WO2006043539A1 - Light-emitting compound, light-emitting polymer compound and light-emitting device - Google Patents

Light-emitting compound, light-emitting polymer compound and light-emitting device Download PDF

Info

Publication number
WO2006043539A1
WO2006043539A1 PCT/JP2005/019107 JP2005019107W WO2006043539A1 WO 2006043539 A1 WO2006043539 A1 WO 2006043539A1 JP 2005019107 W JP2005019107 W JP 2005019107W WO 2006043539 A1 WO2006043539 A1 WO 2006043539A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
light
emitting
formula
light emitting
Prior art date
Application number
PCT/JP2005/019107
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Nakaya
Ryoji Matsumoto
Original Assignee
Hirose Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Engineering Co., Ltd. filed Critical Hirose Engineering Co., Ltd.
Publication of WO2006043539A1 publication Critical patent/WO2006043539A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/101,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/12N-Vinylcarbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F234/00Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • C08F234/02Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring in a ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • Light emitting compound light emitting polymer compound, and light emitting device
  • the present invention relates to a light emitting compound, a light emitting polymer compound, and a light emitting element, and more particularly to a light emitting compound, a light emitting polymer compound, and a light emitting element containing pyrene.
  • Ar is a vinylene group, a naphthyl group, or an anthryl group.
  • Patent Document 1 This new substance is a robust substance that emits blue light and emits light with high brightness and high color purity.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-18401
  • An object of the present invention is to provide a light-emitting compound, a light-emitting polymer compound, and a light-emitting element that emit blue light and contain pyrene.
  • two R 1 s each represent an alkyl group having 1 to 20 carbon atoms, and the two R 1 s may be the same or different from each other! / . ]
  • two R 1 s each represent an alkyl group having 1 to 20 carbon atoms, and the two R 1 s may be the same or different from each other! / . ]
  • R 2 represents H or a methyl group.
  • two R 1 s each represent an alkyl group having 1 to 20 carbon atoms, and the two R 1 s may be the same or different from each other.
  • R 2 represents H or a methyl group.
  • R 2 represents H or a methyl group.
  • Claim 5 A light emitting layer comprising a light emitting layer containing the light emitting compound according to claim 1 or the light emitting polymer compound according to any one of claims 2 to 4 between a pair of electrodes. It is an element.
  • the present invention since it has a pyrene skeleton in the molecule, the emission intensity is increased, the solubility in a solvent is improved, the oxaziazoline ring skeleton has a high electron-withdrawing property, and one of the oxaziazoline ring skeletons is present.
  • Has a pyrene skeleton and the other of the oxadiazoline ring skeleton has a fluorene skeleton, a force rubazole skeleton or an aromatic ring skeleton, and therefore can provide a light emitting compound capable of emitting blue light and a light emitting polymer compound. .
  • the molecular structure includes an oxaziazole skeleton, a pyrene skeleton bonded to one of the oxaziazole skeletons, and a fluorene skeleton, a force rubazole skeleton, or an aromatic ring skeleton bonded to the other of the oxaziazole skeleton in the molecule. Therefore, it is possible to provide a light-emitting element that can emit light with high luminance such as blue and has a long light emission lifetime.
  • the light emitting compound according to the present invention has a structure represented by the following formula (1).
  • the light-emitting compound represented by the following formula (1) may be referred to as “low-molecular light-emitting compound”.
  • A is any group represented by the following formulas (2) to (13). ] [0018] [Chemical 9]
  • the two R 1's may be the same or different! ]
  • R 1 s each represent an alkyl group having 1 to 20 carbon atoms
  • the two R 1's may be the same or different! ]
  • R 2 represents H or a methyl group.
  • the light-emitting polymer compound according to the present invention has a repeating unit structure represented by the following formula (14).
  • R 1 s each represent an alkyl group having 1 to 20 carbon atoms.
  • the two R 1 s may be the same as or different from each other. ]
  • the light-emitting polymer compound according to the present invention has a repeating unit structure represented by the following formula (15).
  • R 2 represents H or a methyl group.
  • the light-emitting polymer compound according to the present invention has a repeating unit structure represented by the following formula (16).
  • IT represents H or a methyl group.
  • two R 1 s each represent an alkyl group having 1 to 20 carbon atoms.
  • This Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, and s ec-pentyl.
  • alkyl groups an alkyl group having 115 carbon atoms is preferable, and an alkyl group having 110 carbon atoms is particularly preferable.
  • a acetyl group is introduced into 9,9-dialkylfluorene (a) by Friedel-Crafts reaction to form compound (b), which is further acidified to convert the acetyl group into a carboxylic acid.
  • (C) is formed, and the carboxylic acid in the compound (c) is converted into a salt. Therefore, in place of the acid chloride (d), the acid chloride and hydrazine are reacted to form a carbohydrazide compound (e).
  • This carbohydrazide compound (e) and 1-pyrenecarboxylic acid (f ) To form a dihydrazide compound (g), and this dihydrazide compound (g) is cyclized by heating, and the target compound (A) in the formula (1) is a group represented by the formula (2) ( la) can be generated.
  • 1-Hydroxycarbopyrene (f) can be obtained from a commercially available product. It can be obtained by introducing a acetyl group at the 1-position of pyrene by the Freedel-Crafts reaction, and then acidifying the acetyl group. I'll do it.
  • the Friedel-Craft reaction in the above reaction formula is carried out in a solvent such as orthodichlorobenzene (ODB) using anhydrous salt / aluminum, zinc, zinc chloride, boron fluoride, salt / iron salt as a catalyst. It is possible to adopt known reaction conditions.
  • the oxidation reaction in which a acetyl group is converted into a carboxylic acid proceeds by employing an oxidation method using an oxidizing agent such as NaCIO and other known oxidation methods.
  • an oxidizing agent such as NaCIO and other known oxidation methods.
  • reaction formula (2) 9, 9-dialkylfluorene is acetylated by Friedel-Crafts reaction to obtain 2,7-diacetyl-9,9-dialkylfluorene (compound (bl)), This is oxidized to obtain 2,7-dihydroxycarboluro 9,9-dialkylfluorene (compound (cl)), and this dicarboxylic acid compound (compound (cl) is converted into salt thiol.
  • the acid chloride (compound (h)) is converted into a dicarbohydrazide compound by subjecting the acid chloride (compound (h)) to a monocarbohydrazide derivative (compound (i)) to a hydrogenation reaction.
  • the N- (2-chloroethyl) force rubazole is acetylated by the Delcrafts reaction, the acetyl group is oxidized to replace the hydrocarbyl group, and the hydrocarbol group is clogged by thiyl chloride. It can be obtained by further reacting with hydrazine instead of the carbonyl group.
  • a luminescent compound in which the group A in the structural formula represented by the formula (1) is an N-vinylcarbazole skeleton represented by the formula (4) is provided. Can be exemplified by the method according to the following reaction formula (3). [0042] [Chemical 19]
  • (meth) acryl carbohydrazide derivative (compound (t)) is obtained by reacting 1-pyrenecarboxylic acid (compound (f)) with (meth) acrylic acid.
  • the target compound (Id) in which the group A in the formula (1) is represented by the formula (5) is then produced by heating and then ring-closing the compound (t).
  • the aromatic ring compound Ar—H is converted into an aromatic ring carboxylate compound Ar—COC1 by the Friedel-Crafts reaction and the subsequent acid reaction and chlorination reaction.
  • the aromatic carboxylic acid chloride Ar—COC1 and hydrazine were reacted to synthesize the carbohydrazide derivative compound ArCONHNH2, and this carbohydrazide derivative compound ArCO NHNH2 and 1-pyrenecarboxylic acid (compound (f)) and To react to the equation (1).
  • the target compound (le) in which the group A is represented by the formulas (6) to (13) is produced.
  • the light-emitting compound obtained as described above is polymerized by a polymerization reaction.
  • This polymerization may be homopolymerization or copolymerization.
  • the polymerization reaction may be any of radical polymerization, ion polymerization, and cationic polymerization.
  • a polymerization mode a bulk polymerization method, a suspension polymerization method, an emulsion polymerization method and a solution polymerization method can be used as a polymerization mode.
  • the polymerization reaction may be carried out under normal pressure, or under reduced pressure or pressure, but is usually carried out under normal pressure.
  • the polymerization process may be a batch process or a continuous process, but the power of manufacturing efficiency is preferred.
  • FIG. 1 is an explanatory diagram showing a cross-sectional structure of a light-emitting element that is also a single-layer organic EL element.
  • the light emitting element A is formed by laminating a light emitting layer 3 containing a light emitting material and an electrode layer 4 in this order on a substrate 1 on which a transparent electrode 2 is formed.
  • the light-emitting element shown in FIG. 1 contains the light-emitting compound according to the present invention in the light-emitting layer 3, when a current is passed through the transparent electrode 2 and the electrode layer 4, it depends on the type of the light-emitting compound. Lights up in a different color.
  • the light emitting element A shown in FIG. 1 is a large area planar shape, for example, the light emitting element A is mounted on a wall surface or a ceiling to provide a large area wall surface light emitting element, a large area ceiling surface light emitting element, or the like. It can be set as the planar light-emitting illuminating device. That is, when the light emitting element emits white light according to the light emitting compound, it can be used as a surface light source instead of a conventional linear light source such as a fluorescent lamp or a point light source such as a light bulb. In particular, a wall surface, a ceiling surface, or a floor surface of a living room, an office room, a vehicle room, or the like can be emitted or illuminated as a surface light source by the light emitting element.
  • the light emitting element A is displayed on a display screen in a computer or on a mobile phone. It can be used for backlight of a screen, a number display screen in a cash register.
  • the light-emitting element A can be used as various light sources such as direct illumination and indirect illumination, and can be lit at night and has good visibility, a road sign device, It can also be used as a light source for brake lamps, side lamps, knock lamps and the like in vehicles such as light emitting bulletin boards and automobiles.
  • the light emitting element A has a long light emission life because the light emitting layer has a light emitting compound having a pyrene skeleton and an oxaziazole ring skeleton in the light emitting layer. Therefore, the light emitting element A can be used as a light source having a long lifetime.
  • the light-emitting layer according to the present invention is contained in the light-emitting layer of the light-emitting element A, and other than the red light-emitting compound and the green light-emitting compound, the light-emitting element A is It emits light with a vivid color peculiar to its molecular structure.
  • the light-emitting element A includes a substrate 1 formed in a cylindrical shape, and a tubular light-emitting body in which a transparent electrode 2, a light-emitting layer 3, and an electrode layer 4 are laminated in this order on the inner surface side of the substrate 1. can do .
  • this light-emitting element A uses mercury for V, so it can be used as an environment-friendly light source instead of conventional fluorescent lamps using mercury. it can.
  • the substrate 1 a known substrate can be adopted as long as the transparent electrode 2 can be formed on the surface thereof.
  • the substrate 1 include a glass substrate, a plastic sheet, a ceramic, and a metal plate obtained by processing the surface into an insulating property such as forming an insulating coating layer on the surface.
  • the light emitting element containing the light emitting compound or the like according to the present invention in the light emitting layer is a single-sided illuminating device that can irradiate light on the side opposite to the substrate 1.
  • the light emitting device is a double-sided illumination device that can emit light of a color corresponding to the light-emitting compound from the substrate 1 side and the opposite surface.
  • the transparent electrode 2 employs various materials as long as it has a large work function and is transparent and can act as an anode by applying a voltage to inject holes into the light emitting layer 3. can do.
  • the transparent electrode 2 is made of ITO, InO, SnO, ZnO, Cd
  • inorganic transparent conductive materials such as compounds thereof, and high conductivity such as polyaniline It can be formed of a molecular material or the like.
  • the transparent electrode 2 is formed on the substrate 1 by chemical vapor deposition, spray pyrolysis, vacuum deposition, electron beam deposition, sputtering, ion beam sputtering, ion plating, ion assist. It can be formed by vapor deposition or other methods.
  • the electrode formed on the substrate does not need to be a transparent electrode.
  • the light emitting layer 3 can be formed as a polymer film in which the low molecular weight light emitting compound or the like according to the present invention is dispersed in a polymer. It can be formed as a molecular film, and can also be formed as a vapor-deposited film formed by vapor-depositing the low-molecular light-emitting compound according to the present invention on the transparent electrode 2.
  • Examples of the polymer in the polymer film include polybylcarbazole, poly (3-alkylenthiophene), polyimide containing arylamine, polyfluorein, polyphenylene-ethylene, poly-a-methylstyrene, -Lucarbazole Z ⁇ -methylstyrene copolymer and the like. Among these, polyburecarbazole is preferable.
  • the content of the light emitting compound according to the present invention in the polymer film is usually 0.01 to 2 wt%, preferably 0.05 to 0.5 wt%.
  • the thickness of the polymer film is usually 30 to 500 nm, preferably 100 to 300 nm. If the thickness of the polymer film is too thin, the amount of emitted light may be insufficient. If the thickness of the polymer film is too large, the driving voltage may become too high, which may be undesirable. Flexibility may be lacking when using a curved or annular body.
  • the polymer film is formed by a coating method such as a spin casting method, a coating method, and a dipping method using a solution obtained by dissolving the polymer and the light-emitting compound according to the present invention in an appropriate solvent. Can be formed.
  • a coating method such as a spin casting method, a coating method, and a dipping method using a solution obtained by dissolving the polymer and the light-emitting compound according to the present invention in an appropriate solvent. Can be formed.
  • the thickness of the vapor-deposited film is generally a force that varies depending on the layer structure in the light-emitting layer, etc.
  • the thickness of the deposited film is too small or too large, the same problem as described above may occur.
  • the electrode layer 4 employs a material having a small work function, such as MgAg, aluminum. It can be formed of a metal simple substance or a metal alloy such as a metal alloy or metal calcium. A preferred electrode layer 4 is an alloy electrode of aluminum and a small amount of lithium. The electrode layer 4 can be easily formed on the surface including the light emitting layer 3 formed on the substrate 1, for example, by a vapor deposition technique.
  • Examples of materials that can form the buffer layer include alkali metal compounds such as lithium fluoride, alkaline earth metal compounds such as magnesium fluoride, and oxides such as aluminum oxide, 4, 4, Biscarbazole biphenyl (Cz-TPD).
  • alkali metal compounds such as lithium fluoride
  • alkaline earth metal compounds such as magnesium fluoride
  • oxides such as aluminum oxide, 4, 4, Biscarbazole biphenyl (Cz-TPD).
  • m-MTDATA (4, 4 ,, 4 "-tris (3-methylphenol-aminoamine) ) Triphenylamine
  • phthalocyanine polyarine
  • polythiophene derivatives inorganic oxides such as molybdenum oxide, ruthenium oxide, vanadium oxide, and lithium fluoride.
  • FIG. 2 is an explanatory view showing a cross section of a light emitting device which is a multilayer organic EL device.
  • the light-emitting element B has a transparent electrode 2 and a hole transport layer on the surface of the substrate 1.
  • the light emitting layers 3a and 3b, the electron transport layer 6 and the electrode layer 4 are laminated in this order.
  • the substrate 1, the transparent electrode 2, and the electrode layer 4 are the same as those in the light-emitting element A shown in FIG.
  • the light emitting layer in the light emitting device B shown in FIG. 2 includes a light emitting layer 3a and a light emitting layer 3b.
  • the light emitting layer 3a is a low molecular weight light emitting compound and Z or a light emitting polymer according to the present invention. Contains compounds.
  • the light emitting layer 3a may be a vapor deposition film or a polymer film.
  • the light emitting layer 3b is a DPVBi layer. This DPVBi layer has a host material function.
  • the hole transport material contained in the hole transport layer 5 is a triphenylamine compound.
  • Products such as N, N, —Diphenyl-N, N, —Di (m-tolyl) -benzidine (TPD), and a NPD, hydrazone compounds, stilbene compounds, heterocyclic compounds, ⁇ -electron starburst positive Examples thereof include pore transport materials.
  • the electron transport material contained in the electron transport layer 6 includes, for example, 2- (4-tert-butylphenol) -5- (4-biphenyl) -1, Examples include oxadiazole derivatives such as 3,4-oxoxadiazole, 2,5 bis (1 naphthyl) 1,3,4 oxaziazole, and 2,5 bis (5 'tert butyl-2'-benzoxazolyl) thiophene . Further, as the electron transporting substance, for example, a metal complex material such as quinolinol aluminum complex (Alq3), benzoquinolinol beryllium complex (Bebq2) can be preferably used.
  • Alq3 quinolinol aluminum complex
  • Bebq2 benzoquinolinol beryllium complex
  • the electron transport layer 6 contains Alq3.
  • each layer is the same as that of a known multilayer organic EL element with a conventional force.
  • the light emitting element B shown in FIG. 2 operates in the same manner as the light emitting element A shown in FIG. 1, and emits light. Therefore, the light-emitting element B shown in FIG. 2 has the same application as the light-emitting element A shown in FIG.
  • FIG. 3 shows a third example of the light emitting device according to the present invention.
  • FIG. 3 is an explanatory view showing a cross section of a light emitting device which is a multilayer organic EL device.
  • a light-emitting element C shown in FIG. 3 is formed by laminating a transparent electrode 2, a hole transport layer 5, a light-emitting layer 3, an electron transport layer 8 and an electrode layer 4 in this order on the surface of a substrate 1.
  • the light-emitting element C shown in FIG. 3 is the same as the light-emitting element B.
  • FIG. 4 shows another example of the light emitting element.
  • the light emitting element D shown in FIG. 4 is formed by laminating a substrate 1, an electrode 2, a hole transport layer 5, a light emitting layer 3 and an electrode layer 4 in this order.
  • a hole transport layer containing a hole transport material is formed between a positive electrode that is a transparent electrode and a cathode that is an electrode layer formed on a substrate.
  • a low-molecular-weight organic light-emitting device (for example, between an anode and a cathode) formed by laminating a low-molecular light-emitting compound and an electron-transporting light-emitting layer containing Z or a light-emitting polymer compound according to the present invention.
  • a two-layer color comprising a hole transport layer and a light emitting layer containing a low molecular weight light emitting compound and a Z or light emitting polymer compound and a host dye as a guest dye.
  • Element-doped light-emitting element a hole transport layer containing a hole transport material between the anode and the cathode, a low-molecular light-emitting compound and Z or a light-emitting polymer compound and an electron transport material according to the present invention
  • a two-layer organic light-emitting device formed by laminating an electron-transporting light-emitting layer formed by co-evaporation for example, a hole transport layer between an anode and a cathode, and a low-molecular-weight organic compound according to the present invention as a guest dye).
  • a two-layer dye-doped organic light-emitting device comprising a light-emitting compound and Z or an electron-transporting light-emitting layer containing a light-emitting polymer compound and a host dye, and a hole transport layer between the anode and the cathode
  • Examples thereof include a three-layer organic light-emitting device formed by laminating a light-emitting layer and an electron transport layer containing a low-molecular light-emitting compound and Z or a light-emitting polymer compound according to the present invention.
  • the electron-transporting light-emitting layer in this light-emitting element is usually composed of 50 to 80% polyvinyl carbazole (PVK), an electron-transporting light-emitting agent 5 to 40%, and the low-molecular weight according to the present invention.
  • PVK polyvinyl carbazole
  • an electron-transporting light-emitting agent 5 to 40% an electron-transporting light-emitting agent 5 to 40%
  • the low-molecular weight according to the present invention.
  • the light emitting layer preferably contains rubrene as a sensitizer, and particularly contains rubrene and Alq3 !.
  • the light emitting device using the low molecular weight light emitting compound and Z or the light emitting polymer compound according to the present invention can be generally used as, for example, a direct current driving type organic EL device, and a nors driving type organic EL device. It can also be used as an EL element and an AC drive type organic EL element.
  • Example 1 a light emitting compound having a structure represented by the following formula (10) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
  • Fig. 5 and Fig. 6 show the NMR ⁇ vector chart and IR spectrum chart of the obtained composition, respectively. From these NMR ⁇ vector chart and IR ⁇ vector chart, it was confirmed that the obtained compositional power compound (1A) (methyl ketone fluorene) was obtained.
  • Fig. 11 and Fig. 12 show the NMR ⁇ vector chart and IR spectrum chart of the obtained composition, respectively. From these NMR ⁇ vector chart and IR ⁇ vector chart, it was confirmed that the obtained composition was the compound (1D).
  • Example 2 a light-emitting polymer compound having a structure represented by the following formula (2-0) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
  • a polymer compound (2G) was produced according to the following reaction formula (2-7).
  • Example 3 a light-emitting polymer compound having a structure represented by the following formula (3-0) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
  • a polymer compound (3F) was produced according to the following reaction formula (3-6).
  • Example 4 a light emitting compound having a structure represented by the following formula (40) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
  • Example 5 a light emitting compound having a structure represented by the following formula (5-0) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
  • Fig. 51 and Fig. 52 show the NMR ⁇ vector chart and IR spectrum chart of the obtained composition, respectively. From these NMR ⁇ vector chart and IR ⁇ vector chart, it was confirmed that the obtained composition was the compound (4A).
  • Example 6 a light-emitting polymer compound having a structure represented by the following formula (6-0) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
  • a polymer compound (6C) was produced according to the following reaction formula (6-3).
  • Fig. 64 shows an IR ⁇ vector chart of the obtained composition. From the IR ⁇ spectrum chart, it was confirmed that the obtained composition was a polymer compound (6C).
  • FIG. 1 is an explanatory view showing a light emitting device as an example according to the present invention.
  • FIG. 2 is an explanatory view showing a light emitting device as another example according to the present invention.
  • FIG. 3 is an explanatory view showing a light emitting device as another example according to the present invention.
  • FIG. 4 is an explanatory view showing a light emitting device as still another example according to the present invention.
  • FIG. 5 is an NMR spectrum chart showing the compound (1A) synthesized in the example of the present invention.
  • FIG. 6 is an IR ⁇ vector chart showing the compound (1A) synthesized in the example of the present invention.
  • FIG. 7 is a NMR vector chart showing the compound (1B) synthesized in the example of the present invention.
  • FIG. 8 is an IR spectrum chart showing the compound (1B) synthesized in the example of the present invention. It is
  • FIG. 9 is an NMR spectrum chart showing the compound (1C) synthesized in the example of the present invention.
  • FIG. 10 is an IR ⁇ vector chart showing the compound (1C) synthesized in the example of the present invention.
  • FIG. 11 is an NMR spectrum chart showing the compound (1D) synthesized in the example of the present invention.
  • FIG. 12 is an IR spectrum chart showing the compound (1D) synthesized in the example of the present invention.
  • FIG. 13 is an NMR spectrum chart showing the compound (1E) synthesized in the example of the present invention.
  • FIG. 14 is an IR ⁇ vector chart showing a composite (1E) synthesized in an example of the present invention.
  • FIG. 15 is an NMR spectrum chart showing the compound (1F) synthesized in the example of the present invention.
  • FIG. 16 is an IR ⁇ vector chart showing a composite (1F) synthesized in an example of the present invention.
  • FIG. 17 is a fluorescence spectrum chart showing the compound (1F) synthesized in the example of the present invention.
  • FIG. 18 is a NMR spectrum chart showing the compound (2A) synthesized in the example of the present invention.
  • FIG. 19 is an IR ⁇ vector chart showing the compound (2A) synthesized in the example of the present invention.
  • FIG. 20 is an NMR spectrum chart showing the compound (2B) synthesized in the example of the present invention.
  • FIG. 21 is an IR spectrum chart showing the compound (2B) synthesized in the example of the present invention.
  • FIG. 22 shows NMR spectra showing the compound (2C) synthesized in the example of the present invention. It is a Nore chart.
  • FIG. 23 is an IR ⁇ vector chart showing a composite (2C) synthesized in an example of the present invention.
  • FIG. 24 is an NMR spectrum chart showing a compound (2D) synthesized in an example of the present invention.
  • FIG. 25 is an IR spectrum chart showing the compound (2D) synthesized in the example of the present invention.
  • FIG. 26 is an NMR spectrum chart showing the compound (2E) synthesized in the example of the present invention.
  • FIG. 27 is an IR ⁇ vector chart showing the compound (2E) synthesized in the example of the present invention.
  • FIG. 28 is an NMR spectrum chart showing the compound (2F) synthesized in the example of the present invention.
  • FIG. 29 is an IR ⁇ vector chart showing the compound (2F) synthesized in the example of the present invention.
  • FIG. 30 is an NMR spectrum chart showing the polymer compound (2G) synthesized in the example of the present invention.
  • FIG. 31 is an IR spectrum chart showing the polymer compound (2G) synthesized in the example of the present invention.
  • FIG. 32 is a fluorescence spectrum chart showing the polymer compound (2G) synthesized in the example of the present invention.
  • FIG. 33 is a NMR spectrum chart showing the compound (3A) synthesized in the example of the present invention.
  • FIG. 34 is an IR ⁇ vector chart showing a composite (3A) synthesized in the example of the present invention.
  • FIG. 35 is an NMR spectrum chart showing the compound (3B) synthesized in the example of the present invention.
  • FIG. 36 is an IR spectrum showing the compound (3B) synthesized in the example of the present invention. It is a chart.
  • FIG. 37 is a NMR spectrum chart showing the compound (3C) synthesized in the example of the present invention.
  • FIG. 38 is an IR ⁇ vector chart showing a composite (3C) synthesized in an example of the present invention.
  • FIG. 39 is an NMR spectrum chart showing the compound (3D) synthesized in the example of the present invention.
  • FIG. 40 is an IR spectrum chart showing the compound (3D) synthesized in the example of the present invention.
  • FIG. 41 is an NMR spectrum chart showing the compound (3E) synthesized in the example of the present invention.
  • FIG. 42 is an IR ⁇ vector chart showing a composite (3E) synthesized in an example of the present invention.
  • FIG. 43 is an NMR spectrum chart showing the polymer compound (3F) synthesized in the example of the present invention.
  • FIG. 44 is an IR spectrum chart showing the polymer compound (3F) synthesized in the example of the present invention.
  • FIG. 45 is a fluorescence spectrum chart showing a polymer compound (3F) synthesized in an example of the present invention.
  • FIG. 46 is an NMR spectrum chart showing the compound (4B) synthesized in the example of the present invention.
  • FIG. 47 is an IR spectrum chart showing the compound (4B) synthesized in the example of the present invention.
  • FIG. 48 is an NMR spectrum chart showing the compound (4C) synthesized in the example of the present invention.
  • FIG. 49 is an IR ⁇ vector chart showing the compound (4C) synthesized in the example of the present invention.
  • FIG. 50 shows a fluorescent spectrum showing a compound (4C) synthesized in an example of the present invention. It is a Nore chart.
  • FIG. 51 is a NMR spectrum chart showing the compound (5A) synthesized in the example of the present invention.
  • FIG. 52 is an IR ⁇ vector chart showing a composite (5A) synthesized in an example of the present invention.
  • FIG. 53 is an NMR spectrum chart showing the compound (5B) synthesized in the example of the present invention.
  • FIG. 54 is an IR spectrum chart showing the compound (5B) synthesized in the example of the present invention.
  • FIG. 55 is a NMR spectrum chart showing the compound (5C) synthesized in the example of the present invention.
  • FIG. 56 is an IR ⁇ vector chart showing a composite (5C) synthesized in an example of the present invention.
  • FIG. 57 is an NMR spectrum chart showing the compound (5D) synthesized in the example of the present invention.
  • FIG. 58 is an IR spectrum chart showing the compound (5D) synthesized in the example of the present invention.
  • FIG. 59 is a fluorescence spectrum chart showing the composite (5D) synthesized in the example of the present invention.
  • FIG. 60 is an NMR spectrum chart showing the compound (6A) synthesized in the example of the present invention.
  • FIG. 61 is an IR ⁇ vector chart showing a composite (6A) synthesized in an example of the present invention.
  • FIG. 62 is an NMR spectrum chart showing the compound (6B) synthesized in the example of the present invention.
  • FIG. 63 is an IR spectrum chart showing the compound (6B) synthesized in the example of the present invention.
  • FIG. 64 shows an IR spectrum showing the polymer compound (6C) synthesized in the example of the present invention. It is a ktonore chart.
  • FIG. 65 is a fluorescence spectrum chart showing a polymer compound (6C) synthesized in an example of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed are a light-emitting compound and a light-emitting polymer compound which emit blue light or the like and contain pyrene. Also disclosed is a light-emitting device. Specifically disclosed are a light-emitting compound and a light-emitting polymer compound respectively characterized by having a specific structure. Also specifically disclosed is a light-emitting device characterized by comprising a light-emitting layer arranged between a pair of electrodes and containing the light-emitting compound or the light-emitting polymer compound.

Description

明 細 書  Specification
発光化合物、発光高分子化合物、および発光素子  Light emitting compound, light emitting polymer compound, and light emitting device
技術分野  Technical field
[0001] この発明は発光化合物、発光高分子化合物、および発光素子に関し、更に詳しく は、ピレンを含有する発光化合物、発光高分子化合物、および発光素子に関する。 背景技術  The present invention relates to a light emitting compound, a light emitting polymer compound, and a light emitting element, and more particularly to a light emitting compound, a light emitting polymer compound, and a light emitting element containing pyrene. Background art
[0002] 青色発光可能な化合物として、一般式が Ar2— CH— Ar— CH— Arl (ただし、  [0002] As a compound capable of emitting blue light, the general formula is Ar2—CH—Ar—CH—Arl (however,
2 2  twenty two
Arはフヱ-レン基、ナフチル基、又はアントリル基である。)で示される新規物質が提 案されている (特許文献 1)。この新規物質は青色に発光し、色純度が大きぐ大きな 輝度で発光する、堅牢な物質である。  Ar is a vinylene group, a naphthyl group, or an anthryl group. ) Has been proposed (Patent Document 1). This new substance is a robust substance that emits blue light and emits light with high brightness and high color purity.
[0003] 有機 ELの技術分野においては、上記青色発光可能な新規化合物のほかにも、様 々な発光化合物が探索されて!、る。 In the technical field of organic EL, in addition to the above novel compounds capable of emitting blue light, various luminescent compounds are being searched!
[0004] 特許文献 1 :特開 2004— 18401 Patent Document 1: Japanese Patent Application Laid-Open No. 2004-18401
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] この発明の目的は、青色等に発光し、ピレンを含有する発光化合物、発光高分子 化合物、および発光素子を提供することを目的とする。 An object of the present invention is to provide a light-emitting compound, a light-emitting polymer compound, and a light-emitting element that emit blue light and contain pyrene.
課題を解決するための手段  Means for solving the problem
[0006] 前記課題を解決するための手段として、 [0006] As means for solving the above problems,
請求項 1は、  Claim 1
以下の式(1)で示される構造を有することを特徴とする発光化合物であり、  A light-emitting compound characterized by having a structure represented by the following formula (1):
[0007] [化 1] [0007] [Chemical 1]
Figure imgf000003_0001
〔前記式(1)において、 Aは、下記式(2)〜(13)で表されるいずれかの基である。〕 [化 2]
Figure imgf000003_0001
[In the formula (1), A represents any group represented by the following formulas (2) to (13). ] [Chemical 2]
Figure imgf000004_0001
Figure imgf000004_0001
〔ただし、式(2)において、 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示し、 2個の R1は互いに同一であっても相違して!/、ても良!、。〕 [In the formula (2), two R 1 s each represent an alkyl group having 1 to 20 carbon atoms, and the two R 1 s may be the same or different from each other! / . ]
[化 3] [Chemical 3]
Figure imgf000004_0002
Figure imgf000004_0002
〔ただし、式(3)において、 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示し、 2個の R1は互いに同一であっても相違して!/、ても良!、。〕 [In the formula (3), two R 1 s each represent an alkyl group having 1 to 20 carbon atoms, and the two R 1 s may be the same or different from each other! / . ]
Figure imgf000004_0003
[0011] [化 5]
Figure imgf000004_0003
[0011] [Chemical 5]
H2 二 — • (5) H2 Second — • (5)
〔ただし、式(5)において、 R2は Hまたはメチル基を示す。〕 [In the formula (5), R 2 represents H or a methyl group. ]
[0012] [化 6] [0012] [Chemical 6]
Figure imgf000005_0001
Figure imgf000005_0001
請求項 2は、 Claim 2
以下の式(14)で示される繰り返し単位構造を有することを特徴とする発光高分子 化合物であり、  A light-emitting polymer compound having a repeating unit structure represented by the following formula (14):
[0013] [化 7]
Figure imgf000006_0001
[0013] [Chemical 7]
Figure imgf000006_0001
〔ただし、式(14)において、 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示し 、 2個の R1は互いに同一であっても相違していても良い。〕 [However, in the formula (14), two R 1 s each represent an alkyl group having 1 to 20 carbon atoms, and the two R 1 s may be the same or different from each other. ]
請求項 3は、  Claim 3
以下の式(15)で示される繰り返し単位構造を有することを特徴とする発光高分子 化合物であり、  A light-emitting polymer compound having a repeating unit structure represented by the following formula (15):
Figure imgf000006_0002
Figure imgf000006_0002
〔ただし、式(15)において、 R2は Hまたはメチル基を示す。〕 [In the formula (15), R 2 represents H or a methyl group. ]
請求項 4は、  Claim 4
以下の式(16)で示される繰り返し単位構造を有することを特徴とする発光高分子 化合物であり、  A light emitting polymer compound having a repeating unit structure represented by the following formula (16):
Figure imgf000006_0003
Figure imgf000006_0003
〔ただし、式(16)において、 R2は Hまたはメチル基を示す。〕 [In the formula (16), R 2 represents H or a methyl group. ]
請求項 5は、 一対の電極間に、前記請求項 1に記載の発光化合物または前記請求項 2〜4のい ずれか 1項に記載の発光高分子化合物を含有する発光層を設けてなることを特徴と する発光素子である。 Claim 5 A light emitting layer comprising a light emitting layer containing the light emitting compound according to claim 1 or the light emitting polymer compound according to any one of claims 2 to 4 between a pair of electrodes. It is an element.
発明の効果  The invention's effect
[0014] この発明によると、分子内にピレン骨格を有するので発光強度が大きくなるとともに 溶媒に対する溶解性が向上し、電子吸引性の大きなォキサジァゾリン環骨格を有す るとともに、ォキサジァゾリン環骨格の一方にはピレン骨格が結合し、ォキサジァゾリ ン環骨格の他方にはフルオレン骨格、力ルバゾール骨格又は芳香環骨格が結合す るので青色等に発光可能な発光化合物、及び発光高分子化合物を提供することが できる。この発明によると、分子内にォキサジァゾール骨格とこのォキサジァゾ -ル骨 格の一方に結合するピレン骨格と前記ォキサジァゾール骨格の他方に結合するフル オレン骨格、力ルバゾール骨格又は芳香環骨格とを有するので分子構造が堅牢であ り、したがって、青色等に高輝度で発光可能で発光寿命が長寿命である発光素子を 提供することができる。  [0014] According to the present invention, since it has a pyrene skeleton in the molecule, the emission intensity is increased, the solubility in a solvent is improved, the oxaziazoline ring skeleton has a high electron-withdrawing property, and one of the oxaziazoline ring skeletons is present. Has a pyrene skeleton and the other of the oxadiazoline ring skeleton has a fluorene skeleton, a force rubazole skeleton or an aromatic ring skeleton, and therefore can provide a light emitting compound capable of emitting blue light and a light emitting polymer compound. . According to the present invention, the molecular structure includes an oxaziazole skeleton, a pyrene skeleton bonded to one of the oxaziazole skeletons, and a fluorene skeleton, a force rubazole skeleton, or an aromatic ring skeleton bonded to the other of the oxaziazole skeleton in the molecule. Therefore, it is possible to provide a light-emitting element that can emit light with high luminance such as blue and has a long light emission lifetime.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] この発明に係る発光化合物は、以下の式(1)で示される構造を有する。なお、以下 にお 、て、以下の式(1)で示される発光化合物を「低分子の発光化合物」と称するこ とがある。 The light emitting compound according to the present invention has a structure represented by the following formula (1). Hereinafter, the light-emitting compound represented by the following formula (1) may be referred to as “low-molecular light-emitting compound”.
[0016] [化 8] [0016] [Chemical 8]
Figure imgf000007_0001
Figure imgf000007_0001
[0017] 〔前記式(1)において、 Aは、下記式(2)〜(13)で表されるいずれかの基である。〕 [0018] [化 9] [In the above formula (1), A is any group represented by the following formulas (2) to (13). ] [0018] [Chemical 9]
Figure imgf000008_0001
Figure imgf000008_0001
[0019] 〔ただし、式(2)において、 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示し、[In the formula (2), two R 1 s each represent an alkyl group having 1 to 20 carbon atoms,
2個の R1は互いに同一であっても相違して!/、ても良!、。〕 The two R 1's may be the same or different! ]
[0020] [化 10] [0020] [Chemical 10]
Figure imgf000008_0002
Figure imgf000008_0002
[0021] 〔ただし、式(3)において、 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示し、[In the formula (3), two R 1 s each represent an alkyl group having 1 to 20 carbon atoms,
2個の R1は互いに同一であっても相違して!/、ても良!、。〕 The two R 1's may be the same or different! ]
[0022] [化 11] [0022] [Chemical 11]
Figure imgf000008_0003
Figure imgf000008_0003
[0023] [化 12] : G— • ( 5 ) [0023] [Chemical 12] : G— • (5)
[0024] 〔ただし、式(5)にお 、て、 R2は Hまたはメチル基を示す。〕 [In the formula ( 5 ), R 2 represents H or a methyl group. ]
[0025] [化 13] [0025] [Chemical 13]
Figure imgf000009_0001
Figure imgf000009_0001
[0026] この発明に係る発光高分子化合物は、以下の式(14)で示される繰り返し単位構造 を有する。 [0026] The light-emitting polymer compound according to the present invention has a repeating unit structure represented by the following formula (14).
[0027] [化 14] ( 1 4:)
Figure imgf000010_0001
[0027] [Chemical 14] ( 14:)
Figure imgf000010_0001
[0028] 〔ただし、式(14)において、 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示し[In the formula (14), two R 1 s each represent an alkyl group having 1 to 20 carbon atoms.
、 2個の R1は互いに同一であっても相違していても良い。〕 The two R 1 s may be the same as or different from each other. ]
[0029] この発明に係る発光高分子化合物は、以下の式(15)で示される繰り返し単位構造 を有する。 [0029] The light-emitting polymer compound according to the present invention has a repeating unit structure represented by the following formula (15).
[0030] [化 15] [0030] [Chemical 15]
Figure imgf000010_0002
Figure imgf000010_0002
[0031] 〔ただし、式(15)において、 R2は Hまたはメチル基を示す。〕 [In the formula (15), R 2 represents H or a methyl group. ]
この発明に係る発光高分子化合物は、以下の式(16)で示される繰り返し単位構造 を有する。  The light-emitting polymer compound according to the present invention has a repeating unit structure represented by the following formula (16).
[0032] [化 16] [0032] [Chemical 16]
Figure imgf000010_0003
Figure imgf000010_0003
[0033] 〔ただし、式( 16)にお 、て、 ITは Hまたはメチル基を示す。〕 [In the formula (16), IT represents H or a methyl group. ]
なお、上記式中の 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示している。こ のアルキル基としては、具体的には、メチル基、ェチル基、プロピル基、イソプロピル 基、 n—ブチル基、イソブチル基、 sec—ブチル基、 tert—ブチル基、 n-ペンチル基、 s ec-ペンチル基、 tert-ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、 デシル基、ゥンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル 基、へキサデシル基、ヘプタデシル基、ォクタデシル基、ノナデシル基、及びエイコ シル基等を挙げることができる。これらアルキル基の中でも、炭素数 1 15のアルキ ル基が好ましぐ特に、炭素数 1 10のアルキル基が好ましい。 In the above formula, two R 1 s each represent an alkyl group having 1 to 20 carbon atoms. This Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, and s ec-pentyl. Group, tert-pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group And an eicosyl group. Among these alkyl groups, an alkyl group having 115 carbon atoms is preferable, and an alkyl group having 110 carbon atoms is particularly preferable.
[0034] この発明に係る発光化合物の製造方法として、前記式(1)で示される構造式にお ける Aが式(2)で示されるフルオレン骨格である発光化合物については、例えば以下 の反応式(1)に従う方法を挙げることができる。  [0034] As a method for producing a luminescent compound according to the present invention, for the luminescent compound in which A in the structural formula represented by the formula (1) is a fluorene skeleton represented by the formula (2), for example, the following reaction formula: The method according to (1) can be mentioned.
[0035] [化 17]  [0035] [Chemical 17]
反応式(1 )  Reaction formula (1)
Figure imgf000011_0001
Figure imgf000011_0001
反応式(1)において、フリーデルクラフツ反応により 9, 9ージアルキルフルオレン(a )にァセチル基を導入して化合物(b)を生成し、更に酸ィ匕してァセチル基をカルボン 酸とした化合物(c)を生成し、この化合物(c)におけるカルボン酸を塩ィ匕チォ-ルに よって酸塩化物 (d)に代え、酸塩ィ匕物とヒドラジンとを反応させてカルボヒドラジドィ匕合 物(e)を生成し、このカルボヒドラジド化合物(e)と 1—ピレンカルボン酸 (f)とを反応さ せてジヒドラジド化合物 (g)とし、このジヒドラジドィ匕合物 (g)を加熱により閉環して、式 (1)における Aが式(2)で示される基である目的化合物(la)を生成することができる 。なお、 1—ヒドロキシカルボピレン (f)は市販品を使用することができる力 フリーデ ルクラフツ反応によりピレンの 1位にァセチル基を導入し、次いでそのァセチル基を 酸ィ匕すること〖こより得ることちでさる。 In reaction formula (1), a acetyl group is introduced into 9,9-dialkylfluorene (a) by Friedel-Crafts reaction to form compound (b), which is further acidified to convert the acetyl group into a carboxylic acid. (C) is formed, and the carboxylic acid in the compound (c) is converted into a salt. Therefore, in place of the acid chloride (d), the acid chloride and hydrazine are reacted to form a carbohydrazide compound (e). This carbohydrazide compound (e) and 1-pyrenecarboxylic acid (f ) To form a dihydrazide compound (g), and this dihydrazide compound (g) is cyclized by heating, and the target compound (A) in the formula (1) is a group represented by the formula (2) ( la) can be generated. 1-Hydroxycarbopyrene (f) can be obtained from a commercially available product. It can be obtained by introducing a acetyl group at the 1-position of pyrene by the Freedel-Crafts reaction, and then acidifying the acetyl group. I'll do it.
[0037] 前記反応式におけるフリーデルークラフト反応は、無水塩ィ匕アルミニウム、亜鉛、塩 化亜鉛、フッ化ホウ素、塩ィ匕鉄などを触媒に用いて、オルソジクロルベンゼン (ODB) 等の溶媒中で進行するのであって、公知の反応条件を採用することができる。ァセチ ル基をカルボン酸にする酸化反応は、 NaCIO等の酸化剤を用いる酸化方法及びそ の他の公知の酸化方法を採用することにより進行する。 CONHNHCO を環化 してォキサジァゾ一ル環を形成するには例えばォキシ三塩化リン等を用いて加熱す るのが良い。 [0037] The Friedel-Craft reaction in the above reaction formula is carried out in a solvent such as orthodichlorobenzene (ODB) using anhydrous salt / aluminum, zinc, zinc chloride, boron fluoride, salt / iron salt as a catalyst. It is possible to adopt known reaction conditions. The oxidation reaction in which a acetyl group is converted into a carboxylic acid proceeds by employing an oxidation method using an oxidizing agent such as NaCIO and other known oxidation methods. In order to cyclize CONHNHCO to form an oxadiazole ring, it is preferable to heat using, for example, phosphorus oxytrichloride.
[0038] この発明に係る発光化合物の製造方法として、前記式(1)で示される構造式にお ける基 Aが式(3)で示されるフルオレン骨格である発光化合物については、例えば以 下の反応式(2)に従う方法を挙げることができる。  [0038] As a method for producing a light-emitting compound according to the present invention, for a light-emitting compound in which the group A in the structural formula represented by the formula (1) is a fluorene skeleton represented by the formula (3), for example, A method according to reaction formula (2) can be mentioned.
[0039] [化 18] [0039] [Chemical 18]
^, ^,
Figure imgf000013_0001
Figure imgf000013_0001
[0040] 反応式(2)において、 9, 9ージアルキルフルオレンをフリーデルクラフツ反応により ァセチル化して 2, 7—ジァセチル— 9, 9—ジアルキルフルオレン(ィ匕合物(bl) )を 得、次いでこれを酸化して 2, 7—ジヒドロキシカルボ-ルー 9, 9ージアルキルフルォ レン (化合物(cl) )を得、このジカルボン酸ィ匕合物 (化合物(cl)を塩ィ匕チォ-ルにて 酸塩化物 (化合物 (h) )とし、この酸塩化物 (化合物 (h) )とモノカルボヒドラジド誘導体 (化合物 (i) )とを脱塩ィ匕水素反応させてジカルボヒドラジドィ匕合物 (化合物 (j) )を得、 この化合物 (j)とヒドラジンとを反応させて化合物 (m)を得、この化合物 (m)と 1—ピレ ンカルボン酸 (化合物 (f ) )とを反応させて化合物 (o)を製造し、この化合物 (o)をカロ 熱して閉環することにより化合物 (p)を得、この化合物 (p)を脱塩化水素反応して式( 1)における基 Aが式 (3)で示される目的化合物(lb)が製造される。前記化合物 (i) は、市販品を使用することができる力 フリーデルクラフツ反応により N— (2—クロ口 ェチル)力ルバゾールの 3位をァセチル化し、これのァセチル基を酸化してヒドロカル ボ-ル基に代え、塩化チォ -ルによりヒドロカルボ-ル基をクロ口カルボ-ル基に代 え、さらにヒドラジンと反応させることにより得ることができる。  [0040] In reaction formula (2), 9, 9-dialkylfluorene is acetylated by Friedel-Crafts reaction to obtain 2,7-diacetyl-9,9-dialkylfluorene (compound (bl)), This is oxidized to obtain 2,7-dihydroxycarboluro 9,9-dialkylfluorene (compound (cl)), and this dicarboxylic acid compound (compound (cl) is converted into salt thiol. The acid chloride (compound (h)) is converted into a dicarbohydrazide compound by subjecting the acid chloride (compound (h)) to a monocarbohydrazide derivative (compound (i)) to a hydrogenation reaction. (Compound (j)) is obtained, and this compound (j) is reacted with hydrazine to obtain a compound (m). This compound (m) is reacted with 1-pyrenecarboxylic acid (compound (f)). Compound (o) is produced, and this compound (o) is subjected to carothermal heating to cyclize to obtain compound (p). ) Is dehydrochlorinated to produce the target compound (lb) in which the group A in the formula (1) is represented by the formula (3). The N- (2-chloroethyl) force rubazole is acetylated by the Delcrafts reaction, the acetyl group is oxidized to replace the hydrocarbyl group, and the hydrocarbol group is clogged by thiyl chloride. It can be obtained by further reacting with hydrazine instead of the carbonyl group.
[0041] この発明に係る発光化合物の製造方法として、前記式(1)で示される構造式にお ける基 Aが式 (4)で示される N—ビニルカルバゾール骨格である発光化合物につ ヽ ては、例えば以下の反応式(3)に従う方法を挙げることができる。 [0042] [化 19] [0041] As a method for producing a luminescent compound according to the present invention, a luminescent compound in which the group A in the structural formula represented by the formula (1) is an N-vinylcarbazole skeleton represented by the formula (4) is provided. Can be exemplified by the method according to the following reaction formula (3). [0042] [Chemical 19]
(3) ΰΰΗ  (3) ΰΰΗ
Figure imgf000014_0001
Figure imgf000014_0001
[0043] 反応式(3)において、 N—(2—クロロェチル)力ルバゾールを出発物質として得ら れたモノカルボヒドラジド誘導体 (化合物 (i) )と 1ーピレンカルボン酸 (化合物 (f) )とを 反応させてジカルボヒドラジドィ匕合物 (化合物(q) )を得、このジカルボヒドラジドィ匕合 物 (q)を加熱して閉環することにより化合物 (r)を得、この化合物 (r)を脱塩化水素反 応して式(1)における基 Aが式 (4)で示される目的化合物(lc)が製造される。 [0043] In the reaction formula (3), a monocarbohydrazide derivative (compound (i)) obtained using N- (2-chloroethyl) power rubazole as a starting material is reacted with 1-pyrenecarboxylic acid (compound (f)). To obtain a dicarbohydrazide compound (compound (q)). The dicarbohydrazide compound (q) is heated to cyclize to obtain a compound (r). The target compound (lc) in which the group A in the formula (1) is represented by the formula (4) is produced by the dehydrochlorination reaction.
[0044] この発明に係る発光化合物の製造方法として、前記式(1)で示される構造式にお ける基 Aが式(5)で示されるビニル基である発光化合物については、例えば以下の 反応式 (4)に従う方法を挙げることができる。  [0044] As a method for producing a luminescent compound according to the present invention, for the luminescent compound in which the group A in the structural formula represented by the formula (1) is a vinyl group represented by the formula (5), for example, the following reaction A method according to formula (4) can be mentioned.
[0045] [化 20]
Figure imgf000015_0001
[0045] [Chemical 20]
Figure imgf000015_0001
[0046] 反応式 (4)において、 1—ピレンカルボン酸 (ィ匕合物 (f) )と (メタ)アクリル酸とを反応 させることにより(メタ)アクリルカルボヒドラジド誘導体 (化合物 (t) )を製造し、次 ヽでこ の化合物 (t)を加熱して閉環することにより、式(1)における基 Aが式(5)で示される 目的化合物(Id)が製造される。 In reaction formula (4), (meth) acryl carbohydrazide derivative (compound (t)) is obtained by reacting 1-pyrenecarboxylic acid (compound (f)) with (meth) acrylic acid. The target compound (Id) in which the group A in the formula (1) is represented by the formula (5) is then produced by heating and then ring-closing the compound (t).
[0047] この発明に係る発光化合物の製造方法として、前記式(1)で示される構造式にお ける基 Aが式 (6)〜(13)で示される芳香環である発光化合物については、例えば以 下の反応式(5)に従う方法を挙げることができる。反応式(5)においては、出発物質 であるベンゼン、ナフタレン、アントラセン及びピレンを総括して芳香環化合物 Ar— Hと表示して説明することにする。 [0047] As a method for producing a light-emitting compound according to the present invention, for a light-emitting compound in which the group A in the structural formula represented by the formula (1) is an aromatic ring represented by the formulas (6) to (13), For example, a method according to the following reaction formula (5) can be mentioned. In the reaction formula (5), the starting materials benzene, naphthalene, anthracene and pyrene are collectively represented by the aromatic ring compound Ar— I will explain it by displaying H.
[0048] [化 21] 反 to式 (5) [0048] [Chemical 21] Anti-to expression (5)
A ~ti Ar-COCI - Ar~Gu Nn Nri  A ~ ti Ar-COCI-Ar ~ Gu Nn Nri
Figure imgf000016_0001
Figure imgf000016_0001
[0049] 反応式(5)にお 、て、前記芳香環化合物 Ar— Hをフリーデルクラフツ反応及びそ の後の酸ィ匕反応及び塩素化反応により芳香環カルボン酸塩ィ匕物 Ar— COC1を得、 この芳香環カルボン酸塩化物 Ar— COC1とヒドラジンとを反応させてカルボヒドラジド 誘導体化合物 ArCONHNH2を合成し、このカルボヒドラジド誘導体化合物 ArCO NHNH2と 1ーピレンカルボン酸 (ィ匕合物 (f) )とを反応させることにより、式(1)にお ける基 Aが式 (6)〜(13)で示される目的化合物(le)が製造される。 [0049] In the reaction formula (5), the aromatic ring compound Ar—H is converted into an aromatic ring carboxylate compound Ar—COC1 by the Friedel-Crafts reaction and the subsequent acid reaction and chlorination reaction. The aromatic carboxylic acid chloride Ar—COC1 and hydrazine were reacted to synthesize the carbohydrazide derivative compound ArCONHNH2, and this carbohydrazide derivative compound ArCO NHNH2 and 1-pyrenecarboxylic acid (compound (f)) and To react to the equation (1). The target compound (le) in which the group A is represented by the formulas (6) to (13) is produced.
[0050] また、この発明に係る発光高分子化合物の製造方法としては、上記のようにして得 られた発光化合物を重合反応により重合させればょ 、。この重合は単独重合であつ ても共重合であっても良い。重合反応は、ラジカル重合、ァ-オン重合及びカチオン 重合のいずれであっても良い。また、重合形式としては、塊状重合法、懸濁重合法、 乳化重合法及び溶液重合法の!、ずれであってもよ!ヽが、溶液重合が好ま ヽ。 [0050] As a method for producing a light-emitting polymer compound according to the present invention, the light-emitting compound obtained as described above is polymerized by a polymerization reaction. This polymerization may be homopolymerization or copolymerization. The polymerization reaction may be any of radical polymerization, ion polymerization, and cationic polymerization. Further, as a polymerization mode, a bulk polymerization method, a suspension polymerization method, an emulsion polymerization method and a solution polymerization method can be used.
[0051] 前記重合反応は、常圧下で実施しても、減圧下または圧力下で実施してもよいが、 通常は常圧下で実施される。重合プロセスは、回分式プロセスであっても、連続式プ ロセスであってもよ 、が、製造効率の観点力 連続式プロセスが好まし 、。 [0051] The polymerization reaction may be carried out under normal pressure, or under reduced pressure or pressure, but is usually carried out under normal pressure. The polymerization process may be a batch process or a continuous process, but the power of manufacturing efficiency is preferred.
[0052] 以下にこの発明に係る発光素子につ!、て説明する。 [0052] The light-emitting device according to the present invention will be described below.
[0053] 図 1は、一層型有機 EL素子でもある発光素子の断面構造を示す説明図である。図 FIG. 1 is an explanatory diagram showing a cross-sectional structure of a light-emitting element that is also a single-layer organic EL element. Figure
1に示されるように、この発光素子 Aは、透明電極 2を形成した基板 1上に、発光材料 を含有する発光層 3及び電極層 4をこの順に積層して成る。 As shown in FIG. 1, the light emitting element A is formed by laminating a light emitting layer 3 containing a light emitting material and an electrode layer 4 in this order on a substrate 1 on which a transparent electrode 2 is formed.
[0054] 図 1に示される発光素子は、その発光層 3にこの発明に係る発光化合物等を含有し ていると、透明電極 2及び電極層 4に電流を通電すると、発光化合物の種類に応じた 色に発光する。 [0054] When the light-emitting element shown in FIG. 1 contains the light-emitting compound according to the present invention in the light-emitting layer 3, when a current is passed through the transparent electrode 2 and the electrode layer 4, it depends on the type of the light-emitting compound. Lights up in a different color.
[0055] 発光は、前記透明電極 2と前記電極層 4との間に電界が印加されると、電極層 4側 力も電子が注入され、透明電極 2から正孔が注入され、更に電子が発光層 3におい て正孔と再結合し、エネルギー準位が伝導帯力 価電子帯に戻る際にエネルギーを 光として放出する現象である。  For light emission, when an electric field is applied between the transparent electrode 2 and the electrode layer 4, electrons are also injected into the electrode layer 4 side force, holes are injected from the transparent electrode 2, and further electrons are emitted. This is a phenomenon in which energy is released as light when recombining with holes in layer 3 and the energy level returns to the conduction band valence band.
[0056] 図 1に示される発光素子 Aは、その全体形状を大面積の平面形状にすると、例えば 壁面、あるいは天井に装着して、大面積壁面発光素子、及び大面積天井面発光素 子等の面状発光照明装置とすることができる。つまり、この発光素子が発光化合物に 応じて白色に発光する場合には、従来の蛍光灯のような線光源あるいは電球と言つ た点光源に代えて面光源として利用されることができる。特に、居住のための室内、 事務用の室内、車両室内等の壁面、天井面、あるいは床面をこの発光素子により面 光源として発光ないし照明することができる。  [0056] If the overall shape of the light emitting element A shown in FIG. 1 is a large area planar shape, for example, the light emitting element A is mounted on a wall surface or a ceiling to provide a large area wall surface light emitting element, a large area ceiling surface light emitting element, or the like. It can be set as the planar light-emitting illuminating device. That is, when the light emitting element emits white light according to the light emitting compound, it can be used as a surface light source instead of a conventional linear light source such as a fluorescent lamp or a point light source such as a light bulb. In particular, a wall surface, a ceiling surface, or a floor surface of a living room, an office room, a vehicle room, or the like can be emitted or illuminated as a surface light source by the light emitting element.
[0057] さらに、この発光素子 Aをコンピュータにおける表示画面、携帯電話における表示 画面、金銭登録機における数字表示画面等のバックライトに使用することができる。 その他、この発光素子 Aは、直接照明、間接照明等の様々の光源として使用されるこ とができ、また、夜間に発光させることができて視認性が良好である広告装置、道路 標識装置、及び発光掲示板、更には自動車等の車両におけるブレーキランプ、サイ ドランプ、ノ ックランプ等の光源に使用されることもできる。し力も、この発光素子 Aは 、ピレン骨格及びォキサジァゾール環骨格を有する発光化合物を発光層に有するの で、発光寿命が長い。したがって、この発光素子 Aにより発光が長寿命である光源と することができる。 [0057] Further, the light emitting element A is displayed on a display screen in a computer or on a mobile phone. It can be used for backlight of a screen, a number display screen in a cash register. In addition, the light-emitting element A can be used as various light sources such as direct illumination and indirect illumination, and can be lit at night and has good visibility, a road sign device, It can also be used as a light source for brake lamps, side lamps, knock lamps and the like in vehicles such as light emitting bulletin boards and automobiles. However, the light emitting element A has a long light emission life because the light emitting layer has a light emitting compound having a pyrene skeleton and an oxaziazole ring skeleton in the light emitting layer. Therefore, the light emitting element A can be used as a light source having a long lifetime.
[0058] また、発光素子 Aにおける発光層に、この発明に係る発光化合物等が含有されて いて、他に、赤色発光化合物及び緑色発光化合物が含有されていないときには、こ の発光素子 Aはその分子構造に特有の鮮ゃ力な色に発光する。  [0058] In addition, when the light-emitting layer according to the present invention is contained in the light-emitting layer of the light-emitting element A, and other than the red light-emitting compound and the green light-emitting compound, the light-emitting element A is It emits light with a vivid color peculiar to its molecular structure.
[0059] また、この発光素子 Aを、筒状に形成された基板 1と、その基板 1の内面側に透明 電極 2、発光層 3及び電極層 4をこの順に積層してなる管状発光体とすることができる 。この発光素子 Aは、その発光化合物が白色に発光する場合には、水銀を使用して V、な 、ので、従来の水銀を使用する蛍光灯に代替して環境に優 、光源とすること ができる。  [0059] Further, the light-emitting element A includes a substrate 1 formed in a cylindrical shape, and a tubular light-emitting body in which a transparent electrode 2, a light-emitting layer 3, and an electrode layer 4 are laminated in this order on the inner surface side of the substrate 1. can do . When the luminescent compound emits white light, this light-emitting element A uses mercury for V, so it can be used as an environment-friendly light source instead of conventional fluorescent lamps using mercury. it can.
[0060] 基板 1としては、透明電極 2をその表面に形成することができる限り、公知の基板を 採用することができる。この基板 1として、例えばガラス基板、プラスチックシート、セラ ミック、表面に絶縁塗料層を形成する等の、表面を絶縁性に加工してなる金属板等 を挙げることができる。  [0060] As the substrate 1, a known substrate can be adopted as long as the transparent electrode 2 can be formed on the surface thereof. Examples of the substrate 1 include a glass substrate, a plastic sheet, a ceramic, and a metal plate obtained by processing the surface into an insulating property such as forming an insulating coating layer on the surface.
[0061] この基板 1が不透明であるときには、発光層にこの発明に係る発光化合物等を含有 する発光素子は、基板 1とは反対側に光を照射することができる片面照明装置である 。また、この基板 1が透明であるときには、発光素子の基板 1側及びその反対側の面 から、発光化合物に応じた色の光を照射することができる両面照明装置である。  When the substrate 1 is opaque, the light emitting element containing the light emitting compound or the like according to the present invention in the light emitting layer is a single-sided illuminating device that can irradiate light on the side opposite to the substrate 1. In addition, when the substrate 1 is transparent, the light emitting device is a double-sided illumination device that can emit light of a color corresponding to the light-emitting compound from the substrate 1 side and the opposite surface.
[0062] 前記透明電極 2としては、仕事関数が大きくて透明であり、電圧を印加することによ り陽極として作用して前記発光層 3にホールを注入することができる限り様々の素材 を採用することができる。具体的には、透明電極 2は、 ITO、 In O、 SnO、 ZnO、 Cd  [0062] The transparent electrode 2 employs various materials as long as it has a large work function and is transparent and can act as an anode by applying a voltage to inject holes into the light emitting layer 3. can do. Specifically, the transparent electrode 2 is made of ITO, InO, SnO, ZnO, Cd
2 3 2 o等、及びそれらの化合物等の無機透明導電材料、及びポリア二リン等の導電性高 分子材料等で形成することができる。 2 3 2 o, etc., and inorganic transparent conductive materials such as compounds thereof, and high conductivity such as polyaniline It can be formed of a molecular material or the like.
[0063] この透明電極 2は、前記基板 1上に、化学気相成長法、スプレーパイロリシス、真空 蒸着法、電子ビーム蒸着法、スパッタ法、イオンビームスパッタ法、イオンプレーティ ング法、イオンアシスト蒸着法、その他の方法により形成されることができる。  [0063] The transparent electrode 2 is formed on the substrate 1 by chemical vapor deposition, spray pyrolysis, vacuum deposition, electron beam deposition, sputtering, ion beam sputtering, ion plating, ion assist. It can be formed by vapor deposition or other methods.
[0064] なお、基板が不透明部材で形成されるときには、基板上に形成される電極は透明 電極である必要はない。  [0064] When the substrate is formed of an opaque member, the electrode formed on the substrate does not need to be a transparent electrode.
[0065] この発光層 3は、この発明に係る低分子の発光化合物等を高分子中に分散してな る高分子膜として形成することができ、この発明に係る発光高分子化合物はそのまま 高分子膜として形成することができ、また、この発明に係る低分子の発光化合物を前 記透明電極 2上に蒸着してなる蒸着膜として形成することができる。  [0065] The light emitting layer 3 can be formed as a polymer film in which the low molecular weight light emitting compound or the like according to the present invention is dispersed in a polymer. It can be formed as a molecular film, and can also be formed as a vapor-deposited film formed by vapor-depositing the low-molecular light-emitting compound according to the present invention on the transparent electrode 2.
[0066] 前記高分子膜における高分子としては、ポリビュルカルバゾール、ポリ(3—アルキ レンチォフェン)、ァリールアミンを含有するポリイミド、ポリフルォレイン、ポリフエ-レ ンビ-レン、ポリ一 a—メチルスチレン、ビ-ルカルバゾール Z α—メチルスチレン共 重合体等を挙げることができる。これらの中でも好ましいのは、ポリビュルカルバゾー ルである。  [0066] Examples of the polymer in the polymer film include polybylcarbazole, poly (3-alkylenthiophene), polyimide containing arylamine, polyfluorein, polyphenylene-ethylene, poly-a-methylstyrene, -Lucarbazole Z α-methylstyrene copolymer and the like. Among these, polyburecarbazole is preferable.
[0067] 前記高分子膜中におけるこの発明に係るこの発明に係る発光化合物等の含有量 は、通常、 0. 01〜2重量%、好ましくは 0. 05〜0. 5重量%である。  [0067] The content of the light emitting compound according to the present invention in the polymer film is usually 0.01 to 2 wt%, preferably 0.05 to 0.5 wt%.
[0068] 前記高分子膜の厚みは、通常 30〜500nm、好ましくは 100〜300nmである。高 分子膜の厚みが薄すぎると発光光量が不足することがあり、高分子膜の厚みが大き すぎると、駆動電圧が高くなりすぎて好ましくないことがあり、また、面状体、管状体、 湾曲体、環状体とするときの柔軟性に欠けることがある。  [0068] The thickness of the polymer film is usually 30 to 500 nm, preferably 100 to 300 nm. If the thickness of the polymer film is too thin, the amount of emitted light may be insufficient. If the thickness of the polymer film is too large, the driving voltage may become too high, which may be undesirable. Flexibility may be lacking when using a curved or annular body.
[0069] 前記高分子膜は、前記高分子とこの発明に係る発光化合物等を適宜の溶媒に溶 解してなる溶液を用いて、塗布法例えばスピンキャスト法、コート法、及びディップ法 等により形成することができる。  [0069] The polymer film is formed by a coating method such as a spin casting method, a coating method, and a dipping method using a solution obtained by dissolving the polymer and the light-emitting compound according to the present invention in an appropriate solvent. Can be formed.
[0070] 前記発光層 3が蒸着膜であるとき、その蒸着膜の厚みは、発光層における層構成 等により相違する力 一般的には 0. 1〜: LOOnmである。蒸着膜の厚みが小さすぎる とき、あるいは大きすぎるときには、前述したのと同様の問題を生じることがある。  [0070] When the light-emitting layer 3 is a vapor-deposited film, the thickness of the vapor-deposited film is generally a force that varies depending on the layer structure in the light-emitting layer, etc. When the thickness of the deposited film is too small or too large, the same problem as described above may occur.
[0071] 前記電極層 4は、仕事関数の小さな物質が採用され、例えば、 MgAg、アルミニゥ ム合金、金属カルシウム等の、金属単体又は金属の合金で形成されることができる。 好適な電極層 4はアルミニウムと少量のリチウムとの合金電極である。この電極層 4は 、例えば基板 1の上に形成された前記発光層 3を含む表面に、蒸着技術により、容易 に形成することができる。 [0071] The electrode layer 4 employs a material having a small work function, such as MgAg, aluminum. It can be formed of a metal simple substance or a metal alloy such as a metal alloy or metal calcium. A preferred electrode layer 4 is an alloy electrode of aluminum and a small amount of lithium. The electrode layer 4 can be easily formed on the surface including the light emitting layer 3 formed on the substrate 1, for example, by a vapor deposition technique.
[0072] 塗布法及び蒸着法のいずれを採用して発光層を形成するにしても、電極層と発光 層との間に、ノ ッファ層を介装するのが好ましい。  [0072] Regardless of which of the coating method and vapor deposition method is employed, it is preferable to interpose a nother layer between the electrode layer and the light emitting layer.
[0073] 前記バッファ層を形成することのできる材料として、例えば、フッ化リチウム等のアル カリ金属化合物、フッ化マグネシウム等のアルカリ土類金属化合物、酸ィ匕アルミニゥ ム等の酸化物、 4, 4,—ビスカルバゾールビフエ-ル(Cz—TPD)を挙げることができ る。また、例えば ITO等の陽極と有機層との間に形成されるノ ッファ層を形成する材 料として、例えば m— MTDATA(4, 4,, 4"—トリス(3—メチルフエ-ルフエ-ルアミ ノ)トリフエ-ルァミン)、フタロシアニン、ポリア-リン、ポリチォフェン誘導体、無機酸 化物例えば酸ィ匕モリブデン、酸化ルテニウム、酸化バナジウム、フッ化リチウムを挙げ ることができる。これらのノ ッファ層は、その材料を適切に選択することにより、発光素 子である有機 EL素子の駆動電圧を低下させることができ、発光の量子効率を改善 することができ、発光輝度の向上を達成することができる。  [0073] Examples of materials that can form the buffer layer include alkali metal compounds such as lithium fluoride, alkaline earth metal compounds such as magnesium fluoride, and oxides such as aluminum oxide, 4, 4, Biscarbazole biphenyl (Cz-TPD). In addition, as a material for forming a noffer layer formed between an anode such as ITO and an organic layer, for example, m-MTDATA (4, 4 ,, 4 "-tris (3-methylphenol-aminoamine) ) Triphenylamine), phthalocyanine, polyarine, polythiophene derivatives, inorganic oxides such as molybdenum oxide, ruthenium oxide, vanadium oxide, and lithium fluoride. By appropriate selection, the driving voltage of the organic EL element, which is a light emitting element, can be reduced, the quantum efficiency of light emission can be improved, and the emission luminance can be improved.
[0074] 次にこの発明に係る発光素子の第 2の例を図に示す。図 2は多層型有機 EL素子 である発光素子の断面を示す説明図である。 Next, a second example of the light emitting device according to the present invention is shown in the drawing. FIG. 2 is an explanatory view showing a cross section of a light emitting device which is a multilayer organic EL device.
[0075] 図 2に示すように、この発光素子 Bは、基板 1の表面に、透明電極 2、ホール輸送層As shown in FIG. 2, the light-emitting element B has a transparent electrode 2 and a hole transport layer on the surface of the substrate 1.
5、発光層 3a, 3b、電子輸送層 6及び電極層 4をこの順に積層してなる。 5, the light emitting layers 3a and 3b, the electron transport layer 6 and the electrode layer 4 are laminated in this order.
[0076] 基板 1、透明電極 2、及び電極層 4については、図 1に示された発光素子 Aにおけ るのと、同様である。 [0076] The substrate 1, the transparent electrode 2, and the electrode layer 4 are the same as those in the light-emitting element A shown in FIG.
[0077] 図 2に示される発光素子 Bにおける発光層は発光層 3a及び発光層 3bよりなり、発 光層 3aはこの発明に係る低分子の発光化合物及び Z又はこの発明に係る発光高分 子化合物を含有する。この発光層 3aは、蒸着膜であっても、また高分子膜であっても 良い。発光層 3bは、 DPVBi層である。この DPVBi層は、ホスト材料的な機能を有す る層である。  [0077] The light emitting layer in the light emitting device B shown in FIG. 2 includes a light emitting layer 3a and a light emitting layer 3b. The light emitting layer 3a is a low molecular weight light emitting compound and Z or a light emitting polymer according to the present invention. Contains compounds. The light emitting layer 3a may be a vapor deposition film or a polymer film. The light emitting layer 3b is a DPVBi layer. This DPVBi layer has a host material function.
[0078] 前記ホール輸送層 5に含まれるホール輸送物質としては、トリフエ-ルァミン系化合 物例えば N, N,—ジフエ-ルー N, N,—ジ(m トリル)—ベンジジン(TPD)、及び a NPD等、ヒドラゾン系化合物、スチルベン系化合物、複素環系化合物、 π電子 系スターバースト正孔輸送物質等を挙げることができる。 [0078] The hole transport material contained in the hole transport layer 5 is a triphenylamine compound. Products such as N, N, —Diphenyl-N, N, —Di (m-tolyl) -benzidine (TPD), and a NPD, hydrazone compounds, stilbene compounds, heterocyclic compounds, π-electron starburst positive Examples thereof include pore transport materials.
[0079] 前記電子輸送層 6に含まれる電子輸送物質としては、前記電子輸送性物質として は、例えば、 2- (4— tert—ブチルフエ-ル)—5— (4 ビフエ-ル)— 1, 3, 4—ォ キサジァゾール等のォキサジァゾール誘導体及び 2, 5 ビス( 1 ナフチル) 1 , 3 , 4 ォキサジァゾール、並びに 2, 5 ビス(5 ' tert ブチルー 2'—べンゾキサゾ リル)チォフェン等を挙げることができる。また、電子輸送性物質として、例えばキノリノ ールアルミ錯体 (Alq3)、ベンゾキノリノールベリリウム錯体(Bebq2)等の金属錯体系 材料を好適に使用することもできる。 [0079] The electron transport material contained in the electron transport layer 6 includes, for example, 2- (4-tert-butylphenol) -5- (4-biphenyl) -1, Examples include oxadiazole derivatives such as 3,4-oxoxadiazole, 2,5 bis (1 naphthyl) 1,3,4 oxaziazole, and 2,5 bis (5 'tert butyl-2'-benzoxazolyl) thiophene . Further, as the electron transporting substance, for example, a metal complex material such as quinolinol aluminum complex (Alq3), benzoquinolinol beryllium complex (Bebq2) can be preferably used.
[0080] 図 2における発光素子 Bでは、電子輸送層 6は Alq3を含有する。 In the light emitting device B in FIG. 2, the electron transport layer 6 contains Alq3.
[0081] 各層の厚みは、従来力も公知の多層型有機 EL素子におけるのと同様である。 [0081] The thickness of each layer is the same as that of a known multilayer organic EL element with a conventional force.
[0082] 図 2に示される発光素子 Bは、図 1に示される発光素子 Aと同様に作用し、発光する 。したがって、図 2に示される発光素子 Bは、図 1に示される発光素子 Aと同様の用途 を有する。 The light emitting element B shown in FIG. 2 operates in the same manner as the light emitting element A shown in FIG. 1, and emits light. Therefore, the light-emitting element B shown in FIG. 2 has the same application as the light-emitting element A shown in FIG.
[0083] 図 3に、この発明に係る発光素子の第 3の例を示す。図 3は、多層型有機 EL素子 である発光素子の断面を示す説明図である。  FIG. 3 shows a third example of the light emitting device according to the present invention. FIG. 3 is an explanatory view showing a cross section of a light emitting device which is a multilayer organic EL device.
[0084] 図 3に示される発光素子 Cは、基板 1の表面に、透明電極 2、ホール輸送層 5、発光 層 3、電子輸送層 8及び電極層 4をこの順に積層してなる。 A light-emitting element C shown in FIG. 3 is formed by laminating a transparent electrode 2, a hole transport layer 5, a light-emitting layer 3, an electron transport layer 8 and an electrode layer 4 in this order on the surface of a substrate 1.
[0085] この図 3に示す発光素子 Cは前記発光素子 Bと同様である。 The light-emitting element C shown in FIG. 3 is the same as the light-emitting element B.
[0086] 図 4に発光素子の他の例を示す。この図 4に示す発光素子 Dは、基板 1、電極 2、ホ ール輸送層 5、発光層 3及び電極層 4をこの順に積層してなる。  FIG. 4 shows another example of the light emitting element. The light emitting element D shown in FIG. 4 is formed by laminating a substrate 1, an electrode 2, a hole transport layer 5, a light emitting layer 3 and an electrode layer 4 in this order.
[0087] 前記図 1〜4に示される発光素子の外に、基板上に形成された透明電極である陽 極と電極層である陰極との間に、ホール輸送性物質を含有するホール輸送層と、こ の発明に係る低分子の発光化合物及び Z又は発光高分子化合物含有の電子輸送 性発光層とを積層して成る二層型有機低分子発光素子 (例えば、陽極と陰極との間 に、ホール輸送層と、ゲスト色素としてこの発明に係る低分子の発光化合物及び Z又 は発光高分子化合物並びにホスト色素を含有する発光層とを積層して成る二層型色 素ドープ型発光素子)、陽極と陰極との間に、ホール輸送性物質を含有するホール 輸送層と、この発明に係る低分子の発光化合物及び Z又は発光高分子化合物と電 子輸送性物質とを共蒸着してなる電子輸送性発光層とを積層して成る二層型有機発 光素子 (例えば、陽極と陰極との間に、ホール輸送層と、ゲスト色素としてこの発明に 係る低分子の発光化合物及び Z又は発光高分子化合物及びホスト色素とを含有す る電子輸送性発光層とを積層して成る二層型色素ドープ型有機発光素子)、陽極と 陰極との間に、ホール輸送層、この発明に係る低分子の発光化合物及び Z又は発 光高分子化合物含有の発光層及び電子輸送層を積層して成る三層型有機発光素 子を挙げることができる。 In addition to the light emitting device shown in FIGS. 1 to 4, a hole transport layer containing a hole transport material is formed between a positive electrode that is a transparent electrode and a cathode that is an electrode layer formed on a substrate. And a low-molecular-weight organic light-emitting device (for example, between an anode and a cathode) formed by laminating a low-molecular light-emitting compound and an electron-transporting light-emitting layer containing Z or a light-emitting polymer compound according to the present invention. A two-layer color comprising a hole transport layer and a light emitting layer containing a low molecular weight light emitting compound and a Z or light emitting polymer compound and a host dye as a guest dye. Element-doped light-emitting element), a hole transport layer containing a hole transport material between the anode and the cathode, a low-molecular light-emitting compound and Z or a light-emitting polymer compound and an electron transport material according to the present invention A two-layer organic light-emitting device formed by laminating an electron-transporting light-emitting layer formed by co-evaporation (for example, a hole transport layer between an anode and a cathode, and a low-molecular-weight organic compound according to the present invention as a guest dye). A two-layer dye-doped organic light-emitting device comprising a light-emitting compound and Z or an electron-transporting light-emitting layer containing a light-emitting polymer compound and a host dye, and a hole transport layer between the anode and the cathode Examples thereof include a three-layer organic light-emitting device formed by laminating a light-emitting layer and an electron transport layer containing a low-molecular light-emitting compound and Z or a light-emitting polymer compound according to the present invention.
[0088] この発光素子における電子輸送性発光層は、通常の場合、 50〜80%のポリビ- ルカルバゾール (PVK)と、電子輸送性発光剤 5〜40%と、この発明に係る低分子の 発光化合物及び Z又は発光高分子化合物 0. 01〜20% (重量)とで形成されている と、発光化合物の構造に応じた色の発光が高輝度で起こる。  [0088] The electron-transporting light-emitting layer in this light-emitting element is usually composed of 50 to 80% polyvinyl carbazole (PVK), an electron-transporting light-emitting agent 5 to 40%, and the low-molecular weight according to the present invention. When formed with the light-emitting compound and Z or the light-emitting polymer compound 0.01 to 20% (by weight), light emission of a color corresponding to the structure of the light-emitting compound occurs with high luminance.
[0089] また、前記発光層中には、増感剤としてルブレンが含有されているのが好ましぐ特 に、ルブレンと Alq3とが含有されて!、るのが好まし!/、。  [0089] The light emitting layer preferably contains rubrene as a sensitizer, and particularly contains rubrene and Alq3 !.
[0090] この発明に係る低分子の発光化合物及び Z又は発光高分子化合物を利用した発 光素子は、例えば一般に直流駆動型の有機 EL素子として使用することができ、また 、 ノルス駆動型の有機 EL素子及び交流駆動型の有機 EL素子としても使用すること ができる。  The light emitting device using the low molecular weight light emitting compound and Z or the light emitting polymer compound according to the present invention can be generally used as, for example, a direct current driving type organic EL device, and a nors driving type organic EL device. It can also be used as an EL element and an AC drive type organic EL element.
実施例  Example
[0091] (実施例 1)  [0091] (Example 1)
実施例 1にお ヽては、以下の式( 1 0)で示される構造を有する発光化合物を製造 した。以下に、各反応毎に、製造手順を説明する。  In Example 1, a light emitting compound having a structure represented by the following formula (10) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
[0092] [化 22]
Figure imgf000023_0001
[0092] [Chemical 22]
Figure imgf000023_0001
[0093] 〔化合物( 1 A)の製造例〕 [Production Example of Compound (1 A)]
下記反応式(1— 1)によって、化合物(1A)を製造した c Compound (1A) was produced according to the following reaction formula (1-1) c
[0094] [化 23] [0094] [Chemical 23]
Figure imgf000023_0002
( 1 1 )
Figure imgf000023_0002
(1 1)
(1A)  (1A)
[0095] 上記メチルフルオレン 38gと塩化アルミニウム 29gとを三口フラスコに装入し、更に 塩ィ匕ァセチル 20mlと硫ィ匕炭素 15mlを投入した。フラスコ内を 60°Cに加熱することに より、反応を開始、 3時間継続した。 3時間経過後に、加熱を停止して放冷してフラス コ内の反応生成液を常温に戻した。常温の反応生成液をクロ口ホルム抽出、エバポ レータによる蒸留操作によって、薄桃色の組成物を得た。 [0095] The above methylfluorene (38 g) and aluminum chloride (29 g) were charged into a three-necked flask, and further, 20 ml of sodium acetyl chloride and 15 ml of sulfurous carbon were added. By heating the inside of the flask to 60 ° C, the reaction was started and continued for 3 hours. After 3 hours, heating was stopped and the mixture was allowed to cool to return the reaction product solution in the flask to room temperature. A light pink composition was obtained by subjecting the reaction product at room temperature to extraction with black mouth form and distillation using an evaporator.
[0096] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 5及び図 6に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャートよ り、得られた組成物力 化合物(1A) (メチルケトンフルオレン)であることを確認した。  [0096] Fig. 5 and Fig. 6 show the NMR ^ vector chart and IR spectrum chart of the obtained composition, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained compositional power compound (1A) (methyl ketone fluorene) was obtained.
[0097] 〔化合物(1B)の製造例〕  [Production Example of Compound (1B)]
下記反応式(1 2)によって、化合物(1B)を製造した。  Compound (1B) was produced according to the following reaction formula (12).
[0098] [化 24]  [0098] [Chemical 24]
0 , o 0, o
ヽ / COCHs ( 1 - 2 ) ヽ / COCHs (1-2)
Figure imgf000023_0003
Figure imgf000023_0003
(1A) (IB) [0099] 上記化合物( 1 A) (メチルケトンフルオレン) 22gとメタノール 250mlと次亜塩素酸ナト リウム溶液 (有効塩素 5%) 500mlとを三口ナスフラスコに投入した。この三口ナスフラ スコを 75°Cの湯浴によって、加熱した。この加熱を 3時間行い、その後水により冷却 した。 pH値が 1〜2になるまで HC1を滴下し、水洗浄を行い、組成物 17. 02gを得た (1A) (IB) [0099] 22 g of the above compound (1 A) (methyl ketone fluorene), 250 ml of methanol, and 500 ml of sodium hypochlorite solution (effective chlorine 5%) were charged into a three-necked eggplant flask. The three-necked eggplant flask was heated in a 75 ° C hot water bath. This heating was performed for 3 hours and then cooled with water. HC1 was added dropwise until the pH value reached 1 to 2, and washed with water to obtain 17.02 g of composition.
[0100] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 7及び図 8に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャートよ り、得られた組成物力 化合物(1B)であることを確認した。 [0100] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 7 and 8, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed to be the obtained compositional force compound (1B).
[0101] 〔化合物(1C)の製造例〕  [0101] [Production Example of Compound (1C)]
下記反応式(1 3)によって、化合物(1C)を製造した。  Compound (1C) was produced according to the following reaction formula (13).
[0102] [化 25]  [0102] [Chemical 25]
, , , { 1 、,,, {1,
Figure imgf000024_0001
Figure imgf000024_0001
[0103] 上記化合物(IB) Ugtl, 4ジォキサン 100mlと塩化チォ -ル 75mlとを沸石ととも に、ナスフラスコに投入した。このナスフラスコを 110°Cのオイルバスによって、加熱し た。この加熱を 4時間行い、その後水により冷却した。得られた反応生成物を THF ( テトラヒドロフランの略、以下同じ) 300mlに溶解させ、ろ紙によるろ過を行った。そし て、エバポレータによる蒸留、真空ポンプによる乾燥 50°Cで 1時間行い、組成物 16. 6gを得た。 [0103] 100 ml of the above compound (IB) Ugtl, 4 dioxane and 75 ml of chlorochloride were put together with zeolite in an eggplant flask. The eggplant flask was heated by an oil bath at 110 ° C. This heating was performed for 4 hours and then cooled with water. The obtained reaction product was dissolved in 300 ml of THF (an abbreviation of tetrahydrofuran, the same shall apply hereinafter), followed by filtration with filter paper. Then, distillation with an evaporator and drying with a vacuum pump were performed at 50 ° C. for 1 hour to obtain 16.6 g of a composition.
[0104] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 9及び図 10に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(1C)であることを確認した。  [0104] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 9 and 10, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (1C).
[0105] 〔化合物(1D)の製造例〕  [Production Example of Compound (1D)]
下記反応式(1—4)によって、化合物(1D)を製造した。  Compound (1D) was produced according to the following reaction formula (1-4).
[0106] [化 26]
Figure imgf000025_0001
( 丄― 4 )
[0106] [Chemical 26]
Figure imgf000025_0001
(丄 ―4)
(ID)  (ID)
[0107] 上記化合物(1C) 16. 6gとピリジン 13. 4mlとヒドラジン 2 lmlとを三口ナスフラスコ に投入した。この三口ナスフラスコを 70°Cのオイルバスによって、加熱した。 THF40 Omlを滴下しながら、この加熱を 4時間行い、その後水により冷却した。そして、エバ ポレータによる蒸留、真空ポンプによる乾燥 50°Cで 1時間行い、組成物 15. lgを得 た。 [0107] 16.6 g of the above compound (1C), 13.4 ml of pyridine, and 2 lml of hydrazine were charged into a three-necked eggplant flask. This three-necked eggplant flask was heated in an oil bath at 70 ° C. This heating was carried out for 4 hours while adding dropwise THF40 Oml, followed by cooling with water. Then, distillation with an evaporator and drying with a vacuum pump were performed at 50 ° C. for 1 hour to obtain 15. lg of a composition.
[0108] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 11及び図 12に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(1D)であることを確認した。  [0108] Fig. 11 and Fig. 12 show the NMR ^ vector chart and IR spectrum chart of the obtained composition, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (1D).
[0109] 〔化合物(1E)の製造例〕  [Production Example of Compound (1E)]
下記反応式(1 5)によって、化合物(1E)を製造した。  Compound (1E) was produced according to the following reaction formula (15).
[0110] [化 27]  [0110] [Chemical 27]
Figure imgf000025_0002
Figure imgf000025_0002
[0111] 上記化合物(1D) 2. Ogとピレンカルボン酸 1. 9gと N—メチルピロリドン 32mlと亜リ ン酸ジフエ-ル 5. 25gと塩ィ匕リチウム 2. lgとピリジン 20mlとを三口ナスフラスコに投 入した。この三口ナスフラスコを 120°Cのオイルバスによって、加熱した。水により冷 却後、ヌッチェ処理、メタノール洗浄、真空ポンプによる乾燥 50°Cを 1時間行い、組 成物 3. Ogを得た。 [0111] 2. Compound (1D) 2. Og, pyrenecarboxylic acid 1.9 g, N-methylpyrrolidone 32 ml, phosphite diphenyl 5.25 g, sodium chloride 2. lg, pyridine 20 ml Poured into flask. The three-necked eggplant flask was heated with a 120 ° C. oil bath. After cooling with water, Nutsche treatment, methanol washing, and drying with a vacuum pump were performed at 50 ° C for 1 hour to obtain composition 3. Og.
[0112] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 13及び図 14に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(1E)であることを確認した。 [0112] The NMR ^ vector chart and IR spectrum chart of the obtained composition are respectively shown. These are shown in FIGS. 13 and 14. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (1E).
[0113] 〔化合物(1F)の製造例〕  [Production Example of Compound (1F)]
下記反応式(1 6)によって、化合物(1F)を製造した。  Compound (1F) was produced according to the following reaction formula (16).
[0114] [化 28]  [0114] [Chemical 28]
Figure imgf000026_0001
Figure imgf000026_0001
(IE)  (IE)
[0115] 上記化合物(IE) 3. Ogと 1,4ジォキサン 100mlと POC1 50mlと [0115] The above compound (IE) 3. Og, 1,4 dioxane 100ml and POC1 50ml
3  Three
と沸石とをナスフラスコに投入した。このナスフラスコを 12 F0°Cのオイルバスによって、 13時間加熱した。水により冷却後、ヌッチェ処理、メタノール洗浄、真空ポンプによる 乾燥 50°Cを 1時間行い、組成物 2. Ogを得た。  And zeolite were charged into the eggplant flask. The eggplant flask was heated in an oil bath of 12 F0 ° C for 13 hours. After cooling with water, Nutsche treatment, methanol washing, and drying with a vacuum pump were performed at 50 ° C for 1 hour to obtain a composition 2. Og.
[0116] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 15及び図 16に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(1F)であることを確認した。  [0116] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 15 and 16, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (1F).
[0117] その後、化合物(1F)を lmgZLの濃度になるようにトルエンに溶解して試料液を調 製した。この試料液を、島津製作所製の F— 4500型分光蛍光光度計に装填して、 以下の条件にて蛍光スペクトルを測定した。得られた蛍光スペクトルを図 17に示した 。この蛍光スペクトルによって、化合物(1F)は、青色に発光することが確認された。  [0117] Thereafter, the compound (1F) was dissolved in toluene to a concentration of lmgZL to prepare a sample solution. This sample solution was loaded into an F-4500 spectrofluorometer manufactured by Shimadzu Corporation, and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum is shown in FIG. From this fluorescence spectrum, it was confirmed that the compound (1F) emitted blue light.
[0118] 測定条件  [0118] Measurement conditions
測定モード 波長スキャン  Measurement mode Wavelength scan
励起波長 365nm  Excitation wavelength 365nm
蛍光開始波長 400nm  Fluorescence start wavelength 400nm
蛍光終了波長 700nm  Fluorescence end wavelength 700nm
スキャンスピード 1200nm/分 励起側スリット 5. Onm Scan speed 1200nm / min Excitation side slit 5. Onm
蛍光側スリット 5. Onm  Fluorescent side slit 5. Onm
ホトマル電圧 700V  Photomultiplier voltage 700V
[0119] (実施例 2) [0119] (Example 2)
実施例 2においては、以下の式 (2— 0)で示される構造を有する発光高分子化合 物を製造した。以下に、各反応毎に、製造手順を説明する。  In Example 2, a light-emitting polymer compound having a structure represented by the following formula (2-0) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
[0120] [化 29] [0120] [Chemical 29]
Figure imgf000027_0001
Figure imgf000027_0001
[0121] 〔化合物(2A)の製造例〕 [Production Example of Compound (2A)]
下記反応式 (2— 1)によって、化合物(2A)を製造した。  Compound (2A) was produced according to the following reaction formula (2-1).
[0122] [化 30]  [0122] [Chemical 30]
CsHi? し' hj CsHi?
S0C12  S0C12
HOOC< O W o >C00H C10Cく O W o )C0C1  HOOC <O W o> C00H C10C (O W o) C0C1
(2A) (2A)
[0123] 上記カルボン酸 30gと 1, 4ジォキサン 450mlとピリジン 10mlと塩化チォ -ル 150m 1とを三口ナスフラスコに投入した。このナスフラスコを 100°Cのオイルバスによって、 加熱した。この加熱を 4時間行い、その後水により冷却した。得られた反応生成物を THF300mlに溶解させ、ろ紙によるろ過を行った。そして、エバポレータによる蒸留 、真空ポンプによる乾燥 50°Cで 1時間行い、薄茶黄色の組成物 31. Ogを得た。 [0123] 30 g of the above carboxylic acid, 450 ml of 1,4 dioxane, 10 ml of pyridine, and 150 ml of chlorochloride were charged into a three-necked eggplant flask. The eggplant flask was heated by an oil bath at 100 ° C. This heating was performed for 4 hours and then cooled with water. The obtained reaction product was dissolved in 300 ml of THF and filtered through filter paper. Then, distillation with an evaporator and drying with a vacuum pump were performed at 50 ° C. for 1 hour to obtain 31. Og of a light brown yellow composition.
[0124] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 18及び図 19に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(2A)であることを確認した [0124] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 18 and 19, respectively. These NMR ^ vector chart and IR ^ vector chart From the results, it was confirmed that the obtained composition was the compound (2A).
[0125] 〔化合物(2B)の製造例〕 [Production Example of Compound (2B)]
下記反応式 (2— 2)によって、化合物(2B)を製造した。  Compound (2B) was produced according to the following reaction formula (2-2).
[0126] [化 31] [0126] [Chemical 31]
Figure imgf000028_0001
Figure imgf000028_0001
(2Bj  (2Bj
[0127] 上記力ルバゾールのヒドラジド 3. 81gとピリジン 1. 29gとを三口ナスフラスコに投入 し、 THF200mlに溶解させた。化合物(2A) 7gと THF400mlとを混合し、三口ナス フラスコ内に点滴した。このナスフラスコを 70°Cのオイルバスによって、加熱した。こ の加熱を 1. 5時間行い、その後水により冷却した。得られた反応生成物を THF300 mlに溶解させ、ろ紙によるろ過を行った。そして、エバポレータによる蒸留、真空ボン プによる乾燥 50°Cで 0. 5時間行い、組成物 10. Ogを得た。 [0127] 3.81 g of the above-mentioned rubazole hydrazide and 1.29 g of pyridine were put into a three-necked eggplant flask and dissolved in 200 ml of THF. 7 g of compound (2A) and 400 ml of THF were mixed and instilled into a three-necked eggplant flask. The eggplant flask was heated by an oil bath at 70 ° C. This heating was performed for 1.5 hours and then cooled with water. The obtained reaction product was dissolved in 300 ml of THF and filtered through filter paper. Then, distillation with an evaporator and drying with a vacuum pump were performed at 50 ° C. for 0.5 hour to obtain a composition 10. Og.
[0128] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 20及び図 21に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(2B)であることを確認した。  [0128] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Fig. 20 and Fig. 21, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (2B).
[0129] 〔化合物(2C)の製造例〕  [Production Example of Compound (2C)]
下記反応式 (2— 3)によって、化合物(2C)を製造した。  Compound (2C) was produced according to the following reaction formula (2-3).
[0130] [化 32] C1
Figure imgf000029_0001
[0130] [Chemical 32] C1
Figure imgf000029_0001
(2B)  (2B)
CH2 E¾C1 CH 2 E¾C1
CsHi7 C¾¾7  CsHi7 C¾¾7
N N
H2 N¾ へ/ Vへ  To H2 N¾ / V
難腿 0C べ O〉C0NHNH0d o I I o ( 2— 3 )  Difficult thigh 0C B O〉 C0NHNH0d o I I o (2-3)
(2C) (2C)
[0131] ヒドラジン 4. 3mlとピリジン 3. 13mlとを三口ナスフラスコに投入した。その後、上記 化合物(2B) 10gと THF500mlとを混合し、三口ナスフラスコ内に点滴した。このナス フラスコを 70°Cのオイルバスによって、加熱した。この加熱を 4時間行い、その後水に より冷却した。そして、クロ口ホルム抽出、エバポレータによる蒸留、真空ポンプによる 乾燥 50°Cで 0. 5時間行い、組成物 7. 2gを得た。 [0131] 4.3 ml of hydrazine and 3.13 ml of pyridine were charged into a three-necked eggplant flask. Thereafter, 10 g of the above compound (2B) and 500 ml of THF were mixed and instilled into a three-necked eggplant flask. The eggplant flask was heated in an oil bath at 70 ° C. This heating was performed for 4 hours and then cooled with water. Then, extraction with black mouth form, distillation with an evaporator, and drying with a vacuum pump were carried out at 50 ° C. for 0.5 hour to obtain 7.2 g of a composition.
[0132] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 22及び図 23に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(2C)であることを確認した。  [0132] The NMR vector chart and IR spectrum chart of the resulting composition are shown in FIGS. 22 and 23, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (2C).
[0133] 〔化合物(2D)の製造例〕  [Production Example of Compound (2D)]
下記反応式 (2— 4)によって、化合物(2D)を製造した。  Compound (2D) was produced according to the following reaction formula (2-4).
[0134] [化 33] [0134] [Chemical 33]
ll
( 0 (0
O )— Λ O O) — Λ O
Figure imgf000030_0001
Figure imgf000030_0001
(20  (20
( 2 - 4 )
Figure imgf000030_0002
( twenty four )
Figure imgf000030_0002
[0135] 上記化合物(2C) 6. Ogとピレンカルボン酸 2. Ogと N—メチルピロリドン 64mlと亜リ ン酸ジフエ-ル 10. 5gと塩ィ匕リチウム 4. 2gとピリジン 40mlとを三口ナスフラスコに投 入した。この三口ナスフラスコを 120°Cのオイルバスによって、 30時間、加熱した。水 により冷却後、ヌッチェ処理、メタノール洗浄、真空ポンプによる乾燥 50°Cを 1時間行 い、組成物 8. Ogを得た。 [0135] The above compound (2C) 6. Og and pyrenecarboxylic acid 2. Og, N-methylpyrrolidone 64 ml, diphosphite 10.5 g, sodium chloride 4.2 g, pyridine 40 ml Poured into flask. This three-necked eggplant flask was heated in an oil bath at 120 ° C. for 30 hours. After cooling with water, Nutsche treatment, washing with methanol, and drying with a vacuum pump were performed at 50 ° C for 1 hour to obtain composition 8. Og.
