WO2006003810A1 - Positive-working resist composition and method for resist pattern formation - Google Patents

Positive-working resist composition and method for resist pattern formation Download PDF

Info

Publication number
WO2006003810A1
WO2006003810A1 PCT/JP2005/011334 JP2005011334W WO2006003810A1 WO 2006003810 A1 WO2006003810 A1 WO 2006003810A1 JP 2005011334 W JP2005011334 W JP 2005011334W WO 2006003810 A1 WO2006003810 A1 WO 2006003810A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural unit
acid
positive resist
resist composition
Prior art date
Application number
PCT/JP2005/011334
Other languages
French (fr)
Japanese (ja)
Inventor
Kazufumi Sato
Sachiko Yoshizawa
Original Assignee
Tokyo Ohka Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co., Ltd. filed Critical Tokyo Ohka Kogyo Co., Ltd.
Publication of WO2006003810A1 publication Critical patent/WO2006003810A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain

Definitions

  • the acid dissociable, dissolution inhibiting group is represented by a so-called acetal group such as a chain ether group represented by a 1-ethoxyethyl group or a cyclic ether group represented by a tetrahydrobiranyl group, and a tert-butyl group.
  • acetal group such as a chain ether group represented by a 1-ethoxyethyl group or a cyclic ether group represented by a tetrahydrobiranyl group, and a tert-butyl group.
  • Tertiary alkyl groups, tertiary alkoxycarbonyl groups typified by tert-butoxycarbonyl groups, etc. are mainly used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-249682
  • a positive resist film is formed on a substrate using the positive resist composition of the present invention, and the positive resist film is selectively exposed, A resist pattern is formed by performing development processing.
  • exposure includes electron beam irradiation.
  • “Unit” and “constituent unit” mean a monomer unit constituting a polymer.
  • component (A) when the acid generated from component (B) acts upon exposure, the acid dissociable, dissolution inhibiting group contained in component (A1) dissociates, and as a result, the entire component (A) is alkali-free. Changes from soluble to alkali-soluble.
  • the structural unit (al) is a structural unit having a phenolic hydroxyl group.
  • a structural unit (al-1) represented by the following general formula (I), that is, a structural unit derived from ( ⁇ -methyl) hydroxystyrene.
  • the position of the hydroxyl group can be any of the o-position, m-position, and p-position, but the p-position is preferred because it is readily available and inexpensive. ,.
  • R is a hydrogen atom or a methyl group.
  • the structural unit (a2) is a structural unit having a latathone-containing monocyclic or polycyclic group.
  • the ratatone-containing monocyclic or polycyclic group is a monocyclic group having a rataton ring force or a polycyclic group having a rataton ring.
  • the Rataton ring means one ring containing the CO—O structure, and this is counted as the first ring. Therefore, in the case of only a rataton ring, it is called a rataton-containing monocyclic group, and when it has another ring structure, it is called a rataton-containing polycyclic group regardless of the structure.
  • the structural unit (a2) is preferably the structural unit (a2-1) represented by the following general formula (II), that is, the hydrogen atom of the carboxy group of (meth) acrylic acid is X (latatone-containing).
  • (meth) acrylic acid means either methacrylic acid or acrylic acid.
  • (meth) acrylic acid” is a general term for methacrylic acid and acrylic acid.
  • (meth) acrylate” means one or both of meta acrylate and acrylate.
  • (meth) acrylate” means either one of meta acrylate or acrylate.
  • R represents a hydrogen atom or a methyl group
  • X represents a ratatone-containing monocyclic or polycyclic group.
  • a structural unit (a2) a structural unit (a2-11) represented by the following general formula (IV) and a structural unit (a2-12) represented by the following general formula (V):
  • a structural unit (a2-13) represented by the following general formula (VI), and a structural unit (a2-14) represented by the following general formula (VII) at least one selected from group power is preferably used. It is done.
  • R is a hydrogen atom or a methyl group.
  • the compound represented by the general formula (VI) exists as a mixture of heterogeneous substances in which the binding position of carboxyl oxygen is at the 5th or 6th position.
  • R is a hydrogen atom or a methyl group.
  • R is a hydrogen atom or a methyl group.
  • the structural unit (a3) is a structural unit having an acid dissociable, dissolution inhibiting group.
  • the structural unit (a3) is not particularly limited, and is a hydroxystyrene-based resin (meta) that has been proposed as a base resin for conventional chemically amplified KrF positive resist compositions and ArF positive resist compositions. ) In acrylic acid-based rosin and the like, those proposed as a structural unit having an acid dissociable, dissolution inhibiting group can be appropriately used.
  • the structural unit (a3) preferably, the structural unit (a3-1) represented by the following general formula (III), that is, the hydrogen atom of the hydroxyl group of (a-methyl) hydroxystyrene is Y (acid-dissociable, dissolution inhibiting group).
  • Replaced structural unit force At least one selected is used.
  • R represents a hydrogen atom or a methyl group
  • Y represents an acid dissociable, dissolution inhibiting group.
  • Specific examples of the acid dissociable, dissolution inhibiting group Y include an alkoxyalkyl group, preferably 1 alkoxy Examples thereof include an alkyl group, a tertiary alkyloxycarbonyl group, a tertiary alkyl group, a tertiary alkoxycarboalkyl group, and a cyclic ether group.
  • the 1 alkoxyalkyl group has a structure represented by the following general formula (VIII), in which the 1-position is substituted with a chain, branch, or cyclic alkoxy group.
  • R 1 represents a hydrogen atom or an alkyl group having a carbon number of 1 to 2
  • R 2 represents a linear, branched, or cyclic alkyl group having 1 to 12 carbon atoms
  • the R 1 The end of the alkyl group and the end of the chain or branched alkyl group may be combined to form a ring.
  • Specific examples include a 1-methoxyethyl group, 1 ethoxyethyl group, l-iso propoxy Echiru group, 1 n Butokishechiru group, 1 tert Butokishechiru group, methoxymethyl group, ethoxymethyl group, i so propoxymethyl radical, n-butoxymethyl group, 1 alkoxyalkyl groups such as tert-butoxy methyl group; 1-cyclopentyl Ruo key Chez chill Group, 1-cyclohexyloxyl group, 1-tricyclo [5.2.1.0 2 ' 6 ] de-loxychetyl group,
  • tertiary alkyl group examples include chain tertiary alkyl groups such as tert butyl group and tert-amyl group; 1-methyl-1-cyclopentyl group, 1-ethyl-1-cyclopentyl group, 1-methyl 1-cyclo Hexyl group, 1-ethyl 1-cyclohexyl group, 2-methyl 2-adamantyl group, 2-ethyl-2-adamantyl group, 2-propyl 2-adamantyl group, 2- (1-adamantyl) 2-propyl group, 8-methyl-8-tricyclo [5.2 1.0 2.
  • chain tertiary alkyl groups such as tert butyl group and tert-amyl group
  • 1-methyl-1-cyclopentyl group 1-ethyl-1-cyclopentyl group, 1-methyl 1-cyclo Hexyl group, 1-ethyl 1-cyclohexyl group, 2-methyl 2-adamantyl group, 2-ethyl-2-adam
  • tertiary alkoxycarboalkyl group examples include a tert-butyloxycarbonylmethyl group, a tert-amyloxycarboromethyl group, and the like.
  • the 1-alkoxyalkyl group and the 3rd- Secondary alkyl groups are preferred, especially 1 alkoxyalkyl groups.
  • 1 ethoxyethyl group is particularly preferable.
  • the proportion of the structural unit (a2) to the total structural units constituting the copolymer (A1) is preferably 5 to 50 mol%, preferably 10 to 30 mol. % Is more preferred.
  • the structural unit (a2) is more than the above range, the solubility in the developer is insufficient, and a resist pattern may not be formed.
  • the amount is small, the effect of using the structural unit (a2) cannot be obtained sufficiently! /.
  • the total proportion of the structural units (al) and (a3) with respect to all structural units constituting the copolymer (A1) is to ensure good solubility in the developer and to obtain the effects of the present invention. It is preferable preferable instrument 50-90 mole 0/0 power is 95 mol 0/0.
  • the ratio of the structural unit (a3) to the total of the structural units (al) and (a3) is preferably 5 to 50 mol%, more preferably 10 to 30 mol%.
  • the total amount of the structural unit (al), the structural unit (a2), and the structural unit (a3) is 80 mol% with respect to all the structural units constituting the copolymer (A1). It is preferable that this is the case. If it is less than 80 mol%, the resolution tends to deteriorate.
  • the total of the structural unit (al), the structural unit (a2), and the structural unit (a3) is more preferably 90 mol% or more, and most preferably 100 mol%.
  • the copolymer (A1) may contain a structural unit (a4) having an acid-stable dissolution inhibiting group in addition to the structural unit (al), the structural unit (a2), and the structural unit (a3).
  • the structural unit (a4) is not particularly limited, and is a hydroxystyrene-based resin (meta) that has been proposed as a base resin in the conventional chemically amplified positive resist composition for KrF and the positive resist composition for ArF.
  • acrylic acid-based rosin those proposed as a structural unit having an acid-stable dissolution inhibiting group can be appropriately used.
  • the structural unit (a4) is preferably the structural unit (a4-1) represented by the following general formula (IX), that is, the structural unit from which ( ⁇ -methyl) styrene force is also derived, and the following general formula (ix) At least one selected from the structural unit (a42), ie, the structural unit substituted with a hydrogen nuclear atom (acid-stable dissolution inhibiting group) of the carboxy group of (meth) acrylic acid is used. .
  • the structural unit (a4-1) represented by the general formula (IX) is particularly preferable because of excellent dry etching resistance.
  • the acid stable dissolution inhibiting group means a group that is not dissociated by an acid.
  • R is a hydrogen atom or a methyl group
  • R 3 is a linear or branched alkyl group having 5 carbon atoms
  • n is 0 or an integer of 1 to 3.
  • R 3 represents a straight chain having 1 to 5 carbon atoms.
  • a chain or branched alkyl group specifically a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, etc.
  • a methyl group or an ethyl group is preferred.
  • n is 0 or an integer of 1 to 3. Of these, n is preferably 0 or 1
  • it is preferably 0 from an industrial viewpoint.
  • the substitution position of R 3 may be o-position, m-position, or p-position.
  • n is 2 or 3, it is optional.
  • the replacement positions of can be combined.
  • Specific examples of the acid-stable dissolution inhibiting group Z in the general formula (ix) include linear and branched alkyl groups such as a methyl group, an ethyl group, and an isopropyl group; a cyclopentyl group, a cyclohexane hexyl group, Isoboru - group, tricyclo [5.2.1.0 2 '6] de force - group, 2-Adamanchiru group, tetracyclo [4.4.0.1 2' to 5.1 7 '10] alicyclic structure such as dodecyl Mention may be made of the alkyl groups possessed.
  • the structural unit (a4) is not essential, but if it is contained, advantages such as an improved focal depth and improved dry etching resistance can be obtained.
  • the proportion of the structural unit (a4) in the copolymer (A1) is 0.5 to LO mol% of the total of all the structural units constituting the copolymer (A1). It is preferably 2 to 5 mol%.
  • the structural unit (a4) is more than the above range, the solubility in the developer tends to deteriorate.
  • the mass average molecular weight Mw (in terms of polystyrene by gel permeation chromatography (GPC), the same applies hereinafter) of the copolymer (A1) is not particularly limited, but is preferably 3000 to 30000, more preferably 5000 to 20000.
  • Mn is the number average molecular weight
  • Examples of the method for producing the copolymer (A1) include [1] a monomer corresponding to the structural unit (al). The monomer corresponding to the structural unit (a2) and the monomer corresponding to the structural unit in the state before the introduction of the acid dissociable, dissolution inhibiting group of the structural unit (a3) are copolymerized and then the structural unit (a3 ), And (2) a monomer corresponding to the structural unit (a3) into which an acid dissociable, dissolution inhibiting group has been introduced in advance.
  • the polymerization method is not particularly limited, but is preferred because radical polymerization is easy.
  • solution radical polymerization in which a raw material monomer, a polymerization initiator, a polymerization catalyst, and a chain transfer agent are polymerized in a state of being dissolved in a polymerization solvent is preferable.
  • a so-called batch polymerization method in which all monomers, polymerization initiator, polymerization catalyst, and chain transfer agent are dissolved in a polymerization solvent and heated to the polymerization temperature, or a monomer is dissolved in the solvent and heated to the polymerization temperature.
  • a polymerization initiator, a polymerization catalyst, a post-addition method of adding a chain transfer agent, a monomer, a polymerization initiator, a polymerization catalyst, a part or all of the chain transfer agent are mixed or independently heated to a polymerization temperature.
  • Dropping inside can be carried out by a so-called drop polymerization method or the like.
  • the so-called drop polymerization method is preferred because it has high reproducibility for each production lot, and in particular, a so-called independent dropping method in which a monomer and a radical generation source, a polymerization initiator, a polymerization catalyst, and a chain transfer agent are dropped separately. preferable.
  • the polymerization catalyst, polymerization initiator, and chain transfer agent can be supplied in advance in the polymerization system in whole or in part before supplying the polymerizable monomer.
  • the molecular weight distribution and composition distribution of the copolymer can be controlled by changing the respective feed rates in accordance with the monomer concentration and composition in the polymerization system, the radical concentration, and the like. it can.
  • radical polymerization as a polymerization initiator, for example, 2,2'-azobisisobutyric-tolyl (
  • AIBN 2,2'-azobis (2-methylbutyoxy-tolyl), 2,2'-azobisisobutyric acid dimethyl, 1,1'-azobis (cyclohexane-1- 1-carbonitryl), 4,4 ' —Azobis (4-cyananovalerate) and other azo compounds, decanol peroxide, lauroyl peroxide, Use organic peroxides such as benzoyl peroxide, bis (3,5,5-trimethylhexanoyl) peroxide, succinic acid peroxide, tert butyl peroxide 2-ethylhexanoate alone or in combination. Can do.
  • thiol compound such as dodecyl mercaptan, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, 4,4 bis (trifluoromethyl) -4-hydroxy 1 mercaptobutane is used alone as a chain transfer agent. Or it can mix and use.
  • the solvent used for radical polymerization is not particularly limited as long as it is a solvent that can stably dissolve the raw material monomer, the obtained copolymer, the polymerization initiator, and the chain transfer agent.
  • suitable solvents include alcohols such as methanol, ethanol and isopropyl alcohol; ketones such as acetone, methyl ethyl ketone, methyl amyl ketone and cyclohexanone; tetrahydrofuran, dioxane, glyme, Ethers such as propylene glycol monomethyl ether; esters such as ethyl acetate and lactate ethyl; ether esters such as propylene glycol methyl ether acetate; and lactones such as ⁇ -butyrolataton. It can be used by mixing.
  • the polymerization conditions are not particularly limited, but generally the polymerization temperature is about 40 ° C to 100 ° C.
  • the polymerization time varies depending on the polymerization method and cannot be defined unconditionally. For example, in the case of batch polymerization, the reaction time after reaching the polymerization temperature is selected from 1 to 24 hours, preferably 2 to 12 hours.
  • the monomer composition, concentration and radical concentration in the polymerization system can be kept constant as the dripping time is longer, so the composition and molecular weight of the monomer generated during the dripping time become uniform.
  • the dropping time is too long because it is disadvantageous in terms of production efficiency per hour and stability of the monomer in the dropping solution.
  • the dropping time is selected to be 0.5 to 25 hours, preferably 1 to 10 hours. Since unreacted monomer remains after the completion of the dropping, it is preferable to age the polymer while maintaining the polymerization temperature for a certain period of time. Aging time should be selected within 8 hours, preferably 1-6 hours.
  • the copolymer obtained by polymerization contains low molecular weight impurities such as unreacted monomers, oligomers, polymerization initiators and chain transfer agents, and reaction byproducts thereof, and therefore these were removed by the purification process. Is preferred.
  • the polymerization reaction solution is diluted by adding a good solvent as necessary, and then brought into contact with a poor solvent to precipitate the copolymer as a solid, It is carried out by extracting impurities into the poor solvent phase (hereinafter referred to as reprecipitation) or by extracting impurities into the solvent phase as a liquid-liquid two-phase.
  • the precipitated solid is separated from the solvent by a method such as filtration or decantation, and then this solid is re-dissolved with a good solvent and further re-precipitated by adding a poor solvent, or precipitated.
  • the solid can be further purified by a step of washing with a poor solvent or a mixed solvent of a good solvent and a poor solvent.
  • reprecipitation or liquid-liquid two-phase by adding a poor solvent or a mixed solvent of a good solvent and a poor solvent to the obtained copolymer solution. Further separation can be achieved by separation. These operations can be performed by repeating the same operation or by combining different operations.
  • the copolymer obtained by the method [1] is prepared by using p-toluenesulfonic acid, trifluoroacetic acid, strong acid ion-exchange resin Examples thereof include a method of reacting with a compound giving an acid dissociable group such as butyl ether or halogenated alkyl ether in the presence of a known acid catalyst.
  • the copolymer obtained by the method of [3] can be obtained by using a known method such as p-toluenesulfonic acid, trifluoroacetic acid, strongly acidic ion exchange resin, etc. Examples thereof include a method of reacting with water in the presence of an acid catalyst for hydrolysis.
  • a copolymer containing the structural units (al) and (a2) is preferably prepared by the method [1], and then reacted with an alkyl vinyl ether in the presence of the acid catalyst. ) Is more preferable.
  • the solvent used in these reactions is not particularly limited as long as it is a solvent capable of dissolving the copolymer.
  • a suitable solvent the solvent exemplified for the polymerization solvent can be used as it is!
  • the reaction conditions are not particularly limited, and in general, the reaction temperature can be selected in the range of 0 to 100 ° C. However, considering the influence of the acid catalyst on the solvent and the production stability, 0 to 80 ° C, particularly preferably Select a range of 0-60 ° C.
  • the reaction time varies depending on the reaction temperature and the like, and a time for reaching a desired reaction rate is selected.
  • reaction solution is contacted with a known basic compound or anion exchange resin. To remove the acid catalyst.
  • ultrafine solids and insoluble foreign matter can be removed by passing through a filter having micropores with an average pore size of preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less. can do. Further, the metal component can be removed by contacting with a filter having a positive zeta potential or a resin filter having an ion exchange group.
  • a low-boiling component can be removed under reduced pressure while supplying a solvent for forming a coating film, if necessary, so that a coating film-forming solution having a predetermined concentration can be obtained.
  • the solvent for forming the coating film is not particularly limited as long as it dissolves the copolymer, but usually it takes into consideration the boiling point, the influence on the semiconductor substrate and other coating films, and the absorption of radiation used in lithography. Selected.
  • solvents generally used for coating film formation include solvents such as propylene glycol methyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, methyl amyl ketone, y-butyrate rataton, and cyclohexanone.
  • the amount of the solvent used is not particularly limited, but is usually in the range of 1 part by mass to 20 parts by mass with respect to 1 part by mass of the copolymer.
  • the positive resist composition includes, as component (A), a positive resist composition such as polyhydroxystyrene resin, (meth) acrylic resin, in addition to the copolymer (A1).
  • a positive resist composition such as polyhydroxystyrene resin, (meth) acrylic resin
  • the copolymer (A1) is 80% by mass or more in the component (A) contained in the positive resist composition. It is preferably 90% by mass or more, and most preferably 100% by mass.
  • the proportion of the component (A) in the positive resist composition can be appropriately adjusted depending on the intended resist film thickness.
  • Acid generator (B) (hereinafter sometimes referred to as component (B))
  • the component (B) can be used without particular limitation from known acid generators used in conventional chemically amplified resist compositions.
  • Such acid generators include onium salt-based acid generators such as iodine salts and sulfo-um salts, oxime sulfonate-based acid generators, bisalkyl or bis-aryl sulfo-diazomethanes, Diazomethane acid generators such as poly (bissulfol) diazomethanes, nitrobenzyl sulfonate acid generators, iminosulfonate acid generators A wide variety of agents, such as disulfide acid generators, are known.
  • acid salt-based acid generators include trifluoromethane sulfonate or nonafluorobutane sulfonate of diphenylodonone; trifluoromethanesulfonate or nonafluorolobium of bis (4-tert butylphenol) ododonium.
  • oxime sulfonate-based acid generators include: (methylsulfo-luoxyimino) -phenolacetonitrile, OC- (methylsulfo-roximino) -p-methoxyphenylacetonitrile, ⁇ - (trifluoromethylsulfo-luoximino) ) -Phenylaceto-tolyl, ⁇ - (trifluoromethylsulfo-oxyximino) -p-methoxyphenylacetonitrile, at- (ethylsulfonyloxyximino) -p-methoxyphenylacetonitryl, ⁇ - ( Propylsulfo-luoxyimino) p-methylphenolacetonitrile, ⁇ (methylsulfo-luoxyimino) ⁇ -bromophenolacetonitrile, bis- ⁇ ( ⁇ -butylsulfol) ⁇ -dimethyl
  • bisalkyl or bisarylsulfol diazomethanes include bis (isopropylsulfol) diazomethane, bis (p toluenesulfol) diazomethane, bis (1 , 1-dimethylethylsulfol) diazomethane, bis (cyclohexylsulfol) diazomethane, bis (2,4 dimethylphenylsulfol) diazomethane, and the like.
  • Poly (bissulfonyl) diazomethanes include, for example, 1,3 bis (phenylsulfo-diazomethylsulfol) propane (compound A, decomposition point 135 ° C having the structure shown below.
  • one type of these acid generators may be used alone, or two or more types may be used in combination.
  • the ratio of the two is 9: 1-1: 9 is preferred 8: 2-6: 4 is more preferred.
  • the total amount of the diazomethane acid generator and the salt salt acid generator is preferably 80% by mass or more and most preferably 100% by mass.
  • component (B) is 0.5 to 30 parts by mass, preferably 1 with respect to 100 parts by mass of component (A).
  • each component to be used can be dissolved into a uniform solution.
  • any one or two of the known solvents for chemically amplified resists can be used. These can be appropriately selected and used.
  • ketones such as ⁇ -butyrolatatone, acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, 2-heptanone, ethylene glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate, propylene Glycol, propylene glycolol monoacetate, dipropylene glycol, or monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether of dipropylene glycol monoacetate, etc.
  • cyclic ethers such as dioxane, methyl lactate, ethyl lactate (EL), methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methoxypropionic acid
  • esters such as methyl and ethyl ethoxypropionate.
  • organic solvents may be used alone or as a mixed solvent of two or more.
  • PGMEA propylene glycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • EL ethyl lactate
  • a mixed solvent obtained by mixing propylene glycol monomethyl ether acetate (PGMEA) and a polar solvent is preferable.
  • the mixing ratio may be appropriately determined in consideration of the compatibility between PGMEA and the polar solvent, but may be within the range of 9: 1 to 1: 9, more preferably 8: 2 to 2: 8. preferable.
  • the mass ratio of PGMEA: EL is preferably 8: 2 to 2: 8, more preferably 7: 3 to 3: 7.
  • a mixed solvent of at least one selected from among PGMEA and EL and ⁇ -petit-mouth rataton is also preferable.
  • the mixing ratio of the former and the latter is preferably 70: 30-95: 5.
  • the amount of the organic solvent used is not particularly limited, but it is a concentration that can be applied to a substrate and the like, and is appropriately set according to the coating film thickness. %, Preferably in the range of 5 to 15% by mass.
  • the positive resist composition of the present invention is further optional in order to improve the resist pattern shape, post exposure stability of the latent image formed oy the pattern-wise exposure of the resist layer, and the like.
  • component (C) nitrogen-containing organic compound (hereinafter referred to as component (C)) can be blended.
  • Amines particularly secondary lower aliphatic amines, are tertiary lower aliphatic amines. Is preferred.
  • the lower aliphatic amine is an alkyl or alkyl alcohol amine having 5 or less carbon atoms
  • examples of the secondary and tertiary amines include trimethylamine, jetylamine, triethylamine, di- n — Forces such as propylamine, tri-n-propylamine, tripentylamine, diethanolamine, triethanolamine, triisopropanolamine, etc.
  • Tertiary aldehyde such as triethanolamine, triisopropanolamine, etc. preferable.
  • Component (C) is usually used in the range of 0.01 to 5.0 parts by mass per 100 parts by mass of component (A).
  • Acid component (D) (hereinafter also referred to as component (D).)
  • the purpose is to prevent sensitivity deterioration due to the combination with the component (C) and to improve the resist pattern shape, post exposure stability of the latent image formed by the pattern-wise exposure of the resist layer, etc.
  • an organic component such as an organic carboxylic acid or an oxo acid of phosphorus or an acid component (D) (hereinafter referred to as the component (D)) that also has a derivative power can be contained as an optional component.
  • the (C) component and the (D) component can be used in combination, or V or one of them can be used.
  • organic carboxylic acid for example, malonic acid, succinic acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
  • Phosphoric acid or its derivatives include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid diphenyl ester, etc., phosphoric acid or derivatives thereof such as phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid Phosphonic acid such as n-butyl ester, phenol phosphonic acid, phosphonic acid diphenyl ester, phosphonic acid dibenzyl ester and derivatives thereof; phosphinic acid such as phosphinic acid, phenylphosphinic acid and Examples thereof include derivatives such as esters, and phosphonic acid is particularly preferable among these.
  • Component (D) is used in a proportion of 0.01 to 5.0 parts by mass per 100 parts by mass of component (A).
  • the positive resist composition of the present invention may further contain, if desired, miscible additives such as an additional resin for improving the performance of the resist film, a surfactant for improving coatability, and a plasticizer.
  • miscible additives such as an additional resin for improving the performance of the resist film, a surfactant for improving coatability, and a plasticizer.
  • stabilizers, colorants, antihalation agents and the like can be added and contained as appropriate.
  • the compound has at least one acid dissociable, dissolution inhibiting group (B), a compound capable of dissociating the dissolution inhibiting group by the action of the generated acid and generating an organic carboxylic acid.
  • the product (E) may be contained.
  • component (E) for example, a phenol derivative having a mass average molecular weight of 200 to 1000 and having 1 to 6 substituted or unsubstituted benzene nuclei is preferable.
  • Specific examples include compounds represented by the following general formula (1).
  • R ′ is an acid dissociable, dissolution inhibiting group.
  • the acid dissociable, dissolution inhibiting group R ' has so far been known as a chemical amplification type positive resist and can be arbitrarily selected.
  • tertiary alkyloxycarbol groups such as tert-butyloxycarbo ol group, tert amyloxycarbolo group; tert butyloxycarboromethyl group, tert butyloxycarboxyl- Tertiary alkyloxycarboalkyl group such as ruetyl group; Tertiary alkyl group such as tert butyl group and tert amyl group; Cyclic ether group such as tetrahydrobiral group and tetrahydrofuranyl group; An alkoxyalkyl group such as a methoxypropyl group is preferred and may be mentioned as one.
  • tert-butyloxycarbonyl group tert-butyloxycarboxylmethyl group, tert-butyl group, tetrahydrobiral group, ethoxyethyl group, 1-methylcyclohexyl group and 1-ethylcyclohexyl group are preferred. ,.
  • At least one acid dissociable, dissolution inhibiting group R needs to use a carboxylic acid generating group such as a tertiary alkyloxycarboalkyl group.
  • the positive resist composition of the present invention can be used for forming a resist pattern in the same manner as a conventional positive resist composition for KrF.
  • a LER with high rectangularity is reduced, and a resist pattern with excellent resolution performance can be obtained.
  • Such a resist pattern is highly practical. It also improves DOF and EL margins.
  • the structural unit (a2) having a latathone-containing monocyclic or polycyclic group has hydrophilicity, and the latathone-containing monocyclic or polycyclic group is bulky.
  • Al) is lower in alkali solubility than al), and as a result, a copolymer comprising the structural unit (al), the structural unit (a2), and the structural unit (a3) force is a polyhydroxystyrene that also includes only the structural unit (al). It is thought that this is related to the fact that the hydrophilicity is high and the alkali solubility is low.
  • the effect of improving the resolution performance, rectangularity, and LER in the present invention can be confirmed by, for example, observing the resist pattern obtained through the development process with a SEM (scanning electron microscope).
  • the positive resist composition of the present invention is coated on a substrate such as silicon wafer by a spinner or the like, and then prebeta is performed.
  • a substrate such as silicon wafer by a spinner or the like
  • the coating film of the positive resist composition is selectively exposed through a desired mask pattern, and then PEB (post-exposure heating) is performed.
  • PEB post-exposure heating
  • the steps so far can be performed using a known method.
  • the operating conditions and the like are preferably set as appropriate according to the composition and characteristics of the positive resist composition to be used.
  • the exposure is preferably performed using a KrF excimer laser, but is also useful for electron beam resists, EUV (extreme ultraviolet light), and the like.
  • a post-beta step after the alkali development may be included, and an organic or inorganic antireflection film may be provided between the substrate and the coating layer of the resist composition.
  • the heating temperature in the pre-beta and the heating temperature in the post-exposure heating (PEB) may generally be 90 ° C or more, but in order to form a resist pattern with good rectangularity, it is particularly 90 to 120 respectively. ° C, preferably 90-110 ° C is preferred. In addition, by setting this temperature range, the generation of microbridges can be effectively suppressed.
  • P-hydroxystyrene (hereinafter referred to as “PHS”) 24%, p-ethylphenol 43%, methanol 23%, water 10% mixed solution 933 g (hereinafter referred to as monomer 1 solution) ).
  • PHS P-hydroxystyrene
  • monomer 1 solution water 10% mixed solution 933 g
  • the obtained polymerization solution was dropped into 3500 g of toluene to precipitate a polymer, and then the supernatant was removed. Subsequently, the operation of dissolving in 500 g of methanol, reprecipitating in 3500 g of toluene, and removing the supernatant was repeated three times, and then redissolved in 100 g of methanol.
  • Propylene glycol monomethyl etherate (hereinafter referred to as “PGMEA”) was added while heating the resulting methanol solution under reduced pressure to drive out low-boiling solvents such as methanol, and a copolymer (precursor).
  • P containing 20% by mass A GMEA solution was prepared. This is designated as rosin 1.
  • Carbon 13 meaning carbon with a mass number of 13; the same applies hereinafter
  • Nuclear magnetic resonance spectrum ( 13 C-NMR) and analysis by GPC were performed to determine the composition (Mw, MwZMn) of the copolymer (
  • TFA trifluoroacetic acid
  • EVE 50% ethyl vinyl ether
  • This reaction product solution was passed through a filter settable 40QSH manufactured by Cuno Co., Ltd., and then concentrated under reduced pressure to prepare a PGMEA solution containing 30% by mass of an acetalized copolymer. This is designated as rosin 2.
  • This solution was analyzed by 13 C-NMR and GPC to obtain the acetalization rate, Mw, and MwZMn.
  • the acetalization rate means that the hydroxyl group of the precursor PHS unit was substituted with an acetal type acid dissociable, dissolution inhibiting group (1-ethoxy-1-ethyl group) that also induces ethyl vinyl ether force.
  • the ratio of the product is expressed in mol% (the same applies hereinafter).
  • the acetal ⁇ copolymer (resin 2) obtained in this synthesis example is composed of three structural units represented by the following chemical formula (14).
  • x: y: z (molar ratio) 54.6: 27.9: 17.
  • the acetal ⁇ copolymer (resin 3) obtained in this synthesis example is composed of three structural units represented by the chemical formula (14).
  • x: y: z (molar ratio) 63. 6: 18. 9: 17.
  • a positive resist composition was prepared using the resin 2 obtained in Synthesis Example 2 and the resin 3 obtained in Synthesis Example 3 as the component (A).
  • component (B) as a compound represented by the following chemical formula (2) 1.0 part by weight of the following chemical formula (3)
  • An organic antireflective coating material (trade name DUV-44, manufactured by Brew Science Co., Ltd.) was applied on an 8-inch silicon wafer and baked at 225 ° C for 60 seconds to form a 65 nm thick antireflective coating.
  • the positive resist composition obtained above is uniformly applied using a spinner, pre-betaned at 100 ° C. for 60 seconds on a hot plate, and dried to form a resist having a thickness of 287 nm. A layer was formed.
  • LZS pattern 120 nm line-and-space (1: 1) resist pattern
  • 3 ⁇ which is a measure indicating the LER of the pattern formed above, was obtained.
  • 3 ⁇ of the obtained pattern was 3.4 nm.
  • 3 ⁇ is the result of measuring the width of the resist pattern of the sample at 32 locations using the side length SEM (manufactured by Hitachi, Ltd., trade name “S-9220”)
  • the force is also three times the calculated standard deviation ( ⁇ ) (3 ⁇ ). This 3 ⁇ means that the smaller the value, the smaller the roughness of the resist pattern.
  • the depth of focus (DOF) was 0.5 m.
  • the exposure dose margin (EL margin) obtained in the range of ⁇ 10% for the 120 nmLZS pattern was 14.79%.
  • the positive resist composition of polyhydroxystyrene (Mw8000) was formed using the positive resist composition.
  • the substrate on which the LZS pattern was thus formed was evaluated in the same manner as in Example 1.
  • the force with which the 120 nm LZS pattern was formed had a round top shape.
  • the depth of focus range was 0.2 / z m
  • the exposure margin was 7.73%.
  • Example 1 compared with Comparative Example 1, the rectangularity of the resist pattern was better, the LER was reduced, and a fine resist pattern was obtained. In addition, the depth of focus and exposure margin were improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

This invention provides a positive-working resist composition, which has a high level of resolution and, at the same time, can improve at least one of rectangular profile, LER, DOF, and EL margin of a resist pattern, and a method for resist pattern formation. The positive-working resist composition comprises a resin component (A), which can undergo an increase in alkali solubility through the action of an acid, and an acid generating agent component (B) which generates an acid upon exposure to light. The resin component (A) comprises a copolymer (A1) comprising constitutional units (a1) containing a phenolic hydroxyl group, constitutional units (a2) containing a lactone-containing monocyclic or polycyclic group, and constitutional units (a3) containing an acid-dissociative dissolution inhibiting group.

Description

明 細 書  Specification
ポジ型レジスト組成物およびレジストパターン形成方法  Positive resist composition and resist pattern forming method
技術分野  Technical field
[0001] 本発明は、ポジ型レジスト組成物、および該ポジ型レジスト組成物を用いたレジスト ノ《ターン形成方法に関する。  [0001] The present invention relates to a positive resist composition and a resist pattern forming method using the positive resist composition.
背景技術  Background art
[0002] 近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩 により急速に微細化が進んで 、る。微細化の手法としては一般に露光光源の短波長 化が行われている。具体的には、従来は、 g線、 i線に代表される紫外線が用いられて いたが、現在では、 KrFエキシマレーザ(248nm)が導入され、さらに、 ArFエキシマ レーザ(193nm)が導入され始めている。  In recent years, in the manufacture of semiconductor elements and liquid crystal display elements, miniaturization has rapidly progressed due to advances in lithography technology. As a technique for miniaturization, the wavelength of an exposure light source is generally shortened. Specifically, in the past, ultraviolet rays typified by g-line and i-line were used, but now KrF excimer laser (248 nm) has been introduced, and ArF excimer laser (193 nm) has begun to be introduced. Yes.
[0003] 微細な寸法のパターンを再現可能な高解像性の条件を満たすレジスト材料の 1つ として、酸の作用によりアルカリ可溶性が変化するベース樹脂と、露光により酸を発生 する酸発生剤を有機溶剤に溶解した化学増幅型レジスト組成物が知られている。  [0003] As one of resist materials that satisfy the high-resolution conditions that can reproduce patterns with fine dimensions, a base resin that changes alkali solubility under the action of an acid and an acid generator that generates an acid upon exposure to light. A chemically amplified resist composition dissolved in an organic solvent is known.
KrFエキシマレーザを用いて露光する方法に好適なレジスト材料として提案されて いる化学増幅型ポジ型レジスト組成物は、一般に、ベース榭脂として、ポリヒドロキシ スチレン系榭脂の水酸基の一部を酸解離性溶解抑制基で保護したものが用いられ ている(例えば、特許文献 1参照)。  Chemically amplified positive resist compositions, which have been proposed as resist materials suitable for exposure using a KrF excimer laser, generally use a part of the hydroxyl groups of polyhydroxystyrene-based resin as acid dissociation as the base resin. Those protected with a soluble dissolution inhibiting group are used (for example, see Patent Document 1).
また、その酸解離性溶解抑制基としては、 1—エトキシェチル基に代表される鎖状 エーテル基又はテトラヒドロビラニル基に代表される環状エーテル基等のいわゆるァ セタール基、 tert—ブチル基に代表される第三級アルキル基、 tert—ブトキシカルボ -ル基に代表される第三級アルコキシカルボニル基等が主に用いられている。 特許文献 1:特開平 5 - 249682号公報  The acid dissociable, dissolution inhibiting group is represented by a so-called acetal group such as a chain ether group represented by a 1-ethoxyethyl group or a cyclic ether group represented by a tetrahydrobiranyl group, and a tert-butyl group. Tertiary alkyl groups, tertiary alkoxycarbonyl groups typified by tert-butoxycarbonyl groups, etc. are mainly used. Patent Document 1: Japanese Patent Application Laid-Open No. 5-249682
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 近年、レジストパターンの微細化はますます進み、高解像性の要望がさらに高まる につれ、レジストパターンの矩形性、ラインパターン側壁表面が不均一になるラインェ ッジラフネス (LER)等の形状の問題や、焦点深度 (DOF)、パターン寸法の変動が 所定の範囲内となるときの露光量の変化量を表す露光量マージン (ELマージン)等 の問題の改善が重要な問題となっている。 [0004] In recent years, resist patterns have become increasingly finer, and as the demand for high resolution has further increased, the linearity of resist patterns and the line pattern sidewall surface becomes non-uniform. Improvements in shape problems such as roughness (LER), and exposure margin (EL margin), which represents the amount of change in exposure when the variation in depth of focus (DOF) and pattern dimensions are within the specified range It has become an important issue.
本発明は、上記事情に鑑みてなされたものであって、高解像性を有するとともに、レ ジストパターンの矩形性、 LER、 DOF、および ELマージンの少なくとも 1つを改善で きるポジ型レジスト組成物およびレジストパターンの形成方法を提供することを目的と する。  The present invention has been made in view of the above circumstances, and has a high resolution and a positive resist composition that can improve at least one of the rectangularity of a resist pattern, LER, DOF, and EL margin. It is an object of the present invention to provide an object and a method for forming a resist pattern.
課題を解決するための手段  Means for solving the problem
[0005] 上記の目的を達成するために、本発明は以下の構成を採用した。 In order to achieve the above object, the present invention employs the following configuration.
すなわち、本発明のポジ型レジスト組成物は、酸の作用によりアルカリ可溶性が増 大する樹脂成分 (A)と、露光により酸を発生する酸発生剤成分 (B)とを含むポジ型レ ジスト組成物において、前記榭脂成分 (A)が、フエノール性水酸基を有する構成単 位 (al)と、ラタトン含有単環又は多環式基を有する構成単位 (a2)と、酸解離性溶解 抑制基を有する構成単位 (a3)とを有する共重合体 (A1)を含有することを特徴とす る。  That is, the positive resist composition of the present invention comprises a positive resist composition comprising a resin component (A) whose alkali solubility increases by the action of an acid and an acid generator component (B) that generates an acid upon exposure to light. In the product, the resin component (A) comprises a structural unit (al) having a phenolic hydroxyl group, a structural unit (a2) having a ratatone-containing monocyclic or polycyclic group, and an acid dissociable, dissolution inhibiting group. And a copolymer (A1) having a structural unit (a3).
本発明のレジストパターン形成方法は、基板上に、本発明のポジ型レジスト組成物 を用いてポジ型レジスト膜を形成し、該ポジ型レジスト膜に対して選択的に露光処理 を行った後、現像処理を施してレジストパターンを形成することを特徴とする。  In the resist pattern forming method of the present invention, a positive resist film is formed on a substrate using the positive resist composition of the present invention, and the positive resist film is selectively exposed, A resist pattern is formed by performing development processing.
[0006] なお、本発明において、露光には電子線の照射も含まれる。「単位」および「構成単 位」は 、ずれも重合体を構成するモノマー単位を意味する。 In the present invention, exposure includes electron beam irradiation. “Unit” and “constituent unit” mean a monomer unit constituting a polymer.
発明の効果  The invention's effect
[0007] 本発明によれば、高解像性を有するとともに、レジストパターンの矩形性、 LER、 D OF、および ELマージンの少なくとも 1つを改善できるポジ型レジスト糸且成物およびレ ジストパターンの形成方法が得られる。  [0007] According to the present invention, a positive resist yarn composition and a resist pattern that have high resolution and can improve at least one of the rectangularity of the resist pattern, LER, D OF, and EL margin. A forming method is obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明のポジ型レジスト組成物は、酸の作用によりアルカリ可溶性が増大する榭脂 成分 (A)と、露光により酸を発生する酸発生剤成分 (B)とを含む。 [0008] The positive resist composition of the present invention comprises a resin component (A) whose alkali solubility is increased by the action of an acid, and an acid generator component (B) which generates an acid upon exposure.
[0009] ,榭脂成分 (A) (以下、(A)成分ということもある。 ) 榭脂成分 (A)は、フエノール性水酸基を有する構成単位 (al)と、ラタトン含有単環 又は多環式基を有する構成単位 (a2)と、酸解離性溶解抑制基を有する構成単位 (a 3)とを有する共重合体 (A1) (以下、(A1)成分ということもある。)を含有する。 [0009], Axillary component (A) (hereinafter, also referred to as (A) component) The resin component (A) comprises a structural unit (al) having a phenolic hydroxyl group, a structural unit (a2) having a ratatone-containing monocyclic or polycyclic group, and a structural unit having an acid dissociable, dissolution inhibiting group (a 3) (A1) (hereinafter also referred to as component (A1)).
(A)成分においては、露光により(B)成分から発生した酸が作用すると、(A1)成分 に含まれる酸解離性溶解抑制基が解離し、これによつて (A)成分全体がアルカリ不 溶性カゝらアルカリ可溶性に変化する。  In component (A), when the acid generated from component (B) acts upon exposure, the acid dissociable, dissolution inhibiting group contained in component (A1) dissociates, and as a result, the entire component (A) is alkali-free. Changes from soluble to alkali-soluble.
そのため、レジストパターンの形成において、マスクパターンを介して露光すると又 は露光に加えて露光後加熱すると、露光部はアル力リ可溶性へ転じる一方で未露光 部はアルカリ不溶性のまま変化しないので、アルカリ現像することによりポジ型のレジ ストパターンが形成できる。  Therefore, in the formation of a resist pattern, if exposure is performed through a mask pattern or if post-exposure heating is performed in addition to exposure, the exposed portion turns to Al force-resoluble, while the unexposed portion remains alkali-insoluble. By developing, a positive resist pattern can be formed.
[0010] ' (Al)成分 [0010] '(Al) component
<構成単位 (al) >  <Structural unit (al)>
構成単位 (al)は、フエノール性水酸基を有する構成単位である。好ましくは、下記 一般式 (I)で表される構成単位 (al— 1)、すなわち( α—メチル)ヒドロキシスチレン カゝら誘導される構成単位である。  The structural unit (al) is a structural unit having a phenolic hydroxyl group. Preferred is a structural unit (al-1) represented by the following general formula (I), that is, a structural unit derived from (α-methyl) hydroxystyrene.
なお、「( α—メチノレ)ヒドロキシスチレン」とは、ヒドロキシスチレンと α—メチノレヒドロ キシスチレンの一方あるいは両方を意味する。換言すれば、「 —メチル)ヒドロキシ スチレン」は、ヒドロキシスチレンと α—メチルヒドロキシスチレンの総称である。「( α —メチル)ヒドロキシスチレン力も誘導される構成単位」は、一般式 (I)から明らかであ る力 (α—メチル)ヒドロキシスチレンのエチレン性二重結合が開裂して構成される 構成単位を意味する。  The term “(α-methyleno) hydroxystyrene” means one or both of hydroxystyrene and α-methylenohydroxystyrene. In other words, “—methyl) hydroxystyrene” is a general term for hydroxystyrene and α-methylhydroxystyrene. “Structural unit from which (α-methyl) hydroxystyrene force is also derived” is a structural unit that is formed by the cleavage of the ethylenic double bond of (α-methyl) hydroxystyrene, which is evident from the general formula (I) Means.
構成単位(al— 1)において、水酸基の位置は、 o—位、 m—位、 p—位のいずれで もよ 、が、容易に入手可能できて低価格であることから p—位が好ま 、。  In the structural unit (al-1), the position of the hydroxyl group can be any of the o-position, m-position, and p-position, but the p-position is preferred because it is readily available and inexpensive. ,.
[0011] [化 1] [0011] [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
[0012] (式中、 Rは水素原子またはメチル基である。 ) [In the formula, R is a hydrogen atom or a methyl group.]
[0013] <構成単位 (a2) >  [0013] <Structural unit (a2)>
構成単位 (a2)は、ラタトン含有単環又は多環式基を有する構成単位である。  The structural unit (a2) is a structural unit having a latathone-containing monocyclic or polycyclic group.
本発明において、ラタトン含有単環又は多環式基とは、ラタトン環力もなる単環式基 またはラタトン環を有する多環式基である。このときラタトン環とは、 CO— O 構造 を含むひとつの環を示し、これをひとつの目の環として数える。したがって、ラタトン環 のみの場合はラタトン含有単環式基、さらに他の環構造を有する場合は、その構造 に関わらずラタトン含有多環式基と称するものとする。  In the present invention, the ratatone-containing monocyclic or polycyclic group is a monocyclic group having a rataton ring force or a polycyclic group having a rataton ring. At this time, the Rataton ring means one ring containing the CO—O structure, and this is counted as the first ring. Therefore, in the case of only a rataton ring, it is called a rataton-containing monocyclic group, and when it has another ring structure, it is called a rataton-containing polycyclic group regardless of the structure.
[0014] 構成単位 (a2)は、好ましくは下記一般式 (II)で表される構成単位 (a2— 1)、すな わち (メタ)アクリル酸のカルボキシ基の水素原子が X (ラタトン含有単環又は多環式 基)で置換された (メタ)アクリルレートエステルカゝら誘導される構成単位である。なお、 本明細書にぉ 、て、「 (メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方ある 、は 両方を意味する。換言すれば、「(メタ)アクリル酸」はメタクリル酸とアクリル酸の総称 である。本明細書において、「(メタ)アタリレートとは、メタタリレートとアタリレートの一 方或いは両方を意味する。換言すれば、「(メタ)アタリレート」とはメタタリレートとアタリ レートの一方ある 、は両方を意味する。  [0014] The structural unit (a2) is preferably the structural unit (a2-1) represented by the following general formula (II), that is, the hydrogen atom of the carboxy group of (meth) acrylic acid is X (latatone-containing). A structural unit derived from a (meth) acrylate ester substituted with a monocyclic or polycyclic group). In the present specification, “(meth) acrylic acid” means either methacrylic acid or acrylic acid. In other words, “(meth) acrylic acid” is a general term for methacrylic acid and acrylic acid. In the present specification, “(meth) acrylate” means one or both of meta acrylate and acrylate. In other words, “(meth) acrylate” means either one of meta acrylate or acrylate. Means.
[0015] [化 2]  [0015] [Chemical 2]
Figure imgf000005_0002
[0016] (式中、 Rは水素原子またはメチル基であり、 Xはラタトン含有単環又は多環式基を表 す。)
Figure imgf000005_0002
[In the formula, R represents a hydrogen atom or a methyl group, and X represents a ratatone-containing monocyclic or polycyclic group.]
[0017] 具体的に、構成単位 (a2)としては、下記一般式 (IV)で表される構成単位 (a2— 11 )、下記一般式 (V)で表される構成単位 (a2— 12)、下記一般式 (VI)で表される構成 単位 (a2— 13)、および下記一般式 (VII)で表される構成単位 (a2— 14)、力もなる 群力 選ばれる少なくとも 1種が好ましく用いられる。  Specifically, as the structural unit (a2), a structural unit (a2-11) represented by the following general formula (IV) and a structural unit (a2-12) represented by the following general formula (V): , A structural unit (a2-13) represented by the following general formula (VI), and a structural unit (a2-14) represented by the following general formula (VII), at least one selected from group power is preferably used. It is done.
特に好ま 、のは、一般式 (VI)で表される構成単位 (a2- 13)である。  Particularly preferred is the structural unit (a2-13) represented by the general formula (VI).
[0018] [化 3]  [0018] [Chemical 3]
Figure imgf000006_0001
Figure imgf000006_0001
[0021] (式中、 Rは水素原子またはメチル基である。 ) [0022] [化 5] [In the formula, R is a hydrogen atom or a methyl group.] [0022] [Chemical 5]
Figure imgf000007_0001
Figure imgf000007_0001
[0023] 一般式 (VI)に示される化合物は、カルボキシル酸素の結合位置が 5位又は 6位の異 性体の混合物として存在する。 [0023] The compound represented by the general formula (VI) exists as a mixture of heterogeneous substances in which the binding position of carboxyl oxygen is at the 5th or 6th position.
(式中、 Rは水素原子またはメチル基である。 )  (In the formula, R is a hydrogen atom or a methyl group.)
[0024] [化 6] [0024] [Chemical 6]
Figure imgf000007_0002
Figure imgf000007_0002
[0025] (式中、 Rは水素原子またはメチル基である。 ) [In the formula, R is a hydrogen atom or a methyl group.]
[0026] <構成単位 (a3) >  [0026] <Structural unit (a3)>
構成単位 (a3)は酸解離性溶解抑制基を有する構成単位である。構成単位 (a3)は 、特に限定されず、従来の化学増幅型の KrF用ポジ型レジスト組成物および ArF用 ポジ型レジスト組成物におけるベース榭脂として提案されているヒドロキシスチレン系 榭脂、(メタ)アクリル酸系榭脂等において、酸解離性溶解抑制基を有する構成単位 として提案されて 、るものを適宜用いることができる。 構成単位 (a3)として、好ましくは、下記一般式 (III)で表される構成単位 (a3— 1)、 すなわち( aーメチル)ヒドロキシスチレンの水酸基の水素原子が Y (酸解離性溶解抑 制基)で置換された構成単位、および下記一般式 (m)で表される構成単位 (a3 - 2) 、すなわち(メタ)アクリル酸のカルボキシ基の水素原子が Y (酸解離性溶解抑制基) で置換された構成単位力 選ばれる少なくとも 1種が用いられる。特に好ましくは、下 記一般式 (ΠΙ)で表される構成単位 (a3 - l)である。 The structural unit (a3) is a structural unit having an acid dissociable, dissolution inhibiting group. The structural unit (a3) is not particularly limited, and is a hydroxystyrene-based resin (meta) that has been proposed as a base resin for conventional chemically amplified KrF positive resist compositions and ArF positive resist compositions. ) In acrylic acid-based rosin and the like, those proposed as a structural unit having an acid dissociable, dissolution inhibiting group can be appropriately used. As the structural unit (a3), preferably, the structural unit (a3-1) represented by the following general formula (III), that is, the hydrogen atom of the hydroxyl group of (a-methyl) hydroxystyrene is Y (acid-dissociable, dissolution inhibiting group). ) And the structural unit (a3-2) represented by the following general formula (m), that is, the hydrogen atom of the carboxy group of (meth) acrylic acid is Y (acid dissociable, dissolution inhibiting group). Replaced structural unit force At least one selected is used. Particularly preferred is a structural unit (a3-l) represented by the following general formula (ΠΙ).
[0027] [化 7]  [0027] [Chemical 7]
Figure imgf000008_0001
Figure imgf000008_0001
(式中、 Rは水素原子またはメチル基であり、 Yは酸解離性溶解抑制基を表す。 ) [0028] [化 8] (Wherein R represents a hydrogen atom or a methyl group, and Y represents an acid dissociable, dissolution inhibiting group.) [0028] [Chemical Formula 8]
Figure imgf000008_0002
Figure imgf000008_0002
(式中、 Rは水素原子またはメチル基であり、 Yは酸解離性溶解抑制基を表す。 ) [0029] 酸解離性溶解抑制基 Yの具体例としては、アルコキシアルキル基、好ましくは 1 アルコキシアルキル基、第 3級アルキルォキシカルボニル基、第 3級アルキル基、第 3 級アルコキシカルボ-ルアルキル基及び環状エーテル基等が挙げられる。 (In the formula, R represents a hydrogen atom or a methyl group, and Y represents an acid dissociable, dissolution inhibiting group.) [0029] Specific examples of the acid dissociable, dissolution inhibiting group Y include an alkoxyalkyl group, preferably 1 alkoxy Examples thereof include an alkyl group, a tertiary alkyloxycarbonyl group, a tertiary alkyl group, a tertiary alkoxycarboalkyl group, and a cyclic ether group.
[0030] 前記 1 アルコキシアルキル基は、下記一般式 (VIII)で表される、 1位が鎖状、分 岐状、又は環状のアルコキシ基で置換された構造である。  [0030] The 1 alkoxyalkyl group has a structure represented by the following general formula (VIII), in which the 1-position is substituted with a chain, branch, or cyclic alkoxy group.
[0031] [化 9] (VIII)[0031] [Chemical 9] (VIII)
Figure imgf000009_0001
Figure imgf000009_0001
[0032] (式中、 R1は水素原子または炭素数 1〜2のアルキル基を表し、 R2は炭素数 1〜12 の鎖状、分岐状、または環状のアルキル基を表し、 R1のアルキル基の末端と、 の 鎖状または分岐状のアルキル基の末端とが結合して環を形成して 、てもよ 、。 ) 具体例としては、 1ーメトキシェチル基、 1 エトキシェチル基、 l—iso プロポキシ ェチル基、 1 n ブトキシェチル基、 1 tert ブトキシェチル基、メトキシメチル基 、エトキシメチル基、 iso プロポキシメチル基、 n ブトキシメチル基、 tert ブトキシ メチル基等の 1 アルコキシアルキル基; 1 シクロペンチルォキシェチル基、 1ーシ クロへキシルォキシェチル基、 1—トリシクロ [5.2.1.02'6]デ力-ルォキシェチル基、シ クロペンチルォキシメチル基、シクロへキシルォキシメチル基、トリシクロ [5.2.1.02'6] デ力-ルォキシメチル基等の脂環構造を有する 1 アルコキシアルキル基;テトラヒド ロビラ-ル基、テトラヒドロフラニル基等の環状エーテル基等が挙げられる。 [0032] (wherein, R 1 represents a hydrogen atom or an alkyl group having a carbon number of 1 to 2, R 2 represents a linear, branched, or cyclic alkyl group having 1 to 12 carbon atoms, the R 1 The end of the alkyl group and the end of the chain or branched alkyl group may be combined to form a ring.) Specific examples include a 1-methoxyethyl group, 1 ethoxyethyl group, l-iso propoxy Echiru group, 1 n Butokishechiru group, 1 tert Butokishechiru group, methoxymethyl group, ethoxymethyl group, i so propoxymethyl radical, n-butoxymethyl group, 1 alkoxyalkyl groups such as tert-butoxy methyl group; 1-cyclopentyl Ruo key Chez chill Group, 1-cyclohexyloxyl group, 1-tricyclo [5.2.1.0 2 ' 6 ] de-loxychetyl group, cyclopentyloxymethyl group, cyclohexyloxymethyl group, tricyclo [5 .2.1.0 2'6] de force - Ruokishimechiru 1 alkoxyalkyl group having an alicyclic structure such as groups; Tetorahido Rovira - group, and cyclic ether groups such as tetrahydrofuranyl group.
[0033] 前記第 3級アルキル基としては、 tert ブチル基、 tert—ァミル基等の鎖状第 3級 アルキル基; 1ーメチルー 1ーシクロペンチル基、 1ーェチルー 1ーシクロペンチル基 、 1—メチル 1—シクロへキシル基、 1—ェチル 1—シクロへキシル基、 2—メチル 2—ァダマンチル基、 2—ェチルー 2—ァダマンチル基、 2—プロピル 2—ァダマ ンチル基、 2— (1—ァダマンチル) 2 プロピル基、 8—メチル 8 トリシクロ [5.2. 1.02'6]デ力-ル基、 8 ェチル 8 トリシクロ [5.2.1.02'6]デ力-ル基、 8—メチル— 8 テトラシクロ [4.4.0.12'5.17'10]ドデ力-ル基、 8 -ェチル 8 テトラシクロ [4.4.0. 12'5.1"°]ドデカニル基等の脂環構造を有する第 3級アルキル基等が挙げられる。 前記第 3級アルキルォキシカルボ-ル基としては、 tert ブチルォキシカルボ-ル 基、 tert—ァミルォキシカルボ-ル基等が挙げられる。 [0033] Examples of the tertiary alkyl group include chain tertiary alkyl groups such as tert butyl group and tert-amyl group; 1-methyl-1-cyclopentyl group, 1-ethyl-1-cyclopentyl group, 1-methyl 1-cyclo Hexyl group, 1-ethyl 1-cyclohexyl group, 2-methyl 2-adamantyl group, 2-ethyl-2-adamantyl group, 2-propyl 2-adamantyl group, 2- (1-adamantyl) 2-propyl group, 8-methyl-8-tricyclo [5.2 1.0 2. '6] de force - group, 8 Echiru 8 tricyclo [5.2.1.0 2' 6] dec force - group, 8-methyl - 8 tetracyclo [4.4.0.1 2 '5 .1 7 '10] de de force - group, 8 -. Echiru 8 tetracyclo [4.4.0 1 2' 5 .1 " °] tertiary alkyl group having an alicyclic structure such as dodecanyl group Examples of the tertiary alkyloxycarbonyl group include a tert-butyloxycarboxyl group, a tert-amino group. Ruokishikarubo - group, and the like.
前記第 3級アルコキシカルボ-ルアルキル基としては、 tert-ブチルォキシカルボ- ルメチル基、 tert-アミルォキシカルボ-ルメチル基等が挙げられる。  Examples of the tertiary alkoxycarboalkyl group include a tert-butyloxycarbonylmethyl group, a tert-amyloxycarboromethyl group, and the like.
[0034] これらの中でも、解像性能に優れることから、 1 アルコキシアルキル基および第 3 級アルキル基が好ましく、特に 1 アルコキシアルキル基が好まし 、。それらの中でも 特に、 1 エトキシェチル基が好ましい。 [0034] Among these, the 1-alkoxyalkyl group and the 3rd- Secondary alkyl groups are preferred, especially 1 alkoxyalkyl groups. Among them, 1 ethoxyethyl group is particularly preferable.
[0035] 本発明のポジ型レジスト組成物にぉ 、て、共重合体 (A1)を構成する全構成単位 に対する構成単位 (a2)の割合は 5〜50モル%が好ましぐ 10〜30モル%がより好 ましい。構成単位 (a2)が上記の範囲より多いと、現像液に対する溶解性が不足し、 レジストパターンが形成できなくなるおそれがある。他方、少ないと、構成単位 (a2)を 用いたことによる効果が十分に得られな!/、。 [0035] In the positive resist composition of the present invention, the proportion of the structural unit (a2) to the total structural units constituting the copolymer (A1) is preferably 5 to 50 mol%, preferably 10 to 30 mol. % Is more preferred. When the structural unit (a2) is more than the above range, the solubility in the developer is insufficient, and a resist pattern may not be formed. On the other hand, if the amount is small, the effect of using the structural unit (a2) cannot be obtained sufficiently! /.
共重合体 (A1)を構成する全構成単位に対する構成単位 (al)と (a3)の合計の割 合は、現像液に対する良好な溶解性を確保し、本発明による効果を得るために、 40 〜95モル0 /0であることが好ましぐ 50〜90モル0 /0力より好ましい。 The total proportion of the structural units (al) and (a3) with respect to all structural units constituting the copolymer (A1) is to ensure good solubility in the developer and to obtain the effects of the present invention. it is preferable preferable instrument 50-90 mole 0/0 power is 95 mol 0/0.
構成単位 (al)と (a3)の合計に対する構成単位 (a3)の割合は 5〜50モル%が好 ましぐ 10〜30モル%がより好ましい。該構成単位 (a3)の割合を上記範囲の上限以 下とすることにより、特に現像後のレジストパターンの矩形性が良好なものとなる。また 、現像後のレジストパターンの現像欠陥 (ディフエタト)を効果的に防止することができ る。一方、構成単位 (a3)の割合を上記範囲の下限以上とすることにより、良好な解像 性能が得られる。  The ratio of the structural unit (a3) to the total of the structural units (al) and (a3) is preferably 5 to 50 mol%, more preferably 10 to 30 mol%. By setting the proportion of the structural unit (a3) to be equal to or less than the upper limit of the above range, the rectangularity of the resist pattern after development is particularly good. In addition, it is possible to effectively prevent development defects (differences) in the resist pattern after development. On the other hand, when the proportion of the structural unit (a3) is not less than the lower limit of the above range, good resolution performance can be obtained.
また、共重合体 (A1)中、構成単位 (al)と構成単位 (a2)と構成単位 (a3)の合計量 は、共重合体 (A1)を構成する全構成単位に対し、 80モル%以上であることが好まし い。 80モル%より少ないと、解像性が劣化する傾向がある。構成単位 (al)と構成単 位 (a2)と構成単位 (a3)の合計は、より好ましくは 90モル%以上であり、 100モル% が最も好ましい。  In the copolymer (A1), the total amount of the structural unit (al), the structural unit (a2), and the structural unit (a3) is 80 mol% with respect to all the structural units constituting the copolymer (A1). It is preferable that this is the case. If it is less than 80 mol%, the resolution tends to deteriorate. The total of the structural unit (al), the structural unit (a2), and the structural unit (a3) is more preferably 90 mol% or more, and most preferably 100 mol%.
[0036] <その他の構成単位 (a4) > [0036] <Other structural units (a4)>
共重合体 (A1)は、構成単位 (al)、構成単位 (a2)、および構成単位 (a3)のほか に、酸安定性溶解抑制基を有する構成単位 (a4)を含んでも良い。構成単位 (a4)は 特に限定されず、従来の化学増幅型の KrF用ポジ型レジスト組成物および ArF用ポ ジ型レジスト組成物におけるベース榭脂として提案されているヒドロキシスチレン系榭 脂、(メタ)アクリル酸系榭脂において、酸安定性溶解抑制基を有する構成単位として 提案されて 、るものを適宜用いることができる。 [0037] 構成単位 (a4)として好ましくは、下記一般式 (IX)で表される構成単位 (a4— 1)、 すなわち(α メチル)スチレン力も誘導される構成単位、および下記一般式 (ix)で 表される構成単位 (a4 2)、即ち (メタ)アクリル酸のカルボキシ基の水素原子力 ¾ ( 酸安定性溶解抑制基)で置換された構成単位カゝら選ばれる少なくとも 1種が用いられ る。 The copolymer (A1) may contain a structural unit (a4) having an acid-stable dissolution inhibiting group in addition to the structural unit (al), the structural unit (a2), and the structural unit (a3). The structural unit (a4) is not particularly limited, and is a hydroxystyrene-based resin (meta) that has been proposed as a base resin in the conventional chemically amplified positive resist composition for KrF and the positive resist composition for ArF. ) In acrylic acid-based rosin, those proposed as a structural unit having an acid-stable dissolution inhibiting group can be appropriately used. [0037] The structural unit (a4) is preferably the structural unit (a4-1) represented by the following general formula (IX), that is, the structural unit from which (α-methyl) styrene force is also derived, and the following general formula (ix) At least one selected from the structural unit (a42), ie, the structural unit substituted with a hydrogen nuclear atom (acid-stable dissolution inhibiting group) of the carboxy group of (meth) acrylic acid is used. .
中でもドライエッチング耐性に優れることから、一般式 (IX)で表される構成単位 (a4 —1)が特に好ましい。  Among them, the structural unit (a4-1) represented by the general formula (IX) is particularly preferable because of excellent dry etching resistance.
尚、酸安定性溶解抑制基とは、酸によって解離しない基を意味する。  The acid stable dissolution inhibiting group means a group that is not dissociated by an acid.
[0038] [化 10] [0038] [Chemical 10]
Figure imgf000011_0001
Figure imgf000011_0001
[0039] (式中、 Rは水素原子又はメチル基であり、 R3は、炭素数] 5の直鎖又は分岐状ァ ルキル基であり、 nは 0または 1〜3の整数である。 ) (Wherein R is a hydrogen atom or a methyl group, R 3 is a linear or branched alkyl group having 5 carbon atoms, and n is 0 or an integer of 1 to 3. )
[0040] [化 11] [0040] [Chemical 11]
Figure imgf000011_0002
[0041] (式中、 Rは水素原子またはメチル基であり、 Zは酸安定性溶解抑制基を表す。 ) [0042] 一般式 (IX)における、 R3は、炭素数 1〜5の直鎖又は分岐状アルキル基であり、具 体的にはメチル基、ェチル基、プロピル基、イソプロピル基、 n—ブチル基、イソプチ ル基、 tert—ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などが挙げら れる。工業的にはメチル基又はェチル基が好ま 、。
Figure imgf000011_0002
(In the formula, R represents a hydrogen atom or a methyl group, and Z represents an acid-stable dissolution inhibiting group.) [0042] In the general formula (IX), R 3 represents a straight chain having 1 to 5 carbon atoms. A chain or branched alkyl group, specifically a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, etc. Are listed. Industrially, a methyl group or an ethyl group is preferred.
nは、 0または 1〜3の整数である。これらのうち、 nは 0または 1であることが好ましく n is 0 or an integer of 1 to 3. Of these, n is preferably 0 or 1
、特に工業上 0であることが好ましい。 In particular, it is preferably 0 from an industrial viewpoint.
なお、 nが 1〜3である場合には、 R3の置換位置は o—位、 m—位、 p—位のいず れでもよぐさらに、 nが 2または 3の場合には、任意の置換位置を組み合わせることが できる。 In addition, when n is 1 to 3 , the substitution position of R 3 may be o-position, m-position, or p-position. Furthermore, when n is 2 or 3, it is optional. The replacement positions of can be combined.
[0043] また、一般式 (ix)における酸安定性溶解抑制基 Zの具体例としては、メチル基、ェ チル基、イソプロピル基等の直鎖状、分岐状のアルキル基;シクロペンチル基、シクロ へキシル基、イソボル-ル基、トリシクロ [5.2.1.02'6]デ力-ル基、 2—ァダマンチル基 、テトラシクロ [4.4.0.12'5.17'10]ドデシル基等の脂環構造を有するアルキル基を挙げ ることがでさる。 [0043] Specific examples of the acid-stable dissolution inhibiting group Z in the general formula (ix) include linear and branched alkyl groups such as a methyl group, an ethyl group, and an isopropyl group; a cyclopentyl group, a cyclohexane hexyl group, Isoboru - group, tricyclo [5.2.1.0 2 '6] de force - group, 2-Adamanchiru group, tetracyclo [4.4.0.1 2' to 5.1 7 '10] alicyclic structure such as dodecyl Mention may be made of the alkyl groups possessed.
[0044] 本発明にお 、て、構成単位 (a4)は必須ではな 、が、これを含有させると、焦点深 度が向上する、耐ドライエッチング性が向上するなどの利点が得られる。  [0044] In the present invention, the structural unit (a4) is not essential, but if it is contained, advantages such as an improved focal depth and improved dry etching resistance can be obtained.
構成単位 (a4)を用いる場合、共重合体 (A1)中の構成単位 (a4)の割合は、共重 合体 (A1)を構成する全構成単位の合計の 0. 5〜: LOモル%であることが好ましぐよ り好ましくは 2〜5モル%である。構成単位 (a4)が上記範囲より多いと、現像液に対 する溶解性が劣化する傾向にある。  In the case where the structural unit (a4) is used, the proportion of the structural unit (a4) in the copolymer (A1) is 0.5 to LO mol% of the total of all the structural units constituting the copolymer (A1). It is preferably 2 to 5 mol%. When the structural unit (a4) is more than the above range, the solubility in the developer tends to deteriorate.
[0045] 共重合体 (A1)の質量平均分子量 Mw (ゲルパーミエーシヨンクロマトグラフィー (G PC)によるポリスチレン換算、以下同様)は特に限定するものではないが、好ましくは 3000〜30000、さらに好ましくは 5000〜20000とされる。 また、共重合体 (A1)の 分散度 (MwZMn比、 Mnは数平均分子量である)については、該分散度が小さい と解像性に優れるため好ましい。具体的には、 2. 0以下が好ましぐより好ましくは 1. 7以下である。  [0045] The mass average molecular weight Mw (in terms of polystyrene by gel permeation chromatography (GPC), the same applies hereinafter) of the copolymer (A1) is not particularly limited, but is preferably 3000 to 30000, more preferably 5000 to 20000. As for the degree of dispersion (MwZMn ratio, Mn is the number average molecular weight) of the copolymer (A1), it is preferable that the degree of dispersion is small because of excellent resolution. Specifically, it is preferably 2.0 or less, more preferably 1.7 or less.
[0046] 共重合体 (A1)の製造方法としては、例えば、〔1〕構成単位 (al)に相当するモノマ 一と、構成単位 (a2)に相当するモノマーと、構成単位 (a3)の酸解離性溶解抑制基 を導入する前の状態の構成単位に相当するモノマーを共重合させた後、構成単位( a3)の水酸基又はカルボキシ基を酸解離性溶解抑制基で保護する方法、〔2〕予め 酸解離性溶解抑制基が導入された構成単位 (a3)に相当するモノマーを調整し、こ のモノマーを構成単位(al)に相当するモノマー、構成単位(a2)に相当するモノマ 一と共重合させる方法、〔3〕構成単位 (a3)に相当するモノマーを構成単位 (a2)に相 当するモノマーと共重合させた後、加水分解などにより酸解離性溶解抑制基で保護 された構成単位 (a3)の置換基の一部を水酸基に変えて構成単位 (al)を精製する 方法等によって得ることができる。 [0046] Examples of the method for producing the copolymer (A1) include [1] a monomer corresponding to the structural unit (al). The monomer corresponding to the structural unit (a2) and the monomer corresponding to the structural unit in the state before the introduction of the acid dissociable, dissolution inhibiting group of the structural unit (a3) are copolymerized and then the structural unit (a3 ), And (2) a monomer corresponding to the structural unit (a3) into which an acid dissociable, dissolution inhibiting group has been introduced in advance. A monomer corresponding to the unit (al), a method of copolymerizing with the monomer corresponding to the unit (a2), and [3] a monomer corresponding to the unit (a3) and a monomer corresponding to the unit (a2). After polymerization, it can be obtained by a method of purifying the structural unit (al) by changing some of the substituents of the structural unit (a3) protected with acid dissociable, dissolution inhibiting groups by hydrolysis or the like to hydroxyl groups. .
[0047] 重合方法としては特に制限されな 、が、ラジカル重合が容易であるため好ま 、。  [0047] The polymerization method is not particularly limited, but is preferred because radical polymerization is easy.
特に、原料モノマー、重合開始剤、重合触媒及び連鎖移動剤を重合溶媒に溶解し た状態で重合させる溶液ラジカル重合が好ましい。この場合、例えば、全てのモノマ 一、重合開始剤、重合触媒、連鎖移動剤を重合溶媒に溶解して重合温度に加熱す るいわゆる一括重合法や、モノマーを溶媒に溶解し、重合温度に加熱した後で重合 開始剤、重合触媒、連鎖移動剤を添加する後添加法、モノマー、重合開始剤、重合 触媒、連鎖移動剤の一部もしくは全てを混合もしくは独立して重合温度に加熱した 重合系内に滴下する 、わゆる滴下重合法などにより実施することができる。中でも 、 わゆる滴下重合法は、製造ロット毎の再現性が高いため好ましぐ特にモノマーとラジ カル発生源である重合開始剤、重合触媒、連鎖移動剤を別々に滴下するいわゆる 独立滴下法が好ましい。なお、重合触媒、重合開始剤、連鎖移動剤は重合性単量 体を供給する前に、予め全量もしくは一部を重合系内に供給しておくことができる。こ れら滴下法においては、重合系内の単量体の濃度および組成、ラジカル濃度等に 応じてそれぞれの供給速度を変化させることにより、共重合体の分子量分布や組成 分布を制御することができる。  In particular, solution radical polymerization in which a raw material monomer, a polymerization initiator, a polymerization catalyst, and a chain transfer agent are polymerized in a state of being dissolved in a polymerization solvent is preferable. In this case, for example, a so-called batch polymerization method in which all monomers, polymerization initiator, polymerization catalyst, and chain transfer agent are dissolved in a polymerization solvent and heated to the polymerization temperature, or a monomer is dissolved in the solvent and heated to the polymerization temperature. After polymerization, a polymerization initiator, a polymerization catalyst, a post-addition method of adding a chain transfer agent, a monomer, a polymerization initiator, a polymerization catalyst, a part or all of the chain transfer agent are mixed or independently heated to a polymerization temperature. Dropping inside can be carried out by a so-called drop polymerization method or the like. Above all, the so-called drop polymerization method is preferred because it has high reproducibility for each production lot, and in particular, a so-called independent dropping method in which a monomer and a radical generation source, a polymerization initiator, a polymerization catalyst, and a chain transfer agent are dropped separately. preferable. The polymerization catalyst, polymerization initiator, and chain transfer agent can be supplied in advance in the polymerization system in whole or in part before supplying the polymerizable monomer. In these dropping methods, the molecular weight distribution and composition distribution of the copolymer can be controlled by changing the respective feed rates in accordance with the monomer concentration and composition in the polymerization system, the radical concentration, and the like. it can.
[0048] ラジカル重合の場合、重合開始剤として、例えば 2,2'—ァゾビスイソブチ口-トリル( [0048] In the case of radical polymerization, as a polymerization initiator, for example, 2,2'-azobisisobutyric-tolyl (
AIBN) , 2,2' -ァゾビス(2—メチルブチ口-トリル) , 2,2' -ァゾビスイソ酪酸ジメチ ル、 1,1'—ァゾビス (シクロへキサン一 1—カルボ二トリル)、 4,4'—ァゾビス(4—シァノ 吉草酸)等のァゾ化合物、デカノィルパーオキサイド、ラウロイルパーオキサイド、ベ ンゾィルパーオキサイド、ビス(3,5,5—トリメチルへキサノィル)パーオキサイド、コハ ク酸パーオキサイド、 tert ブチルパーォキシ 2—ェチルへキサノエート等の有機 過酸ィ匕物を単独もしくは混合して用いることができる。また、連鎖移動剤としてドデシ ルメルカプタン、メルカプトエタノール、メルカプトプロパノール、メルカプト酢酸、メル カプトプロピオン酸、 4, 4 ビス(トリフルォロメチル)ー4ーヒドロキシ 1 メルカプト ブタンなどの既知のチオールィ匕合物を単独もしくは混合して用いることができる。 AIBN), 2,2'-azobis (2-methylbutyoxy-tolyl), 2,2'-azobisisobutyric acid dimethyl, 1,1'-azobis (cyclohexane-1- 1-carbonitryl), 4,4 ' —Azobis (4-cyananovalerate) and other azo compounds, decanol peroxide, lauroyl peroxide, Use organic peroxides such as benzoyl peroxide, bis (3,5,5-trimethylhexanoyl) peroxide, succinic acid peroxide, tert butyl peroxide 2-ethylhexanoate alone or in combination. Can do. In addition, a known thiol compound such as dodecyl mercaptan, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, 4,4 bis (trifluoromethyl) -4-hydroxy 1 mercaptobutane is used alone as a chain transfer agent. Or it can mix and use.
[0049] ラジカル重合に用いる溶媒としては、原料モノマー、得られた共重合体、重合開始 剤及び連鎖移動剤を安定して溶解しうる溶媒であれば特に制限されない。好適な溶 媒の具体的な例としては、メタノール、エタノール、イソプロピルアルコール等のアル コール類;アセトン、メチルェチルケトン、メチルアミルケトン、シクロへキサノン等のケ トン類;テトラヒドロフラン、ジォキサン、グライム、プロピレングリコールモノメチルエー テル等のエーテル類;酢酸ェチル、乳酸ェチル等のエステル類;プロピレングリコー ルメチルエーテルアセテート等のエーテルエステル類; γ ブチロラタトン等のラクト ン類等を挙げることができ、これらを単独または混合して用いることができる。 [0049] The solvent used for radical polymerization is not particularly limited as long as it is a solvent that can stably dissolve the raw material monomer, the obtained copolymer, the polymerization initiator, and the chain transfer agent. Specific examples of suitable solvents include alcohols such as methanol, ethanol and isopropyl alcohol; ketones such as acetone, methyl ethyl ketone, methyl amyl ketone and cyclohexanone; tetrahydrofuran, dioxane, glyme, Ethers such as propylene glycol monomethyl ether; esters such as ethyl acetate and lactate ethyl; ether esters such as propylene glycol methyl ether acetate; and lactones such as γ-butyrolataton. It can be used by mixing.
重合条件は特に制限されな 、が、一般に重合温度は 40°C〜100°C程度である。 重合時間は、重合方法により異なるので一概に規定できないが、例えば、一括重合 の場合、重合温度到達後の反応時間は 1〜24時間、好ましくは 2〜12時間の間を選 択する。滴下重合の場合は、滴下時間が長い方が重合系内の単量体組成および濃 度とラジカル濃度が一定に保てるので、滴下時間中に生成する単量体の組成、分子 量が均一になりやすく好ましいが、逆に滴下時間が長すぎると、時間当たりの生産効 率及び滴下液中の単量体の安定性という面で不利であるから好ましくない。従って、 滴下時間は 0. 5〜25時間、好ましくは 1〜10時間の間を選択する。滴下終了後は 未反応単量体が残るので、一定時間、重合温度を維持しながら熟成することが好ま しい。熟成時間は 8時間以内、好ましくは 1〜6時間の中力 選択する。  The polymerization conditions are not particularly limited, but generally the polymerization temperature is about 40 ° C to 100 ° C. The polymerization time varies depending on the polymerization method and cannot be defined unconditionally. For example, in the case of batch polymerization, the reaction time after reaching the polymerization temperature is selected from 1 to 24 hours, preferably 2 to 12 hours. In the case of dripping polymerization, the monomer composition, concentration and radical concentration in the polymerization system can be kept constant as the dripping time is longer, so the composition and molecular weight of the monomer generated during the dripping time become uniform. However, it is not preferable that the dropping time is too long because it is disadvantageous in terms of production efficiency per hour and stability of the monomer in the dropping solution. Accordingly, the dropping time is selected to be 0.5 to 25 hours, preferably 1 to 10 hours. Since unreacted monomer remains after the completion of the dropping, it is preferable to age the polymer while maintaining the polymerization temperature for a certain period of time. Aging time should be selected within 8 hours, preferably 1-6 hours.
[0050] 重合して得た共重合体は、未反応モノマー、オリゴマー、重合開始剤や連鎖移動 剤およびこれらの反応副生物等の低分子量不純物を含んでいるため、これらを精製 工程によって除いた方が好ましい。この場合、重合反応液を、必要に応じて良溶媒を 加えて希釈した後、貧溶媒と接触させることにより、共重合体を固体として析出させ、 不純物を貧溶媒相に抽出する(以下、再沈という)か、もしくは液 液二相として溶媒 相に不純物を抽出することによって行われる。再沈させた場合、析出した固体を濾過 やデカンテーシヨン等の方法で溶媒から分離した後、この固体を、良溶媒で再溶解し てさらに貧溶媒を加えて再沈する工程、もしくは析出した固体を貧溶媒もしくは良溶 媒と貧溶媒の混合溶媒で洗浄する工程によってさらに精製することができる。また、 液 液二層分離した場合、分液によって貧溶媒相を分離した後、得られた共重合体 溶液に貧溶媒もしくは良溶媒と貧溶媒の混合溶媒を加えて再沈もしくは液液二相分 離することより、さらに精製することができる。これらの操作は、同じ操作を繰り返して も、異なる操作を組み合わせても良 、。 [0050] The copolymer obtained by polymerization contains low molecular weight impurities such as unreacted monomers, oligomers, polymerization initiators and chain transfer agents, and reaction byproducts thereof, and therefore these were removed by the purification process. Is preferred. In this case, the polymerization reaction solution is diluted by adding a good solvent as necessary, and then brought into contact with a poor solvent to precipitate the copolymer as a solid, It is carried out by extracting impurities into the poor solvent phase (hereinafter referred to as reprecipitation) or by extracting impurities into the solvent phase as a liquid-liquid two-phase. In the case of reprecipitation, the precipitated solid is separated from the solvent by a method such as filtration or decantation, and then this solid is re-dissolved with a good solvent and further re-precipitated by adding a poor solvent, or precipitated. The solid can be further purified by a step of washing with a poor solvent or a mixed solvent of a good solvent and a poor solvent. In the case of liquid-liquid two-layer separation, after separation of the poor solvent phase by liquid separation, reprecipitation or liquid-liquid two-phase by adding a poor solvent or a mixed solvent of a good solvent and a poor solvent to the obtained copolymer solution. Further separation can be achieved by separation. These operations can be performed by repeating the same operation or by combining different operations.
[0051] 共重合体の水酸基を酸解離性溶解抑制基で保護する方法としては、〔1〕の方法で 得られた共重合体を、 p トルエンスルホン酸、トリフルォロ酢酸、強酸性イオン交換 榭脂等、既知の酸触媒存在下でビュルエーテルやハロゲン化アルキルエーテルな どの酸解離性基を与える化合物と反応させる方法等を挙げることができる。  [0051] As a method for protecting the hydroxyl group of the copolymer with an acid dissociable, dissolution inhibiting group, the copolymer obtained by the method [1] is prepared by using p-toluenesulfonic acid, trifluoroacetic acid, strong acid ion-exchange resin Examples thereof include a method of reacting with a compound giving an acid dissociable group such as butyl ether or halogenated alkyl ether in the presence of a known acid catalyst.
共重合体の酸解離性溶解抑制基を水酸基に変える方法としては、〔3〕の方法で得 られた共重合体を、 p トルエンスルホン酸、トリフルォロ酢酸、強酸性イオン交換榭 脂等、既知の酸触媒存在下で水と反応させて加水分解する方法等を挙げることがで きる。  As a method of changing the acid dissociable, dissolution inhibiting group of the copolymer to a hydroxyl group, the copolymer obtained by the method of [3] can be obtained by using a known method such as p-toluenesulfonic acid, trifluoroacetic acid, strongly acidic ion exchange resin, etc. Examples thereof include a method of reacting with water in the presence of an acid catalyst for hydrolysis.
中でも、好ましくは〔1〕の方法で、構成単位 (al)と (a2)とを含む共重合体を調製し た後、上記酸触媒の存在下でアルキルビニルエーテルと反応させて共重合体 (A1) を得る方法がより好ましい。  Among them, a copolymer containing the structural units (al) and (a2) is preferably prepared by the method [1], and then reacted with an alkyl vinyl ether in the presence of the acid catalyst. ) Is more preferable.
[0052] これらの反応に用いる溶媒としては、共重合体を溶解しうる溶媒であれば特に制限 されない。好適な溶媒の具体的な例としては、重合溶媒で例示した溶媒をそのまま 用!/、ることができる。 [0052] The solvent used in these reactions is not particularly limited as long as it is a solvent capable of dissolving the copolymer. As a specific example of a suitable solvent, the solvent exemplified for the polymerization solvent can be used as it is!
反応条件は特に制限されず、一般に反応温度は 0〜100°Cの範囲を選択すること ができるが、酸触媒による溶媒への影響および製造安定性を考慮すると 0〜80°C、 特に好ましくは 0〜60°Cの範囲を選択する。反応時間は、反応温度等によって異なり 、所望の反応率に達する時間を選択する。  The reaction conditions are not particularly limited, and in general, the reaction temperature can be selected in the range of 0 to 100 ° C. However, considering the influence of the acid catalyst on the solvent and the production stability, 0 to 80 ° C, particularly preferably Select a range of 0-60 ° C. The reaction time varies depending on the reaction temperature and the like, and a time for reaching a desired reaction rate is selected.
反応終了後は、反応液を既知の塩基性化合物もしくは陰イオン交換樹脂と接触さ せることにより酸触媒を除くことができる。 After completion of the reaction, the reaction solution is contacted with a known basic compound or anion exchange resin. To remove the acid catalyst.
必要に応じて、平均孔径が好ましくは 0. 5 μ m以下、より好ましくは 0. 1 μ m以下の ミクロポアを有するフィルターに通液することにより極微小な固形分、不溶解性の異物 を除去することができる。また、正のゼータ電位を有するフィルターやイオン交換基を 有する榭脂ゃフィルタ一等と接触させることにより、金属分を除去することができる。  If necessary, ultrafine solids and insoluble foreign matter can be removed by passing through a filter having micropores with an average pore size of preferably 0.5 μm or less, more preferably 0.1 μm or less. can do. Further, the metal component can be removed by contacting with a filter having a positive zeta potential or a resin filter having an ion exchange group.
[0053] また、必要に応じて塗膜形成用の溶媒を供給しながら、低沸点成分を減圧下で留 去するなどして、所定濃度の塗膜形成用溶液に仕上げることができる。塗膜形成用 の溶媒は、共重合体を溶解するものであれば特に制限されないが、通常、沸点、半 導体基板やその他の塗布膜への影響、リソグラフィ一に用いられる放射線の吸収を 勘案して選択される。塗膜形成用に一般的に用いられる溶媒の例としては、プロピレ ングリコールメチルエーテルアセテート、乳酸ェチル、プロピレングリコールモノメチル エーテル、メチルアミルケトン、 y—ブチ口ラタトン、シクロへキサノン等の溶媒が挙げ られる。溶媒の使用量は特に制限されないが、通常、共重合体 1質量部に対して 1質 量部〜 20質量部の範囲である。 [0053] In addition, a low-boiling component can be removed under reduced pressure while supplying a solvent for forming a coating film, if necessary, so that a coating film-forming solution having a predetermined concentration can be obtained. The solvent for forming the coating film is not particularly limited as long as it dissolves the copolymer, but usually it takes into consideration the boiling point, the influence on the semiconductor substrate and other coating films, and the absorption of radiation used in lithography. Selected. Examples of solvents generally used for coating film formation include solvents such as propylene glycol methyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, methyl amyl ketone, y-butyrate rataton, and cyclohexanone. . The amount of the solvent used is not particularly limited, but is usually in the range of 1 part by mass to 20 parts by mass with respect to 1 part by mass of the copolymer.
[0054] なお、ポジ型レジスト組成物は、(A)成分として、上記共重合体 (A1)の他に、ポリヒ ドロキシスチレン榭脂、(メタ)アクリル榭脂等の、ポジ型レジスト組成物に用い得る他 の榭脂を適宜配合することもできる力 本発明の効果を得るためには、ポジ型レジスト 組成物に含まれる (A)成分中、共重合体 (A1)が 80質量%以上であることが好ましく 、 90質量%以上がより好ましぐ最も好ましくは 100質量%である。  [0054] The positive resist composition includes, as component (A), a positive resist composition such as polyhydroxystyrene resin, (meth) acrylic resin, in addition to the copolymer (A1). In order to obtain the effects of the present invention, the copolymer (A1) is 80% by mass or more in the component (A) contained in the positive resist composition. It is preferably 90% by mass or more, and most preferably 100% by mass.
またポジ型レジスト組成物中の、(A)成分の割合は、目的とするレジスト膜厚によつ て適宜調製することができる。  The proportion of the component (A) in the positive resist composition can be appropriately adjusted depending on the intended resist film thickness.
[0055] ,酸発生剤 (B) (以下、(B)成分ということもある。 )  [0055], Acid generator (B) (hereinafter sometimes referred to as component (B))
(B)成分は、従来の化学増幅型レジスト組成物にお 、て使用されて 、る公知の酸 発生剤から特に限定せずに用いることができる。  The component (B) can be used without particular limitation from known acid generators used in conventional chemically amplified resist compositions.
このような酸発生剤としては、これまで、ョードニゥム塩やスルホ -ゥム塩などのォ- ゥム塩系酸発生剤、ォキシムスルホネート系酸発生剤、ビスアルキルまたはビスァリ 一ルスルホ -ルジァゾメタン類、ポリ(ビススルホ -ル)ジァゾメタン類などのジァゾメタ ン系酸発生剤、ニトロべンジルスルホネート系酸発生剤、イミノスルホネート系酸発生 剤、ジスルホン系酸発生剤など多種のものが知られて 、る。 Examples of such acid generators include onium salt-based acid generators such as iodine salts and sulfo-um salts, oxime sulfonate-based acid generators, bisalkyl or bis-aryl sulfo-diazomethanes, Diazomethane acid generators such as poly (bissulfol) diazomethanes, nitrobenzyl sulfonate acid generators, iminosulfonate acid generators A wide variety of agents, such as disulfide acid generators, are known.
ォ-ゥム塩系酸発生剤の具体例としては、ジフエ-ルョードニゥムのトリフルォロメタ ンスルホネートまたはノナフルォロブタンスルホネート;ビス(4—tert ブチルフエ- ル)ョードニゥムのトリフルォロメタンスルホネートまたはノナフルォロブタンスルホネー ト;トリフエ-ルスルホ-ゥムのトリフルォロメタンスルホネート、そのヘプタフルォロプロ パンスルホネートまたはそのノナフルォロブタンスルホネート;トリ(4 メチルフエ-ル )スノレホニゥムのトリフノレオロメタンスノレホネート、そのヘプタフノレォロプロパンスノレホネ ートまたはそのノナフルォロブタンスルホネート;ジメチル(4ーヒドロキシナフチル)ス ノレホ-ゥムのトリフノレオロメタンスノレホネート、そのヘプタフノレォロプロパンスノレホネー トまたはそのノナフルォロブタンスルホネート;モノフエ-ルジメチルスルホ-ゥムのトリ フルォロンメタンスルホネート、そのヘプタフルォロプロパンスルホネートまたはそのノ ナフルォロブタンスルホネート;ジフエ-ルモノメチルスルホ-ゥムのトリフルォロメタン スルホネート、そのヘプタフルォロプロパンスルホネートまたはそのノナフルォロブタ ンスルホネート;(4—メチルフエ-ル)ジフエ-ルスルホ-ゥムのトリフルォロメタンスル ホネート、そのヘプタフルォロプロパンスルホネートまたはそのノナフルォロブタンス ルホネート;(4—メトキシフエ-ル)ジフエ-ルスルホ-ゥムのトリフルォロメタンスルホ ネート、そのヘプタフルォロプロパンスルホネートまたはそのノナフルォロブタンスル ホネート;トリ(4— tert—ブチル)フエ-ルスルホ-ゥムのトリフルォロメタンスルホネー ト、そのヘプタフルォロプロパンスルホネートまたはそのノナフルォロブタンスルホネ ートなどが挙げられる。  Specific examples of acid salt-based acid generators include trifluoromethane sulfonate or nonafluorobutane sulfonate of diphenylodonone; trifluoromethanesulfonate or nonafluorolobium of bis (4-tert butylphenol) ododonium. Trifluorosulfonate, trifluoromethanesulfonate, heptafluoropropanosulfonate, or nonafluorobutanesulfonate; trifluorosulfonate sulfonate of tri (4 methylphenol) snorephonium; Its heptafunololpropane sulphonate or its nonafluorobutane sulphonate; dimethyl (4-hydroxynaphthyl) sulphoform trifunoleolomethanes sulphonate, its heptafunol propanes sulphonate Or Nonafluorobutane sulfonate; Trifluoro methane sulfonate of monophenyl dimethyl sulfone, Its heptafluoropropane sulfonate or Nonafluorobutane sulfonate thereof; Trifluoro of diphenyl monomethyl sulfone Fluoromethane sulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate; (4-methylphenol) diphenylsulfotrifluoromethane sulfonate, its heptafluoropropane sulfonate or its nonafluorolob Tansusulfonate; (4-methoxyphenyl) diphenyl sulfone trifluoromethanesulfonate, heptafluoropropanesulfonate or nonafluorobutanesulfonate; tri (4-tert-butyl) phenol Luz E - © beam of triflate Ruo b methanesulfonyl Natick DOO, its like hepta full O b propane sulfonate or a nona Full O Rob Tan sulfonates over preparative like.
ォキシムスルホネート系酸発生剤の具体例としては、 ひ (メチルスルホ -ルォキシ ィミノ)—フエ-ルァセトニトリル、 OC - (メチルスルホ -ルォキシィミノ)—p—メトキシフ ェ-ルァセトニトリル、 α - (トリフルォロメチルスルホ -ルォキシィミノ)—フエ-ルァ セト-トリル、 α - (トリフルォロメチルスルホ -ルォキシィミノ)—p—メトキシフエ-ル ァセトニトリル、 at - (ェチルスルホニルォキシィミノ)—p—メトキシフエ二ルァセトニト リル、 α—(プロピルスルホ -ルォキシィミノ) p メチルフエ-ルァセトニトリル、 α (メチルスルホ -ルォキシィミノ) ρ ブロモフエ-ルァセトニトリル、ビス—Ο (η ーブチルスルホ -ル) α—ジメチルダリオキシムなどが挙げられる。これらの中で、 a - (メチルスルホ -ルォキシィミノ)—p—メトキシフエ-ルァセトニトリルが好ましい。 Specific examples of oxime sulfonate-based acid generators include: (methylsulfo-luoxyimino) -phenolacetonitrile, OC- (methylsulfo-roximino) -p-methoxyphenylacetonitrile, α- (trifluoromethylsulfo-luoximino) ) -Phenylaceto-tolyl, α- (trifluoromethylsulfo-oxyximino) -p-methoxyphenylacetonitrile, at- (ethylsulfonyloxyximino) -p-methoxyphenylacetonitryl, α- ( Propylsulfo-luoxyimino) p-methylphenolacetonitrile, α (methylsulfo-luoxyimino) ρ-bromophenolacetonitrile, bis-Ο (η-butylsulfol) α-dimethyldaroxime, and the like. Among these, a- (Methylsulfo-luximino) -p-methoxyphenylacetonitrile is preferred.
[0057] ジァゾメタン系酸発生剤のうち、ビスアルキルまたはビスァリールスルホ -ルジァゾメ タン類の具体例としては、ビス(イソプロピルスルホ -ル)ジァゾメタン、ビス(p トルェ ンスルホ -ル)ジァゾメタン、ビス( 1 , 1—ジメチルェチルスルホ -ル)ジァゾメタン、ビ ス(シクロへキシルスルホ -ル)ジァゾメタン、ビス(2, 4 ジメチルフエ-ルスルホ-ル )ジァゾメタン等が挙げられる。 [0057] Among the diazomethane acid generators, specific examples of bisalkyl or bisarylsulfol diazomethanes include bis (isopropylsulfol) diazomethane, bis (p toluenesulfol) diazomethane, bis (1 , 1-dimethylethylsulfol) diazomethane, bis (cyclohexylsulfol) diazomethane, bis (2,4 dimethylphenylsulfol) diazomethane, and the like.
また、ポリ(ビススルホニル)ジァゾメタン類としては、例えば、以下に示す構造をもつ 1, 3 ビス(フエ-ルスルホ-ルジァゾメチルスルホ -ル)プロパン(ィ匕合物 A、分解 点 135°C)、 1 , 4 ビス(フエ-ルスルホ-ルジァゾメチルスルホ -ル)ブタン(化合物 B、分解点 147°C)、 1, 6 ビス(フエ-ルスルホ-ルジァゾメチルスルホ -ル)へキサ ン(化合物 C、融点 132°C、分解点 145°C)、 1, 10 ビス(フエ-ルスルホ-ルジァゾ メチルスルホ -ル)デカン(ィ匕合物 D、分解点 147°C)、 1 , 2 ビス(シクロへキシルス ルホ-ルジァゾメチルスルホ -ル)ェタン(ィ匕合物 E、分解点 149°C)、 1, 3 ビス(シ クロへキシルスルホ-ルジァゾメチルスルホ -ル)プロパン(ィ匕合物 F、分解点 153°C )、 1, 6 ビス(シクロへキシルスルホ-ルジァゾメチルスルホ -ル)へキサン(ィ匕合物 G、融点 109°C、分解点 122°C)、 1, 10 ビス(シクロへキシルスルホ-ルジァゾメチ ルスルホニル)デカン (ィ匕合物 H、分解点 116°C)などを挙げることができる。  Poly (bissulfonyl) diazomethanes include, for example, 1,3 bis (phenylsulfo-diazomethylsulfol) propane (compound A, decomposition point 135 ° C having the structure shown below. ), 1,4 bis (phenylsulfol diazomethylsulfol) butane (Compound B, decomposition point 147 ° C), 1,6 bis (phenylsulfol diazomethylsulfol) hexane (Compound C, melting point 132 ° C, decomposition point 145 ° C), 1, 10 bis (phenolsulfol diazomethylsulfol) decane (compound D, decomposition point 147 ° C), 1, 2 bis (Cyclohexylsulfol diazomethylsulfol) ethane (Compound E, decomposition point 149 ° C), 1, 3 bis (cyclohexylsulfol diazomethylsulfol) propane ( Compound F, decomposition point 153 ° C), 1, 6 bis (cyclohexylsulfol diazomethylsulfol) hexane ( Compound G, melting point 109 ° C, decomposition point 122 ° C), 1,10 bis (cyclohexylsulfo-diazomethylsulfonyl) decane (Compound H, decomposition point 116 ° C) .
[0058] [化 12] [0058] [Chemical 12]
Figure imgf000019_0001
Figure imgf000019_0001
O N9 O ON 9 O
11 !1 It  11! 1 It
( CH2)4 - S— C— S (CH 2 ) 4 -S— C— S
o o  o o
- C NCH  -C NCH
2一  2
Figure imgf000019_0002
Figure imgf000019_0002
(B)成分としては、これらの酸発生剤を 1種単独で用いてもよいし、 2種以上を組み 合わせて用いてもよい。 As the component (B), one type of these acid generators may be used alone, or two or more types may be used in combination.
中でも、(B)成分がジァゾメタン系酸発生剤を含有することが好ましい。上記 (A)成 分とジァゾメタン系酸発生剤とを組み合わせて用いることにより、 LERがさらに低減さ れ、解像性が良好になる。(B)成分中、ジァゾメタン系酸発生剤の配合量は、 40〜9Among them, the component (B) preferably contains a diazomethane acid generator. By combining the above component (A) with a diazomethane acid generator, LER is further reduced. And the resolution is improved. In component (B), the amount of diazomethane acid generator is 40-9.
5質量%が好ましぐ 50〜90質量%がより好ましい。 5% by mass is preferred. 50 to 90% by mass is more preferred.
[0060] (B)成分は、上記ジァゾメタン系酸発生剤にカ卩えて、さらにォ-ゥム塩系酸発生剤 を含有することが好ましい。これにより、本発明のポジ型レジスト組成物の感度が向上 する。また、マスクリ-ァリティ (マスク再現性)も向上する。 [0060] The component (B) preferably further contains an acid salt-based acid generator in addition to the diazomethane-based acid generator. This improves the sensitivity of the positive resist composition of the present invention. Also, mask reality (mask reproducibility) is improved.
(B)成分中、ォ-ゥム塩系酸発生剤の配合量は、 5〜60質量%が好ましぐ 10〜5 In the component (B), the amount of the salt salt acid generator is preferably 5 to 60% by mass.
0質量%がより好ましい。 0% by mass is more preferable.
ジァゾメタン系酸発生剤とォ-ゥム塩系酸発生剤とを組み合わせて用いる場合の両 者の割合 (ジァゾメタン系酸発生剤:ォ-ゥム塩系酸発生剤、質量比)は、 9 : 1〜1 : 9 が好ましぐ 8 : 2〜6 :4がより好ましい。  When using a combination of a diazomethane acid generator and an acid salt acid generator, the ratio of the two (diazomethane acid generator: sodium salt acid generator, mass ratio) is 9: 1-1: 9 is preferred 8: 2-6: 4 is more preferred.
さらに、(B)成分中、ジァゾメタン系酸発生剤およびォ-ゥム塩系酸発生剤の合計 量が 80質量%以上であることが好ましぐ 100質量%であることが最も好ましい。  Further, in the component (B), the total amount of the diazomethane acid generator and the salt salt acid generator is preferably 80% by mass or more and most preferably 100% by mass.
[0061] (B)成分の含有量は、(A)成分 100質量部に対し、 0. 5〜30質量部、好ましくは 1[0061] The content of component (B) is 0.5 to 30 parts by mass, preferably 1 with respect to 100 parts by mass of component (A).
〜10質量部とされる。上記範囲より少ないとパターン形成が十分に行われないおそ れがあり、上記範囲を超えると均一な溶液が得られにくぐ保存安定性が低下する原 因となるおそれがある。 -10 parts by mass. If the amount is less than the above range, pattern formation may not be sufficiently performed. If the amount exceeds the above range, it may be difficult to obtain a uniform solution and may cause a decrease in storage stability.
[0062] '有機溶剤 [0062] 'Organic solvent
本発明のポジ型レジスト組成物は、上述した (A)成分、(B)成分、および後述する 任意の各成分を、有機溶剤に溶解させて製造することができる。  The positive resist composition of the present invention can be produced by dissolving the above-described component (A), component (B), and optional components described later in an organic solvent.
有機溶剤としては、使用する各成分を溶解し、均一な溶液とすることができるもので あればよぐ従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを 1種または 2種以上適宜選択して用いることができる。  As the organic solvent, it is sufficient if each component to be used can be dissolved into a uniform solution. Conventionally, any one or two of the known solvents for chemically amplified resists can be used. These can be appropriately selected and used.
例えば、 γ —ブチロラタトン、アセトン、メチルェチルケトン、シクロへキサノン、メチ ルイソアミルケトン、 2—へプタノンなどのケトン類や、エチレングリコール、エチレング リコーノレモノアセテート、ジエチレングリコール、ジエチレングリコーノレモノアセテート、 プロピレングリコール、プロピレングリコーノレモノアセテート、ジプロピレングリコール、 またはジプロピレングリコールモノアセテートのモノメチルエーテル、モノェチルエー テル、モノプロピルエーテル、モノブチルエーテルまたはモノフエニルエーテルなど の多価アルコール類およびその誘導体や、ジォキサンのような環式エーテル類や、 乳酸メチル、乳酸ェチル(EL)、酢酸メチル、酢酸ェチル、酢酸ブチル、ピルビン酸メ チル、ピルビン酸ェチル、メトキシプロピオン酸メチル、エトキシプロピオン酸ェチルな どのエステル類などを挙げることができる。 For example, ketones such as γ-butyrolatatone, acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, 2-heptanone, ethylene glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate, propylene Glycol, propylene glycolol monoacetate, dipropylene glycol, or monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether of dipropylene glycol monoacetate, etc. Polyhydric alcohols and their derivatives, cyclic ethers such as dioxane, methyl lactate, ethyl lactate (EL), methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methoxypropionic acid Mention may be made of esters such as methyl and ethyl ethoxypropionate.
これらの有機溶剤は 1種単独で用いてもよぐ 2種以上の混合溶剤として用いてもよ い。  These organic solvents may be used alone or as a mixed solvent of two or more.
[0063] これらの中でも、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、 プロピレングリコールモノメチルエーテル(PGME)、乳酸ェチル(EL)から選ばれる 少なくとも 1種を用いることが好ま 、。  [0063] Among these, it is preferable to use at least one selected from propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), and ethyl lactate (EL).
また、プロピレングリコールモノメチルエーテルアセテート(PGMEA)と極性溶剤と を混合した混合溶媒は好ましい。その配合比は、 PGMEAと極性溶剤との相溶性等 を考慮して適宜決定すればよいが、 9 : 1〜1 : 9、より好ましくは 8 : 2〜2 : 8の範囲内と することが好ましい。  A mixed solvent obtained by mixing propylene glycol monomethyl ether acetate (PGMEA) and a polar solvent is preferable. The mixing ratio may be appropriately determined in consideration of the compatibility between PGMEA and the polar solvent, but may be within the range of 9: 1 to 1: 9, more preferably 8: 2 to 2: 8. preferable.
より具体的には、極性溶剤として ELを配合する場合は、 PGMEA : ELの質量比が 好ましくは 8: 2〜2: 8であり、より好ましくは 7: 3〜3: 7である。  More specifically, when EL is blended as a polar solvent, the mass ratio of PGMEA: EL is preferably 8: 2 to 2: 8, more preferably 7: 3 to 3: 7.
また、有機溶剤として、その他には、 PGMEA及び ELの中カゝら選ばれる少なくとも 1種と γ—プチ口ラタトンとの混合溶剤も好ましい。この場合、混合割合としては、前 者と後者の質量比が好ましくは 70: 30-95 : 5とされる。  In addition, as the organic solvent, a mixed solvent of at least one selected from among PGMEA and EL and γ-petit-mouth rataton is also preferable. In this case, the mixing ratio of the former and the latter is preferably 70: 30-95: 5.
有機溶剤の使用量は特に限定しないが、基板等に塗布可能な濃度で、塗布膜厚 に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度 2〜 20質量%、好ましくは 5〜15質量%の範囲内とされる。  The amount of the organic solvent used is not particularly limited, but it is a concentration that can be applied to a substrate and the like, and is appropriately set according to the coating film thickness. %, Preferably in the range of 5 to 15% by mass.
[0064] ·含窒素有機化合物 (C) (以下、(C)成分ということもある。) [0064] · Nitrogen-containing organic compound (C) (hereinafter sometimes referred to as component (C))
本発明のポジ型レジスト組成物には、レジストパターン形状、引き置き経時安定性( post exposure stability of the latent image formed oy the pattern-wise exposure of t he resist layer)などを向上させるために、さらに任意の成分として、含窒素有機化合 物 (C) (以下、(C)成分という)を配合させることができる。  The positive resist composition of the present invention is further optional in order to improve the resist pattern shape, post exposure stability of the latent image formed oy the pattern-wise exposure of the resist layer, and the like. As the component, nitrogen-containing organic compound (C) (hereinafter referred to as component (C)) can be blended.
この(C)成分は、既に多種多様なものが提案されているので、公知のものから任意 に用いれば良いが、ァミン、特に第 2級低級脂肪族アミンゃ第 3級低級脂肪族ァミン が好ましい。 A variety of components (C) have already been proposed, and any known one may be used. Amines, particularly secondary lower aliphatic amines, are tertiary lower aliphatic amines. Is preferred.
ここで、低級脂肪族ァミンとは炭素数 5以下のアルキルまたはアルキルアルコール のァミンを言い、この第 2級や第 3級ァミンの例としては、トリメチルァミン、ジェチルァ ミン、トリェチルァミン、ジ—n—プロピルァミン、トリ— n—プロピルァミン、トリペンチル ァミン、ジエタノールァミン、トリエタノールァミン、トリイソプロパノールァミンなどが挙 げられる力 特にトリエタノールァミン、トリイソプロパノールァミンのような第 3級アル力 ノールァミンが好ましい。 Here, the lower aliphatic amine is an alkyl or alkyl alcohol amine having 5 or less carbon atoms, and examples of the secondary and tertiary amines include trimethylamine, jetylamine, triethylamine, di- n — Forces such as propylamine, tri-n-propylamine, tripentylamine, diethanolamine, triethanolamine, triisopropanolamine, etc. Tertiary aldehyde such as triethanolamine, triisopropanolamine, etc. preferable.
これらは単独で用いてもょ 、し、 2種以上を組み合わせて用いてもょ 、。 These can be used alone or in combination of two or more.
(C)成分は、(A)成分 100質量部に対して、通常、 0. 01〜5. 0質量部の範囲で 用いられる。 Component (C) is usually used in the range of 0.01 to 5.0 parts by mass per 100 parts by mass of component (A).
[0065] ,酸成分 (D) (以下、(D)成分ということもある。 )  [0065] Acid component (D) (hereinafter also referred to as component (D).)
前記 (C)成分との配合による感度劣化を防ぎ、またレジストパターン形状、引き置き 経時 5疋性 (post exposure stability of the latent image formed by the pattern-wise exposure of the resist layer)等の向上の目的で、さらに任意の成分として、有機カル ボン酸又はリンのォキソ酸若しくはその誘導体力もなる酸成分 (D) (以下、(D)成分と いう)を含有させることができる。なお、(C)成分と(D)成分は併用することもできるし、 V、ずれか 1種を用いることもできる。  The purpose is to prevent sensitivity deterioration due to the combination with the component (C) and to improve the resist pattern shape, post exposure stability of the latent image formed by the pattern-wise exposure of the resist layer, etc. In addition, an organic component such as an organic carboxylic acid or an oxo acid of phosphorus or an acid component (D) (hereinafter referred to as the component (D)) that also has a derivative power can be contained as an optional component. The (C) component and the (D) component can be used in combination, or V or one of them can be used.
[0066] 有機カルボン酸としては、例えば、マロン酸、クェン酸、リンゴ酸、コハク酸、安息香 酸、サリチル酸などが好適である。  [0066] As the organic carboxylic acid, for example, malonic acid, succinic acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
リンのォキソ酸若しくはその誘導体としては、リン酸、リン酸ジー n—ブチルエステル 、リン酸ジフエ-ルエステルなどのリン酸又はそれらのエステルのような誘導体;ホスホ ン酸、ホスホン酸ジメチルエステル、ホスホン酸ージー n—ブチルエステル、フエ-ル ホスホン酸、ホスホン酸ジフエ-ルエステル、ホスホン酸ジベンジルエステルなどのホ スホン酸及びそれらのエステルのような誘導体;ホスフィン酸、フエ-ルホスフィン酸な どのホスフィン酸及びそれらのエステルのような誘導体が挙げられ、これらの中で特 にホスホン酸が好ましい。  Phosphoric acid or its derivatives include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid diphenyl ester, etc., phosphoric acid or derivatives thereof such as phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid Phosphonic acid such as n-butyl ester, phenol phosphonic acid, phosphonic acid diphenyl ester, phosphonic acid dibenzyl ester and derivatives thereof; phosphinic acid such as phosphinic acid, phenylphosphinic acid and Examples thereof include derivatives such as esters, and phosphonic acid is particularly preferable among these.
(D)成分は、(A)成分 100質量部当り 0. 01〜5. 0質量部の割合で用いられる。  Component (D) is used in a proportion of 0.01 to 5.0 parts by mass per 100 parts by mass of component (A).
[0067] <その他の任意成分 > 本発明のポジ型レジスト組成物には、さらに所望により混和性のある添加剤、例え ばレジスト膜の性能を改良するための付加的榭脂、塗布性を向上させるための界面 活性剤、可塑剤、安定剤、着色剤、ハレーション防止剤などを適宜、添加含有させる ことができる。 [0067] <Other optional components> The positive resist composition of the present invention may further contain, if desired, miscible additives such as an additional resin for improving the performance of the resist film, a surfactant for improving coatability, and a plasticizer. In addition, stabilizers, colorants, antihalation agents and the like can be added and contained as appropriate.
[0068] また、任意の添加剤として、少なくとも一つの酸解離性溶解抑制基を有し (B)成分 力 発生した酸の作用により該溶解抑制基が解離し有機カルボン酸を発生し得る化 合物 (E)を含有させてもよい。  [0068] Further, as an optional additive, the compound has at least one acid dissociable, dissolution inhibiting group (B), a compound capable of dissociating the dissolution inhibiting group by the action of the generated acid and generating an organic carboxylic acid. The product (E) may be contained.
かかる(E)成分としては、例えば、質量平均分子量が 200〜1000であって、置換 または未置換のベンゼン核を 1〜6個を有するフ ノール誘導体が好まし 、。具体例 としては、下記一般式(1)で表される化合物が挙げられる。  As the component (E), for example, a phenol derivative having a mass average molecular weight of 200 to 1000 and having 1 to 6 substituted or unsubstituted benzene nuclei is preferable. Specific examples include compounds represented by the following general formula (1).
[0069] [化 13] [0069] [Chemical 13]
Figure imgf000023_0001
Figure imgf000023_0001
[0070] (式中、 R'は酸解離性溶解抑制基である。 ) (Wherein R ′ is an acid dissociable, dissolution inhibiting group.)
[0071] 酸解離性溶解抑制基 R'はこれまでィ匕学増幅型のポジレジストにぉ 、て知られて!/ヽ るもの力 任意に選択できる。具体的には、 tert—ブチルォキシカルボ-ル基、 tert アミルォキシカルボ-ル基のような第 3級アルキルォキシカルボ-ル基; tert ブ チルォキシカルボ-ルメチル基、 tert ブチルォキシカルボ-ルェチル基のような第 3級アルキルォキシカルボ-ルアルキル基; tert ブチル基、 tert アミル基などの 第 3級アルキル基;テトラヒドロビラ-ル基、テトラヒドロフラ-ル基などの環状エーテル 基;エトキシェチル基、メトキシプロピル基などのアルコキシアルキル基が好まし 、も のとして挙げられる。 中でも、 tert—ブチルォキシカルボ-ル基、 tert—ブチルォキシカルボ-ルメチル 基、 tert—ブチル基、テトラヒドロビラ-ル基、エトキシェチル基、 1ーメチルシクロへ キシル基および 1ーェチルシクロへキシル基が好まし 、。 [0071] The acid dissociable, dissolution inhibiting group R 'has so far been known as a chemical amplification type positive resist and can be arbitrarily selected. Specifically, tertiary alkyloxycarbol groups such as tert-butyloxycarbo ol group, tert amyloxycarbolo group; tert butyloxycarboromethyl group, tert butyloxycarboxyl- Tertiary alkyloxycarboalkyl group such as ruetyl group; Tertiary alkyl group such as tert butyl group and tert amyl group; Cyclic ether group such as tetrahydrobiral group and tetrahydrofuranyl group; An alkoxyalkyl group such as a methoxypropyl group is preferred and may be mentioned as one. Of these, tert-butyloxycarbonyl group, tert-butyloxycarboxylmethyl group, tert-butyl group, tetrahydrobiral group, ethoxyethyl group, 1-methylcyclohexyl group and 1-ethylcyclohexyl group are preferred. ,.
但し、少なくとも一つの酸解離性溶解抑制基 R,は第 3級アルキルォキシカルボ- ルアルキル基のようなカルボン酸発生基を用いることが必要である。  However, at least one acid dissociable, dissolution inhibiting group R, needs to use a carboxylic acid generating group such as a tertiary alkyloxycarboalkyl group.
[0072] 本発明のポジ型レジスト組成物は、従来の KrF用ポジ型レジスト組成物と同様に、 レジストパターンの形成に用いることができる。 [0072] The positive resist composition of the present invention can be used for forming a resist pattern in the same manner as a conventional positive resist composition for KrF.
本発明のポジ型レジスト組成物により、矩形性が高ぐ LERが低減され、解像性能 に優れたレジストパターンが得られる。このようなレジストパターンは、実用性の高いも のである。また、 DOFおよび ELマージンも向上する。  With the positive resist composition of the present invention, a LER with high rectangularity is reduced, and a resist pattern with excellent resolution performance can be obtained. Such a resist pattern is highly practical. It also improves DOF and EL margins.
力かる効果については、ラタトン含有単環又は多環式基を有する構成単位 (a2)が 親水性を有しており、またラタトン含有単環又は多環式基が嵩高いため上記構成単 位 (al)よりもアルカリ溶解性は低いこと、そのために、構成単位 (al)と構成単位 (a2 )と構成単位 (a3)力もなる共重合体は、構成単位 (al)のみ力もなるポリヒドロキシス チレンよりも、親水性は高ぐアルカリ溶解性は低いものとなっていることが関係してい るものと考えられる。  With respect to the effect, the structural unit (a2) having a latathone-containing monocyclic or polycyclic group has hydrophilicity, and the latathone-containing monocyclic or polycyclic group is bulky. Al) is lower in alkali solubility than al), and as a result, a copolymer comprising the structural unit (al), the structural unit (a2), and the structural unit (a3) force is a polyhydroxystyrene that also includes only the structural unit (al). It is thought that this is related to the fact that the hydrophilicity is high and the alkali solubility is low.
なお、本発明における解像性能、矩形性、 LERの向上効果は、例えば、現像工程 を経て得られたレジストパターンを SEM (走査型電子顕微鏡)によりレジストパターン を観察して確認することができる。  The effect of improving the resolution performance, rectangularity, and LER in the present invention can be confirmed by, for example, observing the resist pattern obtained through the development process with a SEM (scanning electron microscope).
[0073] 次に、本発明のレジストパターン形成方法について説明する。 Next, the resist pattern forming method of the present invention will be described.
まずシリコンゥエーハ等の基板上に、本発明のポジ型レジスト組成物をスピンナー などで塗布した後、プレベータを行う。次いで、露光装置などを用い、ポジ型レジスト 組成物の塗膜に対して、所望のマスクパターンを介して選択的に露光を行った後、 P EB (露光後加熱)を行う。続いて、アルカリ現像液を用いて現像処理した後、リンス処 理を行って、基板上の現像液および該現像液によって溶解したレジスト組成物を洗 い流し、乾燥させる。  First, the positive resist composition of the present invention is coated on a substrate such as silicon wafer by a spinner or the like, and then prebeta is performed. Next, using an exposure apparatus or the like, the coating film of the positive resist composition is selectively exposed through a desired mask pattern, and then PEB (post-exposure heating) is performed. Subsequently, after developing with an alkali developer, rinsing is performed, and the developer on the substrate and the resist composition dissolved by the developer are washed away and dried.
ここまでの工程は、周知の手法を用いて行うことができる。操作条件等は、使用する ポジ型レジスト組成物の組成や特性に応じて適宜設定することが好ましい。 露光は、好ましくは KrFエキシマレーザーを用いて行うが、電子線レジストや EUV( 極端紫外光)等にも有用である。 The steps so far can be performed using a known method. The operating conditions and the like are preferably set as appropriate according to the composition and characteristics of the positive resist composition to be used. The exposure is preferably performed using a KrF excimer laser, but is also useful for electron beam resists, EUV (extreme ultraviolet light), and the like.
なお、場合によっては、上記アルカリ現像後ポストベータ工程を含んでもよいし、基 板とレジスト組成物の塗布層との間には、有機系または無機系の反射防止膜を設け てもよい。  In some cases, a post-beta step after the alkali development may be included, and an organic or inorganic antireflection film may be provided between the substrate and the coating layer of the resist composition.
[0074] プレベータにおける加熱温度および露光後加熱(PEB)における加熱温度は、一 般に 90°C以上でよいが、矩形性の良好なレジストパターンを形成するためには、特 にそれぞれ 90〜120°C、好ましくは 90〜110°Cが好ましい。また、この温度範囲とす ることにより、マイクロブリッジの発生を効果的に抑制することができる。  [0074] The heating temperature in the pre-beta and the heating temperature in the post-exposure heating (PEB) may generally be 90 ° C or more, but in order to form a resist pattern with good rectangularity, it is particularly 90 to 120 respectively. ° C, preferably 90-110 ° C is preferred. In addition, by setting this temperature range, the generation of microbridges can be effectively suppressed.
実施例  Example
[0075] 以下において、「%」は特にことわりのない限り「質量%」である。  In the following, “%” is “% by mass” unless otherwise specified.
[合成例 1] <共重合体 (A1)の前駆体の合成 >  [Synthesis Example 1] <Synthesis of precursor of copolymer (A1)>
窒素雰囲気に保った容器に P—ヒドロキシスチレン (以下、 「PHS」と記す。) 24%、 p—ェチルフエノール 43%、メタノール 23%、水 10%を含む混合溶液 933g (以下モ ノマー 1溶液と記す)を仕込んだ。別に窒素雰囲気に保った容器に PHS24%、 P- ェチルフエノール 43%、メタノール 23%、水 10%を含む混合溶液 62g、 MAIB (ジメ チル 2 - 2,ァゾビス(2—メチルプロピオネート) ) 39gを仕込んで溶解し、開始剤溶液 を調製した。また別に窒素雰囲気に保った容器に oxa—トリシクロデカノンメタタリレー ト(以下 OTMと記す)の 50%MEK (メチルェチルケトン)溶液 252g、TDM (tert-ド デシルメルカプタン) 5. 9gを仕込んで混合し、モノマー 2溶液を調製した。モノマー 1 溶液を撹拌しながら 80°Cに昇温した後、モノマー 2溶液および開始剤溶液を 4時間 かけて 80°Cに保った重合槽内に供給して重合させた。供給終了後、重合温度を 80 °Cに保ったまま 1時間熟成させ、室温まで冷却した。得られた重合液をトルエン 3500 gに滴下してポリマーを沈殿させた後、上澄みを除去した。次いで、メタノール 500g で溶解し、トルエン 3500gに再沈殿させ、上澄みを除去する操作を 3回繰り返した後 、メタノール 100gに再溶解した。得られたメタノール溶液を減圧下で加熱してメタノー ルなどの低沸点溶媒を追い出しながらプロピレングリコールモノメチルエーテルァセ テート (以下、「PGMEA」と記す。)を投入し、共重合体 (前駆体) 20質量%を含む P GMEA溶液を調製した。これを榭脂 1とする。カーボン 13 (質量数 13のカーボンの 意、以下同様。)核磁気共鳴スペクトル (13C— NMR)と GPCにて分析し、共重合体( 前駆体)の組成と Mw、 MwZMnを求めた。 In a container kept in a nitrogen atmosphere, P-hydroxystyrene (hereinafter referred to as “PHS”) 24%, p-ethylphenol 43%, methanol 23%, water 10% mixed solution 933 g (hereinafter referred to as monomer 1 solution) ). Separately, in a container kept in a nitrogen atmosphere, 62 g of a mixed solution containing 24% PHS, 43% P-ethylphenol, 23% methanol and 10% water, 39 g of MAIB (dimethyl-2-2, azobis (2-methylpropionate)) Charged and dissolved to prepare an initiator solution. Separately, in a container kept in a nitrogen atmosphere, 252 g of 50% MEK (methylethyl ketone) solution of oxa-tricyclodecanone methacrylate (hereinafter referred to as OTM) and 5.9 g of TDM (tert-dodecyl mercaptan) Charge and mix to prepare a monomer 2 solution. The temperature of the monomer 1 solution was raised to 80 ° C. with stirring, and then the monomer 2 solution and the initiator solution were supplied into a polymerization tank maintained at 80 ° C. for 4 hours to be polymerized. After completion of the feeding, the polymerization temperature was kept at 80 ° C. for 1 hour, and cooled to room temperature. The obtained polymerization solution was dropped into 3500 g of toluene to precipitate a polymer, and then the supernatant was removed. Subsequently, the operation of dissolving in 500 g of methanol, reprecipitating in 3500 g of toluene, and removing the supernatant was repeated three times, and then redissolved in 100 g of methanol. Propylene glycol monomethyl etherate (hereinafter referred to as “PGMEA”) was added while heating the resulting methanol solution under reduced pressure to drive out low-boiling solvents such as methanol, and a copolymer (precursor). P containing 20% by mass A GMEA solution was prepared. This is designated as rosin 1. Carbon 13 (meaning carbon with a mass number of 13; the same applies hereinafter) Nuclear magnetic resonance spectrum ( 13 C-NMR) and analysis by GPC were performed to determine the composition (Mw, MwZMn) of the copolymer (precursor).
共重合体(前駆体)の組成; PHSZ〇TM = 82. 5/17. 5 (モル0 /0)、 The composition of the copolymer (precursor);. PHSZ_〇_TM = 82. 5/17 5 (mol 0/0),
分子量(Mw) ; 7300、  Molecular weight (Mw); 7300,
分子量分布(MwZMn) ; 1. 55。  Molecular weight distribution (MwZMn); 1.55.
[0076] [合成例 2] <前駆体への酸解離性溶解抑制基の導入 (ァセタール化) > [0076] [Synthesis Example 2] <Introduction of acid dissociable, dissolution inhibiting group into precursor (acetalization)>
窒素雰囲気に保った容器に上記で調製した榭脂 1の溶液 250gを仕込み、 40°Cに 加温した。次いで 20%トリフルォロ酢酸(以下 TFAと記す) ZPGMEA溶液 1. 5gを 加え 10分間攪拌した後、 50%ェチルビニルエーテル (以下 EVEと記す) ZPGME A溶液 17. 8gを加え、 40°Cを保ったまま 6時間反応させた。反応終了後、室温まで 冷却した後、ガラスカラムに詰めたイオン交換榭脂 (オルガノ製 B20HG DRY)中 を通液させ、 TFAを除去した。この反応生成溶液をキュノ社製フィルターゼータブラ ス 40QSHに通液させた後、減圧下で濃縮し、ァセタール化共重合体 30質量%を含 む PGMEA溶液を調製した。これを榭脂 2とする。この溶液を13 C— NMRと GPCに て分析し、ァセタール化率と Mw、 MwZMnを求めた。 A container maintained in a nitrogen atmosphere was charged with 250 g of the resin 1 prepared above and heated to 40 ° C. Next, 20% trifluoroacetic acid (hereinafter referred to as TFA) ZPGMEA solution 1.5 g was added and stirred for 10 minutes, and then 50% ethyl vinyl ether (hereinafter referred to as EVE) ZPGME A solution 17.8 g was added and kept at 40 ° C. The reaction was continued for 6 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and then passed through an ion exchange resin (B20HG DRY made by Organo) packed in a glass column to remove TFA. This reaction product solution was passed through a filter settable 40QSH manufactured by Cuno Co., Ltd., and then concentrated under reduced pressure to prepare a PGMEA solution containing 30% by mass of an acetalized copolymer. This is designated as rosin 2. This solution was analyzed by 13 C-NMR and GPC to obtain the acetalization rate, Mw, and MwZMn.
なお、ここでのァセタール化率とは、前駆体の PHS単位の水酸基のうち、ェチルビ -ルエーテル力も誘導されるァセタール型の酸解離性溶解抑制基( 1—エトキシ— 1 ェチル基)で置換されたものの割合をモル%で表したものである(以下、同様)。 ァセタール化率 33. 8%、  Here, the acetalization rate means that the hydroxyl group of the precursor PHS unit was substituted with an acetal type acid dissociable, dissolution inhibiting group (1-ethoxy-1-ethyl group) that also induces ethyl vinyl ether force. The ratio of the product is expressed in mol% (the same applies hereinafter). Acetalization rate 33.8%,
分子量 Mw=8000、  Molecular weight Mw = 8000,
分子量分布 Mw/Mn= l. 64。  Molecular weight distribution Mw / Mn = l.
[0077] 本合成例で得られたァセタールイ匕共重合体 (榭脂 2)は下記化学式(14)で表され る 3種の構成単位からなる。該化学式において x:y: z (モル比) = 54. 6 : 27. 9 : 17.[0077] The acetal 匕 copolymer (resin 2) obtained in this synthesis example is composed of three structural units represented by the following chemical formula (14). In the chemical formula, x: y: z (molar ratio) = 54.6: 27.9: 17.
5である。 5.
[0078] [化 14] [0078] [Chemical 14]
Figure imgf000027_0001
Figure imgf000027_0001
[0079] [合成例 3] <前駆体への酸解離性溶解抑制基の導入 (ァセタール化) > [0079] [Synthesis Example 3] <Introduction of acid dissociable, dissolution inhibiting group into precursor (acetalization)>
合成例 2において、 EVEZPGMEA溶液の添力卩量を 12. 2gに変更し、該 EVEZ PGMEA溶液添加後の反応時間を 5時間に変更した他は、合成例 2と同様にしてァ セタールイ匕共重合体 30質量%を含む PGMEA溶液を調製した。これを榭脂 3とする 。この溶液を13 C— NMRと GPCにて分析し、ァセタール化率と Mw、 MwZMnを求 めた。 In Synthesis Example 2, the weight of the EVEZPGMEA solution was changed to 12.2 g, and the reaction time after the addition of the EVEZ PGMEA solution was changed to 5 hours. A PGMEA solution containing 30% by weight of coalescence was prepared. This is designated as rosin 3. This solution was analyzed by 13 C-NMR and GPC to obtain the acetalization rate and Mw and MwZMn.
ァセタール化率 22. 9%  Acetalization rate 22.9%
分子量 Mw= 7860  Molecular weight Mw = 7860
分子量分布 Mw/Mn= l. 60  Molecular weight distribution Mw / Mn = l. 60
[0080] 本合成例で得られたァセタールイ匕共重合体 (榭脂 3)は前記化学式(14)で表され る 3種の構成単位からなる。該化学式において x:y: z (モル比) =63. 6 : 18. 9 : 17.[0080] The acetal 匕 copolymer (resin 3) obtained in this synthesis example is composed of three structural units represented by the chemical formula (14). In the chemical formula, x: y: z (molar ratio) = 63. 6: 18. 9: 17.
5である。 5.
[0081] <実施例 1 > <Example 1>
(A)成分として、上記合成例 2で得られた榭脂 2および合成例 3で得られた榭脂 3を 用いてポジ型レジスト組成物を調製した。  A positive resist composition was prepared using the resin 2 obtained in Synthesis Example 2 and the resin 3 obtained in Synthesis Example 3 as the component (A).
(A)成分を 100質量部 (榭脂 2:榭脂 3 = 5: 5)と、 (B)成分として下記化学式 (2)で 表される化合物 1. 0質量部、下記化学式(3)で表される化合物 4. 0質量部、下記化 学式 (4)で表される化合物 4. 0質量部、および下記化学式(5)で表される化合物 0. 100 parts by weight of component (A) (resin 2: resin 3 = 5: 5) and (B) as a compound represented by the following chemical formula (2) 1.0 part by weight of the following chemical formula (3) Compound represented by 4.0 parts by mass, compound represented by the following chemical formula (4) 4.0 parts by mass, and compound represented by the following chemical formula (5)
3質量部と、(C)成分としてトリエタノールァミン 0. 28質量部およびトリイソプロパノー ルァミン 0. 28質量部と、(E)成分として下記化学式 (6)で表される化合物 2質量部と 、フッ素系界面活性剤 (製品名 XR— 104、大日本インキ化学工業社製) 0. 025質 部を、 PGMEAとELの混合溶剤(PGMEA:ELの質量比が6 :4)に溶解させてポジ 型レジスト組成物(固形分濃度 10質量%)を得た。 3 parts by weight, 0.28 parts by weight of triethanolamine as component (C) and 0.28 parts by weight of triisopropanolamine, and 2 parts by weight of a compound represented by the following chemical formula (6) as component (E) When , Fluorosurfactant (Product name XR-104, manufactured by Dainippon Ink & Chemicals, Inc.) 0.025 parts are dissolved in a mixed solvent of PGMEA and EL (PGMEA: EL mass ratio is 6: 4) A positive resist composition (solid content concentration 10 mass%) was obtained.
[0082] [化 15] [0082] [Chemical 15]
Figure imgf000028_0001
Figure imgf000028_0001
Figure imgf000028_0002
(3)
Figure imgf000028_0002
(3)
Figure imgf000028_0003
Figure imgf000028_0003
H3C—— C= N—— OS02- n-C4H9 H 3 C—— C = N—— OS0 2 -nC 4 H 9
H3C—— C= N—— OS02- n C4H9 H 3 C—— C = N—— OS0 2 -n C 4 H 9
(5)  (Five)
[0083] [化 16] [0083] [Chemical 16]
Figure imgf000029_0001
Figure imgf000029_0001
[0084] 8インチのシリコンゥエーハ上に有機反射防止膜用材料 (ブリューヮーサイエンス社 製、商品名 DUV— 44)を塗布し、 225°Cで 60秒間焼成して膜厚 65nmの反射防止 膜を形成して基板とした。該基板上に、上記で得られたポジ型レジスト組成物をスピ ンナーを用いて均一に塗布し、ホットプレート上で 100°C、 60秒間プレベータして、 乾燥させることにより、膜厚 287nmのレジスト層を形成した。 [0084] An organic antireflective coating material (trade name DUV-44, manufactured by Brew Science Co., Ltd.) was applied on an 8-inch silicon wafer and baked at 225 ° C for 60 seconds to form a 65 nm thick antireflective coating. To form a substrate. On the substrate, the positive resist composition obtained above is uniformly applied using a spinner, pre-betaned at 100 ° C. for 60 seconds on a hot plate, and dried to form a resist having a thickness of 287 nm. A layer was formed.
[0085] ついで、 KrF露光装置(波長 248nm) NSR—S203B (Nikon社製、 NA (開口数)  [0085] Next, KrF exposure system (wavelength 248nm) NSR-S203B (Nikon, NA (numerical aperture))
=0. 68, 2Z3輪帯照明)を用い、 8%ハーフトーンレクチルを介して選択的に露光 した。  = 0.68, 2Z3 annular illumination) and selectively exposed via 8% halftone reticle.
そして、 110°C、 60秒間の条件で PEB処理し、さらに 23°Cにて 2. 38質量0 /0テトラ メチルアンモ-ゥムヒドロキシド水溶液で 60秒間パドル現像し、その後 30秒間、純水 を用いて水リンスし、振り切り乾燥を行った。さらに、 100°Cで 60秒間加熱して乾燥さ せて 120nmのラインアンドスペース(1 : 1)のレジストパターン(以下、 LZSパターン という)を形成した。 Then, a PEB treatment was conducted under conditions of 110 ° C, 60 seconds, further 23 ° C at 2.38 mass 0/0 tetra Mechiruanmo - 60 seconds and puddle developed with Umuhidorokishido solution, then 30 seconds with pure water water Rinse and shake-dry. Furthermore, it was heated at 100 ° C. for 60 seconds and dried to form a 120 nm line-and-space (1: 1) resist pattern (hereinafter referred to as LZS pattern).
[0086] このようにして LZSパターンを形成した基板を、 日立社製の走査型電子顕微鏡 (測 長 SEM、 S- 9200)により観察したところ、 LZSパターンの断面形状は、矩形性が 高ぐ良好なものであった。  [0086] When the substrate on which the LZS pattern was formed in this way was observed with a scanning electron microscope (measurement SEM, S-9200) manufactured by Hitachi, the cross-sectional shape of the LZS pattern was highly rectangular and good. It was something.
上記で形成したパターンの LERを示す尺度である 3 σを求めた。その結果、得られ たパターンの 3 σは 3. 4nmであった。なお、 3 σは、側長 SEM (日立製作所社製, 商品名「S— 9220」)により、試料のレジストパターンの幅を 32箇所測定し、その結果 力も算出した標準偏差( σ )の 3倍値 (3 σ )である。この 3 σは、その値が小さいほどラ フネスが小さぐ均一幅のレジストパターンが得られたことを意味する。 3 σ, which is a measure indicating the LER of the pattern formed above, was obtained. As a result, 3 σ of the obtained pattern was 3.4 nm. Note that 3 σ is the result of measuring the width of the resist pattern of the sample at 32 locations using the side length SEM (manufactured by Hitachi, Ltd., trade name “S-9220”) The force is also three times the calculated standard deviation (σ) (3σ). This 3σ means that the smaller the value, the smaller the roughness of the resist pattern.
焦点深度幅(DOF)は 0. 5 mであった。  The depth of focus (DOF) was 0.5 m.
120nmLZSパターンが ± 10%の範囲で得られる露光量マージン(ELマージン) は 14. 79%であった。  The exposure dose margin (EL margin) obtained in the range of ± 10% for the 120 nmLZS pattern was 14.79%.
[0087] (比較例 1) [0087] (Comparative Example 1)
(A)成分として、ポリヒドロキシスチレン(Mw8000)の水酸基の 42モル0 /0を 1 エト キシェチル基で保護した榭脂 γを用いた以外は実施例 1と同様にしてポジ型レジスト 組成物を調製し、該ポジ型レジスト組成物を用いてレジストパターンを形成した。 上記榭脂 Yは、下記化学式で表される 2種の構成単位力 なる共重合体である。該 化学式にぉ 、て X: y (モル比) = 58: 42である。 As the component (A), prepared except that the 42 mole 0/0 of hydroxyl with榭脂γ protected with 1 Eto Kishechiru groups in the same manner as in Example 1 The positive resist composition of polyhydroxystyrene (Mw8000) Then, a resist pattern was formed using the positive resist composition. The resin Y is a copolymer having two structural unit forces represented by the following chemical formula. In the chemical formula, X: y (molar ratio) = 58: 42.
[0088] [化 17] [0088] [Chemical 17]
— C2H>;— C 2 H>;
Figure imgf000030_0001
Figure imgf000030_0001
[0089] このようにして LZSパターンを形成した基板について、実施例 1と同様にして評価 した。その結果、 120nmの LZSパターンが形成された力 該パターンはトップ部の 形状が丸くなっていた。 LERは 3 σ =5. 5nm、焦点深度幅は 0. 2 /z m、露光量マー ジンは 7. 73%であった。 The substrate on which the LZS pattern was thus formed was evaluated in the same manner as in Example 1. As a result, the force with which the 120 nm LZS pattern was formed had a round top shape. The LER was 3 σ = 5.5 nm, the depth of focus range was 0.2 / z m, and the exposure margin was 7.73%.
[0090] 以上の結果から明らかなように、実施例 1では比較例 1に比べて、レジストパターン の矩形性が良好で、 LERが低減されており、微細なレジストパターンが得られた。ま た、焦点深度幅、露光マージンも向上した。  As is clear from the above results, in Example 1, compared with Comparative Example 1, the rectangularity of the resist pattern was better, the LER was reduced, and a fine resist pattern was obtained. In addition, the depth of focus and exposure margin were improved.

Claims

請求の範囲  The scope of the claims
[1] 酸の作用によりアルカリ可溶性が増大する榭脂成分 (A)と、露光により酸を発生す る酸発生剤成分 (B)とを含むポジ型レジスト組成物にぉ 、て、  [1] A positive resist composition comprising a resin component (A) whose alkali solubility is increased by the action of an acid and an acid generator component (B) that generates an acid upon exposure,
前記榭脂成分 (A)が、フ ノール性水酸基を有する構成単位 (al)と、ラタトン含有 単環又は多環式基を有する構成単位 (a2)と、酸解離性溶解抑制基を有する構成単 位 (a3)とを有する共重合体 (A1)を含有することを特徴とするポジ型レジスト組成物  The resin component (A) comprises a structural unit (al) having a phenolic hydroxyl group, a structural unit (a2) having a ratatone-containing monocyclic or polycyclic group, and a structural unit having an acid dissociable, dissolution inhibiting group. A positive resist composition comprising a copolymer (A1) having a position (a3)
[2] 前記構成単位 (al)が、下記一般式 (I) [2] The structural unit (al) is represented by the following general formula (I):
[化 1]  [Chemical 1]
Figure imgf000031_0001
Figure imgf000031_0001
(式中、 Rは水素原子またはメチル基である。)で表される構成単位 (al— 1)であり、 前記構成単位 (a2)が下記一般式 (II) (Wherein R is a hydrogen atom or a methyl group), and the structural unit (a2) is represented by the following general formula (II):
[化 2]  [Chemical 2]
Figure imgf000031_0002
Figure imgf000031_0002
(式中、 Rは水素原子またはメチル基であり、 Xはラタトン含有単環又は多環式基を表 す。)で表される構成単位 (a2— 1)であり、かつ前記構成単位 (a3)が下記一般式 (III ) (Wherein R represents a hydrogen atom or a methyl group, and X represents a ratatone-containing monocyclic or polycyclic group), and the structural unit (a3 ) Is represented by the following general formula (III)
[化 3] [Chemical 3]
Figure imgf000032_0001
Figure imgf000032_0001
(式中、 Rは水素原子またはメチル基であり、 Yは酸解離性溶解抑制基を表す。)で表 される構成単位 (a3- l)である請求項 1記載のポジ型レジスト組成物。  2. The positive resist composition according to claim 1, which is a structural unit (a3-l) represented by the formula (wherein R represents a hydrogen atom or a methyl group, and Y represents an acid dissociable, dissolution inhibiting group).
[3] 前記構成単位 (a2)が、下記一般式 (IV)で表される構成単位 (a2— 11)、 [3] The structural unit (a2) is a structural unit (a2-11) represented by the following general formula (IV):
[化 4]  [Chemical 4]
Figure imgf000032_0002
Figure imgf000032_0002
(式中、 Rは水素原子またはメチル基であり、 mは 0又は 1である。)下記一般式 (V)で 表される構成単位 (a2— 12)、 (In the formula, R is a hydrogen atom or a methyl group, and m is 0 or 1.) A structural unit (a2-12) represented by the following general formula (V),
[化 5]  [Chemical 5]
Figure imgf000032_0003
Figure imgf000032_0003
(式中、 Rは水素原子またはメチル基である。)下記一般式 (VI)で表される構成単位 ( a2—13)、および (In the formula, R is a hydrogen atom or a methyl group.) A structural unit represented by the following general formula (VI) ( a2-13), and
. ·個
Figure imgf000033_0001
. ·Pieces
Figure imgf000033_0001
(式中、 Rは水素原子またはメチル基である。)下記一般式 (VII)で表される構成単位 (a2— 14)、 (In the formula, R is a hydrogen atom or a methyl group.) A structural unit (a2-14) represented by the following general formula (VII):
[化 7]  [Chemical 7]
Figure imgf000033_0002
Figure imgf000033_0002
(式中、 Rは水素原子またはメチル基である。)からなる群力 選ばれる少なくとも 1種 である請求項 1に記載のポジ型レジスト組成物。 2. The positive resist composition according to claim 1, which is at least one selected from the group force consisting of: wherein R is a hydrogen atom or a methyl group.
[4] 前記構成単位 (al)と (a3)の合計に対する構成単位 (a3)の割合が 5〜50モル% である請求項 1に記載のポジ型レジスト組成物。 [4] The positive resist composition according to claim 1, wherein the ratio of the structural unit (a3) to the total of the structural units (al) and (a3) is 5 to 50 mol%.
[5] 前記共重合体 (A1)中における構成単位 (a2)の割合が 5〜50モル%である請求 項 1に記載のポジ型レジスト組成物。 5. The positive resist composition according to claim 1, wherein the proportion of the structural unit (a2) in the copolymer (A1) is 5 to 50 mol%.
[6] 前記構成単位 (a3)の酸解離性溶解抑制基が、アルコキシアルキル基である請求 項 1に記載のポジ型レジスト組成物。 [7] 前記酸発生剤成分 (B)が、ジァゾメタン系酸発生剤を含有する請求項 1に記載の ポジ型レジスト組成物。 [6] The positive resist composition according to [1], wherein the acid dissociable, dissolution inhibiting group of the structural unit (a3) is an alkoxyalkyl group. [7] The positive resist composition according to [1], wherein the acid generator component (B) contains a diazomethane acid generator.
[8] 前記酸発生剤成分 (B)が、さらにォニゥム塩系酸発生剤を含有する請求項 7に記 載のポジ型レジスト糸且成物。  8. The positive resist yarn composition according to claim 7, wherein the acid generator component (B) further contains an onion salt acid generator.
[9] さらに含窒素有機化合物(C)を含む請求項 1に記載のポジ型レジスト組成物。 9. The positive resist composition according to claim 1, further comprising a nitrogen-containing organic compound (C).
[10] 基板上に、請求項 1に記載のポジ型レジスト糸且成物を用いてポジ型レジスト膜を形 成し、該ポジ型レジスト膜に対して選択的に露光処理を行った後、現像処理を施して レジストパターンを形成することを特徴とするレジストパターン形成方法。 [10] A positive resist film is formed on the substrate using the positive resist yarn composition according to claim 1, and the positive resist film is selectively subjected to an exposure treatment. A resist pattern forming method, wherein a resist pattern is formed by performing a development process.
PCT/JP2005/011334 2004-07-01 2005-06-21 Positive-working resist composition and method for resist pattern formation WO2006003810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-195672 2004-07-01
JP2004195672A JP2006018016A (en) 2004-07-01 2004-07-01 Positive resist composition and resist pattern forming method

Publications (1)

Publication Number Publication Date
WO2006003810A1 true WO2006003810A1 (en) 2006-01-12

Family

ID=35782621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011334 WO2006003810A1 (en) 2004-07-01 2005-06-21 Positive-working resist composition and method for resist pattern formation

Country Status (3)

Country Link
JP (1) JP2006018016A (en)
TW (1) TWI299435B (en)
WO (1) WO2006003810A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2449429A1 (en) * 2009-07-03 2012-05-09 FUJIFILM Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
JPWO2017038968A1 (en) * 2015-09-04 2018-06-21 三菱瓦斯化学株式会社 Compound purification method
CN114083916A (en) * 2021-11-12 2022-02-25 厦门通益包装科技有限公司 Green printing process for packaging box

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945160B2 (en) * 2006-03-30 2012-06-06 三菱レイヨン株式会社 Method for producing polymer, resist composition, and method for producing substrate on which pattern is formed
US20210200084A1 (en) * 2019-12-31 2021-07-01 Rohm And Haas Electronic Materials Llc Polymers and photoresist compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249682A (en) * 1991-06-18 1993-09-28 Wako Pure Chem Ind Ltd New photoresist material and pattern forming method
JP2002372785A (en) * 2001-04-12 2002-12-26 Toray Ind Inc Positive type radiation sensitive composition and method for producing resist pattern using the same
JP2003255539A (en) * 2002-03-01 2003-09-10 Jsr Corp Radiation-sensitive resin composition
JP2004029437A (en) * 2002-06-26 2004-01-29 Toray Ind Inc Positive radiation-sensitive composition
JP2004286968A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Positive radiation-sensitive composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249682A (en) * 1991-06-18 1993-09-28 Wako Pure Chem Ind Ltd New photoresist material and pattern forming method
JP2002372785A (en) * 2001-04-12 2002-12-26 Toray Ind Inc Positive type radiation sensitive composition and method for producing resist pattern using the same
JP2003255539A (en) * 2002-03-01 2003-09-10 Jsr Corp Radiation-sensitive resin composition
JP2004029437A (en) * 2002-06-26 2004-01-29 Toray Ind Inc Positive radiation-sensitive composition
JP2004286968A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Positive radiation-sensitive composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2449429A1 (en) * 2009-07-03 2012-05-09 FUJIFILM Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
EP2449429A4 (en) * 2009-07-03 2012-12-26 Fujifilm Corp Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
US8877423B2 (en) 2009-07-03 2014-11-04 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
JPWO2017038968A1 (en) * 2015-09-04 2018-06-21 三菱瓦斯化学株式会社 Compound purification method
JP7306790B2 (en) 2015-09-04 2023-07-11 三菱瓦斯化学株式会社 Compound purification method
CN114083916A (en) * 2021-11-12 2022-02-25 厦门通益包装科技有限公司 Green printing process for packaging box
CN114083916B (en) * 2021-11-12 2023-12-15 厦门通益包装科技有限公司 Green printing process for packaging box

Also Published As

Publication number Publication date
JP2006018016A (en) 2006-01-19
TW200606587A (en) 2006-02-16
TWI299435B (en) 2008-08-01

Similar Documents

Publication Publication Date Title
WO2007046388A1 (en) Positive resist composition, positive resist composition for thermal flow process, and method for formation of resist patterns
WO2005123795A1 (en) Polymer compound, positive resist composition and method for forming resist pattern
JP2003246825A (en) Copolymer for resist, its preparation process and resist composition
WO2006126433A1 (en) Positive resist composition and method for forming resist pattern
WO2006134739A1 (en) Positive resist composition and method of forming resist pattern
JP5489417B2 (en) Positive resist composition and resist pattern forming method
TWI302639B (en) Positive resist composition and process for forming resist pattern
JP4668042B2 (en) Positive resist composition and resist pattern forming method
WO2006003810A1 (en) Positive-working resist composition and method for resist pattern formation
TW200528923A (en) Positive resist composition and resist pattern formation method
WO2006120897A1 (en) Positive resist composition and method of forming resist pattern
WO2006038477A1 (en) Polymer compound, positive resist composition and method for forming resist pattern
WO2007148525A1 (en) Positive resist composition and method for formation of resist pattern
WO2007148492A1 (en) Positive resist composition and method of forming resist pattern
WO2006080151A1 (en) Method for forming resist pattern
JP2004175981A (en) Method for producing resin, resin, resist composition and method for forming resist pattern
WO2007138797A1 (en) Positive resist composition and method of forming resist pattern
JP4851140B2 (en) (Meth) acrylic acid ester, polymer, resist composition, and method for producing substrate on which pattern is formed
JP2007284368A (en) Methacrylic or acrylic monomer and resin for protective layer of resist resin
JP2001022075A (en) Resin for resist, chemical amplification type resist composition and resist pattern forming method
TWI313270B (en) Method of producing (meth) acrylic acid derivative polymer for resist
JP2004361803A (en) Positive resist composition and resist pattern forming method
WO2006115017A1 (en) Positive resist composition and method for forming resist pattern
WO2005016982A1 (en) Resin for resist, positive resist composition, and method of forming resist pattern
JP2003131382A (en) Polymer for chemically amplified resist

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase