These processes will not be described.
[0055] 検出部 11は、カメラ部 3から送られてくる撮像画像を解析する。この画像解析はカメ ラ座標系上で行なわれる。カメラ座標系とはカメラ部 3に設定されている座標系である 。より具体的には、カメラ座標系は、カメラ部 3の撮像視野に設定されている座標系で あり、前述した空間光変調デバイス 8aに設定されているパネル座標系と同様に、カメ ラ部 3の撮像視野の左上隅を原点として水平方向を X軸、垂直方向を y軸とする座標 系である。但し、実際にはカメラ座標系はカメラ部 3の撮像素子のパネル (CCDパネ ノレ)の左上隅を原点として設定されており、このことはカメラ部 3が撮像した画像上に カメラ座標が設定されているとみなすことができる。  The detection unit 11 analyzes the captured image sent from the camera unit 3. This image analysis is performed on the camera coordinate system. The camera coordinate system is the coordinate system set for camera unit 3. More specifically, the camera coordinate system is a coordinate system set in the imaging field of view of the camera unit 3, and the camera unit 3 is the same as the panel coordinate system set in the spatial light modulation device 8a described above. This is a coordinate system with the upper left corner of the imaging field of view as the origin and the horizontal direction as the X axis and the vertical direction as the y axis. However, the camera coordinate system is actually set with the upper left corner of the image sensor panel (CCD panel) of the camera unit 3 as the origin, which means that the camera coordinates are set on the image captured by the camera unit 3. Can be considered.
[0056] 従って検出部 11は、カメラ部 3が撮像した画像に基づいて従来公知の手法により、 カメラ座標系上でのスクリーン Sの四隅の位置の座標値、図 3のテストパターン画像 2 5の太枠部 25bのその時点のプロジェクタ 1の状況に応じて投射された画像の四隅の 位置の座標値を検出する。またこれらの座標値が検出されれば、その結果に基づい てスクリーン S及び投射された画像(テストパターン画像 25の太枠部 25b)の台形歪 みの状態等もそれぞれ演算により求めることが可能であることはいうまでもない。検出 部 11は、以上のような検出結果をシステムコントロール部 10へ伝送する。  Therefore, the detection unit 11 uses the conventionally known method based on the image captured by the camera unit 3 to obtain the coordinate values of the four corner positions of the screen S on the camera coordinate system, the test pattern image 25 of FIG. The coordinate values of the positions of the four corners of the projected image are detected according to the situation of the projector 1 at that time of the thick frame portion 25b. If these coordinate values are detected, the state of trapezoidal distortion of the screen S and the projected image (the thick frame portion 25b of the test pattern image 25) can be obtained based on the result. Needless to say. The detection unit 11 transmits the detection result as described above to the system control unit 10.
[0057] プロジェクタ 1に設けられた操作部 12は複数のボタン及びスィッチ等を有しており、 これらのボタン及びスィッチ等をユーザが操作した場合に、操作されたボタン及びス イッチ等に応じた操作指示を受け付けてシステムコントロール部 10へ伝送する。また 、リモコン受光部 13はプロジェクタ 1のリモコン 20からの操作信号を受け付けてシステ ムコントロール部 10へ伝送する。図 4はリモコン 20の外観を示す模式図である。リモ コン 20は図 4に示すように、複数のボタンに加えて上下左右の選択キー 20a— 20d 及び決定キー 20eを有し、プロジェクタ 1から投射される〇SD (〇n Screen Display)の メニュー画像に表示される複数の項目の中から所要の項目を選択キー 20a— 20d及 び決定キー 20eの操作でユーザが選択できるようにした GUIを採用している。 [0057] The operation unit 12 provided in the projector 1 has a plurality of buttons, switches, and the like. When the user operates these buttons and switches, the operation unit 12 corresponds to the operated buttons, switches, and the like. Accepts an operation instruction and transmits it to the system control unit 10. In addition, the remote control light receiving unit 13 receives an operation signal from the remote control 20 of the projector 1 and transmits it to the system control unit 10. FIG. 4 is a schematic diagram showing the external appearance of the remote controller 20. As shown in FIG. 4, the remote control 20 has up / down / left / right selection keys 20a-20d and a decision key 20e in addition to a plurality of buttons. A GUI is adopted that allows the user to select a required item from a plurality of items displayed on the menu image by operating the selection key 20a-20d and the decision key 20e.
[0058] なお、操作部 12にも、リモコン 20と同様な上下左右の選択キー及び決定キーが設 けられている。従って、操作部 12とリモコン 20とで同一の操作が行なわれた場合に は、システムコントロール部 10へ同一の指示が与えられる。  It should be noted that the operation unit 12 is provided with up / down / left / right selection keys and determination keys similar to those of the remote controller 20. Therefore, when the same operation is performed on the operation unit 12 and the remote controller 20, the same instruction is given to the system control unit 10.
[0059] 上述した各部の制御を行なうシステムコントロール部 10は ROMlOa及び RAM10 bを有している。 ROMlOaにはシステムコントロール部 10が行なう制御内容を規定し たプログラム 10p (本発明に係るコンピュータプログラム)と、図 3に示すテストパターン 画像 25を含む種々のテストパターン画像及び各種メニュー画像を表示するためのデ ータが予め記憶されている。 RAMlObはシステムコントロール部 10による制御に際 して発生する種々のデータ等を一時的に記憶する。  [0059] The system control unit 10 that controls each unit described above includes a ROM10a and a RAM 10b. ROMlOa is used to display a program 10p (computer program according to the present invention) that defines the contents of control performed by the system control unit 10, and various test pattern images and various menu images including the test pattern image 25 shown in FIG. This data is stored in advance. RAMlOb temporarily stores various data generated during control by the system control unit 10.
[0060] 以上のような構成の本実施の形態のプロジェクタ 1のシステムコントロール部 10は、 通常のオート調整に際しては、図 5のフローチャートに示すような処理により投射画像 をスクリーン Sに一致させる調整を行なう。なお、以下の処理は ROMlOaに格納され ているプログラム 10pに従ってシステムコントロール部 10が実行する。  [0060] The system control unit 10 of the projector 1 of the present embodiment configured as described above performs an adjustment to match the projected image with the screen S by the process shown in the flowchart of FIG. Do. The following processing is executed by the system control unit 10 according to the program 10p stored in ROMlOa.
[0061] まずシステムコントロール部 10はたとえば全白の画像を投射させる(ステップ Sl)。  First, the system control unit 10 projects, for example, an all-white image (step Sl).
この状態をカメラ部 3で撮像した画像を検出部 11が解析することにより、スクリーン S の四隅のカメラ座標系での位置を検出する(ステップ S2)。これは、スクリーン Sの反 射率とその周囲(たとえば壁面等)の反射率との相違等から容易に可能である。  The detection unit 11 analyzes the image captured by the camera unit 3 in this state, thereby detecting the positions of the four corners of the screen S in the camera coordinate system (step S2). This is easily possible due to the difference between the reflectivity of the screen S and the reflectivity around it (for example, the wall surface).
[0062] 次にシステムコントロール部 10は図 3に示す投射画像枠検出用のテストパターンで ある太枠部 25bを含む投射画像枠検出用のテストパターン画像 25を投射する(ステ ップ S3)。この状態をカメラ部 3で撮像した画像を検出部 11が解析することにより、投 射画像枠検出用のテストパターンである太枠部 25bの四隅のカメラ座標系での位置 を検出する(ステップ S4)。これは、投射画像枠検出用のテストパターンである太枠 部 25bの部分の反射率とその周囲の反射率との相違力も容易に可能である。次にシ ステムコントロール部 10はスクリーン S及び投射画像枠検出用のテストパターンであ る太枠部 25bそれぞれの四隅のカメラ座標系での位置関係に基づいてズーム調整 を行なう(ステップ S5)。このズーム調整はたとえば、投射画像枠検出用のテストバタ ーンである太枠部 25bがスクリーン Sの端点に達するまでズーミングにより投射画像 枠検出用のテストパターンである太枠部 25bを拡大又は縮小することにより行なわれ る。 Next, the system control unit 10 projects a test pattern image 25 for detecting a projected image frame including a thick frame portion 25b that is a test pattern for detecting a projected image frame shown in FIG. 3 (step S3). The detection unit 11 analyzes the image captured by the camera unit 3 in this state, thereby detecting the positions in the camera coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting the projected image frame (step S4). ). This is also possible easily by the difference between the reflectance of the thick frame portion 25b, which is a test pattern for detecting a projected image frame, and the surrounding reflectance. Next, the system control unit 10 performs zoom adjustment based on the positional relationship in the camera coordinate system of each of the four corners of the thick frame 25b, which is a test pattern for detecting the screen S and the projected image frame (step S5). This zoom adjustment can be performed by, for example, a test pattern for detecting a projected image frame. The thick frame portion 25b, which is a projected image frame detection test pattern, is enlarged or reduced by zooming until the thick frame portion 25b, which is a screen, reaches the end point of the screen S.
[0063] このズーム調整が行なわれた後に再度カメラ部 3により撮像した画像から投射画像 枠検出用のテストパターンである太枠部 25bの四隅のカメラ座標系での位置を検出 部 11が解析して再検出し(ステップ S6)、ステップ S2で検出したスクリーン Sの四隅 のカメラ座標系での位置とステップ S6で検出したズーム補正後の太枠部 25bの四隅 のカメラ座標系での位置との関係から、ズーム補正後の投射画像枠検出用のテスト パターンである太枠部 25bの四隅のパネル座標系での位置、即ち座標値を決定する (ステップ S7)。この結果、パネル 8aには、投射されるべき画像がスクリーン Sへ投射 された形状とは逆に変形されて表示される。  [0063] After the zoom adjustment, the detection unit 11 analyzes the positions of the four corners of the thick frame portion 25b, which is a test pattern for detecting a projected image frame, from the image captured by the camera unit 3 again. (Step S6), the position of the four corners of the screen S detected in step S2 in the camera coordinate system and the position of the four corners of the thick frame 25b after zoom correction detected in step S6. From the relationship, the positions in the panel coordinate system of the four corners of the thick frame portion 25b, which is a test pattern for detecting a projected image frame after zoom correction, that is, coordinate values are determined (step S7). As a result, the image to be projected is displayed on the panel 8a by being deformed in reverse to the shape projected on the screen S.
[0064] 上述した一連の処理をシステムコントロール部 10が順次実行することにより、投射 デバイス部 8がシステムコントロール部 10から与えられた座標値に従ってパネル 8a上 に画像が表示され、これが投射された場合には台形歪みが補正された矩形の画像と してスクリーン Sの寸法一杯に投射される。以上により、プロジェクタ 1の投射準備が 自動的に完了する。 [0064] When the system control unit 10 sequentially executes the series of processes described above, the projection device unit 8 displays an image on the panel 8a according to the coordinate value given from the system control unit 10, and this is projected. Is projected to the full size of the screen S as a rectangular image with corrected trapezoidal distortion. Thus, the projection preparation for the projector 1 is automatically completed.
[0065] 以上のようなシステムコントロール部 10による処理は従来一般的な投射条件、即ち スクリーン Sとプロジェクタ 1との間の距離が十分にとられている場合、具体的には投 射される画像のスクリーン S上での大きさがスクリーン Sの寸法よりも十分に大きくて台 形歪みを補正した状態で少なくともスクリーン Sの寸法一杯に投射可能な場合に自動 的に行なわれる投射準備の処理である。し力し、スクリーン Sとプロジェクタ 1との間の 距離が十分にとれない状況では、投射される画像の台形歪みを補正した後のスクリ ーン S上での最大の大きさがスクリーン Sの寸法よりも小さくなる場合があるので、上 述のような準備処理は行なえなレ、。  [0065] The processing by the system control unit 10 as described above is performed in the conventional general projection condition, that is, when the distance between the screen S and the projector 1 is sufficiently large, specifically, the projected image. This is a projection preparation process that is automatically performed when the size on the screen S is sufficiently larger than the size of the screen S and the keystone distortion is corrected and can be projected to the full size of the screen S. . However, in a situation where the distance between the screen S and the projector 1 is not sufficient, the maximum size on the screen S after correcting the trapezoidal distortion of the projected image is the dimension of the screen S. Because it may be smaller than this, the preparation process as described above cannot be performed.
[0066] そこで本発明に係るプロジェクタ 1では、スクリーン Sとの間に何らかの事情で十分 な距離をとることができないために投射される画像(投射画像)の台形歪みを補正し た後のスクリーン S上での最大の大きさがスクリーン Sの寸法よりも小さくなるような場 合、具体的にはテストパターン画像 25の太枠部 25bが最大の大きさで投射されても スクリーン Sの 4隅の全て、または一つでもが投射されたテストパターン画像 25の太枠 部 25bの外側に位置しているような場合には、スクリーン Sの中央部に、具体的には 中心を一致させて台形歪みを補正した後の画像をスクリーン Sの寸法よりも小さい大 きさで投射することが可能に構成されてレ、る。 [0066] Therefore, in the projector 1 according to the present invention, the screen S after correcting the trapezoidal distortion of the projected image (projected image) because a sufficient distance from the screen S cannot be taken for some reason. If the maximum size above is smaller than the size of the screen S, specifically, even if the thick frame 25b of the test pattern image 25 is projected at the maximum size. When all or one of the four corners of the screen S is located outside the thick frame portion 25b of the projected test pattern image 25, it is located at the center of the screen S, specifically the center. The image after correcting the trapezoidal distortion by matching the screens can be projected with a size smaller than the size of the screen S.
[0067] 図 6及び図 7は上述のような状態を具体的に説明するための模式図である。図 6は 、スクリーン Sへテストパターン画像 25の太枠部 25bが投射された状態をスクリーン S の正面から見た場合の模式図である。スクリーン Sに対してプロジェクタ 1が正対して 設置されていないために、投射される画像 (以下、投射画像 PJという)の外郭、この場 合はテストパターン画像 25の太枠部 25bが台形歪みが生じた状態で投射されている 。図 7は図 6に示す状態をプロジェクタ 1のカメラ部 3で撮像した画像、即ちカメラ座標 系上で見た状態を示す模式図である。撮像画像 31上には投射画像 PJの外郭である テストパターン画像 25の太枠部 25bがほぼ矩形状に撮像されているが、スクリーン S は大きく台形歪みを生じた状態に撮像されている。  FIG. 6 and FIG. 7 are schematic diagrams for specifically explaining the state as described above. FIG. 6 is a schematic diagram when the state in which the thick frame portion 25b of the test pattern image 25 is projected onto the screen S is viewed from the front of the screen S. Since the projector 1 is not installed facing the screen S, the outline of the projected image (hereinafter referred to as the projected image PJ), in this case, the thick frame portion 25b of the test pattern image 25 has a trapezoidal distortion. Projected in the resulting state. FIG. 7 is a schematic diagram showing an image captured by the camera unit 3 of the projector 1 in the state shown in FIG. 6, that is, a state seen on the camera coordinate system. On the captured image 31, the thick frame portion 25b of the test pattern image 25 that is the outline of the projection image PJ is captured in a substantially rectangular shape, but the screen S is captured in a state in which a large trapezoidal distortion has occurred.
[0068] 図 6に示すような状態が投射画像 PJが最大の大きさで投射されている場合であると すると、投射画像 PJを、より具体的にはテストパターン画像 25の太枠部 25bを台形歪 みを補正した状態でスクリーン Sの寸法に一致させて投射することはできなレ、。そこで このような場合、本発明に係るプロジェクタ 1では、図 8の模式図に示すようにパネル 座標系上でスクリーン Sの四隅の座標値に対して公知の二次元の射影変換を応用す ることにより、スクリーン Sと中心を一致させ、スクリーン Sよりも小さい寸法でパネル 8a のアスペクト比と同一のアスペクト比を有する仮想のスクリーン (以下、仮想縮小スクリ ーン Vsという)を設定する。そして、この仮想縮小スクリーン Vsの寸法に一致するよう に、台形歪みを補正した投射画像 PJを投射する。  [0068] If the state shown in FIG. 6 is the case where the projection image PJ is projected at the maximum size, the projection image PJ, more specifically, the thick frame portion 25b of the test pattern image 25 is displayed. It is impossible to project with the dimensions of the screen S, with the keystone distortion corrected. Therefore, in such a case, in the projector 1 according to the present invention, a known two-dimensional projective transformation is applied to the coordinate values of the four corners of the screen S on the panel coordinate system as shown in the schematic diagram of FIG. Thus, a virtual screen (hereinafter referred to as a virtual reduced screen Vs) having the same aspect ratio as that of the panel 8a with a smaller size than the screen S and the center of the screen S is set. Then, a projection image PJ in which the trapezoidal distortion is corrected is projected so as to coincide with the dimensions of the virtual reduced screen Vs.
[0069] 具体的には、カメラ部 3で撮像された画像上のスクリーン Sの四隅の位置(以下、力 メラ座標系上の座標値という)に対して公知の二次元の射影変換を応用することによ り仮想縮小スクリーン Vsの四隅の位置 (カメラ座標系の座標値)を縮小比の関数とし て求め、縮小比に応じた仮想縮小スクリーン Vsの四隅の位置 (カメラ座標系の座標 値)が台形歪みを補正した後の最大の大きさの投射画像 PJの四隅の位置 (カメラ座 標系の座標値)に一致するように、仮想縮小スクリーン Vsの四隅の座標値を決定す る。そして、決定された仮想縮小スクリーン Vsの四隅に投射画像 PJの四隅が一致す るように公知の二次元の射影変換を行なう。 [0069] Specifically, a known two-dimensional projective transformation is applied to the positions of the four corners of the screen S on the image captured by the camera unit 3 (hereinafter referred to as coordinate values in the force coordinate system). Thus, the four corner positions of the virtual reduced screen Vs (camera coordinate system coordinate values) are obtained as a function of the reduction ratio, and the four corner positions of the virtual reduced screen Vs according to the reduction ratio (camera coordinate system coordinate values). Determine the coordinate values of the four corners of the virtual reduced screen Vs so that the image matches the four corner positions of the projected image PJ (coordinate values of the camera coordinate system) after correcting the trapezoidal distortion. The Then, a known two-dimensional projective transformation is performed so that the four corners of the projected image PJ coincide with the four corners of the determined virtual reduced screen Vs.
[0070] まず最初に、仮想縮小スクリーン Vsの四隅の座標値を決定する演算手法について 説明する。レ、うまでもないが、この演算そのものは、カメラ部 3が撮像した画像を検出 部 11が解析した結果に基づいてシステムコントロール部 10により実行される。入力パ ラメータは、カメラ座標系上でのスクリーン Sの四隅の座標値と、投射画像 PJ (具体的 には投射画像枠検出用のテストパターンである太枠部 25b)の四隅の座標値と、プロ ジヱクタ 1の投射デバイス部 8のパネル 8aの X方向及び y方向解像度であり、それぞ れを以下のように定義する(図 7参照)。 First, a calculation method for determining the coordinate values of the four corners of the virtual reduced screen Vs will be described. Of course, this calculation itself is executed by the system control unit 10 based on the result of the detection unit 11 analyzing the image captured by the camera unit 3. The input parameters are the coordinate values of the four corners of the screen S on the camera coordinate system, the coordinate values of the four corners of the projected image PJ (specifically, the thick frame portion 25b which is a test pattern for detecting the projected image frame), The X and y resolutions of the panel 8a of the projection device section 8 of the projector 1 are defined as follows (see Fig. 7).
[0071] ·カメラ座標系上のスクリーン Sの四隅の座標値: [0071] · Coordinate values of the four corners of the screen S on the camera coordinate system:
( sxl, syl)ズ sx2, sy2)八 sx3, sy3),( sx4, sy4)  (sxl, syl) sx2, sy2) 8 sx3, sy3), (sx4, sy4)
•カメラ座標系上の投射画像 PJの四隅の座標値:  • Coordinate values of the four corners of the projected image PJ on the camera coordinate system:
(pjxl, pjyl),(pjx2, pjy2),(pjx3, pjy3),(pjx4, pjy4)  (pjxl, pjyl), (pjx2, pjy2), (pjx3, pjy3), (pjx4, pjy4)
•パネルの x方向解像度: col (—例として XGAの場合は 1024 :図 2参照)  • Panel x resolution: col (—1024 for example, XGA: see Figure 2)
•パネルの y方向解像度: row (—例として XGAの場合は 768 :図 2参照) • Panel y- direction resolution: row (for example XGA, 768: see Figure 2)
[0072] ところで、図 2に示すように、投射デバイス部 8のパネル 8aの四隅(PI, P2, P3, P4) の座標値 (パネル座標系上の座標値)は以下のように解像度(本実施の形態では XG A規格に順じた解像度)で表すことが可能であり、それぞれの変換先座標値 (カメラ 座標系上のスクリーン Sの座標値)を(Pxl, Pyl), (Px2, Py2), (Px3, Py3), (Px4, Py4)と する。なお、 PXをパネル 8a上の任意の位置の座標値 (パネル座標系上の座標値)と し、その変換先、即ちカメラ座標系上での座標値を (LXX, LYY)と定義する。 By the way, as shown in FIG. 2, the coordinate values (coordinate values on the panel coordinate system) of the four corners (PI, P2, P3, P4) of the panel 8a of the projection device unit 8 are as follows. In the embodiment, it is possible to express with the resolution conforming to the XGA standard, and the respective conversion destination coordinate values (coordinate values of the screen S on the camera coordinate system) are (Pxl, Pyl), (Px2, Py2 ), (Px3, Py3), (Px4, Py4). Note that PX is defined as a coordinate value at an arbitrary position on the panel 8a (a coordinate value on the panel coordinate system), and a conversion destination thereof, that is, a coordinate value on the camera coordinate system is defined as (LXX, LYY).
[0073] パネルの四隅のパネル → 変換先座標値 [0073] Panels at the four corners of the panel → Destination coordinate values
座標系での座標値 (カメラ座標系上のスクリーンの座標値)  Coordinate value in coordinate system (coordinate value of screen on camera coordinate system)
P1 = ( 0, 0) → (Pxl, Pyl)  P1 = (0, 0) → (Pxl, Pyl)
P2 = (col, 0) → (Px2, Py2)  P2 = (col, 0) → (Px2, Py2)
P3 = (col, row) → (Px3, Py3)  P3 = (col, row) → (Px3, Py3)
P4 = ( 0, row) → (Px4, Py4)  P4 = (0, row) → (Px4, Py4)
PX = ( LX, Ly) → (LXX, LYY) [0074] 但し、上述のパネル 8aの四隅のパネル座標系での座標値の変換先座標値はカメ ラ座標系上のスクリーン Sの座標値であるので、以下の関係が成立する。 PX = (LX, Ly) → (LXX, LYY) However, since the conversion destination coordinate values of the coordinate values in the panel coordinate system at the four corners of the panel 8a described above are the coordinate values of the screen S on the camera coordinate system, the following relationship is established.
Px丄 = sxl, Pyl = syl  Px 丄 = sxl, Pyl = syl
Px2 = sx2, Py2 = sy2  Px2 = sx2, Py2 = sy2
Px3 = sx3, Py3 = sy3  Px3 = sx3, Py3 = sy3
Px4 = sx4, Py4 = sy4  Px4 = sx4, Py4 = sy4
[0075] 次に、計算に使用するために正規化された座標値 (計算用座標値)、即ちパネル 8 aの四隅の座標値 (パネル座標系)を x, y軸共に 0と 1との間の値に変換して正規化し た値を求め、上述の変換先座標値 (カメラ座標系での座標値)も同様に正規化する。 パネル座標系上で正規化された座標値で表されるパネルの四隅の位置 pl, p2, p3, p4及びパネル上の正規化された任意の位置 pxの座標値を元座標値 (パネル座標値 )とし、この元座標値と変換先座標値 (カメラ座標系の座標値)を正規化した座標値と を以下のように表す。 [0075] Next, normalized coordinate values (calculation coordinate values) for use in the calculation, that is, the coordinate values of the four corners of the panel 8a (panel coordinate system) are set to 0 and 1 for both the x and y axes. A value obtained by normalizing by converting to an intermediate value is obtained, and the above-mentioned conversion destination coordinate value (coordinate value in the camera coordinate system) is also normalized in the same manner. The coordinate values of the four corner positions pl, p2, p3, p4 of the panel represented by the coordinate values normalized on the panel coordinate system and the normalized position px on the panel are the original coordinate values (panel coordinate values ), And the coordinate value obtained by normalizing the original coordinate value and the conversion destination coordinate value (camera coordinate system coordinate value) are expressed as follows.
[0076] 元座標値:変換先座標値 [0076] Original coordinate value: Conversion destination coordinate value
pl : (0, 0) : (xl, yl) 但し、 (xl, yl) = (0, 0)  pl: (0, 0): (xl, yl) where (xl, yl) = (0, 0)
P2 : (l, 0) : (x2, y2) P 2: (l, 0): (x2, y2)
P3 : (l, l) : (x3, y3) P 3: (l, l): (x3, y3)
P4 : (0, 1): (x4, y4) P 4: (0, 1): (x4, y4)
px: (χ, y): (χχ, yy)  px: (χ, y): (χχ, yy)
[0077] 上記の関係は、変換先の 1点 (xl, yl)を元座標系の対応する 1点 (0, 0)にオフセット させて計算が単純化されるようにしたものであり、公知の二次元の射影変換において は一般的な手法である。正規化された変換先座標値の x, yの値 xl, χ2, χ3, χ4及び yl, y2, y3, y4はそれぞれ前述したカメラ座標系上のスクリーン Sの四隅の座標値( Pxl, Pyl)、 (Px2, Py2)、 (Px3, Py3)、 (Px4, Py4)を用いて以下のように表される。な お、 wは変換先座標の幅(カメラ座標系上でのスクリーン Sの幅 : x方向の長さ)、 hは 同じく高さ(カメラ座標系上でのスクリーン Sの高さ: y方向の長さ)である。  [0077] The above relation is such that the calculation is simplified by offsetting one point (xl, yl) of the conversion destination to the corresponding one point (0, 0) in the original coordinate system. This is a general method for two-dimensional projective transformation. X, y values of normalized transformation destination coordinate values xl, χ2, χ3, χ4 and yl, y2, y3, y4 are the coordinate values of the four corners of the screen S on the camera coordinate system (Pxl, Pyl) , (Px2, Py2), (Px3, Py3), and (Px4, Py4). Where w is the width of the destination coordinate (width of the screen S on the camera coordinate system: length in the x direction), and h is the same height (height of the screen S on the camera coordinate system: in the y direction) Length).
[0078] xl = 0 但し、 xl = (Pxl - Pxl)/w  [0078] xl = 0 where xl = (Pxl-Pxl) / w
x2 = (Px2 - Pxl)/w x3 = (Px3 - Pxl)/w x2 = (Px2-Pxl) / w x3 = (Px3-Pxl) / w
x4 = (Px4 - Pxl)/w  x4 = (Px4-Pxl) / w
yl = 0 但し、 yl = (Pyl - Pyl)/h  yl = 0 where yl = (Pyl-Pyl) / h
y2 = (Py2 - Pyl)/h  y2 = (Py2-Pyl) / h
y3 = (Py2 - Pyl)/h  y3 = (Py2-Pyl) / h
y4 = (Py4 - Pyl)/h  y4 = (Py4-Pyl) / h
上記の関係から、元座標値 (パネル座標系での座標値)を変換先座標値 (カメラ座 標系上のスクリーン Sの座標値)へ変換するための変換係数 a, b, c, al, a2, bl, b2, aO, b0, cOは以下のように求められる。但し、ここでは元座標値 (パネル座標値)を変 換先座標値へ変換するための変換係数であるので、正変換係数が求められる。なお 、 a, b, cは公知の二次元の射影変換においても、重複した計算を少なくするために 使用される中間定数である。  From the above relationship, conversion coefficients a, b, c, al, and so on for converting the original coordinate value (the coordinate value in the panel coordinate system) to the conversion destination coordinate value (the coordinate value of the screen S on the camera coordinate system) a2, bl, b2, aO, b0, and cO are obtained as follows. However, here, since it is a conversion coefficient for converting the original coordinate value (panel coordinate value) to the conversion destination coordinate value, a positive conversion coefficient is obtained. Note that a, b, and c are intermediate constants that are used to reduce redundant calculations even in the known two-dimensional projective transformation.
a = (x3 * y4 - x4 * y3) :中間定数  a = (x3 * y4-x4 * y3): Intermediate constant
b = (x2 * y3 - x3 * y2) :中間定数  b = (x2 * y3-x3 * y2): Intermediate constant
c = (x2 * y4 - x4 * y2) :中間定数  c = (x2 * y4-x4 * y2): Intermediate constant
al = a * x2  al = a * x2
a2 = a * y2  a2 = a * y2
bl = b * x4  bl = b * x4
b2 = b * y4  b2 = b * y4
aO = - b + c  aO =-b + c
bO = ― a+ c  bO = ― a + c
cO = b + a - c  cO = b + a-c
次に、仮想縮小スクリーン Vsの四隅の位置に対応する投射デバイス部 8のパネル 8 a上の位置、即ちパネル座標系での座標値を求める。なお、パネル 8a上での仮想縮 小スクリーン Vsの四隅の位置に対応する位置の座標値を(small xi, small yi) (図 2参 照)、またその正変換座標値 (カメラ座標系での座標値)を (virtual xi, virtual yi) (図 7参照)とそれぞれ定義する。ここで、 iは 1 , 2, 3, 4であり、 100。/o座標値とはスクリー ン Sの四隅の位置に対応するパネル 8a上の位置の座標値、具体的にはパネル 8aの 四隅の座標値である。 Next, the position on the panel 8a of the projection device unit 8 corresponding to the four corner positions of the virtual reduced screen Vs, that is, the coordinate value in the panel coordinate system is obtained. Note that the coordinate values of the positions corresponding to the four corner positions of the virtual reduced screen Vs on the panel 8a are (small xi, small yi) (see Fig. 2), and their positive transformation coordinate values (in the camera coordinate system). The coordinate values are defined as (virtual xi, virtual yi) (see Fig. 7). Where i is 1, 2, 3, 4 and 100. The / o coordinate value is the coordinate value of the position on the panel 8a corresponding to the position of the four corners of the screen S, specifically the panel 8a The coordinate values at the four corners.
[0082] 100%座標値 → 仮想縮小スクリーンの → 正変換座標値  [0082] 100% coordinate value → virtual reduced screen → forward conversion coordinate value
(パネル上) 座標値 (パネル座標系) (カメラ座標系)  (On panel) Coordinate value (Panel coordinate system) (Camera coordinate system)
P1 :、 0, 0)→ (small xl, small yl) → (virtual xl, virtual yl)  P1:, 0, 0) → (small xl, small yl) → (virtual xl, virtual yl)
P2: (col, 0)→ (small x2, small y2) → (virtual x2, virtual y2)  P2: (col, 0) → (small x2, small y2) → (virtual x2, virtual y2)
P3: (col, row)→ (small x3, small y3) → (virtual x3, virtual y3)  P3: (col, row) → (small x3, small y3) → (virtual x3, virtual y3)
P4: ( 0, row)→ (small x4, small y4) → (virtual x4, virtual y4)  P4: (0, row) → (small x4, small y4) → (virtual x4, virtual y4)
[0083] 計算の便宜上、係数 ctrx = col/2、係数 ctry = row/2とし、更に仮想縮小ス クリーン Vsの縮小比(可変値)を scale(0%— 100%)とすると、パネル 8a上での、即ち パネル座標系での仮想縮小スクリーン Vsの四隅の座標値(small xi, small yi)はそれ ぞれ以下のように表される。ここで、仮想縮小スクリーン Vsの縮小比 scaleは 0% 10 0 %までの間の可変値であるので、パネル座標系での仮想縮小スクリーン Vsの四隅 の座標値(small xi, small yi)は縮小比 scaleの関数になる。 [0083] For convenience of calculation, if the coefficient ctrx = col / 2, the coefficient ctry = row / 2, and the reduction ratio (variable value) of the virtual reduction screen Vs is scale (0% — 100%), it will be on the panel 8a. The coordinate values (small xi, small yi) at the four corners of the virtual reduced screen Vs in the panel coordinate system are expressed as follows. Here, since the reduction ratio scale of the virtual reduced screen Vs is a variable value between 0% and 100%, the coordinate values (small xi, small yi) of the four corners of the virtual reduced screen Vs in the panel coordinate system are reduced. It becomes a function of the ratio scale.
[0084] small xl = (0 - ctrx) * scale/100 + ctrx [0084] small xl = (0-ctrx) * scale / 100 + ctrx
small x2 = (col― ctrx) * scale/100 + ctrx  small x2 = (col― ctrx) * scale / 100 + ctrx
small x3 = (col― ctrx) * scale/100 + ctrx  small x3 = (col― ctrx) * scale / 100 + ctrx
small x4 = (0— ctrx) * scale/100 + ctrx  small x4 = (0— ctrx) * scale / 100 + ctrx
small yl = (0— ctrx) * scale/100 + ctrx  small yl = (0— ctrx) * scale / 100 + ctrx
small y2 = (0— ctrx) * scale/100 + ctrx  small y2 = (0— ctrx) * scale / 100 + ctrx
small y3 = (row― ctrx) * scale/ 100 + ctry  small y3 = (row― ctrx) * scale / 100 + ctry
small y4 = (row― ctrx) * scale/ 100 + ctry  small y4 = (row― ctrx) * scale / 100 + ctry
[0085] 次に、カメラ部 3により撮像されているカメラ画像 31上での仮想縮小スクリーン Vsの 四隅の座標値、即ちカメラ座標系での仮想縮小スクリーン Vsの四隅の座標値( virtual xi, virtual yi)を; kめる。 [0085] Next, the coordinate values of the four corners of the virtual reduced screen Vs on the camera image 31 captured by the camera unit 3, that is, the coordinate values of the four corners of the virtual reduced screen Vs in the camera coordinate system (virtual xi, virtual yi);
[0086] 具体的には上述のようにして得られたパネル 8a上のパネル座標系での仮想縮小ス クリーン Vsの四隅の座標値(small xi, small yi)に対してそれぞれ正変換を行なうこと により、カメラ画像上の、即ちカメラ座標系での仮想縮小スクリーン Vsの四隅の座標 値(virtual xi, virtual yi)を求める。但し、パネル座標(元座標)の任意の点 PXの座標 値 LX, LYをそれぞれ仮想縮小スクリーン Vsの四隅の座標値 small xl— samll x4, small yl一 small y4とし、このパネル座標(元座標)の任意の点 PXの変換先座標(カメ ラ座標系上)の座標値 LXX, LYYをそれぞれ正変換してカメラ座標系での仮想縮小 スクリーン Vsの四隅の座標値 virtual xl一 virtual x4, virtual yl一 virtual y4として、 最終的にカメラ座標系での仮想縮小スクリーン Vsの四隅の座標値 LXX, LYYを以 下のようにして得る。 Specifically, positive conversion is performed on the coordinate values (small xi, small yi) of the four corners of the virtual reduced screen Vs in the panel coordinate system on the panel 8a obtained as described above. Thus, the coordinate values (virtual xi, virtual yi) of the four corners of the virtual reduced screen Vs on the camera image, that is, in the camera coordinate system are obtained. However, the coordinates of an arbitrary point PX in the panel coordinates (original coordinates) The values LX and LY are the coordinate values of the four corners of the virtual reduced screen Vs, small xl—samll x4, small yl one small y4, and any point on this panel coordinate (original coordinate) PX conversion coordinate (on the camera coordinate system) ) Coordinate values LXX and LYY are converted to virtual and reduced in the camera coordinate system. Screen Vs corner coordinate values virtual xl-virtual x4, virtual yl-one virtual y4, and finally virtual reduction in the camera coordinate system The coordinate values LXX and LYY of the four corners of screen Vs are obtained as follows.
[0087] LX: small x丄, small x2, small x3, small x4 [0087] LX: small x 丄, small x2, small x3, small x4
LY: small yl, small y2, small y3, small y4  LY: small yl, small y2, small y3, small y4
LXX: virtual xl, virtual x2, virtual x3, virtual x4  LXX: virtual xl, virtual x2, virtual x3, virtual x4
LYY: virtual yl, virtual y2, virtual y3, virtual y4  LYY: virtual yl, virtual y2, virtual y3, virtual y4
[0088] x = LXん ol 但し、 LX = 0 'col [0088] x = LX ol where LX = 0 'col
y = LY/row 但し、 LY = 0" -row  y = LY / row where LY = 0 "-row
z = aO * x + bO * y + cO  z = aO * x + bO * y + cO
xx = (al * x + bl * y)/z  xx = (al * x + bl * y) / z
yy= (a2 * x + b2 * y)/z  yy = (a2 * x + b2 * y) / z
従って、  Therefore,
LXX = col * xx + Pxl  LXX = col * xx + Pxl
LYY = row * yy + Pyl  LYY = row * yy + Pyl
[0089] 即ち、 LXを small xi (iは 1 , 2, 3, 4)とすることにより LXXとして virtual xiが、 LYを small yiとすることにより LYYとして virtual がそれぞれ求まる。但し、このようにして求 まる座標値(virtual xi, virtual yi)は縮小比 scaleの関数である。従って、縮小比 scale 、具体的には仮想縮小スクリーン Vsのスクリーン Sに対する縮小比が決定しなければ 具体的な値は求まらなレ、。縮小比 scaleの決定は以下のようにして行なわれる。  That is, by setting LX to small xi (i is 1, 2, 3, 4), virtual xi is obtained as LXX, and by setting LY to small yi, virtual is obtained as LYY. However, the coordinate values (virtual xi, virtual yi) obtained in this way are a function of the reduction ratio scale. Therefore, if the reduction ratio scale, specifically, the reduction ratio of the virtual reduction screen Vs to the screen S is not determined, a specific value cannot be obtained. The reduction ratio scale is determined as follows.
[0090] カメラ座標系上において、仮想縮小スクリーン Vsの四隅が投射画像 PJ (具体的に はテストパターン画像 25の太枠部 25b)の内側に存在する場合、換言すればそれぞ れ対応する座標値 virtual xiと pjxiとの関係、及び virtual yiと pjyiとの関係が下記 の 8条件の全てを同時に満たす場合、投射画像 PJの台形歪みを補正することができ る(図 7参照)。 (virtual xl pjxl) > 0、 [0090] On the camera coordinate system, when the four corners of the virtual reduced screen Vs exist inside the projection image PJ (specifically, the thick frame portion 25b of the test pattern image 25), in other words, the corresponding coordinates respectively. If the relationship between the values virtual xi and pjxi and the relationship between virtual yi and pjyi satisfy all of the following eight conditions simultaneously, the trapezoidal distortion of the projected image PJ can be corrected (see Fig. 7). (virtual xl pjxl)> 0,
(virtual x2 - pjx2)く 0、  (virtual x2-pjx2) 0,
(virtual x3 pjx3) < 0、  (virtual x3 pjx3) <0,
(virtual x4 — pjx4) > 0、  (virtual x4 — pjx4)> 0,
(virtual yl — pjyl)〉0、  (virtual yl — pjyl)〉 0,
(virtual y2一 pjy2) > 0、  (virtual y2 one pjy2)> 0,
(virtual y3 — pjy3) < 0、及び  (virtual y3 — pjy3) <0, and
(virtual y4 — pjy4)く 0。  (virtual y4 — pjy4)
[0091] 上記の 8条件の全てが同時に満たされる場合は、カメラ座標系上で仮想縮小スクリ ーン Vsの四隅の全てが投射画像 PJの内側に位置することを意味している力 S、逆に上 記の 8条件のいずれか一つでもが満たされない場合は仮想縮小スクリーン Vsの四隅 の少なくとも一つが投射画像 PJの外側に位置していることを意味している。従って、 縮小比 scaleを 100%から順次、たとえば 1 %、 5%刻みで段階的に小さくしつつ、前 述のカメラ座標系での仮想縮小スクリーン Vsの座標値(virtual xi, virtual yi)を求め る計算を反復することにより、換言すればカメラ座標系上での仮想縮小スクリーン Vs の寸法が段階的により小さくなる側へ上記の計算を反復すれば、上記の 8条件の全 てが満たされる最大の縮小比 scaleが求まり、同時にその縮小比 scaleにおけるカメラ 座標系上での仮想縮小スクリーン Vsの四隅の座標値も求まる。  [0091] When all of the above eight conditions are satisfied at the same time, the force S means that all four corners of the virtual reduction screen Vs are located inside the projected image PJ on the camera coordinate system, and vice versa. If any one of the above eight conditions is not satisfied, it means that at least one of the four corners of the virtual reduced screen Vs is located outside the projected image PJ. Therefore, the coordinate value (virtual xi, virtual yi) of the virtual reduction screen Vs in the camera coordinate system described above is obtained while reducing the reduction ratio scale from 100% step by step, for example, in increments of 1% and 5%. In other words, if the above calculation is repeated in such a way that the size of the virtual reduced screen Vs on the camera coordinate system becomes gradually smaller, all the above eight conditions are satisfied. The reduction ratio scale is obtained, and at the same time, the coordinate values of the four corners of the virtual reduction screen Vs on the camera coordinate system at the reduction ratio scale are also obtained.
[0092] 以上により、カメラ座標系での仮想縮小スクリーン Vsの四隅の座標値 (virtual xi, virtual yi)が求まるので、これに対してカメラ座標系での投射画像 PJ (具体的にはテ ストパターン画像 25の太枠部 25b)の四隅 (座標値は(pjxi, pjyi) )がー致するように 二次元の射影変換を行なう。これにより、投射画像 PJは台形歪みが補正されると共に 、仮想縮小スクリーン Vsの寸法と同一の大きさで、換言すれば、投射画像 PJは台形 歪みが補正されると共にその四隅が仮想縮小スクリーン Vsの四隅に一致した状態で 投射されることになる。図 9はその状態を示す模式図である。なお、この二次元の射 影変換そのものは公知の技術である。  [0092] As described above, the coordinate values (virtual xi, virtual yi) of the four corners of the virtual reduced screen Vs in the camera coordinate system are obtained. On the other hand, the projection image PJ (specifically, the test image) in the camera coordinate system is obtained. Two-dimensional projective transformation is performed so that the four corners (coordinate values are (pjxi, pjyi)) of the thick frame 25b) of the pattern image 25 match. As a result, the projected image PJ is corrected for trapezoidal distortion and has the same size as the virtual reduced screen Vs. In other words, the projected image PJ is corrected for trapezoidal distortion and its four corners are virtual reduced screen Vs. It will be projected in a state that matches the four corners. FIG. 9 is a schematic diagram showing this state. This two-dimensional projective transformation itself is a known technique.
[0093] 具体的には、以下のような演算を行なうことにより、投射画像 PJの四隅を仮想縮小 スクリーン Vsの四隅に一致させて投射することができる。レ、うまでもないが、この演算 そのものは、カメラ部 3が撮像した画像を検出部 11が解析した結果に基づいてシステ ムコントロール部 10により実行される。 Specifically, by performing the following calculation, the four corners of the projected image PJ can be projected in accordance with the four corners of the virtual reduced screen Vs. It ’s no problem, but this operation This is executed by the system control unit 10 based on the result of the detection unit 11 analyzing the image captured by the camera unit 3.
[0094] 入力パラメータは、カメラ座標系上での仮想縮小スクリーン Vsの四隅の座標値と、 投射画像 PJの四隅の座標値と、パネル 8aの X方向及び y方向解像度である。それぞ れを以下のように定義する。 [0094] The input parameters are the coordinate values of the four corners of the virtual reduced screen Vs on the camera coordinate system, the coordinate values of the four corners of the projection image PJ, and the X-direction and y-direction resolutions of the panel 8a. Each is defined as follows.
•カメラ座標系上の仮想縮小スクリーン Vsの四隅(VP1, VP2, VP3, VP4)の座標値: virtual xi, virtual yl)Avirtual x2, virtual y2),  • Coordinate values of four corners (VP1, VP2, VP3, VP4) of virtual reduced screen Vs on camera coordinate system: virtual xi, virtual yl) Avirtual x2, virtual y2),
(virtual x3, virtual y 3), (virtual x4, virtual y4)  (virtual x3, virtual y 3), (virtual x4, virtual y4)
•カメラ座標系上の投射画像 PJ (太枠部 25b)の四隅の座標値:  • Coordinate values of the four corners of the projected image PJ (bold frame 25b) on the camera coordinate system:
(pjxl, pjyl),(pjx2, pjy2),(pjx3, pjy3),(pjx4, pjy4)  (pjxl, pjyl), (pjx2, pjy2), (pjx3, pjy3), (pjx4, pjy4)
'パネルの x方向解像度: col  'Panel x resolution: col
•パネルの y方向解像度: row  • y resolution of the panel: row
但し、パネル解像度は一例として、 XGAの場合は col = 1024, row = 768である( 図 2参照)。  However, as an example, the panel resolution is col = 1024 and row = 768 for XGA (see Figure 2).
[0095] ここで、カメラ座標系上の仮想縮小スクリーン Vsの四隅(VP1, VP2, VP3, VP4)の座 標 iiXvirtual xl, virtual yl), (virtual x2, virtual y2)Avirtual x3, virtual y 3), (virtual x4, virtual y4)を(Pxl, Pyl),(Px2, Py2),(Px3, Py3),(Px4, Py4)とし、それぞれの変換先座 標値 (パネル座標系上の座標値)を(0, 0), (col, 0), (col, row), (0, row)とする。なお、 PXはカメラ座標系上の任意の位置の座標値である。  [0095] Here, the coordinates of the four corners (VP1, VP2, VP3, VP4) of the virtual reduced screen Vs on the camera coordinate system iiXvirtual xl, virtual yl), (virtual x2, virtual y2) Avirtual x3, virtual y 3) , (virtual x4, virtual y4) are (Pxl, Pyl), (Px2, Py2), (Px3, Py3), (Px4, Py4), and each conversion target coordinate value (coordinate value on the panel coordinate system) Is (0, 0), (col, 0), (col, row), (0, row). Note that PX is a coordinate value at an arbitrary position on the camera coordinate system.
カメラ座標系上の仮想縮小スクリーンの座標値  Coordinate value of virtual reduced screen on camera coordinate system
→ 変換先座標値 (パネル座標系上の座標値)  → Conversion destination coordinate value (coordinate value on the panel coordinate system)
VP1 = (Pxl, Pyl)→ ( 0, 0)  VP1 = (Pxl, Pyl) → (0, 0)
VP2 = (Px2, Py2)→ (col, 0)  VP2 = (Px2, Py2) → (col, 0)
VP3 = (Px3, Py3)→ (col, row)  VP3 = (Px3, Py3) → (col, row)
VP4 = (Px4, Py4)→ ( 0, row)  VP4 = (Px4, Py4) → (0, row)
PX = (LXX, LYY)→ ( LX, LY)  PX = (LXX, LYY) → (LX, LY)
[0096] 但し、上述のカメラ座標系上の仮想縮小スクリーン Vsの四隅(VP1, VP2, VP3, VP4 )の座標値はカメラ座標系上の投射画像 PJの四隅の座標と一致すべきであるので、 以下の関係が成立する。 However, the coordinate values of the four corners (VP1, VP2, VP3, VP4) of the virtual reduced screen Vs on the camera coordinate system described above should match the coordinates of the four corners of the projected image PJ on the camera coordinate system. , The following relationship holds.
Pxl = jxl, Pyl = pjyl  Pxl = jxl, Pyl = pjyl
Px2 = pjx2, Py2 = pjy2  Px2 = pjx2, Py2 = pjy2
Px3 = pjx3, Py3 = pjy3  Px3 = pjx3, Py3 = pjy3
Px4 = pjx4, Py4= pjy4  Px4 = pjx4, Py4 = pjy4
[0097] 次に、計算に使用するために正規化された座標値 (計算用座標値)、即ちカメラ座 標系上の仮想縮小スクリーン Vsの四隅の座標を x, y軸共に 0と 1との間の値に変換 して正規化した値を求め、上述の変換先座標値であるパネル座標値も同様に正規 化する。このように正規化された座標値で表されるカメラ座標系上の仮想縮小スクリ ーン Vsの四隅 pi, p2, p3, p4及びカメラ座標系上の正規化された任意の点 pxの座標 値を元座標(カメラ座標系)とし、この元座標の座標値と変換先座標値 (パネル座標 系の座標値)を正規化した座標値とを以下のように表す。 [0097] Next, the coordinate values normalized for use in the calculation (coordinate values for calculation), that is, the coordinates of the four corners of the virtual reduced screen Vs on the camera coordinate system are 0 and 1 for both the x and y axes. The normalized value is obtained by converting to a value between and the panel coordinate value, which is the conversion destination coordinate value described above, is normalized in the same manner. The coordinate values of the four corners pi, p2, p3, p4 of the virtual reduced screen Vs on the camera coordinate system represented by the coordinate values thus normalized and any normalized point px on the camera coordinate system Is the original coordinate (camera coordinate system), and the coordinate value obtained by normalizing the coordinate value of the original coordinate and the coordinate value of the conversion destination (coordinate value of the panel coordinate system) is expressed as follows.
[0098] 元座標値:変換先座標値 [0098] Original coordinate value: Conversion destination coordinate value
pl : (0, 0) : (xl, yl) 但し、 (xl, yl) = (0, 0)  pl: (0, 0): (xl, yl) where (xl, yl) = (0, 0)
P2 : (l, 0) : (x2, y2) P 2: (l, 0): (x2, y2)
P3 : (l, l) : (x3, y3) P 3: (l, l): (x3, y3)
P4 : (0, 1): (x4, y4) P 4: (0, 1): (x4, y4)
px: (χ, y): (χχ, yy)  px: (χ, y): (χχ, yy)
[0099] 上記の関係は、変換先の 1点(xl, yl)を元座標系上の対応する 1点(0, 0)にオフ セットさせて計算が単純化されるようにしたものであり、公知の二次元の射影変換に おいては一般的な手法である。正規化された変換先座標値の X, yの値 xl, x2, x3, x4及び yl, y2, y3, y4はそれぞれ前述したカメラ座標系上の仮想縮小スクリーン Vsの 四隅の座標値 (Pxl, Pyl), (Px2, Py2), (Px3, Py3), (Px4, Py4)を用いて以下のよう に表される。  [0099] The above relationship is such that the calculation is simplified by offsetting one point (xl, yl) of the conversion destination to the corresponding one point (0, 0) on the original coordinate system. This is a general technique in the known two-dimensional projective transformation. The normalized destination coordinate values X, y xl, x2, x3, x4 and yl, y2, y3, y4 are the coordinate values of the four corners of the virtual reduced screen Vs on the camera coordinate system (Pxl, Pyl), (Px2, Py2), (Px3, Py3), and (Px4, Py4) are used as follows.
[0100] xl = 0 但し、 xl = (Pxl - Pxl)ん ol  [0100] xl = 0 However, xl = (Pxl-Pxl) ol
x2 = (Px2 - Pxl)ん ol  x2 = (Px2-Pxl) ol
x3 = (Px3 - Pxl)ん ol  x3 = (Px3-Pxl) ol
x4 = (Px4 - PxD/col yl = 0 但し、 yl = (Pyl - Pyl)/row x4 = (Px4-PxD / col yl = 0 where yl = (Pyl-Pyl) / row
y2 = (Py2 - Pyl)/蘭  y2 = (Py2-Pyl) / Orchid
y3 = (Py2 - Pyl)/蘭  y3 = (Py2-Pyl) / Orchid
y4 = (Py4 - Pyl)/row  y4 = (Py4-Pyl) / row
[0101] 上記の関係から、元座標値 (カメラ座標系)を変換先座標値 (パネル座標系上の仮 想縮小スクリーン Vsの座標値)へ変換するための変換係数 a, b, c, al , a2, b l , b2, aO, b0, cOは以下のように求められる。但し、ここでは元座標値(カメラ座標系上の仮 想縮小スクリーン Vsの座標値)を変換先座標値 (パネル座標系)へ変換するための 変換係数であるので、正変換係数が求められる。また、同時に逆変換係数 n aO, n b0, n cO, n al , n b l , n a2, n b2も求められる。なお、 a, b, cは公知の二次元の射影 変換においても、重複した計算を少なくするために使用される中間定数である。 [0101] From the above relationship, conversion coefficients a, b, c, al for converting the original coordinate value (camera coordinate system) to the conversion destination coordinate value (coordinate value of virtual reduced screen Vs on the panel coordinate system) , a2, bl, b2, aO, b0, cO are obtained as follows. However, here, since it is a conversion coefficient for converting the original coordinate value (the coordinate value of the virtual reduction screen Vs on the camera coordinate system) to the conversion destination coordinate value (panel coordinate system), a positive conversion coefficient is obtained. At the same time, inverse transform coefficients n aO, n b0, n cO, n al, n b l, n a2, n b2 are also obtained. Note that a, b, and c are intermediate constants that are used to reduce duplicate calculations even in the known two-dimensional projective transformation.
[0102] ·正変換係数 [0102] · Positive conversion coefficient
a = : (x3 * y4 - - x4 * y3) :中間定数  a =: (x3 * y4--x4 * y3): Intermediate constant
b = : (x2 * y3 - x3 * y2) :中間定数  b =: (x2 * y3-x3 * y2): Intermediate constant
c = : (x2 * y4 . - x4 * y2) :中間定数  c =: (x2 * y4.-x4 * y2): Intermediate constant
al = a * x2  al = a * x2
a2 = a * y2  a2 = a * y2
b l = b * x4  b l = b * x4
b2 = b * y4  b2 = b * y4
aO = - b + c  aO =-b + c
bO = - a + c  bO =-a + c
cO = b + a ― c  cO = b + a ― c
[0103] ·逆変換係数  [0103] · Inverse transformation coefficient
n aO = (aO * b2 - a2 * b2)  n aO = (aO * b2-a2 * b2)
n bO = (al * bO _ aO * b l)  n bO = (al * bO _ aO * b l)
n cO = (a2 * b l - al * b2)  n cO = (a2 * b l-al * b2)
[0104] 次に、カメラ座標系上の仮想縮小スクリーン Vsの四隅の座標値を逆変換することに より、パネル座標系上での対応する座標値を算出する。但し、カメラ座標系上(元座 標)の任意の点 PXの座標値 LXX, LYYをそれぞれ仮想縮小スクリーン Vsの四隅の座 標値 sxi, syiとし、これを逆変換することにより最終的にカメラ座標系上の仮想縮小ス クリーン Vsの四隅に対応するパネル座標系上の四隅の座標値 LX, LYを以下のよう にして得る。 Next, the corresponding coordinate values on the panel coordinate system are calculated by inversely transforming the coordinate values of the four corners of the virtual reduced screen Vs on the camera coordinate system. However, on the camera coordinate system Arbitrary point PX The coordinate values LXX and LYY of the PX are the coordinate values sxi and syi at the four corners of the virtual reduction screen Vs, respectively, and by inverse transformation, the virtual reduction screen Vs on the camera coordinate system is finally obtained. The coordinate values LX and LY of the four corners on the panel coordinate system corresponding to the four corners are obtained as follows.
[0105] XX = (LXX - Pxl)/col 但し、 LXX =0- - -col  [0105] XX = (LXX-Pxl) / col where LXX = 0---col
yy = (LYY - Pyl)/row 但し、 LYY =0 "row  yy = (LYY-Pyl) / row where LYY = 0 "row
zz = n aO * xx + n D0 * yy + n cO  zz = n aO * xx + n D0 * yy + n cO
x = (n al * xx + n bl * yy)/ zz  x = (n al * xx + n bl * yy) / zz
y = (n a2 * xx + n b2 * yy)/ zz  y = (n a2 * xx + n b2 * yy) / zz
従って、  Therefore,
LX = col * x  LX = col * x
LY = row * y  LY = row * y
[0106] 以上により、仮想縮小スクリーン Vsに投射画像 PJを一致させて、より具体的には仮 想縮小スクリーン Vsの四隅に投射画像 PJの四隅を一致させて投射することが可能に なる。  As described above, the projection image PJ can be made to coincide with the virtual reduction screen Vs, and more specifically, the four corners of the projection image PJ can be made to coincide with the four corners of the virtual reduction screen Vs.
[0107] 図 10は本発明のプロジェクタによるオート調整の際のシステムコントロール部による 処理手順を示すフローチャートである。即ち、図 10は上述したように、投射画像 PJを 台形歪みも補正された状態でスクリーン S上に仮想縮小スクリーン Vsに一致する寸 法で、具体的には投射画像 PJの四隅を台形歪みも補正された状態でスクリーン S上 の仮想縮小スクリーン Vsの四隅に一致ように表示する処理をも含むシステムコント口 ール部 10による処理手順を示すフローチャートである。なおこのフローチャートに示 す制御は、 ROMlOaに格納されているプログラム 10pに従って処理される。  FIG. 10 is a flowchart showing a processing procedure by the system control unit at the time of auto adjustment by the projector of the present invention. That is, in FIG. 10, as described above, the projected image PJ has a dimension that matches the virtual reduced screen Vs on the screen S with the trapezoidal distortion corrected. Specifically, the four corners of the projected image PJ are also trapezoidally distorted. 12 is a flowchart showing a processing procedure by the system control unit 10 including processing for displaying the corrected reduced screen Vs on the screen S so as to coincide with the four corners in a corrected state. The control shown in this flowchart is processed according to the program 10p stored in ROMlOa.
[0108] なお、本実施の形態ではシステムコントロール部 10が ROMlOaに格納されている プログラム 10pに従って各手順を処理するように構成されているが、本発明のプロジ ェクタではこれらの各手順の内の一部又は全てをそれぞれ専用のハードウェア(専用 回路)で処理する構成を採ることも勿論可能である。  In the present embodiment, the system control unit 10 is configured to process each procedure in accordance with the program 10p stored in the ROMlOa. However, the projector of the present invention includes these procedures. Of course, it is possible to adopt a configuration in which part or all of the data is processed by dedicated hardware (dedicated circuit).
[0109] 先ず、ユーザはプロジェクタ 1をスクリーン Sの前方に設置し、操作部 12又はリモコ ン 20を操作して投射準備のオート調整を行なう指示をプロジェクタに与える。システ ムコントロール部 10は、投射準備のオート調整を行なう指示及びその他の指示を受 け付けたか否かを監視している (ステップ S11)。投射準備のオート調整を行なう指示 以外の指示を受け付けた場合(ステップ S11で NO)、システムコントロール部 10は受 け付けた指示に対応する処理を実行する (ステップ S12)。投射準備のオート調整を 行なう指示を受け付けた場合 (ステップ S11で YES)、システムコントロール部 10は色 補正及び焦点調整の項目に対するオート調整は勿論のこと、上述した仮想縮小スク リーン Vsの四隅に投射画像 PJ、具体的にはテストパターン 25の太枠部 25bの四隅 を一致させる調整を開始する (ステップ S13)。なお、以下の説明では色補正及び焦 点調整に関する説明は省略する。 First, the user places the projector 1 in front of the screen S, and operates the operation unit 12 or the remote control 20 to give an instruction to perform automatic adjustment for projection preparation to the projector. System The system control unit 10 monitors whether or not an instruction to perform automatic adjustment for projection preparation and other instructions have been received (step S11). When an instruction other than an instruction for performing automatic adjustment for projection preparation is received (NO in step S11), system control unit 10 executes a process corresponding to the received instruction (step S12). When an instruction to perform automatic adjustment for projection preparation is received (YES in step S11), the system control unit 10 performs projection on the four corners of the virtual reduction screen Vs described above as well as automatic adjustment for the items of color correction and focus adjustment. The adjustment to match the four corners of the image PJ, specifically, the thick frame portion 25b of the test pattern 25 is started (step S13). In the following description, descriptions regarding color correction and focus adjustment are omitted.
[0110] オート調整の開始に際してシステムコントロール部 10は、カメラ部 3が撮像した画像 から、まずスクリーン Sの四隅のカメラ座標系での位置 (座標値)を検出し(ステップ S 14)、次に投射画像枠検出用のテストパターンである太枠部 25bの四隅のカメラ座標 系での位置 (座標値)を検出し(ステップ S15)、両者の位置関係、即ちカメラ座標系 でのスクリーン Sの四隅の位置と投射画像枠検出用のテストパターンの太枠部 25bの 四隅の位置との関係を調べる(ステップ S 16)。なおこれらのシステムコントロール部 1 0によるスクリーン S及び投射された太枠部 25bの四隅のカメラ座標系での位置 (座標 値)を検出する処理は前述した図 5のフローチャートの場合と同様に行なわれる。この 結果、カメラ座標系でのスクリーン Sの四隅の全てが投射画像枠検出用のテストパタ 一ンの太枠部 25bの内側に位置している場合(ステップ S17で NO)、システムコント ロール部 10は通常の調整、即ちスクリーン Sよりも大きい投射画像 PJをスクリーン Sの 寸法に一致させるように通常のオート調整 (ズーム調整及び台形歪み補正)を行なう (ステップ S21)。この後、外部接続部 4から入力される種々の画像を利用者の指示に 従ってスクリーン S上の仮想縮小スクリーン Vsに投射することが可能になるので、検 出部 11の指示により画像の投射が開始される(ステップ S20)。  [0110] At the start of auto adjustment, the system control unit 10 first detects positions (coordinate values) in the camera coordinate system of the four corners of the screen S from the image captured by the camera unit 3 (step S14), and then The positions (coordinate values) of the four corners of the thick frame 25b, which is a test pattern for detecting the projected image frame, are detected in the camera coordinate system (step S15), and the positional relationship between them, ie, the four corners of the screen S in the camera coordinate system. And the positions of the four corners of the thick frame portion 25b of the test pattern for detecting the projected image frame are examined (step S16). The system controller 10 detects the positions (coordinate values) of the four corners of the screen S and the projected thick frame 25b in the camera coordinate system in the same manner as in the flowchart of FIG. . As a result, when all four corners of the screen S in the camera coordinate system are located inside the thick frame portion 25b of the test pattern for detecting the projected image frame (NO in step S17), the system control unit 10 Normal adjustment, that is, normal auto adjustment (zoom adjustment and trapezoidal distortion correction) is performed so that the projected image PJ larger than the screen S matches the dimension of the screen S (step S21). After this, various images input from the external connection unit 4 can be projected onto the virtual reduced screen Vs on the screen S according to the user's instructions, so that the image projection is performed according to the instructions from the detection unit 11. Started (step S20).
[0111] 一方、カメラ座標系でのスクリーン Sの四隅のいずれか一つでもが投射画像枠検出 用のテストパターンの太枠部 25bの外側に位置している場合(ステップ S17で YES) 、システムコントロール部 10はスクリーン Sの中央に画像を投射するためのオート調 整を行なう。即ち、システムコントロール部 10はまず前述したように、カメラ座標系に おいて仮想縮小スクリーン Vsの四隅が投射画像枠検出用のテストパターン画像 25 の太枠部 25bの内側に存在する場合、換言すればそれぞれ対応する座標値 virtual xiと pjxiとの関係、及び virtual yiと pjyiとの関係が下記の 8条件の全てを同時に 満たす場合、投射画像 PJの台形歪みを補正することができるので、そのような条件が 満たされるようにスクリーン S上での仮想縮小スクリーン Vsの四隅を決定する(ステツ プ S18)。 [0111] On the other hand, if any one of the four corners of the screen S in the camera coordinate system is located outside the thick frame portion 25b of the test pattern for detecting the projected image frame (YES in step S17), the system The control unit 10 performs automatic adjustment to project an image on the center of the screen S. That is, the system control unit 10 first sets the camera coordinate system as described above. If the four corners of the virtual reduced screen Vs exist inside the thick frame 25b of the test pattern image 25 for detecting the projected image frame, in other words, the relationship between the corresponding coordinate values virtual xi and pjxi, and virtual yi And pjyi satisfy all of the following 8 conditions at the same time, the trapezoidal distortion of the projected image PJ can be corrected, so that the virtual reduced screen Vs on screen S can satisfy such conditions. Determine the four corners (step S18).
[0112] そして、決定した仮想縮小スクリーン Vsの四隅に投射画像枠検出用のテストパター ン画像 25の太枠部 25bの四隅が一致するようにズーム調整及び台形歪み補正を行 なう(ステップ S19)。この後、外部接続部 4から入力される種々の画像を利用者の指 示に従ってスクリーン S上の仮想縮小スクリーン Vsに投射することが可能になるので 、検出部 11の指示により画像の投射が開始される(ステップ S20)。  [0112] Then, zoom adjustment and keystone correction are performed so that the four corners of the thick frame portion 25b of the test pattern image 25 for detecting the projected image frame coincide with the four corners of the determined virtual reduced screen Vs (step S19). ). After that, various images input from the external connection unit 4 can be projected onto the virtual reduced screen Vs on the screen S according to the user's instructions. (Step S20).
[0113] なお、上記の実施の形態では一つのプロジェクタ 1から投射画像 PJをスクリーン Sの 中央に投射する構成について説明したが、本発明を応用することにより、複数のプロ ジェクタから投射画像を一つのスクリーン上に重畳しないように並べて投射することも 可能である。  [0113] In the above-described embodiment, the configuration in which the projection image PJ is projected from the single projector 1 onto the center of the screen S has been described. However, by applying the present invention, the projection images from the plurality of projectors are integrated. It is also possible to project side by side so that they do not overlap on one screen.
[0114] なお上述の実施の形態では、カメラ部 3が撮像した画像に基づレ、て仮想縮小スクリ ーン Vs (仮想投射枠)を設定しているが、スクリーン S (被投射体)に関してはたとえば スクリーン Sの四隅にフォトダイオード等の光検出センサを設置してスクリーン Sの四 隅の位置を検出するようにし、投射画像 (具体的にはテストパターン 25の太枠部 25b )に関してはズーム操作、レンズシフト操作等により四隅を検出するように構成するこ とにより、本発明を適用することが可能になる。  [0114] In the above-described embodiment, the virtual reduction screen Vs (virtual projection frame) is set based on the image captured by the camera unit 3, but the screen S (projected body) is related. For example, light detection sensors such as photodiodes are installed at the four corners of the screen S to detect the positions of the four corners of the screen S, and the projected image (specifically, the thick frame 25b of the test pattern 25) is zoomed. By configuring so that the four corners are detected by an operation, a lens shift operation, or the like, the present invention can be applied.
[0115] また、上述の実施の形態では、仮想縮小スクリーン Vs (仮想投射枠)の四隅に投射 画像(具体的にはテストパターン 25の太枠部 25b)の四隅を一致させることにより、投 射画像の台形歪みを補正するようにしているが、仮想縮小スクリーン Vsをズーム調整 に利用することも勿論可能である。この場合には、スクリーン S (被投射体)の中心に 投射画像の中心を一致させた状態でズーム調整を行なうことが可能になる。  In the above-described embodiment, the projection image (specifically, the thick frame portion 25b of the test pattern 25) is matched with the four corners of the virtual reduced screen Vs (virtual projection frame), thereby projecting the projection image. Although the keystone distortion of the image is corrected, it is of course possible to use the virtual reduction screen Vs for zoom adjustment. In this case, zoom adjustment can be performed in a state where the center of the projected image coincides with the center of the screen S (projected body).

Claims

請求の範囲 The scope of the claims
[1] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って空間光変 調手段に変調光を生成させ、前記空間光変調手段が生成した変調光を前記矩形状 の被投射体へ投射レンズに投射させる際に、前記矩形状の投射画像を変形した画 像を表す情報に従って前記空間光変調手段に変調光を生成させて前記被投射体 上で矩形状の画像となるように投射する画像投射方法にぉレ、て、  [1] Spatial light modulation means generates modulated light in accordance with information representing a rectangular projection image projected onto a rectangular projection object, and the modulated light generated by the spatial light modulation means is used as the rectangular object. When projecting the projection lens onto the projection lens, the spatial light modulation means generates modulated light in accordance with information representing an image obtained by deforming the rectangular projection image to form a rectangular image on the projection target. The image projection method to project
前記矩形状の投射画像と同一アスペクト比を有し、前記矩形状の被投射体へ投射 された場合に、前記矩形状の被投射体の寸法よりも小さぐ前記矩形状の被投射体 の中心に中心を一致させた状態で矩形状となる仮想投射枠を前記空間光変調手段 上に設定することを特徴とする画像投射方法。  The center of the rectangular projection object having the same aspect ratio as the rectangular projection image and smaller than the size of the rectangular projection object when projected onto the rectangular projection object An image projection method comprising: setting a virtual projection frame having a rectangular shape in a state in which the centers coincide with each other on the spatial light modulator.
[2] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って空間光変 調手段に変調光を生成させ、該空間光変調手段が生成した変調光を前記矩形状の 被投射体へ投射レンズに投射させる際に、前記矩形状の投射画像を変形した画像 を表す情報に従って前記空間光変調手段に変調光を生成させて前記被投射体上 で矩形状の画像となるように投射する画像投射方法にぉレ、て、  [2] According to the information representing the rectangular projection image projected onto the rectangular projection object, the spatial light modulation means generates modulated light, and the modulated light generated by the spatial light modulation means is used as the rectangular object. When projecting the projection lens onto the projection lens, the spatial light modulation means generates modulated light according to information representing an image obtained by deforming the rectangular projection image so that a rectangular image is formed on the projection target. The image projection method to project to
前記矩形状の投射画像と同一アスペクト比を有し、前記矩形状の被投射体へ投射 された場合に、前記矩形状の被投射体の寸法よりも小さぐ前記矩形状の被投射体 の中心に中心を一致させた状態で矩形状となる仮想投射枠を前記空間光変調手段 上に設定し、  The center of the rectangular projection object having the same aspect ratio as the rectangular projection image and smaller than the size of the rectangular projection object when projected onto the rectangular projection object A virtual projection frame that is rectangular with the center aligned with the spatial light modulation means on the spatial light modulation means,
前記空間光変調手段上に設定された仮想投射枠の四隅に前記矩形状の投射画 像の四隅が一致するように、前記空間光変調手段上での前記矩形状の投射画像の 変形量を演算すること  The deformation amount of the rectangular projection image on the spatial light modulator is calculated so that the four corners of the rectangular projection image coincide with the four corners of the virtual projection frame set on the spatial light modulator. To do
を特徴とする画像投射方法。  An image projection method characterized by the above.
[3] 変形されていない前記投射画像を表す情報に従って前記空間光変調手段に変調 光を生成させ、前記空間光変調手段が生成した変調光を前記投射レンズを通じて最 大の大きさで前記被投射体へ投射した場合の前記投射画像の四隅の位置と、前記 被投射体の四隅の位置とを含む画像を撮像手段で撮像し、 [3] The spatial light modulation unit generates modulated light according to the information representing the unprojected projection image, and the modulated light generated by the spatial light modulation unit is maximized through the projection lens. When the image is projected onto a body, an image including the positions of the four corners of the projection image and the positions of the four corners of the projection object is captured by an imaging unit,
前記撮像手段が撮像した画像から、前記被投射体の四隅の位置及び前記投射画 像の四隅の位置を前記撮像手段に設定された座標系上で特定し、 From the image captured by the imaging means, the positions of the four corners of the projection object and the projection image Specify the positions of the four corners of the image on the coordinate system set in the imaging means,
前記座標系上で特定された前記被投射体の四隅の位置の内の少なくとも一つが 前記座標系上で特定された前記投射画像の四隅の位置の外側に存在する場合に、 前記空間光変調手段上に前記仮想投射枠を設定すること  When at least one of the four corner positions of the projection target specified on the coordinate system exists outside the four corner positions of the projection image specified on the coordinate system, the spatial light modulation means Setting the virtual projection frame on
を特徴とする請求項 1又は 2に記載の画像投射方法。  The image projecting method according to claim 1, wherein:
[4] 前記座標系上で特定された前記被投射体の四隅の位置及び前記投射画像の四 隅の位置に基づいて最大の寸法の仮想投射枠を前記空間光変調手段上に設定す ることを特徴とする請求項 3に記載の画像投射方法。 [4] A virtual projection frame having a maximum size is set on the spatial light modulation unit based on the positions of the four corners of the projection target specified on the coordinate system and the four corner positions of the projection image. The image projection method according to claim 3, wherein:
[5] 前記座標系上で特定された前記被投射体のアスペクト比を前記投射画像のァスぺ 外比に変換した仮想投射枠を段階的に縮小することにより、段階的に縮小される仮 想投射枠の四隅の全てが前記座標系上で特定した前記投射画像の範囲内に位置 するようになった時点の縮小比に基づいて最大の寸法の仮想投射枠を前記空間光 変調手段上に設定することを特徴とする請求項 4に記載の画像投射方法。 [5] The virtual projection frame obtained by converting the aspect ratio of the projection object specified on the coordinate system into the external ratio of the projection image is reduced in stages, thereby being reduced in stages. Based on the reduction ratio at the time when all four corners of the virtual projection frame are located within the range of the projection image specified on the coordinate system, a virtual projection frame of the maximum size is placed on the spatial light modulation means. 5. The image projection method according to claim 4, wherein the image projection method is set.
[6] 前記被投射体の四隅の位置関係を、前記被投射体の中心を中心とし、前記投射 画像と同一アスペクト比を有する矩形の四隅の位置関係に二次元の射影変換を用 レ、て変換することにより、前記空間光変調手段上に仮想投射枠を設定することを特 徴とする請求項 4に記載の画像投射方法。 [6] The two-dimensional projective transformation is applied to the positional relationship of the four corners of the projection body with respect to the positional relationship of the four corners of the rectangle having the same aspect ratio as the projection image with the center of the projection target as the center. 5. The image projection method according to claim 4, wherein a virtual projection frame is set on the spatial light modulation means by conversion.
[7] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って変調光を 生成する空間光変調手段と、該空間光変調手段が生成した変調光を前記矩形状の 被投射体へ投射する投射レンズとを備え、前記矩形状の投射画像を変形した画像を 表す情報に従って前記空間光変調手段に変調光を生成させて前記矩形状の被投 射体上で矩形状の画像となるように投射するプロジェクタにおいて、 [7] Spatial light modulation means for generating modulated light according to information representing a rectangular projection image projected onto a rectangular projection object, and the modulated light generated by the spatial light modulation means for the rectangular projection A projection lens that projects onto the body, and causes the spatial light modulation means to generate modulated light in accordance with information representing an image obtained by deforming the rectangular projection image, thereby generating a rectangular image on the rectangular projection target. In the projector that projects so that
前記矩形状の投射画像と同一アスペクト比を有し、前記矩形状の被投射体へ投射 された場合に、前記矩形状の被投射体の寸法よりも小さぐ前記矩形状の被投射体 の中心に中心を一致させた状態で矩形状となる仮想投射枠を前記空間光変調手段 上に設定する仮想投射枠設定手段を備えることを特徴とするプロジェクタ。  The center of the rectangular projection object having the same aspect ratio as the rectangular projection image and smaller than the size of the rectangular projection object when projected onto the rectangular projection object A projector comprising virtual projection frame setting means for setting a virtual projection frame having a rectangular shape with the center being coincident with the spatial light modulation means.
[8] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って変調光を 生成する空間光変調手段と、該空間光変調手段が生成した変調光を前記矩形状の 被投射体へ投射する投射レンズとを備え、前記矩形状の投射画像を変形した画像を 表す情報に従って前記空間光変調手段に変調光を生成させて前記矩形状の被投 射体上で矩形状の画像となるように投射するプロジェクタにおいて、 [8] Spatial light modulation means for generating modulated light in accordance with information representing a rectangular projection image projected onto a rectangular projection object, and the modulated light generated by the spatial light modulation means for the rectangular light A projection lens for projecting onto the projection target, and generating a modulated light in the spatial light modulation means according to information representing an image obtained by deforming the rectangular projection image to form a rectangular shape on the rectangular projection target In the projector that projects so that the image becomes
前記矩形状の投射画像と同一アスペクト比を有し、前記矩形状の被投射体へ投射 された場合に、前記矩形状の被投射体の寸法よりも小さぐ前記矩形状の被投射体 の中心に中心を一致させた状態で矩形状となる仮想投射枠を前記空間光変調手段 上に設定する仮想投射枠設定手段と、  The center of the rectangular projection object having the same aspect ratio as the rectangular projection image and smaller than the size of the rectangular projection object when projected onto the rectangular projection object Virtual projection frame setting means for setting on the spatial light modulation means a virtual projection frame that is rectangular with the center being coincident with
該仮想投射枠設定手段が前記空間光変調手段上に設定した仮想投射枠の四隅 に前記矩形状の投射画像の四隅が一致するように、前記空間光変調手段上での前 記矩形状の投射画像の変形量を演算する演算手段とを備えることを特徴とするプロ ジェクタ。  The rectangular projection on the spatial light modulation means so that the four corners of the rectangular projection image coincide with the four corners of the virtual projection frame set on the spatial light modulation means by the virtual projection frame setting means. A projector comprising a calculation means for calculating a deformation amount of an image.
[9] 変形されていない前記投射画像を表す情報に従って前記空間光変調手段が生成 した変調光を前記投射レンズを通じて最大の大きさで前記被投射体へ投射した場合 の前記投射画像の四隅の位置と、前記被投射体の四隅の位置とを含む画像を撮像 する撮像手段と、  [9] The positions of the four corners of the projection image when the modulated light generated by the spatial light modulator according to the information representing the undeformed projection image is projected to the projection object with the maximum size through the projection lens. Imaging means for capturing an image including the four corner positions of the projection object;
該撮像手段が撮像した画像から、前記被投射体の四隅の位置及び前記投射画像 の四隅の位置を前記撮像手段に設定された座標系上で特定する特定手段と を備え、  And specifying means for specifying the positions of the four corners of the projection object and the positions of the four corners of the projection image on the coordinate system set in the imaging means from the image captured by the imaging means,
前記仮想投射枠設定手段は、前記特定手段が前記座標系上で特定した前記被投 射体の四隅の位置の内の少なくとも一つが前記特定手段が前記座標系上で特定し た前記投射画像の四隅の位置の外側に存在する場合に、前記空間光変調手段上 に仮想投射枠を設定することを特徴とする請求項 7又は 8に記載のプロジェクタ。  The virtual projection frame setting means is configured such that at least one of the positions of the four corners of the projection target specified by the specifying means on the coordinate system is the projection image specified by the specifying means on the coordinate system. 9. The projector according to claim 7, wherein a virtual projection frame is set on the spatial light modulation means when it exists outside the positions of the four corners.
[10] 前記仮想投射枠設定手段は、前記特定手段が前記座標系上で特定した前記被投 射体の四隅の位置及び前記投射画像の四隅の位置に基づいて最大の寸法の仮想 投射枠を前記空間光変調手段上に設定することを特徴とする請求項 9に記載のプロ ジェクタ。 [10] The virtual projection frame setting means sets a virtual projection frame having a maximum size based on the positions of the four corners of the projection target and the positions of the four corners of the projection image specified by the specifying means on the coordinate system. 10. The projector according to claim 9, wherein the projector is set on the spatial light modulator.
[11] 前記仮想投射枠設定手段は、前記特定手段が前記座標系上で特定した前記被投 射体のアスペクト比を前記投射画像のアスペクト比に変換した仮想投射枠を段階的 に縮小することにより、段階的に縮小される仮想投射枠の四隅の全てが前記特定手 段が前記座標系上で特定した前記投射画像の範囲内に位置するようになった時点 の縮小比に基づいて最大の寸法の仮想投射枠を前記空間光変調手段上に設定す ることを特徴とする請求項 10に記載のプロジェクタ。 [11] The virtual projection frame setting unit is configured to stepwise a virtual projection frame obtained by converting the aspect ratio of the projection target specified by the specifying unit on the coordinate system into the aspect ratio of the projection image. The reduction ratio at the time when all of the four corners of the virtual projection frame that are reduced step by step are positioned within the range of the projection image specified by the specific means on the coordinate system. 11. The projector according to claim 10, wherein a virtual projection frame having a maximum dimension is set on the spatial light modulator based on the basis.
[12] 前記仮想投射枠設定手段は、前記被投射体の四隅の位置関係を、前記被投射体 の中心を中心とし、前記投射画像のアスペクト比を有する矩形の四隅の位置関係に 二次元の射影変換を用いて変換することにより、前記空間光変調手段上に仮想投射 枠を設定することを特徴とする請求項 10に記載のプロジェクタ。  [12] The virtual projection frame setting means has a two-dimensional relationship between the four corners of the projection object and the rectangular corners having the aspect ratio of the projection image centered on the center of the projection object. 11. The projector according to claim 10, wherein a virtual projection frame is set on the spatial light modulator by performing conversion using projective conversion.
[13] 矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って変調光を 生成する空間光変調手段と、該空間光変調手段が生成した変調光を前記矩形状の 被投射体へ投射する投射レンズと、撮像装置とを備え、前記矩形状の投射画像を変 形した画像を表す情報に従って前記空間光変調手段に変調光を生成させて前記被 投射体上で矩形状の画像となるように投射するための、前記矩形状の投射画像と同 一アスペクト比を有し、前記被投射体の寸法よりも小さぐ前記被投射体の中心に中 心を一致させた矩形状の仮想投射枠を前記撮像装置が撮像した画像に基づいて設 定するプロジェクタにおいて、  [13] Spatial light modulation means for generating modulated light in accordance with information representing a rectangular projection image projected onto a rectangular projection object, and the modulated light generated by the spatial light modulation means for the rectangular projection A projection lens that projects onto a body, and an imaging device, and generates spatial light modulation light in the spatial light modulation unit according to information representing an image obtained by transforming the rectangular projection image, and has a rectangular shape on the projection target. A rectangular shape having the same aspect ratio as that of the rectangular projection image for projecting into an image and having the center coincident with the center of the projection object that is smaller than the dimension of the projection object In the projector that sets the virtual projection frame based on the image captured by the imaging device,
前記矩形状の投射画像の四隅を示すテストパターンを表す変調光を前記空間光 変調手段に生成させて前記投射レンズから前記矩形状の被投射体へ向けて投射さ せる手段と、  Means for causing the spatial light modulation means to generate modulated light representing test patterns indicating the four corners of the rectangular projection image and projecting the modulated light from the projection lens toward the rectangular projection object;
前記テストパターンが前記矩形状の被投射体へ向けて投射された状態を前記撮像 装置に撮像させる手段と、  Means for causing the imaging device to image the state in which the test pattern is projected toward the rectangular projection object;
前記撮像装置が撮像した画像上で前記矩形状の被投射体の四隅の位置を検出す る手段と、  Means for detecting positions of four corners of the rectangular projection object on an image captured by the imaging device;
前記撮像装置が撮像した画像上で前記投射されたテストパターンの四隅の位置を 検出する手段と、  Means for detecting positions of four corners of the projected test pattern on an image captured by the imaging device;
前記撮像装置が撮像した画像上での、前記矩形状の被投射体の四隅とテストバタ ーンの四隅との相対的位置関係を調べる手段と、  Means for examining the relative positional relationship between the four corners of the rectangular projection object and the four corners of the test pattern on the image captured by the imaging device;
前記撮像装置が撮像した画像上で、前記矩形状の被投射体の四隅の内の少なくと も一つが前記投射されたテストパターンの四隅で囲まれる範囲内に位置してレ、なレヽ 場合に、仮想投射枠の四隅を決定する手段と On the image captured by the imaging device, at least of the four corners of the rectangular projection object Means for determining the four corners of the virtual projection frame when one of them is located within a range surrounded by the four corners of the projected test pattern.
を備えたことを特徴とするプロジェクタ。  A projector comprising:
矩形状の被投射体へ投射される矩形状の投射画像を表す情報に従って変調光を 生成する空間光変調手段と、該空間光変調手段が生成した変調光を前記矩形状の 被投射体へ投射する投射レンズと、撮像装置とを備え、前記矩形状の投射画像を変 形した画像を表す情報に従って前記空間光変調手段に変調光を生成させて前記被 投射体上で矩形状の画像となるように投射させるコンピュータに、前記矩形状の投射 画像と同一アスペクト比を有し、前記矩形状の被投射体の寸法よりも小さぐ前記矩 形状の被投射体の中心に中心を一致させた矩形状の仮想投射枠を前記撮像装置 が撮像した画像に基づいて設定させるコンピュータプログラムであって、  Spatial light modulation means for generating modulated light according to information representing a rectangular projection image projected onto the rectangular projection object, and projecting the modulated light generated by the spatial light modulation means onto the rectangular projection object A projection lens and an imaging device, and the spatial light modulation means generates modulated light according to information representing an image obtained by transforming the rectangular projection image to form a rectangular image on the projection object. A computer having the same aspect ratio as that of the rectangular projection image, the center of which coincides with the center of the rectangular projection object that is smaller than the size of the rectangular projection object. A computer program for setting a virtual projection frame of a shape based on an image captured by the imaging device,
前記矩形状の投射画像の四隅を示すテストパターンを表す変調光を前記空間光 変調手段に生成させて前記投射レンズから前記矩形状の被投射体へ向けて投射さ せる手順と、  A procedure for causing the spatial light modulation means to generate modulated light representing test patterns indicating the four corners of the rectangular projection image and projecting the modulated light from the projection lens toward the rectangular projection target;
前記テストパターンが前記矩形状の被投射体へ向けて投射された状態を前記撮像 装置に撮像させる手順と、  A procedure for causing the imaging device to image a state in which the test pattern is projected toward the rectangular projection object;
前記撮像装置が撮像した画像上で前記矩形状の被投射体の四隅の位置を検出す る手順と、  A procedure for detecting positions of four corners of the rectangular projection object on an image captured by the imaging device;
前記撮像装置が撮像した画像上で前記投射されたテストパターンの四隅の位置を 検出する手順と、  A procedure for detecting positions of four corners of the projected test pattern on an image captured by the imaging device;
前記撮像装置が撮像した画像上での、前記矩形状の被投射体の四隅とテストパタ ーンの四隅との相対的位置関係を調べる手順と、  A procedure for examining the relative positional relationship between the four corners of the rectangular projection object and the four corners of the test pattern on the image captured by the imaging device;
前記撮像装置が撮像した画像上で、前記矩形状の被投射体の四隅の内の少なくと も一つが前記投射されたテストパターンの四隅で囲まれる範囲内に位置してレ、なレヽ 場合に、仮想投射枠の四隅を決定する手順と  When at least one of the four corners of the rectangular projection object is located within a range surrounded by the four corners of the projected test pattern on the image captured by the imaging device. The procedure to determine the four corners of the virtual projection frame and
を前記コンピュータに実行させることを特徴とするコンピュータプログラム。  A computer program for causing the computer to execute.
PCT/JP2004/010141 2004-07-15 2004-07-15 Image projecting method, projector and computer program WO2006008791A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/010141 WO2006008791A1 (en) 2004-07-15 2004-07-15 Image projecting method, projector and computer program
TW093122958A TWI244860B (en) 2004-07-15 2004-07-30 Image projection method, projector, and computer-readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/010141 WO2006008791A1 (en) 2004-07-15 2004-07-15 Image projecting method, projector and computer program

Publications (1)

Publication Number Publication Date
WO2006008791A1 true WO2006008791A1 (en) 2006-01-26

Family

ID=35784927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010141 WO2006008791A1 (en) 2004-07-15 2004-07-15 Image projecting method, projector and computer program

Country Status (2)

Country Link
TW (1) TWI244860B (en)
WO (1) WO2006008791A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150595A (en) * 2021-03-31 2022-10-04 成都极米科技股份有限公司 Method and device for determining projection picture display area and projector
EP4300951A4 (en) * 2021-06-10 2024-07-31 Samsung Electronics Co Ltd Electronic apparatus and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352591A (en) * 1998-06-12 1999-12-24 Denso Corp Video display device
JP2001069433A (en) * 1999-08-25 2001-03-16 Ricoh Co Ltd Image projector, image projection method, and computer- readable recording medium recording program to allow computer to execute the method
JP2001083949A (en) * 1999-09-16 2001-03-30 Japan Science & Technology Corp Image projecting device
JP2004222153A (en) * 2003-01-17 2004-08-05 Seiko Epson Corp Image processing system, projector, program, information storage medium and image processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352591A (en) * 1998-06-12 1999-12-24 Denso Corp Video display device
JP2001069433A (en) * 1999-08-25 2001-03-16 Ricoh Co Ltd Image projector, image projection method, and computer- readable recording medium recording program to allow computer to execute the method
JP2001083949A (en) * 1999-09-16 2001-03-30 Japan Science & Technology Corp Image projecting device
JP2004222153A (en) * 2003-01-17 2004-08-05 Seiko Epson Corp Image processing system, projector, program, information storage medium and image processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150595A (en) * 2021-03-31 2022-10-04 成都极米科技股份有限公司 Method and device for determining projection picture display area and projector
CN115150595B (en) * 2021-03-31 2023-09-26 成都极米科技股份有限公司 Method and device for determining display area of projection picture and projector
EP4300951A4 (en) * 2021-06-10 2024-07-31 Samsung Electronics Co Ltd Electronic apparatus and control method thereof

Also Published As

Publication number Publication date
TWI244860B (en) 2005-12-01
TW200603617A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
KR20070072594A (en) Image projecting method, projector, and computer program
JP3620537B2 (en) Image processing system, projector, program, information storage medium, and image processing method
JP4637845B2 (en) Geometric correction method in multi-projection system
US20090015730A1 (en) Image projecting method and projector
JP5549667B2 (en) Multi-projection display system and screen forming method
US20150138240A1 (en) Projection image display system, projection image display method, and projection-type display apparatus
US20080297542A1 (en) Projector, image display system, and image processing system
WO2007091340A1 (en) Image projecting method and projector
JP2011205524A (en) Projector device, and projection method thereof
JP4578341B2 (en) Image projection method, projector, and computer program
JP2006313979A (en) Projector, and method for controlling projector
JP5386883B2 (en) Projector and projector control method
JP5205865B2 (en) Projection image shape distortion correction support system, projection image shape distortion correction support method, projector, and program
JP4454288B2 (en) projector
WO2006008791A1 (en) Image projecting method, projector and computer program
WO2006008792A1 (en) Image projecting method, projector and computer program
JP2009212757A (en) Image display system
JP6347126B2 (en) Projector and projector control method
JP4508750B2 (en) projector
JP2020191586A (en) Projection device
JP2006025244A (en) Test pattern image for projector adjustment, method for projector adjustment, and projector
JP2019045694A (en) Projection device
JP6866915B2 (en) Image projection system and control method of image projection system
JP2023015486A (en) Control device, image projection system, control method, and program
JP2022077773A (en) Projection control unit, image projection system, method for actuating projection control unit, and program

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP