JP5185522B2 - Pearl luster pigment, method for producing the same, coating composition and coating composition - Google Patents

Pearl luster pigment, method for producing the same, coating composition and coating composition Download PDF

Info

Publication number
JP5185522B2
JP5185522B2 JP2006269169A JP2006269169A JP5185522B2 JP 5185522 B2 JP5185522 B2 JP 5185522B2 JP 2006269169 A JP2006269169 A JP 2006269169A JP 2006269169 A JP2006269169 A JP 2006269169A JP 5185522 B2 JP5185522 B2 JP 5185522B2
Authority
JP
Japan
Prior art keywords
treatment
coating
coating composition
substrate
pearlescent pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006269169A
Other languages
Japanese (ja)
Other versions
JP2007126643A (en
Inventor
隆士 安部
悟 松崎
尚徳 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2006269169A priority Critical patent/JP5185522B2/en
Publication of JP2007126643A publication Critical patent/JP2007126643A/en
Application granted granted Critical
Publication of JP5185522B2 publication Critical patent/JP5185522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特定の薄片状基質(以下単に「基質」と云う場合がある)表面を金属酸化物により被覆してなる真珠光沢顔料、製造方法およびその使用に関する。   The present invention relates to a pearlescent pigment obtained by coating the surface of a specific flaky substrate (hereinafter sometimes simply referred to as “substrate”) with a metal oxide, a production method thereof, and use thereof.

真珠光沢顔料としては、雲母フレークなどの基質表面を、二酸化チタンなどの屈折率の大きな金属酸化物により被覆してなるものが知られている。近年では基質として雲母フレークの欠点である平滑性、耐熱性、透明性を改良した薄片状アルミナフレークを基質として用いた真珠光沢顔料(特許文献1)が提案されている。しかしながら、上記特許文献に記載の方法において、基質として水熱法で生成した板状アルミナを使用すると、該アルミナに対する金属酸化物粒子の付着性が著しく劣り、金属酸化物が凝集して大きな凝集粒子となり、満足する光輝性を有する顔料が得られない。また、板状アルミナに金属酸化物粒子が付着したとしても、基質を被覆している金属酸化物の粒子が大きく、全体的に粒子感のない均一な光輝性や、滑らかで上品な光輝性であるシルキーな真珠光沢が得られ難く、各種用途で求められる意匠性を十分に満たすことができなかった。
特開平9−255891号公報
As pearlescent pigments, those obtained by coating the surface of a substrate such as mica flakes with a metal oxide having a large refractive index such as titanium dioxide are known. In recent years, a pearlescent pigment (Patent Document 1) has been proposed in which flaky alumina flakes with improved smoothness, heat resistance and transparency, which are disadvantages of mica flakes, are used as a substrate. However, when plate-like alumina produced by a hydrothermal method is used as the substrate in the method described in the above-mentioned patent document, the adhesion of the metal oxide particles to the alumina is remarkably inferior, and the metal oxide is agglomerated to form large agglomerated particles. Thus, a pigment having satisfactory glitter is not obtained. In addition, even if metal oxide particles adhere to the plate-like alumina, the metal oxide particles covering the substrate are large, resulting in uniform glitter with no overall particle feeling and smooth and elegant glitter. It was difficult to obtain a certain silky pearl luster, and the design required for various applications could not be sufficiently satisfied.
JP-A-9-255891

上述のように従来の真珠光沢顔料は、通常の基質を用いて金属酸化物による被覆を行うと、平均粒子径が大きく反射面積が広い大きな基質粒子によって、不連続な強い光輝性はあるものの、全体として真珠光沢が不均一で滑らかさに欠けている。これに対し、平均粒子径の小さな基質を用いると上記の粒子感は減少するが、滑らかで上品な光輝性シルキー感を有する真珠光沢は引き出せなかった。
従って本発明の目的は、上記従来技術の状況に鑑み、全体的に均一な光輝性で上品なシルキー感を併せ持ち、求められる意匠性を十分に満たす真珠光沢を有する真珠光沢顔料を提供することである。
As described above, when the conventional pearlescent pigment is coated with a metal oxide using a normal substrate, although the average particle diameter is large and the large substrate particles have a wide reflective area, there is discontinuous strong glitter, Overall, the pearl luster is uneven and lacks smoothness. On the other hand, when a substrate having a small average particle diameter was used, the above-mentioned particle feeling decreased, but a pearly luster having a smooth and elegant glittering silky feeling could not be extracted.
Accordingly, an object of the present invention is to provide a pearlescent pigment having a pearly luster that has a uniform silkiness and an elegant silky feeling as well as sufficiently satisfying the required design properties in view of the above-described state of the prior art. is there.

また、本発明の別の目的は、単独塗装方法、2コート1ベーク塗装方法、3コート2ベーク塗装方法、さらには積層した少なくとも1種の任意のコート層間またはコート層上に、少なくとも1層の真珠光沢コート層を形成する塗装方法において、特徴のある光輝性を有する塗膜を形成することができる塗料組成物を提供することである。   Another object of the present invention is to provide a single coating method, a two-coat one-bake coating method, a three-coat two-bake coating method, or at least one layer of at least one arbitrary layer between coats or coat layers laminated. An object of the present invention is to provide a coating composition capable of forming a coating film having characteristic luster in a coating method for forming a nacreous coat layer.

上記目的は以下の本発明によって達成される。
すなわち、本発明は、真珠光沢顔料と被膜形成性樹脂とを含有してなる塗料組成物であって、真珠光沢顔料が、水熱法で生成した表面が活性化された平均粒子径が0.1〜50μmである薄片状基質と、その表面に形成された少なくとも1種の金属酸化物からなる被覆層とからなり、金属酸化物の粒子径が1〜500nmの範囲にあり、かつ、塗装して形成した塗膜について、変角光度計で測定した仰角0°以上での45°受光強度と0°受光強度の比(45°/0°)が100以下であることを特徴とする真珠光沢顔料を含有してなる塗料組成物を提供する。
The above object is achieved by the present invention described below.
That is, the present invention is a coating composition comprising a pearlescent pigment and a film-forming resin, wherein the pearlescent pigment has an average particle size of 0. a flaky substrate is 1 to 50 [mu] m, consists of a coating layer comprising at least one metal oxide formed on its surface, the particle diameter of the metal oxide Ri range near the 1 to 500 nm, and, for coating film formed by coating, the ratio of the 45 ° light intensity and 0 ° received light intensity in the elevation angle 0 ° or more as measured by goniophotometer (45 ° / 0 °) and the said der Rukoto 100 or less A coating composition comprising a pearlescent pigment is provided.

上記本発明の塗料組成物を構成する真珠光沢顔料においては、金属酸化物被覆層が2種類以上の金属酸化物の混合層および/または積層であること;基質のアスペクト比(粒子径/厚み)が5〜500であること;基質が平均粒子径の統計的変異係数が20〜90であること;および真珠光沢顔料の平均粒子径の統計的変異係数が20〜90であることが好ましい。 In pearlescent pigment constituting the coating composition of the present invention, it metal oxide coating layer is a mixed layer and / or the lamination of two or more metal oxides; group quality aspect ratio (particle diameter / thickness ) Is 5 to 500; the substrate has a mean particle size statistical variation coefficient of 20 to 90; and the average particle size of the pearlescent pigment is preferably 20 to 90.

また、本発明は、水熱法で生成した基質の表面を予め活性化させ、該表面が活性化された平均粒子径0.1〜50μmの薄片状基質を水中に分散させ、該分散液中で金属塩を加水分解し、生成した金属水酸化物または金属酸化物を上記基質表面に沈着させた後、該沈着物を熱処理して基質表面に粒子径が1〜500nmの範囲の金属酸化物被覆層を形成することを特徴とする真珠光沢顔料の製造方法を提供する。上記表面活性化はプラズマ処理、超音波処理、酸処理、アルカリ処理、衝撃処理および化学エッチング処理から選ばれる少なくとも1種の方法で行うことが好ましい。 Further, the present invention activates the surface of a substrate generated by a hydrothermal method in advance , disperses a flaky substrate having an average particle diameter of 0.1 to 50 μm on which the surface has been activated, Metal salt having a particle diameter in the range of 1 to 500 nm is formed on the substrate surface by hydrolyzing the metal salt in the liquid and depositing the generated metal hydroxide or metal oxide on the substrate surface and then heat-treating the deposit. Provided is a method for producing a pearlescent pigment characterized by forming an oxide coating layer. The surface activation is preferably performed by at least one method selected from plasma treatment, ultrasonic treatment, acid treatment, alkali treatment, impact treatment, and chemical etching treatment.

また、本発明は、前記した真珠光沢顔料と被膜形成性樹脂とを含有することを特徴とする塗料組成物を提供するが、該塗料組成物は、真珠光沢顔料と被膜形成性樹脂とを液媒体中に含有することが好ましい。 Further, the present invention provides a coating composition characterized by containing said pearlescent pigment and film-forming resin, the paint composition, a liquid and a pearlescent pigment and film-forming resin It is preferable to contain in a medium.

また、本発明は、上記本発明の塗料組成物からなるベースコート層と、該ベースコート層上に形成されたクリヤコート層とからなる塗膜組成物を提供する。
上記塗膜組成物においては、光度計における反射光強度の統計的分散値が5以下であること;および変角光度計において、仰角0°以上での45°受光強度と0°受光強度の比(45°/0°)が100以下であることが好ましい。
The present invention also provides a coating composition comprising a base coat layer comprising the coating composition of the present invention and a clear coat layer formed on the base coat layer.
In the coating composition, the statistical dispersion value of the reflected light intensity in the photometer is 5 or less; and in the variable angle photometer, the ratio of the 45 ° received light intensity at an elevation angle of 0 ° or more and the 0 ° received light intensity. (45 ° / 0 °) is preferably 100 or less.

また、本発明は、基体表面上に形成された任意の着色ベースコート層と、該ベースコート層上に形成された前記本発明の塗料組成物からなる第二ベースコート層と、該第二ベースコート層上に形成されたクリヤコート層とからなる塗膜組成物;および基体表面上に形成された少なくとも1種の任意のコート層と、該コート層間または該コート層上に形成された前記本発明の塗料組成物からなる少なくとも1層からなる塗膜組成物を提供する。   The present invention also provides an arbitrary colored base coat layer formed on the substrate surface, a second base coat layer comprising the coating composition of the present invention formed on the base coat layer, and the second base coat layer. A coating composition comprising the formed clear coat layer; and at least one arbitrary coat layer formed on the surface of the substrate; and the coating composition of the present invention formed on the coat layer or on the coat layer A coating composition comprising at least one layer comprising a product is provided.

本発明者らは、前記本発明の目的を達成すべく鋭意研究を行った結果、水熱法で得られた基質の表面を表面活性化した後、粒子径が1〜500nmの範囲の少なくとも1種の金属酸化物により被覆した真珠光沢顔料および該顔料を用いた着色物の色観は、粒子感がなく、滑らかで上品な光輝性のシルキーな色調となる意匠性を持つことを見出した。また、上記真珠光沢顔料を含有する塗料組成物を用いて基体上に前記各種の塗膜を形成すると、該塗膜は良好な意匠性が充分に発揮されることを見出した。   As a result of intensive studies to achieve the object of the present invention, the present inventors have activated the surface of a substrate obtained by a hydrothermal method, and then have at least one particle diameter in the range of 1 to 500 nm. It has been found that the pearl luster pigments coated with various metal oxides and the color appearance of the colored products using the pigments have a design that gives a smooth and elegant glittery silky color tone with no particle feeling. Moreover, when the said various coating films were formed on the base | substrate using the coating composition containing the said pearl luster pigment, this coating film discovered that the favorable design property was fully exhibited.

次に好ましい実施の形態を挙げて本発明をさらに詳しく説明する。
本発明における水熱法とは、高温高圧の溶媒中でアルミナなどの基質の結晶を成長させる方法である。その結晶成長条件は基質を構成している物質の化学構造、使用溶媒、温度、圧力などにより固有であり、基質に要求される平均粒子径やアスペクト比などに応じて任意の基質を合成できる。水熱法により生成した基質の化学的および物理的な性質は、水熱法以外では得ることができない特異的なものである。
Next, the present invention will be described in more detail with reference to preferred embodiments.
The hydrothermal method in the present invention is a method for growing a crystal of a substrate such as alumina in a high-temperature and high-pressure solvent. The crystal growth conditions are specific to the chemical structure of the substance constituting the substrate, the solvent used, the temperature, the pressure, etc., and an arbitrary substrate can be synthesized according to the average particle diameter and aspect ratio required for the substrate. The chemical and physical properties of the substrate produced by the hydrothermal method are specific that can only be obtained by hydrothermal methods.

水熱法で得られる基質としては、アルミナ、ベーマイト、酸化鉄、水酸アパタイト、ジルコニア、チタン酸塩、酸化チタン、酸化水酸化コバルト、ケイ酸カルシウムなどがあるが、粒子の均一性、平滑性、耐熱性、透明性などを持ち、求められる意匠性を得られるものなら、どの基質を使用してもよいが、上記条件をバランス良く満たすアルミナが好ましい。このような好ましい薄片状アルミナ基質それ自体は公知であり、例えば、商品名:YFA−02050(平均粒子径2.0μm、アスペクト比50)、YFA−07070(平均粒子径7.0μm、アスペクト比70)、YFA−05070(平均粒子径5.0μm、アスペクト比70)、YFA−10030(平均粒子径10.0μm、アスペクト比27)などとして、例えば、キンセイマテック社から入手して本発明で使用することができる。   Substrates obtained by the hydrothermal method include alumina, boehmite, iron oxide, hydroxyapatite, zirconia, titanate, titanium oxide, cobalt hydroxide hydroxide, calcium silicate, etc., but particle uniformity and smoothness Any substrate may be used as long as it has heat resistance, transparency, and the required design properties, and alumina that satisfies the above conditions in a well-balanced manner is preferable. Such preferable flaky alumina substrates are known per se, for example, trade names: YFA-02050 (average particle size 2.0 μm, aspect ratio 50), YFA-07070 (average particle size 7.0 μm, aspect ratio 70). ), YFA-05070 (average particle diameter 5.0 μm, aspect ratio 70), YFA-10030 (average particle diameter 10.0 μm, aspect ratio 27), etc., for example, obtained from Kinsei Matech Corporation and used in the present invention. be able to.

上記基質の平均粒子径は0.1〜50μm、好ましくは0.3〜30μm、さらには0.5〜20μmであることがより好ましい。平均粒子径が50μmを超えると得られる真珠光沢顔料の反射光が強く、シルキーな色調を損なうなどの点で好ましくない。一方、平均粒子径が0.1μm未満であると散乱光が強く、得られる真珠光沢顔料がシルキーな色調を損なうなどの点で好ましくない。また、基質のアスペクト比は5〜500、好ましくは7〜300、さらには10〜200がより好ましい。基質のアスペクト比が5未満では、配向性に乏しく、得られる真珠光沢顔料において干渉光(真珠光沢)が得にくいなどの点で好ましくなく、一方、基質のアスペクト比が500を超えると、サーキュレーション、攪拌、分散時など、取り扱い中に基質が割れやすいなどの点で好ましくない。   The average particle size of the substrate is 0.1 to 50 μm, preferably 0.3 to 30 μm, and more preferably 0.5 to 20 μm. When the average particle diameter exceeds 50 μm, the pearl luster pigment obtained is strongly reflected and unfavorable in that the silky color tone is impaired. On the other hand, if the average particle size is less than 0.1 μm, scattered light is strong, and the resulting pearlescent pigment is not preferable in that it impairs the silky color tone. Further, the aspect ratio of the substrate is 5 to 500, preferably 7 to 300, and more preferably 10 to 200. When the aspect ratio of the substrate is less than 5, it is not preferable in that the orientation is poor and it is difficult to obtain interference light (pearly luster) in the obtained pearl luster pigment. On the other hand, when the substrate aspect ratio exceeds 500, the circulation is performed. It is not preferable in that the substrate is easily broken during handling, such as during stirring and dispersion.

また、上記基質の粒子径分布は、統計的変異係数(CV値)が20〜90であり、好ましくは25〜80、さらに好ましくは30〜70である。上記CV値は粒度分布において標準偏差と平均粒子径との百分率を示し、粒度分布の散らばり度合いを示している。なお、粒子径分布はBEKMAN COULTER社製 Multisizer3 COULTER COUNTERを使用して測定し、併せて統計的変異係数を算出した。   The particle size distribution of the substrate has a statistical variation coefficient (CV value) of 20 to 90, preferably 25 to 80, more preferably 30 to 70. The CV value indicates the percentage of the standard deviation and the average particle size in the particle size distribution, and indicates the degree of dispersion of the particle size distribution. The particle size distribution was measured using a Multisizer3 COULTER COUNTER manufactured by BEKMAN COULTER, and the statistical variation coefficient was calculated together.

上記基質のCV値が20以上であると、散乱光を生ずる小粒子径粒子とやや強めの反射光を生ずる粒子のバランスが良好で、得られる真珠光沢顔料においてシルキーな色調を得ることができる。これに対し基質のCV値が20未満となると、基質の粒度分布は極めてシャープであるが、散乱光を生ずる小粒子径の基質粒子とやや強めの反射光を生ずる大粒子径の基質粒子がともに減少し、散乱光と反射光のバランスを欠き、得られる真珠光沢顔料においてシルキーな色調を失ってしまう。また、基質のCV値が90を超えると、散乱光と反射光のバランスを欠き、得られる真珠光沢顔料において同様にシルキーな色調を損なうなどの点で好ましくない。   When the CV value of the substrate is 20 or more, the balance between small particle diameter particles that generate scattered light and particles that generate slightly stronger reflected light is good, and a silky color tone can be obtained in the resulting pearlescent pigment. On the other hand, when the CV value of the substrate is less than 20, the particle size distribution of the substrate is extremely sharp, but both the small particle size substrate particles that generate scattered light and the large particle size substrate particles that generate slightly stronger reflected light are both present. This results in a decrease in the balance between scattered light and reflected light, and the resulting pearlescent pigment loses a silky color tone. On the other hand, if the CV value of the substrate exceeds 90, the balance between the scattered light and the reflected light is lost, and the silky color tone is similarly impaired in the obtained pearl luster pigment.

本発明の真珠光沢顔料は、上記基質の表面を活性化した後、該表面を少なくとも1種の金属酸化物によって被膜することで得られる。本発明の真珠光沢顔料においては、上記の金属酸化物の粒子径は1〜500nmであることが必要であり、好ましくは3〜300nmであり、より好ましくは5〜200nmである。基質を被覆している金属酸化物の粒子径が1〜500nmでは金属酸化物の結晶性が高く、本来金属酸化物が持つ屈折率が十分に発現する。また、真珠光沢顔料の被覆最上面は滑らかで十分な反射光が得られ、結果として満足できる干渉色が生じ、粒子感がなく、かつ滑らかで上品な光輝性であるシルキー感がより高く、求められる意匠性を十分に満たすことができる。   The pearlescent pigment of the present invention can be obtained by activating the surface of the substrate and then coating the surface with at least one metal oxide. In the pearlescent pigment of the present invention, the particle diameter of the metal oxide needs to be 1 to 500 nm, preferably 3 to 300 nm, more preferably 5 to 200 nm. When the particle diameter of the metal oxide covering the substrate is 1 to 500 nm, the crystallinity of the metal oxide is high, and the refractive index inherent to the metal oxide is sufficiently developed. The top surface of the pearlescent pigment coating is smooth and has sufficient reflected light, resulting in satisfactory interference colors, no graininess, and a smooth and elegant glitter that has a higher silky feel. The design property to be satisfied can be sufficiently satisfied.

なお、上記の粒子径は、加水分解後または焼結後の金属酸化物粒子または金属酸化物粒子の凝集体の粒子径を指す。金属酸化物の粒子径は、FE-SEM S-4800(日立製)の画像写真より任意の粒子50個を選択し、その平均値から算出した。   In addition, said particle diameter refers to the particle diameter of the metal oxide particle after a hydrolysis or a sintering, or the aggregate of a metal oxide particle. The particle diameter of the metal oxide was calculated from an average value of 50 arbitrary particles selected from an image photograph of FE-SEM S-4800 (manufactured by Hitachi).

上記金属酸化物の粒子径が500nmを超えると、金属酸化物層の表面の凸凹が著しく大きくなり、真珠光沢顔料において、反射光が大幅に減少するため十分な干渉色が生じない。また、金属酸化物の粒子径が1nm未満では、金属酸化物の結晶性が著しく低下し、本来金属酸化物が持つ屈折率を得ず、結果として真珠光沢顔料において十分な干渉色が生じない。故に金属酸化物による被覆厚を限定しても、被覆層を形成している金属酸化物の粒子径を制御しなければ、十分な干渉色を得ることができない。   When the particle diameter of the metal oxide exceeds 500 nm, the unevenness of the surface of the metal oxide layer is remarkably increased, and the reflected light is greatly reduced in the pearlescent pigment, so that a sufficient interference color does not occur. On the other hand, when the particle diameter of the metal oxide is less than 1 nm, the crystallinity of the metal oxide is remarkably lowered, and the refractive index inherent to the metal oxide is not obtained, and as a result, sufficient interference color does not occur in the pearlescent pigment. Therefore, even if the coating thickness of the metal oxide is limited, a sufficient interference color cannot be obtained unless the particle diameter of the metal oxide forming the coating layer is controlled.

上記金属酸化物の被覆によってシルバー調の色彩、さらには被覆量を増すことによって干渉色の色彩を帯びる真珠光沢顔料が得られる。また、この基質表面を有色系の金属酸化物、例えば、酸化鉄を被覆することによって赤味または黒色系の真珠光沢顔料を得ることもできる。また、上記真珠光沢顔料表面に、後述の着色顔料の微粒子を吸着させることにより、さらに彩度の高い真珠光沢顔料とすることができる。   A pearlescent pigment with an interference color can be obtained by increasing the amount of coating by increasing the amount of the coating with the metal oxide. Further, a reddish or black pearlescent pigment can be obtained by coating the surface of the substrate with a colored metal oxide such as iron oxide. Further, a pearlescent pigment with higher saturation can be obtained by adsorbing fine particles of a coloring pigment described later on the surface of the pearlescent pigment.

さらに本発明の真珠光沢顔料は、上述の基質表面を2種類以上の金属酸化物の混合物で被覆するか、または2種類以上の金属酸化物層により段階的に積層して被覆することにより得ることができる。これらの混合物被覆または積層被覆により、1種類だけの金属酸化物では得ることができない物性、例えば、耐光性、耐水性などの向上を図ることができる。特に2種類以上の金属酸化物を順次積層し、その階層を増すことによって、より光輝性の高い真珠光沢顔料が得ることができる。
さらに本発明の真珠光沢顔料は、その粒子径分布の統計的変異係数(CV値)が20〜90であることが好ましい。その理由は前記基質の場合と同じである。
Furthermore, the pearlescent pigment of the present invention is obtained by coating the above-mentioned substrate surface with a mixture of two or more kinds of metal oxides, or by layering and coating with two or more kinds of metal oxide layers step by step. Can do. By these mixture coating or laminated coating, physical properties that cannot be obtained with only one kind of metal oxide, such as light resistance and water resistance, can be improved. In particular, pearlescent pigments with higher luster can be obtained by sequentially laminating two or more metal oxides and increasing the layer.
Furthermore, the pearlescent pigment of the present invention preferably has a statistical variation coefficient (CV value) of 20 to 90 in its particle size distribution. The reason is the same as in the case of the substrate.

次に本発明の真珠光沢顔料の製造方法を説明する。本発明の真珠光沢顔料は、前記基質表面に1〜500nmの粒子径を持つ金属酸化物により被覆することで得られる。   Next, the manufacturing method of the pearl luster pigment of this invention is demonstrated. The pearlescent pigment of the present invention can be obtained by coating the surface of the substrate with a metal oxide having a particle diameter of 1 to 500 nm.

一般的な真珠光沢顔料は、基質に付着した加水分解後または焼結後の金属酸化物の粒子径と、該粒子の凝集性を制御し、基質表面上に金属酸化物粒子を配列させることが必要である。ところが前記特許文献1に記載の方法では、金属酸化物の粒子径、凝集制御、配列制御が事実上不可能であり、十分な干渉光を有する真珠光沢顔料が得られない。その理由は、水熱法により生成した基質は、表面の平滑性に極めて優れるため、その表面に対する金属酸化物の吸着能が低く、金属酸化物同士の凝集が進行し易いということである。その結果、金属酸化物は巨大な凝集物として存在し、基質表面への吸着性が低い。吸着された場合でも、金属酸化物からなる被覆厚が不均一でかつ被覆最上面が凸凹となるため、反射光が大幅に減少し、十分な干渉色が生じない。   Common pearlescent pigments can control the particle size of the metal oxide after hydrolysis or sintering after adhering to the substrate and the cohesiveness of the particles, and arrange the metal oxide particles on the substrate surface. is necessary. However, in the method described in Patent Document 1, the particle size, aggregation control and arrangement control of the metal oxide are practically impossible, and a pearlescent pigment having sufficient interference light cannot be obtained. The reason is that the substrate produced by the hydrothermal method is extremely excellent in surface smoothness, so that the adsorption ability of the metal oxide to the surface is low, and the aggregation of the metal oxides easily proceeds. As a result, the metal oxide exists as a huge aggregate and has a low adsorptivity to the substrate surface. Even when adsorbed, the coating thickness of the metal oxide is non-uniform and the top surface of the coating is uneven, so that the reflected light is greatly reduced and a sufficient interference color does not occur.

よって水熱法により生成した基質を公知の技術により金属酸化物で被覆し、その被覆厚を限定しても基質表面の吸着能を向上させなければ、被覆層を形成している金属酸化物の粒子径とその凝集性を制御できず、十分な干渉色を有する真珠光沢顔料は得られない。   Therefore, if the substrate produced by the hydrothermal method is coated with a metal oxide by a known technique and the adsorption capacity of the substrate surface is not improved even if the coating thickness is limited, the metal oxide of the coating layer is not formed. The particle size and its cohesiveness cannot be controlled, and a pearlescent pigment having a sufficient interference color cannot be obtained.

本発明では、水熱法により生成した基質の表面を予め活性化させることで、金属酸化物粒子を基質表面に微細粒子でかつ均一に吸着させることができることを見いだした。上記表面活性化は、例えば、熱プラズマ処理、低温プラズマ処理、などのプラズマ処理、超音波処理、酸処理、アルカリ処理、メディア分散処理、高圧衝撃処理、サンドブラスト処理などの衝撃処理、オゾン処理、電気化学処理などの化学エッチング処理などがあり、これらを単独または2種類以上の組み合わせが挙げられる。   In the present invention, it has been found that metal oxide particles can be finely and uniformly adsorbed onto the substrate surface by previously activating the surface of the substrate generated by the hydrothermal method. The surface activation is performed by, for example, plasma treatment such as thermal plasma treatment, low-temperature plasma treatment, ultrasonic treatment, acid treatment, alkali treatment, media dispersion treatment, high-pressure impact treatment, sandblast treatment, etc., ozone treatment, electric treatment There exist chemical etching processes, such as a chemical process, These are individual or the combination of 2 or more types is mentioned.

プラズマ処理に用いられる処理ガスとしては、窒素、アンモニア、窒素・水素混合ガス、酸素、オゾン、水蒸気、一酸化炭素、二酸化炭素、一酸化窒素、二酸化窒素などの酸素含有ガス、ヘリウム、アルゴン、ネオン、キセノンなどの稀ガス、フッ素、塩素、ヨウ素などのハロゲンガス、酸素含有ガスに対して1/2以下の体積比で、四弗化炭素、六弗化炭素、六弗化プロピレンなどの弗化炭素ガスが混合された混合ガスなどの単独または2種類以上の組み合わせが挙げられる。   Process gases used for plasma treatment include nitrogen, ammonia, nitrogen / hydrogen mixed gas, oxygen, ozone, water vapor, carbon monoxide, carbon dioxide, nitrogen monoxide, nitrogen dioxide and other oxygen-containing gases, helium, argon, neon Fluorination of carbon tetrafluoride, carbon hexafluoride, propylene hexafluoride, etc. at a volume ratio of 1/2 or less relative to rare gases such as xenon, halogen gases such as fluorine, chlorine and iodine, and oxygen-containing gases A single gas or a combination of two or more such as a mixed gas in which carbon gas is mixed may be mentioned.

上記プラズマの発生手段としては、例えば、直流電流をガスに印加してプラズマ分解する方法、高周波電圧をガスに印加してプラズマ分解する方法、電子サイクロトロン共鳴によってガスをプラズマ分解する方法および熱フィラメントによってガスを熱分解する方法などが挙げられる。   Examples of the plasma generating means include, for example, a method of plasma decomposition by applying a direct current to a gas, a method of plasma decomposition by applying a high frequency voltage to a gas, a method of plasma decomposition of a gas by electron cyclotron resonance, and a hot filament. For example, a method of thermally decomposing gas can be used.

上記プラズマ処理時の処理ガス圧は、低くなると高価な真空チャンバーや真空排気装置が必要となるので1×10-4〜100Torrが好ましい。実際の処理ガス圧は、上記圧力範囲内で励起手段によって適宜決定されるが、装置が簡便で比較的処理ガス圧の高い状態でもプラズマ発生可能な直流電流又は高周波電流の印加できる1×10-2〜100Torrがより好ましい。 The processing gas pressure at the time of the plasma processing is preferably 1 × 10 −4 to 100 Torr because an expensive vacuum chamber or evacuation apparatus is required if the processing pressure is low. The actual process gas pressure is appropriately determined by the excitation means within said pressure range, the device is simple and relatively process that also plasma can be generated in a high state of the gas pressure direct current or high-frequency current applied can 1 × 10 the - 2 to 100 Torr is more preferable.

上記プラズマ処理に要する投入電力は、電極面積や形状によって異なるが、低くなるとプラズマ密度が小さくなるために処理に時間がかかり、高くなると処理の不均一を招くので、20〜200Wが好ましい。   The input power required for the plasma treatment varies depending on the electrode area and shape. However, the plasma density is reduced when it is low, and the treatment takes time. When it is high, the treatment is nonuniform.

上記プラズマ処理に使用される電極構造が、平行平板型、同軸円筒型、曲面対向平板型又は双曲面対向平行型の場合、容量結合方式で電圧は印加される。また、高周波電圧印加の場合は外部電極を用いて誘導形式で印加可能である。上記電極の距離は、処理圧力、基質によって適宜決定されるが、長くなるとプラズマ密度が低下して高電力が必要となるため、プラズマ処理が可能でできるだけ短くする方がよい。   When the electrode structure used for the plasma treatment is a parallel plate type, a coaxial cylindrical type, a curved opposed plate type, or a hyperboloid opposed parallel type, a voltage is applied by a capacitive coupling method. In addition, in the case of applying a high frequency voltage, it can be applied in an inductive manner using an external electrode. The distance between the electrodes is appropriately determined depending on the processing pressure and the substrate. However, since the plasma density decreases and high power is required as the length increases, it is preferable to make the plasma processing as short as possible.

上記プラズマ処理の時間は投入電力によって決定されるが、短くなると基質の活性化度が十分ではなく、余り長くしても基質の活性化度の著しい向上は期待できないので、一般的には1〜60分間が好ましい。また、プラズマ処理時の温度は必ずしも加熱したり冷却する必要はない。   The plasma treatment time is determined by the input power. However, if the time is shorter, the degree of activation of the substrate is not sufficient, and even if it is too long, a significant improvement in the degree of activation of the substrate cannot be expected. 60 minutes is preferred. Further, the temperature during the plasma treatment does not necessarily need to be heated or cooled.

上記プラズマ処理は、薄片状基質全面にわたって均一に行われる必要があり、そのため薄片状基質を回転させながらプラズマ処理を行うことが好ましい。このような攪拌方法としては、薄片状基質を容器に封印して容器ごと回転させる方法、振動により混合する方法などが挙げられ、薄片状基質の粒子径や処理量などによって適宜決定される。   The plasma treatment needs to be performed uniformly over the entire surface of the flaky substrate. Therefore, it is preferable to perform the plasma treatment while rotating the flaky substrate. Examples of such a stirring method include a method of sealing a flaky substrate in a container and rotating the whole container, a method of mixing by vibration, and the like, which are determined as appropriate depending on the particle diameter of the flaky substrate, the processing amount, and the like.

超音波処理に用いる超音波発振器は、発振周波数が50Hz〜100KHzの範囲で、かつ出力が20〜1000Wの範囲のものであればよい。発振周波数が50Hzより小さくなると、薄片状基質へ当たる超音波のエネルギー分布の表面均一性が著しく低下するので活性化不良となる。一方、発振周波数が100KHzよりも大きくなると、全体のエネルギー密度が著しく低下するので、同様に基質の活性化不良となる。また、上記範囲内であっても、使用する槽構造や槽材質または分散媒の種類によっては、キャビテーションを発生することがある。この場合は、発振周波数を高くするか出力を低くするかして、キャビテーションが発生しない状態にするのが望ましい。   The ultrasonic oscillator used for the ultrasonic treatment only needs to have an oscillation frequency in the range of 50 Hz to 100 KHz and an output in the range of 20 to 1000 W. If the oscillation frequency is lower than 50 Hz, the surface uniformity of the energy distribution of the ultrasonic wave striking the flaky substrate is significantly reduced, resulting in poor activation. On the other hand, if the oscillation frequency is higher than 100 KHz, the overall energy density is significantly reduced, and similarly, the substrate activation is poor. Even within the above range, cavitation may occur depending on the tank structure, tank material, or type of dispersion medium used. In this case, it is desirable to raise the oscillation frequency or lower the output so that cavitation does not occur.

本発明において、超音波振動は連続で与えても間欠で与えてもよいが、前述の周波数50Hz〜100KHzの範囲で、かつ出力20〜1000Wの範囲で適切な条件に調整して与えられることが好ましい。   In the present invention, the ultrasonic vibration may be given continuously or intermittently, but may be given by adjusting to an appropriate condition in the above-mentioned frequency range of 50 Hz to 100 KHz and output of 20 to 1000 W. preferable.

酸処理に用いられる酸としては、塩酸、硝酸、硫酸、りん酸、炭酸などの無機酸;酢酸、クエン酸、安息香酸などの有機酸、アクリル酸、ロジンなどの樹脂酸の単独または2種類以上の組み合わせが挙げられ、アルカリ処理で用いられるアルカリとしては、苛性ソーダ、苛性カリなどのアルカリ塩、水酸化カルシウムなどのアルカリ土類塩、アンモニア、炭酸ソーダ、アニリン、フェノールなどの弱塩基などの単独または2種類以上の組み合わせが挙げられる。   Acids used in the acid treatment include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and carbonic acid; organic acids such as acetic acid, citric acid, and benzoic acid; and resin acids such as acrylic acid and rosin. Examples of the alkali used in the alkali treatment include alkali salts such as caustic soda and caustic potash, alkaline earth salts such as calcium hydroxide, weak bases such as ammonia, sodium carbonate, aniline and phenol, alone or 2 More than one type of combination can be mentioned.

酸処理またはアルカリ処理における、酸またはアルカリの溶液濃度は0.1〜99質量%、温度は5〜95℃の範囲ならばよいが、効率的な処理温度としては15〜70℃がより好ましい。処理時間は濃度や温度によって適宜決定されるが、5分間〜6時間の範囲が好ましい。酸またはアルカリ処理は同処理を2回以上繰り返しても、交互に1回以上の処理を繰り返してもよい。また、酸処理またはアルカリ処理はpH調整を行うため、pH緩衝材を使用してもよく、さらには助剤として界面活性剤や有機溶剤などを併用してもよい。   In the acid treatment or alkali treatment, the acid or alkali solution concentration may be in the range of 0.1 to 99% by mass and the temperature may be in the range of 5 to 95 ° C, but the efficient treatment temperature is more preferably 15 to 70 ° C. The treatment time is appropriately determined depending on the concentration and temperature, but is preferably in the range of 5 minutes to 6 hours. In the acid or alkali treatment, the same treatment may be repeated twice or more, or alternately one or more treatments may be repeated. Moreover, since acid treatment or alkali treatment adjusts pH, a pH buffer material may be used, and a surfactant or an organic solvent may be used in combination as an auxiliary agent.

衝撃処理は、基質を物理的に活性化する手法であり、具体的な方法としては、振とう・衝突により、基質表面を部分的に削るもの、回転により研磨するものなどがある。これらを満たす処理法として、ホモジナイザー、ディゾルバー、サンドミル、高速攪拌機、ペイントコンディショナーなどの分散衝撃処理、高圧ホモジナイザーなどの高圧衝撃処理、サンドブラスト処理、ジェットミル処理などが挙げられる。   The impact treatment is a method of physically activating the substrate. Specific methods include a method of partially scraping the substrate surface by shaking and collision, and a method of polishing by rotation. Examples of the treatment method satisfying these include dispersion impact treatment such as homogenizer, dissolver, sand mill, high speed stirrer, paint conditioner, high pressure impact treatment such as high pressure homogenizer, sand blast treatment, jet mill treatment and the like.

衝撃処理における液媒体中に対する基質濃度は1〜200質量%、好ましくは5〜150質量%である。1質量%未満であると衝撃効率が悪く、一方、200質量%を超えると増粘し、衝撃処理が困難となる。衝撃処理時にメディアを必要とする衝撃処理にはガラスビーズ、スチールボール、ジルコニアビーズなどが使用でき、メディアの基質に対する質量割合は0〜1,000質量%、好ましくは0〜500質量%である。なお、基質同士の衝突で十分に基質表面の活性化がなされる場合には、特にメディアは使用しなくてもよい。   The substrate concentration in the liquid medium in the impact treatment is 1 to 200% by mass, preferably 5 to 150% by mass. If it is less than 1% by mass, the impact efficiency is poor, whereas if it exceeds 200% by mass, the viscosity increases and the impact treatment becomes difficult. Glass beads, steel balls, zirconia beads, and the like can be used for the impact treatment that requires media during the impact treatment, and the mass ratio of the media to the substrate is 0 to 1,000 mass%, preferably 0 to 500 mass%. In addition, when the substrate surface is sufficiently activated by the collision between the substrates, it is not particularly necessary to use media.

また、衝撃処理は、pH緩衝材を使用してもよく、さらには助剤として界面活性剤や有機溶剤などを併用してもよい。衝撃処理の時間は基質濃度やメディアの種類・量によって決定されるが、短くなると基質の活性化度が十分ではなく、余り長くしても基質の活性化度の著しい向上は期待できないので、一般的には1〜60分間が好ましい。なお、上記物理的活性化処理において、基質の衝撃強度を強めると、基質の表面活性化をするに留まらず、基質が破壊される場合があるので、この場合は粒度分布およびCV値の大幅な変化に注意が必要である。   The impact treatment may use a pH buffer material, and may further use a surfactant, an organic solvent, or the like as an auxiliary agent. The impact treatment time is determined by the substrate concentration and the type and amount of the media. However, if the time is shorter, the substrate activation level is not sufficient, and even if it is too long, the substrate activation level cannot be expected to improve significantly. Specifically, 1 to 60 minutes is preferable. In the physical activation process, if the impact strength of the substrate is increased, the substrate may be destroyed in addition to surface activation of the substrate. In this case, the particle size distribution and the CV value are greatly increased. Attention to change is necessary.

その他、オゾン処理、UV処理、電気化学処理などの化学エッチング処理も従来公知の方法を広く使用することができる。   In addition, conventionally known methods can be widely used for chemical etching treatments such as ozone treatment, UV treatment, and electrochemical treatment.

本発明の真珠光沢顔料は、上記表面処理された基質を公知の方法、例えば、上記基質を分散させた水中において、チタン、ジルコニウム、錫、鉄などの金属塩を熱加水分解する方法、あるいはアルカリを用いて中和加水分解による方法などにより、上記金属の水和酸化物を1〜500nmの粒子径で基質に吸着させ、その後焼成する方法によって得られる。また、この焼成工程を還元雰囲気で行うことにより、金属酸化物は低次酸化チタンや低次酸化鉄となり、黒色を帯びた真珠光沢顔料を得ることができる。さらに、金属酸化物を使用する以外に、公知の方法にて他の意匠性も併せて付与することもできる。   The pearl luster pigment of the present invention can be obtained by a known method of the surface-treated substrate, for example, a method of thermally hydrolyzing a metal salt such as titanium, zirconium, tin, or iron in water in which the substrate is dispersed, or an alkali. The above-mentioned metal hydrated oxide is adsorbed onto a substrate with a particle diameter of 1 to 500 nm by a method such as neutralization hydrolysis using, and then fired. Further, by performing this firing step in a reducing atmosphere, the metal oxide becomes low-order titanium oxide or low-order iron oxide, and a blackish pearlescent pigment can be obtained. In addition to using a metal oxide, other design properties can also be imparted by a known method.

真珠光沢(干渉色)を得るために必要な水溶性金属塩の金属原子量は、薄片状基質1m2当たり2.0×10-5molから2.0×10-1mol、より好ましくは4.0×10-5molから1.0×10-1molである。金属原子量が2.0×10-5mol未満では薄片状基質を被覆することができず、干渉光が生じない。一方、金属原子量が1.0×10-1molを超えると薄片状基質を被覆することはできても、焼成後の被覆層にクラックが生じやすく、結果として干渉光強度が低下する点で不都合である。 The metal atom amount of the water-soluble metal salt necessary for obtaining pearl luster (interference color) is 2.0 × 10 −5 mol to 2.0 × 10 −1 mol per 1 m 2 of the flaky substrate, more preferably 4. From 0 × 10 −5 mol to 1.0 × 10 −1 mol. When the metal atomic weight is less than 2.0 × 10 −5 mol, the flaky substrate cannot be coated and no interference light is generated. On the other hand, if the amount of metal atoms exceeds 1.0 × 10 −1 mol, the flaky substrate can be coated, but cracks are likely to occur in the coating layer after firing, resulting in inconvenience in that the interference light intensity decreases. It is.

次に本発明の塗料組成物について説明する。本発明の塗料組成物は前記本発明の真珠光沢顔料と被膜形成性樹脂とを含有し、真珠光沢顔料と被膜形成性樹脂とを液媒体中に含有することが好ましい。ここで使用される被膜形成性樹脂としては、例えば、アクリル樹脂、アクリルメラミン樹脂、塩化ビニル−酢酸ビニル共重合体樹脂、アルキッド樹脂、ポリエステル樹脂、ポリウレタン樹脂およびアミノ樹脂など、従来公知の塗料の分野で使用されている被膜形成性樹脂が挙げられるが、本発明で用いられる被膜形成性樹脂は前記した樹脂に限定されるものではない。   Next, the coating composition of the present invention will be described. The coating composition of the present invention contains the pearlescent pigment of the present invention and a film-forming resin, and preferably contains the pearlescent pigment and the film-forming resin in a liquid medium. Examples of the film-forming resin used here include conventionally known paint fields such as acrylic resin, acrylic melamine resin, vinyl chloride-vinyl acetate copolymer resin, alkyd resin, polyester resin, polyurethane resin and amino resin. However, the film-forming resin used in the present invention is not limited to the above-described resins.

また、上記の真珠光沢顔料および被膜形成性樹脂を溶解または分散させる溶剤としては、従来塗料用として広く知られているものが使用される。具体的には、例えば、水、トルエン、キシレン、ブチルアセテート、メチルアセテート、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、ブタノール、シクロヘキサンなどが挙げられ、これらの溶剤は混合溶剤として使用してもよい。   As the solvent for dissolving or dispersing the pearlescent pigment and the film-forming resin, those conventionally known for paints are used. Specific examples include water, toluene, xylene, butyl acetate, methyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, butanol, cyclohexane and the like. These solvents may be used as a mixed solvent. Good.

本発明の塗料組成物において本発明の真珠光沢顔料は、前記被膜形成性樹脂100質量部に対して0.005〜50質量部の割合で使用され、好ましくは0.1〜30質量部である。真珠光沢顔料の使用量が0.005質量部未満では本発明の目的とする塗料組成物を得ることができない。また、真珠光沢顔料の使用量が50質量部を超える場合には、本発明の目的とする塗料組成物は得られるが、塗膜の物性が低下するので好ましくない。   In the coating composition of the present invention, the pearlescent pigment of the present invention is used in a proportion of 0.005 to 50 parts by mass, preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the film-forming resin. . If the amount of the pearlescent pigment used is less than 0.005 parts by mass, the coating composition intended by the present invention cannot be obtained. Moreover, when the usage-amount of a pearl luster pigment exceeds 50 mass parts, although the coating composition made into the objective of this invention is obtained, since the physical property of a coating film falls, it is unpreferable.

なお、本発明において上記真珠光沢顔料は単独で使用してもよいし、他の顔料と併用してもよい。併用してもよい着色顔料としては、通常の塗料などに使用されている顔料を使用することができ、具体的には、例えば、フタロシアニン顔料、キナクリドン顔料、ペリレン顔料、アンスラキノン顔料、DPP顔料、金属錯体顔料、透明酸化鉄顔料、カーボンブラック、酸化チタン、酸化亜鉛などが挙げられる。また、金属粉末顔料としては、アルミニウム粉末、銅粉末、ステンレス粉末などが挙げられるが、これらの中でもアルミニウム粉末が最も一般的に使用される。また、特殊な金属顔料として金属コロイドなども使用することができる。本発明で併用されるマイカ顔料としては、従来公知のものを広く併用することができ、例えば、透明パールマイカ、着色マイカなどを挙げることができる。さらに、光干渉系顔料としては、干渉マイカ、干渉アルミナ、干渉シリカ(干渉ガラス)などが挙げられる。本発明の塗料組成物には、その他、充填剤、帯電防止剤、安定剤、酸化防止剤、紫外線吸収剤などを必要に応じて配合することができる。   In the present invention, the pearl luster pigment may be used alone or in combination with other pigments. As the coloring pigment that may be used in combination, pigments used in ordinary paints can be used. Specifically, for example, phthalocyanine pigments, quinacridone pigments, perylene pigments, anthraquinone pigments, DPP pigments, Examples thereof include metal complex pigments, transparent iron oxide pigments, carbon black, titanium oxide, and zinc oxide. In addition, examples of the metal powder pigment include aluminum powder, copper powder, and stainless steel powder. Among these, aluminum powder is most commonly used. Moreover, a metal colloid etc. can also be used as a special metal pigment. As the mica pigment used in the present invention, conventionally known mica pigments can be widely used, and examples thereof include transparent pearl mica and colored mica. Furthermore, examples of the light interference pigment include interference mica, interference alumina, interference silica (interference glass) and the like. In addition to the coating composition of the present invention, a filler, an antistatic agent, a stabilizer, an antioxidant, an ultraviolet absorber and the like can be blended as necessary.

本発明の塗料組成物が、本発明の真珠光沢顔料と他の顔料とを含む場合には、上記本発明の真珠光沢顔料を含むベース塗料と上記他の顔料を含むベース塗料とを作製しておき、これらの2種のベース塗料を任意に混合して塗料とすることができ、また、最初から真珠光沢顔料と他の顔料とを混合して塗料化してもよい。   When the coating composition of the present invention contains the pearlescent pigment of the present invention and another pigment, a base coating containing the pearlescent pigment of the present invention and a base coating containing the other pigment are prepared. In addition, these two kinds of base paints can be arbitrarily mixed to form a paint, or a pearlescent pigment and another pigment may be mixed from the beginning to form a paint.

かくして得られた塗料組成物を、必要に応じて下地処理が施された金属板、ガラス、セラミック、プラスチック板などの基体上にスプレー塗装、静電塗装、フローコーティング、ロールコーティングなどにより塗装し、乾燥および架橋硬化して着色コート層を形成する。   The coating composition obtained in this way is applied by spray coating, electrostatic coating, flow coating, roll coating, etc. on a substrate such as a metal plate, glass, ceramic, or plastic plate that has been subjected to a ground treatment as necessary. Dry and crosslink to form a colored coat layer.

上記本発明の塗料組成物を基体に塗布して形成された塗膜は、従来の酸化チタンコーティング真珠光沢顔料に比べ、粒子感のない滑らかで上品なシルキー感の色調を有する。上記性質を有するため、単独塗装方法、2コート1ベーク塗装方法、3コート2ベーク塗装方法、さらには積層した少なくとも1種の任意のコート層間またはコート層上に、少なくとも1層の本発明の真珠光沢顔料を含む塗料組成物によりコート層を形成する塗装方法において、従来の塗料組成物から得られる塗膜にはない、優れた特徴のある光輝性を有する塗膜を形成することができる。   The coating film formed by applying the coating composition of the present invention to a substrate has a smooth and elegant silky color tone without particle feeling as compared with a conventional titanium oxide-coated pearlescent pigment. Because of the above properties, at least one layer of the pearl of the present invention is provided on a single coating method, a two-coat one-bake coating method, a three-coat two-bake coating method, or at least one arbitrary layer between coats or coat layers laminated. In a coating method in which a coating layer is formed from a coating composition containing a luster pigment, a coating film having excellent characteristics that is not found in a coating film obtained from a conventional coating composition can be formed.

また、前記の着色コート層をベースコート層とし、その上に前記した被膜形成性樹脂と相溶性が低い樹脂を有機溶剤に溶解または分散せしめて調製したクリヤコート剤を塗装し、乾燥後に加熱処理して塗膜を形成することもできる。本発明の塗料組成物を基体に塗布して形成される塗膜は、粒子感が無く、滑らかで上品であるシルキーな光輝性を有する。すなわち、本発明の真珠光沢顔料は粒子が均一なため、大きな粒子による部分的な強い光輝感が無く、連続的で均一な光輝性を持つ。さらに反射光と散乱光のバランスが良く、滑らかで上品なシルキー感を発揮している。   In addition, the above-mentioned colored coat layer is used as a base coat layer, and a clear coat agent prepared by dissolving or dispersing a resin having low compatibility with the above-described film-forming resin in an organic solvent is applied to the base coat layer, followed by heat treatment after drying. A coating film can also be formed. The coating film formed by applying the coating composition of the present invention to a substrate has no grain feeling and has a smooth and elegant silky glitter. That is, since the pearl luster pigment of the present invention has uniform particles, there is no partial strong glitter due to large particles, and it has continuous and uniform glitter. Furthermore, the balance between reflected light and scattered light is good, and it provides a smooth and elegant silky feel.

部分的な強い光輝感は、塗膜中に入射した光が真珠光沢顔料によって不連続に鏡面反射するために生ずる。連続する塗膜面の正反射光強度を測定し、反射強度の散らばりの度合い、つまり散布度を統計的に計算して、その分散値を比較することにより、部分的な強い光輝感と均一な光輝感との差を定量化することができる。光度計は連続した塗膜面の正反射光強度を測定できるものなら特に限定はしないが、装置におけるX軸方向に試料面が移動しながら反射強度を測定できる光度計が好ましい。具体的な1例を挙げると、村上色彩研究所製の三次元変角光度計GP−200などが上述の測定条件を満たす。   A partial strong glitter occurs because the light incident on the coating film is specularly reflected by the pearlescent pigment. By measuring the specular reflection light intensity of the continuous coating surface, statistically calculating the degree of dispersion of the reflection intensity, that is, the degree of dispersion, and comparing the dispersion values, partial strong radiance and uniform The difference from glitter can be quantified. The photometer is not particularly limited as long as it can measure the specular reflected light intensity of the continuous coating film surface, but a photometer capable of measuring the reflection intensity while moving the sample surface in the X-axis direction in the apparatus is preferable. As a specific example, a 3D variable angle photometer GP-200 manufactured by Murakami Color Research Laboratory satisfies the above measurement conditions.

本発明の塗料組成物からなる塗膜は、定量化した分散値が5以下の場合、視感において、均一で粒子感のない滑らかな光輝性を得るが、5より大きい場合、視感においてギラギラとした粒子感のある光輝性となり、均一で粒子感のない滑らかな光輝性を得ることができない。   When the dispersion value quantified is 5 or less, the coating film made of the coating composition of the present invention obtains a smooth brilliancy that is uniform and free of particle feeling in the visual sense. Thus, it is impossible to obtain a uniform and smooth glitter without grain feeling.

塗膜中に入射した光は、正反射光と散乱光に分かれ塗膜の外に反射する。この正反射光と散乱光のバランスによって、視感として滑らかで上品であるシルキーな色調が得られる。正反射以外の光は、あらゆる方向に散乱し、立体的な散乱光として存在している。正反射光と、これら立体的な散乱光を三次元的に捕らえることにより、人間が見ている状態に近い感覚を再現することができる。これら上述の反射光は装置に示す光度計で測定できる。光度計は任意の仰角で、受光角を変えながら反射強度を測定できるものなら特に限定はしないが、連続的に反射光を測定できる、三次元変角光度計が好ましい。具体的な1例を挙げると、村上色彩研究所製の三次元変角光度計GP−200などが上述の測定条件を満たす。   The light incident on the coating film is divided into specularly reflected light and scattered light and reflected outside the coating film. The balance between the regular reflection light and the scattered light provides a smooth and elegant silky color tone. Light other than regular reflection is scattered in all directions and exists as three-dimensional scattered light. By capturing the specularly reflected light and these three-dimensional scattered light three-dimensionally, it is possible to reproduce a sensation close to that seen by humans. These above-mentioned reflected lights can be measured with a photometer shown in the apparatus. The photometer is not particularly limited as long as the reflection intensity can be measured while changing the light receiving angle at an arbitrary elevation angle, but a three-dimensional goniophotometer capable of continuously measuring reflected light is preferable. As a specific example, a 3D variable angle photometer GP-200 manufactured by Murakami Color Research Laboratory satisfies the above measurement conditions.

塗膜のシルキー感は、任意の仰角における反射光と散乱光の強度を、三次元変角光度計を用いて測定し、正反射光の近傍である45°受光角の反射強度と代表的な散乱光である0°受光角での反射強度を測定し、45°と0°の強度比(45°/0°)により定量化できる。本発明の塗料組成物からなる塗膜は、受光角45°と受光角0°の反射強度比(45°/0°)が100以下の場合、視感において、滑らかで上品であるシルキーな光輝感を得るが、受光角45°と受光角0°の反射強度比(45°/0°)が100より大きい場合、視感においてシルキーな光輝感は得ることができない。   The silky feeling of the coating is measured by measuring the intensity of reflected light and scattered light at an arbitrary elevation angle using a three-dimensional goniophotometer. The reflection intensity at the 0 ° light receiving angle that is the scattered light can be measured and quantified by the intensity ratio (45 ° / 0 °) between 45 ° and 0 °. When the reflection intensity ratio (45 ° / 0 °) between the light-receiving angle of 45 ° and the light-receiving angle of 0 ° is 100 or less, the coating film made of the coating composition of the present invention has a smooth and elegant silky brightness. However, when the reflection intensity ratio (45 ° / 0 °) between the light receiving angle of 45 ° and the light receiving angle of 0 ° is larger than 100, it is impossible to obtain a silky glittering feeling in the visual feeling.

本発明の真珠光沢顔料は、粒子が小さく、アスペクト比が大きく、塗膜中の含有量が多い場合でも配向して表面の平滑性を失わない。また、水熱法により生成した化学的に均一な板状粒子を用いた真珠光沢顔料であるため、光学特性も特異的であり、反射光と拡散光のバランスに優れ、粒子感のない滑らかで上品なシルキー感の光輝性を発現し、仕上りの優れた塗膜が得られる。これに対し、一般の真珠光沢顔料を使用した塗色においては、平均粒子径を小さくした場合、板状粒子が不均一でアスペクト比が小さいため、微細な顔料が塗膜中で配向せず、光輝性が著しく低下したり、クリヤ仕上げの平滑性を損なう欠点がある。また、光学特性では反射光と散乱光のバランスが悪く、上品なシルキー感は得られない。   The pearlescent pigment of the present invention is oriented and does not lose its surface smoothness even when the particles are small, the aspect ratio is large, and the content in the coating film is large. In addition, because it is a pearlescent pigment that uses chemically uniform plate-like particles produced by the hydrothermal method, its optical characteristics are also unique, it has an excellent balance between reflected light and diffused light, and is smooth and free of particle feeling. An elegant silky lustre and excellent finish can be obtained. On the other hand, in the coating color using a general pearlescent pigment, when the average particle size is reduced, the plate-like particles are non-uniform and the aspect ratio is small, so the fine pigment is not oriented in the coating film, There are drawbacks that the brightness is remarkably lowered and the smoothness of the clear finish is impaired. In addition, the balance between reflected light and scattered light is poor in optical characteristics, and an elegant silky feeling cannot be obtained.

本発明の真珠光沢顔料は、そのままセラミック用、プラスチック用、インク用、トナー用、インクジェットインク用、化粧料用の顔料として極めて優れているものである。また、それらの用途により、耐水性、耐候性、耐薬品性、耐変色性、高分散性などの処理が適宜施され、それぞれの用途に使用される。   The pearl luster pigment of the present invention is extremely excellent as a pigment for ceramics, plastics, inks, toners, inkjet inks, and cosmetics. Further, depending on the application, treatments such as water resistance, weather resistance, chemical resistance, discoloration resistance, and high dispersibility are appropriately applied and used for each application.

次に実施例および比較例により本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、文中「部」または「%」とあるのは質量基準である。
〔真珠光沢顔料の製造例〕
(実施例1)
水熱法により生成された板状アルミナ(水熱生成アルミナ)であるYFA−02050(商品名)(キンセイマテック社製、平均粒子径2.0μm、アスペクト比50、CV値45)20gを内容量1リットルのフラスコに入れ、フラスコ内を0.05Torrまで減圧した後、酸素雰囲気下、0.11Torrで投入電力40Wとして粉体プラズマ処理装置(サムコインターナショナル社製「PT−500」)により13.56MHzの高周波電圧を印加して、室温で5分間プラズマ処理を行った。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited by these Examples. In the text, “part” or “%” is based on mass.
[Production example of pearlescent pigment]
Example 1
20 g of YFA-02050 (trade name) (produced by Kinsei Matech Co., Ltd., average particle diameter of 2.0 μm, aspect ratio of 50, CV value of 45) which is a plate-like alumina (hydrothermally generated alumina) produced by a hydrothermal method The flask was put in a 1 liter flask, and the pressure in the flask was reduced to 0.05 Torr. Then, under an oxygen atmosphere, the input power was 40 W at 0.11 Torr, and 13.56 MHz by a powder plasma processing apparatus (“PT-500” manufactured by Samco International). The plasma treatment was performed at room temperature for 5 minutes.

別の内容量1リットルのフラスコに硫酸ナトリウム(無水)20gを300mlの脱塩水に加え攪拌溶解させる。この溶液に、上記プラズマ処理を行った板状アルミナを20g加え攪拌分散する。この分散液にチタン濃度が16.5%の塩化チタン溶液28gを注入攪拌し、加温して4時間還流する。その後、不溶性の固体を濾過分離し、水洗し、乾燥し、さらに700℃にて1時間熱処理した。得られた処理物に水を加えて攪拌しながら遊離の塩を溶解させた後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化チタン被覆板状アルミナ(実施例1)を得た。   In another 1-liter flask, 20 g of sodium sulfate (anhydrous) is added to 300 ml of demineralized water and dissolved by stirring. To this solution, 20 g of the plate-like alumina subjected to the above plasma treatment is added and stirred and dispersed. To this dispersion, 28 g of a titanium chloride solution having a titanium concentration of 16.5% is injected and stirred, heated and refluxed for 4 hours. Thereafter, the insoluble solid was separated by filtration, washed with water, dried, and further heat treated at 700 ° C. for 1 hour. Water was added to the treated product to dissolve the free salt while stirring, and then the insoluble solid was separated by filtration, washed with water and dried to obtain titanium oxide-coated plate-like alumina (Example 1). .

(実施例2)
水熱生成アルミナであるYFA−07070(商品名)(キンセイマテック社製、平均粒子径7.0μm、アスペクト比70、CV値44)20gを内容量1リットルのフラスコに入れ、300mlの脱塩水を加え攪拌分散させる。投入電力180W、周波数20KHzとして超音波処理装置(トミー工業社製「UD−200」)により室温で15分間超音波処理を行った。その後硫酸ナトリウム(無水)20gを加え攪拌溶解させる。この分散液にチタン濃度が16.5%の塩化チタン溶液20gを注入攪拌し、加温して4時間還流する。次いで不溶性の固体を濾過分離し、水洗し、乾燥し、さらに700℃にて1時間熱処理した。得られた処理物に水を加えて攪拌しながら遊離の塩を溶解させた後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化チタン被覆板状アルミナ(実施例2)を得た。
(Example 2)
20 g of hydrothermally produced alumina YFA-07070 (trade name) (manufactured by Kinsei Matech Co., Ltd., average particle size 7.0 μm, aspect ratio 70, CV value 44) was placed in a 1 liter flask and 300 ml of demineralized water was added. Add and disperse with stirring. Ultrasonic treatment was performed at room temperature for 15 minutes using an ultrasonic treatment apparatus ("UD-200" manufactured by Tommy Industries Co., Ltd.) at an input power of 180 W and a frequency of 20 kHz. Thereafter, 20 g of sodium sulfate (anhydrous) is added and dissolved by stirring. 20 g of titanium chloride solution having a titanium concentration of 16.5% is poured into this dispersion and stirred, heated and refluxed for 4 hours. The insoluble solid was then filtered off, washed with water, dried, and further heat treated at 700 ° C. for 1 hour. Water was added to the resulting treated product to dissolve the free salt while stirring, and then the insoluble solid was separated by filtration, washed with water and dried to obtain titanium oxide-coated plate-like alumina (Example 2). .

(実施例3)
水熱生成アルミナであるYFA−05070(商品名)(キンセイマテック社製、平均粒子径5.0μm、アスペクト比70、CV値37)20gを内容量1リットルのフラスコに入れ、300mlの脱塩水を加え攪拌分散させる。これに35%塩酸20gを注入し、室温で15分間酸処理を行った。
(Example 3)
20 g of hydrothermally generated alumina YFA-05070 (trade name) (manufactured by Kinsei Matec Co., Ltd., average particle size 5.0 μm, aspect ratio 70, CV value 37) was placed in a 1 liter flask, and 300 ml of demineralized water was added. Add and disperse with stirring. To this, 20 g of 35% hydrochloric acid was injected, and acid treatment was performed at room temperature for 15 minutes.

次に硫酸ナトリウム(無水)40gを投入し攪拌溶解させる。この分散液にチタン濃度が16.5%の塩化チタン溶液30g、50%の塩化第二スズ溶液1.9gを注入攪拌し、加温して4時間還流する。さらに不溶性の固体を濾過分離し、水洗し、乾燥し、さらに800℃にて30分間熱処理した。得られた処理物に水を加えて攪拌しながら遊離の塩を溶解させた後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化チタン酸化スズ混合被覆板状アルミナ(実施例3)を得た。   Next, 40 g of sodium sulfate (anhydrous) is added and dissolved by stirring. To this dispersion, 30 g of a titanium chloride solution having a titanium concentration of 16.5% and 1.9 g of a 50% stannic chloride solution are injected and stirred, heated and refluxed for 4 hours. Further, the insoluble solid was separated by filtration, washed with water, dried, and further heat-treated at 800 ° C. for 30 minutes. Water was added to the treated product to dissolve the free salt while stirring, and then the insoluble solid was separated by filtration, washed with water and dried to form a titanium oxide-tin oxide mixed coated plate-like alumina (Example 3). Got.

(実施例4)
水熱生成アルミナであるYFA−02050(商品名)20gを内容量1リットルのフラスコに入れ、300mlの脱塩水を加え攪拌分散させる。これに苛性ソーダ10gを注入し、室温で15分間アルカリ処理を行った。次に35%塩酸を用いてpH2に調整し、硫酸ナトリウム(無水)40gを加え攪拌溶解させる。この分散液にチタン濃度が16.5%の塩化チタン溶液28g、50%の塩化第二スズ溶液1.0gを注入攪拌し、加温して4時間還流する。
Example 4
20 g of YFA-02050 (trade name), which is hydrothermally generated alumina, is placed in a 1-liter flask, and 300 ml of demineralized water is added and dispersed by stirring. To this, 10 g of caustic soda was injected, and alkali treatment was performed at room temperature for 15 minutes. Next, the pH is adjusted to 2 using 35% hydrochloric acid, and 40 g of sodium sulfate (anhydrous) is added and dissolved by stirring. Into this dispersion, 28 g of a titanium chloride solution having a titanium concentration of 16.5% and 1.0 g of a 50% stannic chloride solution are injected and stirred, heated and refluxed for 4 hours.

次に不溶性の固体を濾過分離し、水洗し、乾燥し、さらに800℃にて30分間熱処理した。得られた処理物に水を加えて攪拌しながら遊離の塩を溶解させた後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化チタン酸化スズ混合被覆板状アルミナ(実施例4)を得た。   Next, the insoluble solid was separated by filtration, washed with water, dried, and further heat-treated at 800 ° C. for 30 minutes. Water was added to the treated product to dissolve the free salt while stirring, and then the insoluble solid was separated by filtration, washed with water and dried to form a titanium oxide-tin oxide mixed coated plate-like alumina (Example 4). Got.

(実施例5)
水熱生成アルミナであるYFA−07070(商品名)20gを内容量1リットルのフラスコに入れ、300mlの脱塩水を加え攪拌分散させる。投入電力180W、周波数20KHzとして超音波処理装置(トミー工業社製「UD−200」)により室温で15分間超音波処理を行った。この後硝酸20gを注入し、室温で15分間酸処理を行った。
(Example 5)
20 g of YFA-07070 (trade name), which is hydrothermally produced alumina, is placed in a 1 liter flask, and 300 ml of demineralized water is added and dispersed by stirring. Ultrasonic treatment was performed at room temperature for 15 minutes using an ultrasonic treatment apparatus ("UD-200" manufactured by Tommy Industries Co., Ltd.) at an input power of 180 W and a frequency of 20 kHz. Thereafter, 20 g of nitric acid was injected, and acid treatment was performed at room temperature for 15 minutes.

この分散液に50%の塩化第二スズ溶液1.0gを注入攪拌し、水酸化ナトリウム溶液にてpH6.0に調整する。この後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化スズ被覆板状アルミナを得た。硫酸ナトリウム(無水)20gを300mlの脱塩水に溶解し、これに解砕した上記酸化スズ被覆板状アルミナを投入し分散する。チタン濃度が16.5%の塩化チタン溶液20gを注入攪拌し、加温して4時間還流する。この後、不溶性の固体を濾過分離し、水洗し、乾燥し、さらに800℃にて1時間熱処理した。得られた処理物に水を加えて攪拌しながら遊離の塩を溶解させた後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化スズ酸化チタン積層被覆板状アルミナ(実施例5)を得た。   To this dispersion, 1.0 g of a 50% stannic chloride solution is poured and stirred, and the pH is adjusted to 6.0 with a sodium hydroxide solution. Thereafter, the insoluble solid was separated by filtration, washed with water, and dried to obtain a tin oxide-coated plate-like alumina. 20 g of sodium sulfate (anhydrous) is dissolved in 300 ml of demineralized water, and the crushed tin oxide-coated plate-like alumina is added to and dispersed therein. 20 g of titanium chloride solution having a titanium concentration of 16.5% is injected and stirred, heated and refluxed for 4 hours. Thereafter, the insoluble solid was separated by filtration, washed with water, dried, and further heat treated at 800 ° C. for 1 hour. Water was added to the treated product and the free salt was dissolved while stirring, and then the insoluble solid was separated by filtration, washed with water, and dried to form a plate-like alumina coated with tin oxide and titanium oxide (Example 5). Got.

(実施例6)
水熱生成アルミナであるYFA−07070(商品名)20gを内容量250mlのポリビンに入れ、100mlの脱塩水と2mmのガラスビーズ100gを加えペイントコンディショナーで30分間衝撃処理を行った。その後分散液を200mlの脱塩水に加え攪拌する。上記分散液に50%の塩化第二スズ溶液1.0gを注入攪拌し、水酸化ナトリウム溶液にてpH6.0に調整する。この後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化スズ被覆板状アルミナを得た。
(Example 6)
20 g of YFA-07070 (trade name), which is hydrothermally generated alumina, was placed in a 250 ml polybin, 100 ml of demineralized water and 100 g of 2 mm glass beads were added, and impact treatment was performed with a paint conditioner for 30 minutes. Thereafter, the dispersion is added to 200 ml of demineralized water and stirred. Into the above dispersion, 1.0 g of 50% stannic chloride solution is poured and stirred, and adjusted to pH 6.0 with sodium hydroxide solution. Thereafter, the insoluble solid was separated by filtration, washed with water, and dried to obtain a tin oxide-coated plate-like alumina.

硫酸ナトリウム(無水)20gを300mlの脱塩水に溶解し、これに解砕した上記酸化スズ被覆板状アルミナを投入し分散する。チタン濃度が16.5%の塩化チタン溶液20gを注入攪拌し、加温して4時間還流する。この後、不溶性の固体を濾過分離し、水洗し、乾燥し、さらに800℃にて1時間熱処理した。得られた処理物に水を加えて攪拌しながら遊離の塩を溶解させた後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化スズ酸化チタン積層被覆板状アルミナ(実施例6)を得た。   20 g of sodium sulfate (anhydrous) is dissolved in 300 ml of demineralized water, and the crushed tin oxide-coated plate-like alumina is added to and dispersed therein. 20 g of titanium chloride solution having a titanium concentration of 16.5% is injected and stirred, heated and refluxed for 4 hours. Thereafter, the insoluble solid was separated by filtration, washed with water, dried, and further heat treated at 800 ° C. for 1 hour. Water was added to the resulting treated product and the free salt was dissolved while stirring, and then the insoluble solid was separated by filtration, washed with water and dried to form a plate-like alumina coated with tin oxide and titanium oxide (Example 6). Got.

(実施例7、実施例8)
水熱生成アルミナであるYFA−10030(商品名)(キンセイマテック社製、平均粒子径10.0μm、アスペクト比27、CV値50)20gを内容量1リットルのフラスコに入れ、フラスコ内を0.05Torrまで減圧した後、水蒸気雰囲気下、0.11Torrで投入電力40Wとして粉体プラズマ処理装置(サムコインターナショナル社製「PT−500」)により13.56MHzの高周波電圧を印加して、室温で5分間プラズマ処理を行った。別の内容量1リットルのフラスコに硫酸ナトリウム(無水)20gを300mlの脱塩水に加え攪拌溶解させる。この溶液に、プラズマ処理を行った板状アルミナを20g加え攪拌分散する。
(Example 7, Example 8)
20 g of YFA-10030 (trade name) (manufactured by Kinsei Matec Co., Ltd., average particle diameter 10.0 μm, aspect ratio 27, CV value 50), which is hydrothermally generated alumina, is placed in a flask having an internal volume of 1 liter. After reducing the pressure to 05 Torr, a high frequency voltage of 13.56 MHz was applied by a powder plasma processing apparatus (“PT-500” manufactured by Samco International Co., Ltd.) with an input power of 40 W in a steam atmosphere at 0.11 Torr, and at room temperature for 5 minutes. Plasma treatment was performed. In another 1-liter flask, 20 g of sodium sulfate (anhydrous) is added to 300 ml of demineralized water and dissolved by stirring. To this solution, 20 g of plasma-treated plate-like alumina is added and dispersed by stirring.

これとは別に300mlの脱塩水にチタン濃度が16.5%の塩化チタン溶液50gを溶解した溶液Aを用意した。板状アルミナ分散液を塩酸でpHを2.0に調整し、加温して80℃にした後、溶液Aを定量ポンプにて一定の速度で基質がシルバー干渉色を得るまで4時間かけて注入する。この間、10%水酸化ナトリウム溶液を添加して、分散液中のpHを2.0に維持し、分散液中の温度も80℃に維持した。   Separately, a solution A was prepared by dissolving 50 g of a titanium chloride solution having a titanium concentration of 16.5% in 300 ml of demineralized water. After adjusting the pH of the plate-like alumina dispersion to 2.0 with hydrochloric acid and heating to 80 ° C., it takes 4 hours until the substrate obtains a silver interference color at a constant rate with a metering pump. inject. During this time, 10% sodium hydroxide solution was added to maintain the pH in the dispersion at 2.0, and the temperature in the dispersion was also maintained at 80 ° C.

溶液Aを基質がシルバー干渉色を得るまで注入した後、加温して1時間還流した。この後、不溶性の固体を濾過分離し、水洗し、乾燥し、さらに700℃にて1時間熱処理した。得られた処理物に水を加えて攪拌しながら遊離の塩を溶解させた後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化チタン被覆板状アルミナ(実施例7)を得た。水熱生成アルミナをYFA−07070(商品名)に変更した以外は、実施例7と同様に処理をして、酸化チタン被覆板状アルミナ(実施例8)を得た。   Solution A was injected until the substrate obtained a silver interference color, then heated and refluxed for 1 hour. Thereafter, the insoluble solid was separated by filtration, washed with water, dried, and further heat treated at 700 ° C. for 1 hour. Water was added to the treated product to dissolve the free salt while stirring, and then the insoluble solid was separated by filtration, washed with water, and dried to obtain titanium oxide-coated plate-like alumina (Example 7). . A titanium oxide-coated plate-like alumina (Example 8) was obtained in the same manner as in Example 7, except that the hydrothermally generated alumina was changed to YFA-07070 (trade name).

(比較例1)
硫酸ナトリウム(無水)20gを300mlの脱塩水に加え攪拌溶解させる。この溶液に、水熱生成品ではない板状アルミナA(平均粒子径55μm、アスペクト比30、CV値95)を20g加え攪拌分散する。この分散液にチタン濃度が16.5%の塩化チタン溶液30gを注入攪拌し、加温して4時間還流する。この後、不溶性の固体を濾過分離し、水洗し、乾燥し、さらに700℃にて1時間熱処理した。得られた処理物に水を加えて攪拌しながら遊離の塩を溶解させた後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化チタン被覆板状アルミナ(比較例1)を得た。
(Comparative Example 1)
20 g of sodium sulfate (anhydrous) is added to 300 ml of demineralized water and dissolved with stirring. To this solution, 20 g of plate-like alumina A (average particle size 55 μm, aspect ratio 30, CV value 95) which is not a hydrothermal product is added and stirred and dispersed. 30 g of titanium chloride solution having a titanium concentration of 16.5% is poured into this dispersion and stirred, heated and refluxed for 4 hours. Thereafter, the insoluble solid was separated by filtration, washed with water, dried, and further heat treated at 700 ° C. for 1 hour. Water was added to the resulting treated product to dissolve the free salt while stirring, and then the insoluble solid was separated by filtration, washed with water and dried to obtain titanium oxide-coated plate-like alumina (Comparative Example 1). .

(比較例2)
硫酸ナトリウム(無水)20gを300mlの脱塩水に加え攪拌溶解させる。この溶液に、水熱生成品ではない板状アルミナB(平均粒子径10μm、アスペクト比4.0、CV値60)を20g加え攪拌分散する。この分散液にチタン濃度が16.5%の塩化チタン溶液30gを注入攪拌し、加温して4時間還流する。この後、不溶性の固体を濾過分離し、水洗し、乾燥し、さらに700℃にて1時間熱処理した。得られた処理物に水を加えて攪拌しながら遊離の塩を溶解させた後、不溶性の固体を濾過分離し、水洗し、乾燥させて酸化チタン被覆板状アルミナ(比較例2)を得た。
(Comparative Example 2)
20 g of sodium sulfate (anhydrous) is added to 300 ml of demineralized water and dissolved with stirring. To this solution, 20 g of plate-like alumina B (average particle size 10 μm, aspect ratio 4.0, CV value 60) which is not a hydrothermal product is added and stirred and dispersed. 30 g of titanium chloride solution having a titanium concentration of 16.5% is poured into this dispersion and stirred, heated and refluxed for 4 hours. Thereafter, the insoluble solid was separated by filtration, washed with water, dried, and further heat treated at 700 ° C. for 1 hour. Water was added to the treated product to dissolve the free salt while stirring, and then the insoluble solid was separated by filtration, washed with water and dried to obtain titanium oxide-coated plate-like alumina (Comparative Example 2). .

(比較例3)
プラズマ処理をしない板状アルミナ(YFA−02050)を使用した以外は実施例1と同様にして酸化チタン被覆板状アルミナ(比較例3)を得た。
(比較例4)
超音波処理をしない板状アルミナ(YFA−07070)を使用した以外は実施例2と同様にして酸化チタン被覆板状アルミナ(比較例4)を得た。
(Comparative Example 3)
Titanium oxide-coated plate-like alumina (Comparative Example 3) was obtained in the same manner as in Example 1 except that plate-like alumina (YFA-02050) not subjected to plasma treatment was used.
(Comparative Example 4)
A titanium oxide-coated plate-like alumina (Comparative Example 4) was obtained in the same manner as in Example 2 except that plate-like alumina (YFA-07070) not subjected to ultrasonic treatment was used.

(比較例5)
酸処理をしない板状アルミナ(YFA−05070)を使用した以外は実施例3と同様にして酸化チタン酸化スズ混合被覆板状アルミナ(比較例5)を得た。
(Comparative Example 5)
A titanium oxide-tin oxide mixed coated plate-like alumina (Comparative Example 5) was obtained in the same manner as in Example 3 except that plate-like alumina without acid treatment (YFA-05070) was used.

(比較例6)
アルカリ処理をしない板状アルミナ(YFA−02050)を使用した以外は実施例4と同様にして酸化チタン酸化スズ混合被覆板状アルミナ(比較例6)を得た。
(比較例7)
雲母に酸化チタンを被覆した市場品イリオジン225WII(商品名)(メルク・ジャパン社製)を比較例7とする。
(Comparative Example 6)
A titanium oxide-tin oxide mixed coated plate-like alumina (Comparative Example 6) was obtained in the same manner as in Example 4 except that plate-like alumina (YFA-02050) not subjected to alkali treatment was used.
(Comparative Example 7)
A commercial product Iriodin 225WII (trade name) (manufactured by Merck Japan Ltd.) in which mica is coated with titanium oxide is referred to as Comparative Example 7.

実施例1〜8および比較例1〜6で使用した基質の平均粒子径(μm)、アスペクト比およびCV値、および実施例1〜8および比較例1〜7で得られた真珠光沢顔料の金属酸化物の粒子径(nm)およびCV値を求め、表1に纏めた。平均粒子径およびアスペクト比は、走査型電子顕微鏡ERA-8000(ELIONIX社製)での画像写真から任意の粒子50個を選択し、その平均値から算出した。また、CV値はBEKMAN COULTER社製 Multisizer3 COULTER COUNTERを使用して測定し、統計的変異係数を算出した値である。金属酸化物の粒子径はFE-SEM S-4800(日立製)の画像写真より任意の粒子50個を選択し、その平均値から算出した。   The average particle diameter (μm), aspect ratio and CV value of the substrates used in Examples 1 to 8 and Comparative Examples 1 to 6, and the pearlescent pigment metal obtained in Examples 1 to 8 and Comparative Examples 1 to 7 The particle diameter (nm) and CV value of the oxide were determined and summarized in Table 1. The average particle diameter and aspect ratio were calculated from the average value of 50 arbitrary particles selected from an image photograph taken with a scanning electron microscope ERA-8000 (manufactured by ELIONIX). The CV value is a value obtained by measuring a statistical variation coefficient by measuring using a Multisizer3 COULTER COUNTER manufactured by BEKMAN COULTER. The particle diameter of the metal oxide was calculated from the average value of 50 arbitrary particles selected from an image photograph of FE-SEM S-4800 (manufactured by Hitachi).

Figure 0005185522
Figure 0005185522

〔自動車用塗料の製造例〕
この例は本発明の真珠光沢顔料を塗料組成物として使用する場合の、製造および評価の一例を示すものである。評価での配合例を表2に纏めた。
[Production example of paint for automobiles]
This example shows an example of production and evaluation when the pearl luster pigment of the present invention is used as a coating composition. Formulation examples in evaluation are summarized in Table 2.

Figure 0005185522
Figure 0005185522

上記配合A〜Hの各々をサンドミルで簡易分散処理を行い、さらに配合A〜Hのそれぞれを各50部と配合Pの50部とを均一に混合し、塗料組成物A〜H(表3)(塗料組成物100部当たり真珠光沢顔料8.55部を含む)を得た。(これらを実施例塗料A〜Hとする。)   Each of the above blends A to H is subjected to a simple dispersion treatment with a sand mill, and 50 parts of each of the blends A to H and 50 parts of the blend P are uniformly mixed to form a coating composition A to H (Table 3). (Containing 8.55 parts of pearlescent pigment per 100 parts of coating composition). (These are referred to as Example paints A to H.)

上記配合I〜Oの各々をサンドミルで簡易分散処理を行い、さらに配合I〜Oのそれぞれを各50部と配合Pの50部とを均一に混合し、塗料組成物I〜O(表3)(塗料組成物100部当たり真珠光沢顔料8.55部を含む)を得た。(これらを比較例塗料I〜Oとする。)   Each of the above blends I to O is subjected to a simple dispersion treatment with a sand mill, and 50 parts of each of the blends I to O and 50 parts of the blend P are uniformly mixed to form a coating composition I to O (Table 3). (Containing 8.55 parts of pearlescent pigment per 100 parts of coating composition). (These are referred to as comparative example paints I to O.)

上記実施例1〜8で得られた実施例塗料A〜Hおよび比較例1〜7で得られた比較例塗料I〜Oの各々を黒色展色紙にNo.6のバーコーターにて塗装を行った。30分間室温にて乾燥後、120℃、30分間焼き付け硬化させて塗装サンプルを作成した。   Each of the Example paints A to H obtained in Examples 1 to 8 and the Comparative paints I to O obtained in Comparative Examples 1 to 7 were applied to a black color paper. The coating was carried out with a 6 bar coater. After drying at room temperature for 30 minutes, a coating sample was prepared by baking and curing at 120 ° C. for 30 minutes.

これらの塗装サンプルについて、光輝性の均一性を目視および三次元変角光度計(村上色彩研究所製、GP−200)を用い、反射光測定、A光源、入射角45°、受光角45°、受光スリット0.4mm平方、試料面X軸40mm移動測定、データサンプリング0.1mm間隔の条件にて測定し、受光強度の統計的な分散値を計算した。測定装置を図1に、測定により得られたグラフの1例を図2に、測定結果を表3に示す。   For these coated samples, the uniformity of glitter was visually observed and a three-dimensional goniophotometer (GP-200, manufactured by Murakami Color Research Laboratory) was used to measure reflected light, A light source, incident angle 45 °, light receiving angle 45 °. The sample was measured under the conditions of a light receiving slit of 0.4 mm square, a sample surface X-axis movement of 40 mm, and data sampling at an interval of 0.1 mm, and a statistical dispersion value of the light receiving intensity was calculated. The measurement apparatus is shown in FIG. 1, an example of the graph obtained by the measurement is shown in FIG.

さらに粒子感のない滑らかな状態を目視および三次元変角光度計(村上色彩研究所製、GP−200)を用い、反射光測定、A光源、入射角45°、受光角45°と0°、仰角2.5°の条件にて測定し、反射強度比(45°/0°)を計算した。測定装置を図1に、測定により得られたグラフの1例を図3に、測定結果を表3に示す。   Furthermore, using a visual and three-dimensional goniophotometer (Murakami Color Research Laboratory, GP-200) for a smooth state without particle feeling, reflected light measurement, A light source, incident angle 45 °, receiving angle 45 ° and 0 ° The measurement was performed under the condition of an elevation angle of 2.5 °, and the reflection intensity ratio (45 ° / 0 °) was calculated. The measurement apparatus is shown in FIG. 1, an example of the graph obtained by the measurement is shown in FIG.

Figure 0005185522
Figure 0005185522

実施例塗料は比較例塗料より、光輝性のバラツキを示す分散値が低く全体的に均一な光輝性がある。かつ実施例塗料は比較例塗料より、受光角45°と0°での反射強度比が低く正反射光と散乱光のバランスがとれた滑らかなシルキー感を併せ持つ。   The example paint has a lower dispersion value showing variation in glitter than the comparative paint, and has a uniform glitter overall. In addition, the example paint has a lower reflection intensity ratio at the light receiving angles of 45 ° and 0 ° than the comparative example paint, and has a smooth silky feeling that balances regular reflection light and scattered light.

さらに本発明の真珠光沢顔料を含有する化粧料、プラスチック、セラミック、インク、トナー、インクジェットインク組成物においても、全体的に均一な光輝性と粒子感のない滑らかで上品な光輝性であるシルキー感を併せ持ち、求められる意匠性を十分に満たすことができる。   Furthermore, even in cosmetics, plastics, ceramics, inks, toners, and inkjet ink compositions containing the pearlescent pigment of the present invention, the silky feeling that is uniform and smooth and elegant with no particle feeling overall. And can fully satisfy the required design properties.

本発明の真珠光沢顔料は、全体的に均一な光輝性と、粒子感のない滑らかで上品な光輝性であるシルキー感の色調を有することによって、これらの色調を求める分野、例えば、セラミック、樹脂、塗料、建材、インク、トナー、インクジェットインク、化粧料などの分野の他、意匠性を求める分野に最適である。   The pearl luster pigment of the present invention has a uniform brightness as a whole and a silky color tone that is smooth and elegant with no particle feeling. In addition to the fields of paints, building materials, inks, toners, inkjet inks, cosmetics, etc., it is most suitable for fields that require design.

測定装置を示す図である。It is a figure which shows a measuring apparatus. X軸移動距離に対する反射強度変化の測定グラフである。It is a measurement graph of the reflection intensity change with respect to the X-axis movement distance. 三次元変角光度変化(仰角2.5°)の測定グラフである。It is a measurement graph of a three-dimensional variable angle luminous intensity change (elevation angle 2.5 degrees).

符号の説明Explanation of symbols

1:光源
2:サンプル
3:受光器
4:X軸
5:Y軸
6:Z軸
7:入射角
8:受光角
9:仰角
10:比較例塗料O
11:実施例塗料C
12:実施例塗料A
1: Light source 2: Sample 3: Light receiver 4: X axis 5: Y axis 6: Z axis 7: Incident angle 8: Light reception angle 9: Elevation angle 10: Comparative example paint O
11: Example paint C
12: Example paint A

Claims (15)

水熱法で生成したアルミナ基質又はベーマイト基質の表面を予め、プラズマ処理、超音波処理、酸処理、アルカリ処理、衝撃処理および化学エッチング処理から選ばれる少なくとも1種の方法で活性化させ、該表面が活性化された平均粒子径0.1〜50μmの薄片状基質を水中に分散させ、該分散液中で金属塩を加水分解し、生成した金属水酸化物または金属酸化物を上記基質表面に沈着させた後、該沈着物を熱処理して基質表面に粒子径が1〜500nmの範囲の酸化チタンを含有してなる金属酸化物被覆層を形成することを特徴とする真珠光沢顔料の製造方法。 The surface of the alumina substrate or boehmite substrate produced by the hydrothermal method is activated in advance by at least one method selected from plasma treatment, ultrasonic treatment, acid treatment, alkali treatment, impact treatment and chemical etching treatment , and the surface Is dispersed in water, the metal salt is hydrolyzed in the dispersion, and the resulting metal hydroxide or metal oxide is applied to the surface of the substrate. After depositing, the deposit is heat-treated to form a metal oxide coating layer containing titanium oxide having a particle diameter in the range of 1 to 500 nm on the substrate surface. . アルミナ基質の表面活性化を、プラズマ処理、超音波処理、酸処理、アルカリ処理および衝撃処理から選ばれる少なくとも1種の方法で行う請求項1に記載の真珠光沢顔料の製造方法。 Surface activation of the alumina substrate, a plasma treatment, ultrasonic treatment, acid treatment, a manufacturing method of the pearlescent pigment according to claim 1 carried out at least one method selected alkali treatment and impact treatment or al. 金属酸化物被覆層の形成を、2種類以上の金属酸化物の混合物で被覆するかおよび/または2種類以上の金属酸化物層を段階的に被覆するかして、金属酸化物被覆層を混合層および/または積層となるようにする請求項1又は2に記載の真珠光沢顔料の製造方法。   The formation of the metal oxide coating layer is carried out by coating with a mixture of two or more metal oxides and / or stepwise coating of two or more metal oxide layers and mixing the metal oxide coating layers The method for producing a pearlescent pigment according to claim 1 or 2, wherein the layer is a layer and / or a laminate. 薄片状基質のアスペクト比(粒子径/厚み)が、5〜500である請求項1〜3のいずれか1項に記載の真珠光沢顔料の製造方法。   The method for producing a pearlescent pigment according to any one of claims 1 to 3, wherein the flaky substrate has an aspect ratio (particle diameter / thickness) of 5 to 500. 薄片状基質が、平均粒子径の統計的変異係数が20〜90である請求項1〜4のいずれか1項に記載の真珠光沢顔料の製造方法。   The method for producing a pearlescent pigment according to any one of claims 1 to 4, wherein the flaky substrate has a statistical variation coefficient of an average particle diameter of 20 to 90. 真珠光沢顔料と被膜形成性樹脂とを含有してなる塗料組成物であって、真珠光沢顔料が、水熱法で生成した表面が、プラズマ処理、超音波処理、酸処理、アルカリ処理、衝撃処理および化学エッチング処理から選ばれる少なくとも1種の方法で活性化されてなる平均粒子径が0.1〜50μmである薄片状のアルミナ基質又はベーマイト基質と、その表面に形成された少なくとも酸化チタンを含む金属酸化物からなる被覆層とからなり、該金属酸化物の粒子径が1〜500nmの範囲にあり、かつ、塗装して形成した塗膜について、変角光度計で測定した仰角0°以上での45°受光強度と0°受光強度の比(45°/0°)が100以下であることを特徴とする真珠光沢顔料を含有してなる塗料組成物。 A coating composition comprising a pearlescent pigment and a film-forming resin, the surface of which the pearlescent pigment is produced by a hydrothermal method , plasma treatment, ultrasonic treatment, acid treatment, alkali treatment, impact treatment and the average particle diameter comprising activated with at least one method selected from chemical etching process includes a flaky alumina substrate or boehmite substrate is 0.1 to 50 [mu] m, at least titanium oxide formed on the surface A coating layer made of a metal oxide, the particle diameter of the metal oxide is in the range of 1 to 500 nm, and the coating film formed by coating has an elevation angle of 0 ° or more measured with a goniophotometer. A coating composition comprising a pearlescent pigment, wherein the ratio of 45 ° light receiving intensity to 0 ° light receiving intensity (45 ° / 0 °) is 100 or less. アルミナ基質が、プラズマ処理、超音波処理、酸処理、アルカリ処理および衝撃処理から選ばれる少なくとも1種の方法で活性化されてなる請求項6に記載の真珠光沢顔料を含有してなる塗料組成物。The coating composition containing the nacreous pigment according to claim 6, wherein the alumina substrate is activated by at least one method selected from plasma treatment, ultrasonic treatment, acid treatment, alkali treatment and impact treatment. . 金属酸化物被覆層が、2種類以上の金属酸化物の混合層および/または積層である請求項6又は7に記載の真珠光沢顔料を含有してなる塗料組成物。 The coating composition comprising the pearlescent pigment according to claim 6 or 7 , wherein the metal oxide coating layer is a mixed layer and / or a laminate of two or more kinds of metal oxides. 真珠光沢顔料の平均粒子径の統計的変異係数が、20〜90である請求項6〜8のいずれか1項に記載の塗料組成物。 The coating composition according to any one of claims 6 to 8 , wherein a statistical variation coefficient of an average particle diameter of the pearlescent pigment is 20 to 90. 真珠光沢顔料と被膜形成性樹脂とを液媒体中に含有してなる請求項6〜のいずれか1項に記載の塗料組成物。 The coating composition according to any one of claims 6 to 9 , comprising a pearl luster pigment and a film-forming resin in a liquid medium. 請求項6〜10のいずれか1項に記載の塗料組成物からなるベースコート層と、該ベースコート層上に形成されたクリヤコート層とからなることを特徴とする塗膜組成物。 A coating composition comprising a base coat layer comprising the coating composition according to any one of claims 6 to 10 , and a clear coat layer formed on the base coat layer. 光度計における反射光強度の統計的分散値が、5以下である請求項1に記載の塗膜組成物。 Statistical variance value of the reflected light intensity in the photometer is the coating composition of claim 1 1 5 or less. 変角光度計において、仰角0°以上での45°受光強度と0°受光強度の比(45°/0°)が、100以下である請求項1又は1に記載の塗膜組成物。 In goniophotometer, the ratio of the 45 ° light intensity and 0 ° received light intensity in the elevation angle 0 ° or more (45 ° / 0 °) is, the coating composition according to claim 1 1 or 1 2 is 100 or less . 基体表面上に形成された任意の着色ベースコート層と、該ベースコート層上に形成された請求項6〜10のいずれか1項に記載の塗料組成物からなる第二ベースコート層と、該第二ベースコート層上に形成されたクリヤコート層とからなることを特徴とする塗膜組成物。 An arbitrary colored base coat layer formed on the substrate surface, a second base coat layer comprising the coating composition according to any one of claims 6 to 10 formed on the base coat layer, and the second base coat A coating composition comprising a clear coat layer formed on the layer. 基体表面上に形成された少なくとも1種の任意のコート層と、該コート層間または該コート層上に形成された請求項6〜10のいずれか1項に記載の塗料組成物からなる少なくとも1層とからなることを特徴とする塗膜組成物。 11. At least one arbitrary coating layer formed on the substrate surface, and at least one layer comprising the coating composition according to any one of claims 6 to 10 formed on the coating layer or on the coating layer. A coating composition comprising:
JP2006269169A 2005-10-03 2006-09-29 Pearl luster pigment, method for producing the same, coating composition and coating composition Expired - Fee Related JP5185522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006269169A JP5185522B2 (en) 2005-10-03 2006-09-29 Pearl luster pigment, method for producing the same, coating composition and coating composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005290148 2005-10-03
JP2005290148 2005-10-03
JP2006269169A JP5185522B2 (en) 2005-10-03 2006-09-29 Pearl luster pigment, method for producing the same, coating composition and coating composition

Publications (2)

Publication Number Publication Date
JP2007126643A JP2007126643A (en) 2007-05-24
JP5185522B2 true JP5185522B2 (en) 2013-04-17

Family

ID=38149549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006269169A Expired - Fee Related JP5185522B2 (en) 2005-10-03 2006-09-29 Pearl luster pigment, method for producing the same, coating composition and coating composition

Country Status (1)

Country Link
JP (1) JP5185522B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040882A (en) * 2007-08-08 2009-02-26 Merck Patent Gmbh Transparent conductive powder and its manufacturing method
EP2093260A1 (en) 2008-02-20 2009-08-26 Eckart GmbH Effect pigment based on artificially produced substrates with narrow particle size distribution
EP2123721B1 (en) * 2008-04-15 2013-11-27 Eckart GmbH Pearlescent pigment based on fine, thin substrates
DE102009031266A1 (en) 2009-06-30 2011-01-13 Eckart Gmbh Inkjet ink containing pearlescent pigments based on fine and thin substrates
DE102009037933A1 (en) * 2009-08-19 2011-02-24 Eckart Gmbh High gloss multi-layer pearlescent pigments with non-silver interference color and narrow size distribution and process for their preparation
DE102009037935A1 (en) * 2009-08-19 2011-02-24 Eckart Gmbh High gloss multi-layer pearlescent pigments with silver interference color and narrow size distribution and process for their preparation
DE102009037932A1 (en) 2009-08-19 2011-02-24 Eckart Gmbh High gloss multi-layer pearlescent pigments with narrow size distribution and process for their preparation
DE102009037934A1 (en) 2009-08-19 2011-02-24 Eckart Gmbh High-gloss multilayer pearlescent pigments with colored interference color and narrow size distribution and process for their preparation
DE102009049413A1 (en) * 2009-10-14 2011-04-21 Eckart Gmbh Pearlescent pigments based on fine and thin synthetic substrates
JP5985217B2 (en) * 2012-03-12 2016-09-06 石原産業株式会社 Coating film containing flaky titanic acid and method for producing the same
JP6675186B2 (en) * 2015-12-02 2020-04-01 東洋アルミニウム株式会社 Scale-like composite particles, resin composition and coated product containing the same, and method for producing scale-like composite particles
JP6796982B2 (en) * 2016-09-30 2020-12-09 関西ペイント株式会社 Evaluation method of metallic design
JP7437121B2 (en) * 2019-06-28 2024-02-22 パイロットインキ株式会社 Glittering reversible photochromic flat yarn and products using the same
JP7079873B2 (en) 2020-10-30 2022-06-02 株式会社Dnpファインケミカル Ink composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633710B2 (en) * 1996-03-21 2005-03-30 キンセイマテック株式会社 Alumina titanium-based pigment and method for producing the same

Also Published As

Publication number Publication date
JP2007126643A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP5185522B2 (en) Pearl luster pigment, method for producing the same, coating composition and coating composition
EP1932889B1 (en) Pearlescent pigment, process for producing the same, coating material composition and coating film composition
US8017236B2 (en) Carbon coated high luster materials
EP1422268B1 (en) Iridescent pigment having high brilliance and high chroma
EP1874873B1 (en) Sparkle effect of unique particle size distribution
JPH06116507A (en) Iridescent luster pigment
JP4624333B2 (en) Mica-based composite material and method for producing the same
JP5186071B2 (en) Silky luster pigment
JP4276448B2 (en) Brilliant pigment and method for producing the same
ES2553662T3 (en) Inorganic treated pigments having reduced photoactivity and improved antimicrobial properties, and their use in coating compositions
JP2013184883A (en) Coating film containing flaky titanic acid and method for producing the same, and flaky titanic acid dispersion and method for producing the same
Liang et al. Spray printing and encapsulated liquid metal as a highly reflective metallic paint for packing products
JP2005075941A (en) Powdery particle exhibiting white color-like interference color, colored metallic pigment and method for producing the same pigment
WO2021235230A1 (en) Brilliant chromatic coating film and coating object equipped with said coating film
JPH08176459A (en) Production of pearlescent flaky barium sulfate
JP5173200B2 (en) Method for producing coating film and coating composition
JP2003236459A (en) Bright coating film formation method and bright coating film
JPH0649387A (en) Titanium dioxide pigment and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

R150 Certificate of patent or registration of utility model

Ref document number: 5185522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees