被覆微粒子 1 . 技術分野 Coated fine particles 1. Technical field
本発明は、 被覆微粒子に係わり、 特に、 化粧品材料又は塗料材料からなる 超微粒子又は薄膜が表面に被覆さ明れた被覆微粒子に関する。 The present invention relates to coated fine particles, and more particularly, to coated fine particles having a surface coated with ultrafine particles or a thin film made of a cosmetic material or a coating material.
2 . 背景技術 書 2. Background Technical Document
化粧品には多くの無機、 有機粉体 (微粒子) が利用されている。 その中で も無機粉体においては、 色彩、 光反射 ·散乱率、 発色、 紫外線反射等の材料 の特性を生かした利用がなされている。 Many inorganic and organic powders (fine particles) are used in cosmetics. Among them, inorganic powders are used by taking advantage of the characteristics of materials such as color, light reflection / scattering rate, color development, and ultraviolet reflection.
粉体 (微粒子) の色彩や発色を向上させる上で、 粉体の表面に超微粒子又 は薄膜を修飾 (被覆) することは非常に有効な手段である。 なぜなら、 材料 の光学特性は粉体表面の性質に大きく依存していることから、 粉体の表面修 飾を行うことにより色彩や発色を大きく変化させることができるからである。 それに加えて、 粉体の表面修飾では、 表面修飾する材料が持つ特性 (例えば 紫外線反射、 蛍光等) を付与することも可能である。 In order to improve the color and color development of powder (fine particles), modifying (coating) ultra fine particles or thin film on the surface of the powder is a very effective means. This is because the optical properties of the material greatly depend on the properties of the powder surface, so that color and color development can be greatly changed by surface modification of the powder. In addition, the surface modification of the powder can impart the properties of the material to be modified (for example, UV reflection, fluorescence, etc.).
従来の粉体の表面修飾法は、 修飾材料を微粒子化し、 この修飾材料を静電 気力、 水分の表面張力等の弱い吸着力により母体となる微粒子の表面に修飾 する方法である。 しかし、 修飾材料を平均粒径数十〜数百 n mまで微粒子化 しないと実際に粉体の表面修飾法を利用することができないが、 平均粒径数 -\ ""〜百 n mまで微粒子化できる修飾材料が限られている。 その上に、 微粒子 の粒径や形状にはばらつきがあるため、 各微粒子の表面に均一な修飾を行う ことが難しい。また、微粒子化した形態のみでしか粉体に修飾できないため、 高反射率の平面等が作れないといった欠点がある。 The conventional powder surface modification method is a method in which a modifying material is made into fine particles, and the modifying material is modified on the surface of the base particles by a weak adsorption force such as electrostatic force and surface tension of moisture. However, if the modifying material is not micronized to an average particle size of several tens to several hundreds of nanometers, the powder surface modification method cannot actually be used. Limited modifier material. In addition, since the particle size and shape of the fine particles vary, it is difficult to uniformly modify the surface of each fine particle. In addition, since it can be modified to powder only in the form of fine particles, there is a disadvantage that a highly reflective flat surface or the like cannot be formed.
その他の従来例としては、 めっき法によっても粉体の表面修飾が行われて きた。 しかし、 調製工程が煩雑であること、 調製時に不純物の混入が避けら
れないこと、 化粧品に多く利用されている酸化物材料が修飾できないこと、 更にめつき廃液は環境問題からその処理が難しいこと等の理由から、 めっき 法による粉体の表面修飾法は化粧品分野ではあまり利用されていない。 一方、 塗料製品に使用されている材料は、 粉体塗料や塗料に使用される顔 料など多くが粉体として利用されている。 これらの粉体は殆どが材料自体の 色彩や発色をそのまま利用している。 しかし、 従来の塗料用材料だけでは、 色彩や発色の面で多様なニーズに応えることが出来ていない。 また、 防食性 や抗菌性を持ち合わせた塗料といった新たなニーズも生まれており、 これら のニーズに合わせた塗料の開発が期待されている。 As another conventional example, the surface modification of the powder has been performed also by the plating method. However, the preparation process is complicated and it is difficult to avoid contamination during preparation. In the cosmetic field, the surface modification method of the powder by plating is difficult because it is difficult to modify oxide materials that are widely used in cosmetics, and that it is difficult to treat slag waste liquid due to environmental problems. It is not used much. On the other hand, many of the materials used in paint products, such as powder paints and pigments used in paints, are used as powders. Most of these powders use the color and color of the material itself. However, conventional paint materials alone cannot meet diverse needs in terms of color and color development. In addition, new needs such as anti-corrosion and antibacterial paints are emerging, and the development of paints that meet these needs is expected.
上記の問題を解決する方法として、 化粧品の場合と同様に、 粉体の表面に 物質を修飾 (被覆) することが考えられる。 塗料の色彩や発色は顔料等の粉 体材料表面の形態、 光反射率、 屈折率等に大きく依存するため、 粉体表面を 他の物質で修飾することにより、 色彩や発色を変化させることができる。 ま た、 同時に修飾物質の持つ特性 (例えば防食性、 抗菌性等) を付与すること も可能である。 As a method for solving the above problem, it is conceivable to modify (coating) a substance on the surface of the powder, as in the case of cosmetics. Since the color and color development of paint greatly depend on the form of powder material surface such as pigment, light reflectance, refractive index, etc., it is possible to change the color and color development by modifying the powder surface with other substances. it can. At the same time, it is also possible to impart the properties of the modifying substance (for example, anticorrosive properties, antibacterial properties, etc.).
3 . 発明の開示 3. Disclosure of the Invention
ところで、 近年の化粧品に対する要求は厳しくなつてきており、 発色の向 上、 高輝度粉体材料の開発等が求められている。 一方、 従来の塗料用材料だ けでは、色彩や発色の面で多様なニーズに応えることが出来ていない。また、 防食性や抗菌性を持ち合わせた塗料といった新たなニーズも生まれており、 これらのニーズに合わせた塗料の開発が期待されている。 By the way, demands for cosmetics in recent years have become stricter, and there is a demand for improvement of coloring and development of high-intensity powder materials. On the other hand, conventional paint materials alone cannot meet diverse needs in terms of color and color development. In addition, new needs such as anti-corrosion and antibacterial paints are emerging, and development of paints that meet these needs is expected.
本発明は上記のような事情を考慮してなされたものであり、 その目的は、 色彩、 発色、 光沢、 蓄光 ·発光 (蛍光やリン光)、 高輝度、 光反射及び紫外線 防護のうち少なく とも一つを向上させた被覆微粒子を提供することにある。 また、 本発明の他の目的は、 微粒子の表面に機能化した化粧品用材料又は塗 料用材料からなる超微粒子又は薄膜を被覆した被覆微粒子を提供することに ある。
上記課題を解決するため、 物理蒸着法の一つであるスパッタリング法に注 目した。 この方法も粉体全体に均一に微粒子を被覆することが難しいが、 担 体を選ばない、 金属から無機物までを粉体表面に修飾できる、 環境負荷が小 さい、 等々の理由から非常に汎用性が高いと考えられる。 そこで、 今回我々 は、 粉体表面の新規修飾法である多角バレルスパッタリング法を発明した。 本方法は、 乾式のスパッタリ ング法を利用しており、 粉体表面に金属、 酸化 物等をほぼ均一に修飾することが可能であること、 従来の方法に比べて修飾 工程が非常に短いこと、 .不純物の混入がほとんどないこと、 廃液処理の必要 がないこと、 修飾物 (超微粒子又は薄膜) と被修飾物 (微粒子) の多彩な組 み合わせが可能なため、 防食性、 抗菌性などの特性を持つ材料を微粒子表面 に修飾できること、 微粒子の表面に修飾 (被覆) する材料の形態 (薄膜から 微粒子まで) を制御することで、 粉体の光反射率、 屈折率を操作し、 自由に 色彩を変えることができること、 といった多くの利点がある。 本方法の開発 により粉体表面の自由な修飾が可能になったことで、 粉体の表面に様々な特 性 (蛍光特性等) を持つ酸化物材料を修飾することも可能になり、 粉体の表 面に薄膜の形態で修飾することも容易になった。 The present invention has been made in view of the above circumstances, and its purpose is to provide at least one of color, color development, gloss, phosphorescence / luminescence (fluorescence and phosphorescence), high brightness, light reflection and UV protection. The object is to provide coated fine particles which are improved by one. Another object of the present invention is to provide coated fine particles coated with ultrafine particles or a thin film made of a functional cosmetic material or coating material on the surface of the fine particles. In order to solve the above problems, we focused on sputtering, which is one of physical vapor deposition methods. This method also makes it difficult to uniformly coat the entire powder with fine particles, but it is extremely versatile because it does not require a support, can be modified from metal to inorganic on the powder surface, has a low environmental impact, and so on. Is considered high. This time, we invented the polygonal barrel sputtering method, which is a new modification of the powder surface. This method uses a dry sputtering method, and it is possible to modify metals, oxides, etc. almost uniformly on the powder surface, and the modification process is much shorter than conventional methods. Because there is almost no impurities mixed in, there is no need for waste liquid treatment, and various combinations of modified products (ultrafine particles or thin films) and modified products (fine particles) are possible. It is possible to modify the material with the characteristics of fine particles on the surface of the fine particles and to control the form of the material (from thin film to fine particles) to be modified (coated) on the surface of the fine particles. There are many advantages such as being able to change colors. The development of this method has made it possible to freely modify the powder surface, which makes it possible to modify oxide materials with various properties (fluorescence characteristics, etc.) on the powder surface. It was also easy to modify the surface of the film in the form of a thin film.
