WO2006001239A1 - White light-emitting compound, white light-emitting polymer compound, method for producing those, and light-emitting device - Google Patents

White light-emitting compound, white light-emitting polymer compound, method for producing those, and light-emitting device Download PDF

Info

Publication number
WO2006001239A1
WO2006001239A1 PCT/JP2005/011232 JP2005011232W WO2006001239A1 WO 2006001239 A1 WO2006001239 A1 WO 2006001239A1 JP 2005011232 W JP2005011232 W JP 2005011232W WO 2006001239 A1 WO2006001239 A1 WO 2006001239A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
white light
emitting
formula
chemical
Prior art date
Application number
PCT/JP2005/011232
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Nakaya
Atsushi Ikeda
Mitukura Sato
Original Assignee
Hirose Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Engineering Co., Ltd. filed Critical Hirose Engineering Co., Ltd.
Publication of WO2006001239A1 publication Critical patent/WO2006001239A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1475Heterocyclic containing nitrogen and oxygen as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • White light emitting compound white light emitting polymer compound, production method thereof and light emitting device
  • the present invention relates to a white light-emitting compound, a white light-emitting polymer compound, a method for producing the same, and a light-emitting device. More specifically, the present invention relates to a white light-emitting compound that is a novel substance capable of emitting white light while being a single compound. The present invention also relates to a white light emitting polymer compound obtained by polymerizing the white light emitting compound, the white light emitting compound, and a light emitting device containing at least one of the white light emitting polymer compound.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-19796
  • a white light-emitting element capable of emitting white light by mixing a red light-emitting compound, a green light-emitting compound, and a blue light-emitting compound is conceivable.
  • red light emission compound, green light emission compound and blue light emission compound existing in one light emitting element emit red light, green light emission and blue light emission, and the three primary colors of R, G, and B are mixed, resulting in white light emission.
  • the red light emitting compound, the green light emitting compound, and the blue light emitting compound have mutually different molecular structures, the light emission lifetimes of the respective light emitting compounds are different.
  • the light emitting element having a mechanism for emitting three kinds of light emitting compounds has a problem that the color of light emission changes from white to non-white over time.
  • An object of the present invention is to provide a white light-emitting compound that can emit white light, for example, a single compound that can be used in an organic EL device, a method for producing the same, and a white light-emitting polymer capable of white light It is in providing the compound, the manufacturing method of a white light emitting polymer compound, and a light emitting element.
  • Another object of the present invention is to provide an organic compound capable of emitting white light that can be used for various white light emitters including an organic EL element.
  • Claim 1 is a white light-emitting compound characterized by having a structure represented by the following formula (1):
  • R 2 may be substituted with a hydrogen atom or a halogen atom having 1 to 5 carbon atoms, and represents an alkyl group.
  • Claim 2 is a white light emitting polymer compound having a monomer unit represented by the formula (11A),
  • Dicarboxylic acid compound (e) is derived into acid halide compound (f),
  • Acid halide (f) and hydrazide represented by Ar—CONHNH (where Ar is
  • the white light-emitting polymer according to claim 1 wherein the white light-emitting compound according to claim 1 is polymerized with the white light-emitting compound represented by the formula (1).
  • a method for producing a compound, Claim 5 has a light-emitting layer containing the white light-emitting compound according to claim 1 or the white light-emitting polymer compound according to claim 2 between a pair of electrodes. It is an element.
  • the white light-emitting compound according to the present invention has an oxadiazole ring having an aryl group (one Ar) and a substituent (R 1 ).
  • the oxadiazole ring having an aryl group exhibits electron withdrawing properties, and the substituent (R 1 ) exhibits electron donating properties. Therefore, the compound having the structure represented by the formula (1) is considered to cause uneven distribution of electrons in the molecule.
  • the portion with high pi electron density emits red light
  • the portion with low pi electron density emits blue light. When white light is observed by simultaneous emission of this red light and blue light, Guessed. Therefore, it appears to humans that the white light-emitting compound according to the present invention emits white light.
  • This white light-emitting compound emits white light even though it is a single compound. Therefore, in the light emitting element containing this white light emitting compound in the light emitting layer, the color of light emitted does not change to white color or other colors over time. Therefore, according to the present invention, it is possible to provide a light emitting element having a long white light emission lifetime.
  • the white light-emitting compound according to the present invention a nitrogen atom in the force rubazole skeleton is substituted —CH ⁇ CH has polymerizability. Therefore, the white light-emitting compound according to the present invention
  • the white light-emitting polymer compound according to the present invention which is a polymer compound, can be formed into a film by a casting method, a melt casting method, or the like. Since the white light-emitting polymer compound according to the present invention can be easily formed into a film, a light-emitting element capable of emitting white light can be easily produced using this.
  • FIG. 1 is an explanatory view showing a light emitting element as an example according to the present invention.
  • FIG. 2 is an explanatory view showing a light emitting device as another example according to the present invention.
  • FIG. 3 is an explanatory view showing a light emitting device as another example according to the present invention.
  • FIG. 4 is an explanatory view showing a light emitting device as still another example according to the present invention.
  • FIG. 5 is an NMR vector chart of the compound (cl) obtained in the example of the present invention.
  • FIG. 6 is an NMR vector chart of the compound (dl) obtained in the example of the present invention.
  • FIG. 7 is an NMR spectrum chart of the compound (el) obtained in the example of the present invention.
  • FIG. 8 is an IR spectrum chart of the compound (el) obtained in the example of the present invention.
  • FIG. 9 is an NMR spectrum chart of the compound (f 1) obtained in the example of the present invention.
  • FIG. 10 is an IR ⁇ vector chart of the compound (fl) obtained in the example of the present invention.
  • FIG. 11 is an NMR vector chart of the compound (gl) obtained in the example of the present invention.
  • FIG. 12 is an IR spectrum chart of the compound (gl) obtained in the example of the present invention.
  • FIG. 13 is an NMR vector chart of the compound (j 1) obtained in the example of the present invention.
  • FIG. 14 is an NMR vector chart of compound (1B) obtained in the example of the present invention.
  • FIG. 15 is an IR vector chart of the compound (1B) obtained in the example of the present invention.
  • FIG. 16 is an NMR spectrum chart of the compound (1C) obtained in the example of the present invention.
  • FIG. 17 is a fluorescence spectrum chart of the compound (1C) obtained in the example of the present invention.
  • the white light-emitting compound according to the present invention is characterized by having a structure represented by the following formula (1).
  • the white light-emitting compound represented by the formula (1) has a benzene ring at the center of the skeleton. Two oxadiazole rings and two imino groups (one NH—) are bonded to this benzene ring. A force rubazole skeleton is bonded to one imino group via a methylene group. Thus, this white light emitting compound has a unique structure.
  • Ar in the above formula (1) is an aromatic group such as a furl group, a tolyl group, a xylyl group, a mesityl group, a thamol group, a biphthyl group, a naphthyl group, an anthryl group, and a antryl group.
  • a phenyl group, a naphthyl group, or an anthryl group is preferable.
  • the two Ars in are the same or different from each other!
  • Formula two R 1 in (1) is a hydrogen atom or the following formula (1 1) or (1 2) shown by substituents.
  • the two R 1 s may be the same or different from each other. However, in the preferred white light emitting compound, the two R 1 s are the same.
  • a hydrogen atom bonded to the nitrogen atom at the 9-position is substituted with the substituent R 2 using force rubazole as a basic skeleton, and further, the hydrogen atom at the 3-position It is a group formed by elimination.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom.
  • alkyl group having 1 to 20 carbon atoms examples include ethyl group, methyl group, n-propyl group, isopropyl, n-butyl group, isobutyl group, tert butyl group, n-pentyl group, isopentyl group, tert pentyl group, etc. Can be mentioned.
  • R 2 is an alkyl group, the greater the carbon number, the better the solubility in the solvent.
  • the substituent represented by the formula (11) is electron donating.
  • the substituent represented by the formula (12) is a group obtained by substituting the hydrogen atom at the 9-position with R 3 and further eliminating the hydrogen atom at the 3-position with fluorene as a basic skeleton.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is the same as described above.
  • Two R 3 s may be the same or different, but in the preferred white light-emitting compound represented by the formula (1), the two R 3 s in the formula (1-2) are the same.
  • the substituent represented by the formula (1-2) is electron donating.
  • two oxaziazole rings are electron-withdrawing groups, NH—R 1 and N (—R 1 ) —CH— are electron-donating groups, and a benzene ring Around
  • the energy gap between the excited state and the ground state, which cause light emission is suitable for white light emission.
  • the white light emitting compound electrons are unevenly distributed in the molecule, and there are a portion having a high electron density and a portion having a low electron density.
  • the electron density is high, red light is emitted from the part, and blue light is emitted from the part where the electron density is low. It is estimated that When red light and blue light are mixed, it appears to humans as white light.
  • the white light-emitting compound represented by the formula (1) can be produced according to the following reaction formulas 1 to 7.
  • Reaction formulas 1 to 7 shown below are ideal reactions for explaining the route that leads to the white light-emitting compound according to the present invention. In this case, side reactions and competitive reactions proceed.
  • 1,4-dihydroxy-2,5-dialkylcarboxy-1,4-cyclohexagen (a) and a-line derivative (b) are heated in a solvent.
  • 1,4-dihydroxy-2,5-dianolequinolecanoxyl 1,4-cyclohexagen (a) is dehydrated from the hydroxyl group and the hydrogen atom on the nitrogen atom of the aniline derivative to give the hexagen compound (c). Synthesized.
  • R 5 of 1,4-dihydroxy-2,5-dialkylcarboxy-1,4-cyclohexagen (a) in the above reaction formula 1 represents an alkyl group such as a methyl group
  • R 1 of the derivative (b) is the same as R 1 described for the white light-emitting compound represented by the formula (1).
  • Examples of the solvent include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N dimethylformamide.
  • nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N dimethylformamide.
  • polar solvents such as (DMF) and tetrahydrofuran (THF). These solvents may be used alone or as a mixture of two or more.
  • the reaction temperature is preferably 80 to 130 ° C, particularly 90 to 110 ° C. preferable.
  • the heating time is preferably 5 to 7 hours, particularly preferably 5 to 6 hours.
  • the aromatic compound (d) can be synthesized by dehydrogenating the hexadene compound (c) according to the reaction formula 2.
  • the dehydrogenation reaction is usually performed in a solvent.
  • a dehydrogenation catalyst can be used for the dehydration reaction.
  • Aromatic compounds are also terephthalic acid ester compounds.
  • acid catalysts such as sulfuric acid, nitric acid and hydrochloric acid, metal catalysts such as chromium, iron, platinum, palladium silver and copper, acid aluminum and acid magnesium, etc. Examples thereof include acid oxides.
  • Examples of the solvent include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl.
  • nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl.
  • polar solvents such as formamide (DMF) and tetrahydrofuran (THF). These may be used alone or in combination of two or more.
  • the heating temperature is preferably 130 to 170 ° C, and particularly preferably 140 to 160 ° C.
  • the heating time is preferably 3 to 5 hours, and particularly preferably 3 to 4 hours.
  • the obtained aromatic compound (d) is hydrolyzed to obtain an alkyl.
  • the dicarboxylic acid compound (e) is synthesized by using the ruester (—COOR 5 ) as a free carboxylic acid. This hydrolysis reaction can be performed by heating in a solvent.
  • Examples of the solvent include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl.
  • nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl.
  • polar solvents such as formamide (DMF), N, N-dimethylacetamide (DMAC), and tetrahydrofuran (THF). These may be used alone or in combination of two or more.
  • the heating temperature is preferably 80 to 200 ° C, and particularly preferably 100 to 180 ° C.
  • the heating time is preferably 0.5 to 4 hours, and more preferably 1.5 to 2.5 hours.
  • the dicarboxylic acid compound (e) is derived into the acid neurogenic compound (f). This reaction proceeds easily by heating the dicarboxylic acid compound (e) in a solvent.
  • halogenating agent examples include chlorinating agents such as chlorothionyl and chlorophosphoryl, and brominating agents such as thionyl bromide.
  • the solvent examples include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl.
  • nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl.
  • polar solvents such as formamide (DMF) and tetrahydrofuran (THF), and these may be used alone or in combination of two or more.
  • the heating temperature is preferably 40 to 100 ° C, more preferably 40 to 70 ° C.
  • the heating time is preferably 1 to 20 hours, and particularly preferably 1 to 3.5 hours.
  • Examples of the halogen atom represented by X in the acid halide (f) include a chlorine atom, a fluorine atom, and a bromine atom. In many cases, X is a chlorine atom.
  • Compound (g) can be synthesized by heating 2 in a solvent.
  • Examples of the solvent include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl.
  • nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl.
  • polar solvents such as formamide (DMF) and tetrahydrofuran (THF), and these may be used alone or in combination of two or more.
  • the heating temperature is preferably 40 to 80 ° C, particularly 50 to 75 ° C.
  • the heating time is preferably 1 to 5 hours, and particularly preferably 1 to 4 hours.
  • the obtained compound (g) can be subjected to a ring-closing reaction by heating in a solvent according to Reaction Scheme 6 to obtain an oxaziazole ring-containing compound (h).
  • Examples of the solvent may include polar solvents such as phosphoryl chloride, phosphoryl bromide, orthodichlorobenzene, dioxane, pyridine, N, N dimethylformamide (DMF), and tetrahydrofuran (THF). These may be used alone or as a mixture of two or more.
  • polar solvents such as phosphoryl chloride, phosphoryl bromide, orthodichlorobenzene, dioxane, pyridine, N, N dimethylformamide (DMF), and tetrahydrofuran (THF). These may be used alone or as a mixture of two or more.
  • the heating temperature is preferably 100 to 140 ° C, and particularly preferably 90 to 120 ° C.
  • the heating time is preferably 6 to 24 hours, particularly 10 to 17 hours.
  • the obtained oxaziazole ring-containing compound (h) is subjected to a substitution reaction by heating in a solvent together with an organic halogen compound in accordance with the reaction formula 7, and then reduced according to the present invention.
  • a white light-emitting compound (1) can be obtained.
  • solvent examples include polar solvents such as phosphoryl chloride, phosphoryl bromide, orthodichlorobenzene, dioxane, pyridine, N, N-dimethylformamide (DMF), and tetrahydrofuran (THF). These may be used alone or in combination of two or more.
  • polar solvents such as phosphoryl chloride, phosphoryl bromide, orthodichlorobenzene, dioxane, pyridine, N, N-dimethylformamide (DMF), and tetrahydrofuran (THF). These may be used alone or in combination of two or more.
  • the heating temperature is preferably 100 to 180 ° C, and particularly preferably 130 to 170 ° C.
  • the heating time is preferably 6 to 24 hours, and particularly preferably 15 to 20 hours.
  • the white light-emitting compound (1) can be obtained by purification and separation according to a conventional method.
  • the white light-emitting compound according to the present invention can be easily produced simply by heating. Such a simple method for producing a white light-emitting compound is an industrial production method.
  • the polymerizable white light-emitting compound represented by the formula (1) is synthesized into the white light-emitting polymer compound according to the present invention by, for example, radical polymerization or ionic polymerization by a normal polymerization operation.
  • the polymerization reaction proceeds even in the case of! Or deviation such as Balta polymerization and solution polymerization.
  • a polymerization initiator may be used for the polymerization reaction, and the polymerization can be initiated by irradiation with electromagnetic wave energy such as ultraviolet rays.
  • the molecular weight of the obtained white light-emitting polymer compound is usually 10,000 to 50,000, and a film can be formed.
  • the white light-emitting polymer compound in the form of a film can be used as a light-emitting layer in a light-emitting element by using the film or layer formed with the white light-emitting polymer compound as described below. Therefore, when a white light-emitting polymer compound is used, a light-emitting element can be manufactured easily and at a low cost.
  • the white light-emitting compound according to the present invention exhibits visible light emission over a range of 400 to 650 nm as a whole by applying electromagnetic wave energy, and can be used for an organic EL device capable of white light emission.
  • FIG. 1 is an explanatory diagram showing a cross-sectional structure of a white light-emitting element that is also a single-layer organic EL element. As shown in FIG. 1, the white light emitting element A is formed by laminating a light emitting layer 3 containing a light emitting material and an electrode layer 4 in this order on a substrate 1 on which a transparent electrode 2 is formed.
  • the white light emitting element A shown in FIG. 1 emits white light when a current is passed through the transparent electrode 2 and the electrode layer 4.
  • a current is passed through the transparent electrode 2 and the electrode layer 4.
  • electrons on the electrode layer 4 side are injected, holes are injected from the transparent electrode 2, and electrons are further injected into the light emitting layer 3. It is a phenomenon in which energy is released as light when recombining with holes and the energy level returns to the conduction band valence band.
  • the white light emitting element A has a white light emitting compound having a specific chemical structure in the light emitting layer, the light emitting life is long. Therefore, the white light emitting element A can be used as a light source having a long lifetime.
  • the white light emitting element A is a tubular light emitting body in which a substrate 1 formed in a cylindrical shape and a transparent electrode 2, a light emitting layer 3 and an electrode layer 4 are laminated in this order on the inner surface side of the substrate 1. It can be.
  • the substrate 1 a known substrate can be employed as long as the transparent electrode 2 can be formed on the surface thereof.
  • the substrate 1 include a glass substrate, a plastic sheet, a ceramic, and a metal plate obtained by processing the surface into an insulating property such as forming an insulating coating layer on the surface.
  • the white light emitting element is a single-sided illumination device that can irradiate white light on the side opposite to the substrate 1.
  • the substrate 1 is transparent, it is a double-sided illumination device that can emit white light from the substrate 1 side of the white light emitting element and the surface on the opposite side.
  • the transparent electrode 2 is made of various materials as long as it has a large work function and is transparent and can act as an anode by applying a voltage to inject holes into the light emitting layer 3. can do.
  • the transparent electrode 2 is made of ITO, InO, SnO, ZnO, Cd
  • It can be formed of an inorganic transparent conductive material such as 2 3 2o and the like and compounds thereof, and a conductive high molecular material such as polyaniline.
  • This transparent electrode 2 is formed on the substrate 1 by chemical vapor deposition, spray pyrolysis, vacuum evaporation, electron beam evaporation, sputtering, ion beam sputtering, ion It can be formed by an etching method, an ion-assisted vapor deposition method, or other methods.
  • the electrode formed on the substrate does not have to be a transparent electrode.
  • the light emitting layer 3 is a layer containing a white light emitting compound represented by the formula (1) in the present invention.
  • the light emitting layer 3 can be formed as a polymer film in which the white light emitting compound in the present invention is dispersed in a polymer, and the white light emitting compound in the present invention is deposited on the transparent electrode 2. It can be formed as a deposited film.
  • polymer in the polymer film examples include polybulucarbazole, poly (3-alkylentiophene), polyimide containing allylamine, polyfluorein, polyphenylene-butylene, poly-a-methylstyrene, biphenyl. -Lucarbazole Z ⁇ -methylstyrene copolymer and the like. Among these, polyburecarbazole is preferable.
  • the content of the white light-emitting compound in the polymer film is usually 0.01 to 2% by weight, preferably 0.05 to 0.5% by weight.
  • the polymer film has a thickness of usually 30 to 500 nm, preferably 100 to 300 nm. If the thickness of the polymer film is too thin, the amount of emitted light may be insufficient. If the thickness of the polymer film is too large, the driving voltage may become too high, which may be undesirable. Flexibility may be lacking when using a curved or annular body.
  • the polymer film is formed by a coating method such as a spin casting method, a coating method, and a dipping method using a solution obtained by dissolving the polymer and the white light-emitting compound according to the present invention in an appropriate solvent. Can be formed.
  • a coating method such as a spin casting method, a coating method, and a dipping method using a solution obtained by dissolving the polymer and the white light-emitting compound according to the present invention in an appropriate solvent. Can be formed.
  • the thickness of the vapor-deposited film is generally a force that varies depending on the layer structure in the light-emitting layer, etc. 0.1 to LOOnm.
  • the thickness of the deposited film is too small or too large, the same problem as described above may occur.
  • the electrode layer 4 employs a substance having a small work function, and may be formed of a single metal or a metal alloy such as MgAg, aluminum alloy, and metallic calcium.
  • a preferred electrode layer 4 is an alloy electrode of aluminum and a small amount of lithium.
  • the electrode layer 4 is easily formed on the surface including the light emitting layer 3 formed on the substrate 1 by vapor deposition technology, for example. Can be formed.
  • Examples of materials that can form the buffer layer include alkali metal compounds such as lithium fluoride, alkaline earth metal compounds such as magnesium fluoride, oxides such as aluminum oxide, 4, 4, Biscarbazole biphenyl (Cz-TPD).
  • alkali metal compounds such as lithium fluoride
  • alkaline earth metal compounds such as magnesium fluoride
  • oxides such as aluminum oxide, 4, 4, Biscarbazole biphenyl (Cz-TPD).
  • m-MTDATA 4, 4, 4 "-tris (3-methylphenol-aminoamine)
  • Triphenylamine for example, m-MTDATA (4, 4, 4, 4 "-tris (3-methylphenol-aminoamine) ) Triphenylamine
  • phthalocyanine polyarine
  • polythiophene derivatives such as molybdenum oxide, ruthenium oxide, vanadium oxide, and lithium fluoride.
  • FIG. 2 is an explanatory view showing a cross section of a white light-emitting element which is a multilayer organic EL element.
  • this white light-emitting element B has a transparent electrode 2, a hole transport layer 5, light-emitting layers 3a and 3b, an electron transport layer 6 and an electrode layer 4 in this order on the surface of the substrate 1. Laminated.
  • the substrate 1, the transparent electrode 2, and the electrode layer 4 are the same as those in the white light emitting device A shown in FIG.
  • the light emitting layer in the white light emitting device B shown in FIG. 2 includes a light emitting layer 3a and a light emitting layer 3b, and the light emitting layer 3a is a vapor-deposited film of a white light emitting compound in the present invention.
  • the light emitting layer 3b is a DP VBi layer. This DPVBi layer is a layer having a host material function.
  • the hole transport materials contained in the hole transport layer 5 include triphenylamine compounds such as N, N, -diphenyl-N, N, -di (m tolyl) -benzidine (TPD), and a Examples include NPD, hydrazone compounds, stilbene compounds, heterocyclic compounds, and ⁇ -electron starburst hole transport materials.
  • Examples of the electron transport material contained in the electron transport layer 6 include 2- (4-tert-butylphenol) -5- (4 biphenyl) -1, 3, 4 Examples include oxadiazole derivatives such as xadiazole, 2,5 bis (1 naphthyl) 1,3,4 oxadiazole, and 2,5 bis (5 ′ tert butyl-2′-benzoxazolyl) thiophene.
  • a metal complex material such as quinolinol aluminum complex (Alq3), benzoquinolinol beryllium complex (Bebq2) can be preferably used as the electron transporting substance.
  • the electron transport layer 6 contains Alq3.
  • each layer is the same as that of a known multilayer organic EL element with conventional strength.
  • the white light emitting element B shown in FIG. 2 operates in the same manner as the white light emitting element A shown in FIG. 1, and emits light. Therefore, the white light emitting element B shown in FIG. 2 has the same application as the white light emitting element A shown in FIG.
  • FIG. 3 shows a third example of the white light emitting device according to the present invention.
  • FIG. 3 is an explanatory view showing a cross section of a white light-emitting element which is a multilayer organic EL element.
  • a white light emitting device C shown in FIG. 3 is formed by laminating a transparent electrode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 8 and an electrode layer 4 in this order on the surface of a substrate 1.
  • the white light emitting element C shown in FIG. 3 is the same as the white light emitting element B.
  • FIG. 4 shows another example of a white light emitting element.
  • the white light emitting element D shown in FIG. 4 is formed by laminating a substrate electrode 2, a hole transport layer 5, a light emitting layer 3, and an electrode layer 4 in this order.
  • a hole transport containing a hole transporting substance is provided between an anode as a transparent electrode and a cathode as an electrode layer formed on a substrate.
  • a two-layer organic low-molecular light-emitting device (for example, a hole transport layer and a guest pixel between an anode and a cathode) formed by laminating a layer and an electron transporting light-emitting layer containing a white light-emitting compound in the present invention
  • a two-layer type dye-doped light-emitting device comprising a white light-emitting compound and a light-emitting layer containing a host dye, and a hole transport layer containing a hole-transporting substance between the anode and the cathode.
  • a two-layer organic light-emitting device (for example, a hole between an anode and a cathode) formed by laminating a white light-emitting compound and an electron-transporting material in the present invention.
  • the transport layer and the guest dye A white light emitting compound and an electron transporting light emitting layer containing a host dye, and a hole transporting layer between the anode and the cathode. Examples thereof include a three-layer organic light emitting device formed by laminating a light emitting layer containing a white light emitting compound and an electron transport layer.
  • the electron-transporting light-emitting layer in this light-emitting device is usually 50 to 80% polyvinyl carbazole (PVK), 5 to 40% of an electron-transporting light-emitting agent, and the white light-emitting compound according to the present invention. When formed from 0.01 to 20% (by weight), white light emission occurs with high luminance.
  • PVK polyvinyl carbazole
  • the light emitting layer preferably contains rubrene as a sensitizer, and particularly contains rubrene and Alq3! /.
  • the white light-emitting element using the white light-emitting compound according to the present invention can be generally used as, for example, a DC-driven organic EL element, and can also be used as a pulse-driven organic EL element and an AC-driven organic EL element. It can also be used as an element.
  • Fig. 5 shows the NMR ⁇ vector chart of the obtained solid. From these, the obtained solid was identified as a compound (cl) having a structure represented by the following formula (cl).
  • Fig. 7 shows the NMR ⁇ vector chart of the obtained solid
  • Fig. 8 shows the IR spectrum chart. From these, the obtained solid was identified as a compound (el) having a structure represented by the following formula (el).
  • Fig. 9 shows the NMR ⁇ vector chart of the obtained solid
  • Fig. 10 shows the IR spectrum chart. From these, the obtained solid was identified as the compound (f 1) having a structure represented by the following formula (fl).
  • Fig. 11 shows the NMR ⁇ vector chart of the obtained solid
  • Fig. 12 shows the IR spectrum chart. From these, the obtained solid was identified as a compound (gl) having a structure represented by the following formula (gl).
  • a 500 ml pressure bottle was charged with 1.7 g of the compound (gl), 0.44 g of 3 chloromethyl-9 chloroethylcarbazole and 300 ml of N, N dimethylformamide (DMF).
  • the solution in the pressure bottle was heated to 160 ° C. for 20 hours in a silicone oil bath. After heating, the solution in the pressure bottle was allowed to cool and poured into ice water. Subsequently, the solid obtained by filtering the ice water charge with Nutsche was washed and dried to obtain 1.3 g of a solid.
  • Fig. 13 shows the NMR ⁇ vector chart of the obtained solid. From this, the obtained solid was identified as a compound (j 1) having a structure represented by the following formula (j 1).
  • Fig. 14 shows the NMR ⁇ vector chart of the obtained solid
  • Fig. 15 shows the IR spectrum chart. From these, the obtained solid was identified as a compound (1B) having a structure represented by the following formula (1B).
  • a polymerization tube Into a polymerization tube, 0.5 g of the vinyl compound represented by the above formula (IB) (30 g) DMAC (30 ml) and tungsten hexachloride (2.5 mg) were placed, and the vinyl compound was mixed for 73 hours at room temperature using a shaker. Polymerization was performed. After 73 hours, the content in the polymerization tube was concentrated and filtered, and then the resulting concentrated solution was dried to obtain 0.4 g of a solid.
  • Fig. 16 shows the NMR vector chart of this purple solid. This solid was a polymer having a unit represented by the formula (1C).
  • FIG. 17 shows a fluorescence spectrum chart of the compound having the repeating unit represented by the formula (1C). As a result, it was found that the obtained compound emits white light.
  • the white light emitting element When the overall shape of the white light emitting element according to the present invention is a large area planar shape, for example, it is attached to a wall surface or a ceiling to provide a large area wall surface white light emitting element and a large area ceiling surface. It can be set as a light emitting lighting device.
  • the white light emitting element can be used as a surface light source in place of a linear light source such as a conventional fluorescent lamp or a point light source such as a light bulb.
  • the white light emitting element can emit or illuminate the wall surface, ceiling surface, or floor surface of a residential room, office room, vehicle room, or the like as a surface light source.
  • this white light emitting element can be used for backlights such as a display screen in a computer, a display screen in a mobile phone, and a numeric display screen in a cash register.
  • this white light-emitting element can be used as various light sources such as direct illumination and indirect illumination, and can be lit at night and has good visibility, an advertising device, a road sign device, It can also be used as a light source such as a reverse lamp in a light-emitting bulletin board and a vehicle such as an automobile.
  • this white light emitting element uses mercury, it can be used as a light source that is environmentally friendly instead of a conventional fluorescent lamp using mercury.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

Disclosed is a white light-emitting compound which is a single compound capable of emitting white light and can be used, for example, for an organic EL device. Also disclosed are a method for producing such a white light-emitting compound and a light-emitting device using such a white light-emitting compound. Specifically disclosed is a white light-emitting compound which is characterized by having a structure expressed as below.

Description

白色発光化合物、白色発光高分子化合物、それらの製造方法及び発光 素子  White light emitting compound, white light emitting polymer compound, production method thereof and light emitting device
技術分野  Technical field
[0001] この発明は、白色発光化合物、白色発光高分子化合物、それらの製造方法及び発 光素子に関し、更に詳しくは、単一の化合物でありながら白色に発光し得る新規物質 である白色発光化合物、その白色発光化合物を重合してなる白色発光高分子化合 物、前記白色発光化合物及び前記白色発光高分子化合物の少なくとも一種を含有 する発光素子に関する。  The present invention relates to a white light-emitting compound, a white light-emitting polymer compound, a method for producing the same, and a light-emitting device. More specifically, the present invention relates to a white light-emitting compound that is a novel substance capable of emitting white light while being a single compound. The present invention also relates to a white light emitting polymer compound obtained by polymerizing the white light emitting compound, the white light emitting compound, and a light emitting device containing at least one of the white light emitting polymer compound.
背景技術  Background art
[0002] 有機 EL素子は、従来、 R、 G、及び Bの三原色それぞれを発光させる素子及び白 色発光素子を中心に開発が進められてきた。白色発光は、複数の発光色を混色して 白色発光を実現するものであった (特許文献 1参照)。  [0002] Conventionally, organic EL devices have been developed mainly for devices that emit light of R, G, and B, respectively, and white light emitting devices. White light emission was achieved by mixing a plurality of light emission colors to achieve white light emission (see Patent Document 1).
[0003] し力しながら、単一化合物で白色蛍光を発する化合物は、殆ど知られていない。  However, there are few known compounds that emit white fluorescence with a single compound.
[0004] 特許文献 1 :特開昭 63— 19796号公報  [0004] Patent Document 1: Japanese Patent Laid-Open No. 63-19796
[0005] 赤色発光化合物、緑色発光化合物及び青発光化合物を混合して白色発光可能に する白色発光素子が考えられる。つまり、一つの発光素子の中に存在する赤色発光 化合物、緑色発光化合物及び青発光化合物により赤発光、緑発光及び青発光をさ せ、 R、 G、及び Bの三原色を混色させる結果として白色発光をその発光素子で実現 しょうとする。しかしながら、赤色発光化合物、緑色発光化合物及び青発光化合物は 互 ヽに分子構造が相違して 、るので、各発光化合物における発光寿命が相違する。 そうすると、三種の発光化合物を発光させる仕組みを有する発光素子は、時間の経 過とともに発光する色が白色から非白色へと変化して 、くと言う問題が生じる。  [0005] A white light-emitting element capable of emitting white light by mixing a red light-emitting compound, a green light-emitting compound, and a blue light-emitting compound is conceivable. In other words, red light emission compound, green light emission compound and blue light emission compound existing in one light emitting element emit red light, green light emission and blue light emission, and the three primary colors of R, G, and B are mixed, resulting in white light emission. To achieve this with its light-emitting elements. However, since the red light emitting compound, the green light emitting compound, and the blue light emitting compound have mutually different molecular structures, the light emission lifetimes of the respective light emitting compounds are different. Then, the light emitting element having a mechanism for emitting three kinds of light emitting compounds has a problem that the color of light emission changes from white to non-white over time.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] この発明の目的は、白色に発光可能な、例えば有機 EL素子に利用可能な、単一 化合物である白色発光化合物、その製造方法、白色発光可能な白色発光高分子化 合物、白色発光高分子化合物の製造方法及び発光素子を提供することにある。この 発明の他の目的は、有機 EL素子等を初めとする各種の白色発光体に利用可能な 白色発光可能な有機化合物を提供することにある。この目的を達成するために鋭意 研究した結果、高純度の白色発光が可能な単一蛍光化合物の合成に成功し、高寿 命 EL素子を発明するに至った。 [0006] An object of the present invention is to provide a white light-emitting compound that can emit white light, for example, a single compound that can be used in an organic EL device, a method for producing the same, and a white light-emitting polymer capable of white light It is in providing the compound, the manufacturing method of a white light emitting polymer compound, and a light emitting element. Another object of the present invention is to provide an organic compound capable of emitting white light that can be used for various white light emitters including an organic EL element. As a result of diligent research to achieve this goal, we have succeeded in synthesizing a single fluorescent compound capable of emitting high-purity white light and invented a high-life EL device.
課題を解決するための手段  Means for solving the problem
[0007] 前記課題を解決するための手段として、 [0007] As means for solving the above problems,
請求項 1は、以下の式(1)で示される構造を有することを特徴とする白色発光化合物 であり、  Claim 1 is a white light-emitting compound characterized by having a structure represented by the following formula (1):
[0008] [化 1] γ ··,·'·'· J ^ [0008] [Chemical 1] γ ······· J ^
Figure imgf000004_0001
Figure imgf000004_0001
Figure imgf000004_0002
Figure imgf000004_0002
[0009] (ただし、前記式(1)において、 2個の Rは、以下の式(1 1)又は(1 2)で示され る置換基を示し、 2個の Arは、芳香族基を示す。なお、式中、 2個の R1は、互いに同 一であっても相違していてもよぐ 2個の Arは、互いに同一であっても相違していても よい。 ) (However, in the above formula (1), two Rs represent a substituent represented by the following formula (11) or (12), and two Ars represent an aromatic group. In the formula, two R 1 s may be the same or different from each other, and two Ars may be the same or different from each other.
[0010] [化 2]
Figure imgf000005_0001
[0010] [Chemical 2]
Figure imgf000005_0001
[0011] (ただし、前記式(1— 1)において、 R2は、水素原子、炭素数 1〜5のハロゲン原子を 置換して 、ても良 、アルキル基を示す。) (However, in the above formula (1-1), R 2 may be substituted with a hydrogen atom or a halogen atom having 1 to 5 carbon atoms, and represents an alkyl group.)
[0012] [化 3] [0012] [Chemical 3]
Figure imgf000005_0002
Figure imgf000005_0002
\ I )  \ I)
[0013] (ただし、前記式(1— 2)において、 2個の R3は、水素原子または炭素数 1〜20のァ ルキル基を示す。なお、式中、 2個の R3は、互いに同一であっても相違していてもよ い。) [0013] (provided that in the formula (1 2), the two R 3, a hydrogen atom or a § alkyl group having 1 to 20 carbon atoms. In the formula, the two R 3, together It can be the same or different.)
請求項 2は、式(1 1A)で示されるモノマー単位を有することを特徴とする白色発光 高分子化合物であり、  Claim 2 is a white light emitting polymer compound having a monomer unit represented by the formula (11A),
[0014] [化 4] -(CH-CH2)-
Figure imgf000006_0001
[0014] [Chemical 4] -(CH-CH 2 )-
Figure imgf000006_0001
[0015] 請求項 3は、以下の反応式 1に従って、 [0015] Claim 3 is according to reaction formula 1 below:
[0016] [化 5] [0016] [Chemical 5]
反 It、; ill  Anti It,; ill
HO COOR5 HO COOR 5
2 R!— H2 2 R ! — H 2
'、、ノ、、:  ', No ...
RJOOC OH R J OOC OH
(a) (b)  (a) (b)
Figure imgf000006_0002
Figure imgf000006_0002
]
(c)  (c)
[0017] 1, 4 ジヒドロキシ一 2, 5 ジアルキルカルボキシ一 1, 4 シクロへキサジェン(a) [0017] 1,4 dihydroxy-1,2,5 dialkylcarboxy-1,4-cyclohexagen (a)
(ただし、化合物(a)における R5は、アルキル基を示す。)およびァ-リン誘導体 (b) ( ただし、化合物 (b)における R1は、前記請求項 1に示す R1と同様である。)を、溶媒中 で加熱することにより、 1, 4ージヒドロキシ 2, 5 ジアルキルカルボキシ 1, 4ーシ クロへキサジェン (a)とァ-リン誘導体 (b)とを脱水させることにより、化合物(c)を合 成し、 (However, R 5 in the compound (a), an alkyl group.) And § - phosphorus derivative (b) (provided that R 1 in the compound (b) is the same as R 1 indicated in claim 1 )) In a solvent to give 1,4-dihydroxy 2,5 dialkylcarboxy 1,4-si Compound (c) was synthesized by dehydrating clohexagen ( a ) and arrin derivative (b),
次いで、以下の反応式 2に従って、  Then, according to the following reaction formula 2,
[0018] [化 6] [0018] [Chemical 6]
反応式≥ m ί*1^ *^ *^ R1— MH COOR5 Reaction ≥ m ί * 1 ^ * ^ * ^ R 1 — MH COOR5
R5OOC MH一 R R500C NH― R
Figure imgf000007_0001
R 5 OOC MH RR 5 00C NH― R
Figure imgf000007_0001
[0019] 化合物 (c)を脱水素反応させて、芳香族化合物 (d)を合成し、 [0019] The compound (c) is dehydrogenated to synthesize an aromatic compound (d),
次いで、反応式 3に従って、  Then according to Scheme 3
[0020] [化 7] [0020] [Chemical 7]
Figure imgf000007_0002
Figure imgf000007_0002
[0021] 芳香族化合物(d)を加水分解することにより、ジカルボン酸ィ匕合物(e)を合成し、 以下の反応式 4に従って、 [0021] The aromatic compound (d) is hydrolyzed to synthesize a dicarboxylic acid compound (e). According to the following reaction formula 4,
[0022] [化 8] 反応式 4 [0022] [Chemical 8] Reaction formula 4
Figure imgf000008_0001
Figure imgf000008_0001
[0023] ジカルボン酸ィ匕合物(e)を酸ハロゲンィ匕物 (f)に誘導し、 [0023] Dicarboxylic acid compound (e) is derived into acid halide compound (f),
以下の反応式 5に従って、  According to the following reaction formula 5,
[0024] [化 9] [0024] [Chemical 9]
£¾J心: ¾5 1— NH  £ ¾J mind: ¾5 1— NH
Ar-CONHNH2  Ar-CONHNH2
XOC NH一 R ff)  XOC NH 1 R ff)
Figure imgf000008_0002
Figure imgf000008_0002
I I Π  I I Π
0 0  0 0
(g)  (g)
[0025] 酸ハロゲン化物(f)と Ar— CONHNHで示されるヒドラジド(ただし、 Arは、前記請 [0025] Acid halide (f) and hydrazide represented by Ar—CONHNH (where Ar is
2  2
求項 1に示す R1と同様である。 )とを反応させて化合物 (g)を合成し、 Same as R 1 shown in Claim 1. ) To synthesize compound (g),
さらに、以下の反応式 6に従って、  Furthermore, according to the following reaction formula 6,
[0026] [化 10] I7~ r—— - [0026] [Chemical 10] I7 ~ r——-
Figure imgf000009_0001
Ar
Figure imgf000009_0001
Ar
0 0
Figure imgf000009_0002
Figure imgf000009_0002
[0027] 化合物 (g)を閉環反応させて、ォキサジァゾール環含有ィ匕合物 (h)に誘導し、 以下の反応式 7に従って、 [0027] The compound (g) is subjected to a cyclization reaction to be derivatized into an oxadiazole ring-containing compound (h). According to the following reaction formula 7,
[0028] [化 11] [0028] [Chemical 11]
Ar Ar
Figure imgf000010_0001
Figure imgf000010_0001
ォキサジァゾール環含有ィ匕合物(h)と式 (0で示される 3—クロロメチルー 9一(2—ク ロロェチル)力ルバゾールとを反応させて脱ハロゲン化水素するとともに脱塩ィ匕水素 することを特徴とする前記請求項 1記載の白色発光化合物の製造方法であり、 請求項 4は、式(1)で示される白色発光化合物を重合することを特徴とする請求項 2 に記載の白色発光高分子化合物の製造方法であり、 請求項 5は、一対の電極間に、前記請求項 1に記載の白色発光化合物又は請求項 2 に記載の白色発光高分子化合物を含有する発光層を有してなることを特徴とする発 光素子である。 It is characterized by dehalogenation and dehydrochlorination by reacting an oxaziazole ring-containing compound (h) with a 3-chloromethyl-9- (2-chloroethyl) force rubazole represented by 0 The white light-emitting polymer according to claim 1, wherein the white light-emitting compound according to claim 1 is polymerized with the white light-emitting compound represented by the formula (1). A method for producing a compound, Claim 5 has a light-emitting layer containing the white light-emitting compound according to claim 1 or the white light-emitting polymer compound according to claim 2 between a pair of electrodes. It is an element.
発明の効果  The invention's effect
[0030] 本発明に係る白色発光化合物は、ァリール基(一 Ar)を有するォキサジァゾ -ル環 及び置換基 (R1)を有する。そして、ァリール基を有するォキサジァゾ -ル環は、電子 吸引性を示し、置換基 (R1)は、電子供与性を示す。したがって、式(1)で示される構 造の化合物は、その分子内で電子の偏在を起こすと考えられる。また、パイ電子密度 が高い部分は、赤色光を発し、パイ電子密度が低い部分は、青色光を発すると推測 され、この赤色光と青色光との同時発光により、白色光が観測されると推測される。し たがって、人間には、本発明に係る白色発光化合物が白色光を発しているように見 える。 The white light-emitting compound according to the present invention has an oxadiazole ring having an aryl group (one Ar) and a substituent (R 1 ). The oxadiazole ring having an aryl group exhibits electron withdrawing properties, and the substituent (R 1 ) exhibits electron donating properties. Therefore, the compound having the structure represented by the formula (1) is considered to cause uneven distribution of electrons in the molecule. In addition, it is assumed that the portion with high pi electron density emits red light, and the portion with low pi electron density emits blue light. When white light is observed by simultaneous emission of this red light and blue light, Guessed. Therefore, it appears to humans that the white light-emitting compound according to the present invention emits white light.
[0031] この白色発光化合物は、単一化合物でありながら白色発光をする。したがって、こ の白色発光化合物を発光層中に含有する発光素子は、時間の経過によっても発光 する色が白色力 他の色へと変化することがない。したがって、本発明によると、白色 発光の寿命が長 、発光素子を提供することができる。  [0031] This white light-emitting compound emits white light even though it is a single compound. Therefore, in the light emitting element containing this white light emitting compound in the light emitting layer, the color of light emitted does not change to white color or other colors over time. Therefore, according to the present invention, it is possible to provide a light emitting element having a long white light emission lifetime.
[0032] 本発明に係る白色発光化合物における力ルバゾール骨格における窒素原子に置 換する— CH = CHは重合性を有する。したがって、本発明に係る白色発光化合物  In the white light-emitting compound according to the present invention, a nitrogen atom in the force rubazole skeleton is substituted —CH═CH has polymerizability. Therefore, the white light-emitting compound according to the present invention
2  2
は、重合によりポリマーとなる。高分子化合物である本発明に係る白色発光高分子化 合物は、それ自体を、キャスト法、及び溶融流延法等によりフィルムに形成することが できる。この発明に係る白色発光高分子化合物は容易にフィルムに形成することが できるので、これを利用して白色発光可能な発光素子が容易に製造されることができ る。  Becomes a polymer by polymerization. The white light-emitting polymer compound according to the present invention, which is a polymer compound, can be formed into a film by a casting method, a melt casting method, or the like. Since the white light-emitting polymer compound according to the present invention can be easily formed into a film, a light-emitting element capable of emitting white light can be easily produced using this.
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]図 1は、この発明に係る一例としての発光素子を示す説明図である。 FIG. 1 is an explanatory view showing a light emitting element as an example according to the present invention.
[図 2]図 2は、この発明に係る他の例としての発光素子を示す説明図である。  FIG. 2 is an explanatory view showing a light emitting device as another example according to the present invention.
[図 3]図 3は、この発明に係るその他の例としての発光素子を示す説明図である。  FIG. 3 is an explanatory view showing a light emitting device as another example according to the present invention.
[図 4]図 4は、この発明に係る更に他の例としての発光素子を示す説明図である。 [図 5]図 5は、この発明の実施例で得られた化合物(cl)の NMR ^ベクトルチャートで める。 FIG. 4 is an explanatory view showing a light emitting device as still another example according to the present invention. FIG. 5 is an NMR vector chart of the compound (cl) obtained in the example of the present invention.
[図 6]図 6は、この発明の実施例で得られた化合物(dl)の NMR ^ベクトルチャートで める。  FIG. 6 is an NMR vector chart of the compound (dl) obtained in the example of the present invention.
[図 7]図 7は、この発明の実施例で得られた化合物(el)の NMRスペクトルチャートで める。  FIG. 7 is an NMR spectrum chart of the compound (el) obtained in the example of the present invention.
[図 8]図 8は、この発明の実施例で得られたィ匕合物(el)の IRスペクトルチャートである  FIG. 8 is an IR spectrum chart of the compound (el) obtained in the example of the present invention.
[図 9]図 9は、この発明の実施例で得られた化合物(f 1)の NMRスペクトルチャートで める。 FIG. 9 is an NMR spectrum chart of the compound (f 1) obtained in the example of the present invention.
[図 10]図 10は、この発明の実施例で得られた化合物(fl)の IR ^ベクトルチャートで める。  FIG. 10 is an IR ^ vector chart of the compound (fl) obtained in the example of the present invention.
[図 11]図 11は、この発明の実施例で得られたィ匕合物(gl)の NMR ^ベクトルチャート である。  FIG. 11 is an NMR vector chart of the compound (gl) obtained in the example of the present invention.
[図 12]図 12は、この発明の実施例で得られたィ匕合物(gl)の IRスペクトルチャートで める。  FIG. 12 is an IR spectrum chart of the compound (gl) obtained in the example of the present invention.
[図 13]図 13は、この発明の実施例で得られた化合物 (j l)の NMR ^ベクトルチャート である。  FIG. 13 is an NMR vector chart of the compound (j 1) obtained in the example of the present invention.
[図 14]図 14は、この発明の実施例で得られた化合物(1B)の NMR ^ベクトルチヤ一 トである。  FIG. 14 is an NMR vector chart of compound (1B) obtained in the example of the present invention.
[図 15]図 15は、この発明の実施例で得られたィ匕合物( 1B)の IR ^ベクトルチヤ一トで ある。  [FIG. 15] FIG. 15 is an IR vector chart of the compound (1B) obtained in the example of the present invention.
[図 16]図 16は、この発明の実施例で得られた化合物(1C)の NMRスペクトルチヤ一 トである。  FIG. 16 is an NMR spectrum chart of the compound (1C) obtained in the example of the present invention.
[図 17]図 17は、この発明の実施例で得られたィ匕合物(1C)の蛍光スペクトルチャート である。  FIG. 17 is a fluorescence spectrum chart of the compound (1C) obtained in the example of the present invention.
符号の説明 Explanation of symbols
A, B, C 白色発光素子 1 基板 A, B, C White light emitting element 1 Board
2 透明電極  2 Transparent electrode
3 発光層  3 Light emitting layer
4 電極層  4 Electrode layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 本発明に係る白色発光化合物は、以下の式(1)で示される構造を有することを特 徴とする。 The white light-emitting compound according to the present invention is characterized by having a structure represented by the following formula (1).
[0036] [化 12] [0036] [Chemical 12]
GH2
Figure imgf000013_0001
GH2
Figure imgf000013_0001
R ― N R ― N
N  N
Ar G  Ar G
o
Figure imgf000013_0002
o
Figure imgf000013_0002
[0037] 前記式(1)で示される白色発光化合物は、骨格の中心にベンゼン環を有する。こ のベンゼン環に、 2個のォキサジァゾ-ル環、及び 2個のイミノ基(一 NH—)を結合す る。一個のィミノ基には、メチレン基を介して力ルバゾール骨格が結合する。このよう に、この白色発光化合物は特異な構造を有する。 [0037] The white light-emitting compound represented by the formula (1) has a benzene ring at the center of the skeleton. Two oxadiazole rings and two imino groups (one NH—) are bonded to this benzene ring. A force rubazole skeleton is bonded to one imino group via a methylene group. Thus, this white light emitting compound has a unique structure.
[0038] 前記式(1)における Arは、芳香族基例えばフ -ル基、トリル基、キシリル基、メシ チル基、タメ-ル基、ビフヱ-リル基、ナフチル基、アントリル基及びフ ナントリル基 等を示し、特に、フエ-ル基、ナフチル基又はアントリル基が好ましい。なお、式(1) における 2個の Arは、互いに同一であっても相違して!/、てもよ!/、。 [0038] Ar in the above formula (1) is an aromatic group such as a furl group, a tolyl group, a xylyl group, a mesityl group, a thamol group, a biphthyl group, a naphthyl group, an anthryl group, and a antryl group. In particular, a phenyl group, a naphthyl group, or an anthryl group is preferable. Formula (1) The two Ars in are the same or different from each other!
[0039] 前記式(1)における 2個の R1は、水素原子又は以下の式(1 1)又は(1 2)で示 される置換基を示す。なお、前記 2個の R1は互いに同一であっても相違していてもよ いが、好適な白色発光化合物は前記 2個の R1が互いに同一である。 [0039] Formula two R 1 in (1) is a hydrogen atom or the following formula (1 1) or (1 2) shown by substituents. The two R 1 s may be the same or different from each other. However, in the preferred white light emitting compound, the two R 1 s are the same.
[0040] [化 13] [0040] [Chemical 13]
Figure imgf000014_0001
Figure imgf000014_0001
[0041] 前記式(1 1)で示される置換基は、力ルバゾールを基本骨格として、 9位の窒素 原子に結合する水素原子が置換基 R2に置換し、さらに、 3位の水素原子が脱離して なる基である。前記 R2は、水素原子、炭素数 1〜20の、ハロゲン原子を置換していて も良いアルキル基を示す。前記炭素数 1〜20のアルキル基としては、ェチル基、メチ ル基、 n—プロピル基、イソプロピル、 n—ブチル基、イソブチル基、 tert ブチル基、 n—ペンチル基、イソペンチル基、 tert ペンチル基等を挙げることができる。 R2がァ ルキル基である場合、その炭素数が多いほど溶媒に対する溶解性が向上する。式(1 1)で示される置換基は電子供与性である。 [0041] In the substituent represented by the formula (11), a hydrogen atom bonded to the nitrogen atom at the 9-position is substituted with the substituent R 2 using force rubazole as a basic skeleton, and further, the hydrogen atom at the 3-position It is a group formed by elimination. R 2 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom. Examples of the alkyl group having 1 to 20 carbon atoms include ethyl group, methyl group, n-propyl group, isopropyl, n-butyl group, isobutyl group, tert butyl group, n-pentyl group, isopentyl group, tert pentyl group, etc. Can be mentioned. When R 2 is an alkyl group, the greater the carbon number, the better the solubility in the solvent. The substituent represented by the formula (11) is electron donating.
[0042] 式(1 1)で示される置換基の中でも、式(1 1B)で示される置換基が好ましい。  [0042] Among the substituents represented by the formula (11), the substituent represented by the formula (11B) is preferable.
[0043] [化 14]  [0043] [Chemical 14]
Figure imgf000014_0002
式( 1 2)で示される置換基を以下に示す。
Figure imgf000014_0002
The substituents represented by formula (12) are shown below.
[化 15]  [Chemical 15]
3 r 3 r
Figure imgf000015_0001
Figure imgf000015_0001
[0046] 前記式(1 2)で示される置換基は、フルオレンを基本骨格として、 9位の水素原子 が R3に置換し、さらに、 3位の水素原子が脱離してなる基である。前記 R3は、水素原 子又は炭素数 1〜20のアルキル基を示す。前記炭素数 1〜20のアルキル基は、前 記と同じである。 2個の R3は同一であっても相違していてもよいが、式(1)で示される 好適な白色発光化合物は、式(1— 2)における 2個の R3が同一である。式(1— 2)で 示される置換基は電子供与性である。 [0046] The substituent represented by the formula (12) is a group obtained by substituting the hydrogen atom at the 9-position with R 3 and further eliminating the hydrogen atom at the 3-position with fluorene as a basic skeleton. R 3 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. The alkyl group having 1 to 20 carbon atoms is the same as described above. Two R 3 s may be the same or different, but in the preferred white light-emitting compound represented by the formula (1), the two R 3 s in the formula (1-2) are the same. The substituent represented by the formula (1-2) is electron donating.
[0047] 本発明に係る白色発光化合物は、 2基のォキサジァゾール環が電子吸引性基であ り、 NH— R1と N (— R1)— CH—が電子供与性基であり、ベンゼン環を中心に [0047] In the white light-emitting compound according to the present invention, two oxaziazole rings are electron-withdrawing groups, NH—R 1 and N (—R 1 ) —CH— are electron-donating groups, and a benzene ring Around
2  2
してほぼ対称の分子構造を有することから、分子内で電子密度の偏りが生じ、これに よって発光の原因となる励起状態と基底状態とのエネルギーギャップが白色発光に 適するようになると、考えられる。換言すると、前記白色発光化合物は、その分子内に おいて、電子が偏在して、電子密度が高い部分と電子密度が低い部分とが存在する 。このように特異的な構造を有する白色発光化合物に、外部から電気的エネルギー 乃至電磁波エネルギーが与えられると、電子密度が高 、部分から赤色光が発せられ 、電子密度が低い部分から青色光が発せられるものと推測される。赤色光と青色光 が混色すると、人間には、白色光に見える。  As a result, it is considered that the energy gap between the excited state and the ground state, which cause light emission, is suitable for white light emission. . In other words, in the white light emitting compound, electrons are unevenly distributed in the molecule, and there are a portion having a high electron density and a portion having a low electron density. When a white light emitting compound having such a specific structure is externally supplied with electrical energy or electromagnetic wave energy, the electron density is high, red light is emitted from the part, and blue light is emitted from the part where the electron density is low. It is estimated that When red light and blue light are mixed, it appears to humans as white light.
[0048] 前記式(1)で示される白色発光化合物は、以下の反応式 1〜7にしたがって、製造 されることができる。なお、以下に示す反応式 1〜7は、この発明に係る白色発光化合 物に誘導する経路を説明するための理想的な反応を示すのであって、実際の反応 にお 、ては副反応及び競争反応等が進行して 、る。 [0048] The white light-emitting compound represented by the formula (1) can be produced according to the following reaction formulas 1 to 7. Reaction formulas 1 to 7 shown below are ideal reactions for explaining the route that leads to the white light-emitting compound according to the present invention. In this case, side reactions and competitive reactions proceed.
[0049] まず、反応式 1にしたがって、 1, 4ージヒドロキシ—2, 5 ジアルキルカルボキシー 1, 4 シクロへキサジェン (a)及びァ-リン誘導体 (b)を、溶媒中で加熱することによ り、 1, 4ージヒドロキシー 2, 5 ジァノレキノレカノレボキシ 1, 4ーシクロへキサジェン( a)における水酸基とァニリン誘導体における窒素原子上の水素原子とから脱水させ て、へキサジェン化合物(c)が合成される。  [0049] First, according to Reaction Formula 1, 1,4-dihydroxy-2,5-dialkylcarboxy-1,4-cyclohexagen (a) and a-line derivative (b) are heated in a solvent. 1,4-dihydroxy-2,5-dianolequinolecanoxyl 1,4-cyclohexagen (a) is dehydrated from the hydroxyl group and the hydrogen atom on the nitrogen atom of the aniline derivative to give the hexagen compound (c). Synthesized.
[0050] [化 16]  [0050] [Chemical 16]
Figure imgf000016_0001
Figure imgf000016_0001
(a) (b)  (a) (b)
Figure imgf000016_0002
1
Figure imgf000016_0002
1
[0051] ここで、前記反応式 1における 1, 4ージヒドロキシー 2, 5 ジアルキルカルボキシー 1, 4 シクロへキサジェン (a)が有する R5は、アルキル基例えばメチル基を示し、ま た、ァ-リン誘導体 (b)が有する R1は、前記式(1)で示される白色発光化合物に関し て説明した R1と同じである。 [0051] Here, R 5 of 1,4-dihydroxy-2,5-dialkylcarboxy-1,4-cyclohexagen (a) in the above reaction formula 1 represents an alkyl group such as a methyl group, and R 1 of the derivative (b) is the same as R 1 described for the white light-emitting compound represented by the formula (1).
[0052] 前記溶媒としては、ベンゼン等の無極性溶媒又はメタノール、エタノール、酢酸、フ タル酸、無水フタル酸、氷酢酸、オルソジクロ口ベンゼン、メタジクロロベンゼン、ジォ キサン、ピリジン、 N, N ジメチルホルムアミド(DMF)及びテトラヒドロフラン(THF) 等の極性溶媒を挙げることができる。また、これら溶媒は、一種単独で用いてもよぐ 二種以上を混合して用いてもょ 、。  [0052] Examples of the solvent include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N dimethylformamide. Examples thereof include polar solvents such as (DMF) and tetrahydrofuran (THF). These solvents may be used alone or as a mixture of two or more.
[0053] 前記反応温度は、 80〜130°Cであるのが好ましぐ特に、 90〜110°Cであるのが 好ましい。 [0053] The reaction temperature is preferably 80 to 130 ° C, particularly 90 to 110 ° C. preferable.
[0054] 前記加熱時間としては、 5〜7時間が好ましぐ特に、 5〜6時間であるのが好ましい  [0054] The heating time is preferably 5 to 7 hours, particularly preferably 5 to 6 hours.
[0055] 次 、で、反応式 2にしたがって、へキサジェン化合物(c)を脱水素反応させ、芳香 族化合物 (d)を合成することができる。脱水素反応は通常、溶媒中で行われる。脱水 素反応には脱水素触媒を使用することができる。なお、芳香族化合物 )はテレフタ ル酸エステル系化合物でもある。 [0055] Next, the aromatic compound (d) can be synthesized by dehydrogenating the hexadene compound (c) according to the reaction formula 2. The dehydrogenation reaction is usually performed in a solvent. A dehydrogenation catalyst can be used for the dehydration reaction. Aromatic compounds are also terephthalic acid ester compounds.
[0056] [化 17]  [0056] [Chemical 17]
Figure imgf000017_0001
Figure imgf000017_0001
(c) (d) (c) (d)
[0057] 前記脱水素触媒につ!、ては、硫酸、硝酸及び塩酸等の酸触媒、クロム、鉄、白金、 パラジウム銀及び銅等の金属触媒、酸ィ匕アルミニウム及び酸ィ匕マグネシウム等の酸 性酸ィ匕物等を挙げることができる。 [0057] As the dehydrogenation catalyst, acid catalysts such as sulfuric acid, nitric acid and hydrochloric acid, metal catalysts such as chromium, iron, platinum, palladium silver and copper, acid aluminum and acid magnesium, etc. Examples thereof include acid oxides.
[0058] 前記溶媒としては、ベンゼン等の無極性溶媒又はメタノール、エタノール、酢酸、フ タル酸、無水フタル酸、氷酢酸、オルソジクロ口ベンゼン、メタジクロロベンゼン、ジォ キサン、ピリジン、 N, N—ジメチルホルムアミド(DMF)及びテトラヒドロフラン(THF) 等の極性溶媒を挙げることができる。また、これらは、一種単独で用いてもよぐ二種 以上を混合して用いてもょ ヽ。  [0058] Examples of the solvent include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl. Examples include polar solvents such as formamide (DMF) and tetrahydrofuran (THF). These may be used alone or in combination of two or more.
[0059] 前記加熱温度としては、 130〜170°Cであるのが好ましぐ特に、 140〜160°Cで あるのが好ましい。  [0059] The heating temperature is preferably 130 to 170 ° C, and particularly preferably 140 to 160 ° C.
[0060] 前記加熱時間としては、 3〜5時間であるのが好ましぐ特に、 3〜4時間であるのが 好ましい。  [0060] The heating time is preferably 3 to 5 hours, and particularly preferably 3 to 4 hours.
[0061] 反応式 3にしたがって、得られた芳香族化合物(d)を加水分解することによりアルキ ルエステル(— COOR5)をフリーのカルボン酸にして、ジカルボン酸化合物(e)が合 成される。この加水分解反応は、溶媒中で、加熱により行われることができる。 [0061] According to Reaction Formula 3, the obtained aromatic compound (d) is hydrolyzed to obtain an alkyl. The dicarboxylic acid compound (e) is synthesized by using the ruester (—COOR 5 ) as a free carboxylic acid. This hydrolysis reaction can be performed by heating in a solvent.
[0062] [化 18]  [0062] [Chemical 18]
反 it、式  Anti-it, expression
Figure imgf000018_0001
Figure imgf000018_0001
[0063] 前記溶媒としては、ベンゼン等の無極性溶媒又はメタノール、エタノール、酢酸、フ タル酸、無水フタル酸、氷酢酸、オルソジクロ口ベンゼン、メタジクロロベンゼン、ジォ キサン、ピリジン、 N, N—ジメチルホルムアミド(DMF)、 N, N—ジメチルァセトアミド (DMAC)及びテトラヒドロフラン (THF)等の極性溶媒を挙げることができる。また、こ れらは、一種単独で用いてもよぐ二種以上を混合して用いてもよい。 [0063] Examples of the solvent include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl. Examples include polar solvents such as formamide (DMF), N, N-dimethylacetamide (DMAC), and tetrahydrofuran (THF). These may be used alone or in combination of two or more.
[0064] 前記加熱温度としては、 80〜200°Cであるのが好ましぐ特に、 100〜180°Cであ るのが好ましい。  [0064] The heating temperature is preferably 80 to 200 ° C, and particularly preferably 100 to 180 ° C.
[0065] 前記加熱時間としては、 0. 5〜4時間であるのが好ましぐ特に、 1. 5〜2. 5時間 であるのが好ましい。  [0065] The heating time is preferably 0.5 to 4 hours, and more preferably 1.5 to 2.5 hours.
[0066] また、この加水分解反応にお!、ては、加熱するだけで、加水分解反応が進行する 力 より反応を促進させるため、触媒として、塩酸及び硫酸等の酸又は水酸化ナトリウ ム及び水酸ィ匕カリウム等のアルカリ等を用いてもょ 、。  [0066] In addition, in this hydrolysis reaction, only by heating, the reaction is accelerated by the force at which the hydrolysis reaction proceeds. Therefore, an acid such as hydrochloric acid and sulfuric acid, or sodium hydroxide and Use alkali such as potassium hydroxide.
[0067] 次 、で、反応式 4にしたがって、ジカルボン酸ィ匕合物(e)を、酸ノヽロゲンィ匕物(f)に 誘導する。この反応は、ジカルボン酸化合物(e)を溶媒中で加熱することにより、容易 に進行する。 [0067] Next, in accordance with the reaction formula 4, the dicarboxylic acid compound (e) is derived into the acid neurogenic compound (f). This reaction proceeds easily by heating the dicarboxylic acid compound (e) in a solvent.
[0068] [化 19] 反応式 4 [0068] [Chemical 19] Reaction formula 4
Figure imgf000019_0001
Figure imgf000019_0001
[0069] 前記ハロゲン化剤としては、塩ィ匕チォニル及び塩ィ匕ホスホリル等の塩素ィ匕剤又は 臭化チォニル等の臭素化剤等を挙げることができる。 [0069] Examples of the halogenating agent include chlorinating agents such as chlorothionyl and chlorophosphoryl, and brominating agents such as thionyl bromide.
[0070] 前記溶媒としては、ベンゼン等の無極性溶媒又はメタノール、エタノール、酢酸、フ タル酸、無水フタル酸、氷酢酸、オルソジクロ口ベンゼン、メタジクロロベンゼン、ジォ キサン、ピリジン、 N, N—ジメチルホルムアミド(DMF)及びテトラヒドロフラン(THF) 等の極性溶媒を挙げることができ、また、これらは、一種単独で用いてもよぐ二種以 上を混合して用いてもよい。  [0070] Examples of the solvent include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl. Examples thereof include polar solvents such as formamide (DMF) and tetrahydrofuran (THF), and these may be used alone or in combination of two or more.
[0071] 前記加熱温度としては、 40〜100°Cであるのが好ましぐなかでも、 40〜70°Cであ るのが好ましい。  [0071] The heating temperature is preferably 40 to 100 ° C, more preferably 40 to 70 ° C.
[0072] 前記加熱時間としては、 1〜20時間であるのが好ましぐ特に、 1〜3. 5時間である のが好ましい。  [0072] The heating time is preferably 1 to 20 hours, and particularly preferably 1 to 3.5 hours.
[0073] 前記酸ハロゲン化物 (f)における Xで示されるハロゲン原子としては、塩素原子、フ ッ素原子、臭素原子等を挙げることができる。多くの場合、 Xは塩素原子である。  [0073] Examples of the halogen atom represented by X in the acid halide (f) include a chlorine atom, a fluorine atom, and a bromine atom. In many cases, X is a chlorine atom.
[0074] 次いで、反応式 5にしたがって、酸ハロゲン化物(f)とヒドラジド (Ar—CONHNH ) [0074] Then, according to Reaction Scheme 5, the acid halide (f) and hydrazide (Ar—CONHNH 3)
2 とを溶媒中で加熱することにより、化合物 (g)を合成することができる。  Compound (g) can be synthesized by heating 2 in a solvent.
[0075] [化 20] 反応式 5 [0075] [Chemical 20] Reaction formula 5
R1— NH COX R 1 — NH COX
Ar-CONHNH2  Ar-CONHNH2
xoc ,、 NH― R1 xoc ,, NH― R 1
Cf) Cf)
Figure imgf000020_0001
Figure imgf000020_0001
!! I !  ! ! I!
0 0  0 0
(g)  (g)
[0076] 前記溶媒としては、ベンゼン等の無極性溶媒又はメタノール、エタノール、酢酸、フ タル酸、無水フタル酸、氷酢酸、オルソジクロ口ベンゼン、メタジクロロベンゼン、ジォ キサン、ピリジン、 N, N—ジメチルホルムアミド(DMF)及びテトラヒドロフラン(THF) 等の極性溶媒を挙げることができ、また、これらは、一種単独で用いてもよぐ二種以 上を混合して用いてもよい。 [0076] Examples of the solvent include nonpolar solvents such as benzene or methanol, ethanol, acetic acid, phthalic acid, phthalic anhydride, glacial acetic acid, orthodichlorobenzene, metadichlorobenzene, dioxane, pyridine, N, N-dimethyl. Examples thereof include polar solvents such as formamide (DMF) and tetrahydrofuran (THF), and these may be used alone or in combination of two or more.
[0077] 前記加熱温度としては、 40〜80°Cであるのが好ましぐ特に、 50〜75°Cであるの が好ましい。  [0077] The heating temperature is preferably 40 to 80 ° C, particularly 50 to 75 ° C.
[0078] 前記加熱時間としては、 1〜5時間であるのが好ましぐ特に、 1〜4時間であるの力 S 好ましい。  [0078] The heating time is preferably 1 to 5 hours, and particularly preferably 1 to 4 hours.
[0079] 得られた化合物 (g)を反応式 6にしたがって、溶媒中で加熱することにより、閉環反 応させて、ォキサジァゾール環含有ィ匕合物 (h)を得ることができる。  [0079] The obtained compound (g) can be subjected to a ring-closing reaction by heating in a solvent according to Reaction Scheme 6 to obtain an oxaziazole ring-containing compound (h).
[0080] [化 21] I7~ r—— - [0080] [Chemical 21] I7 ~ r——-
Figure imgf000021_0001
Figure imgf000021_0001
0  0
Ch)  Ch)
[0081] 前記溶媒としては、塩化ホスホリル、臭化ホスホリル、オルソジクロ口ベンゼン、ジォ キサン、ピリジン、 N, N ジメチルホルムアミド(DMF)及びテトラヒドロフラン(THF) 等の極性溶媒を挙げることができ、また、これらは、一種単独で用いてもよぐ二種以 上を混合して用いてもよい。 [0081] Examples of the solvent may include polar solvents such as phosphoryl chloride, phosphoryl bromide, orthodichlorobenzene, dioxane, pyridine, N, N dimethylformamide (DMF), and tetrahydrofuran (THF). These may be used alone or as a mixture of two or more.
[0082] 前記加熱温度としては、 100〜140°Cであるのが好ましぐ特に、 90〜120°Cであ るのが好ましい。  [0082] The heating temperature is preferably 100 to 140 ° C, and particularly preferably 90 to 120 ° C.
[0083] 前記加熱時間としては、 6〜24時間であるのが好ましぐ特に、 10〜17時間である のが好ましい。  [0083] The heating time is preferably 6 to 24 hours, particularly 10 to 17 hours.
[0084] 得られたォキサジァゾール環含有化合物 (h)を反応式 7にしたがって、有機ハロゲ ン化合物とともに溶媒中で加熱することにより、置換反応させた後、還元することによ り、本発明に係る白色発光化合物(1)を得ることができる。
Figure imgf000022_0001
[0084] The obtained oxaziazole ring-containing compound (h) is subjected to a substitution reaction by heating in a solvent together with an organic halogen compound in accordance with the reaction formula 7, and then reduced according to the present invention. A white light-emitting compound (1) can be obtained.
Figure imgf000022_0001
(h) CH HgC l  (h) CH HgC l
I  I
R GH2 R GH 2
R! -—— N R ! -—— N
Figure imgf000022_0002
Figure imgf000022_0002
C H = C H 2 C H = C H 2
N  N
CH2 CH2
Figure imgf000022_0003
Figure imgf000022_0003
なお、この反応式 7においては、化合物 (j)が生成して力 化合物(1)が生成する力 どうかはなお詳細な検討が必要であり、実際には、化合物 (h)と化合物 (i)との反応 に先立って力ルバゾール (i)における 2—クロ口ェチル基が脱塩ィヒ水素反応を起こし 、又は前記脱塩化水素反応を起こしつつ化合物 (h)と化合物 (i)との反応が進行す る可能性もある。上記反応式 7は化合物 (h)と化合物 (i)とを原料にして生成物(1)が 合成される反応を説明するに過ぎないことを、理解するべきである。 In this reaction formula 7, it is still necessary to examine in detail whether the force that compound (j) produces and force compound (1) produces. In fact, compound (h) and compound (i) Prior to the reaction with the compound, the 2-chlorooctyl group in the force rubazole (i) undergoes a desalting hydrogen reaction, or the reaction between the compound (h) and the compound (i) undergoes the dehydrochlorination reaction. There is a possibility of progress. In the above reaction formula 7, the product (1) is obtained from the compound (h) and the compound (i) as raw materials. It should be understood that it only describes the reaction to be synthesized.
[0086] 前記溶媒としては、塩化ホスホリル、臭化ホスホリル、オルソジクロ口ベンゼン、ジォ キサン、ピリジン、 N, N—ジメチルホルムアミド(DMF)及びテトラヒドロフラン(THF) 等の極性溶媒を挙げることができ、また、これらは、一種単独で用いてもよぐ二種以 上を混合して用いてもよい。  [0086] Examples of the solvent include polar solvents such as phosphoryl chloride, phosphoryl bromide, orthodichlorobenzene, dioxane, pyridine, N, N-dimethylformamide (DMF), and tetrahydrofuran (THF). These may be used alone or in combination of two or more.
[0087] 前記加熱温度としては、 100〜180°Cであるのが好ましぐ特に、 130〜170°Cで あるのが好ましい。  [0087] The heating temperature is preferably 100 to 180 ° C, and particularly preferably 130 to 170 ° C.
[0088] 前記加熱時間としては、 6〜24時間であるのが好ましぐ特に、 15〜20時間である のが好ましい。  [0088] The heating time is preferably 6 to 24 hours, and particularly preferably 15 to 20 hours.
[0089] 反応終了後は、常法に従って精製操作及び分離操作をすることにより、白色発光 化合物(1)を得ることができる。  [0089] After completion of the reaction, the white light-emitting compound (1) can be obtained by purification and separation according to a conventional method.
[0090] この発明に係る白色発光化合物は、単に加熱するだけで容易に製造されることが できる。このような簡便な白色発光化合物の製造方法は、工業的な製造方法である。 [0090] The white light-emitting compound according to the present invention can be easily produced simply by heating. Such a simple method for producing a white light-emitting compound is an industrial production method.
[0091] 前記式(1)で示される重合性白色発光化合物は、通常の重合操作により例えばラ ジカル重合又はイオン重合をして、この発明に係る白色発光高分子化合物に合成さ れる。 [0091] The polymerizable white light-emitting compound represented by the formula (1) is synthesized into the white light-emitting polymer compound according to the present invention by, for example, radical polymerization or ionic polymerization by a normal polymerization operation.
[0092] 重合反応は、バルタ重合及び溶液重合等の!、ずれであっても進行する。また、重 合反応には重合開始剤を使用してもよぐまた、紫外線等の電磁波エネルギーの照 射により重合を開始することができる。  [0092] The polymerization reaction proceeds even in the case of! Or deviation such as Balta polymerization and solution polymerization. In addition, a polymerization initiator may be used for the polymerization reaction, and the polymerization can be initiated by irradiation with electromagnetic wave energy such as ultraviolet rays.
[0093] 得られる白色発光高分子化合物の分子量は、通常 10, 000-50, 000であり、フ イルム形成可能である。フィルム状にした白色発光高分子化合物は、以下に説明す るように、この白色発光高分子化合物力 形成されたフィルム乃至層をもって発光素 子における発光層とすることができる。したがって、白色発光高分子化合物を用いる と、発光素子を簡易に、したがって、低コストで製造することができる。  [0093] The molecular weight of the obtained white light-emitting polymer compound is usually 10,000 to 50,000, and a film can be formed. The white light-emitting polymer compound in the form of a film can be used as a light-emitting layer in a light-emitting element by using the film or layer formed with the white light-emitting polymer compound as described below. Therefore, when a white light-emitting polymer compound is used, a light-emitting element can be manufactured easily and at a low cost.
[0094] 次にこの発明に係る白色発光素子につ!、て説明する。  Next, the white light emitting device according to the present invention will be described.
[0095] この発明に係る白色発光化合物は、電磁波エネルギーを与えることにより、全体と して 400〜650nmの領域にわたる可視部発光が見られ、白色発光可能な有機 EL 素子に利用することができる。 [0096] 図 1は、一層型有機 EL素子でもある白色発光素子の断面構造を示す説明図であ る。図 1に示されるように、この白色発光素子 Aは、透明電極 2を形成した基板 1上に 、発光材料を含有する発光層 3及び電極層 4をこの順に積層して成る。 [0095] The white light-emitting compound according to the present invention exhibits visible light emission over a range of 400 to 650 nm as a whole by applying electromagnetic wave energy, and can be used for an organic EL device capable of white light emission. FIG. 1 is an explanatory diagram showing a cross-sectional structure of a white light-emitting element that is also a single-layer organic EL element. As shown in FIG. 1, the white light emitting element A is formed by laminating a light emitting layer 3 containing a light emitting material and an electrode layer 4 in this order on a substrate 1 on which a transparent electrode 2 is formed.
[0097] 図 1に示される白色発光素子 Aは、透明電極 2及び電極層 4に電流を通電すると、 白色に発光する。発光は、前記透明電極 2と前記電極層 4との間に電界が印加され ると、電極層 4側力 電子が注入され、透明電極 2から正孔が注入され、更に電子が 発光層 3において正孔と再結合し、エネルギー準位が伝導帯力 価電子帯に戻る際 にエネルギーを光として放出する現象である。  The white light emitting element A shown in FIG. 1 emits white light when a current is passed through the transparent electrode 2 and the electrode layer 4. For light emission, when an electric field is applied between the transparent electrode 2 and the electrode layer 4, electrons on the electrode layer 4 side are injected, holes are injected from the transparent electrode 2, and electrons are further injected into the light emitting layer 3. It is a phenomenon in which energy is released as light when recombining with holes and the energy level returns to the conduction band valence band.
[0098] しかも、この白色発光素子 Aは、特定の化学構造を有する白色発光化合物を発光 層に有するので、発光寿命が長い。したがって、この白色発光素子 Aにより発光が長 寿命である光源とすることができる。  [0098] Moreover, since the white light emitting element A has a white light emitting compound having a specific chemical structure in the light emitting layer, the light emitting life is long. Therefore, the white light emitting element A can be used as a light source having a long lifetime.
[0099] また、この白色発光素子 Aを、筒状に形成された基板 1と、その基板 1の内面側に 透明電極 2、発光層 3及び電極層 4をこの順に積層してなる管状発光体とすることが できる。 [0099] Further, the white light emitting element A is a tubular light emitting body in which a substrate 1 formed in a cylindrical shape and a transparent electrode 2, a light emitting layer 3 and an electrode layer 4 are laminated in this order on the inner surface side of the substrate 1. It can be.
[0100] 基板 1としては、透明電極 2をその表面に形成することができる限り、公知の基板を 採用することができる。この基板 1として、例えばガラス基板、プラスチックシート、セラ ミック、表面に絶縁塗料層を形成する等の、表面を絶縁性に加工してなる金属板等 を挙げることができる。この基板 1が不透明であるときには、この白色発光素子は、基 板 1とは反対側に白色光を照射することができる片面照明装置である。また、この基 板 1が透明であるときには、白色発光素子の基板 1側及びその反対側の面から、白 色光を照射することができる両面照明装置である。  [0100] As the substrate 1, a known substrate can be employed as long as the transparent electrode 2 can be formed on the surface thereof. Examples of the substrate 1 include a glass substrate, a plastic sheet, a ceramic, and a metal plate obtained by processing the surface into an insulating property such as forming an insulating coating layer on the surface. When the substrate 1 is opaque, the white light emitting element is a single-sided illumination device that can irradiate white light on the side opposite to the substrate 1. Further, when the substrate 1 is transparent, it is a double-sided illumination device that can emit white light from the substrate 1 side of the white light emitting element and the surface on the opposite side.
[0101] 前記透明電極 2としては、仕事関数が大きくて透明であり、電圧を印加することによ り陽極として作用して前記発光層 3にホールを注入することができる限り様々の素材 を採用することができる。具体的には、透明電極 2は、 ITO、 In O、 SnO、 ZnO、 Cd  [0101] The transparent electrode 2 is made of various materials as long as it has a large work function and is transparent and can act as an anode by applying a voltage to inject holes into the light emitting layer 3. can do. Specifically, the transparent electrode 2 is made of ITO, InO, SnO, ZnO, Cd
2 3 2 o等、及びそれらの化合物等の無機透明導電材料、及びポリア二リン等の導電性高 分子材料等で形成することができる。  It can be formed of an inorganic transparent conductive material such as 2 3 2o and the like and compounds thereof, and a conductive high molecular material such as polyaniline.
[0102] この透明電極 2は、前記基板 1上に、化学気相成長法、スプレーパイロリシス、真空 蒸着法、電子ビーム蒸着法、スパッタ法、イオンビームスパッタ法、イオンプレーティ ング法、イオンアシスト蒸着法、その他の方法により形成されることができる。 [0102] This transparent electrode 2 is formed on the substrate 1 by chemical vapor deposition, spray pyrolysis, vacuum evaporation, electron beam evaporation, sputtering, ion beam sputtering, ion It can be formed by an etching method, an ion-assisted vapor deposition method, or other methods.
[0103] なお、基板が不透明部材で形成されるときには、基板上に形成される電極は透明 電極である必要はない。  [0103] When the substrate is formed of an opaque member, the electrode formed on the substrate does not have to be a transparent electrode.
[0104] 発光層 3は、この発明における前記式(1)に示される白色発光化合物を含有する 層である。この発光層 3は、この発明における白色発光化合物を高分子中に分散し てなる高分子膜として形成することができ、また、この発明における白色発光化合物 を前記透明電極 2上に蒸着してなる蒸着膜として形成することができる。  [0104] The light emitting layer 3 is a layer containing a white light emitting compound represented by the formula (1) in the present invention. The light emitting layer 3 can be formed as a polymer film in which the white light emitting compound in the present invention is dispersed in a polymer, and the white light emitting compound in the present invention is deposited on the transparent electrode 2. It can be formed as a deposited film.
[0105] 前記高分子膜における高分子としては、ポリビュルカルバゾール、ポリ(3—アルキ レンチォフェン)、ァリールアミンを含有するポリイミド、ポリフルォレイン、ポリフエ-レ ンビ-レン、ポリ一 a—メチルスチレン、ビ-ルカルバゾール Z α—メチルスチレン共 重合体等を挙げることができる。これらの中でも好ましいのは、ポリビュルカルバゾー ルである。  [0105] Examples of the polymer in the polymer film include polybulucarbazole, poly (3-alkylentiophene), polyimide containing allylamine, polyfluorein, polyphenylene-butylene, poly-a-methylstyrene, biphenyl. -Lucarbazole Z α-methylstyrene copolymer and the like. Among these, polyburecarbazole is preferable.
[0106] 前記高分子膜中における前記白色発光化合物の含有量は、通常、 0. 01〜2重量 %、好ましくは 0. 05〜0. 5重量%である。  [0106] The content of the white light-emitting compound in the polymer film is usually 0.01 to 2% by weight, preferably 0.05 to 0.5% by weight.
[0107] 前記高分子膜の厚みは、通常 30〜500nm、好ましくは 100〜300nmである。高 分子膜の厚みが薄すぎると発光光量が不足することがあり、高分子膜の厚みが大き すぎると、駆動電圧が高くなりすぎて好ましくないことがあり、また、面状体、管状体、 湾曲体、環状体とするときの柔軟性に欠けることがある。  [0107] The polymer film has a thickness of usually 30 to 500 nm, preferably 100 to 300 nm. If the thickness of the polymer film is too thin, the amount of emitted light may be insufficient. If the thickness of the polymer film is too large, the driving voltage may become too high, which may be undesirable. Flexibility may be lacking when using a curved or annular body.
[0108] 前記高分子膜は、前記高分子とこの発明に係る白色発光化合物とを適宜の溶媒に 溶解してなる溶液を用いて、塗布法例えばスピンキャスト法、コート法、及びディップ 法等により形成することができる。  [0108] The polymer film is formed by a coating method such as a spin casting method, a coating method, and a dipping method using a solution obtained by dissolving the polymer and the white light-emitting compound according to the present invention in an appropriate solvent. Can be formed.
[0109] 前記発光層 3が蒸着膜であるとき、その蒸着膜の厚みは、発光層における層構成 等により相違する力 一般的には 0. 1〜: LOOnmである。蒸着膜の厚みが小さすぎる とき、あるいは大きすぎるときには、前述したのと同様の問題を生じることがある。  [0109] When the light-emitting layer 3 is a vapor-deposited film, the thickness of the vapor-deposited film is generally a force that varies depending on the layer structure in the light-emitting layer, etc. 0.1 to LOOnm. When the thickness of the deposited film is too small or too large, the same problem as described above may occur.
[0110] 前記電極層 4は、仕事関数の小さな物質が採用され、例えば、 MgAg、アルミニゥ ム合金、金属カルシウム等の、金属単体又は金属の合金で形成されることができる。 好適な電極層 4はアルミニウムと少量のリチウムとの合金電極である。この電極層 4は 、例えば基板 1の上に形成された前記発光層 3を含む表面に、蒸着技術により、容易 に形成することができる。 [0110] The electrode layer 4 employs a substance having a small work function, and may be formed of a single metal or a metal alloy such as MgAg, aluminum alloy, and metallic calcium. A preferred electrode layer 4 is an alloy electrode of aluminum and a small amount of lithium. The electrode layer 4 is easily formed on the surface including the light emitting layer 3 formed on the substrate 1 by vapor deposition technology, for example. Can be formed.
[0111] 塗布法及び蒸着法のいずれを採用して発光層を形成するにしても、電極層と発光 層との間に、ノ ッファ層を介装するのが好ましい。  [0111] Regardless of whether the coating method or the vapor deposition method is used to form the light emitting layer, it is preferable to interpose a nother layer between the electrode layer and the light emitting layer.
[0112] 前記バッファ層を形成することのできる材料として、例えば、フッ化リチウム等のアル カリ金属化合物、フッ化マグネシウム等のアルカリ土類金属化合物、酸ィ匕アルミニゥ ム等の酸化物、 4, 4,—ビスカルバゾールビフエ-ル(Cz—TPD)を挙げることができ る。また、例えば ITO等の陽極と有機層との間に形成されるノ ッファ層を形成する材 料として、例えば m— MTDATA (4, 4,, 4"—トリス(3—メチルフエ-ルフエ-ルアミ ノ)トリフエ-ルァミン)、フタロシアニン、ポリア-リン、ポリチォフェン誘導体、無機酸 化物例えば酸ィ匕モリブデン、酸化ルテニウム、酸化バナジウム、フッ化リチウムを挙げ ることができる。これらのノ ッファ層は、その材料を適切に選択することにより、白色発 光素子である有機 EL素子の駆動電圧を低下させることができ、発光の量子効率を 改善することができ、発光輝度の向上を達成することができる。  [0112] Examples of materials that can form the buffer layer include alkali metal compounds such as lithium fluoride, alkaline earth metal compounds such as magnesium fluoride, oxides such as aluminum oxide, 4, 4, Biscarbazole biphenyl (Cz-TPD). In addition, as a material for forming a noffer layer formed between an anode such as ITO and an organic layer, for example, m-MTDATA (4, 4, 4, 4 "-tris (3-methylphenol-aminoamine) ) Triphenylamine), phthalocyanine, polyarine, polythiophene derivatives, inorganic oxides such as molybdenum oxide, ruthenium oxide, vanadium oxide, and lithium fluoride. By appropriate selection, the driving voltage of the organic EL element, which is a white light emitting element, can be lowered, the quantum efficiency of light emission can be improved, and the emission luminance can be improved.
[0113] 次にこの発明に係る白色発光素子の第 2の例を図に示す。図 2は多層型有機 EL 素子である白色発光素子の断面を示す説明図である。  Next, a second example of the white light emitting device according to the present invention is shown in the drawing. FIG. 2 is an explanatory view showing a cross section of a white light-emitting element which is a multilayer organic EL element.
[0114] 図 2に示すように、この白色発光素子 Bは、基板 1の表面に、透明電極 2、ホール輸 送層 5、発光層 3a, 3b、電子輸送層 6及び電極層 4をこの順に積層してなる。  [0114] As shown in Fig. 2, this white light-emitting element B has a transparent electrode 2, a hole transport layer 5, light-emitting layers 3a and 3b, an electron transport layer 6 and an electrode layer 4 in this order on the surface of the substrate 1. Laminated.
[0115] 基板 1、透明電極 2、及び電極層 4については、図 1に示された白色発光素子 Aに おけるのと、同様である。  [0115] The substrate 1, the transparent electrode 2, and the electrode layer 4 are the same as those in the white light emitting device A shown in FIG.
[0116] 図 2に示される白色発光素子 Bにおける発光層は発光層 3a及び発光層 3bよりなり 、発光層 3aはこの発明における白色発光化合物の蒸着膜である。発光層 3bは、 DP VBi層である。この DPVBi層は、ホスト材料的な機能を有する層である。  [0116] The light emitting layer in the white light emitting device B shown in FIG. 2 includes a light emitting layer 3a and a light emitting layer 3b, and the light emitting layer 3a is a vapor-deposited film of a white light emitting compound in the present invention. The light emitting layer 3b is a DP VBi layer. This DPVBi layer is a layer having a host material function.
[0117] 前記ホール輸送層 5に含まれるホール輸送物質としては、トリフエ-ルァミン系化合 物例えば N, N,—ジフエ-ルー N, N,—ジ(m トリル)—ベンジジン(TPD)、及び a NPD等、ヒドラゾン系化合物、スチルベン系化合物、複素環系化合物、 π電子 系スターバースト正孔輸送物質等を挙げることができる。  [0117] The hole transport materials contained in the hole transport layer 5 include triphenylamine compounds such as N, N, -diphenyl-N, N, -di (m tolyl) -benzidine (TPD), and a Examples include NPD, hydrazone compounds, stilbene compounds, heterocyclic compounds, and π-electron starburst hole transport materials.
[0118] 前記電子輸送層 6に含まれる電子輸送物質としては、前記電子輸送性物質として は、例えば、 2- (4— tert—ブチルフエ-ル)—5— (4 ビフエ-ル)— 1, 3, 4—ォ キサジァゾール等のォキサジァゾール誘導体及び 2, 5 ビス( 1 ナフチル) 1 , 3 , 4 ォキサジァゾール、並びに 2, 5 ビス(5' tert ブチルー 2'—べンゾキサゾ リル)チォフェン等を挙げることができる。また、電子輸送性物質として、例えばキノリノ ールアルミ錯体 (Alq3)、ベンゾキノリノールベリリウム錯体(Bebq2)等の金属錯体系 材料を好適に使用することもできる。 [0118] Examples of the electron transport material contained in the electron transport layer 6 include 2- (4-tert-butylphenol) -5- (4 biphenyl) -1, 3, 4 Examples include oxadiazole derivatives such as xadiazole, 2,5 bis (1 naphthyl) 1,3,4 oxadiazole, and 2,5 bis (5 ′ tert butyl-2′-benzoxazolyl) thiophene. Further, as the electron transporting substance, for example, a metal complex material such as quinolinol aluminum complex (Alq3), benzoquinolinol beryllium complex (Bebq2) can be preferably used.
[0119] 図 2における白色発光素子 Bでは、電子輸送層 6は Alq3を含有する。 In the white light emitting device B in FIG. 2, the electron transport layer 6 contains Alq3.
[0120] 各層の厚みは、従来力も公知の多層型有機 EL素子におけるのと同様である。 [0120] The thickness of each layer is the same as that of a known multilayer organic EL element with conventional strength.
[0121] 図 2に示される白色発光素子 Bは、図 1に示される白色発光素子 Aと同様に作用し 、発光する。したがって、図 2に示される白色発光素子 Bは、図 1に示される白色発光 素子 Aと同様の用途を有する。 [0121] The white light emitting element B shown in FIG. 2 operates in the same manner as the white light emitting element A shown in FIG. 1, and emits light. Therefore, the white light emitting element B shown in FIG. 2 has the same application as the white light emitting element A shown in FIG.
[0122] 図 3に、この発明に係る白色発光素子の第 3の例を示す。図 3は、多層型有機 EL 素子である白色発光素子の断面を示す説明図である。 FIG. 3 shows a third example of the white light emitting device according to the present invention. FIG. 3 is an explanatory view showing a cross section of a white light-emitting element which is a multilayer organic EL element.
[0123] 図 3に示される白色発光素子 Cは、基板 1の表面に、透明電極 2、ホール輸送層 5、 発光層 3、電子輸送層 8及び電極層 4をこの順に積層してなる。 A white light emitting device C shown in FIG. 3 is formed by laminating a transparent electrode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 8 and an electrode layer 4 in this order on the surface of a substrate 1.
[0124] この図 3に示す白色発光素子 Cは前記白色発光素子 Bと同様である。 The white light emitting element C shown in FIG. 3 is the same as the white light emitting element B.
[0125] 図 4に白色発光素子の他の例を示す。この図 4に示す白色発光素子 Dは、基板 電極 2、ホール輸送層 5、発光層 3及び電極層 4をこの順に積層してなる。 FIG. 4 shows another example of a white light emitting element. The white light emitting element D shown in FIG. 4 is formed by laminating a substrate electrode 2, a hole transport layer 5, a light emitting layer 3, and an electrode layer 4 in this order.
[0126] 前記図 1〜4に示される白色発光素子の外に、基板上に形成された透明電極であ る陽極と電極層である陰極との間に、ホール輸送性物質を含有するホール輸送層と 、この発明における白色発光化合物含有の電子輸送性発光層とを積層して成る二 層型有機低分子発光素子 (例えば、陽極と陰極との間に、ホール輸送層と、ゲスト色 素としてこの発明における白色発光化合物及びホスト色素を含有する発光層とを積 層して成る二層型色素ドープ型発光素子)、陽極と陰極との間に、ホール輸送性物 質を含有するホール輸送層と、この発明における白色発光化合物と電子輸送性物質 とを共蒸着してなる電子輸送性発光層とを積層して成る二層型有機発光素子 (例え ば、陽極と陰極との間に、ホール輸送層と、ゲスト色素としてこの発明における白色発 光化合物及びホスト色素とを含有する電子輸送性発光層とを積層して成る二層型色 素ドープ型有機発光素子)、陽極と陰極との間に、ホール輸送層、この発明における 白色発光化合物含有の発光層及び電子輸送層を積層して成る三層型有機発光素 子を挙げることができる。 In addition to the white light emitting element shown in FIGS. 1 to 4, a hole transport containing a hole transporting substance is provided between an anode as a transparent electrode and a cathode as an electrode layer formed on a substrate. A two-layer organic low-molecular light-emitting device (for example, a hole transport layer and a guest pixel between an anode and a cathode) formed by laminating a layer and an electron transporting light-emitting layer containing a white light-emitting compound in the present invention A two-layer type dye-doped light-emitting device comprising a white light-emitting compound and a light-emitting layer containing a host dye, and a hole transport layer containing a hole-transporting substance between the anode and the cathode. And a two-layer organic light-emitting device (for example, a hole between an anode and a cathode) formed by laminating a white light-emitting compound and an electron-transporting material in the present invention. In this invention, the transport layer and the guest dye A white light emitting compound and an electron transporting light emitting layer containing a host dye, and a hole transporting layer between the anode and the cathode. Examples thereof include a three-layer organic light emitting device formed by laminating a light emitting layer containing a white light emitting compound and an electron transport layer.
[0127] この発光素子における電子輸送性発光層は、通常の場合、 50〜80%のポリビ- ルカルバゾール (PVK)と、電子輸送性発光剤 5〜40%と、この発明に係る白色発光 化合物 0. 01〜20% (重量)とで形成されていると、白色発光が高輝度で起こる。  [0127] The electron-transporting light-emitting layer in this light-emitting device is usually 50 to 80% polyvinyl carbazole (PVK), 5 to 40% of an electron-transporting light-emitting agent, and the white light-emitting compound according to the present invention. When formed from 0.01 to 20% (by weight), white light emission occurs with high luminance.
[0128] また、前記発光層中には、増感剤としてルブレンが含有されているのが好ましぐ特 に、ルブレンと Alq3とが含有されて!、るのが好まし!/、。  [0128] The light emitting layer preferably contains rubrene as a sensitizer, and particularly contains rubrene and Alq3! /.
[0129] この発明に係る白色発光化合物を利用した白色発光素子は、例えば一般に直流 駆動型の有機 EL素子として使用することができ、また、パルス駆動型の有機 EL素子 及び交流駆動型の有機 EL素子としても使用することができる。  [0129] The white light-emitting element using the white light-emitting compound according to the present invention can be generally used as, for example, a DC-driven organic EL element, and can also be used as a pulse-driven organic EL element and an AC-driven organic EL element. It can also be used as an element.
実施例 1  Example 1
[0130] (3—塩化メチル—9—塩化ェチルカルバゾールの合成)  [0130] (Synthesis of 3-Methyl chloride-9-Ethylcarbazole chloride)
2L三ッロフラスコに、力ルバゾール 46. 4g、 1 クロロェチルー p—トルエンスルホ ネート 100g、水酸化ナトリウム 53g、水 40ml及びアセトン 1200mlを入れた。この三 ッロフラスコ内の溶液を、ウォーターバスで 60°Cに 20時間加熱した。 20時間の加熱 後に、濾過して得た濾液を濃縮及び乾固させて淡黄色の 9一(2 クロロェチル)カル バゾール 33gを得た。  In a 2 L 3 flask, 46.4 g of force rubazole, 100 g of 1 chloroethyl p-toluenesulfonate, 53 g of sodium hydroxide, 40 ml of water and 1200 ml of acetone were placed. The solution in the 3 flask was heated to 60 ° C. for 20 hours with a water bath. After heating for 20 hours, the filtrate obtained by filtration was concentrated and dried to obtain 33 g of pale yellow 9- (2 chloroethyl) carbazole.
[0131] 1リットルの三口フラスコにパラホルムアルデヒド 7. lgを入れ、酢酸 250mlを更にカロ え、塩化水素ガスをフラスコ内の溶液に吹き込んでパラホルムアルデヒドが溶解した 後に、塩ィ匕水素ガスの吹き込みを停止し、 100mlの酢酸に前記 9— (2 クロロェチ ル)力ルバゾール 20gを溶解してなる酢酸溶液を前記フラスコ内に滴下した。前記フ ラスコの内容物をゥオタ一バスにて 50°Cに 2時間加熱した。 2時間の加熱終了後に、 フラスコの内容物をヌッチヱで據過して得られた固形残渣をメタノールで洗净し、洗 滌後の固形残渣を乾燥することにより、 3 クロロメチル 9— (2 クロロェチル)力ルバ ゾール 21. 5gを得た。  [0131] Add 7 lg of paraformaldehyde to a 1-liter three-necked flask, add 250 ml of acetic acid, blow hydrogen chloride gas into the solution in the flask, dissolve paraformaldehyde, and then blow in hydrogen chloride gas. After stopping, an acetic acid solution prepared by dissolving 20 g of the 9- (2 chloroethyl) rubazole in 100 ml of acetic acid was dropped into the flask. The contents of the flask were heated to 50 ° C for 2 hours in a water bath. After the completion of heating for 2 hours, the solid residue obtained by filtering the contents of the flask with a Nuts ヱ washes with methanol, and the solid residue after washing was dried to obtain 3 chloromethyl 9- (2 chloroethyl). ) 21.5 g of force rubazole was obtained.
(白色発光化合物の合成)  (Synthesis of white light-emitting compound)
三ッロフラスコに、 3 アミノー 9 ェチルカルバゾール 51. 0g、 1, 4 ジヒドロキシ - 2, 5 ジメチルカルボキシ 1, 4ーシクロへキサジェン 25. 2g、エタノール 500m 1及び酢酸 500mlを入れた。この三ッロフラスコ内の溶液を、シリコンオイルバスで 11 5°Cに 4時間加熱した。 4時間の加熱終了後、三ッロフラスコの内容物を放冷し、濾 過した。濾過して得られた液状物をメタノールで洗浄した後、洗滌後の液状物を乾固 して、固体 48. 5gを得た。 In a triple flask, 3 amino-9 ethylcarbazole 51.0 g, 1,4 dihydroxy-2,5 dimethylcarboxy 1,4-cyclohexagen 25.2 g, ethanol 500 m 1 and 500 ml of acetic acid were added. The solution in the flask was heated to 115 ° C. for 4 hours in a silicone oil bath. After 4 hours of heating, the contents of the triplo flask were allowed to cool and filtered. The liquid obtained by filtration was washed with methanol, and the washed liquid was dried to obtain 48.5 g of a solid.
[0132] 得られた固体の NMR ^ベクトルチャートを図 5に示す。これらより、得られた固体は 、以下の式 (cl)で示す構造を有する化合物 (cl)であると同定した。  [0132] Fig. 5 shows the NMR ^ vector chart of the obtained solid. From these, the obtained solid was identified as a compound (cl) having a structure represented by the following formula (cl).
[0133] [化 22]  [0133] [Chemical 22]
C2H5 C 2 H 5
Figure imgf000029_0001
Figure imgf000029_0001
[0134] 前記式(cl)で示される化合物(cl) 20. Ogと ODB500mlとをフラスコに装入し、次 いで硫酸 0. 5gを添カ卩してから、フラスコ内を 160°Cに 1時間加熱した。前記 1時間の 経過後にフラスコの内容物を冷却し、濃縮し、濾過することにより固形分を分離した。 その固形分を水、メタノール及び石油エーテルで順次に洗浄し、真空乾燥することに より式 (dl)で示される化合物(dl) 18. 5gを得た。この化合物(dl)の NMRチャート を図 6に示した。 [0134] Compound (cl) represented by the above formula (cl) 20. Og and 500 ml of ODB were charged into a flask, 0.5 g of sulfuric acid was added, and the flask was heated to 160 ° C. Heated for hours. After the 1 hour, the contents of the flask were cooled, concentrated and filtered to separate the solids. The solid content was washed successively with water, methanol and petroleum ether and vacuum dried to obtain 18.5 g of the compound (dl) represented by the formula (dl). The NMR chart of this compound (dl) is shown in FIG.
[0135] [化 23]  [0135] [Chemical 23]
C H C H
Figure imgf000029_0002
Figure imgf000029_0002
1000ml三ッロフラスコに、前記化合物(dl) 4g N, N—ジメチルァセトアミド(DM AC) 200ml及び 20%水酸化カリウム水溶液 10mlを入れた。この三ッロフラスコ内の 溶液を、シリコンオイルバスで 170°Cに 2時間加熱した。加熱終了後、三ッロフラスコ の内容物を放冷し、その pHを 2〜3に調整した。次いで、クロ口ホルムを用いて抽出 し、濾過して得られた濾過液を、濃縮及び乾固して、紫色の固体 2. 5gを得た。 In a 1000 ml flask, the compound (dl) 4 g N, N-dimethylacetamide (DM AC) 200 ml and 20% aqueous potassium hydroxide solution 10 ml were added. The solution in the three flask was heated to 170 ° C. for 2 hours in a silicone oil bath. After the heating was completed, the contents of the flask were allowed to cool and the pH was adjusted to 2-3. Next, the filtrate obtained by extraction using black mouth form and filtration was concentrated and dried to obtain 2.5 g of a purple solid.
[0137] 得られた固体の NMR ^ベクトルチャートを図 7に、また、 IRスペクトルチャートを図 8 に示す。これらより、得られた固体は、以下の式 (el)で示す構造を有する化合物 (el )であると同定した。  [0137] Fig. 7 shows the NMR ^ vector chart of the obtained solid, and Fig. 8 shows the IR spectrum chart. From these, the obtained solid was identified as a compound (el) having a structure represented by the following formula (el).
[0138] [化 24]  [0138] [Chemical 24]
Figure imgf000030_0001
Figure imgf000030_0001
[0139] 三ッロフラスコに、前記化合物(el) 25g、ピリジン 0. 7g、テトラヒドロフラン (THF) 50ml及び塩化チォ -ル 10mlを入れた。この三ッロフラスコ内の溶液を、シリコンォ ィルバスで 70°Cに 20時間加熱した。加熱終了後、三ッロフラスコ内の溶液を放冷し 、減圧蒸留して、固体 2. 9gを得た。 [0139] 25 g of the above compound (el), 0.7 g of pyridine, 50 ml of tetrahydrofuran (THF), and 10 ml of chlorochloride were placed in a three flask. The solution in the flask was heated to 70 ° C. for 20 hours with a silicon oil bath. After the completion of heating, the solution in the triplo flask was allowed to cool and distilled under reduced pressure to obtain 2.9 g of a solid.
[0140] 得られた固体の NMR ^ベクトルチャートを図 9に、また、 IRスペクトルチャートを図 1 0に示す。これらより、得られた固体は、以下の式 (fl)で示す構造を有する化合物 (f 1)であると同定した。  [0140] Fig. 9 shows the NMR ^ vector chart of the obtained solid, and Fig. 10 shows the IR spectrum chart. From these, the obtained solid was identified as the compound (f 1) having a structure represented by the following formula (fl).
[0141] [化 25]  [0141] [Chemical 25]
Figure imgf000030_0002
[0142] 三ッロフラスコに、前記化合物(fl) 2. 9g、ピリジン 0. 81g、 1 ヒドラジノカルボ- ルナフタレン 2. 6 lg及びテトラヒドロフラン(THF) 200mlを入れた。この三ッロフラス コ内の溶液を、シリコンオイルバスで 70°Cに 4時間加熱した。加熱終了後、三ッロフ ラスコ内の溶液を放冷し、氷水に投入した。次いで、氷水投入物をヌッチェで濾過し て得られた固形物を洗浄し、乾燥させて、茶褐色の固体 2. 8gを得た。
Figure imgf000030_0002
[0142] In a triple flask, 2.9 g of the compound (fl), 0.81 g of pyridine, 2.6 lg of 1 hydrazinocarbo-naphthalene and 200 ml of tetrahydrofuran (THF) were added. The solution in the three-flask was heated to 70 ° C for 4 hours in a silicone oil bath. After completion of heating, the solution in Sanfro Flasco was allowed to cool and poured into ice water. The solid obtained by filtering the ice water charge with Nutsche was then washed and dried to give 2.8 g of a brown solid.
[0143] 得られた固体の NMR ^ベクトルチャートを図 11に、また、 IRスペクトルチャートを図 12に示す。これらより、得られた固体は、以下の式 (gl)で示す構造を有する化合物( gl)であると同定した。  [0143] Fig. 11 shows the NMR ^ vector chart of the obtained solid, and Fig. 12 shows the IR spectrum chart. From these, the obtained solid was identified as a compound (gl) having a structure represented by the following formula (gl).
[0144] [化 26]  [0144] [Chemical 26]
Figure imgf000031_0001
Figure imgf000031_0001
[0145] 500mlの耐圧瓶に、前記化合物(gl) 1. 7g、 3 クロロメチルー 9 クロロェチルカ ルバゾール 0. 44g及び N, N ジメチルホルムアミド(DMF) 300mlを入れた。この 耐圧瓶内の溶液を、シリコンオイルバスで 160°Cに 20時間加熱した。加熱終了後、 耐圧瓶内の溶液を放冷し、氷水に投入した。次いで、氷水投入物をヌッチェで濾過 して得られた固形物を洗浄し、乾燥させて、固体 1. 3gを得た。 [0145] A 500 ml pressure bottle was charged with 1.7 g of the compound (gl), 0.44 g of 3 chloromethyl-9 chloroethylcarbazole and 300 ml of N, N dimethylformamide (DMF). The solution in the pressure bottle was heated to 160 ° C. for 20 hours in a silicone oil bath. After heating, the solution in the pressure bottle was allowed to cool and poured into ice water. Subsequently, the solid obtained by filtering the ice water charge with Nutsche was washed and dried to obtain 1.3 g of a solid.
[0146] 得られた固体の NMR ^ベクトルチャートを図 13に示す。これより、得られた固体は 、以下の式 (j 1)で示す構造を有する化合物 (j 1)であると同定した。  [0146] Fig. 13 shows the NMR ^ vector chart of the obtained solid. From this, the obtained solid was identified as a compound (j 1) having a structure represented by the following formula (j 1).
[0147] [化 27]
Figure imgf000032_0001
[0147] [Chemical 27]
Figure imgf000032_0001
[0148] 500mlのナスフラスコに前記化合物 (j 1) 1. Og及び 1, 4 ジォキサン 225mlを入 れ、苛性カリ 1. Ogをエタノールに溶解した溶液を更に装入し、 100°Cに加熱しながら 4時間還流した。 4時間の経過後にナスフラスコの内容物を冷却し、クロ口ホルムで抽 出し、濾過して得られた濾液を濃縮及び乾固して紫色固体 0. 8gを得た。 [0148] The above compound (j 1) 1. Og and 225 ml of 1,4 dioxane were placed in a 500 ml eggplant flask, and a solution of caustic potash 1. Og dissolved in ethanol was further charged and heated to 100 ° C. Refluxed for 4 hours. After the elapse of 4 hours, the contents of the eggplant flask were cooled, extracted with a black mouth form, and the filtrate obtained by filtration was concentrated and dried to obtain 0.8 g of a purple solid.
[0149] 得られた固体の NMR ^ベクトルチャートを図 14に、また、 IRスペクトルチャートを図 15に示す。これらより、得られた固体は、以下の式(1B)で示す構造を有する化合物 (1B)であると同定した。  [0149] Fig. 14 shows the NMR ^ vector chart of the obtained solid, and Fig. 15 shows the IR spectrum chart. From these, the obtained solid was identified as a compound (1B) having a structure represented by the following formula (1B).
[0150] [化 28]  [0150] [Chemical 28]
C H CH2 CH CH 2
Figure imgf000032_0002
[0151] 重合管に、前記式(IB)で示されるビニル化合物 0. 5g DMAC30ml、六塩化タ ングステン 2. 5mgを入れ、振盪器を使用して室温で 73時間かけて前記ビニルイ匕合 物の重合を行った。 73時間後、重合管中の内容物を濃縮し、濾過した後、得られた 濃縮液を乾固させ、固体 0. 4gを得た。この紫色の固体の NMR ^ベクトルチャートを 図 16に示した。この固体は式( 1C)で示すユニットを有する高分子であった。
Figure imgf000032_0002
[0151] Into a polymerization tube, 0.5 g of the vinyl compound represented by the above formula (IB) (30 g) DMAC (30 ml) and tungsten hexachloride (2.5 mg) were placed, and the vinyl compound was mixed for 73 hours at room temperature using a shaker. Polymerization was performed. After 73 hours, the content in the polymerization tube was concentrated and filtered, and then the resulting concentrated solution was dried to obtain 0.4 g of a solid. Fig. 16 shows the NMR vector chart of this purple solid. This solid was a polymer having a unit represented by the formula (1C).
[0152] [化 29]  [0152] [Chemical 29]
C H— CH9 C H— CH9
Figure imgf000033_0001
Figure imgf000033_0001
[0153] さらに前記式(1C)で示される繰り返し単位を有する化合物の蛍光スペクトルチヤ トを図 17に示す。これより、得られた化合物は、白色光を発することがわ力 た。 Further, FIG. 17 shows a fluorescence spectrum chart of the compound having the repeating unit represented by the formula (1C). As a result, it was found that the obtained compound emits white light.
[0154] 蛍光スペクトル測定は、島津製作所製の F— 4500型分光蛍光光度計を使用し、測 定条件は以下のとおりであった。  [0154] For the fluorescence spectrum measurement, an F-4500 type spectrofluorometer manufactured by Shimadzu Corporation was used, and the measurement conditions were as follows.
測定条件  Measurement condition
測定モード 波長スキャン  Measurement mode Wavelength scan
励起波長 dodnm  Excitation wavelength dodnm
蛍光開始波長 400nm  Fluorescence start wavelength 400nm
蛍光終了波長 700nm  Fluorescence end wavelength 700nm
スキャンスピード 2400nm/分  Scan speed 2400nm / min
励起側スリット 5. Onm 蛍光側スリット 5. Onm Excitation side slit 5. Onm Fluorescent side slit 5. Onm
ホトマル電圧 700V  Photomultiplier voltage 700V
産業上の利用可能性 Industrial applicability
本発明に係る白色発光素子は、その全体形状を大面積の平面形状にすると、例え ば壁面、あるいは天井に装着して、大面積壁面白色発光素子、及び大面積天井面 白色発光素子等の面状発光照明装置とすることができる。つまり、この白色発光素子 は、従来の蛍光灯のような線光源あるいは電球といった点光源に代えて面光源とし て利用されることができる。特に、居住のための室内、事務用の室内、車両室内等の 壁面、天井面、あるいは床面をこの白色発光素子により面光源として発光ないし照明 することができる。さらに、この白色発光素子をコンピュータにおける表示画面、携帯 電話における表示画面、金銭登録機における数字表示画面等のバックライトに使用 することができる。その他、この白色発光素子は、直接照明、間接照明等の様々の光 源として使用されることができ、また、夜間に発光させることができて視認性が良好で ある広告装置、道路標識装置、及び発光掲示板、更には自動車等の車両における 後退灯等の光源に使用されることもできる。また、この白色発光素子は、水銀を使用 して 、な 、ので、従来の水銀を使用する蛍光灯に代替して環境に優 、光源とする ことができる。  When the overall shape of the white light emitting element according to the present invention is a large area planar shape, for example, it is attached to a wall surface or a ceiling to provide a large area wall surface white light emitting element and a large area ceiling surface. It can be set as a light emitting lighting device. In other words, the white light emitting element can be used as a surface light source in place of a linear light source such as a conventional fluorescent lamp or a point light source such as a light bulb. In particular, the white light emitting element can emit or illuminate the wall surface, ceiling surface, or floor surface of a residential room, office room, vehicle room, or the like as a surface light source. Furthermore, this white light emitting element can be used for backlights such as a display screen in a computer, a display screen in a mobile phone, and a numeric display screen in a cash register. In addition, this white light-emitting element can be used as various light sources such as direct illumination and indirect illumination, and can be lit at night and has good visibility, an advertising device, a road sign device, It can also be used as a light source such as a reverse lamp in a light-emitting bulletin board and a vehicle such as an automobile. In addition, since this white light emitting element uses mercury, it can be used as a light source that is environmentally friendly instead of a conventional fluorescent lamp using mercury.

Claims

請求の範囲 [1] 以下の式(1)で示される構造を有することを特徴とする白色発光化合物。 [化 1] し £~1 =し 1 Claims [1] A white light-emitting compound having a structure represented by the following formula (1): [Chemical 1] then £ ~ 1 = then 1
(ただし、前記式(1)において、 2個の R1は、以下の式(1 1)又は(1 2)で示され る置換基を示し、 2個の Arは、芳香族基を示す。なお、式中、 2個の R1は、互いに同 一であっても相違していてもよぐ 2個の Arは、互いに同一であっても相違していても よい。 ) (However, in the formula (1), two R 1 s represent a substituent represented by the following formula (11) or (12), and two Ars represent an aromatic group. In the formula, two R 1 s may be the same or different from each other. Two Ars may be the same or different from each other.
[化 2]  [Chemical 2]
R 2
Figure imgf000035_0002
R 2
Figure imgf000035_0002
(ただし、前記式(1— 1)において、 R2は、水素原子、炭素数 1〜5のハロゲン原子を 置換して 、ても良 、アルキル基を示す。) (However, in the above formula (1-1), R 2 represents a hydrogen atom or a halogen atom having 1 to 5 carbon atoms. It may be substituted and represents an alkyl group. )
[化 3]  [Chemical 3]
R3 R3
Figure imgf000036_0001
R 3 R 3
Figure imgf000036_0001
(ただし、前記式(1— 2)において、 2個の R3は、水素原子または炭素数 1〜20のァ ルキル基を示す。なお、式中、 2個の R3は、互いに同一であっても相違していてもよ い。) (However, in the formula (1-2), two R 3 s represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. In the formula, two R 3 s are the same as each other. Or it may be different.)
式(1 1A)で示されるモノマー単位を有することを特徴とする白色発光高分子化 合物。  A white light-emitting polymer compound having a monomer unit represented by the formula (11A).
[化 4]  [Chemical 4]
-(CH-CH2)- -(CH-CH 2 )-
Figure imgf000036_0002
Figure imgf000036_0002
[3] 以下の反応式 1に従って、 [3] According to the following reaction formula 1,
[化 5] 反 k;、ェ C1
Figure imgf000037_0001
[Chemical 5] K; C1
Figure imgf000037_0001
(a) (b)  (a) (b)
Figure imgf000037_0002
Figure imgf000037_0002
(c)  (c)
1, 4ージヒドロキシ 2, 5 ジァノレキノレカノレボキシ 1, 4ーシクロへキサジェン(a) (ただし、化合物(a)における R5は、アルキル基を示す。)およびァ-リン誘導体 (b) ( ただし、化合物 (b)における R1は、前記請求項 1に示す R1と同様である。)を、溶媒中 で加熱することにより、 1, 4ージヒドロキシ 2, 5 ジアルキルカルボキシ 1, 4ーシ クロへキサジェン (a)とァ-リン誘導体 (b)とを脱水させることにより、化合物(c)を合 成し、 1,4-dihydroxy 2,5 dianolequinolecanolevoxy 1,4-cyclohexagen (a) (wherein R 5 in the compound (a) represents an alkyl group) and a phosphorus derivative (b) (wherein, R 1 in the compound (b), are similar to those for R 1. shown in claim 1), and by heating in a solvent, 1, 4-dihydroxy 2, 5-dialkyl carboxymethyl 1, 4-Shi Compound (c) was synthesized by dehydrating clohexagen ( a ) and arrin derivative (b),
次いで、以下の反応式 2に従って、  Then, according to the following reaction formula 2,
[化 6] [Chemical 6]
心 ά2  Mind ά2
R ΝΗ C00R5 NH COOR5 R ΝΗ C00R 5 NH COOR 5
R 0C R500C NH― R 1
Figure imgf000037_0003
R 0C R 5 00C NH― R 1
Figure imgf000037_0003
化合物 (c)を脱水素反応させて、芳香族化合物 (d)を合成し、 Compound (c) is dehydrogenated to synthesize aromatic compound (d),
次いで、反応式 3に従って、 Then according to Scheme 3
[化 7] [Chemical 7]
反 ίΕ式  Anti ίΕ type
R,
Figure imgf000038_0001
芳香族化合物(d)を加水分解することにより、ジカルボン酸ィ匕合物(e)を合成し、 以下の反応式 4に従って、
R,
Figure imgf000038_0001
By hydrolyzing the aromatic compound (d), a dicarboxylic acid compound (e) was synthesized, and according to the following reaction formula 4,
[化 8] 反!心式 4
Figure imgf000038_0002
[Chemical 8] Anti!
Figure imgf000038_0002
ジカルボン酸ィ匕合物(e)を酸ハロゲンィ匕物 (f)に誘導し、  Deriving dicarboxylic acid compound (e) to acid halide compound (f),
以下の反応式 5に従って、  According to the following reaction formula 5,
[化 9] [Chemical 9]
反応式 5 Reaction formula 5
R1— NH COX R 1 — NH COX
Ar— CONHN  Ar— CONHN
xoc ,、 NH― R1 xoc ,, NH― R 1
Cf) Cf)
Figure imgf000039_0001
Figure imgf000039_0001
!! I !  ! ! I!
0 0  0 0
(g) 酸ハロゲン化物(f)と Ar— CONHNH 2で示されるヒドラジド(ただし、 Arは、前記請 求項 1に示す R1と同様である。 )とを反応させて化合物 (g)を合成し、 (g) Compound (g) is prepared by reacting acid halide (f) with hydrazide represented by Ar—CONHNH 2 (wherein Ar is the same as R 1 shown in claim 1). And
さらに、以下の反応式 6に従って、  Furthermore, according to the following reaction formula 6,
[化 10] [Chemical 10]
A A
I7~ r—— - I7 ~ r——-
Figure imgf000040_0001
Figure imgf000040_0001
0 0
Figure imgf000040_0002
化合物 (g)を閉環反応させて、ォキサジァゾール環含有ィ匕合物 (h)に誘導し、 以下の反応式 7に従って、
Figure imgf000040_0002
The compound (g) is subjected to a ring-closing reaction to be derivatized into an oxadiazole ring-containing compound (h). According to the following reaction formula 7,
[化 11] [Chemical 11]
Ar Ar
し I
Figure imgf000041_0001
N ,
I
Figure imgf000041_0001
N,
——  ——
G  G
o o
G N M  G N M
A A
Figure imgf000041_0002
Figure imgf000041_0002
ォキサジァゾール環含有化合物(h)と式 (0で示される 3—クロロメチルー 9一(2—ク ロロェチル)力ルバゾールとを反応させて脱ハロゲン化水素するとともに脱塩ィヒ水素 することを特徴とする前記請求項 1記載の白色発光化合物の製造方法。 Wherein the oxaziazole ring-containing compound (h) is reacted with 3-chloromethyl-9- (2-chloroethyl) -powered rubazole represented by 0 to dehydrohalogenate and demineralize hydrogen. The method for producing a white light-emitting compound according to claim 1.
[4] 式(1)で示される白色発光化合物を重合することを特徴とする請求項 2に記載の白 色発光高分子化合物の製造方法。 [5] 一対の電極間に、前記請求項 1に記載の白色発光化合物又は請求項 2に記載の 白色発光高分子化合物を含有する発光層を有してなることを特徴とする発光素子。 [4] The method for producing a white light-emitting polymer compound according to [2], wherein the white light-emitting compound represented by the formula (1) is polymerized. [5] A light-emitting device comprising a light-emitting layer containing the white light-emitting compound according to claim 1 or the white light-emitting polymer compound according to claim 2 between a pair of electrodes.
PCT/JP2005/011232 2004-06-28 2005-06-20 White light-emitting compound, white light-emitting polymer compound, method for producing those, and light-emitting device WO2006001239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-190450 2004-06-28
JP2004190450 2004-06-28

Publications (1)

Publication Number Publication Date
WO2006001239A1 true WO2006001239A1 (en) 2006-01-05

Family

ID=35781722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011232 WO2006001239A1 (en) 2004-06-28 2005-06-20 White light-emitting compound, white light-emitting polymer compound, method for producing those, and light-emitting device

Country Status (2)

Country Link
TW (1) TW200613511A (en)
WO (1) WO2006001239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195722A (en) * 2009-02-26 2010-09-09 Asahi Kagaku Kogyo Kk Process for producing 2,7-bishalomethylfluorene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302516A (en) * 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd New polymer and light-emitting element using the same
JP2003192684A (en) * 2001-09-25 2003-07-09 Taiho Ind Co Ltd White fluorescent organic compound
JP2005120071A (en) * 2003-09-22 2005-05-12 Hirose Engineering Co Ltd Light emitting compound and light emitting element
JP2005132742A (en) * 2003-10-28 2005-05-26 Hirose Engineering Co Ltd White light-emitting compound, method for producing the same and light-emitting element using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302516A (en) * 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd New polymer and light-emitting element using the same
JP2003192684A (en) * 2001-09-25 2003-07-09 Taiho Ind Co Ltd White fluorescent organic compound
JP2005120071A (en) * 2003-09-22 2005-05-12 Hirose Engineering Co Ltd Light emitting compound and light emitting element
JP2005132742A (en) * 2003-10-28 2005-05-26 Hirose Engineering Co Ltd White light-emitting compound, method for producing the same and light-emitting element using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195722A (en) * 2009-02-26 2010-09-09 Asahi Kagaku Kogyo Kk Process for producing 2,7-bishalomethylfluorene

Also Published As

Publication number Publication date
TW200613511A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
JPH0853537A (en) Conjugated polymer containing ansa substructure and its use as electroluminescent substance
JP2003221579A (en) Organic luminescent material
EP1516903A1 (en) Light-emitting compound and polymer and luminescent element
WO2006043539A1 (en) Light-emitting compound, light-emitting polymer compound and light-emitting device
KR20050109482A (en) Blue light-emitting compound, method for producing same and light-emitting device utilizing same
JP2000034476A (en) Organic fluorescent material and organic electroluminescent element
WO2006001239A1 (en) White light-emitting compound, white light-emitting polymer compound, method for producing those, and light-emitting device
WO2003062237A1 (en) White light emitting compound, white light emission illuminator, and white light emission organic el device
EP1477544A2 (en) Blue Light-emitting Compounds, Blue Light-emitting Polymers, Processes of Preparing the Blue Light-emitting Compounds and Luminescent Element Including the Blue Light-emitting Polymers
KR20060024446A (en) Blue light emitting polymer, method for producing same, and light emitting device utilizing same
WO2006101009A1 (en) Nile red-based red luminescent compound, and luminescent element using the same
JP2005035965A (en) White luminescent compound, method for producing the same and white luminescent element
KR20050040773A (en) White light-emitting compound, process of producing the same, and luminescence elements including the same
JP3798985B2 (en) White light emitting illumination device and white light emitting organic EL element using a single compound
KR20040083091A (en) Nile red type compound emitting red light, process for producing the same, and luminescent element utilizing the same
JP2006008628A (en) Blue light emitting compound and light emitting element
EP1598344A1 (en) Nile red light-emitting compound, method for producing nile red light-emitting compound, and light-emitting device
JP2005154404A (en) Blue color light-emitting compound, blue color light-emitting polymer, method for producing blue color light-emitting compound and light-emitting element utilizing blue color light-emitting polymer
WO2004039866A1 (en) Luminescent polymers and light emitting devices
JP2005097129A (en) Red light-emitting device, red light-emitting compound, method for preparing red light-emitting compound and light-emitting device utilizing the same
KR20050083873A (en) White organic fluorescent compound
JP2004035447A (en) Fluoroalkyl group-containing stilbene-based blue light-emitting compound and light-emitting element
TW200305629A (en) Luminescent compound emitting yellow light, process for producing the same, luminescent element emitting yellow light, and luminescent element emitting white light
KR100295098B1 (en) Synthetic method of new light-emitting polymers containing oxadiazolse units and el devices using the same
WO2003106391A1 (en) Blue-emitting compounds, blue-emitting fluoroalkylated stilbenes, and light emitting devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP