WO2006003786A1 - Vacuum pressure control system - Google Patents

Vacuum pressure control system Download PDF

Info

Publication number
WO2006003786A1
WO2006003786A1 PCT/JP2005/010850 JP2005010850W WO2006003786A1 WO 2006003786 A1 WO2006003786 A1 WO 2006003786A1 JP 2005010850 W JP2005010850 W JP 2005010850W WO 2006003786 A1 WO2006003786 A1 WO 2006003786A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
vacuum pressure
valve
proportional
opening
Prior art date
Application number
PCT/JP2005/010850
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Toyoda
Original Assignee
Ckd Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd Corporation filed Critical Ckd Corporation
Priority to KR1020077002520A priority Critical patent/KR101117747B1/en
Publication of WO2006003786A1 publication Critical patent/WO2006003786A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2093Control of fluid pressure characterised by the use of electric means with combination of electric and non-electric auxiliary power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the vacuum volume is controlled by changing the opening degree of the vacuum proportional closing valve so that the vacuum pressure in the vacuum vessel is changed at a target vacuum pressure change rate set by an external force or previously set to a controller. While slowly advancing the process of discharging the gas from the inside of the chamber to prevent the particles from rolling up in the vacuum chamber, when discharging the gas from the vacuum chamber, The rate of change in vacuum pressure can be freely controlled!
  • a vacuum pressure value changed at a target vacuum pressure change rate acquired with respect to the vacuum pressure in the reaction chamber measured by the vacuum pressure sensor is sequentially generated as an internal command
  • Feedback control is performed as follow-up control by setting the sequentially generated internal command as a target value of feedback control and sequentially changing the target value of feedback control.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-163137
  • the abnormality such as “abnormality of vacuum pressure sensor”, “leakage of reaction chamber”, “clogging of piping”, etc.
  • the countermeasures will be implemented. In other words, there was a problem that the system itself could not detect abnormalities.
  • the controller controls the opening of the vacuum proportional on-off valve based on the output of the vacuum pressure sensor, which measures the vacuum pressure in the vacuum vessel, and the vacuum pressure sensor. Reduce the pressure (see Figure 5).
  • the controller stores the relationship between the output of the vacuum pressure sensor and the opening degree of the vacuum proportional on-off valve in such a normal state.
  • the output of the vacuum pressure sensor is preset when the opening of the vacuum proportional on-off valve reaches the preset predetermined opening. If it is larger, it is considered that the system has an abnormality. Therefore, in this vacuum pressure control system, when performing the opening control of the vacuum proportional on-off valve based on the output of the vacuum pressure sensor, the opening degree of the vacuum proportional on-off valve has reached a predetermined opening set in advance. Sometimes, when the output of the vacuum pressure sensor is larger than a predetermined value set in advance, it is determined that an abnormality has occurred in the system. This enables early detection of system abnormalities.
  • the controller when the controller detects an abnormality in the system or determines that an abnormality occurs in the system, the controller operates the system of the proportional proportional on-off valve. It is desirable to operate in the safe direction.
  • the "valve opening”, “opening the valve”, or “to operate the vacuum proportional open / close valve in the safety direction of the system” One of “maintain the valve opening degree” corresponds. That is, in this vacuum pressure control system, the operation of the vacuum proportional on-off valve is controlled by the controller so as to enhance safety of each system at the time of abnormality. As a result, the system can be further enhanced in safety because measures can be taken automatically.
  • FIG. 1 is a block diagram schematically showing a vacuum pressure control system according to an embodiment.
  • FIG. 2 is a cross-sectional view when the vacuum proportional on-off valve is in a closed state.
  • FIG. 3 is a cross-sectional view of the vacuum proportional on-off valve in an open state.
  • Fig. 8 is a flowchart showing the contents of execution time processing in the vacuum pressure change rate control mode.
  • FIG. 9 is a view showing an example of the pressure change of the reaction chamber and the change of the valve opening degree of the vacuum proportional on-off valve in the vacuum pressure change speed control mode at the normal time.
  • FIG. 11 is a view showing an example of a change in pressure of the reaction chamber and a change in valve opening degree of the vacuum proportional on-off valve when abnormality is detected and abnormal processing is performed.
  • FIG. 13 is a view showing an example of a change in pressure in a reaction chamber and a change in valve opening of a vacuum proportional on-off valve when an abnormality is detected and an abnormal process is performed.
  • FIG. 14 is a view showing an outline of a CVD apparatus and its exhaust system.
  • FIG. 1 shows a block diagram of a vacuum pressure control system according to the present embodiment, as compared with FIG. 14 shown in the column of the prior art.
  • the vacuum pressure control system according to the present embodiment includes a controller 20, an air pressure control unit 30, a vacuum proportional on-off valve 16 which is an operation unit 40, and vacuum pressure sensors 14 and 15 which are a detection unit 60.
  • the controller 20 includes an interface circuit 21, a vacuum pressure control circuit 22, and a sequence control circuit 23.
  • An interface circuit 21 is provided on the front panel of the controller 20.
  • the signal from the field input through the tongue and the signal from the remote input through the connector on the back panel of the controller 20 are converted into signals suitable for the vacuum pressure control circuit 22, the sequence control circuit 23, and the like.
  • the controller 20 stores a constant relationship between the output of the vacuum pressure sensor and the opening degree of the vacuum proportional on-off valve at normal times, and this constant relationship and the actual condition of the vacuum pressure sensor. It compares the output with the actual opening degree of the vacuum proportional on / off valve to detect (determine) an abnormality in the system.
  • the vacuum pressure control circuit 22 is a circuit that performs feedback control with respect to the vacuum pressure in the reaction chamber 10 of FIG. 14 by PID control.
  • the sequence control circuit 23 is predetermined for the drive coil SV1 of the first solenoid valve 34 and the drive coil SV2 of the second solenoid valve 35 in the air pressure control unit 30 according to the operation mode given by the interface circuit 21. It is a circuit that operates.
  • the pneumatic control unit 30 includes a position control circuit 31, a pulse drive circuit 32, a time opening / closing operation valve 33, a first solenoid valve 34, and a second solenoid valve 35.
  • Position control circuit 31 has a valve opening degree command value given from vacuum pressure control circuit 22 and a valve opening degree measurement value given from potentiometer 18 provided on vacuum proportional on / off valve 16 through amplifier 19. And the position of the vacuum proportional on-off valve 16 is controlled.
  • the pulse drive circuit 32 transmits a pulse signal to the time switching valve 33 based on the control signal from the position control circuit 31.
  • the time opening / closing operation valve 33 incorporates an air supply side proportional valve and an exhaust side proportional valve (not shown), and according to the pulse signal from the pulse drive circuit 32, the air supply side proportional valve and the exhaust side
  • the proportional valve is operated to open and close for a time, and the air pressure in the pneumatic cylinder 41 (see FIGS. 2 and 3 described later) of the vacuum proportional on-off valve 16 via the second solenoid valve 35 and the first solenoid valve 34.
  • the vacuum proportional on-off valve 16 which is the operation unit 40 changes the conductance of the exhaust system from the reaction chamber 10 to the vacuum pump 13.
  • Figures 2 and 3 show the cross sections of the vacuum ratio example on-off valve 16.
  • a piston rod 43 is provided at the center thereof.
  • the piston 44 is fixed inside the pneumatic cylinder 41 which is an upper portion of the vacuum proportional on-off valve 16 with respect to the piston rod 43, and a poppet valve in a bellows type poppet valve 42 which is a lower portion of the vacuum proportional on-off valve 16.
  • Body 45 is fixed. Therefore, it is empty The poppet valve body 45 can be moved by the pneumatic cylinder 41.
  • the pneumatic cylinder In the vacuum proportional on-off valve 16, when the compressed air is not supplied into the pneumatic cylinder 41 through the supply port 18A, and the inside of the pneumatic cylinder 41 communicates with the exhaust line through the exhaust port 18B, the pneumatic cylinder is a pneumatic cylinder. Since the downward biasing force by the return panel 46 in 41 acts on the piston 44, as shown in FIG. 2, the poppet valve body 45 is in close contact with the valve seat 47, and the vacuum proportional on / off valve 16 is shut off.
  • the distance by which the poppet valve body 45 is separated from the valve seat 47 can be operated by supply and exhaust of compressed air to the pneumatic cylinder 41 as the lift amount of the valve.
  • the distance at which the poppet valve body 45 is separated from the valve seat 47 is measured by the potentiometer 18 via the slide lever 48 connected to the piston 44 as the valve lift amount. It corresponds to an opening degree of 16.
  • the vacuum pressure sensors 14 and 15, which are detection units, are capacitance manometers that measure the vacuum pressure in the reaction chamber 10 of FIG. Here, two capacitance manometers are used depending on the range of vacuum pressure to be measured.
  • the sequence control circuit 23 controls the first solenoid valve. 34 and the second solenoid valve 35 are operated as shown in FIG. As a result, compressed air is not supplied into the pneumatic cylinder 41 and the inside of the pneumatic cylinder 41 communicates with the exhaust line, so the air pressure inside the pneumatic cylinder 41 becomes atmospheric pressure, and the vacuum proportional opening and closing valve 16 is shut off. It becomes.
  • the sequence control circuit 23 operates the first solenoid valve 34 so that the time opening / closing operation valve 33 and the pneumatic cylinder 41 Communicate with
  • the vacuum proportional opening and closing The air pressure in the pneumatic cylinder 41 of the valve 16 is adjusted, and the valve lift amount force can be operated by the pneumatic cylinder 41.
  • the vacuum pressure control circuit 22 starts feedback control in which the target vacuum pressure value instructed by the on-site input or remote input is set as the target value. That is, in FIG. 14, the vacuum pressure value in the reaction chamber 10 is measured by the vacuum pressure sensors 14 and 15, and the valve of the vacuum proportional on-off valve 16 is adjusted according to the difference (control deviation) from the target vacuum pressure value. By operating the lift amount and changing the conductance of the exhaust system, the vacuum pressure in the reaction chamber 10 is kept constant at the target vacuum pressure value.
  • the vacuum pressure control circuit 22 when the control deviation of the feedback control is large, the operation amount of the feedback control is maximized, so that the speed response of the feedback control is sufficiently secured.
  • the control deviation of the feedback control when the control deviation of the feedback control is small, the vacuum pressure in the reaction chamber 10 can be maintained in a stable state because the time transition is made stepwise to the previously adjusted time constant.
  • the value obtained by adjusting the vacuum pressure value in the reaction chamber 10 measured by the vacuum pressure sensors 14 and 15 by the proportional differentiation circuits 105 and 106 is a field input.
  • the proportional derivative integration circuits 102, 103 After that, the integration circuit 104 connected in series outputs a voltage in the range of 0 to 5 V in order to output it to the position control circuit 31.
  • the time constant of the integration circuit 104 is determined by the integration time adjustment circuit 101.
  • the internal arithmetic circuit When the measured values of the vacuum pressure sensors 14 and 15 are apart from the target vacuum pressure value, the internal arithmetic circuit operates so as to minimize the integration time of the integration circuit.
  • the integration circuit 104 functions as an amplification circuit having an almost infinite gain.
  • the valve opening degree of the vacuum proportional on-off valve 16 can be reached in the shortest time to near the position for achieving the target vacuum pressure value.
  • the integration time adjustment circuit 101 determined to have reached near the position for achieving the target vacuum pressure value holds the vacuum pressure in a stable state at that position. Perform an operation to shift to the time constant in stages.
  • the vacuum pressure in the reaction chamber 10 is the target vacuum pressure. It is possible to control even the rate of change in vacuum pressure in the reaction chamber 10 when the vacuum pressure change rate control mode (SVAC) is selected by the controller 20 as the operation mode.
  • the vacuum pressure change rate control mode As described above, in the vacuum pressure change rate control mode (SVAC), as shown in FIG. 5, the conductance (valve opening) of the vacuum proportional on-off valve 16 is changed by feedback control. The pressure in the reaction chamber 10 is reduced at a set constant speed. For this reason, in the vacuum pressure control system, when an abnormality such as “abnormality of the vacuum pressure sensor 14, 15”, “leakage of the reaction chamber 10”, or “clogging of piping” has occurred, the vacuum pressure is At a certain point in the change speed control mode (SVAC), the relationship between “valve opening of vacuum proportional on-off valve 16” and “value of vacuum pressure sensor 14, 15” does not become as shown in FIG. Then, using this phenomenon, the vacuum pressure control system according to the present embodiment detects the above-mentioned abnormality.
  • SVAC vacuum pressure change rate control mode
  • the vacuum pressure change rate control mode (SVAC) executes two subroutines, that is, preparation time processing and execution time processing, as shown in FIG. Then, when the vacuum pressure change rate control mode (SVAC) is selected by the controller 20, first, preparation time processing is executed.
  • the current vacuum pressure in the reaction chamber 10 is obtained via the vacuum pressure sensors 14 and 15 (Sl).
  • the current vacuum pressure in the reaction chamber 10 is the atmospheric pressure VO (see FIG. 9)
  • the atmospheric pressure VO is obtained.
  • the valve opening degree of the vacuum proportional on-off valve 16 is acquired via the potentiometer 18 (S 2). Then, it is determined whether the acquired valve opening degree has reached the set value XI (S3). At this time, if the valve opening has reached the set value XI (S3: YES), the current vacuum pressure in the reaction chamber 10 is acquired via the vacuum pressure sensors 14 and 15 (S4). Then, it is determined whether the obtained vacuum pressure in the reaction chamber 10 is equal to or less than the set value X2 (S5). At this time, if the current vacuum pressure in the reaction chamber 10 is larger than the set value X2 (S5: NO), it is determined that an abnormality has occurred, and the vacuum pressure change rate control mode (SV AC) is selected. The process is ended and an abnormal process is performed (S6).
  • valve opening degree of the vacuum proportional on-off valve 16 is acquired via the potentiometer 18 (see FIG.
  • the abnormal processing in S6 and S16 indicates that an abnormality has occurred in the system. Informing and operating the vacuum proportional control valve 16 in the safe direction. In the present embodiment, depending on the force system for operating the vacuum proportional control valve 16 in the closing direction, the valve may be operated in the opening direction or the current valve opening degree may be maintained. This is because the safety direction differs depending on the system. Therefore, in the abnormal state processing, it may be set so that the valve operation suitable for each system can be performed.
  • “informative information” includes all things for hearing and visual sense etc. Informing by a single means (for example, only warning sound etc.) or in a compounding means (for example warning sound and warning etc. It may be offset, etc.).
  • the valve opening degree of the vacuum proportional on-off valve 16 is acquired via the potentiometer 18 (S21). Then, it is determined whether the acquired valve opening has reached the set value XI (S22). At this time, if the valve opening has reached the set value XI (S22: YES), the current vacuum pressure in the reaction chamber 10 is acquired via the vacuum pressure sensors 14, 15 (S23). Then, it is determined whether the acquired current vacuum pressure in the reaction chamber 10 is less than or equal to the set value X2 (S24).
  • the valve opening does not reach the set value XI (S22: NO), or when the current vacuum pressure in the reaction chamber 10 is less than the set value X2 (S24: YES),
  • the target vacuum pressure value instructed by the site input or remote input is acquired (S26).
  • the current vacuum pressure in the reaction chamber 10 is obtained via the vacuum pressure sensors 14 and 15 (S27). Then, it is determined whether or not the current vacuum pressure in the reaction chamber 10 has reached the target vacuum pressure value (S28). If the current vacuum pressure in the reaction chamber 10 has not reached the target vacuum pressure value (S28: NO), the target vacuum pressure change rate indicated by the on-site input or remote input is acquired (S29).
  • the current vacuum pressure value in the reaction chamber 10 is acquired via the vacuum pressure sensors 14 and 15 (S30). Then, the controller 20 generates, as an internal command, the vacuum pressure value changed at the target vacuum pressure change rate acquired in S29 with respect to the current vacuum pressure value of the reaction chamber 10 acquired in S30. Then, the internal command is set as the target value of feedback control, and the target value of feedback control is changed (S31). Thereafter, feedback control is performed (S32) Specifically, as shown in the block diagram of FIG. 4, the target vacuum pressure value and the vacuum pressure change speed instructed by the on-site input or remote input are 0 to 5 V by the interface circuit 21 (see FIG. 1). , And is input to the internal command generation circuit 111. The internal command generation circuit 111 subtracts a predetermined vacuum pressure value from the current vacuum pressure value of the reaction chamber 10 according to the magnitude of the vacuum pressure change rate, and outputs that value as a target value for feedback control. .
  • the target vacuum pressure value acquired in S26 is set as the target value of feedback control. Thereafter, feedback control is performed (S32).
  • FIG. 11 is a view showing a state in which an abnormality occurs in the vacuum pressure sensors 14 and 15.
  • FIG. 12 is a view showing a state of the reaction chamber 10 at the time of leak.
  • FIG. 13 is a diagram showing a state in which the pipe is clogged.
  • the valve opening of the vacuum proportional on-off valve 16 is set to the set value at time t4. Reach XI. At this time, the vacuum pressure of the reaction chamber 10 is not less than the set value X2.
  • the vacuum pressure control system it is possible to rapidly detect an abnormality in the system, such as leaks in the vacuum pressure sensors 14 and 15, the reaction chamber 10, or clogging of piping. Then, when an abnormality is detected, the vacuum proportional on-off valve 16 is closed while notifying that effect. Therefore, it is possible to construct a very safe vacuum pressure control system.
  • the set values XI and X2 set to detect each of the above-mentioned abnormalities may be obtained in advance by experiments or the like so that the respective abnormalities can be detected appropriately.
  • a mechanism for detecting the degree of valve opening like the vacuum proportional on-off valve 16 (potentiometer 1 When using a valve that is not equipped with 8), use the operating voltage supplied to the valve or the operating air pressure supplied to the valve instead of using the valve opening to detect an abnormality in the system. Just do it. As a result, even if the system is constructed with a valve that does not have a mechanism for detecting the degree of opening of the valve, it is possible to detect system abnormality early.
  • the vacuum pressure control system As described above, in the vacuum pressure control system according to the present embodiment, as described in detail above, when controller 20 reaches the set value XI that is set in advance, the valve opening degree of vacuum proportional on-off valve 16 If the vacuum pressure in the reaction chamber 10 is larger than the preset set value X2, it is determined that an abnormality has occurred in the system.
  • the set values XI and X2 are obtained in advance by experiments so that each abnormality can be detected properly. Therefore, according to the vacuum pressure control system according to the present embodiment, it is possible to rapidly detect an abnormality in the system such as leaks of the vacuum pressure sensors 14 and 15, the reaction chamber 10, or clogging of piping. Then, when an abnormality is detected, the fact is notified and the vacuum ratio on / off valve 16 is closed. Therefore, a very safe vacuum pressure control system can be built.

Abstract

There is provided a vacuum pressure control system capable of quickly detecting an abnormal state in a system such as failure of a vacuum pressure sensor, leak of a reactor, and clogging of a pipe. When the valve open degree of a vacuum proportional open/close valve (16) acquired via a potentiometer (18) has reached a predetermined value X1 (YES in S22) and the vacuum pressure of a reaction chamber (10) acquired via pressure sensors (14, 15) is greater than a predetermined value X2 (NO in S24), it is judged that an abnormal state such as failure of the vacuum pressure sensor, leak of the reactor, and clogging of a pipe is caused in the system and a failure countermeasure is performed (S25). The predetermined values X1 and X2 are decided in advance by an experiment or the like so as to appropriately detect the abnormal state such as the failure of the vacuum pressure sensor, leak of the reactor, and clogging of a pipe.

Description

明 細 書  Specification
真空圧力制御システム  Vacuum pressure control system
技術分野  Technical field
[0001] 本発明は、半導体製造装置で使用される真空圧力制御システムに関する。さらに 詳細には、システムにおける各種の異常を検知することができる真空圧力制御システ ムに関するものである。  The present invention relates to a vacuum pressure control system used in a semiconductor manufacturing apparatus. More particularly, it relates to a vacuum pressure control system capable of detecting various abnormalities in the system.
背景技術  Background art
[0002] 従来、例えば、半導体製造装置の CVD装置においては、反応室内を減圧状態、 すなわち、真空状態に保ちながら、薄膜材料を構成する元素カゝらなる材料ガスを、ゥ ェハー上に供給している。例えば、図 14に示す CVD装置においては、真空容器で ある反応室 10内のウェハーに対して、反応室 10の入口 11から材料ガスを供給する とともに、反応室 10の出口 12から真空ポンプ 13で排気することによって、反応室 10 内を真空状態に保っている。  Conventionally, for example, in a CVD apparatus of a semiconductor manufacturing apparatus, while maintaining a reduced pressure state of a reaction chamber, ie, a vacuum state, a material gas consisting of an element caustic which constitutes a thin film material is supplied onto a wafer. ing. For example, in the CVD apparatus shown in FIG. 14, the material gas is supplied from the inlet 11 of the reaction chamber 10 to the wafer in the reaction chamber 10 which is a vacuum vessel, and the vacuum pump 13 is used from the outlet 12 of the reaction chamber 10. By evacuation, the inside of the reaction chamber 10 is maintained in a vacuum state.
[0003] このとき、反応室 10内の真空圧力を一定に保持する必要があるが、その一定値は 、種々の条件によって変わり、大気圧又は大気圧に近い低真空力 高真空までの広 いレンジに渡る。そこで、大気圧に近い低真空から高真空までの広いレンジに渡って 、真空圧力を精度良く一定に保持する必要がある。また、反応室 10内のウェハーに 形成される薄膜の品質を一層向上させるため、反応室 10内でパーティクルが巻き上 力 ¾ことを防止する観点から、反応室 10内の真空圧力を大気圧又は大気圧に近い 低真空から目標真空圧力値にまで到達させる真空引きの過程において、反応室 10 内からガスが排出される進行過程をゆっくりと行う必要もある。  At this time, it is necessary to keep the vacuum pressure in the reaction chamber 10 constant, but the constant value changes depending on various conditions, low atmospheric pressure or low vacuum force close to atmospheric pressure, wide range to high vacuum Cross over the range. Therefore, it is necessary to maintain the vacuum pressure accurately and uniformly over a wide range from low vacuum close to atmospheric pressure to high vacuum. Further, in order to further improve the quality of the thin film formed on the wafer in the reaction chamber 10, the vacuum pressure in the reaction chamber 10 is set to atmospheric pressure or from the viewpoint of preventing particles from being lifted up in the reaction chamber 10. In the process of evacuating to reach the target vacuum pressure value from a low vacuum close to the atmospheric pressure, it is also necessary to slowly carry out the process of discharging the gas from the reaction chamber 10.
[0004] このような必要性を満足させるための真空圧力制御システムとして、例えば、特開 2 000— 163137号公報に開示されているものがある。このシステムでは、真空比例開 閉弁の開度を操作して、真空容器内の真空圧力を外部力 与えられた又は予めコン トローラに設定された目標真空圧力変化速度をもって変化させることにより、真空容 器内からガスを排出させる進行過程をゆっくりと行って、真空容器内でパーティクル が巻き上ることを防止するとともに、真空容器内からガスを排出させる際に、真空容器 内の真空圧力変化速度を自由に制御することができるようになって!/、る。 As a vacuum pressure control system for satisfying such a need, there is, for example, one disclosed in Japanese Patent Application Laid-Open No. 2000-163137. In this system, the vacuum volume is controlled by changing the opening degree of the vacuum proportional closing valve so that the vacuum pressure in the vacuum vessel is changed at a target vacuum pressure change rate set by an external force or previously set to a controller. While slowly advancing the process of discharging the gas from the inside of the chamber to prevent the particles from rolling up in the vacuum chamber, when discharging the gas from the vacuum chamber, The rate of change in vacuum pressure can be freely controlled!
[0005] より具体的には、真空圧力センサで計測された反応室内の真空圧力に対して取得 された目標真空圧力変化速度で変化させた真空圧力値を、内部コマンドとして順次 発生させていき、順次発生する内部コマンドをフィードバック制御の目標値とし、フィ ードバック制御の目標値を順次変更することにより、フィードバック制御を追従制御と して実行するようになっている。これにより、この真空圧力制御システムでは、反応室 内の真空圧力を目標真空圧力変化速度をもって一律に変化させることができるように なっている。  More specifically, a vacuum pressure value changed at a target vacuum pressure change rate acquired with respect to the vacuum pressure in the reaction chamber measured by the vacuum pressure sensor is sequentially generated as an internal command, Feedback control is performed as follow-up control by setting the sequentially generated internal command as a target value of feedback control and sequentially changing the target value of feedback control. Thus, in this vacuum pressure control system, the vacuum pressure in the reaction chamber can be uniformly changed at the target vacuum pressure change rate.
[0006] 特許文献 1:特開 2000— 163137号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-163137
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0007] し力しながら、上記した従来の真空圧力制御システムでは、例えば、「真空圧力セ ンサの異常」、「反応室のリーク」、「配管の詰まり」等の異常は、オペレータなどによつ て発見された後に、その対策処置が実施される。つまり、システム自体で異常を検知 することができな 、と 、う問題があった。  In the conventional vacuum pressure control system described above, for example, the abnormality such as “abnormality of vacuum pressure sensor”, “leakage of reaction chamber”, “clogging of piping”, etc. After being discovered, the countermeasures will be implemented. In other words, there was a problem that the system itself could not detect abnormalities.
[0008] そこで、本発明は上記した課題を解決するためになされたものであり、真空圧力セ ンサの異常、反応炉のリーク、配管のつまり等のシステムにおける異常を早期に検知 することができる真空圧力制御システムを提供することを課題とする。  Therefore, the present invention has been made to solve the above-mentioned problems, and it is possible to early detect an abnormality in a system such as a vacuum pressure sensor abnormality, a reactor leak, or a piping blockage. An object is to provide a vacuum pressure control system.
課題を解決するための手段  Means to solve the problem
[0009] 上記課題を解決するためになされた本発明に係る真空圧力制御システムは、真空 容器と真空ポンプとを接続する配管上にあって開度を変化させることにより前記真空 容器内の真空圧力を変化させる真空比例開閉弁と、前記真空容器内の真空圧力を 計測する真空圧力センサと、前記真空圧力センサの出力に基づ 、て前記真空比例 開閉弁の開度を制御するコントローラとを有する真空圧力制御システムにおいて、前 記コントローラは、システムが正常に作動するときの前記真空圧力センサの出力と前 記真空比例開閉弁の開度との関係を予め記憶しており、前記真空圧力センサの出 力に基づく前記真空比例開閉弁の開度制御を行っている際に、前記真空圧力セン サの実際の出力と前記真空比例開閉弁の実際の開度との関係と、前記記憶された 前記真空圧力センサの出力と前記真空比例開閉弁の開度との関係を比較すること によりシステムの異常を検知することを特徴とするものである。 The vacuum pressure control system according to the present invention, which was made to solve the above problems, has a vacuum pressure in the vacuum vessel by changing the degree of opening on a pipe connecting the vacuum vessel and the vacuum pump. A vacuum pressure switch for measuring the vacuum pressure in the vacuum vessel, and a controller for controlling the opening degree of the vacuum proportional switch valve based on the output of the vacuum pressure sensor. In the vacuum pressure control system, the controller previously stores the relationship between the output of the vacuum pressure sensor and the degree of opening of the vacuum proportional on-off valve when the system operates normally, and the vacuum pressure sensor The relationship between the actual output of the vacuum pressure sensor and the actual opening degree of the vacuum proportional on-off valve and the stored value when performing the opening degree control of the vacuum proportional on-off valve based on the output. Was A system abnormality is detected by comparing the relationship between the output of the vacuum pressure sensor and the opening degree of the vacuum proportional on-off valve.
[0010] この真空圧力制御システムでは、コントローラが真空容器内の真空圧力を計測する 真空圧力センサと、真空圧力センサの出力に基づいて真空比例開閉弁の開度を制 御して、真空容器内の圧力を下げていく(図 5参照)。ここで、システムが正常な場合 には、真空圧力センサの出力と真空比例開閉弁の開度とは、常に一定の関係を有 する。そこで、この真空圧力制御システムでは、このような正常時における真空圧力 センサの出力と真空比例開閉弁の開度との関係をコントローラに記憶させている。  [0010] In this vacuum pressure control system, the controller controls the opening of the vacuum proportional on-off valve based on the output of the vacuum pressure sensor, which measures the vacuum pressure in the vacuum vessel, and the vacuum pressure sensor. Reduce the pressure (see Figure 5). Here, when the system is normal, the output of the vacuum pressure sensor and the degree of opening of the vacuum proportional on-off valve always have a fixed relationship. Therefore, in this vacuum pressure control system, the controller stores the relationship between the output of the vacuum pressure sensor and the opening degree of the vacuum proportional on-off valve in such a normal state.
[0011] そして、真空圧力制御システムにおいて、「真空圧力センサの異常」、「真空容器の リーク」、あるいは「配管のつまり」等の異常が発生した場合には、上記した真空圧力 センサの出力と真空比例開閉弁の開度とにおける一定の関係が崩れる。つまり、真 空圧力センサの実際の出力と真空比例開閉弁の実際の開度との関係が、コントロー ラに記憶されている関係と一致しなくなる。このため、真空圧力センサの出力に基づ く真空比例開閉弁の開度制御を行っている際に、真空圧力センサの実際の出力と真 空比例開閉弁の実際の開度との関係と、コントローラに記憶された真空圧力センサ の出力と真空比例開閉弁の開度との関係を比較することにより、上記したシステムの 異常を早期に検出することができる。  [0011] Then, in the vacuum pressure control system, when an abnormality such as "abnormality in vacuum pressure sensor", "leakage in vacuum chamber", or "clogging of piping" occurs, the output of the vacuum pressure sensor described above The constant relationship in the degree of opening of the vacuum proportional on-off valve breaks down. That is, the relationship between the actual output of the vacuum pressure sensor and the actual opening of the vacuum proportional on-off valve does not match the relationship stored in the controller. Therefore, when performing the opening degree control of the vacuum proportional on-off valve based on the output of the vacuum pressure sensor, the relationship between the actual output of the vacuum pressure sensor and the actual opening degree of the vacuum proportional on-off valve; By comparing the relationship between the output of the vacuum pressure sensor stored in the controller and the degree of opening of the vacuum proportional on-off valve, it is possible to detect the above-mentioned system abnormality early.
[0012] また、上記課題を解決するためになされた本発明に係る別の形態の真空圧力制御 システムは、真空容器と真空ポンプとを接続する配管上にあって開度を変化させるこ とにより前記真空容器内の真空圧力を変化させる真空比例開閉弁と、前記真空容器 内の真空圧力を計測する真空圧力センサと、前記真空圧力センサの出力に基づ ヽ て前記真空比例開閉弁の開度を制御するコントローラとを有する真空圧力制御シス テムにおいて、前記コントローラは、前記真空圧力センサの出力に基づく前記真空比 例開閉弁の開度制御を行っている際に、前記真空比例開閉弁の開度が予め設定さ れた所定開度に到達したときに、前記真空圧力センサの出力が予め設定された所定 値より大きい場合、システムに異常が発生していると判断することを特徴とするもので ある。  Another aspect of the vacuum pressure control system according to the present invention, which was made to solve the above problems, is by changing the degree of opening on a pipe connecting a vacuum vessel and a vacuum pump. Based on the output of the vacuum proportional on-off valve for changing the vacuum pressure in the vacuum vessel, the vacuum pressure sensor for measuring the vacuum pressure in the vacuum vessel, and the degree of opening of the vacuum proportional on-off valve A vacuum pressure control system having a controller for controlling the opening of the vacuum proportional on-off valve when the opening ratio control of the vacuum ratio on-off valve based on the output of the vacuum pressure sensor is performed. When the output of the vacuum pressure sensor is larger than a predetermined value which is set in advance when the degree reaches a predetermined opening degree, it is determined that an abnormality occurs in the system. It is
[0013] この真空圧力制御システムでも、コントローラが真空容器内の真空圧力を計測する 真空圧力センサと、真空圧力センサの出力に基づいて真空比例開閉弁の開度を制 御して、真空容器内の圧力を下げていく(図 5参照)。ここで、システムが正常な場合 には、真空圧力センサの出力と真空比例開閉弁の開度とは、常に一定の関係を有 する。このため、前記真空比例開閉弁の開度が予め設定された所定開度に到達した ときの真空圧力センサの出力を予測することができる。 In this vacuum pressure control system as well, the controller measures the vacuum pressure in the vacuum vessel The pressure in the vacuum chamber is reduced by controlling the opening of the vacuum proportional on-off valve based on the vacuum pressure sensor and the output of the vacuum pressure sensor (see Fig. 5). Here, when the system is normal, the output of the vacuum pressure sensor and the degree of opening of the vacuum proportional on-off valve always have a fixed relationship. Therefore, it is possible to predict the output of the vacuum pressure sensor when the degree of opening of the vacuum proportional on-off valve reaches a predetermined degree of opening set in advance.
[0014] そして、真空容器内の圧力は下げられていくので、真空比例開閉弁の開度が予め 設定された所定開度に到達したときに、真空圧力センサの出力が予め設定された所 定値より大きい場合にはシステムに異常が発生していると考えられる。そこで、この真 空圧力制御システムでは、真空圧力センサの出力に基づく真空比例開閉弁の開度 制御を行っている際に、真空比例開閉弁の開度が予め設定された所定開度に到達 したときに、真空圧力センサの出力が予め設定された所定値より大きい場合、システ ムに異常が発生していると判断するのである。これにより、システムの異常を早期に検 出することができる。 Since the pressure in the vacuum vessel is lowered, the output of the vacuum pressure sensor is preset when the opening of the vacuum proportional on-off valve reaches the preset predetermined opening. If it is larger, it is considered that the system has an abnormality. Therefore, in this vacuum pressure control system, when performing the opening control of the vacuum proportional on-off valve based on the output of the vacuum pressure sensor, the opening degree of the vacuum proportional on-off valve has reached a predetermined opening set in advance. Sometimes, when the output of the vacuum pressure sensor is larger than a predetermined value set in advance, it is determined that an abnormality has occurred in the system. This enables early detection of system abnormalities.
[0015] ここで、システムの異常を検知するために設定する真空比例開閉弁の所定開度お よび真空圧力センサの所定開度は、検知しょうとする異常に最も適した値を実験など により求めておけばよい。したがって、予め設定される真空比例開閉弁の所定開度 および真空圧力センサの所定開度の組み合わせは、一組の場合もあれば複数組の 場合もあり得る。  Here, the predetermined opening degree of the vacuum proportional on-off valve and the predetermined opening degree of the vacuum pressure sensor, which are set in order to detect an abnormality in the system, are determined by experiments or the like that are most suitable for the abnormality to be detected. You should keep it. Therefore, the combination of the predetermined opening degree of the vacuum proportional on-off valve and the predetermined opening degree of the vacuum pressure sensor, which is set in advance, may be one set or plural sets.
[0016] 本発明に係る真空圧力制御システムにおいては、前記コントローラは、システムの 異常を検知するために、前記真空比例開閉弁の開度の代わりに前記真空比例開閉 弁に入力する操作電圧を使用することもできる。  In the vacuum pressure control system according to the present invention, the controller uses an operation voltage input to the vacuum proportional on-off valve instead of the degree of opening of the vacuum proportional on-off valve to detect an abnormality in the system. You can also
あるいは、本発明に係る真空圧力制御システムにおいては、前記コントローラは、シ ステムの異常を検知するために、前記真空比例開閉弁の開度の代わりに前記真空 比例開閉弁に供給される操作空気圧を使用することもできる。  Alternatively, in the vacuum pressure control system according to the present invention, the controller controls the operation air pressure supplied to the vacuum proportional on-off valve instead of the degree of opening of the vacuum proportional on-off valve in order to detect an abnormality of the system. It can also be used.
[0017] このようにすることにより、真空比例開閉弁の開度を検出する機構 (例えば、ポテン ショメータ等)が備わっていない弁でシステムを構築しても、システムの異常を早期に 検知することができる。 [0017] In this way, even if the system is constructed with a valve that does not have a mechanism (for example, a potentiometer etc.) for detecting the opening of the vacuum proportional on-off valve, system abnormality can be detected early. Can.
[0018] 本発明に係る真空圧力制御システムにおいては、前記コントローラは、システムの 異常を検知、あるいはシステムに異常が発生していると判断したときに、その旨を報 知することが望ましい。 [0018] In the vacuum pressure control system according to the present invention, the controller is When it is judged that an abnormality has been detected or that an abnormality has occurred in the system, it is desirable to notify that effect.
[0019] これにより、オペレータがシステムの異常を早期に知ることができ、その後の対策措 置を迅速に行うことができる力もである。なお、「報知」には、聴覚に対するものや視覚 に対するものなどがすべて含まれ、単一手段での報知 (例えば、警告音のみ等)ゃ複 合手段での報知 (例えば、警告音および警告表示等)の 、ずれであってもよ 、。  [0019] Thereby, the operator can know the abnormality of the system at an early stage, and it is also a power that can execute the countermeasure measures promptly. Note that “informative information” includes all things for hearing and visual sense etc. Informing by a single means (for example, only warning sound etc.) or in a compounding means (for example warning sound and warning display Etc.) may be offset, etc.
[0020] また、本発明に係る真空圧力制御システムにおいては、前記コントローラは、システ ムの異常を検知、あるいはシステムに異常が発生していると判断したときに、前記真 空比例開閉弁をシステムの安全方向に動作させることが望ましい。  Further, in the vacuum pressure control system according to the present invention, when the controller detects an abnormality in the system or determines that an abnormality occurs in the system, the controller operates the system of the proportional proportional on-off valve. It is desirable to operate in the safe direction.
[0021] ここで、システムの安全方向は各システムの構成によって異なるため、「真空比例開 閉弁をシステムの安全方向に動作させる」には、「弁を閉じる」、「弁を開く」、あるいは 「弁開度を維持する」のいずれかが該当することになる。つまり、この真空圧力制御シ ステムでは、異常時において各システムの安全 ¾を高めるように、コントローラによつ て真空比例開閉弁の動作が制御される。このため、異常時の対処を自動的に行うこ とができるためシステムの安全性をより一層高めることができる。  [0021] Here, since the safety direction of the system differs depending on the configuration of each system, the "valve opening", "opening the valve", or "to operate the vacuum proportional open / close valve in the safety direction of the system" One of "maintain the valve opening degree" corresponds. That is, in this vacuum pressure control system, the operation of the vacuum proportional on-off valve is controlled by the controller so as to enhance safety of each system at the time of abnormality. As a result, the system can be further enhanced in safety because measures can be taken automatically.
発明の効果  Effect of the invention
[0022] 本発明に係る真空圧力制御システムによれば、上記した手段によって、真空圧力 センサの異常、反応炉のリーク、配管のつまり等のシステムにおける異常を早期に検 知することができる。  [0022] According to the vacuum pressure control system of the present invention, by the above-described means, it is possible to early detect abnormalities in the system such as vacuum pressure sensor abnormalities, reactor leaks, and piping clogs.
図面の簡単な説明  Brief description of the drawings
[0023] [図 1]実施の形態の真空圧力制御システムの概略を示したブロック図である。 FIG. 1 is a block diagram schematically showing a vacuum pressure control system according to an embodiment.
[図 2]真空比例開閉弁が遮断した状態にあるときの断面図である。  FIG. 2 is a cross-sectional view when the vacuum proportional on-off valve is in a closed state.
[図 3]真空比例開閉弁が開いた状態にあるときの断面図である。  FIG. 3 is a cross-sectional view of the vacuum proportional on-off valve in an open state.
[図 4]実施の形態の真空圧力制御システムの概略を示したブロック図である。  FIG. 4 is a block diagram schematically showing a vacuum pressure control system according to an embodiment.
[図 5]真空圧力変化速度コントロールモードにおいて、真空比例開閉弁のコンダクタ ンス (バルブ開度)を変化させて、設定された一定の速度で反応室内の圧力を低下さ せて 、く様子を示す図である。  [Fig. 5] In the vacuum pressure change speed control mode, the conductance (valve opening) of the vacuum proportional on-off valve is changed to reduce the pressure in the reaction chamber at a set constant speed and to show the behavior FIG.
[図 6]真空圧力変化速度コントロールモードの処理内容を示すフローチャートである。 [図 7]真空圧力変化速度コントロールモードの準備時間処理の内容を示すフローチヤ ートである。 FIG. 6 is a flow chart showing processing contents of a vacuum pressure change rate control mode. [Fig. 7] Fig. 7 is a flowchart showing the contents of preparation time processing of vacuum pressure change rate control mode.
[図 8]真空圧力変化速度コントロールモードの実行時間処理の内容を示すフローチヤ ートである。  [Fig. 8] Fig. 8 is a flowchart showing the contents of execution time processing in the vacuum pressure change rate control mode.
[図 9]正常時における真空圧力変化速度コントロールモードでの反応室の圧力変化 と真空比例開閉弁のバルブ開度の変化の一例を示す図である。  FIG. 9 is a view showing an example of the pressure change of the reaction chamber and the change of the valve opening degree of the vacuum proportional on-off valve in the vacuum pressure change speed control mode at the normal time.
[図 10]弁のリフト量ランプアップ処理における入力信号を示した図である。  [FIG. 10] A diagram showing an input signal in valve lift amount ramp-up processing.
[図 11]異常が検出されて異常時処理が行われる場合における反応室の圧力変化と 真空比例開閉弁のバルブ開度の変化の一例を示す図である。  FIG. 11 is a view showing an example of a change in pressure of the reaction chamber and a change in valve opening degree of the vacuum proportional on-off valve when abnormality is detected and abnormal processing is performed.
[図 12]異常が検出されて異常時処理が行われる場合における反応室の圧力変化と 真空比例開閉弁のバルブ開度の変化の一例を示す図である。  FIG. 12 is a view showing an example of a pressure change of the reaction chamber and a change of the valve opening degree of the vacuum proportional on-off valve when abnormality is detected and abnormal processing is performed.
[図 13]異常が検出されて異常時処理が行われる場合における反応室の圧力変化と 真空比例開閉弁のバルブ開度の変化の一例を示す図である。  FIG. 13 is a view showing an example of a change in pressure in a reaction chamber and a change in valve opening of a vacuum proportional on-off valve when an abnormality is detected and an abnormal process is performed.
[図 14]CVD装置及びその排気系の概要を示した図である。  FIG. 14 is a view showing an outline of a CVD apparatus and its exhaust system.
符号の説明  Explanation of sign
[0024] 10 CVD装置の反応室 [0024] 10 CVD chamber reaction chamber
14、 15 真空圧力センサ  14, 15 Vacuum pressure sensor
16 真空比例開閉弁  16 Vacuum proportional on-off valve
18 ポテンショメータ  18 potentiometer
20 コントローラ  20 controller
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の真空圧力制御システムを具体ィ匕した最も好適な実施の形態につい て図面に基づき詳細に説明する。そこで、図 1に従来技術の欄で示した図 14に対す る、本実施の形態に係る真空圧力制御システムのブロック図を示す。本実施の形態 に係る真空圧力制御システムは、コントローラ 20、空気圧制御部 30、操作部 40であ る真空比例開閉弁 16、検出部 60である真空圧力センサ 14、 15を備える。  Hereinafter, the most preferable embodiment of the vacuum pressure control system of the present invention will be described in detail based on the drawings. Therefore, FIG. 1 shows a block diagram of a vacuum pressure control system according to the present embodiment, as compared with FIG. 14 shown in the column of the prior art. The vacuum pressure control system according to the present embodiment includes a controller 20, an air pressure control unit 30, a vacuum proportional on-off valve 16 which is an operation unit 40, and vacuum pressure sensors 14 and 15 which are a detection unit 60.
[0026] コントローラ 20は、インターフェイス回路 21、真空圧力制御回路 22、シーケンス制 御回路 23を備える。インターフェイス回路 21は、コントローラ 20のフロントパネルのボ タンを介した現場入力による信号、及び、コントローラ 20のバックパネルのコネクタを 介した遠隔入力による信号を、真空圧力制御回路 22やシーケンス制御回路 23など に適した信号に変換するものである。また、コントローラ 20は、後述するように、正常 時における真空圧力センサの出力と真空比例開閉弁の開度とにおける一定の関係 を記憶しており、この一定の関係と、真空圧力センサの実際の出力と真空比例開閉 弁の実際の開度の関係とを比較してシステムの異常を検知 (判断)するものである。 The controller 20 includes an interface circuit 21, a vacuum pressure control circuit 22, and a sequence control circuit 23. An interface circuit 21 is provided on the front panel of the controller 20. The signal from the field input through the tongue and the signal from the remote input through the connector on the back panel of the controller 20 are converted into signals suitable for the vacuum pressure control circuit 22, the sequence control circuit 23, and the like. Further, as described later, the controller 20 stores a constant relationship between the output of the vacuum pressure sensor and the opening degree of the vacuum proportional on-off valve at normal times, and this constant relationship and the actual condition of the vacuum pressure sensor. It compares the output with the actual opening degree of the vacuum proportional on / off valve to detect (determine) an abnormality in the system.
[0027] 真空圧力制御回路 22は、図 14の反応室 10内の真空圧力に対するフィードバック 制御を PID制御で行わせる回路である。シーケンス制御回路 23は、インターフェイス 回路 21から与えられた動作モードに従って、空気圧制御部 30内の第 1電磁弁 34の 駆動コイル SV1と第 2電磁弁 35の駆動コイル SV2とに対し、予め定められた動作を させる回路である。 The vacuum pressure control circuit 22 is a circuit that performs feedback control with respect to the vacuum pressure in the reaction chamber 10 of FIG. 14 by PID control. The sequence control circuit 23 is predetermined for the drive coil SV1 of the first solenoid valve 34 and the drive coil SV2 of the second solenoid valve 35 in the air pressure control unit 30 according to the operation mode given by the interface circuit 21. It is a circuit that operates.
[0028] 空気圧制御部 30は、位置制御回路 31、パルスドライブ回路 32、時間開閉動作弁 3 3、第 1電磁弁 34、第 2電磁弁 35を備える。位置制御回路 31は、真空圧力制御回路 22から与えられた弁開度指令値と、真空比例開閉弁 16に設けられたポテンショメ一 タ 18からアンプ 19を介して与えられた弁開度計測値とを比較して、真空比例開閉弁 16の弁の位置を制御するものである。パルスドライブ回路 32は、位置制御回路 31か らの制御信号に基づいて、時間開閉動作弁 33へパルス信号を送信するものである。  The pneumatic control unit 30 includes a position control circuit 31, a pulse drive circuit 32, a time opening / closing operation valve 33, a first solenoid valve 34, and a second solenoid valve 35. Position control circuit 31 has a valve opening degree command value given from vacuum pressure control circuit 22 and a valve opening degree measurement value given from potentiometer 18 provided on vacuum proportional on / off valve 16 through amplifier 19. And the position of the vacuum proportional on-off valve 16 is controlled. The pulse drive circuit 32 transmits a pulse signal to the time switching valve 33 based on the control signal from the position control circuit 31.
[0029] 時間開閉動作弁 33は、図示しない給気側比例弁及び排気側比例弁を内蔵するも のであって、パルスドライブ回路 32からのパルス信号に応じて、給気側比例弁及び 排気側比例弁を時間開閉動作させるものであり、第 2電磁弁 35と第 1電磁弁 34を介 して、真空比例開閉弁 16の空気圧シリンダ 41 (後述する図 2、図 3参照)内の空気圧 力を調整するものである。  The time opening / closing operation valve 33 incorporates an air supply side proportional valve and an exhaust side proportional valve (not shown), and according to the pulse signal from the pulse drive circuit 32, the air supply side proportional valve and the exhaust side The proportional valve is operated to open and close for a time, and the air pressure in the pneumatic cylinder 41 (see FIGS. 2 and 3 described later) of the vacuum proportional on-off valve 16 via the second solenoid valve 35 and the first solenoid valve 34. To adjust the
[0030] 操作部 40である真空比例開閉弁 16は、図 14について言えば、反応室 10から真空 ポンプ 13までの排気系のコンダクタンスを変化させるものである。図 2、図 3に真空比 例開閉弁 16の断面を示す。図に示すように、その中央には、ピストンロッド 43が設け られている。そして、ピストンロッド 43に対し、真空比例開閉弁 16の上部である空気 圧シリンダ 41内において、ピストン 44が固設され、真空比例開閉弁 16の下部である ベローズ式ポペット弁 42内において、ポペット弁体 45が固設されている。従って、空 気圧シリンダ 41によりポペット弁体 45を移動させることができる。 Referring to FIG. 14, the vacuum proportional on-off valve 16 which is the operation unit 40 changes the conductance of the exhaust system from the reaction chamber 10 to the vacuum pump 13. Figures 2 and 3 show the cross sections of the vacuum ratio example on-off valve 16. As shown in the figure, a piston rod 43 is provided at the center thereof. The piston 44 is fixed inside the pneumatic cylinder 41 which is an upper portion of the vacuum proportional on-off valve 16 with respect to the piston rod 43, and a poppet valve in a bellows type poppet valve 42 which is a lower portion of the vacuum proportional on-off valve 16. Body 45 is fixed. Therefore, it is empty The poppet valve body 45 can be moved by the pneumatic cylinder 41.
[0031] この真空比例開閉弁 16では、空気圧シリンダ 41内に供給ポート 18Aを介して圧縮 空気が供給されず、空気圧シリンダ 41内が排気ポート 18Bを介して排気ラインと連通 するときは、空気圧シリンダ 41内の復帰パネ 46による下向きの付勢力がピストン 44 に作用するので、図 2に示すように、ポペット弁体 45は弁座 47に密着し、真空比例 開閉弁 16は遮断した状態となる。  In the vacuum proportional on-off valve 16, when the compressed air is not supplied into the pneumatic cylinder 41 through the supply port 18A, and the inside of the pneumatic cylinder 41 communicates with the exhaust line through the exhaust port 18B, the pneumatic cylinder is a pneumatic cylinder. Since the downward biasing force by the return panel 46 in 41 acts on the piston 44, as shown in FIG. 2, the poppet valve body 45 is in close contact with the valve seat 47, and the vacuum proportional on / off valve 16 is shut off.
[0032] 一方、空気圧シリンダ 41内に給気ポート 18Aを介して圧縮空気が供給されるときは 、空気圧シリンダ 41内の復帰パネ 46による下向きの付勢力と、空気圧シリンダ 41内 の圧縮空気による上向きの圧力とがピストン 44に同時に作用するので、そのバランス に応じて、図 3に示すように、ポペット弁体 45は弁座 47から離間し、真空比例開閉弁 16は開いた状態となる。  On the other hand, when compressed air is supplied into the pneumatic cylinder 41 through the air supply port 18 A, downward biasing force by the return panel 46 in the pneumatic cylinder 41 and upward pressure by the compressed air in the pneumatic cylinder 41. Since the pressure and the pressure simultaneously act on the piston 44, according to the balance, as shown in FIG. 3, the poppet valve body 45 is separated from the valve seat 47, and the vacuum proportional on / off valve 16 is in an open state.
[0033] よって、ポペット弁体 45が弁座 47から離間する距離は、弁のリフト量として、空気圧 シリンダ 41に対する圧縮空気の供給と排気で操作することができる。尚、ポペット弁 体 45が弁座 47から離間する距離は、弁のリフト量として、ピストン 44に連結されたス ライドレバー 48を介して、ポテンショメータ 18で計測されるものであり、真空比例開閉 弁 16の開度に相当するものである。  Therefore, the distance by which the poppet valve body 45 is separated from the valve seat 47 can be operated by supply and exhaust of compressed air to the pneumatic cylinder 41 as the lift amount of the valve. The distance at which the poppet valve body 45 is separated from the valve seat 47 is measured by the potentiometer 18 via the slide lever 48 connected to the piston 44 as the valve lift amount. It corresponds to an opening degree of 16.
[0034] 検出部である真空圧力センサ 14、 15は、図 14の反応室 10内の真空圧力を計測 するキャパシタンスマノメータである。ここでは、計測される真空圧力のレンジに応じ て、 2個のキャパシタンスマノメータを使い分けている。  The vacuum pressure sensors 14 and 15, which are detection units, are capacitance manometers that measure the vacuum pressure in the reaction chamber 10 of FIG. Here, two capacitance manometers are used depending on the range of vacuum pressure to be measured.
[0035] このような構成を持つ本実施の形態に係る真空圧力制御システムでは、動作モード として、強制クローズモード(CLOSE)を、コントローラ 20で選択すると、シーケンス制 御回路 23は、第 1電磁弁 34及び第 2電磁弁 35を図 1に示すように動作させる。これ により、空気圧シリンダ 41内には圧縮空気が供給されず、空気圧シリンダ 41内は排 気ラインと連通するので、空気圧シリンダ 41内の空気圧が大気圧となり、真空比例開 閉弁 16は遮断した状態となる。  In the vacuum pressure control system according to the present embodiment having such a configuration, when the forced close mode (CLOSE) is selected by the controller 20 as the operation mode, the sequence control circuit 23 controls the first solenoid valve. 34 and the second solenoid valve 35 are operated as shown in FIG. As a result, compressed air is not supplied into the pneumatic cylinder 41 and the inside of the pneumatic cylinder 41 communicates with the exhaust line, so the air pressure inside the pneumatic cylinder 41 becomes atmospheric pressure, and the vacuum proportional opening and closing valve 16 is shut off. It becomes.
[0036] また、動作モードとして、真空圧力コントロールモード(PRESS)を、コントローラ 20 で選択すると、シーケンス制御回路 23は、第 1電磁弁 34を動作させることによって、 時間開閉動作弁 33と空気圧シリンダ 41とを連通させる。これにより、真空比例開閉 弁 16の空気圧シリンダ 41内の空気圧力が調整され、弁のリフト量力 空気圧シリンダ 41で操作できる状態となる。 Further, when the vacuum pressure control mode (PRESS) is selected by the controller 20 as the operation mode, the sequence control circuit 23 operates the first solenoid valve 34 so that the time opening / closing operation valve 33 and the pneumatic cylinder 41 Communicate with Thus, the vacuum proportional opening and closing The air pressure in the pneumatic cylinder 41 of the valve 16 is adjusted, and the valve lift amount force can be operated by the pneumatic cylinder 41.
[0037] また、このとき、真空圧力制御回路 22は、現場入力又は遠隔入力で指示された目 標真空圧力値を目標値とするフィードバック制御を開始する。すなわち、図 14におい て、真空圧力センサ 14、 15で反応室 10内の真空圧力値を計測し、それと目標真空 圧力値との差 (制御偏差)に応じて、真空比例開閉弁 16の弁のリフト量を操作し、排 気系のコンダクタンスを変化させることによって、反応室 10内の真空圧力を目標真空 圧力値に一定に保持する。  Further, at this time, the vacuum pressure control circuit 22 starts feedback control in which the target vacuum pressure value instructed by the on-site input or remote input is set as the target value. That is, in FIG. 14, the vacuum pressure value in the reaction chamber 10 is measured by the vacuum pressure sensors 14 and 15, and the valve of the vacuum proportional on-off valve 16 is adjusted according to the difference (control deviation) from the target vacuum pressure value. By operating the lift amount and changing the conductance of the exhaust system, the vacuum pressure in the reaction chamber 10 is kept constant at the target vacuum pressure value.
[0038] また、真空圧力制御回路 22においては、フィードバック制御の制御偏差が大きいと きは、フィードバック制御の操作量を最大にしているので、フィードバック制御の速度 応答性が十分に確保されている。一方、フィードバック制御の制御偏差が小さいとき は、予め調整された時定数に段階的に移行するので、反応室 10内の真空圧力を安 定した状態で維持することができる。  Further, in the vacuum pressure control circuit 22, when the control deviation of the feedback control is large, the operation amount of the feedback control is maximized, so that the speed response of the feedback control is sufficiently secured. On the other hand, when the control deviation of the feedback control is small, the vacuum pressure in the reaction chamber 10 can be maintained in a stable state because the time transition is made stepwise to the previously adjusted time constant.
[0039] 具体的には、図 4のブロック図のように、真空圧力センサ 14、 15で計測された反応 室 10内の真空圧力値を比例微分回路 105、 106により調整した値は、現場入力又 は遠隔入力で指示された目標真空圧力値と比較された後、比例微分積分回路 102 、 103に入力される。その後、直列に接続された積分回路 104は、位置制御回路 31 に出力するため、 0〜5Vの範囲の電圧を出力する。積分回路 104の時定数は、積分 時間調整回路 101により決定される。  Specifically, as shown in the block diagram of FIG. 4, the value obtained by adjusting the vacuum pressure value in the reaction chamber 10 measured by the vacuum pressure sensors 14 and 15 by the proportional differentiation circuits 105 and 106 is a field input. Alternatively, after being compared with the target vacuum pressure value indicated by the remote input, it is input to the proportional derivative integration circuits 102, 103. After that, the integration circuit 104 connected in series outputs a voltage in the range of 0 to 5 V in order to output it to the position control circuit 31. The time constant of the integration circuit 104 is determined by the integration time adjustment circuit 101.
[0040] 真空圧力センサ 14、 15の計測値が、目標真空圧力値に対し離れているときは、内 部演算回路により積分回路の積分時間が極小となるように動作する。これにより、積 分回路 104は、ほぼ無限大のゲインをもつ増幅回路として機能する。  When the measured values of the vacuum pressure sensors 14 and 15 are apart from the target vacuum pressure value, the internal arithmetic circuit operates so as to minimize the integration time of the integration circuit. Thus, the integration circuit 104 functions as an amplification circuit having an almost infinite gain.
[0041] すなわち、  [0041] That is,
(真空圧力センサ 14、 15の計測値) > (目標真空圧力値)  (Vacuum pressure sensor 14, 15 measured values)> (Target vacuum pressure value)
となる場合は、積分回路 104の最大値である 5Vが、位置制御回路 31に対して出力 される。その結果、真空比例開閉弁 16は急速に開く方向に動作する。一方、  In this case, 5 V, which is the maximum value of the integration circuit 104, is output to the position control circuit 31. As a result, the vacuum proportional on-off valve 16 operates in the direction to open rapidly. on the other hand,
(真空圧力センサ 14、 15の計測値) < (目標真空圧力値)  (Vacuum pressure sensors 14, 15 measured values) <(Target vacuum pressure value)
となる場合は、積分回路 104の最小値である OVが位置制御回路 31に対して出力さ れる。その結果、真空比例開閉弁 16は、急速に閉じる方向に動作する。 In this case, OV, which is the minimum value of integration circuit 104, is output to position control circuit 31. Be As a result, the vacuum proportional on / off valve 16 operates in the direction of rapid closing.
[0042] これらの動作により、真空比例開閉弁 16の弁開度は、目標真空圧力値にするため の位置の近くまで、最短時間で到達できる。その後、目標真空圧力値にするための 位置の近くまで到達したと判断した積分時間調整回路 101は、その位置にて真空圧 力を安定した状態で保持するため、予め調整された積分回路 104の時定数に段階 的に移行する動作を行う。  [0042] By these operations, the valve opening degree of the vacuum proportional on-off valve 16 can be reached in the shortest time to near the position for achieving the target vacuum pressure value. After that, the integration time adjustment circuit 101 determined to have reached near the position for achieving the target vacuum pressure value holds the vacuum pressure in a stable state at that position. Perform an operation to shift to the time constant in stages.
[0043] さらに、本実施の形態に係る真空圧力制御システムでは、動作モードとして、真空 圧力変化速度コントロールモード (SVAC)を、コントローラ 20で選択すると、反応室 1 0内の真空圧力を目標真空圧力に到達させる際に、反応室 10内の真空圧力変化速 度までも制御することができる。  Furthermore, in the vacuum pressure control system according to the present embodiment, when the vacuum pressure change rate control mode (SVAC) is selected by the controller 20 as the operation mode, the vacuum pressure in the reaction chamber 10 is the target vacuum pressure. It is possible to control even the rate of change in vacuum pressure in the reaction chamber 10 when
[0044] このように、真空圧力変化速度コントロールモード(SVAC)では、フィードバック制 御を行うことにより、図 5に示すように、真空比例開閉弁 16のコンダクタンス (バルブ開 度)を変化させて、設定された一定の速度で反応室 10内の圧力を低下させていく。こ のため、真空圧力制御システムにおいて、「真空圧力センサ 14, 15の異常」、「反応 室 10のリーク」、あるいは「配管のつまり」等の異常が発生している場合には、真空圧 力変化速度コントロールモード(SVAC)のある時点で、「真空比例開閉弁 16のバル ブ開度」と「真空圧力センサ 14, 15の値」との関係が図 5に示すようにならない。そし て、この現象を利用して、本実施の形態に係る真空圧力制御システムでは、上記した 異常を検知するようになって 、る。  As described above, in the vacuum pressure change rate control mode (SVAC), as shown in FIG. 5, the conductance (valve opening) of the vacuum proportional on-off valve 16 is changed by feedback control. The pressure in the reaction chamber 10 is reduced at a set constant speed. For this reason, in the vacuum pressure control system, when an abnormality such as “abnormality of the vacuum pressure sensor 14, 15”, “leakage of the reaction chamber 10”, or “clogging of piping” has occurred, the vacuum pressure is At a certain point in the change speed control mode (SVAC), the relationship between “valve opening of vacuum proportional on-off valve 16” and “value of vacuum pressure sensor 14, 15” does not become as shown in FIG. Then, using this phenomenon, the vacuum pressure control system according to the present embodiment detects the above-mentioned abnormality.
[0045] そこで、本実施の形態に係る真空圧力制御システムにおける動作について、図 6〜 図 9を参照しながら説明する。図 6は、真空圧力変化速度コントロールモード (SVAC )についてのフローチャートである。図 7は、真空圧力変化速度コントロールモード(S VAC)の準備時間についてのフローチャートである。図 8は、真空圧力変化速度コン トロールモード(SVAC)の実行時間についてのフローチャートである。図 9は、正常 時における真空圧力変化速度コントロールモード (SVAC)での反応室の圧力変化と 真空比例開閉弁 16のバルブ開度の変化の一例を示す図である。なお、真空圧力変 化速度コントロールモード(SVAC)は、強制クローズモード(CLOSE)力 移行する ものとする。 [0046] 真空圧力変化速度コントロールモード(SVAC)は、図 6に示すように、 2つのサブ ルーチン、つまり、準備時間処理と実行時間処理の 2つを実行する。そして、真空圧 力変化速度コントロールモード (SVAC)を、コントローラ 20で選択すると、まず、準備 時間処理が実行される。 The operation of the vacuum pressure control system according to the present embodiment will be described with reference to FIGS. 6 to 9. FIG. 6 is a flow chart for the vacuum pressure change rate control mode (SVAC). FIG. 7 is a flow chart of the preparation time of the vacuum pressure change rate control mode (S VAC). FIG. 8 is a flow chart of the execution time of the vacuum pressure change rate control mode (SVAC). FIG. 9 is a view showing an example of the pressure change of the reaction chamber and the change of the valve opening degree of the vacuum proportional on-off valve 16 in the vacuum pressure change rate control mode (SVAC) in the normal state. In the vacuum pressure change speed control mode (SVAC), the forced close mode (CLOSE) force shall be transferred. The vacuum pressure change rate control mode (SVAC) executes two subroutines, that is, preparation time processing and execution time processing, as shown in FIG. Then, when the vacuum pressure change rate control mode (SVAC) is selected by the controller 20, first, preparation time processing is executed.
[0047] そうすると、まず、反応室 10内の現在の真空圧力を真空圧力センサ 14、 15を介し て取得する(Sl)。ここでは、反応室 10内の現在の真空圧力は大気圧 VOであるので (図 9参照)、大気圧 VOが取得される。  Then, first, the current vacuum pressure in the reaction chamber 10 is obtained via the vacuum pressure sensors 14 and 15 (Sl). Here, since the current vacuum pressure in the reaction chamber 10 is the atmospheric pressure VO (see FIG. 9), the atmospheric pressure VO is obtained.
[0048] 次に、真空比例開閉弁 16のバルブ開度をポテンショメータ 18を介して取得する(S 2)。そして、取得したバルブ開度が設定値 XIに到達している力否かを判断する(S3 )。このとき、バルブ開度が設定値 XIに到達している場合には(S3 : YES)、反応室 1 0内の現在の真空圧力を真空圧力センサ 14、 15を介して取得する(S4)。そして、取 得した反応室 10内の現在の真空圧力が設定値 X2以下である力否かを判断する(S 5)。このとき、反応室 10内の現在の真空圧力が設定値 X2よりも大きい場合には(S5 : NO)、異常が発生していると判断して、真空圧力変化速度コントロールモード (SV AC)を終了し異常時処理を行う(S6)。  Next, the valve opening degree of the vacuum proportional on-off valve 16 is acquired via the potentiometer 18 (S 2). Then, it is determined whether the acquired valve opening degree has reached the set value XI (S3). At this time, if the valve opening has reached the set value XI (S3: YES), the current vacuum pressure in the reaction chamber 10 is acquired via the vacuum pressure sensors 14 and 15 (S4). Then, it is determined whether the obtained vacuum pressure in the reaction chamber 10 is equal to or less than the set value X2 (S5). At this time, if the current vacuum pressure in the reaction chamber 10 is larger than the set value X2 (S5: NO), it is determined that an abnormality has occurred, and the vacuum pressure change rate control mode (SV AC) is selected. The process is ended and an abnormal process is performed (S6).
[0049] ここで、設定値 XIは、システムの異常の検知 (判断)を行うための閾値である。つま り、真空比例開閉弁 16のバルブ開度が設定値 XIに到達したときにシステムの異常 検知処理が実施される。また、設定値 X2は、異常検知処理が実施された際に、シス テムに異常が発生している力否かを判断するための閾値である。つまり、異常検知処 理が実施されて、反応室 10内の現在の真空圧力が設定値 X2より大きい場合に、シ ステムに異常が発生して 、ると判断される。  Here, the set value XI is a threshold value for detecting (judging) an abnormality of the system. That is, when the valve opening degree of the vacuum proportional on-off valve 16 reaches the set value XI, the system abnormality detection processing is performed. Further, the set value X2 is a threshold value for determining whether or not the system has an abnormality when the abnormality detection process is performed. That is, when the abnormality detection process is performed and the current vacuum pressure in the reaction chamber 10 is larger than the set value X2, it is determined that an abnormality occurs in the system.
[0050] 一方、バルブ開度が設定値 XIに到達して 、な 、場合 (S3: NO)、ある 、は反応室 10内の現在の真空圧力が設定値 X2以下である場合には(S5 : YES)、弁のリフト量 ランプアップ処理を行う(S 7)。ここでは、強制クローズモード(CLOSE)力 移行して いるので、真空圧力変化速度コントロールモード (SVAC)が選択されたときは、真空 比例開閉弁 16は遮断した状態にある。そこで、図 10に示すように、真空比例開閉弁 16の弁のリフト量力ランプ関数的に変化するように、バイアス制御回路 110が位置制 御回路 31へ指令電圧を出力し、位置制御回路 31がパルスドライブ回路 32へ制御信 号を発信する(図 4参照)。ここでは、一例として、時間 tlを lOsecとし、弁のリフト量の 値 L1を 0. 1266mmとする。 On the other hand, when the valve opening degree reaches the set value XI, etc. (S3: NO), the present vacuum pressure in the reaction chamber 10 is less than the set value X2 (S5). : YES), Lift amount of valve Perform ramp-up processing (S7). Here, since the forced closing mode (CLOSE) force is being transferred, when the vacuum pressure change rate control mode (SVAC) is selected, the vacuum proportional on-off valve 16 is in the closed state. Therefore, as shown in FIG. 10, the bias control circuit 110 outputs a command voltage to the position control circuit 31 so that the lift amount of the vacuum proportional on-off valve 16 changes in a ramp function, and the position control circuit 31 Control signal to pulse drive circuit 32 Issue the issue (see Figure 4). Here, as an example, the time tl is set to 10 sec, and the valve lift value L1 is set to 0.1266 mm.
[0051] そして、時間 tlである lOsecが経過したか否かを判断する(S8)。時間 tlである 10s ecが経過したと判断したときは(S8 :YES)、 S11に進む力 時間 tlである lOsecが 経過していないと判断したときは(S3 :NO)、 S9に進んで、反応室 10内の現在の真 空圧力を真空圧力センサ 14、 15を介して取得する。その後、反応室 10内の真空圧 力について、僅かな圧力降下があった力否かを判断する(S 10)。僅かな圧力降下が ないと判断したときは(S10 :NO)、 S2に戻って、上述した処理を繰り返す。尚、ここ では、僅かな圧力降下を、 266Pa以上の圧力降下とする。  Then, it is determined whether or not lOsec, which is time tl, has elapsed (S8). If it is determined that the time tl, which is 10 seconds ec, has elapsed (S8: YES), the force for proceeding to S11 is determined that the time tl, lOsec has not elapsed (S3: NO), the process proceeds to S9. The current vacuum pressure in the reaction chamber 10 is obtained via the vacuum pressure sensors 14, 15. Thereafter, with respect to the vacuum pressure in the reaction chamber 10, it is determined whether or not there is a slight pressure drop (S10). If it is determined that there is no slight pressure drop (S10: NO), the process returns to S2 to repeat the above-described process. Here, let a slight pressure drop be a pressure drop of 266 Pa or more.
[0052] 一方、 266Pa以上の圧力降下があると判断したときは(S 10 : YES)、時間 tlである lOsecが経過したと判断したとき(S3 : YES)と同様にして、 S11に進む。 S11では、 反応室 10内の真空圧力についてのフィードバック制御の目標値力 現在の真空圧 力から 266Paを引いた値 VI (図 9参照)に設定される。  On the other hand, when it is determined that there is a pressure drop of 266 Pa or more (S10: YES), and when it is determined that lOsec which is time tl has elapsed (S3: YES), the process proceeds to S11. In S11, a target value of feedback control for the vacuum pressure in the reaction chamber 10 is set to a value VI (see FIG. 9) obtained by subtracting 266 Pa from the current vacuum pressure.
[0053] その後、真空比例開閉弁 16のバルブ開度をポテンショメータ 18を介して取得する( Thereafter, the valve opening degree of the vacuum proportional on-off valve 16 is acquired via the potentiometer 18 (see FIG.
512)。そして、取得したノ レブ開度が設定値 XIに到達しているか否かを判断する(512). Then, it is determined whether the acquired degree of opening has reached the set value XI (
513)。このとき、バルブ開度が設定値 XIに到達している場合には(S13 :YES)、反 応室 10内の現在の真空圧力を真空圧力センサ 14、 15を介して取得する(S 14)。そ して、取得した反応室 10内の現在の真空圧力が設定値 X2以下である力否かを判断 する(S15)。このとき、反応室 10内の現在の真空圧力が設定値 X2よりも大きい場合 には(S15 :NO)、異常が発生していると判断して、真空圧力変化速度コントロール モード (SVAC)を終了し異常時処理を行う(S16)。 513). At this time, if the valve opening has reached the set value XI (S13: YES), the current vacuum pressure in the reaction chamber 10 is acquired via the vacuum pressure sensors 14, 15 (S14) . Then, it is determined whether or not the acquired current vacuum pressure in the reaction chamber 10 is equal to or less than the set value X2 (S15). At this time, if the current vacuum pressure in the reaction chamber 10 is larger than the set value X2 (S15: NO), it is judged that an abnormality has occurred, and the vacuum pressure change rate control mode (SVAC) is ended. An abnormal state process is performed (S16).
[0054] 一方、バルブ開度が設定値 XIに到達していない場合 (S13 : NO)、あるいは反応 室 10内の現在の真空圧力が設定値 X2以下である場合には(S15 : YES)、反応室 1 0内の真空圧力につ 、て、現在の真空圧力から 266Paを引いた値 VI (図 9参照)を 目標値としたフィードバック制御を、所定の時間(ここでは、 lOsec)が経過するまで定 値制御として行う(S 17)。そして、フィードバック制御を開始して lOsecが経過したと 判断したら(S18: YES)、実行時間処理に移行する。  On the other hand, when the valve opening does not reach the set value XI (S13: NO), or when the current vacuum pressure in the reaction chamber 10 is less than the set value X2 (S15: YES), For the vacuum pressure in the reaction chamber 10, the feedback control with the target value of the current vacuum pressure minus 266Pa as VI (see Fig. 9), a predetermined time (here, lOsec) elapses It performs as fixed value control (S17). Then, when feedback control is started and it is determined that lOsec has elapsed (S18: YES), the processing shifts to execution time processing.
[0055] なお、 S6および S16における異常時処理は、システムに異常が発生していることを 報知して、真空比例制御弁 16を安全方向に動作させる。本実施の形態では、真空 比例制御弁 16を閉方向に動作させる力 システムによっては、弁を開方向に動作さ せる場合、あるいは現状の弁開度を維持する場合もあり得る。システムによって安全 方向が異なるからである。したがって、異常時処理では、各システムに適した弁動作 を行えるように設定しておけばよい。また、「報知」には、聴覚に対するものや視覚に 対するものなどがすべて含まれ、単一手段での報知 (例えば、警告音のみ等)ゃ複 合手段での報知 (例えば、警告音および警告表示等)の 、ずれであってもよ 、。 Note that the abnormal processing in S6 and S16 indicates that an abnormality has occurred in the system. Informing and operating the vacuum proportional control valve 16 in the safe direction. In the present embodiment, depending on the force system for operating the vacuum proportional control valve 16 in the closing direction, the valve may be operated in the opening direction or the current valve opening degree may be maintained. This is because the safety direction differs depending on the system. Therefore, in the abnormal state processing, it may be set so that the valve operation suitable for each system can be performed. In addition, “informative information” includes all things for hearing and visual sense etc. Informing by a single means (for example, only warning sound etc.) or in a compounding means (for example warning sound and warning etc. It may be offset, etc.).
[0056] 実行時間処理では、まず、真空比例開閉弁 16のバルブ開度をポテンショメータ 18 を介して取得する(S21)。そして、取得したバルブ開度が設定値 XIに到達している か否かを判断する(S22)。このとき、バルブ開度が設定値 XIに到達している場合に は(S22 : YES)、反応室 10内の現在の真空圧力を真空圧力センサ 14、 15を介して 取得する(S23)。そして、取得した反応室 10内の現在の真空圧力が設定値 X2以下 であるか否かを判断する(S24)。このとき、反応室 10内の現在の真空圧力が設定値 X2よりも大きい場合には (S24 :NO)、異常が発生していると判断して、真空圧力変 化速度コントロールモード (SVAC)を終了し異常時処理を行う (S25)。  In the execution time process, first, the valve opening degree of the vacuum proportional on-off valve 16 is acquired via the potentiometer 18 (S21). Then, it is determined whether the acquired valve opening has reached the set value XI (S22). At this time, if the valve opening has reached the set value XI (S22: YES), the current vacuum pressure in the reaction chamber 10 is acquired via the vacuum pressure sensors 14, 15 (S23). Then, it is determined whether the acquired current vacuum pressure in the reaction chamber 10 is less than or equal to the set value X2 (S24). At this time, if the current vacuum pressure in the reaction chamber 10 is larger than the set value X2 (S24: NO), it is determined that an abnormality has occurred, and the vacuum pressure change speed control mode (SVAC) is set. The process is ended and an abnormal process is performed (S25).
[0057] 一方、バルブ開度が設定値 XIに到達していない場合(S22 : NO)、あるいは反応 室 10内の現在の真空圧力が設定値 X2以下である場合には(S24 : YES)、現場入 力又は遠隔入力で指示された目標真空圧力値を取得する(S26)。また、反応室 10 内の現在の真空圧力を真空圧力センサ 14、 15を介して取得する(S27)。そして、反 応室 10内の現在の真空圧力が目標真空圧力値に到達した力否かを判断する(S28 )。反応室 10内の現在の真空圧力が目標真空圧力値に到達していない場合には(S 28: NO)、現場入力又は遠隔入力で指示された目標真空圧力変化速度を取得する (S29)。  On the other hand, when the valve opening does not reach the set value XI (S22: NO), or when the current vacuum pressure in the reaction chamber 10 is less than the set value X2 (S24: YES), The target vacuum pressure value instructed by the site input or remote input is acquired (S26). Also, the current vacuum pressure in the reaction chamber 10 is obtained via the vacuum pressure sensors 14 and 15 (S27). Then, it is determined whether or not the current vacuum pressure in the reaction chamber 10 has reached the target vacuum pressure value (S28). If the current vacuum pressure in the reaction chamber 10 has not reached the target vacuum pressure value (S28: NO), the target vacuum pressure change rate indicated by the on-site input or remote input is acquired (S29).
[0058] また、反応室 10内の現在の真空圧力値を真空圧力センサ 14、 15を介して取得す る(S30)。そして、 S30で取得した現在の反応室 10の真空圧力値に対し、 S29で取 得した目標真空圧力変化速度で変化させた真空圧力値を、内部コマンドとしてコント ローラ 20で発生させる。そして、内部コマンドをフィードバック制御の目標値とし、フィ ードバック制御の目標値を変更する(S31)。その後、フィードバック制御を行う(S32) [0059] 具体的には、図 4のブロック図に示すように、現場入力又は遠隔入力で指示された 目標真空圧力値や真空圧力変化速度は、インターフェース回路 21 (図 1参照)で 0〜 5Vの範囲の電圧で出力され、内部コマンド発生回路 111へ入力される。内部コマン ド発生回路 111では、現在の反応室 10の真空圧力値から、真空圧力変化速度の大 きさに応じて、所定の真空圧力値を引き、その値をフィードバック制御の目標値として 出力する。 Further, the current vacuum pressure value in the reaction chamber 10 is acquired via the vacuum pressure sensors 14 and 15 (S30). Then, the controller 20 generates, as an internal command, the vacuum pressure value changed at the target vacuum pressure change rate acquired in S29 with respect to the current vacuum pressure value of the reaction chamber 10 acquired in S30. Then, the internal command is set as the target value of feedback control, and the target value of feedback control is changed (S31). Thereafter, feedback control is performed (S32) Specifically, as shown in the block diagram of FIG. 4, the target vacuum pressure value and the vacuum pressure change speed instructed by the on-site input or remote input are 0 to 5 V by the interface circuit 21 (see FIG. 1). , And is input to the internal command generation circuit 111. The internal command generation circuit 111 subtracts a predetermined vacuum pressure value from the current vacuum pressure value of the reaction chamber 10 according to the magnitude of the vacuum pressure change rate, and outputs that value as a target value for feedback control. .
[0060] 一方、反応室 10内の現在の真空圧力が目標真空圧力値に到達している場合には  On the other hand, when the current vacuum pressure in reaction chamber 10 has reached the target vacuum pressure value,
(S28: YES)、 S26で取得した目標真空圧力値をフィードバック制御の目標値に設 定する。その後、フィードバック制御を行う(S32)。  (S28: YES) The target vacuum pressure value acquired in S26 is set as the target value of feedback control. Thereafter, feedback control is performed (S32).
[0061] なお、 S32のフィードバック制御は、動作モードが真空圧力変化速度コントロールモ ード(SVAC)から変更されな!、限り続行される。  [0061] The feedback control of S32 is continued as long as the operation mode is not changed from the vacuum pressure change rate control mode (SVAC) !.
[0062] ここで、異常が検出されて異常時処理が行われる場合について図 11〜図 13に示 す具体例を参照しながら説明する。図 11は、真空圧力センサ 14, 15に異常が発生 した状態を示す図である。図 12は、反応室 10のリーク時の状態を示す図である。図 1 3は、配管が詰まった状態を示す図である。  Here, the case where an abnormality is detected and an abnormality process is performed will be described with reference to specific examples shown in FIGS. 11 to 13. FIG. 11 is a view showing a state in which an abnormality occurs in the vacuum pressure sensors 14 and 15. FIG. 12 is a view showing a state of the reaction chamber 10 at the time of leak. FIG. 13 is a diagram showing a state in which the pipe is clogged.
[0063] まず、真空圧力センサ 14, 15に異常が発生して、図 11に示すように、反応室 10の 圧力が下がらない場合には、時刻 t2にて真空比例開閉弁 16のバルブ開度が設定 値 XIに到達する。このとき、反応室 10の真空圧力が設定値 X2以下になっていない  First, as shown in FIG. 11, when the pressure in the reaction chamber 10 does not decrease due to the occurrence of an abnormality in the vacuum pressure sensors 14 and 15, the valve opening degree of the vacuum proportional on-off valve 16 at time t2 Reaches the set value XI. At this time, the vacuum pressure of the reaction chamber 10 is not less than the set value X2
[0064] つまり、時刻 t2が真空圧力変化速度コントロールモード(SVAC)開始から 10秒経 過して 、な 、場合には、図 7の S3〜S6の処理にてシステムに異常が発生して!/、ると 判断される。そして、真空比例開閉弁 16を閉じる異常時処理が実行される。一方、時 刻 t2が真空圧力変化速度コントロールモード (SVAC)開始から 10秒経過している 場合には、図 7の S13〜S16の処理にてシステムに異常が発生していると判断される 。そして、真空比例開閉弁 16を閉じる異常時処理が実行される。 In other words, 10 seconds after the start of the vacuum pressure change rate control mode (SVAC) at time t2, a system error occurs in the processing of S3 to S6 in FIG. 7! It is judged that /. Then, an abnormal processing is performed to close the vacuum proportional on-off valve 16. On the other hand, when time t2 has elapsed for 10 seconds from the start of the vacuum pressure change rate control mode (SVAC), it is determined that an abnormality has occurred in the system in the process of S13 to S16 in FIG. Then, an abnormal processing is performed to close the vacuum proportional on-off valve 16.
[0065] 次に、反応室 10にリークが発生して、図 12に示すように、反応室 10の圧力降下途 中から圧力が下がらなくなった場合には、時刻 t3にて真空比例開閉弁 16のバルブ 開度が設定値 XIに到達する。このとき、反応室 10の真空圧力が設定値 X2以下にな つていない。 Next, a leak occurs in the reaction chamber 10, and as shown in FIG. 12, when the pressure does not fall from the middle of the pressure drop in the reaction chamber 10, the vacuum proportional on-off valve 16 is selected at time t3. The valve of The opening reaches the set value XI. At this time, the vacuum pressure of the reaction chamber 10 does not become less than the set value X2.
[0066] つまり、時刻 t3が反応室 10の圧力降下開始から 10秒経過していない場合には、 図 7の S13〜S16の処理にてシステムに異常が発生していると判断される。そして、 真空比例開閉弁 16を閉じる異常時処理が実行される。一方、時刻 t3が反応室 10の 圧力降下開始から 10秒経過している場合には、図 8の S22〜S25の処理にてシステ ムに異常が発生していると判断される。そして、真空比例開閉弁 16を閉じる異常時 処理が実行される。  That is, when 10 seconds have not elapsed from the start of the pressure drop in the reaction chamber 10 at time t3, it is determined that an abnormality has occurred in the system in the processes of S13 to S16 in FIG. Then, an abnormal processing is performed to close the vacuum proportional on-off valve 16. On the other hand, if 10 seconds have elapsed from the start of the pressure drop in the reaction chamber 10 at time t3, it is determined that an abnormality has occurred in the system in the process of S22 to S25 in FIG. Then, an abnormal processing is performed to close the vacuum proportional on-off valve 16.
[0067] 最後に、配管が詰まり、図 12に示すように、反応室 10の圧力降下途中から圧力が 下がらなくなった場合には、時刻 t4にて真空比例開閉弁 16のバルブ開度が設定値 XIに到達する。このとき、反応室 10の真空圧力が設定値 X2以下になっていない。  Finally, if the piping is clogged and the pressure does not fall during the pressure drop of the reaction chamber 10 as shown in FIG. 12, the valve opening of the vacuum proportional on-off valve 16 is set to the set value at time t4. Reach XI. At this time, the vacuum pressure of the reaction chamber 10 is not less than the set value X2.
[0068] つまり、時刻 t4が反応室 10の圧力降下開始から 10秒経過していない場合には、 図 7の S13〜S16の処理にてシステムに異常が発生していると判断される。そして、 真空比例開閉弁 16を閉じる異常時処理が実行される。一方、時刻 t3が反応室 10の 圧力降下開始から 10秒経過している場合には、図 8の S22〜S25の処理にてシステ ムに異常が発生していると判断される。そして、真空比例開閉弁 16を閉じる異常時 処理が実行される。  That is, when 10 seconds have not elapsed from the start of the pressure drop in the reaction chamber 10 at time t4, it is determined that an abnormality has occurred in the system in the processes of S13 to S16 in FIG. Then, an abnormal processing is performed to close the vacuum proportional on-off valve 16. On the other hand, if 10 seconds have elapsed from the start of the pressure drop in the reaction chamber 10 at time t3, it is determined that an abnormality has occurred in the system in the process of S22 to S25 in FIG. Then, an abnormal processing is performed to close the vacuum proportional on-off valve 16.
[0069] 一方、正常時には、図 9に示すように、時刻 tにおいて真空比例開閉弁 16のバルブ 開度が設定値 XIに到達するが、そのときの反応室 10の真空圧力が設定値 X2よりも 小さ 、ので、システムに異常は発生して 、な 、と判断される。  On the other hand, when normal, as shown in FIG. 9, the valve opening degree of the vacuum proportional on-off valve 16 reaches the set value XI at time t, but the vacuum pressure of the reaction chamber 10 at that time is from the set value X2. Because it is also small, it is judged that the system has an abnormality.
[0070] このように、本実施の形態に係る真空圧力制御システムでは、真空圧力センサ 14, 15、反応室 10のリーク、あるいは配管の詰まりなどのシステムにおける異常を迅速に 検知することができる。そして、異常を検知した場合には、その旨を報知するとともに 、真空比例開閉弁 16を閉じる。したがって、非常に安全性の高い真空圧力制御シス テムを構築することができる。  As described above, in the vacuum pressure control system according to the present embodiment, it is possible to rapidly detect an abnormality in the system, such as leaks in the vacuum pressure sensors 14 and 15, the reaction chamber 10, or clogging of piping. Then, when an abnormality is detected, the vacuum proportional on-off valve 16 is closed while notifying that effect. Therefore, it is possible to construct a very safe vacuum pressure control system.
[0071] なお、上記した各異常を検出ために設定しておく設定値 XI, X2は、それぞれの異 常を適切に検出することができるように実験などにより予め求めておけばよい。  The set values XI and X2 set to detect each of the above-mentioned abnormalities may be obtained in advance by experiments or the like so that the respective abnormalities can be detected appropriately.
[0072] ここで、真空比例開閉弁 16のようにバルブ開度を検知する機構 (ポテンショメータ 1 8)が備わっていない弁を使用する場合には、システムの異常を検知するために、バ ルブ開度を使用する代わりに弁に入力する操作電圧または弁に供給される操作空 気圧を使用するようにすればよい。これにより、弁の開度を検出する機構が備わって いない弁でシステムを構築しても、システムの異常を早期に検知することができる。 Here, a mechanism for detecting the degree of valve opening like the vacuum proportional on-off valve 16 (potentiometer 1 When using a valve that is not equipped with 8), use the operating voltage supplied to the valve or the operating air pressure supplied to the valve instead of using the valve opening to detect an abnormality in the system. Just do it. As a result, even if the system is constructed with a valve that does not have a mechanism for detecting the degree of opening of the valve, it is possible to detect system abnormality early.
[0073] 以上、詳細に説明したように本実施の形態に係る真空圧力制御システムでは、コン トローラ 20が、真空比例開閉弁 16のバルブ開度が予め設定された設定値 XIに到達 したときに反応室 10の真空圧力が予め設定された設定値 X2よりも大きい場合、シス テムに異常が発生していると判断する。そして、設定値 XI, X2は、各異常を適切に 検出することができるように実験などにより予め求められたものである。したがって、本 実施の形態に係る真空圧力制御システムによれば、真空圧力センサ 14, 15、反応 室 10のリーク、あるいは配管の詰まりなどのシステムにおける異常を迅速に検知する ことができる。そして、異常を検知した場合には、その旨を報知するとともに、真空比 例開閉弁 16を閉じる。したがって、非常に安全性の高い真空圧力制御システムを構 築することができる。 As described above, in the vacuum pressure control system according to the present embodiment, as described in detail above, when controller 20 reaches the set value XI that is set in advance, the valve opening degree of vacuum proportional on-off valve 16 If the vacuum pressure in the reaction chamber 10 is larger than the preset set value X2, it is determined that an abnormality has occurred in the system. The set values XI and X2 are obtained in advance by experiments so that each abnormality can be detected properly. Therefore, according to the vacuum pressure control system according to the present embodiment, it is possible to rapidly detect an abnormality in the system such as leaks of the vacuum pressure sensors 14 and 15, the reaction chamber 10, or clogging of piping. Then, when an abnormality is detected, the fact is notified and the vacuum ratio on / off valve 16 is closed. Therefore, a very safe vacuum pressure control system can be built.
[0074] なお、上記した実施の形態は単なる例示にすぎず、本発明を何ら限定するもので はなぐその要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろ んである。例えば、上記した実施の形態においては、本発明を CVD装置の反応室 1 0に対して適用した場合を例示したが、それ以外の半導体製造ラインの真空容器に ついても本発明を適用することは可能である。  The above-described embodiment is merely an example, and it is needless to say that various improvements and modifications can be made without departing from the scope of the present invention without limiting the present invention in any way. . For example, although the present invention is applied to the reaction chamber 10 of the CVD apparatus in the above-described embodiment, the present invention can be applied to the vacuum containers of other semiconductor production lines. It is possible.

Claims

請求の範囲 The scope of the claims
[1] 真空容器と真空ポンプとを接続する配管上にあって開度を変化させることにより前 記真空容器内の真空圧力を変化させる真空比例開閉弁と、前記真空容器内の真空 圧力を計測する真空圧力センサと、前記真空圧力センサの出力に基づいて前記真 空比例開閉弁の開度を制御するコントローラとを有する真空圧力制御システムにお いて、  [1] A vacuum proportional on-off valve for changing the vacuum pressure in the vacuum vessel by changing the degree of opening on a pipe connecting the vacuum vessel and the vacuum pump, and measuring the vacuum pressure in the vacuum vessel A vacuum pressure control system comprising: a vacuum pressure sensor; and a controller for controlling an opening of the proportional open / close valve based on an output of the vacuum pressure sensor;
前記コントローラは、  The controller
システムが正常に作動するときの前記真空圧力センサの出力と前記真空比例開 閉弁の開度との関係を予め記憶しており、  The relationship between the output of the vacuum pressure sensor and the opening degree of the vacuum proportional opening / closing valve when the system normally operates is stored in advance,
前記真空圧力センサの出力に基づく前記真空比例開閉弁の開度制御を行って いる際に、前記真空圧力センサの実際の出力と前記真空比例開閉弁の実際の開度 との関係と、前記記憶された前記真空圧力センサの出力と前記真空比例開閉弁の 開度との関係を比較することによりシステムの異常を検知することを特徴とする真空 圧力制御システム。  When performing the opening control of the vacuum proportional on-off valve based on the output of the vacuum pressure sensor, the relationship between the actual output of the vacuum pressure sensor and the actual opening of the vacuum proportional on-off valve and the memory A vacuum pressure control system, which detects a system abnormality by comparing the relationship between the output of the vacuum pressure sensor and the opening degree of the vacuum proportional on-off valve.
[2] 真空容器と真空ポンプとを接続する配管上にあって開度を変化させることにより前 記真空容器内の真空圧力を変化させる真空比例開閉弁と、前記真空容器内の真空 圧力を計測する真空圧力センサと、前記真空圧力センサの出力に基づいて前記真 空比例開閉弁の開度を制御するコントローラとを有する真空圧力制御システムにお いて、  [2] A vacuum proportional on-off valve for changing the vacuum pressure in the vacuum vessel by changing the degree of opening on a pipe connecting the vacuum vessel and the vacuum pump, and measuring the vacuum pressure in the vacuum vessel A vacuum pressure control system comprising: a vacuum pressure sensor; and a controller for controlling an opening of the proportional open / close valve based on an output of the vacuum pressure sensor;
前記コントローラは、前記真空圧力センサの出力に基づく前記真空比例開閉弁の 開度制御を行っている際に、前記前記真空比例開閉弁の開度が予め設定された所 定開度に到達したときに、前記真空圧力センサの出力が予め設定された所定値より 大きい場合、システムに異常が発生していると判断することを特徴とする真空圧力制 御システム。  When the controller is performing the opening control of the vacuum proportional on-off valve based on the output of the vacuum pressure sensor, when the opening degree of the vacuum proportional on-off valve reaches a preset predetermined opening degree A vacuum pressure control system characterized in that when the output of the vacuum pressure sensor is larger than a predetermined value set in advance, it is determined that an abnormality has occurred in the system.
[3] 請求項 1または請求項 2に記載する真空圧力制御システムにお 、て、  [3] In the vacuum pressure control system according to claim 1 or 2,
前記コントローラは、システムの異常を検知するために、前記真空比例開閉弁の開 度の代わりに前記真空比例開閉弁に入力する操作電圧を使用することを特徴とする 真空圧力制御システム。 A vacuum pressure control system, wherein the controller uses an operation voltage input to the vacuum proportional on-off valve instead of the opening degree of the vacuum proportional on-off valve in order to detect an abnormality in the system.
[4] 請求項 1または請求項 2に記載する真空圧力制御システムにお 、て、 前記コントローラは、システムの異常を検知するために、前記真空比例開閉弁の開 度の代わりに前記真空比例開閉弁に供給される操作空気圧を使用することを特徴と する真空圧力制御システム。 [4] In the vacuum pressure control system according to claim 1 or claim 2, in order to detect an abnormality in the system, the controller performs the vacuum proportional opening and closing instead of the opening of the vacuum proportional opening and closing valve. A vacuum pressure control system characterized by using an operating air pressure supplied to a valve.
[5] 請求項 1から請求項 4に記載するいずれか 1つの真空圧力制御システムにおいて、 前記コントローラは、システムの異常を検知、あるいはシステムに異常が発生してい ると判断したときに、その旨を報知することを特徴とする真空圧力制御システム。 [5] In the vacuum pressure control system according to any one of claims 1 to 4, when the controller detects an abnormality in the system or determines that an abnormality has occurred in the system, Vacuum pressure control system characterized by notifying.
[6] 請求項 1から請求項 5に記載するいずれか 1つの真空圧力制御システムにおいて、 前記コントローラは、システムの異常を検知、あるいはシステムに異常が発生してい ると判断したときに、前記真空比例開閉弁をシステムの安全方向に動作させることを 特徴とする真空圧力制御システム。 [6] The vacuum pressure control system according to any one of claims 1 to 5, wherein the controller detects an abnormality of the system or determines that an abnormality has occurred in the system. A vacuum pressure control system characterized by operating a proportional on-off valve in a safe direction of the system.
PCT/JP2005/010850 2004-07-05 2005-06-14 Vacuum pressure control system WO2006003786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020077002520A KR101117747B1 (en) 2004-07-05 2005-06-14 Vacuum pressure control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-198439 2004-07-05
JP2004198439A JP4335085B2 (en) 2004-07-05 2004-07-05 Vacuum pressure control system

Publications (1)

Publication Number Publication Date
WO2006003786A1 true WO2006003786A1 (en) 2006-01-12

Family

ID=35782598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010850 WO2006003786A1 (en) 2004-07-05 2005-06-14 Vacuum pressure control system

Country Status (4)

Country Link
JP (1) JP4335085B2 (en)
KR (1) KR101117747B1 (en)
CN (1) CN100580601C (en)
WO (1) WO2006003786A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072030A (en) * 2006-09-15 2008-03-27 Matsushita Electric Ind Co Ltd Plasma processing apparatus, method for detecting abnormality of plasma processing apparatus, and method for plasma processing
US8316879B2 (en) * 2007-12-05 2012-11-27 Hitachi Zosen Corporation Method and device for controlling pressure of vacuum container
TWI431213B (en) * 2008-08-06 2014-03-21 Kitz Sct Corp Pressure control batterfly valve
JP4815538B2 (en) * 2010-01-15 2011-11-16 シーケーディ株式会社 Vacuum control system and vacuum control method
JP2012072992A (en) * 2010-09-29 2012-04-12 Miura Co Ltd Water supply control device and boiler
KR101262518B1 (en) 2010-12-22 2013-05-08 주식회사 포스코 Method and apparatus for controlling air knife in plating process
JP6005334B2 (en) * 2010-12-24 2016-10-12 株式会社堀場エステック Material gas control system
CN102329936A (en) * 2011-07-27 2012-01-25 太仓市华瑞真空炉业有限公司 Double-chamber high-pressure gas quenching vacuum furnace
JP5829962B2 (en) * 2012-03-23 2015-12-09 積水化学工業株式会社 Deposition equipment
JP5868796B2 (en) * 2012-07-03 2016-02-24 株式会社堀場エステック PRESSURE CONTROL DEVICE, FLOW CONTROL DEVICE, PRESSURE CONTROL DEVICE PROGRAM, FLOW CONTROL DEVICE PROGRAM
JP5397525B1 (en) * 2012-11-13 2014-01-22 Smc株式会社 Vacuum pressure control system
CN103926945B (en) * 2014-04-08 2017-02-15 上海华力微电子有限公司 Cavity intelligent pressure control system and pressure control method of the same
CN105186952A (en) * 2015-07-31 2015-12-23 芜湖真空科技有限公司 Control system for stabilizing vacuum degree of vacuum chamber
US10558190B2 (en) * 2017-04-20 2020-02-11 V-Tex Corporation Multi-mode-control apparatus for inner pressure of vacuum chamber and multi-mode-control method for inner pressure of vacuum chamber
EP3477173A1 (en) * 2017-10-30 2019-05-01 VAT Holding AG Enhanced vacuum process control
US20210320005A1 (en) * 2018-07-20 2021-10-14 Sumitomo Electric Industries, Ltd. Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
JP6681452B1 (en) * 2018-10-19 2020-04-15 株式会社Kokusai Electric Substrate processing apparatus and semiconductor device manufacturing method
JP7238461B2 (en) * 2019-02-25 2023-03-14 株式会社島津製作所 Valve controller and vacuum valve
JP2020165714A (en) * 2019-03-28 2020-10-08 日立グローバルライフソリューションズ株式会社 Sealability inspection method and sealability inspection system
KR102305322B1 (en) * 2019-10-25 2021-09-24 박민욱 Error detection method and error detection system for vacuum adsorption apparatus
CN112283436B (en) * 2020-11-05 2023-01-17 北京北方华创微电子装备有限公司 Door valve assembly, semiconductor device and control method of door valve assembly
JP2022090957A (en) * 2020-12-08 2022-06-20 富士電機株式会社 Pump clogging detection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168306U (en) * 1988-05-19 1989-11-28
JPH11119839A (en) * 1997-10-20 1999-04-30 Kokusai Electric Co Ltd Pressure control abnormality detection device for semiconductor production device
JPH11333277A (en) * 1998-03-25 1999-12-07 Ckd Corp Vacuum pressure control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619032B2 (en) * 1998-11-13 2005-02-09 シーケーディ株式会社 Vacuum pressure control valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168306U (en) * 1988-05-19 1989-11-28
JPH11119839A (en) * 1997-10-20 1999-04-30 Kokusai Electric Co Ltd Pressure control abnormality detection device for semiconductor production device
JPH11333277A (en) * 1998-03-25 1999-12-07 Ckd Corp Vacuum pressure control system

Also Published As

Publication number Publication date
KR20070039115A (en) 2007-04-11
CN100580601C (en) 2010-01-13
CN1969241A (en) 2007-05-23
KR101117747B1 (en) 2012-03-15
JP4335085B2 (en) 2009-09-30
JP2006018767A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
WO2006003786A1 (en) Vacuum pressure control system
JP3606754B2 (en) Vacuum pressure control valve
KR101001611B1 (en) Vacuum pressure control system
CA2637713A1 (en) Versatile emergency shutdown device controller
TWI534577B (en) Pressure flow control device
TWI391589B (en) Detection Method of Abnormal Operation of Downflow Side Valve in Throttle Mechanism of Pressure Flow Control
TWI719513B (en) Flow control method and flow control device
JPWO2004109420A1 (en) Pressure control system and flow rate control system
JP2006052846A (en) Control method of vacuum valve arranged between two vacuum spaces
TWI698603B (en) Flow control method and flow control device
KR101098914B1 (en) Vacuum pressure control system and vacuum pressure control program
JP5118216B2 (en) Vacuum pressure control system and vacuum pressure control program
TWI575347B (en) Pressure control device
JP2006195733A (en) Vacuum pressure control system
JP2008069787A (en) Vacuum pressure control system
JP3590030B2 (en) Vacuum pressure control system and controller
JP5331867B2 (en) Vacuum pressure control device
JP2826409B2 (en) Dry etching equipment
JP4327314B2 (en) Vacuum pressure control system
JP2627039B2 (en) Vacuum exhaust device
JP7382796B2 (en) Piezo valve, fluid control device, and piezo valve diagnostic method
US20220228608A1 (en) Fluid pressure control device
JP5530097B2 (en) Pressure control device and pressure control method
KR20010045942A (en) Device for controlling exhaust pressure in semiconductor production system
JP2004150488A (en) Fluid control method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580019270.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077002520

Country of ref document: KR

122 Ep: pct application non-entry in european phase