WO2006006561A1 - 核酸構造体 - Google Patents

核酸構造体 Download PDF

Info

Publication number
WO2006006561A1
WO2006006561A1 PCT/JP2005/012762 JP2005012762W WO2006006561A1 WO 2006006561 A1 WO2006006561 A1 WO 2006006561A1 JP 2005012762 W JP2005012762 W JP 2005012762W WO 2006006561 A1 WO2006006561 A1 WO 2006006561A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
nuclear
substance
protein
cell
Prior art date
Application number
PCT/JP2005/012762
Other languages
English (en)
French (fr)
Inventor
Seiji Shinkai
Takeshi Nagasaki
Takeshi Kawazu
Shinji Kakimoto
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP05758322A priority Critical patent/EP1788082B1/en
Priority to JP2006529032A priority patent/JP5561893B2/ja
Priority to US11/632,138 priority patent/US7745596B2/en
Publication of WO2006006561A1 publication Critical patent/WO2006006561A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/23Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a GST-tag
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6072Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/80Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates
    • C12N2810/85Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian

Definitions

  • the present invention relates to a novel nucleic acid structure that functions as a non-viral vector with improved transfection efficiency during transfection and a method for introducing a gene into a cell using the same.
  • Non-Patent Document 1 Marshall, E. (1999) Science 286, 2244-2245.
  • Non-Patent Document 2 Hacein- Bey- Abina, S., Von Kalle, C, Schmidt, M., McCormack, M. P., Wullfrat, N., Leboulch, P.'Lim, A., Osborne, C, S., Pawliuk, R., Morillon, E., Sor ensen, R., Forster, A., Fraser, P., Cohen, JI, de Saint Basile, G., Alexander, I., W intergerst, U.
  • Non-Patent Document 3 Huang, L., Hung, M.-C., and Wagner, E. (1999) Nonviral Vectors for Gene Therapy, AcademicPress, San Diego.
  • Non-Patent Document 4 Rolland, A. (1999) Advanced Gene Delivery, Harwood Academic Pub Ushers, Amsterdam 0
  • Non-Patent Document 5 Wiethoff, CM., And Middaugh, CR (2003) J. Pharm. Sci., 92, 203-2 17 0
  • Non-Patent Document 6 Vyas SP, Singh A, Sihorkar V. (2001) CritRev Ther Drug Carrier Syst., 18 (1), ⁇ 76.
  • Non-Patent Document 7 Cho, Y. W., Kim, J. D "and Park, K. (2003) J. Pharm Pharmacol, 55 (6), 721-34.
  • nucleoproteins have a nuclear localization signal (NLS) t and a loading tag, and impotin ⁇ as a mediator with the transporter is bound to the NLS peptide, and finally the transport carrier body A complex in which impotins are bound is formed, and nucleic acid substances are transported in a nuclear membrane pore existing in the nuclear membrane in an energy-dependent and selective manner.
  • NLS nuclear localization signal
  • Non-Patent Document 8 Goerlich, D.'Vogel, F "Mills, A. D” Hartmann, E., and Laskey, R. A., Nature, 377, 246-248, (1995).
  • Non-Patent Document 9 Rexach, M., and Blobel, G., Cell 83, 683-692, (1995).
  • Non-Patent Document 10 Yoneda, Y.J. Biochem, Tokyo 121, 811-817 (1996).
  • Non-patent literature l l Zanta, M.A., Belguise-Valladier, P., and Behr, J.P., Proc.Natl. Ac ad. Sci. U.S.A. 96, 91-96 (1999).
  • Non-Patent Document 12 Collas, P., and Alestrom, P., Biochem. Cell. Biol, 75, 633-640 (1997).
  • Patent Document 1 Heisei Table 11 11 506935
  • Patent Document 2 Special Table 2002— 514892
  • Patent Document 3 Special Table 2002— 533088
  • JP 11 Nagasaki, T., Myohoji, T., Tachibana, T., and Tamagaki, b., Bioconj ugate Chem., 14, 282-286 (2003).
  • Patent Document 14 Tanimoto, M., Kamiya, H., Minakawa, N., Matsuda, A., and Harash ima, H "Bioconjugate Chem., 14, 1197-1202 (2003).
  • Non-Patent Document 15 Miyata, K., Kakizawa.Y., Nishiyama, N., Harada, A., Yamazaki, Y., Koyama, H., Kataoka, K (2004) J AmChem Soc, 126 (8), 2355-61.
  • An object of the present invention is to provide a new technique capable of securing efficient transformation by overcoming various barriers in the process from the outside of the cell to the inside of the cell nucleus when a desired gene is introduced into the cell.
  • the present inventor has succeeded in preparing a novel structure containing a specific intracellular factor involved in nuclear protein transport and a transgene, and that this structure has an excellent transfer function.
  • the present invention was derived.
  • the present invention provides a nucleic acid substance containing a gene to be introduced into the nucleus of a cell, an impotin protein having a function of passing through a nuclear membrane pore and involved in nuclear transport, and the nucleic acid A binding substance force that binds to each of the substance and the impotin protein.
  • a nuclear translocation nucleic acid structure composed of a ternary complex that is composed, and a gene in a cell that includes the step of contacting the structure with the cell.
  • Fig. 1 schematically shows the preparation and cell introduction of the nucleic acid structure of the present invention.
  • FIG. 2 shows a synthesis scheme of photoresponsive polyethyleneimine used in the present invention.
  • FIG. 3 shows a synthesis scheme of piotin-labeled transferrin used for producing the nucleic acid structure of the present invention (Example 1).
  • FIG. 4 shows the results of Native-Si) S PAGE of a piotin-labeled transferrin used to prepare the nucleic acid structure of the present invention (Example 1).
  • FIG. 5 shows the results of MALDKTOF mass spectrum of piotin-labeled transferrin used for preparing the nucleic acid structure of the present invention (Example 1).
  • FIG. 6 shows the results of SDS PAGE of GST-biotin tag-importin- ⁇ used to prepare the nucleic acid structure of the present invention (Example 4).
  • FIG. 7 shows the biotin confirmation of GST-biotin tag-importin- ⁇ used to prepare the nucleic acid structure of the present invention (Example 5).
  • FIG. 8 shows the results of invitro transfection using the nucleic acid structure of the present invention (Example 7).
  • SS-PEI disulfide-bridged iminothiolanation
  • PEI 25 KDa polyethyleneimine
  • Tf biotinylated transferrin
  • GALA biotinylated GALA
  • Importin-j8 biotinylated component ⁇
  • negative pGL3-Control plasmid only
  • FIG. 10 Proteins performed on the nucleic acid structures of the present invention and their HVJ-E inclusion bodies Shows the expression efficiency in expression experiments (Example 9)
  • FIG. 11 shows the expression efficiency in a protein expression experiment conducted using primary fibroblasts of the nucleic acid structure of the present invention (Example 10).
  • the nucleic acid structure of the present invention comprises a nucleic acid substance containing a gene to be introduced and an impotin protein having a function of passing through the nuclear pore and involved in nuclear transport via an appropriate binding substance. Is a ternary complex.
  • any protein can be used as long as it has a function of passing through the nuclear pore and is involved in the nuclear transport of genes. is there. Specifically, Impotin j8, Impotin 7, Transportin, Transport SR, CAS, etc.
  • Non-Patent Document 16 Jakel, S.'and Gorlich, D. (1998) EMBO J “17, 4491.
  • Non-Patent Document 17 Imamoto, N.'Shimamoto, T., Kose, S., Takao, T., Tachibana, T. Mat subae, M., Sekimoto, T.'Shimonishi, Y., and Yoneda, Y. (1995), FEBS Lett., 368, 4 15-419.
  • Non-Patent Document 18 Pollard, V.W., Michael, W. M., Nakielny, S "Siomi, M. C, Wang, F., and Dreyfoss, G. (1996) Cell, 86, 985-994.
  • Non-patent document 19 Nagoshi, E., Imamoto, N “Sato, R” and Yoneda, Y “(1999) Mol. Biol. Cell, 10, 2221-2233.
  • Non-Patent Document 20 Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R., and Gorlich, D. (1997) Cell, 90, 1061-71.
  • the binding substance constituting the nucleic acid structure of the present invention is cytocompatible!
  • a variety of substances can be used that are biocompatible and can bind to nucleic acid substances and impotin proteins, or can be modified to bind.
  • Preferable examples of such a binding substance include polylysine, chitosan and derivatives thereof in addition to polyethyleneimine described later.
  • the power of a polycationic substance (cationic polymer) is not limited to this, and carbohydrates, proteins, lipids, and the like are also applicable.
  • the binding between such a binding substance and a nucleic acid substance containing a desired gene is a non-covalent binding because it does not affect the nucleic acid substance (leaves it intact). It is preferable to make it cause.
  • a polycationic substance cationic polymer
  • a nucleic acid substance containing a gene to be introduced into a cell has a ionic property, and therefore, due to electrostatic interaction with a cationic polymer. Join.
  • the binding substance (preferably a polycationic substance) and the impotin protein are bound via a covalent bond or a non-covalent specific interaction.
  • a conjugate (complex) is obtained by reacting with an amino group of an impotin protein using a general-purpose bifunctional reactive agent such as a difunctional dicarboxylic acid active ester. Etc.
  • a general-purpose bifunctional reactive agent such as a difunctional dicarboxylic acid active ester. Etc.
  • it is difficult to synthesize such as control of stoichiometric ratio.
  • a reaction system that has been widely used in the field of biochemistry can be used. Yes. Specific examples include GST (daltathion S-transferase) -daltathion interaction, chitin-chitin binding protein interaction, histidine tag-nickel complex, piotin-avidin (streptavidin) interaction, and the like.
  • polycationic substances are modified with dartathione, chitin, -keke complex or piotin, and impotin protein is bound to GST protein, chitin binding protein, histidine tag or avidin.
  • a conjugate comprising a polycationic substance and an impotin protein is formed through the specific interaction of each reaction system.
  • the cationic substance is piotinated and binds to the impotin protein via the piottin avidin interaction. Specifically, the ability to react a pyotinylated polycationic substance (eg, polyethyleneimine) with a piotinylated impotin protein in the presence of (0 avidin (preferably streptavidin), or (ii ) React with a complex protein of impotintank and avidin (preferably streptavidin)!
  • a pyotinylated polycationic substance eg, polyethyleneimine
  • the polycationic substance serving as a binding substance that binds to each of the nucleic acid substance and the impotin protein is a cationic polymer that can be reduced in molecular weight in response to a stimulus, Lowering the molecular weight reduces DNA affinity and ensures that DNA release proceeds.
  • the cationic polymer include polyamines (polyethyleneimine, polylysine, chitosan, polyamidoamine dendrimer, etc.). These cationic polymers are added with a site that can be reduced in response to stimuli, specifically, an intracellular reductant or light.
  • a preferred example of the former is to apply disulfide crosslinking, whereby the polymer is reduced in molecular weight by cleavage of the disulfide bond by glutathione present in a large amount in the cell.
  • polyethyleneimine (PEI) having disulfide crosslinking is exemplified as a particularly preferable one.
  • PEI polyethyleneimine
  • PI is a photocleavable residue via a photocleavable linker.
  • One example is cross-linking with a twelve trobenzil structure (see Fig. 2).
  • Non-Patent Document 21 Oupicky, D.'Diwadkar, V. (2003) Curr. Opin. Mol. Ther., 5 (4), 345 -50.
  • the nucleic acid substance is a gene itself to be introduced into a cell or a nucleic acid containing the gene, and a binding substance typified by a cationic polymer by means as described above.
  • RNA, oligo DNA, single-stranded nucleic acid, double-stranded nucleic acid, plasmid DNA, etc. are included as long as they can be combined.
  • Particularly suitable nucleic acid substances from a practical standpoint are plasmid DNA. It is.
  • plasmid DNA is generally used to mean an expression vector, that is, one that encodes a protein to be expressed downstream of a promoter, and its specific base sequence varies depending on the target protein.
  • the introduced gene has a function of passing through a nuclear membrane pore via a binding substance (preferably a cationic polymer) and has a function of passing through a nuclear membrane pore.
  • a binding substance preferably a cationic polymer
  • a nucleic acid structure that forms a ternary complex combined with preferably impotin ⁇
  • the cationic polymer can decrease in size in response to stimulation, DNA release is also promoted in the nucleus, and the gene can be efficiently introduced and expressed in the cell. .
  • the function of the nucleic acid structure is improved by the following two methods, and the target transgene can be transferred from outside the cell into the nucleus of the cell. Can be efficiently and surely transferred to the cell and expressed in the cell.
  • the binding substance typified by a cationic substance is an impotin protein (having a function of passing through a nuclear membrane pore, In addition to binding to the import protein involved in transport, it is also bound to at least one of the cell membrane receptor binding factor and the membrane binding substance.
  • the cell membrane receptor-binding factor used in the present invention any substance that binds to a cell membrane receptor and enters the cell chamber by endocytosis can be used.
  • transferrin EGF (epidermal growth factor), FGF (fibroblast growth factor), HGF (hepatocyte growth factor), NGF (nerve cell growth factor), TGF (transforming growth factor), LDL ( Among them, transferrin is preferable as a preferable low-density lipoprotein) or insulin, folic acid, diphtheria toxin, integrin-binding factor, nascent glycoprotein receptor-binding factor, and the like.
  • Non-Patent Document 22 Qian, Z. M., Li, H., Sun, H., and Ho, K. (2002) Pharmacol Rev., 54 (4), 561-87.
  • the membrane-fusible substance used in the present invention binds to a nucleic acid substance containing a gene to be introduced into the nucleus of a cell to form a composite body, which has a membrane fusion ability with a decrease in pH. If it is, it is possible to use a deviation.
  • GALA is exemplified as a preferable substance that can raise magnatin HA-2, human immunodeficiency virus Tat, diphtheria toxin T domain, or GALA.
  • Non-Patent Document 23 Parente, R.A., Nir, S., and Szoka, F. C. Jr. (1988) JBiol Chem., 263 (10), 4724-30.
  • Binding to is the same as in the case of binding of impotin protein and binding substance. That is, for example, a piotinated polycationic substance may be reacted with a piotinized cell membrane receptor binding factor and Z or a membrane fusion substance in the presence of avidin (preferably streptavidin).
  • streptavidin forms a tetramer and forms a very stable bond with piotin, so four different substances (for example, polycationic substance, impoprotein, cell membrane receptor binding) Factors and membrane-fusogenic substances) can be conjugated and complexed via streptavidin.
  • four different substances for example, polycationic substance, impoprotein, cell membrane receptor binding) Factors and membrane-fusogenic substances
  • a particularly preferable second embodiment for improving the function of the nucleic acid structure transferring the target transgene efficiently from the outside of the cell to the nucleus of the cell, and expressing it in the cell.
  • the nucleic acid structure is encapsulated in a virus-derived envelope or capsid.
  • Sendai Winores Envelope (HVJ-E), which is known as a substance that can efficiently introduce a large amount of an external gene into the cytoplasm, is used.
  • Sendai Winores (HVj) is a type of mouse pneumonia virus (not capable of infecting humans) that was discovered in Japan in the 1950s.
  • the HVJ-E vector removes the entire HVJ genome and uses only the outer membrane. Since this vector has two proteins with cell fusion action in the outer membrane, it can carry various substances into the animal cytoplasm with high efficiency and speed.
  • all of the viral genome has been removed, it is highly safe for humans and can encapsulate a large amount of substances at once. For this reason, gene function analysis, gene therapy and And a powerful tool for drug delivery systems.
  • Non-Patent Document 24 Okada, Y. and Murayama, F. Exp Cell Res., 52, 34-42 (1968).
  • Non-Patent Document 25 Kaneda, Y.'Nakajima, T., Nishikawa, T., Yamamoto, S., Ikegami, H., Suzuki, N., Nakamura'H., Morishita, R. and Kotani, H. Mol Ther., 6, 219—226 (20 02).
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-286282.
  • the virus-derived envelope or capsid used with the nucleic acid structure of the present invention is not limited to the Sendai virus envelope, and nucleic acid substances can be efficiently transported to the cytoplasm, eliminating infectivity to humans.
  • Any cap can be used, for example, hepatitis B virus capsid.
  • Non-Patent Document 26 Slattum, P.S., Loomis, A. G "Machnik, K. J” Watt, M. A., Duzeski,
  • the nucleic acid construct comprising the ternary complex of the present invention and the envelope or Stir capsid and mix to prepare a solution for transfusion with the envelope or capsid encapsulated with the nucleic acid structure, and use this solution for cell membrane perforation (for example, when using Sendai virus envelope In the case of using an active agent treatment or hepatitis B virus capsid, it may be brought into contact with cells that have undergone electoral positioning).
  • FIG. 1 schematically shows how the nucleic acid construct of the present invention is prepared and introduced into cells in accordance with a preferred embodiment of the present invention shown in the Examples described later.
  • FIG. 1 illustrates the case where plasmid DNA (pDNA) is used as a nucleic acid substance [(A) in FIG. 1].
  • pDNA plasmid DNA
  • b-PEI piotinated disulfide-crosslinked polyethyleneimine
  • FIG. 1 illustrates the case where plasmid DNA (pDNA) is used as a nucleic acid substance [(A) in FIG. 1].
  • b-PEI piotinated disulfide-crosslinked polyethyleneimine
  • Polyion complex is obtained [(B) in FIG. 1]. Since this method does not modify the nucleic acid substance itself (piotination), it does not cause a decrease in transcription and translation efficiency.
  • nucleic acid substances and polycations which are polyions, form polyion complexes very stably.
  • there is the ability to condense nucleic acid substances in a compact manner which is advantageous when transferring into cells, particularly into the nucleus.
  • impotin protein and also several kinds of proteins of cell membrane receptor binding factor and / or membrane fusion substance are chemically modified or genetically engineered to be biotinylated
  • the transgene is bound to invotein protein, further to cell membrane receptor binding factor and Z or membrane fusion substance via a cationic polymer by binding to each other via streptavidin.
  • the nucleic acid structure is formed.
  • impotin j8 is used as an invote protein
  • transferrin is used as a cell membrane receptor binding factor
  • GALA is used as a membrane fusion substance.
  • Each of these is piotinylated and converted into a p-DNA / b PEI complex via streptavidin.
  • An example of a combined nucleic acid structure is shown in Fig. 1 (C).
  • nucleic acid structure as described above When the nucleic acid structure as described above is brought into contact with a predetermined cell, it effectively permeates the cell membrane of the cell, efficiently escapes from the transport vesicle to the cytoplasm, and then securely moves into the nucleus.
  • DNA release is promoted by reducing the molecular weight of cationic polymers in the nucleus in response to the endogenous reducing substances (especially daltathione) or, if necessary, external light.
  • endogenous reducing substances especially daltathione
  • Genes can be introduced and expressed in cells.
  • disulfide-bridged and peotinated polyethyleneimine (b-PEI) is reduced in molecular weight by endogenous reducing substances and releases nucleic acid substances (pDNA) containing genes. [(D) of FIG. 1] (see Example 7 described later).
  • the nucleic acid construct is encapsulated in a virus-derived envelope or capsid and brought into contact with the cell. That is, in FIG. 1, a complex of plasmid DNA and Piotin® PEI (in this embodiment, disulfide cross-linking is not necessarily required) (FIG. 1 (B)), impotin j8 as an impotin protein. Imprintin is bound as j8 Z streptavidin complex protein (j8 S) (Fig. 1 (E)) and encapsulated in Sendai virus envelope (HVJ-E) (Fig. 1 (F)). An example of contact with cells is shown.
  • a complex of plasmid DNA and Piotin® PEI in this embodiment, disulfide cross-linking is not necessarily required
  • impotin j8 impotin protein
  • Imprintin is bound as j8 Z streptavidin complex protein (j8 S) (Fig. 1 (E)) and encapsulated in Sendai virus envelope (HVJ-E)
  • the present invention relates to a cell that can be used to inject a specific gene into a cell, clone the gene, or express a protein encoded by the gene.
  • the principles of the present invention which are not limited, can be applied to all kinds of eukaryotic cells, particularly animal cells. However, it is preferable that the origin of the cell membrane receptor binding factor and the impotin protein to be used coincides with the cell type of interest.
  • Resin 500 / z L was suspended in 5 mL of 50 mM PBS, and then centrifuged at 1000 ° C. for 5 minutes at 4 ° C. The supernatant was removed, resuspended in 500 mL of 50 mM PBS, and lOOmL of the above reaction solution was collected and gently stirred overnight at 4 ° C. Thereafter, the supernatant was removed and washed 3 times with 50 mM PBS to remove unreacted Tf ⁇ . To this, 5 mL of 5 mM piotin solution was added and gently stirred at 4 ° C.
  • biotin tag fusion impotin ⁇ protein expression vector DGEX-2T-biotin-importin- ⁇ Peptide sequence (biotin tag: biotin tag) to add biotin in protein expression vector Pinpoint Xa-3 (Promega) )
  • This primer is designed so that the fragment of the piotin tag has a BamHI site at both ends.
  • the amplified piotin tag was purified by phenol / chloroform extraction and ethanol precipitation.
  • BamHI is a protein expression vector pGEX-2T-importin- ⁇ (prepared by the method described in Non-Patent Document 27 below) that encodes the purified piotin tag and GST-importin- ⁇ fusion protein gene. After treatment with phenol, it was purified by phenol / chloroform extraction and ethanol precipitation. Mix BamHI-treated piotin tag and pG EX-2T-importin-j8 at a molar ratio of 10: 1, and use Ligation High (Toyobo) to pGEX-2T-importin-j8 BamHI site. Inserted biotin tag.
  • the Ligation mixed solution was transformed into a competent cell of Escherichia coli JM109 (manufactured by Nippon gene) and the target pGEX- was obtained from the colony obtained on LB agar medium (containing 100 ⁇ g / ml ampicillin). 2T-biotin-importin-j8 was purified.
  • This expression vector is GST-bi from the end It encodes the otintag-importin- ⁇ gene (SEQ ID NO: 1).
  • Non-patent document 27 Kose, Imamoto'N., Tachibana, T., Shimamoto, ⁇ , Yoneda, ⁇ . (19 97) J. Cell. Biol, 139, 841-849.
  • the tag-importin- ⁇ was transformed into E. coli BL21 strain for protein expression (Novergen) and colonies were obtained on LB agar medium (containing 100 ⁇ g / ml ampicillin and 2 M biotin). Colonies were cultured at 37 ° C in LB liquid medium (containing 100 ⁇ g / ml ampicillin and 2 M biotin), and isopropylthiogalatatoside (IPTG) was added to a final concentration of 0.5 mM at 20 ° C. Induced protein expression. The cultured E. coli was recovered by centrifugation and washed with 0.9% NaCl solution. E. coli is recovered again by centrifugation, suspended in Lysis buffer and liquid N
  • Purification was performed by exchanging the buffer with PBS using column (Amersham). The purified protein was dispensed, frozen in liquid N, and stored at -80 ° C. Purification is SDS-PAG
  • the purified protein is a fusion protein of GST (26 kDa), biotin-tag (14 kDa), importin- ⁇ (97 kDa), has a molecular weight of 137 kDa, and a single band can be seen at a position corresponding to the molecular weight. It can be seen that the target product has been isolated and purified.
  • GST-biotin-tag-importin- ⁇ fusion protein biotinylation confirmation GST-biotin tag-imp ortin- / 3 (3 jg) and Avidin Resin (3 ⁇ 1) (Promega) were added to PBS (15 ⁇ 1) Mix in, 4 ° C For 2 hours.
  • tag-importin- j8 was dissociated. After light centrifugation and removal of the supernatant, 0.5 M Nal (15 ⁇ 1) was added again, and the mixture was gently stirred at 4 ° C. for 15 minutes. The supernatant was removed by light centrifugation, and after washing with PBS, Avidin Resin adsorbed with GST-biotin tag-importin-j8 was obtained. SDS-PAGE, Avidin Resin ⁇ GST— Diotin
  • Electrophoresis samples are M: molecular weight marker, 1: before GST-importin-j8 adsorption, 2: GST-importin- ⁇ supernatant, 3: after GST-importin- ⁇ adsorption, 4: GST-biotin tag-importin -Before ⁇ adsorption, 5: uST-biotin tag— importin— ⁇ supernatant, 6: uST-biotin
  • tag-importin- represents after ⁇ adsorption.
  • a luciferase assembly was performed.
  • An artificial viral nucleic acid structure was prepared.
  • Fig. 8 shows the results of the transformation. 25kDa
  • nucleic acid transport-promoting protein improves the transfection efficiency according to the present invention.
  • the transfer efficiency is 600. After the effective permeation of the cell membrane and efficient escape from the transport vesicles to the cytoplasm, it is surely transferred into the nucleus and further promotes DNA release in the nucleus.
  • PEI Piotinylated Polyethyleneimine Branched Polyethyleneimine
  • a biotin-PEG C 0 — NHS ⁇ Nektor manufactured by Biotin—PEG C 0—having a peotine group and a carboxylic acid N-hydroxysuccinimide ester group at the end of a polyethylene glycol chain (MW. 3400) did.
  • the number of labels was determined to be 2.2. Also, as shown in FIG. 9, the 1 H-NMR ⁇ vector (D 0)
  • the N / P ratio which is the ratio of the number of nitrogen atoms in the cationic polymer to the number of phosphate residues in DNA, is 10. 0.50 S / L GFP—impotine 13-streptavidin fusion protein (importin- ⁇ -S / a vidin) solution L equivalent to 1 equivalent of the amount of PEO of PEI-PEI pGL— 3 / biotin— PEI I
  • the importin- ⁇ S. avidin ternary complex was prepared.
  • the HVJ-E vector kit (Ishihara Sangyo Co., Ltd.) was used as protocol 1 method attached to the kit! /, But HVJ-E was thawed and 10 ⁇ L was collected in a micro test tube.
  • Reagent A 2.5 L was added, mixed, and allowed to stand on ice for 5 minutes.
  • the above ternary complex solution was added and mixed, and reagent B (1.5 L) was added and mixed, followed by centrifugation at 10,000 g and 4 ° C for 5 minutes to remove the supernatant.
  • suspend in kit buffer (7.5 ⁇ L) by pipetting and pGL-3 / biotin- ⁇ in HVJ- ⁇ .
  • the / importin- ⁇ -S / avidin ternary complex was encapsulated.
  • Reagent C (1.25 L) was added and mixed.
  • NIH3T3 cells mouse fetal fibroblasts
  • 50000 cells per 24-well plate in a 24-well plate were subjected to the previous pGL-3 / biotin-PEI / importin- ⁇ -S.
  • Avidin 3 The HVJ-E inclusion body solution of the original complex was prepared and cultured at 37 ° C under 5% CO for 24 hours.
  • Lipofect amine plus (manufactured by Invitrogen), which belongs to the most active class of commercially available gene transfer agents, was used as a comparative substance and introduced and expressed according to the protocol. After culturing, the cells were washed with PBS, and the relative light intensity was measured using Steady-Glo Luciferase Assay System (Promega) to evaluate the expression level of luciferase.
  • Transduction expression was performed under the condition that no protein was added. After incubation, the cells are washed with PBS and Steady-Glo
  • Luciferase Assay System Promega was used to evaluate the expression level of luciferase. The results are shown in Fig. 11. Compared to the PEI / DNA complex, the expression of nuclear translocation protein improves the expression efficiency by a factor of about 5 and indicates that the effect of impotin
  • the present invention is expected to be used as a new non-viral technique for highly efficiently introducing and expressing a desired gene into cells in various fields including gene therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 細胞に所望の遺伝子を導入するに際して効率的なトランスフェクションが確保できる新しい手法を提供する。細胞の核内に導入されるべき遺伝子を含む核酸物質、核膜孔を通過する機能を持ち核内輸送に関わるインポーティンタンパク(例えば、インポーティンβ)、ならびに、前記核酸物質およびインポーティンタンパクのそれぞれに結合している結合物質(例えば、ポリエチレンイミン)から構成される三元複合体から成ることを特徴とする核内移行性核酸構造体が開示されている。この核酸構造体に細胞膜レセプター結合因子および/または膜融合性物質を結合させたものを投与することにより、または細胞膜透過性と膜融合性を兼ね備えた非ウイルス性ベクター(例えばセンダイウイルスエンベロープ)に封入して投与することにより、細胞外から細胞核内に到る核酸の輸送が特に促進される。  

Description

核酸構造体
技術分野
[0001] 本発明は、トランスフエクシヨンに際してトランスフエクシヨン効率が向上した非ウィル スベクターとして機能する新規な核酸構造体と、それを利用して細胞に遺伝子を導 入する方法に関する。
背景技術
[0002] 細胞に特定の外部遺伝子を導入するトランスフエクシヨンは、その遺伝子の関与す る作用機序を解析して疾病の治療や薬剤の開発などに有用な情報を得るために不 可欠な手段であるが、最近は、生体への悪影響を回避するためトランスフエクシヨンに 非ウィルスベクターを使用することが試みられて 、る。従来より非ウィルスベクターのト ランスフエクシヨン効率を向上させる際に大きな障壁として、細胞外力 細胞核内にま で核酸が輸送され転写反応に導かれるまでの細胞膜透過、輸送小胞脱出、核内移 行、および DNAリリース (放出)が挙げられてきた。
非特許文献 1 : Marshall, E.(1999) Science 286, 2244-2245。
非特許文献 2 : Hacein- Bey- Abina,S., Von Kalle, C, Schmidt, M., McCormack, M. P ., Wullfrat, N., Leboulch, P.'Lim, A., Osborne, C, S., Pawliuk, R., Morillon, E., Sor ensen, R., Forster, A.,Fraser, P., Cohen, J. I., de Saint Basile, G., Alexander, I., W intergerst, U.'Frebourg, T., Aurias, A. D., Stoppa— Lyonnet, D., Romana, S., Radfor d— Weiss, I. 'Gross, F., Valensi'F., Delabesse, E., Macintyre, E., Sigaux, F., Soulier, J.'Leiva, L. E., Wissler, M., Prinz, C, Rabbitts, J., Le Deist, F., Fischer, A., and C avazzana— Calvo, M. (2003) Science 302, 415—419。
非特許文献 3 : Huang, L.,Hung, M. - C., and Wagner, E. (1999) Nonviral Vectors for Gene Therapy, AcademicPress, San Diego。
非特許文献 4: Rolland, A. (1999) Advanced Gene Delivery, Harwood Academic Pub Ushers, Amsterdam0
非特許文献 5 :Wiethoff, CM., and Middaugh, C. R. (2003) J. Pharm. Sci., 92, 203-2 170
[0003] 細胞膜透過能を向上させるための手段として、これまでに細胞膜レセプター結合因 子を利用し、レセプター媒介型エンドサイト一シスにより細胞膜透過能を向上させるこ とが研究されており、効果が確認されている。
非特許文献 6 :Vyas SP, Singh A, Sihorkar V. (2001) CritRev Ther Drug Carrier Syst. , 18 (1),卜 76。
[0004] 大部分の非ウィルスベクターはエンドサイト一シスにより細胞膜を透過する力 その ままでは分解されてしまい、発現効率が低下してしまう。そこで輸送小胞からの脱出 能を向上させるための手段として、これまでに pH感受性の膜融合物質を利用し、ェ ンドソームゃリソソーム力 の脱出能を向上させることが研究されており、効果が確認 されている。
非特許文献 7 : Cho, Y. W.,Kim, J. D" and Park, K. (2003) J. Pharm Pharmacol, 55 (6), 721-34。
[0005] 従来より非ウィルスベクターのトランスフエクシヨン効率を向上させる際に大きな障壁 となっている一つに外部遺伝子の核内移行が挙げられる。この問題点を解決するた めにこれまでに真核細胞内における核タンパクの核内移行システム利用が活発に取 り組まれてきた。
[0006] 核タンパクは一般に核内移行シグナル (NLS) t 、う荷札を有しており、 NLSペプチド に輸送体との仲介役としてのインポ一ティン αが結合し、最終的に輸送担体本体の インポ一ティン が結合した複合体が形成され、核膜に存在する核膜孔をエネルギ 一依存的かつ選択的に核酸物質が輸送される。
非特許文献 8 : Goerlich, D.'Vogel, F" Mills, A. D" Hartmann, E.,および Laskey, R. A., Nature, 377, 246-248, (1995)。
非特許文献 9 : Rexach, M.,および Blobel, G., Cell 83, 683-692, (1995)。
非特許文献 10 :Yoneda, Y.J. Biochem, Tokyo 121, 811-817 (1996)。
[0007] そこでこれまで、外部遺伝子と NLSペプチドを複合化することで、核内移行を促進し 、ひいては発現効率をも向上させるベく多くの研究がなされてきた。しかし、 NLSの効 果が確認されたケースも有れば、発現効率に対する有意義な効果が否定された報告 もあり、現在のところ方法論は確立していない。この原因の一つとして如上の複合体 を形成させることが二段階の反応であり効率を低下させている可能性がある。
非特許文献 l l : Zanta, M. A., Belguise- Valladier, P.,および Behr, J. P., Proc.Natl. Ac ad. Sci. U.S.A. 96, 91-96 (1999)。
非特許文献 12 : Collas, P.,および Alestrom, P., Biochem. Cell. Biol, 75, 633—640(19 97)。
特許文献 1:特表平 11 506935
特許文献 2 :特表 2002— 514892
特許文献 3:特表 2002— 533088
特干文献 13 : Nagasaki, T.,Myohoji, T., Tachibana, T.,および Tamagaki, b.,Bioconj ugate Chem., 14, 282—286 (2003)。
特許文献 14 : Tanimoto, M.,Kamiya, H., Minakawa, N., Matsuda, A.,および Harash ima, H" Bioconjugate Chem., 14, 1197—1202 (2003)。
[0008] また、核内に移行した外部核酸物質は非ウィルスベクターとして機能するキャリアー 化合物と結合したままでは転写反応効率が低下する。そこで、核内での DNAリリース 促進を目的として、刺激応答性を組み込む研究がなされており、光応答性ゃレドック ス応答型キャリアーも検討されて 、る。
非特許文献 15 : Miyata, K., Kakizawa.Y., Nishiyama, N., Harada, A., Yamazaki, Y., Koyama, H., Kataoka, K (2004) J AmChem Soc, 126 (8), 2355—61。
[0009] このように、非ウィルスベクターにとっての細胞外から細胞核内までの核酸輸送行 程における障壁を克服するための手段は断片的には提案されているものの、それら が有機的に協同効果を発揮するような系は見いだされておらず、非ウィルスベクター の効率は満足する域に達して 、な 、。
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、細胞に所望の遺伝子を導入するに際して細胞外から細胞核内ま での行程における諸障壁を克服して効率的なトランスフエクシヨンが確保できる新し
V、手法を提供することにある。 課題を解決するための手段
[0011] 本発明者は、核内タンパク質輸送に関わる特定の細胞内因子と、被導入遺伝子と を含む新規な構造体の調製に成功し、この構造体が優れたトランスフエクシヨン機能 を有することを見出し、本発明を導き出した。
[0012] カゝくして、本発明は、細胞の核内に導入されるべき遺伝子を含む核酸物質、核膜 孔を通過する機能を持ち核内輸送に関わるインポ一ティンタンパク、ならびに、前記 核酸物質およびインポ一ティンタンパクのそれぞれに結合している結合物質力 構 成される三元複合体から成る核内移行性核酸構造体、および該構造体を細胞と接 触させる工程を含む細胞に遺伝子を導入する方法を提供するものである。
図面の簡単な説明
[0013] [図 1]本発明の核酸構造体の調製及び細胞導入の様子を模式的に示す。
[図 2]本発明で用いられる光応答性ポリエチレンィミンの合成スキームを示す。
[図 3]本発明の核酸構造体を作製するのに用いられるピオチンラベル化トランスフェリ ンの合成スキームを示す (実施例 1)。
[図 4]本発明の核酸構造体を作製するのに用いられるピオチンラベル化トランスフェリ ンの Native-Si) S PAGEの結果を示す(実施例 1)。
[図 5]本発明の核酸構造体を作製するのに用いられるピオチンラベル化トランスフェリ ンの MALDKTOFマススペクトルの結果を示す(実施例 1)。
[図 6]本発明の核酸構造体を作製するのに用いられる GST-biotin tag-importin- βの SDS PAGEの結果を示す(実施例 4)。
[図 7]本発明の核酸構造体を作製するのに用いられる GST-biotin tag-importin- βの biotinィ匕確認を示す (実施例 5)。
[図 8]本発明の核酸構造体を用いた invitroトランスフエクシヨン結果を示す (実施例 7)
。 SS-PEI、ジスルフイド架橋型イミノチオラン化; PEI、 25KDaポリエチレンィミン; Tf、ビ ォチン化トランスフェリン; GALA、ビォチン化 GALA;Importin- j8、ビォチン化インポ 一ティン β; negative, pGL3- Controlプラスミドのみ
[図 9]ピオチン化ポリエチレンィミンの1! "I NMR ^ベクトル(実施例 8)。
[図 10]本発明の核酸構造体およびそれらの HVJ-E封入体について行なったタンパク 発現実験における発現効率を示す (実施例 9)
[図 11]本発明の核酸構造体の初代繊維芽細胞を用いて行なったタンパク発現実験 における発現効率を示す (実施例 10)。
発明を実施するための最良の形態
[0014] 本発明の核酸構造体は、導入されるべき遺伝子を含む核酸物質と、核膜孔を通過 する機能を持ち核内輸送に関わるインポ一ティンタンパクとを、適当な結合物質を介 して組み合わせた三元複合体である。
[0015] 本発明にお 、て、用いられるインポ一ティンタンパクとしては、核膜孔を通過する機 能を持ち且つ遺伝子の核内輸送に関わるタンパクで有ればいずれも使用することが 可能である。具体的にはインポ一ティン j8、インポ一ティン 7、トランスポーティン、トラ ンスポーティン SR、 CASタンパク等を挙げることができる力 なかでもインポ一ティン |8 が好まし!/、ものとして例示される。
[0016] これらのインポ一ティンタンパクのアミノ酸配列(塩基配列)やその作用などにつ!、 ては、例えば、下記の文献力も知ることができる。
非特許文献 16 :Jakel, S.'and Gorlich, D. (1998) EMBO J" 17, 4491。
非特許文献 17 : Imamoto, N.'Shimamoto, T., Kose, S., Takao, T., Tachibana, T. Mat subae, M., Sekimoto, T.'Shimonishi, Y., and Yoneda, Y. (1995), FEBS Lett., 368, 4 15-419。
非特許文献 18 : Pollard, V.W., Michael, W. M., Nakielny, S" Siomi, M. C, Wang, F. , and Dreyfoss, G. (1996)Cell, 86, 985-994。
非特許文献 19 : Nagoshi, E.,Imamoto, N" Sato, R" and Yoneda, Y" (1999) Mol. Biol . Cell, 10, 2221—2233。
非特許文献 20 : Kutay, U., Bischoff,F. R., Kostka, S., Kraft, R., and Gorlich, D. (19 97) Cell, 90, 1061-71。
[0017] 本発明の核酸構造体を構成する結合物質としては、細胞適合性な!ヽしは生体適合 性を有し核酸物質およびインポ一ティンタンパクに結合し得る、または、結合できるよ うに修飾され得る各種の物質が使用できる。そのような結合物質として好ましいのは、 後述するポリエチレンィミンの他、ポリリジン、キトサンまたはそれらの誘導体に代表さ れるポリカチオン物質 (カチオン性ポリマー)である力 これに限定されるものではなく 、糖質、タンパク質、脂質なども適用可能である。
[0018] このような結合物質と、所望の遺伝子を含む核酸物質との間の結合は、核酸物質 に影響を与えないように (インタタトのままに)する点から、非共有結合性の結合に因 るようにすることが好ましい。例えば、結合物質としてポリカチオン物質 (カチオン性ポ リマー)を用いる場合、細胞内に導入すべき遺伝子を含む核酸物質は、ァ-オン性 を有するので、カチオン性ポリマーと静電的な相互作用により結合する。
[0019] 結合物質 (好ましくはポリカチオン物質)とインポ一ティンタンパクとの結合は、共有 結合または非共有結合性の特異的相互作用を介して行なわれる。共有結合を用い る具体例としては、二官能性のジカルボン酸活性エステルなど汎用の二官能性反応 剤を用いインポ一ティンタンパクのアミノ基と反応させることによりコンジュゲート体 (複 合体)とすることなどが挙げられる。しかし、化学量論比の制御など合成が困難な点 が難点である。
[0020] これに対して、非結合性の特異的相互作用に基づく場合は、生化学の分野で従来 より多用されている反応系を利用することができるので、共有結合による場合よりも好 ましい。具体的には GST (ダルタチオン S—トランスフェラーゼ)一ダルタチオン相互 作用、キチンーキチンバインディングタンパク相互作用、ヒスチジンタグ一ニッケル錯 体、ピオチン—アビジン (ストレプトアビジン)相互作用等を挙げることができる。これら の反応系を利用すれば、例えば、ポリカチオン物質をダルタチオン、キチン、 -ッケ ル錯体またはピオチンで修飾するとともに、インポ一ティンタンパクを GSTタンパク、キ チンバインディングタンパク、ヒスチジンタグまたはアビジンと結合させることにより、そ れぞれの反応系の特異的相互作用を介してポリカチオン物質とインポ一ティンタンパ タカ 成るコンジュゲート体が形成される。
[0021] 非共有結合性の特異的相互作用を発揮するものとして以上に例示した反応系の中 でも、その結合力が大きいピオチン—アビジン系を利用するのが好ましい。特に、スト レプトアビジンはテトラマーを形成し、ピオチンと非常に安定な結合 (解離定数:く 101 5)を形成する。
[0022] 力べして、本発明の核内移行性核酸構造体の一つの好ましい態様においては、ポ リカチオン物質がピオチン化されており、インポ一ティンタンパクにピオチンアビジン 相互作用を介して結合している。具体的には、ピオチンィ匕されたポリカチオン物質( 例えばポリエチレンィミン)を、(0アビジン (好ましくはストレプトアビジン)の存在下に、 ピオチン力されたインポ一ティンタンパクと反応させる力、または (ii)インポ一ティンタン ノ クとアビジン (好ましくはストレプトアビジン)との複合タンパク質に反応させればよ!ヽ
[0023] 本発明の好ましい態様においては、核酸物質およびインポ一ティンタンパクのそれ ぞれに結合する結合物質と成るポリカチオン性物質が、刺激に応答して低分子化し 得るカチオン性ポリマーであり、低分子化により DNA親和性が低下して DNAのリリー スが確実に進行する。好ましいカチオン性ポリマーとしては、例えば、ポリアミン類 (ポ リエチレンィミン、ポリリジン、キトサン、ポリアミドアミンデンドリマー等)を挙げることが できる。これらのカチオン性ポリマーに、刺激応答性、具体的には細胞内在性還元物 質または光に応答して低分子化し得る部位を付加する。前者の好ましい例は、ジス ルフイド架橋を施すことであり、これによつて当該ポリマーは細胞内に多量存在するグ ルタチオンによってジスルフイド結合が開裂して低分子化する。この点から、本発明 において用いられるカチオン性ポリマーとして、ジスルフイド架橋を有するポリエチレ ンィミン (PEI)が特に好ましいものとして例示される。また、カチオン性ポリマーを光応 答性にするには、例えば、ポリエチレンィミン (PEI)を光開裂性リンカ一を介して光開 裂性残基である。一二トロべンジル構造で架橋することが挙げられる(図 2参照)。 非特許文献 21 : Oupicky, D.'Diwadkar, V. (2003) Curr. Opin. Mol. Ther., 5(4) , 345 -50。
[0024] 本発明において、核酸物質とは、細胞内に導入されるべき遺伝子自体または該遺 伝子を含む核酸類であり、既述のような手段によりカチオン性ポリマーに代表される 結合物質と結合されるものであればどのような形態でも良ぐ RNA、オリゴ DNA、 1本 鎖核酸、 2本鎖核酸、プラスミド DNAなどが包含されるが、実用的見地から特に好適 な核酸物質はプラスミド DNAである。ここで、プラスミド DNAとは、一般に、発現べクタ 一、すなわち、発現するタンパクをプロモーターの下流にコードするものという意味で 用いており、その具体的な塩基配列は目的タンパクによって異なる。 [0025] 力べして、本発明に従えば、被導入遺伝子は、結合物質 (好ましくはカチオン性ポリ マー)を介して、核膜孔を通過する機能をもち核内輸送に関わるインポ一ティンタン ノ ク (好ましくはインポ一ティン β )と組み合せられた三元複合体を形成して!/、る核酸 構造体として、所定の細胞に接触させられるので、細胞の核内に移行し、さらに、好 ま 、態様にぉ 、ては、カチオン性ポリマーが刺激に応答して低分子化し得るので、 核内で DNAリリースも促進され、その遺伝子を効率よく細胞内に導入'発現することが 可能となる。
[0026] し力しながら、本発明の特に好ましい態様に従えば、下記の 2つの手法により、如 上の核酸構造体の機能を向上させ、 目的の被導入遺伝子を細胞外から細胞の核内 に到るまで効率よく確実に移行させ、細胞内で発現させることができる。
[0027] すなわち、本発明の第一の特に好ましい態様に従えば、核酸構造体において、ポ リカチオン物質に代表される結合物質は、インポ一ティンタンパク (核膜孔を通過する 機能を持ち核内輸送に関わるインポ一ティンタンパク)に結合して 、るのみならず、 細胞膜レセプター結合因子、および膜結合性物質の少なくとも 1種類と結合している
[0028] ここで、本発明において用いられる細胞膜レセプター結合因子としては、細胞膜レ セプターに結合しエンドサイト一シスにより細胞室内に侵入する物質であればいずれ も使用することが可能である。具体的にはトランスフェリン、 EGF (上皮細胞増殖因子) 、 FGF (繊維芽細胞増殖因子)、 HGF (肝実質細胞増殖因子)、 NGF (神経細胞増殖 因子)、 TGF (トランスフォーミング増殖因子)、 LDL (低密度リポタンパク)またはインス リン、葉酸、ジフテリア毒素、インテグリン結合因子、ァシァ口糖タンパクレセプター結 合因子等をあげることができる力 なかでもトランスフェリンが好ましいものとして例示 される。
非特許文献 22: Qian, Z. M.,Li, H., Sun, H., and Ho, K. (2002) Pharmacol Rev., 54( 4), 561-87。
[0029] また、本発明において用いられる膜融合性物質としては、細胞の核内に導入すベ き遺伝子を含む核酸物質と結合してコンジユゲート体を形成し pHの低下と共に膜融 合能をもつものであれば 、ずれも使用することが可能である。具体的にはインフルェ ンザウィルスへマグルチン HA-2、人免疫不全症ウィルス Tat、ジフテリア毒素 Tドメイ ン、または GALA等をあげることができる力 なかでも GALAが好ましいものとして例示 される。
非特許文献 23 : Parente, R.A., Nir, S., and Szoka, F. C. Jr. (1988) JBiol Chem., 263 (10), 4724-30。
[0030] 以上のような細胞膜レセプター結合因子および Zまたは膜融合性物質と結合物質
(好ましくはポリカチオン物質)との結合は、インポ一ティンタンパクと結合物質との結 合の場合と同様である。すなわち、例えば、ピオチン化されたポリカチオン物質を、ァ ビジン (好ましくはストレプトアビジン)の存在下に、ピオチンィ匕された細胞膜レセプタ 一結合因子および Zまたは膜融合性物質と反応させればよい。
[0031] 既述のように、ストレプトアビジンは、テトラマーを形成し、ピオチンと非常に安定な 結合を形成するので、 4種類の異なる物質 (例えば、ポリカチオン物質、インポ一ティ ンタンパク、細胞膜レセプター結合因子、および膜融合性物質)をピオチンィ匕しストレ ブトアビジンを介して複合体ィ匕することが可能である。
[0032] 核酸構造体の機能を向上させ、 目的の被導入遺伝子を細胞外から細胞の核内に 到るまで効率よく確実に移行させ、細胞内で発現させるための特に好ましい第二の 態様は、当該核酸構造体をウィルス由来のエンベロープまたはキヤプシドに封入して 使用することである。
[0033] 例えば、外部遺伝子を細胞質に大量にかつ効率よく導入可能な物質として知られ ている、センダイウイノレスエンベロープ(HVJ— E)を用いる。センダイウイノレス(Hemag glutinating Virus ofJapan;HVj)はマウスの肺炎ウィルスの一種(ヒトへの感染力はな い)で 1950年代に日本で発見された。ウィルス外膜 (エンベロープ)に 2種類の糖蛋白 (Fと m)があり、この蛋白力 ¾種類の細胞を融合させる強い作用(細胞融合)を持って いる。 HVJ— Eベクターは、 HVJのゲノムを全て除去し、外膜のみを利用したものであ る。このベクターは、外膜に細胞融合作用を持つ 2つの蛋白質があることから、高い 効率で、し力も迅速に種々の物質を動物細胞質内へ運び込むことができる。さらに、 ウィルスのゲノムは全て除去されていることから、ヒトに対する安全性も高ぐまた一度 に大量の物質を封入することができる。このため、遺伝子機能解析、遺伝子治療及 びドラッグデリバリーシステムのための有力なツールとなる。
非特許文献 24 : Okada, Y.および Murayama, F. Exp Cell Res., 52, 34-42 (1968)。 非特許文献 25 : Kaneda, Y.'Nakajima, T., Nishikawa, T., Yamamoto, S., Ikegami, H., Suzuki, N., Nakamura'H., Morishita, R.および Kotani, H.Mol. Ther., 6, 219—226 (20 02)。
特許文献 4:特開 2001— 286282号公報。
[0034] 本発明の核酸構造体とともに用いられるウィルス由来のエンベロープまたはキヤプ シドはセンダイウィルスエンベロープに限られず、細胞質に核酸物質を効率的に輸 送することができヒトへの感染力の排除されたものであれば使用可能であり、例えば、 B型肝炎ウィルスのキヤプシドなども使用できる。
非特許文献 26 : Slattum, P.S., Loomis, A. G" Machnik, K. J" Watt, M. A., Duzeski,
J. L" Budker, V. G.'Wolff, J. A.,および Gorlich, D.,Mol. Ther. 8, 255 (2003)。
[0035] 如上のウィルス由来のエンベロープまたはキヤプシドを用いて本発明に従 、細胞 に遺伝子を導入するには、適当な緩衝液中で本発明の三元複合体から成る核酸構 造体とエンベロープまたはキヤプシドを撹拌.混合して当該エンベロープまたはキヤ プシドに核酸構造体が封入されたトランスフエクシヨン用溶液を調製し、この溶液を細 胞膜穿孔処理 (例えば、センダイウィルスエンベロープを使用する場合は、界面活性 剤処理、 B型肝炎ウィルスキヤプシドを使用する場合はエレクト口ポレーシヨン)を行つ た細胞と接触させればよい。
[0036] 図 1は、後述する実施例に示す本発明の好ましい態様に沿って、本発明の核酸構 造体が調製され細胞に導入される様子を模式的に示すものである。
図 1では、核酸物質としてプラスミド DNA (pDNA)を用いる場合を例示している〔図 1 の(A)〕。この pDNAと、結合物質としてポリカチオン物質であるピオチン化されたジス ルフイド架橋ポリエチレンィミン(b— PEI)を混合しインキュベートすると、 pDNAと b— P EIとが静電的に結合された複合体 (ポリイオンコンプレックス)が得られる〔図 1の(B)〕 。この手法は核酸物質そのものをィ匕学修飾 (ピオチン化)しないので、転写翻訳効率 の低下をもたらすこともない。そして、ポリア-オンである核酸物質とポリカチオンはポ リイオンコンプレックスを非常に安定に形成することが知られており、その複合体は条 件によっては核酸物質をコンパクトに凝縮させる力があり、細胞内、特に核内への移 行の際には有利となる。
[0037] 次に、本発明の特に好ましい態様に従い、インポ一ティンタンパク、さらに、細胞膜 レセプター結合因子および/または膜融合性物質の複数種のタンパクも化学修飾も しくは遺伝子工学的にピオチン化 (ピオチンラベル化)し、ストレプトアビジンを介して 互いに結合させることにより被導入遺伝子がカチオン性ポリマーを介してインボーテ インタンパク、更には細胞膜レセプター結合因子および Zまたは膜融合性物質に結 合している本発明の核酸構造体が形成されることになる。図 1では、インボーテインタ ンパクとしてインポ一ティン j8、細胞膜レセプター結合因子としてトランスフェリン、膜 融合性物質として GALAを用い、それぞれをピオチンィ匕し、ストレプトアビジンを介し て p— DNA/b PEI複合体に結合して成る核酸構造体を例示して 、る〔図 1の(C)〕
[0038] 如上の核酸構造体は、所定の細胞と接触させられると、該細胞の細胞膜を効果的 に透過し、輸送小胞から効率よく細胞質へ脱出後、核内に確実に移行し、さらに、核 内で細胞内在性還元物質 (特にダルタチオン)または必要に応じて外部からの光に 応答してカチオン性ポリマーが低分子化することにより DNAリリースが促進されるので 、きわめて効率的に目的の遺伝子を細胞内に導入、発現させることができる。図 1に 示す例では、ジスルジド架橋されピオチンィ匕されたポリエチレンィミン (b— PEI)が細 胞内在性還元物質により低分子化、遺伝子を含む核酸物質 (pDNA)を放出する様 子を模式的に示している〔図 1の (D)〕(後述の実施例 7参照)。
[0039] 本発明の特に好ましい別の態様に従えば、核酸構造体をウィルス由来のェンベロ ープまたはキヤプシドに封入して細胞と接触させる。すなわち、図 1では、プラスミド D NAとピオチンィ匕 PEI (この態様ではジスルフイド架橋は必ずしも必要でな 、)との複合 体〔図 1の(B)〕に、インポ一ティンタンパクとしてインポ一ティン j8をインポ一ティン j8 Zストレプトアビジン複合蛋白( j8 S)として結合させ〔図 1の(E)〕、これをセンダイウイ ルスエンベロープ (HVJ— E)に封入させた状態で〔図 1の(F)〕、細胞に接触させる例 を示している。この場合においても、核酸構造体は細胞の核内に確実に移行して、そ の遺伝子を効率よく発現させることが可能となる(後述の実施例 9参照)。 [0040] 本発明は、細胞に特定の遺伝子を注入したり、その遺伝子をクローニングしたり、ま たは該遺伝子がコードするタンパク質を発現させるために用いることができる力 対 象とされる細胞は限定されるものではなぐ本発明の原理はあらゆる種類の真核細胞 、特に動物細胞に適用することができる。ただし、使用する細胞膜レセプター結合因 子およびインポ一ティンタンパクの由来は対象とする細胞の種と一致することが好適 である。
[0041] 以下、本発明の特徴をさらに具体的に示すため、本発明に従う核酸構造体を構成 するピオチンィ匕ジスルフイド架橋ポリエチレンィミンの調製、ピオチン化トランスフェリ ン、ピオチンィ匕 GALA、ピオチン化インポ一ティン j8の調製、および該核酸構造体の センダイウィルスエンベロープへの封入の仕方、ならびにそれを用いるインビトロ試験 におけるタンパク発現に関する実施例を記す力 本発明はこれらの実施例によって 限定されるものではない。
実施例 1
[0042] ピオチンラベル化トランスフェリン(Tf)の調製 図 3の合成スキームに従い、 Biotin- P EG- NHS [PEG (ポリエチレングリコール)スぺーサーを有する ω—ピオチンカルポン 酸一 Ν—ヒドロキシコハク酸イミドエステル、 ShearWater社製〕 2.56mg (0.67 μ mol)を D MF50 μ Lで溶解した溶液を Αρο- Transferrin
50mg (0.67 mol)を 50mM PBS (pH7.0) lmLに溶解した溶液に、 4°Cで振とうしながら 、少量ずつ加え、 4°Cで 15時間振とうした。この溶液を分子ふるいフィルター(MW 100 00)にのせて、 4°C、 3000 X gで遠心を行い、溶液を落として不純物を除去し、 900 μ L まで濃縮した。ピオチンィ匕 Tfの精製は SoftlinkTM
Soft Release Avidin Resin (Promega社製)を用いて行った。 Softlink(TM) Soft Release Ανιαίη
Resin 500 /z Lを 50mM PBS 5mLに懸濁した後、 4°C、 1000 X g, 5分間遠心した。 上清を除去し、 50mM PBS 500mLで再懸濁し、上記の反応溶液 lOOmLをカ卩えて、 4 °Cで一晩穏やかに攪拌した。その後、上清を除去し、 50mM PBSで 3回洗浄し、未反 応 Tf^除去した。ここに、 5mMピオチン溶液 5mLカ卩えて、 4°Cでー晚穏やかに攪拌し た。 4°C、 1000 X g, 5分間遠心し、その上清を分子ふるいフィルター(MW 10000)にのせて、 3000 X g、 4°Cで遠心を行い、遊離しているピオチンを除去した。こ の溶液をあらかじめ 50mM PBSで平衡化した PD- 10カラムにのせて、ゲルろ過を行つ た。 lmLずつフラクションをとり、 UV測定によってピオチンィ匕 Τί^含んだフラクションを 決定した。このフラクション溶液を分子ふるいフィルター(MW 3000)で濃縮した。ピオ チン導入量の測定、成分数の確認は Native PAGE (図 4)、 MALDHTOFMS (図 5)で 確認し、トランスフェリン 1分子あたり 1.5個の Biotin-PEG導入量と算出された。
実施例 2
[0043] Biotin- PEG化 GALAの合成 pH応答ペプチド GALA (30アミノ酸残基 WEAALAEALA EALAEHLAEALAEALEALAA)の N末端に Biotin- PEG化したペプチドは Fmoc法を用 いた固相合成により調製した。高速液体クロマトグラフィーにより単離した。
実施例 3
[0044] ビォチンタグ融合インポ一ティン βタンパク発現ベクター(DGEX-2T-biotin-importin - β )の構築 タンパク質発現ベクター Pinpoint Xa- 3 (Promega社製)内のビォチンを 付加するペプチド配列(biotin tag:ピオチンタグ)を以下のようなプライマーを用いて P CR法により増幅した。このプライマーはピオチンタグの断片が両末端に BamHIサイト を有するように設計されて 、る。
5 ' -GCCCGCGGATCCATGAAACTGAAGGTAACA-3 '
5, -GATATCGGTACCGGATCCCAGCTGAAGCTT-3 '
増幅したピオチンタグをフエノール'クロ口ホルム抽出、エタノール沈澱により精製した 。精製したピオチンタグ及び GST-importin (インポ一ティン) - βの融合タンパク質の 遺伝子をコードするタンパク質発現ベクター pGEX-2T-importin- β (下記の非特許 文献 27に記載の方法で調製した)をそれぞれ BamHIで処理した後、フエノール'クロ口 ホルム抽出、エタノール沈澱により精製した。 BamHIで処理済みのピオチンタグと pG EX- 2T- importin- j8をモル比で 10 : 1となるように混合し、 Ligation High (Toyobo社製) を用いて pGEX-2T-importin- j8の BamHIサイトに biotin tagを挿入した。 Ligation反応 した混合溶液を大腸菌 JM109株のコンビテントセル (Nippon gene社製)にトランスフォ ームし、 LB寒天培地(100 μ g/mlアンピシリンを含む)上で得られたコロニーから目的 の pGEX-2T-biotin-importin- j8を精製した。この発現ベクターは 5,末端から GST-bi otintag-importin- βの遺伝子をコードして 、る(配列番号 1)。
非特干文献 27 : Kose, Imamoto'N. , Tachibana, T. , Shimamoto, Τ, Yoneda, Υ. (19 97) J. Cell. Biol , 139, 841—849。
実施例 4
[0045] GST-biotin tag-importin- β融合タンパク皙の発現 精製 構築した GST— biotin tag- importin- β融合タンパク質発現ベクター pGEX-2T- biotin
tag-importin- βをタンパク質発現用大腸菌 BL21株のコンビテントセル(Novergen社 製)にトランフォームし、 LB寒天培地(100 μ g/mlアンピシリン、 2 M biotinを含む)上 でコロニーを得た。コロニーを LB液体培地(100 μ g/mlアンピシリン、 2 M biotinを含 む)で 37°Cで培養し、終濃度が 0.5mMとなるようにイソプロピルチォガラタトシド (IPTG )を加え 20°Cでタンパク発現を誘導した。培養した大腸菌を遠心により回収し、 0.9% NaCl溶液で洗浄した。遠心により再び大腸菌を回収し、 Lysis bufferに懸濁し液体 N
2 により凍結した。水浴で融解した後、再び液体 Nにより凍結した。水浴で融解し超音
2
波処理を行った後、遠心により上清を分離した。
上清に Glutathione
Sepharose 4B (Amersham社製)を加え、 目的のピオチン化タンパク質だけを吸着させ 7こ o Glutathione
Sepharose 4Bを Lysis Bufferにより洗浄した後、 Glutathioneにより目的のタンパク質を 溶出した。タンパク溶液を限外ろ過フィルタ- Centriprep (MW 3000) (Amicon社製)を 用いて濃縮した後、 PD-10
column (Amersham社)を用いて PBSにバッファー交換をすることで精製した。精製した タンパク質は分注して液体 Nにより凍結し、 -80°Cで保存した。また精製は SDS-PAG
2
Eにより確認した(図 6)。精製したタンパク質は GST (26kDa)、 biotin-tag ( 14kDa)、 imp ortin- β (97kDa)の融合タンパク質であり、分子量は 137kDaであり、分子量に対応す る位置に単一のバンドが見られ、 目的物が単離精製されていることがわかる。
実施例 5
[0046] GST- biotin- tag- importin- β融合タンパク質のビォチン化確認 GST-biotin tag-imp ortin- /3 (3 j g)と Avidin Resin (3 μ 1) (Promega社製)を PBS ( 15 μ 1)中で混合し、 4°C で 2時間穏やかに攪拌した。軽く遠心し上清を除去した後、 0.5M Ν&Ι (15 /ζ 1)を加え 、 4°Cで 15分間穏やかに攪拌することにより、非特異的に Avidin Resinに結合した GST — biotin
tag-importin- j8を解離させた。軽く遠心し上清を除去した後、再び 0.5M Nal (15 μ 1) を加え、 4°Cで 15分間穏やかに攪拌した。軽く遠心し上清を除去し、 PBSで洗浄後 GS T- biotin tag- importin- j8が吸着した Avidin Resinを得た。 SDS- PAGEにより、 Avidin R esin〖こ GST— Diotin
tag-importin- βが吸着して!/、ることを確認した(図 7)。
未修飾 importin- 18の Avidin Resinへの非特異的吸着量よりも明瞭に榭脂への吸着 量が多ぐインポ一ティン j8融合タンパクがピオチンィ匕されていることが分かる。電気 泳動のサンプルは、 M :分子量マーカー、 1 : GST- importin- j8吸着前、 2 : GST- impor tin- β上清、 3: GST-importin- β吸着後、 4: GST- biotin tag-importin- β吸着前、 5: uST-biotin tag— importin— β上清、 6: uST-biotin
tag-importin- β吸着後をそれぞれ表わす。
実施例 6
ピオチンラベル化ジスルフイド架橋ポリエチレンィミンの合成 低分子量ポリエチレン ィミン(平均分子量 1800、和光純薬工業) 0.5g (0.27mol)を DMF 5mLに溶解し、さらに イミノチオラン (Aldrich) 100mg(0.75mmol)を添カ卩し、窒素気流下室温で 15時間攪拌 した。反応溶液を限外ろ過フィルター Centriprep (MW 3000) (Amicon社製)を用いて 濃縮、超純水(15mL)で洗浄した。その後 lOOmM DTT溶液(0.5mL)をカ卩え、さらに Bi otin-PEGTSPA(lOOmg)を添加し窒素気流下室温で 15時間攪拌した。反応溶液を限 外ろ過フィルター Centriprep (MW 3000) (Amicon社製)を用いて濃縮、 5mM DTT水 溶液(15mL)で洗浄し、残渣を 5mM DTT (5mL)に溶解しビォチンラベル化ジスルフィ ド架橋ポリエチレンィミンストツク溶液を得た。
その内の、 0.25mLを超純水 2mLに加え、空気を 2時間パブリングさせたのち、 Sepha dexG-25を用いゲル濾過を超純水で溶出し、低分子量を分離後凍結乾燥し 30mgの 白色結晶を得た。 ^-NWRよりイミノチオランおよび Biotin-PEG導入量を算出し、低 分子量ポリエチレンィミン 10分子あたり 20分子のイミノチオランと 1分子の Biotin-PEG 導入量であった。一部を元素分析し C ; 50.71、 H ; 10.81、 N; 24.62%を得、 NMRの結 果を支持する値であった。また、元素分析の結果よりピオチンラベルイ匕ジスルフイド架 橋ポリエチレンィミンストツク溶液のプロトンィ匕可能窒素濃度は 2mol/Lと算出した。 実施例 7
[0048] インビトロ(in vitro)トランスフエクシヨン 24Wellプレートに lwellあたり A549細胞(ヒト肺 胞上皮細胞)懸濁液(50000cells/mL) lmLを入れ、 37°C、 CO存在下で 24時間インキ
2
ュペートした。その後、培地を除去し、 lwellあたり 1.25 X無血清 DMEM 200 Lを穏 やかに入れ、そこにトランスフ クシヨン溶液を lwellあたり 50 Lずつ穏やかに入れ、 3 7°C、 CO存在下で 3時間インキュベートし、細胞と接触させた。その後、培地を除去し
2
、新たに lwellあたり DMEM lmLを入れ、 37。C、 CO存在下で 24時間インキュベー卜し
2
、ルシフェラーゼアツセィを行った。なお、トランスフエクシヨン溶液調製にあたり、滅菌 MilliQ水、 1 μ g pGL3- Controlプラスミド(トランスフェラーゼ遺伝子をコードするプラス ミド DNA: Promega社製)溶液、ビォチンラベル化ジスルフイド架橋ポリエチレンィミン ストック溶液 (N/P= 10)の順に混ぜ、 10分間インキュベートし、更にピオチン化トラン スフエリン、ピオチンィ匕 GALA、ピオチン化インポ一ティン j8を単独もしくは混合溶液と して添加し、最後にストレプトアビジン溶液をカロえ 20分間インキュベートし、人工ウイ ルス性核酸構造体を作成した。
トランスフエクシヨン結果を図 8に示す。 25kDa
PEIと比較し、本発明に従 、核酸輸送促進性タンパクを導入するとトランスフエクショ ン効率が向上していることが理解される。特に、ピオチンィ匕ジスルフイド架橋ポリェチ レンイミンを用 ヽ、更にストレプトアビジンを介してビ才チンィ匕トランスフェリン、ビ才チ ン化 GALA、ピオチン化インポ一ティン j8の全てとコンジユゲートイ匕した場合、トランス フエクシヨン効率は 600倍向上しており、細胞膜の効果的な透過、輸送小胞から細胞 質への効率的な脱出後、核内に確実に移行し、さらに核内での DNAリリ-ス促進が大 きく寄与していることは明らかである。
実施例 8
[0049] ピオチン化ポリエチレンィミンの調製 プラスミド DNAとの結合因子として非ウィルスべ クタ一として多用されている分岐型ポリエチレンィミン(PEI、 MW. 25000、アルドリッチ 社製)を、また、ポリエチレングリコール鎖 (MW. 3400)の末端にピオチン基とカルボン 酸 N ヒドロキシスクシイミドエステル基をもつピオチンラベル化剤(Biotin— PEG C 0 — NHSゝ Nektor社製)を使用した。 PEI (25mg)と Biotin— PEG— CO — NHS (5mg)
2 2
を DMSO dOSO /z L)に溶解し、室温で 24時間振とうした。 Centricon (MW. 10000、 Ami con社製)の分子ふるいフィルターにのせ蒸留水(5mL)を加え、 4°C、 5000gで遠心し 、低分子量成分および溶媒である DMSOを除去した。
その後凍結乾燥を行 、白色粉末のピオチンィ匕 PEI (14.3mg)を得た。
[0050] ピオチン導入数の決定 合成したピオチン化 PEIの元素分析を行い、 C, 49.23% ; H, 11.02% ; N, 22.05%の結果を得た。この実測値より算出し、 PEI— (PEG - Biotin) · 2
2.2
30Η 0の計算値 C, 49.20% ; H, 11.03% ; N, 22.10%と高い一致を示すことよりビォチ
2
ンラベル数を 2.2と決定した。また、図 9に示すように1 H— NMR ^ベクトル(D 0)のポリ
2 エチレンィミン(2.3〜2.7ppm)とポリエチレングリコール(3.5— 3.6ppm)由来のプロトン 比からもピオチンラベル数を確認した。
実施例 9
[0051] プラスミド DNA /ピオチン化 PEI/インポ一ティン β三元複合体の調製、 HV.卜 Εへの封 入、およびトランスフ クシヨン PBS溶液中でルシフェラーゼ遺伝子をコードする 0.2 S/ L pGL3- control (pGL- 3、プロメガ社製)溶液 5 μ Lに 0.5 g/ L 0.77mMピオ チン化 PEI (biotin- PEI)水溶液(1.25 iu L)と7.7mM PEI水溶液(3.88 L)をカ卩え、室 温で 15分間静置した。この時のカチオンポリマーの窒素原子数と DNAのリン酸残基 数の比である N/P比は 10となる。ピオチン化 PEIのピオチン量の 1当量に相当する 0.50 S/ L GFP—インポ一ティン 13—ストレプトアビジン融合タンパク(importin- β - S/a vidin)溶液 Lをカ卩え pGL— 3/ biotin— PEI I
importin- β S. avidin三元複合体の調製を行った。
一方、 HVJ- Eベクターキット (石原産業社製)はキット付属のプロトコール第 1法にし たが!/、HVJ-Eを解凍し 10 μ Lをマイクロテストチューブに採取した。試薬 A (2.5 L)を 添加、混合後、氷上にて 5分間静置した。そして、先の三元複合体の溶液を添加混 合し、試薬 B ( 1.5 L)を添加混合し、 10000g、 4°Cで 5分間遠心し上清を除去した。次 にキット緩衝液(7.5 μ L)にピペッティングにて懸濁させ、 HVJ- Εに pGL- 3/biotin- ΡΕΙ /importin- β -S/avidin三元複合体の封入を行った。封入後、試薬 C (1.25 L)を添 加混合した。
トランスフエクシヨン実験は予めー晚前に 24穴プレートに 1穴あたり 50000 cellを播種 した NIH3T3 cell (マウス胎児繊維芽細胞)に先の pGL- 3/biotin- PEI/importin- β - S. avidin三元複合体の HVJ-E封入体溶液をカ卩え、 37°C、 5%CO下で 24時間培養した。
2
比較物質として市販品遺伝子導入剤の中でも最も活性の高い部類に属する Lipofect amine plus (Invitrogen社製)を用い、プロトコールに従い導入発現を行った。培養後、 細胞を PBSで洗浄し、 Steady- Glo Luciferase Assay System (プロメガ社製)を用い相 対光強度を測定してルシフェラーゼの発現量を評価した。
その結果を図 10に示す。まず、 HVJ-Eに封入せずに細胞に投与した場合は、 PEI/ DNA複合体(図 10中、 c)では非常に低い発現効率し力得られないが、核内移行タン パクを加えることで(図 10中、 b)、約 470倍発現効率が向上し、市販の Lipofectamine plus (図 10中、 a)と同等もしくはそれを凌ぐ結果が得られた。次に、 pGL-3/biotin-PEI /importin- β S. avidin三元複合体を HVJ-Eに封入した場合(図 10中、 d)、プロトコ ールにしたがう pGL-3のみを封入した場合(図 10中、 f)と比較し、約 122倍の高い活 性を示した。また、 HVJ-Eに封入しない場合(図 10中、 b)と比較しても約 4倍高い発 現量を与え、細胞質まで効果的に核内移行性核酸を導入すると、その後核膜孔を通 過する機能を持ち核内輸送に関わるインポ一ティン βの効果が大きいことを示してい る。
実施例 10
マウス新生 由来初代繊維芽細胞へのトランスフ クシヨン PBS溶液中でルシフェラ ーゼ遺伝子をコードする 0.2 g/ L pGL3-control (pGL-3、プロメガ社製)溶液 5 μ L に 0.5 μも/ ix L 0.77mMビォチン化 PEI (biotin- PEI)水溶液(1.25 μ L)と 7.7mM PEI水 溶液 (3.88 /z L)をカ卩え、室温で 15分間静置した。この時のカチオンポリマーの窒素原 子数と DNAのリン酸残基数の比である N/P比は 10となる。ピオチン化 PEIのピオチン 量の 1等量に相当する 0.50 g/ L GFP インポ一ティン β ストレプトアビジン融 合タンパク(importin— β -S/avidin)溶液 0.74 μ Lをカ卩え pGL— 3/biotin— PEI/importin— j8 -S/avidin三元複合体の調製を行った。 トランスフエクシヨン実験は予めー晚前に 24穴プレートに 1穴あたり 50000cellを播種 した新生マウス上皮由来線維芽細胞に先の pGL-3/biotin-PEI/importin- β -S/avidi n三元複合体を加え、 37°C、 5% CO下で 24時間培養した。比較物質として核内移行
2
タンパクを加えない条件で導入発現を行った。培養後、細胞を PBSで洗浄し Steady- Glo
Luciferase Assay System (プロメガ社製)を用いてルシフェラーゼの発現量を評価した 。その結果を図 11に示す。 PEI/DNA複合体と比較し、核内移行タンパクをカ卩えること で、約 5倍発現効率が向上し初代細胞でもインポ一ティン |8の効果が大きいことを示 している。
産業上の利用可能性
本発明は、遺伝子治療をはじめとして種々の分野において細胞に所望の遺伝子を 高効率に導入'発現するための新しい非ウィルス性の技術として利用が期待される。

Claims

請求の範囲
[I] 細胞の核内に導入されるべき遺伝子を含む核酸物質、核膜孔を通過する機能を持 ち核内輸送に関わるインポ一ティンタンパク、ならびに、前記核酸物質およびインポ 一ティンタンパクのそれぞれに結合している結合物質力 構成される三元複合体から 成ることを特徴とする核内移行性核酸構造体。
[2] インポ一ティンタンパクがインポ一ティン 13、インポ一ティン 7、トランスポーティントラ ンスポーティン SRまたは CASタンパクの中力も選ばれたタンパクであることを 特徴とする請求項 1に記載の核内移行性核酸構造体。
[3] インポ一ティンタンパクがインポ一ティン /3であることを特徴とする請求項 2に記載の 核内移行性核酸構造体。
[4] 結合物質がポリカチオン物質である請求項 1〜3のいずれかに記載の核内移行性 核酸構造体。
[5] ポリカチオン物質力インポ一ティンタンパクに非共有結合性の特異的相互作用を介 して結合している請求項 4に記載の核内移行性核酸構造体。
[6] ポリカチオン物質がピオチンィ匕されており、インポ一ティンタンパクにピオチンアビジ ン相互作用を介して結合している請求項 5に記載の核内移行性核酸構造体。
[7] ポリカチオン物質がポリエチレンィミンであることを特徴とする請求項 4〜6の 、ずれ かに記載の核内移行性核酸構造体。
[8] ポリカチオン物質が細胞内在性還元物質または光に応答して低分子化し得るカチ オン性ポリマーであることを特徴とする請求項 4〜6のいずれかに記載の核内移行性 核酸構造体。
[9] ポリカチオン物質がジスルフイド架橋を有するポリエチレンィミンであることを特徴と する請求項 8に記載の核内移行性核酸構造体。
[10] 核酸物質がプラスミド DNAであることを特徴とする請求項 1〜9のいずれかに記載の 核内移行性核酸構造体。
[II] ポリカチオン物質が細胞膜レセプター結合因子、および、膜融合性物質の少なくと も 1種類と結合していることを特徴とする請求項 1〜10のいずれかに記載の核内移行 性核酸構造体。
[12] 細胞膜レセプター結合因子が、トランスフェリン、 EGF (上皮細胞増殖因子)、 FGF ( 繊維芽細胞増殖因子)、 HGF (肝実質細胞増殖因子)、 NGF (神経細胞増殖因子)、 TGF (トランスフォーミング増殖因子)、 LDL (低密度リポタンパク)、インスリン、葉酸、 ジフテリア毒素、インテグリン結合因子、またはァシァ口糖タンパクレセプター結合因 子から選ばれることを特徴とする請求項 11に記載の核内移行性核酸構造体。
[13] 膜融合性物質が、インフルエンザウイルスへマダルチン HA-2、人免疫不全症ウイ ルス Tat、 GALAまたはジフテリア毒素 T—ドメインの中カゝら選ばれることを特徴とする 請求項 11に記載の核内移行性核酸構造体。
[14] 細胞膜レセプター結合因子がトランスフェリンであることを特徴とする請求項 12に記 載の核内移行性核酸構造体。
[15] 膜融合性物質が GALAであることを特徴とする請求項 13に記載の核内移行性核酸 構造体。
[16] ウィルス由来のエンベロープまたはキヤプシドに封入されていることを特徴とする請 求項 1〜10のいずれかに記載の核内移行性核酸構造体。
[17] センダイウィルスエンベロープに封入されていることを特徴とする請求項 16に記載 の核内移行性核酸構造体。
[18] 請求項 1〜17のいずれかに記載の核酸構造体を細胞と接触させる工程を含むこと を特徴とする細胞に遺伝子を導入する方法。
PCT/JP2005/012762 2004-07-12 2005-07-11 核酸構造体 WO2006006561A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05758322A EP1788082B1 (en) 2004-07-12 2005-07-11 Nucleic acid construct
JP2006529032A JP5561893B2 (ja) 2004-07-12 2005-07-11 核酸構造体
US11/632,138 US7745596B2 (en) 2004-07-12 2005-07-11 Nuclear transport nucleic acid delivery vector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-204286 2004-07-12
JP2004204286 2004-07-12
JP2004332892 2004-11-17
JP2004-332892 2004-11-17

Publications (1)

Publication Number Publication Date
WO2006006561A1 true WO2006006561A1 (ja) 2006-01-19

Family

ID=35783901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012762 WO2006006561A1 (ja) 2004-07-12 2005-07-11 核酸構造体

Country Status (4)

Country Link
US (1) US7745596B2 (ja)
EP (1) EP1788082B1 (ja)
JP (1) JP5561893B2 (ja)
WO (1) WO2006006561A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283897A (ja) * 2007-05-17 2008-11-27 Japan Science & Technology Agency 輸送小胞脱出性核酸構造体
JP2016503290A (ja) * 2012-10-29 2016-02-04 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ 遺伝子薬物療法のための新規試薬

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687027B2 (en) * 2008-02-27 2010-03-30 Becton, Dickinson And Company Cleaning compositions, methods and materials for reducing nucleic acid contamination
CN104258418A (zh) * 2014-09-28 2015-01-07 上海交通大学医学院附属新华医院 Ngf基因-聚阳离子纳米颗粒复合物及其制备方法和应用
CA3131130A1 (en) * 2019-03-06 2020-09-10 Generation Bio Co. Non-active lipid nanoparticles with non-viral, capsid free dna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500534A (ja) * 1993-07-22 1997-01-21 メルク エンド カンパニー インコーポレーテッド トランスジェニック動物でのヒトインターロイキン―1βの発現
US6379966B2 (en) * 1999-02-26 2002-04-30 Mirus Corporation Intravascular delivery of non-viral nucleic acid
JP3942362B2 (ja) * 2000-02-02 2007-07-11 アンジェスMg株式会社 遺伝子導入のためのウイルスエンベロープベクター
JP3996028B2 (ja) * 2002-09-30 2007-10-24 株式会社日本触媒 蛋白質又はペプチドの細胞内導入方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
GOSSELIN M.A. ET AL.: "Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine", BIOCONJUG. CHEM., vol. 12, no. 6, 2001, pages 989 - 994, XP001092541 *
IMAMOTO., N.; SHIMAMOTO, T.; KOSE, S.; TAKAO, ZT; TACHIBANA, T.; MATSHBAE., M.; SEKIMOTO, T.; SHIMONISHI, Y.; YONEDA, Y., FEBS LETT., vol. 368, 1995, pages 415 - 419
JAKEL, S.; GORICH. D., EMBO J., vol. 17, 1998, pages 4491
JINTA T. ET AL.: "Hikari kairetsusei Polyethyleneimine ni yoru Transfection Seigyo", THE JAPANESE SOCIETY OF GENE DESIGN AND DELIVERY DAI 4 KAI SYMPOSIUM YOSHISHU, vol. 4TH, May 2004 (2004-05-01), pages 21, XP002997033 *
JINTA T. ET AL.: "Hikari Kairetsusei Spacer o Yusuru Kakyo Polyethylenemine no Transfection Hikari Seigyo", ABSTRACTS, SYMPOSIUM ON BIOFUNCTIONAL CHEMISTRY, vol. 18TH, 2003, pages 550 - 551, XP002997034 *
KAWATSU T. ET AL.: "Importin-beta o Riyo Shita Plasmid DNA no Kakunai Iko Sokushin", THE JAPANESE SOCIETY OF GENE DESIGN AND DELIVERY DAI 4 KAI SYMPOSIUM YOSHISHU, vol. 4TH, 2004, pages 23, XP002997032 *
KUTAY. U.; BISCHOFF, F.R; KOSTKA S.; KRAFT. R.; GORLICH, D., CELL, vol. 90, 1997, pages 1061 - 71
NAGOSHI. E.; IWAMOTO. N.; SATO, R.; YONEDA. Y., MOL. BIOL, CELL, vol. 10, pages 2221 - 2233
OGRIS M. ET AL.: "Tumor-targeted gene transfer with DNA polyplexes, Somat", CELL MOL. GENET., vol. 27, no. 1-6, 2002, pages 85 - 95, XP002997035 *
POLLAND, V.W.; MICHAEL, W.M.; NAKIELNY, S.; SIOMI, M.C.; WANG. F.; DREYFUSS. G., CELL, vol. 86, 1996, pages 985 - 994
SIMOES S. ET AL.: "Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferring or fusigenic peptides", GENE THER., vol. 5, no. 7, 1998, pages 955 - 964, XP002929821 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283897A (ja) * 2007-05-17 2008-11-27 Japan Science & Technology Agency 輸送小胞脱出性核酸構造体
JP2016503290A (ja) * 2012-10-29 2016-02-04 エイジェンシー・フォー・サイエンス,テクノロジー・アンド・リサーチ 遺伝子薬物療法のための新規試薬

Also Published As

Publication number Publication date
JPWO2006006561A1 (ja) 2008-07-31
JP5561893B2 (ja) 2014-07-30
EP1788082A1 (en) 2007-05-23
US20070281356A1 (en) 2007-12-06
US7745596B2 (en) 2010-06-29
EP1788082B1 (en) 2012-09-12
EP1788082A4 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US11998635B2 (en) Targeted extracellular vesicles comprising membrane proteins with engineered glycosylation sites
Gigante et al. Non-viral transfection vectors: are hybrid materials the way forward?
Hartzell et al. Modular hepatitis B virus-like particle platform for biosensing and drug delivery
US20120171770A1 (en) Bioengineered silk protein-based nucleic acid delivery systems
Chiper et al. Transduction methods for cytosolic delivery of proteins and bioconjugates into living cells
Matsuura et al. Artificial viral capsid dressed up with human serum albumin
JP2022536364A (ja) 操作されたヒト内在性ウイルス様粒子および細胞への送達のためのその使用方法
JP5561893B2 (ja) 核酸構造体
JP2002525066A (ja) 核酸の特異的な細胞の局在化のための転写法
CA3189601A1 (en) Enhanced virus-like particles and methods of use thereof for delivery to cells
US20070098702A1 (en) Recombinant protein polymer vectors for systemic gene delivery
Chan et al. Intracellular protein delivery: Approaches, challenges, and clinical applications
NZ517241A (en) Non-naturally occurring viral gene therapy vector for cell-specific delivery of a nucleic acid to a target cell
Domingo-Espín et al. Engineered biological entities for drug delivery and gene therapy: Protein nanoparticles
KR102208919B1 (ko) 융합 펩타이드 나노 어셈블리와 칼슘 이온을 이용한 핵산 세포 형질도입법과 그의 응용
KR20220117091A (ko) 생체내 세포에서 합성 및 분비되고 세포로 투과하는 관심 폴리펩타이드를 코딩하는 발현카세트 및 이의 용도
KR101445438B1 (ko) 핵산 전달용 pamam 유도체
JP4034274B2 (ja) 核内移行性核酸構造体
Sonotaki et al. A zeolite as a tool for successful refolding of PEGylated proteins and their reassembly with tertiary structures
CN112166196A (zh) 大核酸的靶向细胞内递送
JP2008283897A (ja) 輸送小胞脱出性核酸構造体
CN110004180B (zh) 一种由功能肽a25修饰的基因载体及其制备方法和应用
Chan ENGINEERING SMALL PROTEIN BASED INHIBITORS AND BIODEGRADERS FOR CYTOSOLIC DELIVERY AND TARGETING OF THE UNDRUGGABLE PROTEOME
Chen Intracellular Protein Delivery by Genetically Encoded and Structurally Constrained Cell-Penetrating Peptides
US8216843B2 (en) Artificially synthesized peptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006529032

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005758322

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005758322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11632138

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11632138

Country of ref document: US