以下、 具体的に説明する。 This will be specifically described below.
本発明に係る被覆微粒子は、内部の断面形状が多角形を有する真空容器を、 前記断面に対してほぼ垂直方向を回転軸として回転させることにより、 該真 空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うこと で、 該微粒子の表面に該微粒子より粒径の小さい超微粒子又は薄膜が被覆さ れ、 化粧品又は塗料に使用される被覆微粒子であって、 The coated fine particles according to the present invention rotate the fine particles in the vacuum vessel by rotating a vacuum vessel having a polygonal cross-sectional shape about a direction perpendicular to the cross-section as a rotation axis. Sputtering is performed so that the surface of the fine particles is coated with ultrafine particles or a thin film having a smaller particle diameter than the fine particles, and is coated fine particles used for cosmetics or paints,
前記超微粒子又は前記薄膜は、 金属、 酸化物、 窒化物及び炭化物からなる 群から選ばれた一つ、 又は前記群から選ばれた二つ以上の複合体からなるこ とを特徴とする。 The ultrafine particles or the thin film is characterized by comprising one selected from the group consisting of metals, oxides, nitrides and carbides, or two or more composites selected from the group.
本発明に係る被覆微粒子は、内部の断面形状が多角形を有する真空容器を、 前記断面に対してほぼ垂直方向を回転軸として回転させることにより、 該真 空容器内の微粒子を攪拌あるいは回転させると共に前記微粒子に振動を加え
ながらスパックリングを行うことで、 該微粒子の表面に該微粒子より粒径の 小さい超微粒子又は薄膜が被覆され、 化粧品又は塗料に使用される被覆微粒 子であって、 The coated fine particles according to the present invention agitate or rotate the fine particles in the vacuum vessel by rotating a vacuum vessel having a polygonal cross-sectional shape about a direction perpendicular to the cross-section as a rotation axis. Along with vibration to the fine particles The surface of the fine particles is coated with ultrafine particles or a thin film having a smaller particle size than the fine particles, and the coated fine particles are used for cosmetics or paints.
前記超微粒子又は前記薄膜は、 金属、 酸化物、 窒化物及び炭化物からなる 群から選ばれた一つ、 又は前記群から選ばれた二つ以上の複合体からなるこ とを特徴とする。 The ultrafine particles or the thin film is characterized by comprising one selected from the group consisting of metals, oxides, nitrides and carbides, or two or more composites selected from the group.
本発明に係る被覆微粒子は、 内部の断面形状が多角形を有する真空容器を 直接または間接的に加熱すると共に、 前記断面に対してほぼ垂直方向を回転 軸として前記真空容器を回転させることにより、 該真空容器内の微粒子を攪 拌あるいは回転させながらスパッタリ ングを行うことで、 該微粒子の表面に 該微粒子より粒径の小さい超微粒子又は薄膜が被覆され、 化粧品又は塗料に 使用される被覆微粒子であって、 The coated fine particles according to the present invention directly or indirectly heat a vacuum vessel having a polygonal cross-sectional shape, and rotate the vacuum vessel about a direction perpendicular to the cross-section as a rotation axis. By performing sputtering while stirring or rotating the fine particles in the vacuum vessel, the surface of the fine particles is coated with ultrafine particles or thin films having a particle diameter smaller than the fine particles, and the coated fine particles used in cosmetics or paints There,
前記超微粒子又は前記薄膜は、 金属、 酸化物、 窒化物及び炭化物からなる 群から選ばれた一つ、 又は前記群から選ばれた二つ以上の複合体からなるこ とを特徴とする。 The ultrafine particles or the thin film is characterized by comprising one selected from the group consisting of metals, oxides, nitrides and carbides, or two or more composites selected from the group.
上記それぞれの本発明に係る被覆微粒子によれば、 一般に用いられている 平均粒径が 5 0 i m以下の化粧品や塗料の母体微粒子に化粧品用材料又は塗 料用材料からなる薄膜又は超微粒子をほぼ均一に被覆 (修飾) することが可 能となる。 ただし、 5 0 m以上の粉体が化粧品や塗料の材料として用いら れる場合でももちろん表面修飾は可能である。 つまり、 母体微粒子の粒径に 制約はほとんどない。 このため、 化粧品用材料又は塗料用材料を被覆した被 覆微粒子において色彩、 発色、 光沢、 蛍光やリン光、 高輝度、 光反射及び紫 外線防護のうち少なく とも一つを向上させることができる。 According to each of the coated fine particles according to the present invention, a generally used thin film or ultrafine particle made of a cosmetic material or a coating material is substantially added to a base particle of a cosmetic or paint having an average particle diameter of 50 im or less. It becomes possible to coat (modify) uniformly. However, even when powder of 50 m or more is used as a material for cosmetics or paints, it is of course possible to modify the surface. In other words, there are almost no restrictions on the particle size of the base particles. For this reason, at least one of color, coloring, gloss, fluorescence and phosphorescence, high brightness, light reflection, and ultraviolet ray protection can be improved in the coated fine particles coated with cosmetic materials or paint materials.
本発明に係る被覆微粒子は、 微粒子の表面に該微粒子より粒径の小さい超 微粒子又は薄膜が被覆され、 化粧品又は塗料に使用される被覆微粒子であつ て、 前記超微粒子又は前記薄膜は、 金属、 酸化物、 窒化物及び炭化物からな る群から選ばれた一つ、 又は前記群から選ばれた二つ以上の複合体からなる ことを特徴とする。
以上説明したように本発明によれば、 色彩、 発色、 光沢、 発光 (蛍光ゃリ ン光)、 蓄光、 高輝度、 光反射及び紫外線防護のうち少なく とも一つを向上さ せた被覆微粒子を提供することができる。 また、 他の本発明によれば、 微粒 子の表面に化粧品用材料又は塗料用材料からなる超微粒子又は薄膜を被覆し た被覆微粒子を提供することができる。 The coated fine particles according to the present invention are coated fine particles whose surface is coated with ultra fine particles or a thin film having a particle diameter smaller than that of the fine particles, and used for cosmetics or paints, wherein the ultra fine particles or the thin film is a metal, It is characterized by comprising one selected from the group consisting of oxides, nitrides and carbides, or two or more composites selected from the above group. As described above, according to the present invention, the coated fine particles that improve at least one of color, color development, gloss, luminescence (fluorescence phosphorescence), phosphorescence, high brightness, light reflection, and UV protection can be obtained. Can be provided. According to another aspect of the present invention, coated fine particles in which the surface of the fine particles is coated with ultrafine particles or a thin film made of a cosmetic material or a coating material can be provided.
4. 図面の簡単な説明 4. Brief description of the drawings
図 1は、 本発明の実施の形態による被覆微粒子を製造する際に用いる多角 バレルスパッタリング装置の概略を示す構成図である。 FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus used when manufacturing coated fine particles according to an embodiment of the present invention.
図 2は、 本発明の実施の形態による被覆微粒子に用いる微粒子の一例であ るフレーク形状の微粒子を示す斜視図である。 FIG. 2 is a perspective view showing flake-shaped fine particles which are an example of fine particles used for the coated fine particles according to the embodiment of the present invention.
図 3は、シリカガラス基板の X線回折(XRD)パターンを示す図である。 図 4は、 修飾物質の結晶型に対する全圧と酸素分圧の相関図である。 図 5 (A) は、 修飾前の粉末試料を示す写真であり、 図 5 (B) は、 修飾 後の粉末試料を示す写真である。 FIG. 3 is a diagram showing an X-ray diffraction (XRD) pattern of a silica glass substrate. Figure 4 shows the correlation between the total pressure and oxygen partial pressure for the crystalline form of the modifier. Fig. 5 (A) is a photograph showing a powder sample before modification, and Fig. 5 (B) is a photograph showing a powder sample after modification.
図 6 (A) は、 修飾前の粉末試料を光学顕微鏡で撮影した写真であり、 図 6 (B) は、 修飾後の粉末試料を光学顕微鏡で撮影した写真である。 Fig. 6 (A) is a photograph of the powder sample before modification taken with an optical microscope, and Fig. 6 (B) is a photograph of the powder sample after modification taken with an optical microscope.
図 7は、 未修飾アルミナと修飾アルミナを S EM及び EDSを用いて、 試 料の表面分析を行った結果を示す写真である。 Figure 7 is a photograph showing the results of surface analysis of the sample using unmodified alumina and modified alumina using SEM and EDS.
図 8は、 紫外 ·可視吸収スペク トルを測定した結果を示すグラフである。 図 9 (A) は、 焼鈍前の粉末試料を XRD測定した結果を示す図であり、 図 9 (B) は、 焼鈍後の粉末試料を XRD測定した結果を示す図である。 Fig. 8 is a graph showing the results of measurement of the ultraviolet / visible absorption spectrum. Fig. 9 (A) shows the result of XRD measurement of the powder sample before annealing, and Fig. 9 (B) shows the result of XRD measurement of the powder sample after annealing.
5. 発明を実施するための最良の形態 5. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の実施の形態による被覆微粒子を製造する際に用いる多角 バレルスパッタリング装置の概略を示す構成図である。 FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus used when manufacturing coated fine particles according to an embodiment of the present invention.
この多角バレルスパッタリング装置は、 微粒子 (粉体) の表面に、 該微粒
子より粒径の小さい超微粒子又は薄膜を被覆するための装置である。 This polygonal barrel sputtering device has fine particles (powder) on its surface. It is an apparatus for coating ultrafine particles or thin films having a particle diameter smaller than that of a child.
多角バレルスパッタリング装置は、 微粒子 3に超微粒子又は薄膜を被覆さ せる真空容器 1を有しており、 この真空容器 1は直径 2 0 0 m mの円筒部 1 aとその内部に設置された断面が六角形のバレル (六角型バレル) 1 bと を備えている。ここで示す断面は、重力方向に対してほぼ平行な断面である。 なお、 本実施の形態では、 六角形のバレル 1 bを用いているが、 これに限定 されるものではなく、 六角形以外の多角形のバレル (例えば 4〜 1 2角形) を用いることも可能である。 The polygonal barrel sputtering apparatus has a vacuum vessel 1 for coating fine particles 3 with ultrafine particles or a thin film, and this vacuum vessel 1 has a cylindrical portion 1 a having a diameter of 200 mm and a cross section installed in the inside thereof. Hexagonal barrel (hexagonal barrel) 1 b. The cross section shown here is a cross section substantially parallel to the direction of gravity. In this embodiment, the hexagonal barrel 1b is used. However, the present invention is not limited to this, and a polygonal barrel other than the hexagonal shape (for example, 4 to 1 square) can also be used. It is.
真空容器 1には回転機構 (図示せず) が設けられており、 この回転機構に より六角型バレル 1 bを矢印のように回転または反転させたり、 或いは振り 子のように揺することで該六角型バレル 1 b内の微粒子 3を攪拌あるいは回 転させながら被覆処理を行うものである。 前記回転機構により六角型バレル を回転させる際の回転軸は、 ほぼ水平方向 (重力方向に対してほぼ垂直方向) に平行な軸である。 The vacuum vessel 1 is provided with a rotating mechanism (not shown). By this rotating mechanism, the hexagonal barrel 1b is rotated or reversed as indicated by an arrow, or is shaken like a pendulum. The coating process is performed while stirring or rotating the fine particles 3 in the mold barrel 1b. The rotation axis when the hexagonal barrel is rotated by the rotation mechanism is an axis parallel to the substantially horizontal direction (substantially perpendicular to the direction of gravity).
また、 真空容器 1内には円筒の中心軸上に化粧品用材料、 例えばパール顔 料、 高輝度反射材料、 紫外線防護効果を持つ材料、 フォ トクロミック材料、 蛍光材料等からなる物質、 またはこの物質を反応性スパッタリングで作り出 すことができる物質からなるスパッタリングターゲッ ト 2が配置されており、 このターゲッ ト 2は角度を自由に変えられるように構成されている。 これに より、 六角型バレル 1 bを回転または反転させたり、 或いは振り子のように 揺すりながら被覆処理を行う時、 ターゲッ ト 2を微粒子 3の位置する方向に 向けることができ、 それによつてスパッタリング効率を上げることが可能と なる。 Further, in the vacuum container 1, a cosmetic material such as a pearl pigment, a high-intensity reflective material, a material having an ultraviolet protection effect, a photochromic material, a fluorescent material, or the like is placed on the central axis of the cylinder. A sputtering target 2 made of a material that can be produced by reactive sputtering is arranged, and this target 2 is configured so that the angle can be freely changed. This allows the target 2 to be directed in the direction in which the microparticles 3 are positioned when the hexagonal barrel 1 b is rotated, inverted, or coated while being shaken like a pendulum, thereby increasing the sputtering efficiency. Can be raised.
ターゲッ ト 2を構成する物質は、 金属、 酸化物、 窒化物及び炭化物からな る群から選ばれた一つ、又は前記群から選ばれた二つ以上の複合体からなり、 化粧品として使える化粧品用材料である。 例えば、 パール顔料、 高輝度反射 材料、 紫外線を反射することにより紫外線防護効果を持つ材料、 フォ トクロ ミック材料、 又は蛍光材料などの化粧品用材料である。
また、 ターゲッ ト 2を構成する物質は、 金属、 酸化物、 窒化物及び炭化物 からなる群から選ばれた一つ、 又は前記群から選ばれた二つ以上の複合体か らなり、 塗料として使える塗料用材料である。 例えば、 高輝度メタリック顔 料、 無機蛍光材料、 耐食性を持つ材料、 抗菌性を持つ材料、 紫外線防護効果 を持つ材料などの塗料用材料である。 The substance constituting the target 2 is composed of one selected from the group consisting of metals, oxides, nitrides and carbides, or a composite of two or more selected from the above group, and can be used as cosmetics. Material. For example, pearl pigments, high-brightness reflective materials, materials that protect against ultraviolet rays by reflecting ultraviolet rays, photochromic materials, or fluorescent materials, and other cosmetic materials. The substance constituting the target 2 is composed of one selected from the group consisting of metals, oxides, nitrides and carbides, or two or more composites selected from the above group, and can be used as a paint. It is a paint material. For example, paint materials such as high-brightness metallic pigments, inorganic fluorescent materials, materials with corrosion resistance, materials with antibacterial properties, and materials with UV protection effects.
また、 真空容器 1内に配置されるターゲット 2は一種類でもよいが複数種 類であってもよい。 例えばターゲット 2として、 上記した化粧品用材料又は 塗料用材料から選ばれた複数の材料それぞれからなる複数のターゲットを並 ベて配置してもよい。 また上記した化粧品用材料又は塗料用材料から選ばれ た一つの材料からなるターゲッ トと、 上記した化粧品用材料又は塗料用材料 に含まれる材料の酸化物からなるターゲッ トとを並べて配置してもよい。 そして、 微粒子 3を被覆する物質はターゲッ ト 2を構成する物質である。 ターゲッ ト 2が複数種類ある場合はこれらの混合物または合金である。 また ターゲッ ト 2が上記した化粧品用材料又は塗料用材料から選ばれた一つもし くは複数の材料から構成されており、 かつ反応性スパッタリングが行われる 場合、 微粒子 3を被覆する物質はターゲッ ト 2を構成する物質から生成した 物質 (例えば酸化物) またはこれとターゲット 2を構成する物質の混合物で ある。 In addition, the target 2 arranged in the vacuum vessel 1 may be one type or a plurality of types. For example, as the target 2, a plurality of targets each made of a plurality of materials selected from the above-described cosmetic materials or paint materials may be arranged in parallel. Further, a target made of one material selected from the above-mentioned cosmetic material or paint material and a target made of an oxide of the material contained in the above-mentioned cosmetic material or paint material may be arranged side by side. Good. The substance that coats the fine particles 3 is the substance that constitutes the target 2. If there are multiple types of target 2, they are a mixture or alloy of these. In addition, when target 2 is composed of one or more materials selected from the above-mentioned cosmetic materials or paint materials, and reactive sputtering is performed, the substance covering fine particles 3 is the target. It is a substance (for example, oxide) generated from the substance that constitutes 2 or a mixture of this and the substance that constitutes the target 2.
真空容器 1には配管 4の一端が接続されており、 この配管 4の他端には第 1バルブ 1 2の一方側が接続されている。 第 1バルブ 1 2の他方側は配管 5の一端が接続されており、 配管 5の他端はターボ分子ポンプ (T M P ) 1 0の吸気側に接続されている。 ターボ分子ポンプ 1 0の排気側は配管 6の 一端に接続されており、 配管 6の他端は第 2バルブ 1 3の一方側に接続され ている。第 2バルブ 1 3の他方側は配管 7の一端に接続されており、配管 7の 他端はポンプ (R P ) 1 1に接続されている。 また、 配管 4は配管 8の一端 に接続されており、 配管 8の他端は第 3バルブ 1 4の一方側に接続されてい る。 第 3バルブ 1 4の他方側は配管 9の一端に接続されており、 配管 9の他 端は配管 7に接続されている。
本装置は、真空容器 1内の微粒子 3を直接加熱するためのヒータ 1 7 aと、 間接的に加熱するためのヒータ 1 7 bを備えている。 また、 本装置は、 真空 容器 1内の微粒子 3に振動を加えるためのバイブレータ 1 8を備えている。 また、本装置は、真空容器 1の内部圧力を測定する圧力計 1 9を備えている。 また、本装置は、真空容器 1内に窒素ガスを導入する窒素ガス導入機構 1 5を 備えていると共に真空容器 1内にアルゴンガスを導入するアルゴンガス導入 機構 1 6を備えている。 また反応性スパッタリングを行えるように、 酸素等 を導入できるガス導入機構 2 0も備えている。 また、 本装置は、 ターゲッ ト 2と六角型バレル 1 bとの間に高周波を印加する高周波印加機構(図示せず) を備えている。 なおターゲット 2と六角型バレル 1 bとの間には直流が印加 できるようにもなつている。 One end of a pipe 4 is connected to the vacuum vessel 1, and one side of the first valve 12 is connected to the other end of the pipe 4. One end of the pipe 5 is connected to the other side of the first valve 12, and the other end of the pipe 5 is connected to the intake side of the turbo molecular pump (TMP) 10. The exhaust side of the turbo molecular pump 10 is connected to one end of the pipe 6, and the other end of the pipe 6 is connected to one side of the second valve 13. The other side of the second valve 13 is connected to one end of the pipe 7, and the other end of the pipe 7 is connected to the pump (RP) 11. The pipe 4 is connected to one end of the pipe 8, and the other end of the pipe 8 is connected to one side of the third valve 14. The other side of the third valve 14 is connected to one end of the pipe 9, and the other end of the pipe 9 is connected to the pipe 7. This apparatus includes a heater 17 a for directly heating the fine particles 3 in the vacuum vessel 1 and a heater 17 b for heating indirectly. In addition, this apparatus includes a vibrator 18 for applying vibration to the fine particles 3 in the vacuum container 1. The apparatus also includes a pressure gauge 19 that measures the internal pressure of the vacuum vessel 1. The apparatus also includes a nitrogen gas introduction mechanism 15 that introduces nitrogen gas into the vacuum container 1 and an argon gas introduction mechanism 16 that introduces argon gas into the vacuum container 1. A gas introduction mechanism 20 that can introduce oxygen or the like is also provided so that reactive sputtering can be performed. The apparatus also includes a high-frequency application mechanism (not shown) that applies a high frequency between the target 2 and the hexagonal barrel 1b. A direct current can be applied between the target 2 and the hexagonal barrel 1b.
次に、 上記多角バレルスパッタリング装置を用いて微粒子 3に、 化粧品用 材料の一例である T i 0 2からなる超微粒子又は薄膜を被覆する多角バレル スパッタリング方法について説明する。 Then, the fine particles 3 by using the polygonal barrel sputtering device, polygonal barrel sputtering method for coating ultrafine particles or a thin film composed of T i 0 2 is an example of cosmetic material will be described.
まず、 六角型バレル 1 b内に例えば 6グラムの微粒子 3を導入する。 この 微粒子 3 としては例えば 1 0 0 μ m程度の大きさの S i 〇2あるいは A 1 2 0 3粉体を用いるが、 これに限定されるものではない。 また、 微粒子 3は形 状に制限がなく、例えばフレーク形状を有していても良い。また、微粒子 3の 材質についても制限はなく、 例えば化粧品用材料からなるものであっても良 い。 First, for example, 6 grams of fine particles 3 are introduced into the hexagonal barrel 1b. As the fine particles 3, for example, Si 0 2 or A 1 2 0 3 powder having a size of about 100 μm is used, but is not limited thereto. The fine particles 3 are not limited in shape, and may have a flake shape, for example. The material of the fine particles 3 is not limited, and may be made of, for example, a cosmetic material.
次いで、 ターボ分子ポンプ 1 0を用いて六角型バレル 1 b内に高真空状態 を作り、 ヒータ 1 7で六角型バレルを例えば室温〜 4 0 0 °Cまで場合に応じ て加熱しながら、 六角型バレル内を例えば 1 X 1 0 _ 5 P aに減圧する。 その 後、 アルゴンガス導入機構 1 6及びガス導入機構 2 0によりアルゴン及び酸 素を六角型バレル 1 b内に導入する。 この際の六角型バレル内の圧力は例え ば 0 . 1〜 3 . 5 P a程度である。 尚、 被覆させる超微粒子又は薄膜の材質 によっては酸素、 窒素、 メタン、 水素との混合ガスを六角型バレル 1 b内に 導入しても良いし、 ターゲッ トの材質を適宜変更しても良い。 そして、 回転
機構により六角型バレル 1 bを 2 0 0 Wで 6 0分間 2 0 r p mで回転させる ことで、 六角型バレル 1 b内の微粒子 3を回転させ、 攪拌させる。 その際、 ターゲッ トは微粒子 3の位置する方向に向けられる。 その後、 高周波印加機 構によりターゲッ ト 2と六角型バレル 1 bとの間に高周波を印加することで、 微粒子 3の表面に化粧品用材料からなる物質を被覆する。 このようにして微 粒子 3の表面に T i 0 2を超微粒子又は薄膜として担持させることができる。 なお、 これらの条件は一例であり、 これに限定されるものではない。 Next, a high vacuum state is created in the hexagonal barrel 1b using the turbo molecular pump 10, and the hexagonal barrel is heated with the heater 17 from room temperature to 400 ° C, for example, depending on the case. The pressure in the barrel is reduced to 1 X 1 0 _ 5 Pa, for example. Thereafter, argon and oxygen are introduced into the hexagonal barrel 1 b by the argon gas introduction mechanism 16 and the gas introduction mechanism 20. The pressure in the hexagonal barrel at this time is, for example, about 0.1 to 3.5 Pa. Depending on the material of the ultrafine particles or thin film to be coated, a mixed gas of oxygen, nitrogen, methane, and hydrogen may be introduced into the hexagonal barrel 1b, or the target material may be changed as appropriate. And rotate By rotating the hexagonal barrel 1 b at 20 W for 60 minutes at 20 rpm by the mechanism, the fine particles 3 in the hexagonal barrel 1 b are rotated and stirred. At that time, the target is directed in the direction in which the particles 3 are located. Thereafter, a high frequency is applied between the target 2 and the hexagonal barrel 1b by a high frequency application mechanism to coat the surface of the fine particles 3 with a substance made of a cosmetic material. In this way, T i 0 2 can be supported on the surface of the fine particles 3 as ultrafine particles or a thin film. These conditions are merely examples, and the present invention is not limited to these conditions.
上記多角パレルスパッタリング装置によれば、 六角型バレル自体を回転さ せることで粉体自体を回転させ攪拌でき、 更にバレルを六角型とすることに より、 粉体を重力により定期的に落下させることができる。 このため、 攪拌 効率を飛躍的に向上させることができ、 粉体を极う時にしばしば問題となる 水分や静電気力による粉体の凝集を防ぐことができる。 つまり回転により攪 拌と、 凝集した粉体の粉砕を同時かつ効果的に行う'ことができる。 また六角 型バレル 1 b壁面に微粒子が付着しにく くなる。 従って、 粒径の非常に小さ い微粒子に、 化粧品用材料又は塗料用材料からなり該微粒子より粒径が更に 小さい超微粒子又は薄膜を被覆することが可能となる。 具体的には、 粒径が According to the above-mentioned polygonal parel sputtering apparatus, the hexagonal barrel itself can be rotated to rotate and stir the powder itself, and the barrel can be made to be hexagonal so that the powder can be periodically dropped by gravity. Can do. For this reason, the stirring efficiency can be remarkably improved, and agglomeration of the powder due to moisture or electrostatic force, which is often a problem when the powder is formed, can be prevented. In other words, the stirring and the pulverization of the agglomerated powder can be performed simultaneously and effectively by rotation. Also, it is difficult for fine particles to adhere to the wall surface of the hexagonal barrel 1b. Accordingly, it is possible to coat ultrafine particles or a thin film made of a cosmetic material or a coating material and having a particle size much smaller than that of the fine particles having a very small particle size. Specifically, the particle size is
5 n m以上の微粒子に、 化粧品用材料又は塗料用材料からなる超微粒子又は 薄膜を被覆することが可能となる。 ここで、 薄膜及び超微粒子に含まれる不 純物は従来方法で調製されたものと比べて極めて少ないか、またはない。尚、 超微粒子は、 連続的に微粒子の表面に付着する場合もあるし、 単体又は集合 体として不連続に微粒子の表面に付着する場合もある。 It becomes possible to coat ultrafine particles or thin films made of cosmetic materials or paint materials on fine particles of 5 nm or more. Here, the impurities contained in the thin film and the ultrafine particles are very little or not as compared with those prepared by the conventional method. The ultra fine particles may adhere to the surface of the fine particles continuously, or may adhere to the surface of the fine particles discontinuously as a single body or an aggregate.
尚、 本発明は上述した実施形態に限定されるものではなく、 本発明の主旨 を逸脱しない範囲内で種々変更して実施することが可能である。 The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
例えば上記実施の形態では、 バイブレータ 1 8により六角型バレル内の微 粒子 3に振動を加えているが、 バイブレータ 1 8の代わりに、 又は、 バイブ レータ 1 8に加えて、 六角型バレル内に棒状部材を収容した状態で該六角型 バレルを回転させることにより、微粒子 3に振動を加えることも可能である。 これにより、 粉体を扱う時に問題となる凝集をより効果的に防ぐことが可能
となる。 For example, in the embodiment described above, vibration is applied to the fine particles 3 in the hexagonal barrel by the vibrator 18, but instead of the vibrator 18 or in addition to the vibrator 18, a rod-like shape is formed in the hexagonal barrel. It is also possible to apply vibration to the fine particles 3 by rotating the hexagonal barrel while the member is accommodated. This makes it possible to more effectively prevent agglomeration, which is a problem when handling powder. It becomes.
次に、 本発明の実施の形態による被覆微粒子について説明する。 この被覆 微粒子は、 図 1に示す多角バレルスパッタリング装置を用いて製造されるこ とが好ましいが、 多角バレルスパッタリング装置を用いることに限定される ものではない。 Next, the coated fine particles according to the embodiment of the present invention will be described. The coated fine particles are preferably manufactured using the polygonal barrel sputtering apparatus shown in FIG. 1, but are not limited to using the polygonal barrel sputtering apparatus.
本実施の形態による被覆微粒子は、 図 1に示す多角バレルスパックリング 装置を用いてスパッタリングを行うことで、 微粒子 (粉体) の表面に該微粒 子より粒径の小さい超微粒子又は薄膜が被覆されたものであり、 前記超微粒 子又は前記薄膜は化粧品用材料又は塗料用材料からなるものである。 尚、 図 2に示すようなフレーク形状の微粒子 23を用いることも可能である。 The coated fine particles according to the present embodiment are sputtered using the polygonal barrel sprack apparatus shown in FIG. 1, so that the surface of the fine particles (powder) is coated with ultrafine particles or a thin film having a smaller particle size than the fine particles. The ultrafine particles or the thin film is made of a cosmetic material or a paint material. It is also possible to use flake-shaped fine particles 23 as shown in FIG.
以下、 化粧品に使用される被覆微粒子の具体例について説明する。 Hereinafter, specific examples of coated fine particles used in cosmetics will be described.
図 2に示すフレーク形状の微粒子 (粉体) 23を図 1に示す多角バレルス パッタリング装置の真空容器に収容し、 多角バレルスパッタリング法により 該微粒子 23に、 金属、 酸化物、 窒化物及び炭化物からなる群から選ばれた 一つ、 又は前記群から選ばれた二つ以上の複合体からなる薄膜又は超微粒子 を被覆する。 尚、 ここではフレーク形状の微粒子 23を用いているが、 球形 等の他の形状の微粒子を用いることも可能である。前記金属は、 P t、 Au、 The flake-shaped fine particles (powder) 23 shown in FIG. 2 are accommodated in the vacuum container of the polygonal barrel sputtering apparatus shown in FIG. 1, and the fine particles 23 are made of metal, oxide, nitride, and carbide by a polygonal barrel sputtering method. A thin film or ultrafine particles composed of one selected from the group consisting of or two or more composites selected from the group described above are coated. Although the flake shaped fine particles 23 are used here, fine particles having other shapes such as a spherical shape may be used. The metal is Pt, Au,
Ag、 Cu、 A l、 S i、 T i、 Mn、 F e、 C o、 N i、 Z n、 I n、 S n、 W、 O s及び I r力 らなる金属群から選ばれた少なく とも一つであり、 前記酸化物は前記金属群から選ばれた少なく とも一つの金属酸化物であり、 前記窒化物は前記金属群から選ばれた少なく とも一つの金属窒化物であり、 前記炭化物は前記金属群から選ばれた少なく とも一つの金属炭化物である。 化粧品用材料としては、人体や皮膚に対して安全かつ適応性の高い物質で、 更に光、 熱、 水分等に対して化学的に安定な物質が望ましい。 具体的には、 化粧品用材料として用いる場合、 前記金属は、 P t、 Au、 T i、 N i、 S i、 A l、 F e、 Ag、 C u及び Wからなる金属群から選ばれた少なく とも 一つであり、 前記酸化物は S i〇2、 T i〇2、 N i O、 Z n〇2、 A 1 203、Ag, Cu, Al, Si, Ti, Mn, Fe, Co, Ni, Zn, In, Sn, W, Os, and Ir selected from a metal group consisting of Ir force The oxide is at least one metal oxide selected from the metal group, the nitride is at least one metal nitride selected from the metal group, and the carbide. Is at least one metal carbide selected from the group of metals. As cosmetic materials, it is desirable to use materials that are safe and highly adaptable to the human body and skin, and that are chemically stable to light, heat, moisture, etc. Specifically, when used as a cosmetic material, the metal is selected from the metal group consisting of Pt, Au, Ti, Ni, Si, Al, Fe, Ag, Cu, and W. at least is one, the oxide S I_〇 2, T I_〇 2, N i O, Z N_〇 2, a 1 2 0 3,
Mg 0、 F e 203、 A g 20及び W03からなる群から選ばれた少なく とも一
つの酸化物であることが好ましい。 但し、 人体や皮膚に対して全く無害とは 言えない物質、 今まで化粧品としては使われておらず、 安全性のテストが行 われていない物質であっても、 被覆微粒子を調製した後に該被覆微粒子を人 体や皮膚に適合した無機物や高分子等でさらに被覆すれば使用可能であると 考えられる。 At least one selected from the group consisting of Mg 0, Fe 2 0 3 , Ag 2 0 and W 0 3 One oxide is preferred. However, substances that are not harmless to the human body and skin, or substances that have not been used as cosmetics until now and have not been tested for safety, can be used after the coated fine particles have been prepared. It can be used if the fine particles are further coated with an inorganic material or polymer suitable for the human body or skin.
このようにして、 パール顔料、 高輝度反射材料、 紫外線を反射,散乱する ことにより紫外線防護効果を持つ材料などとして使用される被覆微粒子を作 製することができる。 従って、 パール光沢を放つ新しいメイクアップ化粧品 を実現することができる。 また、 紫外線カッ ト率がほぼ 1 00%である紫外 線防護化粧品を実現することができる。 尚、 高輝度反射材料に適する前記金 属は、 P t、 Au、 T i、 N i、 S i、 A l、 F e、 Ag、 C u及び Wから なる金属群から選ばれた少なく とも一つであり、 前記酸化物は S i 02、 T i〇2、 N i O、 Z n〇2、 A 1 203、 Mg〇、 F e 203、 A g 20及び WO 3からなる群から選ばれた少なく とも一つの酸化物である。 また、 紫外線防 護効果を持つ材料に適する前記金属は、 P t、 Au、 T i、 N i、 S i、 A 1、 F e、 Ag、 C u及び Wからなる金属群から選ばれた少なく とも一つで あり、 前記酸化物は S i〇2、 T i〇2、 N i O、 Z n〇2、 A 1 203、 Mg 〇、 F e 203、 A g 20及び WO 3からなる群から選ばれた少なくとも一つの 酸化物である。 In this way, coated fine particles that can be used as pearl pigments, high-brightness reflective materials, and materials that have an ultraviolet protection effect by reflecting and scattering ultraviolet rays can be produced. Therefore, it is possible to realize a new makeup cosmetic that emits pearly luster. Moreover, it is possible to realize an ultraviolet ray protection cosmetic product having an ultraviolet ray cut rate of approximately 100%. The metal suitable for the high-intensity reflective material is at least one selected from the metal group consisting of Pt, Au, Ti, Ni, Si, A1, Fe, Ag, Cu, and W. One, and the said oxide is S i 0 2, T I_〇 2, N i O, Z N_〇 2, A 1 2 0 3, Mg_〇 from F e 2 0 3, A g 2 0 and WO 3 And at least one oxide selected from the group consisting of In addition, the metal suitable for the material having an ultraviolet protection effect is at least selected from the metal group consisting of Pt, Au, Ti, Ni, Si, A1, Fe, Ag, Cu, and W. is one with, the oxide S I_〇 2, T I_〇 2, N i O, Z N_〇 2, a 1 2 0 3, Mg 〇, F e 2 0 3, a g 2 0 and WO And at least one oxide selected from the group consisting of 3 .
また、 蛍光材料又はリン光材料として使用される被覆微粒子を作製するこ ともできる。 この場合、 被覆する超微粒子又は薄膜は、 希土類イオンを含有 する希土類金属、 又は希土類金属の酸化物、 及びフォトクロミック性を有す る金属の酸化物 (例えば酸化タングステン) からなる群から選ばれた少なく とも一つからなるものを用いることが好ましい。 尚、 フォトクロミック材料 は光により色が変わる材料である。 Further, coated fine particles used as a fluorescent material or a phosphorescent material can also be produced. In this case, the ultrafine particles or thin film to be coated is at least selected from the group consisting of rare earth metals containing rare earth ions, oxides of rare earth metals, and oxides of metals having photochromic properties (for example, tungsten oxide). It is preferable to use one consisting of both. A photochromic material is a material that changes color with light.
また、 被覆対象となる微粒子としては、 特に制限はなく (例えば金属、 酸 化物、 窒化物、 炭化物、 炭素材料、 高分子)、 化粧品として使えるものを用い ても良い。
パール顔料は、 天然の雲母等のフレーク状微粒子に二酸化チタンや酸化鉄 を被覆した光沢顔料であり、 被覆微粒子のサイズゃニ酸化チタンの膜厚によ り、 干渉効果でいろいろな光沢感のある外観が得られる。 パール顔料は、 現 在多くの商品に使用されている。 パール顔料には、 化粧品に使用するパール 顔料の他に、 耐候性を必要とするエクステリア用パール顔料と、 一般工業用 のパール顔料がある。 Further, the fine particles to be coated are not particularly limited (for example, metals, oxides, nitrides, carbides, carbon materials, polymers), and those usable as cosmetics may be used. Pearl pigments are glossy pigments in which flake-like fine particles such as natural mica are coated with titanium dioxide or iron oxide. Depending on the size of the coated fine particles, the thickness of the titanium dioxide has various glossiness due to interference effects. Appearance is obtained. Pearl pigments are currently used in many products. In addition to pearl pigments used in cosmetics, pearl pigments include exterior pearl pigments that require weather resistance and general industrial pearl pigments.
粉体はその表面状態によって特性が決定するといつても過言ではない。 多 角バレルスパッタリング法を利用することで、 新規化粧品を開発することが できる。 また、 微粒子の表面修.飾による化粧品の使用感を改善することがで きる。 また、 微粒子の比重の変化による分散性を向上させることができる。 これらの利点を利用することで、 更なる新規化粧品を調製することが期待で さる。 It is no exaggeration to say that the characteristics of powder are determined by its surface condition. New cosmetics can be developed by using the multi-angle barrel sputtering method. In addition, it is possible to improve the feeling of use of cosmetics by modifying the surface of the fine particles. In addition, dispersibility due to changes in the specific gravity of the fine particles can be improved. By taking advantage of these advantages, it is expected to prepare further new cosmetics.
また、 被覆微粒子においては、 微粒子の表面に超微粒子又は薄膜を被覆す ることにより色を持たせる (発色させる) ことも可能である。 これにより、 多彩な色調をコントロールした被覆微粒子を実現することができ、 例えば新 規の化粧品のファンデーションを作製することも可能である。 In addition, the coated fine particles can be colored (colored) by coating the surface of the fine particles with ultrafine particles or a thin film. As a result, coated fine particles with various color tones can be realized. For example, a new cosmetic foundation can be produced.
ファンデーションの母体となる微粒子 (S i〇2、 高分子ビーズ、 雲母等) の表面に前述した金属 (例えば A u、 T i ) は酸化物 (例えば T i 0 2 ) を 薄膜として修飾し、 その膜厚をコントロールすることで、 干渉作用を利用し て多彩な色を有する粉体を調製できる。 化粧品のファンデーションは、 赤、 黄、 白、 黒の微粒子の混合により作られる。 例えば肌色のファンデーション も赤、 黄、 白、 黒の色を有する粉体を適当な割合で混合して肌色を作り出し ているが、 赤や黄色の色彩を有する粉体は極めて少ない。 一般に、 赤色は F e 2〇3、 黄色は顔料を使っているが、 多彩な色調をコントロールするには他 の材料で用途により使い分けられる種々の赤色や黄色の無機微粒子を作るこ とが要求される。 また、 微妙な色彩をコントロールすることも難しい。 上記 本発明に係る被覆微粒子を用いることにより、 多彩な色調をコントロールし た被覆微粒子を実現することが可能である。
また、 T i 02、 Z n〇2をファンデーションの母体となる微粒子 (S i O 2、 高分子ビーズ、 雲母等) の表面に超微粒子又は薄膜として担持すること で、 UV散乱パウダーファンデーションを調製することができる。 また、 他 の酸化物を母体微粒子の表面に超微粒子として均一分散させることで、 肌の 色むらを隠す作用を奏する光散乱パウダーファンデーションを調製すること ができる。 Fine particles comprising as a base foundation (S I_〇 2, polymer beads, mica, etc.) a metal (e.g. A u, T i) as described above to the surface of the oxide (e.g., T i 0 2) was modified as a thin film, its By controlling the film thickness, powders with various colors can be prepared using the interference action. Cosmetic foundations are made by mixing fine particles of red, yellow, white and black. For example, skin color foundations are made by mixing powders with red, yellow, white and black colors at an appropriate ratio to produce skin color, but there are very few powders with red and yellow colors. In general, red F e 2 〇 3, yellow is using a pigment, to control the various color tones and the this make various red and yellow inorganic fine particle to be selectively used depending on the use of other materials is required The It is also difficult to control subtle colors. By using the coated fine particles according to the present invention, coated fine particles having various color tones can be realized. Further, T i 0 2, Z N_〇 2 a base foundation particles (S i O 2, polymer beads, mica, etc.) By carrying as ultra-fine particles or thin film on the surface of the UV scattering powder foundation prepared can do. In addition, a light scattering powder foundation capable of hiding skin color unevenness can be prepared by uniformly dispersing other oxides as ultrafine particles on the surface of the base fine particles.
また、 微粒子の表面に化粧品用材料からなる超微粒子又は薄膜を担持し、 更に、 異種物質による多層膜や同一物質でも中間に高分子等を挟むことで多 重反射を利用したパール顔料を調製でき、 高輝度パウダー (ダロス) を実現 することができる。 In addition, ultrafine particles or thin films made of cosmetic materials are supported on the surface of fine particles, and pearl pigments using multiple reflections can be prepared by sandwiching multiple layers of different materials or polymers between the same materials. High-intensity powder (Daros) can be realized.
また、 微粒子の表面に、 例えば W〇3、 T i o2、 又はそれらの複合材料か らなる色調変化材料からなる超微粒子又は薄膜を担持し、 多彩な色彩を有す るフォ トクロミックパウダーを調製することができる。 また、 微粒子の表面 に、 希土類酸化物又は希土類酸化物に各種希土類イオンを添加した超微粒子 又は薄膜を修飾することで、 屋外では太陽光を吸収 (蓄光) し、 室内では蛍 光やりん光として発光する新しいパウダーを調製することができる。 Further, the surface of the microparticle, for example W_〇 3, T io 2, or ultra-fine particles or bearing a thin film consisting of a composite material or Ranaru color change material, the the Photo chromic powder that have a variety of colors prepared can do. Also, by modifying the surface of the fine particles with rare earth oxides or ultrafine particles or thin films in which various rare earth ions are added to rare earth oxides, sunlight is absorbed (phosphorescent) outdoors, and as indoors fluorescent or phosphorescent. New powders that emit light can be prepared.
以下、 塗料に使用される被覆微粒子の具体例について説明する。 Hereinafter, specific examples of the coated fine particles used in the paint will be described.
母体となる微粒子を図 1に示す多角バレルスパッタリング装置の真空容器 に収容し、 多角バレルスパッタリング法により該微粒子に、 金属、 酸化物、 窒化物及び炭化物からなる群から選ばれた一つ、 又は前記群から選ばれた二 つ以上の複合体からなる薄膜又は超微粒子を被覆する。 微粒子が塗料用材料 からなるものであっても良い。 前記金属は、 P t、 Au、 Ag、 C u、 A l、 S i、 T i、 N i、 V、 Mn、 F e、 C o、 Z n、 Z r、 Nb、 Mo、 Ru、 I n、 W、 O s及び I rあるいは希土類からなる金属群から選ばれた少なく とも一つであり、 前記酸化物は前記金属群から選ばれた少なく とも一つの金 属酸化物であり、 前記窒化物は前記金属群から選ばれた少なく とも一つの金 属窒化物であり、 前記炭化物は前記金属群から選ばれた少なく とも一つの金 属炭化物である。 これにより、 高輝度メタリック顔料、 無機蛍光 · リン光材
料、 耐食性又は抗菌性を持つ材料、 紫外線を反射又は吸収することにより紫 外線防護効果を持つ材料などを実現することができる。 尚、 耐食性を持つ材. 料として適する前記金属は、 P t、 A u、 S i、 T i、 Z n、 Z r、 N b及 び Wからなる金属群から選ばれた少なく とも一つであり、 前記酸化物は前記 金属群から選ばれた少なく とも一つの金属酸化物であり、 前記窒化物は前記 金属群から選ばれた少なく とも一つの金属窒化物であり、 前記炭化物は前記 金属群から選ばれた少なく とも一つの金属炭化物である。 The base fine particles are accommodated in a vacuum container of a polygonal barrel sputtering apparatus shown in FIG. 1, and the fine particles are selected from the group consisting of metals, oxides, nitrides and carbides by the polygonal barrel sputtering method, or the above-mentioned A thin film or ultrafine particle composed of two or more composites selected from the group is coated. The fine particles may be made of a coating material. The metals are Pt, Au, Ag, Cu, Al, Si, Ti, Ni, V, Mn, Fe, Co, Zn, Zr, Nb, Mo, Ru, In. , W, Os and Ir, or at least one selected from a metal group consisting of rare earths, and the oxide is at least one metal oxide selected from the metal group, and the nitride Is at least one metal nitride selected from the metal group, and the carbide is at least one metal carbide selected from the metal group. As a result, high-intensity metallic pigments, inorganic fluorescent and phosphorescent materials Materials with anti-corrosion or antibacterial properties, and materials with ultraviolet protection effects by reflecting or absorbing ultraviolet rays. The metal suitable as a material is at least one selected from the group consisting of Pt, Au, Si, Ti, Zn, Zr, Nb and W. The oxide is at least one metal oxide selected from the metal group, the nitride is at least one metal nitride selected from the metal group, and the carbide is the metal group. Is at least one metal carbide selected from
但し、前記金属には環境面から有害な物質 (最近では、 S n、 P d、 H g、 A s、 放射性物質等、 更にはその化合物 (酸化物等)) は除く。 However, substances that are harmful to the environment (excluding Sn, Pd, Hg, As, radioactive substances, etc., and their compounds (oxides, etc.)) are excluded from the above metals.
粉体塗料の母体となる微粒子 (S i〇2、 A 1 2 0 3、 雲母等) の表面に上 記金属 (例えば、 A u、 T i ) や酸化物 (例えば T i〇2 ) を薄膜として修 飾し、 その膜厚をコントロールすることで、 多彩な色を有する粉体を調製で きる。 尚、 有機顔料は多彩な発色が可能であるが、 耐熱性、 耐光性 (耐紫外 線性)、 耐久性 (長年にわたる酸化) に劣るので、 多彩な色を有する無機顔料 を調製する必要がある。 Fine particles comprising a mother powder coating (S I_〇 2, A 1 2 0 3, mica) above Symbol metal surface (e.g., A u, T i) or oxide (e.g., T I_〇 2) thin film By controlling the film thickness, powders with various colors can be prepared. Organic pigments can produce a variety of colors, but they are inferior in heat resistance, light resistance (ultraviolet ray resistance), and durability (oxidation over many years), so it is necessary to prepare inorganic pigments with various colors.
上記物質 (特に金属) を母体微粒子表面に薄膜として担持する。 現在、 メ タリ ック顔料には繊細な金属光沢が求められているが、 なかなか日本人の繊 細な感覚に合うメタリ ック顔料は少ない。 更に、 異種物質による多層膜を修 飾することで多重反射を利用したパール顔料も調製でき、 高輝度反射粉体を 実現することが可能である。 The above substance (especially metal) is supported as a thin film on the surface of the base fine particles. At present, metallic pigments are required to have a delicate metallic luster, but there are few metallic pigments that match the delicate sensations of Japanese people. Furthermore, pearl pigments using multiple reflections can be prepared by modifying a multilayer film made of different materials, and a high-intensity reflective powder can be realized.
上記塗料に使用される被覆微粒子によれば、 被覆した超微粒子又は薄膜の 持つ耐食性や抗菌性等の特性を付与した塗料用材料を作製することも可能で ある。 また、 蛍光材料又は高輝度メタリック材料を利用することにより夜間 用高輝度塗料を実現することができる。また、紫外線カツト率がほぼ 1 0 0 % である塗料用材料を実現することができる。 また、 耐食性と紫外線防護効果 を併せ持つた屋外建材に利用する高耐久性塗料といった製品を実現すること ができる。 According to the coated fine particles used in the coating material, it is also possible to produce a coating material imparted with characteristics such as corrosion resistance and antibacterial properties of the coated ultrafine particles or thin film. In addition, a high-intensity paint for nighttime can be realized by using a fluorescent material or a high-intensity metallic material. Also, it is possible to realize a coating material having an ultraviolet cut rate of approximately 100%. In addition, it is possible to realize products such as highly durable paints used for outdoor building materials that have both corrosion resistance and UV protection effects.
また、 微粒子の表面に超微粒子又は薄膜を被覆することにより色を持たせ
る (発色させる) ことができる。 これにより、 多彩な色調をコントロールし た被覆微粒子を実現することができる。 Also, the surface of the fine particles can be colored by coating them with ultra fine particles or a thin film. (Color development). As a result, coated fine particles with various color tones can be realized.
また、 上記実施の形態による被覆微粒子によれば、 平均粒径が 5 0 μ Π1以 下の微粒子に化粧品用材料又は塗料用材料からなる薄膜又は超微粒子をほぼ 均一に被覆 (修飾) することが可能となる。 ただし、 5 0 Ai m以上の粉体が 化粧品や塗料の材料として用いられる場合でももちろん表面修飾は可能であ る。 つまり、 母体微粒子の粒径に制約はほとんどない。 このため、 化粧品用 材料を被覆した被覆微粒子において色彩、 発色、 光沢、 発光 (蛍光)、 蓄光、 高輝度、 光反射及び紫外線防護のうち少なく とも一つを向上させることがで きる。また、色彩や発色等を変化させた塗料用材料を作製することもできる。 また、 多角バレルスパッタリング装置を用いることにより、 不純物の混入 がほとんど無い被覆微粒子を調製することができる。 In addition, according to the coated fine particles according to the above embodiment, thin films or ultrafine particles made of cosmetic materials or paint materials can be coated (modified) almost uniformly on fine particles having an average particle size of 50 μΠ1 or less. It becomes possible. However, even when powder of 50 Aim or more is used as a cosmetic or paint material, surface modification is possible. In other words, there are almost no restrictions on the particle size of the base fine particles. For this reason, at least one of color, color development, gloss, luminescence (fluorescence), phosphorescence, high brightness, light reflection, and UV protection can be improved in coated fine particles coated with cosmetic materials. It is also possible to produce a coating material in which the color or color development is changed. Also, by using a polygon barrel sputtering apparatus, coated fine particles with almost no impurities can be prepared.
次に、 バレルスパッタリング方法を用いて微粒子に T i o 2からなる超微 粒子又は薄膜を被覆した被覆微粒子についての分析結果を説明する。 Next, the analysis results of the coated fine particles obtained by coating the fine particles of Tio 2 on the fine particles using the barrel sputtering method will be described.
T i〇2は、 アナターゼ型結晶の光触媒性を利用した水の光分解反応、 環 境汚染物質の分解除去、 また、 ルチル型結晶の光物性を利用したメタリ ック 塗装顔料や U V散乱吸収剤として工業的に使用されている。 しかしながら、 光触媒においては更なる触媒効率の向上を目指して高表面積化が模索され、 また海洋汚染物質の光分解可能な低比重光触媒の開発も検討されている。 一 方、 光物性材料においても、 新規な機能あるいは高機能を付加した新材料の 開発が望まれている。 そこで任意の微粒子担体表面に、 T i 〇2を修飾する ことにより、このような要求に答えようと考え、その基礎的な研究を行った。 まず、 実験方法を説明する。 被覆微粒子の作製には図 1に示した多角バレ ルスパッタリング装置を用いた。 バレル中央ターゲッ ト 2には T iターゲッ トを用い、 この T iターゲッ トの下に試料をおき、 真空容器 1内を真空排気 する。 その後、 アルゴンに酸素を任意の組成比で混合し、 反応性スパッタリ ングを行った。 基板に S i 0 2ガラス板又は石英板を用いた場合はバレルを 固定し、また S i 0 2ガラス粉末(粒径が 7 4〜1 4 9 i m)又は A 1 2〇3粉
末 (1 2 0mesh) を用いた場合はバレルを回転させてスパッタリングを行つ た。 どちらの場合も条件は、 R F出力が 2 0 0Wで行った。 作製試料は、 「X 線回折装置」 で結晶構造、 結晶化度、 「走査電子顕微鏡」 で表面観察、 「エネ ルギー分散型分光器」 で元素分布、 「光学顕微鏡」 で色調、 及び 「紫外可視分 光光度計」 で化学組成を評価した。 T I_〇 2, anatase photolysis reaction of water utilizing the photocatalytic decomposition removal of environmental pollutants, also methallyl click paint pigments and UV scattering agents which make use of photophysical qualities of rutile crystals As industrially used. However, with regard to photocatalysts, efforts have been made to increase the surface area with the aim of further improving the catalyst efficiency, and development of low specific gravity photocatalysts capable of photodegrading marine pollutants is also being studied. On the other hand, development of new materials with new functions or high functions is also desired for optical materials. Therefore any particulate support surface, by modifying T i 〇 2, believed to answer such a request, made the basic research. First, the experimental method will be explained. The polygonal barrel sputtering device shown in Fig. 1 was used for the production of coated fine particles. Use a Ti target for the barrel center target 2, place a sample under this Ti target, and evacuate the vacuum vessel 1. Thereafter, oxygen was mixed with argon at an arbitrary composition ratio, and reactive sputtering was performed. When using S i 0 2 glass plate or quartz plate for the substrate, fix the barrel, and also use S i 0 2 glass powder (particle size 7 4 to 14 9 im) or A 1 2 0 3 powder. When using the powder (1 2 0mesh), sputtering was performed by rotating the barrel. In both cases, the condition was that the RF output was 200 W. Samples were prepared using an X-ray diffractometer with a crystal structure, crystallinity, surface observation with a scanning electron microscope, element distribution with an energy dispersive spectrometer, color tone with an optical microscope, and UV-visible. The chemical composition was evaluated with a spectrophotometer.
(ガス圧変化) (Gas pressure change)
まず基板にシリカガラス板を用いて全圧 (A r +02ガス) の違いによる 結晶構造の変化について検討した。ここでの酸素分圧は 5 0%とした。図 3は、 シリカガラス基板の X線回折 (XRD) パターンを示す図である。 このパタ ーンでは 2 0 = 2 3° 付近のブロードなピーク以外、 他のピークはほとんど 認められなかった。 一方、 図 3には、 全圧 1 P aの条件で調製した試料のパ ターンも示している力 S、 2 0 = 2 7. 3° 、 5 4. 1° にルチル型結晶( 1 1 0) ピークと (2 1 1 ) ピークがそれぞれ強度 2 0 8cps、 4 3 cps で観測され、 2 0 = 2 5. 3° にはアナターゼ型結晶 (1 0 1 ) ピークが強度 4 5 cps で 観測された。図 3の下側は 2 0 = 2 0〜3 5° の範囲で高感度測定を行ったも のである。 この図でもアナターゼのピークが確認されている。次に、全圧 3 P aの試料ではルチル型結晶 (1 1 0) ピークと (2 1 1 ) ピークのみが強度 1 2 5 cps, 3 0 cpsで確認された。 図 3の下側でもルチル型のピークのみが 確認された。 よって全圧の違いにより結晶型が変化するということがわかつ た。 酸素分圧変化よる検討も同様に行ったが、 酸素分圧変化では結晶型に影 響を与えず、 結晶化度のみが変化することが分かった。 First, a silica glass plate was used as the substrate, and changes in the crystal structure due to differences in total pressure (A r +0 2 gas) were examined. The oxygen partial pressure here was 50%. FIG. 3 is a diagram showing an X-ray diffraction (XRD) pattern of a silica glass substrate. In this pattern, there were almost no other peaks except for a broad peak around 20 ° = 23 °. On the other hand, Fig. 3 shows the force S, 2 0 = 27.3 °, 54.1 ° indicating the pattern of the sample prepared under the condition of 1 Pa of total pressure. ) And (2 1 1) peaks were observed at intensities of 20 8 cps and 4 3 cps, respectively, and anatase crystal (1 0 1) peaks were observed at 2 0 = 2 5.3 cps at an intensity of 45 cps. It was. The lower side of Fig. 3 shows high-sensitivity measurements in the range of 20 = 20 to 35 °. Also in this figure, anatase peaks are confirmed. Next, in the sample with a total pressure of 3 Pa, only the rutile crystal (1 1 0) peak and (2 1 1) peak were confirmed at intensities of 1 2 5 cps and 30 cps. Only the rutile peak was observed at the bottom of Fig. 3. Thus, it was found that the crystal form changes due to the difference in total pressure. The examination by changing the oxygen partial pressure was carried out in the same way, but it was found that the change in the oxygen partial pressure did not affect the crystal form and only the crystallinity changed.
(相関図) (Correlation diagram)
図 4は、 修飾物質の結晶型に対する全圧と酸素分圧の相関図である。 この 図から、 全圧 0. 7 P a以下の条件ではアモルファス領域であり、 全圧 0. 7〜 1. 2 P aの部分ではルチル +アナターゼ型結晶の混晶領域であり、 1. Figure 4 shows the correlation between the total pressure and oxygen partial pressure for the crystalline form of the modifier. From this figure, it is an amorphous region under the condition of a total pressure of 0.7 Pa or less, and a portion of the total pressure of 0.7 to 1.2 Pa is a mixed crystal region of rutile + anatase type crystal.
2 P a以上の部分ではルチル型結晶領域であることがわかった。 ここでルチ ル型結晶に注目すると結晶化度が最も高かった条件は、 全圧 1. l P a、 酸 素分圧 3 0 %であった。 次に、 このガス条件で T i〇2の微粒子表面修飾を
試みた。 It was found that the portion above 2 Pa was a rutile crystal region. Here, focusing on the rutile crystals, the conditions under which the crystallinity was highest were the total pressure 1. l Pa and the oxygen partial pressure 30%. Then, the fine particle surface modification of T I_〇 2 in the gas condition Tried.
(色調) (Color tone)
図 5 (A) は、 修飾前の粉末試料を示す写真であり、 図 5 (B) は、 修飾 後の粉末試料を示す写真である。 図 6 (A) は、 修飾前の粉末試料を光学顕 微鏡で撮影した写真であり、 図 6 (B) は、 修飾後の粉末試料を光学顕微鏡 で撮影した写真である。 Fig. 5 (A) is a photograph showing a powder sample before modification, and Fig. 5 (B) is a photograph showing a powder sample after modification. Fig. 6 (A) is a photograph of the powder sample before modification taken with an optical microscope, and Fig. 6 (B) is a photograph of the powder sample after modification taken with an optical microscope.
まず、 調製した粉末試料の色を観ると、 図 5に示すように、 未修飾アルミ ナは白色であるのに対し、 修飾後試料は薄い黄色を呈していた。 また、 光学 顕微鏡で 1つの粒子を観察しても、 図 6に示すように、 同様に修飾後試料は 薄い黄色を呈していた。 First, looking at the color of the prepared powder sample, as shown in Fig. 5, the unmodified alumina was white, while the modified sample was light yellow. In addition, even when one particle was observed with an optical microscope, the modified sample showed a light yellow color as shown in FIG.
(S EM - ED S) (S EM-ED S)
図 7は、 未修飾アルミナと修飾アルミナを S EM及び ED Sを用いて、 試 料の表面分析を行った結果を示す写真である。 修飾前試料の表面は比較的平 坦であり、 T iの元素は認められなかった。 一方、 修飾後試料にも島状構造 等は観られず、 表面は平坦であつたが、 その表面には T i元素が均一分布し ていることが認められた。 この結果より試料表面は均一な膜で被覆されてい ることがわかった。 Figure 7 is a photograph showing the results of a surface analysis of the sample using unmodified alumina and modified alumina using SEM and EDS. The surface of the sample before modification was relatively flat and no Ti element was observed. On the other hand, no island-like structure was observed in the modified sample, and the surface was flat, but it was confirmed that the Ti element was uniformly distributed on the surface. From this result, it was found that the sample surface was covered with a uniform film.
(UVスぺク トル) (UV spectrum)
図 8は、 紫外 ·可視吸収スぺク トルを測定した結果を示すグラフである。 参照符号 3 1は、 今回調製した試料によるものである。 参照符号 32は、 巿 販のルチル型結晶粉末を用いて測定したものである。 参照符号 3 3は、 文献 から引用したアナターゼ型のスぺク トルである。 図 8より調製試料のスぺク トルは 380 nm付近から顕著な吸収の立ち上がりが認められた。 これは物 質のバンドギヤップ間の光電子励起に対応する光吸収であると考えられ、 先 の光学顕微鏡、 SEM、 EDS の結果と併せて考えると被覆膜は T i 02であると 考えられる。 しかし得られたスペク トルは、 ルチル型結晶が主な条件で作製 したにもかかわらず、 アナターゼ型に近いことがわかる。 これを板上に調製 した試料に戻って考察した。 図 9 (A) は、 焼鈍前の粉末試料を XRD測定
した結果を示す図であり、 図 9· ( B ) は、 焼鈍後の粉末試料を X R D測定し た結果を示す図である。 ここでは、 混晶試料を用いたが、 この試料をァモル ファスからアナターゼに転移する条件、 6 0 0 °C、 1時間で焼鈍すると、 ァ ナクーゼのピーク強度が大幅に増加することがわかった。 このことは調製膜 にはアモルファスの T i 0 2が含まれていることを示している。 つまり、 被 覆膜は巨視的に観れば、 XRD で認められるルチル型やアナターゼ型結晶の他 に、 観測できないアモルファスの部分があり、 そのアモルファスも微視的に 観ればアナターゼ型構造であると考えれば、 説明できる。
Fig. 8 is a graph showing the results of measurement of the ultraviolet / visible absorption spectrum. Reference numeral 31 is based on the sample prepared this time. Reference numeral 32 is measured using a commercially available rutile crystal powder. Reference numeral 33 is an anatase-type spectrum quoted from the literature. From Fig. 8, the spectrum of the prepared sample showed a significant rise in absorption from around 380 nm. This is considered to be light absorption corresponding to photoelectron excitation between the bandgap of the material, and the coating film is considered to be T i 0 2 in combination with the results of the previous optical microscope, SEM, and EDS. . However, it can be seen that the obtained spectrum is close to the anatase type, even though the rutile type crystal was produced under the main conditions. This was considered by going back to the sample prepared on the plate. Fig. 9 (A) shows XRD measurement of powder sample before annealing. FIG. 9 (B) is a diagram showing the result of XRD measurement of the powder sample after annealing. Here, a mixed crystal sample was used, but it was found that if the sample was annealed at 60 ° C for 1 hour under the conditions for transferring from amorphous to anatase, the peak intensity of the anacousse increased significantly. This indicates that it contains T i 0 2 of amorphous preparation membrane. In other words, when the cover film is viewed macroscopically, in addition to the rutile and anatase type crystals observed in XRD, there are amorphous parts that cannot be observed. I can explain.