[0136] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 24及び図 25に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(2D)であることを確認した。  [0136] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 24 and 25, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (2D).
[0137] 〔化合物(2E)の製造例〕  [Production Example of Compound (2E)]
下記反応式 (2— 5)によって、化合物(2E)を製造した。  Compound (2E) was produced according to the following reaction formula (2-5).
[0138] [化 34] [0138] [Chemical 34]
Figure imgf000031_0001
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0002
(2E)  (2E)
[0139] 上記化合物(2D) 8. Ogと 1,4ジォキサン 150mlと POC1 75mlと [0139] The above compound (2D) 8. Og, 150 ml of 1,4 dioxane and 75 ml of POC1
3  Three
と沸石とをナスフラスコに投入した。このナスフラスコを 120°Cのオイルバスによって、 7時間加熱した。水により冷却後、ヌッチェ処理、メタノール洗浄、真空ポンプによる 乾燥 50°Cを 1時間行い、組成物 5. 2gを得た。そして、クロ口ホルムに溶解させ、カラ ム分離をし、組成物 1. Ogを得た。  And zeolite were charged into the eggplant flask. The eggplant flask was heated in an oil bath at 120 ° C. for 7 hours. After cooling with water, Nutsche treatment, methanol washing, and drying with a vacuum pump were performed at 50 ° C for 1 hour to obtain 5.2 g of a composition. And it was made to melt | dissolve in black mouth form, and column separation was carried out, and the composition 1. Og was obtained.
[0140] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 26及び図 27に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(2E)であることを確認した。  [0140] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 26 and 27, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (2E).
[0141] 〔化合物(2F)の製造例〕  [0141] [Production Example of Compound (2F)]
下記反応式 (2— 6)によって、化合物(2F)を製造した。  Compound (2F) was produced according to the following reaction formula (2-6).
[0142] [化 35]
Figure imgf000032_0001
[0142] [Chemical 35]
Figure imgf000032_0001
(2E) (2E)
Figure imgf000032_0002
Figure imgf000032_0002
(2F)  (2F)
[0143] 上記化合物(2E) 1. Ogと 1,4ジォキサン 100mlと無水エタノール 50mlと KOH 0 . 75gと沸石とをナスフラスコに投入した。このナスフラスコを 100°Cのオイルバスによ つて、 4時間加熱した。水により冷却後、ヌッチェ処理、メタノール洗浄、真空ポンプに よる乾燥 50°Cを 1時間行い、組成物 0. 35gを得た。 [0143] The above compound (2E) 1. Og, 100 ml of 1,4 dioxane, 50 ml of absolute ethanol, 0.75 g of KOH, and zeolite were charged into an eggplant flask. The eggplant flask was heated in an oil bath at 100 ° C for 4 hours. After cooling with water, Nutsche treatment, methanol washing, and drying with a vacuum pump were performed at 50 ° C for 1 hour to obtain 0.35 g of the composition.
[0144] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 28及び図 29に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(2F)であることを確認した。  [0144] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 28 and 29, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (2F).
[0145] 〔高分子化合物 (2G)の製造例〕  [Example of production of polymer compound (2G)]
下記反応式 (2— 7)によって、高分子化合物(2G)を製造した。  A polymer compound (2G) was produced according to the following reaction formula (2-7).
[0146] [化 36] [0146] [Chemical 36]
Figure imgf000033_0001
Figure imgf000033_0001
t2F)  t2F)
Figure imgf000033_0002
Figure imgf000033_0002
[0147] 上記化合物(2F) 0. 2gと DMF (ジメチルフオルムアミドの略、以下同じ) 9mlとをナ スフラスコに投入した。そして、重合開始剤としての AIBN (ァゾビスイソブチ口-トリル の略、以下同じ) 5mgと DMF5gを混合した溶液を 0. 7g、ナスフラスコに投入した。 また、クロルベンゼン 5mlもナスフラスコに投入した。このナスフラスコを 145°Cのオイ ルバスによって、 120時間加熱した。水により冷却後、エバポレータによる蒸留、真空 ポンプ蒸留、 70°Cを 1時間行い、その後メタノール洗浄、真空ポンプによる乾燥を行 い、組成物 0. 2gを得た。 [0147] 0.2 g of the compound (2F) and 9 ml of DMF (abbreviation of dimethylformamide, the same applies hereinafter) were charged into a nurse flask. Then, 0.7 g of a solution obtained by mixing 5 mg of AIBN (abbreviation for azobisisobuty-tolyl, hereinafter the same) as a polymerization initiator and 5 g of DMF was put into an eggplant flask. In addition, 5 ml of chlorobenzene was also charged into the eggplant flask. The eggplant flask was heated in a 145 ° C oil bath for 120 hours. After cooling with water, distillation with an evaporator, vacuum pump distillation, and 70 ° C were performed for 1 hour, followed by washing with methanol and drying with a vacuum pump to obtain 0.2 g of a composition.
[0148] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 30及び図 31に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、高分子化合物(2G)であることを確認した。  [0148] The NMR ^ vector chart and IR spectrum chart of the obtained composition are shown in Figs. 30 and 31, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was a polymer compound (2G).
[0149] その後、高分子化合物(2G)を実施例 1における場合と同様にして、蛍光スペクトル を測定した。得られた蛍光スペクトルを図 32に示した。この蛍光スペクトルによって、 高分子化合物(2G)は、青色に発光することが確認された。  [0149] Thereafter, the fluorescence spectrum of the polymer compound (2G) was measured in the same manner as in Example 1. The obtained fluorescence spectrum is shown in FIG. From this fluorescence spectrum, it was confirmed that the polymer compound (2G) emitted blue light.
[0150] (実施例 3)  [0150] (Example 3)
実施例 3においては、以下の式 (3— 0)で示される構造を有する発光高分子化合 物を製造した。以下に、各反応毎に、製造手順を説明する。  In Example 3, a light-emitting polymer compound having a structure represented by the following formula (3-0) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
[0151] [化 37]
Figure imgf000034_0001
[0151] [Chemical 37]
Figure imgf000034_0001
[0152] 〔化合物(3A)の製造例〕 [0152] [Production Example of Compound (3A)]
下記反応式 (3— 1)によって、化合物(3A)を製造した。  Compound (3A) was produced according to the following reaction formula (3-1).
[0153] [化 38] [0153] [Chemical 38]
Figure imgf000034_0002
Figure imgf000034_0002
(3A)  (3A)
[0154] 上記式(3— 1)左辺で示されるクロリド 18gと塩ィ匕チォ-ル 100mlとを沸石とともに、 ナスフラスコに投入した。このナスフラスコを 90°Cのオイルバスによって、加熱した。こ の加熱を 4時間行い、その後水により冷却した。得られた反応生成物を THF800ml に溶解させ、ろ紙によるろ過を行った。そして、エバポレータによる蒸留、真空ポンプ による乾燥 50°Cで 1時間行い、組成物 19. Ogを得た。 [0154] 18 g of the chloride represented by the left side of the above formula (3-1) and 100 ml of sodium chloride were added to an eggplant flask together with zeolite. The eggplant flask was heated by an oil bath at 90 ° C. This heating was performed for 4 hours and then cooled with water. The obtained reaction product was dissolved in 800 ml of THF and filtered through filter paper. Then, distillation with an evaporator and drying with a vacuum pump were performed at 50 ° C. for 1 hour to obtain a composition 19. Og.
[0155] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 33及び図 34に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(3A)であることを確認した。  [0155] The NMR ^ vector chart and IR spectrum chart of the obtained composition are shown in Figs. 33 and 34, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (3A).
[0156] 〔化合物(3B)の製造例〕  [Production Example of Compound (3B)]
下記反応式 (3— 2)によって、化合物(3B)を製造した。  Compound (3B) was produced according to the following reaction formula (3-2).
[0157] [化 39] 3― 2 )
Figure imgf000035_0001
2
[0157] [Chemical 39] 3-2)
Figure imgf000035_0001
2
3A) (3B)  3A) (3B)
[0158] ピリジン 3. 91mlとヒドラジン 6. 1mlとを三口ナスフラスコに投入した。この三口ナス フラスコを 70°Cのオイルバスによって、加熱した。上記化合物(3A) 5. 4gを含む TH F300mlを滴下しながら、この加熱を 4時間行い、その後水により冷却した。クロロホ ルム抽出を行い、そして、エバポレータによる蒸留、真空ポンプによる乾燥 50°Cで 0. 5時間行い、組成物 4. 5gを得た。 [0158] 3.91 ml of pyridine and 6.1 ml of hydrazine were charged into a three-necked eggplant flask. The three-necked eggplant flask was heated in an oil bath at 70 ° C. This heating was carried out for 4 hours while dropwise adding 300 ml of TH F containing 5.4 g of the above compound (3A), and then cooled with water. Chloroform extraction was performed, followed by distillation with an evaporator and drying with a vacuum pump at 50 ° C. for 0.5 hour to obtain 4.5 g of a composition.
[0159] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 35及び図 36に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(3B)であることを確認した。  [0159] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 35 and 36, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (3B).
[0160] 〔化合物(3C)の製造例〕  [Production Example of Compound (3C)]
下記反応式 (3— 3)によって、化合物(3C)を製造した。  Compound (3C) was produced according to the following reaction formula (3-3).
[0161] [化 40]  [0161] [Chemical 40]
Figure imgf000035_0002
Figure imgf000035_0002
( 3 - 3 ) 上記化合物(3B) 2. Ogとピレンカルボン酸 1. 68gと N—メチルピロリドン 32mlと亜 リン酸ジフエ-ル 5. 25gと塩ィ匕リチウム 2. lgとピリジン 20mlとを三口ナスフラスコに 投入した。この三口ナスフラスコを 120°Cのオイルバスによって、 17時間、加熱した。 そして水により冷却後、ヌッチェ処理、メタノール洗浄、真空ポンプによる乾燥 50°Cを 1時間行い、組成物 0. 68gを得た。 (3-3) The above compound (3B) 2. Og and pyrenecarboxylic acid 1.68g, N-methylpyrrolidone 32ml, diphosphite 5.25g, sodium chloride 2. lg and pyridine 20ml It poured into the eggplant flask. This three-necked eggplant flask was heated in a 120 ° C. oil bath for 17 hours. And after cooling with water, Nutsche treatment, methanol washing, drying by vacuum pump 50 ° C After 1 hour, 0.68 g of the composition was obtained.
[0163] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 37及び図 38に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(3C)であることを確認した。 [0163] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 37 and 38, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (3C).
[0164] 〔化合物(3D)の製造例〕 [Production Example of Compound (3D)]
下記反応式 (3— 4)によって、化合物(3D)を製造した。  Compound (3D) was produced according to the following reaction formula (3-4).
[0165] [化 41] [0165] [Chemical 41]
Figure imgf000036_0001
Figure imgf000036_0001
- - ■ ( 3 - 4 )  --■ (3-4)
[0166] 上記化合物(3C) 0. 68gと 1,4ジォキサン 150mlと POC1 75mlと沸石とをナスフ [0166] 0.68 g of the above compound (3C), 150 ml of 1,4 dioxane, 75 ml of POC1 and zeolite
3  Three
ラスコに投入した。このナスフラスコを 120°Cのオイルバスによって、 14時間加熱した 。そして、水により冷却後、ヌッチェ処理、メタノール洗浄を行い、組成物 0. 2gを得た  I put it in Lasco. The eggplant flask was heated in an oil bath at 120 ° C. for 14 hours. Then, after cooling with water, Nutsche treatment and methanol washing were performed to obtain 0.2 g of the composition.
[0167] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 39及び図 40に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(3D)であることを確認した。 [0167] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 39 and 40, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (3D).
[0168] 〔化合物(3E)の製造例〕  [Production Example of Compound (3E)]
下記反応式 (3— 5)によって、化合物(3E)を製造した。  Compound (3E) was produced according to the following reaction formula (3-5).
[0169] [化 42]
Figure imgf000037_0001
[0169] [Chemical 42]
Figure imgf000037_0001
3D) (3E)  3D) (3E)
( 3 - 5 )  (3-5)
[0170] 上記化合物(3D) 0. 2gと 1,4ジォキサン 200mlとエタノール 100mlと KOH 1. 2 gと沸石とをナスフラスコに投入した。このナスフラスコを 100°Cのオイルバスによって 14時間加熱した。水により冷却後、ヌッチェ処理、メタノール洗浄を行い、組成物 0 . lgを得た。 [0170] 0.2 g of the above compound (3D), 200 ml of 1,4 dioxane, 100 ml of ethanol, 1.2 g of KOH, and zeolite were charged into an eggplant flask. The eggplant flask was heated in a 100 ° C oil bath for 14 hours. After cooling with water, Nutsche treatment and methanol washing were performed to obtain 0.1 lg of composition.
[0171] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 41及び図 42に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(3E)であることを確認した。  [0171] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 41 and 42, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (3E).
[0172] 〔高分子化合物 (3F)の製造例〕  [Production Example of Polymer Compound (3F)]
下記反応式 (3— 6)によって、高分子化合物(3F)を製造した。  A polymer compound (3F) was produced according to the following reaction formula (3-6).
[0173] [化 43]  [0173] [Chemical 43]
Figure imgf000037_0002
Figure imgf000037_0002
(3E) (3F)  (3E) (3F)
3 6 ) 上記化合物(3E) 0. lgと DMF9mlとをナスフラスコに投入した。そして、 AIBN5m gと DMF5gを混合した溶液を 0. 07g、ナスフラスコに投入した。また、オルソジクロル ベンゼン(以下において、 ODBと略することがある。) 5mlもナスフラスコに投入した。 このナスフラスコを 170°Cのオイルバスによって、 120時間加熱した。水により冷却後 、エバポレータによる蒸留、真空ポンプ蒸留、 70°Cを 1時間行い、その後メタノール 洗浄、真空ポンプによる乾燥を行い、組成物 0. 2gを得た。 3 6) 0.1 lg of the above compound (3E) and 9 ml of DMF were put into an eggplant flask. Then, 0.07 g of a solution obtained by mixing 5 mg of AIBN and 5 g of DMF was put into the eggplant flask. In addition, 5 ml of orthodichlorobenzene (hereinafter sometimes abbreviated as ODB) was also charged into the eggplant flask. The eggplant flask was heated in an oil bath at 170 ° C. for 120 hours. After cooling with water, distillation with an evaporator, vacuum pump distillation, 70 ° C for 1 hour, then methanol Washing and drying with a vacuum pump were performed to obtain 0.2 g of a composition.
[0175] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 43及び図 44に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、高分子化合物(3F)であることを確認した。 [0175] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 43 and 44, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was a polymer compound (3F).
[0176] その後、高分子化合物(3F)を実施例 1における場合と同様にして、蛍光スペクトル を測定した。得られた蛍光スペクトルを図 45に示した。この蛍光スペクトルによって、 高分子化合物(3F)は、白色に発光することが確認された。 [0176] Thereafter, the fluorescence spectrum of the polymer compound (3F) was measured in the same manner as in Example 1. The obtained fluorescence spectrum is shown in FIG. From this fluorescence spectrum, it was confirmed that the polymer compound (3F) emitted white light.
[0177] (実施例 4) [0177] (Example 4)
実施例 4においては、以下の式 (4 0)で示される構造を有する発光化合物を製造 した。以下に、各反応毎に、製造手順を説明する。  In Example 4, a light emitting compound having a structure represented by the following formula (40) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
[0178] [化 44] [0178] [Chemical 44]
Figure imgf000038_0001
Figure imgf000038_0001
[0179] 〔化合物 (4A)の製造例〕 [Production Example of Compound (4A)]
下記反応式 (4 1)によって、化合物 (4A)を製造した。  Compound (4A) was produced according to the following reaction formula (41).
[0180] [化 45] [0180] [Chemical 45]
* · · ( 4 - 1 )
Figure imgf000038_0002
* · · (4-1)
Figure imgf000038_0002
(4A)  (4A)
[0181] 上記化合物とピリジンとヒドラジンとを三口ナスフラスコに投入した。この三口ナスフ ラスコを 70°Cのオイルバスによって、加熱した。 THF400mlを滴下しながら、この加 熱を 4時間行い、その後水により冷却した。そして、エバポレータによる蒸留、真空ポ ンプによる乾燥 50°Cで 1時間行 、、化合物 (4A)である組成物 1. 5gを得た。 [0182] 〔化合物 (4B)の製造例〕 [0181] The above compound, pyridine and hydrazine were charged into a three-necked eggplant flask. This three-necked eggplant flame was heated in a 70 ° C oil bath. This heating was performed for 4 hours while adding 400 ml of THF dropwise, and then cooled with water. Then, distillation with an evaporator and drying with a vacuum pump were performed at 50 ° C. for 1 hour to obtain 1.5 g of the composition (4A). [0182] [Production Example of Compound (4B)]
下記反応式 (4 2)によって、化合物 (4B)を製造した。  Compound (4B) was produced according to the following reaction formula (4 2).
[0183] [化 46] [0183] [Chem 46]
Figure imgf000039_0001
Figure imgf000039_0001
(4A) (4B)  (4A) (4B)
[0184] 上記化合物(4A) 1. 5gとピレンカルボン酸 2. Ogと 1ーメチルー 2—ピロリドン 40ml と亜リン酸ジフエ-ル 3gと塩化リチウム 4. 2gとピリジン 30mlとを三口ナスフラスコに 投入した。この三口ナスフラスコを 120°Cのオイルバスによって、 32時間、加熱した。 そして水により冷却後、ヌッチェ処理、メタノール洗浄、真空ポンプによる乾燥 50°Cを 1時間行い、組成物 2. 4gを得た。 [0184] 1.5 g of the above compound (4A), pyrenecarboxylic acid, 2. Og, 1-methyl-2-pyrrolidone, 40 ml, diphenyl phosphite, 3 g, lithium chloride, 4.2 g, and pyridine, 30 ml were charged into a three-necked eggplant flask. . This three-necked eggplant flask was heated in an oil bath at 120 ° C. for 32 hours. After cooling with water, Nutsche treatment, methanol washing, and drying with a vacuum pump were performed at 50 ° C for 1 hour to obtain 2.4 g of a composition.
[0185] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 46及び図 47に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物 (4B)であることを確認した。  [0185] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 46 and 47, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (4B).
[0186] 〔化合物 (4C)の製造例〕  [Production Example of Compound (4C)]
下記反応式 (4 3)によって、化合物 (4C)を製造した。  Compound (4C) was produced according to the following reaction formula (43).
[0187] [化 47]  [0187] [Chemical 47]
' - - 3
Figure imgf000039_0002
'--3
Figure imgf000039_0002
(4B) (4C)  (4B) (4C)
[0188] 上記化合物(4B) 2. Ogと 1,4ジォキサン 200mlと POC1 100mlと沸石とをナスフ [0188] 2. Compound (4B) 2. Og, 1,4 dioxane 200 ml, POC1 100 ml and zeolite
3  Three
ラスコに投入した。このナスフラスコを 115°Cのオイルバスによって、 25時間加熱した 。そして、水により冷却後、ヌッチェ処理、メタノール洗浄を行い、組成物 1. 75gを得 た。 I put it in Lasco. The eggplant flask was heated in an oil bath at 115 ° C. for 25 hours. After cooling with water, Nutsche treatment and methanol washing were performed to obtain 1.75 g of composition. It was.
[0189] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 48及び図 49に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物 (4C)であることを確認した。  [0189] The NMR ^ vector chart and IR spectrum chart of the obtained composition are shown in Figs. 48 and 49, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (4C).
[0190] その後、化合物 (4C)を実施例 1における場合と同様にして、蛍光スペクトルを測定 した。得られた蛍光スペクトルを図 50に示した。この蛍光スペクトルによって、化合物[0190] Thereafter, the fluorescence spectrum of compound (4C) was measured in the same manner as in Example 1. The obtained fluorescence spectrum is shown in FIG. This fluorescence spectrum indicates that the compound
(4C)は、青色に発光することが確認された。 (4C) was confirmed to emit blue light.
[0191] (実施例 5) [0191] (Example 5)
実施例 5においては、以下の式 (5— 0)で示される構造を有する発光化合物を製造 した。以下に、各反応毎に、製造手順を説明する。  In Example 5, a light emitting compound having a structure represented by the following formula (5-0) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
[0192] [化 48] [0192] [Chemical 48]
Figure imgf000040_0001
Figure imgf000040_0001
[0193] 〔化合物(5A)の製造例〕 [Production Example of Compound (5A)]
下記反応式 (5— 1)によって、化合物(5A)を製造した。  Compound (5A) was produced according to the following reaction formula (5-1).
[0194] [化 49] [0194] [Chemical 49]
( 5— 1 )
Figure imgf000040_0002
上記ピレンカルボン酸 5. 47gと 1, 4ジォキサン 300mlと塩化チォ -ル 125mlとピリ ジン 20mlとをナスフラスコに投入した。このナスフラスコを 110°Cのオイルバスによつ て、加熱した。この加熱を 3. 5時間行い、その後水により冷却した。得られた反応生 成物を THF600mlに溶解させ、ろ紙によるろ過を行った。そして、エバポレータによ る蒸留、真空ポンプによる乾燥 50°Cで 1時間行い、組成物 8. Ogを得た。
(5 — 1)
Figure imgf000040_0002
5.47 g of the above pyrenecarboxylic acid, 300 ml of 1,4 dioxane, 125 ml of chlorochloride and 20 ml of pyridine were charged into an eggplant flask. The eggplant flask was heated with an oil bath at 110 ° C. This heating was performed for 3.5 hours and then cooled with water. The obtained reaction product was dissolved in 600 ml of THF and filtered through filter paper. And according to the evaporator Distillation with a vacuum pump and drying at 50 ° C. for 1 hour gave composition 8. Og.
[0196] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 51及び図 52に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物 (4A)であることを確認した。 [0196] Fig. 51 and Fig. 52 show the NMR ^ vector chart and IR spectrum chart of the obtained composition, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (4A).
[0197] 〔化合物(5B)の製造例〕 [Production Example of Compound (5B)]
下記反応式 (5— 2)によって、化合物(5B)を製造した。  Compound (5B) was produced according to the following reaction formula (5-2).
[0198] [化 50] [0198] [Chemical 50]
Figure imgf000041_0001
Figure imgf000041_0001
[0199] ピリジン 3. 91mlとヒドラジン 6. 1mlとを三口ナスフラスコに投入した。この三口ナス フラスコを 70°Cのオイルバスによって、加熱した。上記化合物(5A) 5. Ogを含む TH F500mlを滴下しながら、この加熱を 5時間行い、その後水により冷却した。ヌッチェ 処理、メタノール洗浄、真空ポンプによる乾燥 50°Cで 0. 5時間行い、組成物 3. Ogを 得た。 [0199] 3.91 ml of pyridine and 6.1 ml of hydrazine were charged into a three-necked eggplant flask. The three-necked eggplant flask was heated in an oil bath at 70 ° C. The above compound (5A) 5. This heating was performed for 5 hours while adding dropwise 500 ml of TH F containing Og, and then cooled with water. Nutsche treatment, washing with methanol, and drying with a vacuum pump were carried out at 50 ° C. for 0.5 hour to obtain a composition 3. Og.
[0200] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 53及び図 54に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(5B)であることを確認した。  [0200] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 53 and 54, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (5B).
[0201] 〔化合物(5C)の製造例〕  [0201] [Production Example of Compound (5C)]
下記反応式 (5— 3)によって、化合物(5C)を製造した。  Compound (5C) was produced according to the following reaction formula (5-3).
[0202] [化 51]
Figure imgf000042_0001
[0202] [Chemical 51]
Figure imgf000042_0001
(5B) (50  (5B) (50
[0203] 上記化合物(5B) 1. 2gとピレンカルボン酸 1. 14gと 1ーメチルー 2—ピロリドン 40m 1と亜リン酸ジフヱ-ル 2gと塩化リチウム 4. 2gとピリジン 30mlとを三口ナスフラスコに 投入した。この三口ナスフラスコを 120°Cのオイルバスによって、 26時間、加熱した。 そして、水により冷却後、ヌッチェ処理、メタノール洗浄、真空ポンプによる乾燥 50°C を 1時間行い、組成物 2. Ogを得た。 [0203] 1.2 g of the above compound (5B), pyrenecarboxylic acid 1. 14 g, 1-methyl-2-pyrrolidone 40 ml, diphenyl phosphite 2 g, lithium chloride 4.2 g, and pyridine 30 ml were charged into a three-necked eggplant flask. did. This three-necked eggplant flask was heated in an oil bath at 120 ° C. for 26 hours. Then, after cooling with water, Nutsche treatment, methanol washing, and drying at 50 ° C. with a vacuum pump were performed for 1 hour to obtain composition 2. Og.
[0204] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 55及び図 56に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(5C)であることを確認した。  [0204] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Figs. 55 and 56, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (5C).
[0205] 〔化合物(5D)の製造例〕  [Production Example of Compound (5D)]
下記反応式 (5— 4)によって、化合物(5D)を製造した。  Compound (5D) was produced according to the following reaction formula (5-4).
[0206] [化 52]  [0206] [Chemical 52]
Figure imgf000042_0002
Figure imgf000042_0002
(5C) (5D)  (5C) (5D)
[0207] 上記化合物(5C) 1. 5gと 1,4ジォキサン 200mlと POC1 100mlと沸石とをナスフ [0207] 1.5 g of the above compound (5C), 200 ml of 1,4 dioxane, 100 ml of POC1 and zeolite
3  Three
ラスコに投入した。このナスフラスコを 115°Cのオイルバスによって、 18時間加熱した 。そして、水により冷却後、ヌッチェ処理、メタノール洗浄、真空ポンプによる乾燥を行 い、黄茶色の組成物 1. 26gを得た。  I put it in Lasco. The eggplant flask was heated in an oil bath at 115 ° C. for 18 hours. Then, after cooling with water, Nutsche treatment, methanol washing, and drying with a vacuum pump were performed to obtain 1.26 g of a yellow brown composition.
[0208] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 57及び図 58に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(5D)であることを確認した。 [0208] The NMR ^ vector chart and IR spectrum chart of the obtained composition were respectively shown. This is shown in FIGS. 57 and 58. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (5D).
[0209] その後、化合物(5D)を実施例 1における場合と同様にして、蛍光スペクトルを測定 した。得られた蛍光スペクトルを図 59に示した。この蛍光スペクトルによって、化合物[0209] Thereafter, the fluorescence spectrum of compound (5D) was measured in the same manner as in Example 1. The obtained fluorescence spectrum is shown in FIG. This fluorescence spectrum indicates that the compound
(5D)は、白色に発光することが確認された。 (5D) was confirmed to emit white light.
[0210] (実施例 6) [0210] (Example 6)
実施例 6にお 、ては、以下の式 (6— 0)で示される構造を有する発光高分子化合 物を製造した。以下に、各反応毎に、製造手順を説明する。  In Example 6, a light-emitting polymer compound having a structure represented by the following formula (6-0) was produced. Below, a manufacturing procedure is demonstrated for every reaction.
[0211] [化 53] [0211] [Chemical 53]
Figure imgf000043_0001
Figure imgf000043_0001
[0212] 〔化合物(6A)の製造例〕 [0212] [Production Example of Compound (6A)]
下記反応式 (6— 1)によって、化合物(6A)を製造した。  Compound (6A) was produced according to the following reaction formula (6-1).
[0213] [化 54] [0213] [Chemical 54]
Figure imgf000043_0002
Figure imgf000043_0002
上記実施例 5により得られたィ匕合物(5B) 1. Ogとピリジン 0. 37gと THF600mlとを 三口ナスフラスコに投入した。そして、上記クロリド 0. 6gと THF50mlとを混合し、三 口ナスフラスコ内に滴下した。この三口ナスフラスコを 70°Cのオイルバスによって、 13 時間、加熱した。その後、水により冷却し、大型メンブランフィルターを用いてろ過し た。そして、水洗、メタノール洗浄、真空ポンプによる乾燥 50°Cで、 1時間行い、組成 物 0. 6gを得た。 Compound (5B) obtained in Example 5 above 1. Og, 0.37 g of pyridine, and 600 ml of THF were charged into a three-necked eggplant flask. Then, 0.6 g of the above chloride and 50 ml of THF were mixed and dropped into a three-necked eggplant flask. This three-necked eggplant flask was heated in an oil bath at 70 ° C. for 13 hours. Then, it cooled with water and filtered using the large membrane filter. Then wash with water, wash with methanol, dry with vacuum pump at 50 ° C for 1 hour, composition 0.6 g of product was obtained.
[0215] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 60及び図 61に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(6A)であることを確認した。  [0215] The NMR ^ vector chart and IR spectrum chart of the resulting composition are shown in Fig. 60 and Fig. 61, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (6A).
[0216] 〔化合物(6B)の製造例〕  [Production Example of Compound (6B)]
下記反応式 (6— 2)によって、化合物(6B)を製造した。  Compound (6B) was produced according to the following reaction formula (6-2).
[0217] [化 55]  [0217] [Chemical 55]
Figure imgf000044_0001
Figure imgf000044_0001
[0218] 上記化合物(6A) 3. Ogと 1,4ジォキサン 100mlと POC1 50mlと [0218] The above compound (6A) 3. Og, 1,4 dioxane 100 ml, POC1 50 ml
3  Three
と沸石とをナスフラスコに投入した。このナスフラスコを 100°Cのオイルバスによって、 And zeolite were charged into the eggplant flask. This eggplant flask is placed in a 100 ° C oil bath.
40時間加熱した。水により冷却後、ヌッチェ処理、メタノール洗浄、真空ポンプによる 乾燥 50°Cを 1時間行い、組成物 0. lgを得た。 Heated for 40 hours. After cooling with water, Nutsche treatment, methanol washing, and drying with a vacuum pump were performed at 50 ° C for 1 hour to obtain 0. lg of a composition.
[0219] この得られた組成物の NMR ^ベクトルチャート及び IRスペクトルチャートをそれぞ れ図 62及び図 63に示した。これら NMR ^ベクトルチャート及び IR ^ベクトルチャート より、得られた組成物が、化合物(6B)であることを確認した。 [0219] The NMR ^ vector chart and IR spectrum chart of the obtained composition are shown in FIGS. 62 and 63, respectively. From these NMR ^ vector chart and IR ^ vector chart, it was confirmed that the obtained composition was the compound (6B).
[0220] 〔高分子化合物 (6C)の製造例〕 [0220] [Production example of polymer compound (6C)]
下記反応式 (6— 3)によって、高分子化合物(6C)を製造した。  A polymer compound (6C) was produced according to the following reaction formula (6-3).
[0221] [化 56]
Figure imgf000045_0001
[0221] [Chemical 56]
Figure imgf000045_0001
(6B) (6C)  (6B) (6C)
[0222] 上記化合物(6B) 0. 02gと DMF2gとをナスフラスコに投入した。そして、 AIBN5m gと DMF5gを混合した溶液を 0. 2g、ナスフラスコに投入した。また、 ODB5mlもナス フラスコに投入した。このナスフラスコを 140°Cのオイルバスによって、 150時間加熱 した。水により冷却後、エバポレータによる蒸留、真空ポンプ蒸留、 70°Cを 1時間行 い、その後メタノール洗浄、真空ポンプによる乾燥を行い、組成物 0. 2gを得た。 [0222] 0.02 g of the above compound (6B) and 2 g of DMF were charged into an eggplant flask. Then, 0.2 g of a solution obtained by mixing 5 mg of AIBN and 5 g of DMF was put into the eggplant flask. ODB5ml was also added to the eggplant flask. This eggplant flask was heated in an oil bath at 140 ° C. for 150 hours. After cooling with water, distillation with an evaporator, vacuum pump distillation and 70 ° C were performed for 1 hour, followed by washing with methanol and drying with a vacuum pump to obtain 0.2 g of a composition.
[0223] この得られた組成物の IR ^ベクトルチャートをそれぞれ図 64に示した。 IR^ぺクト ルチャートより、得られた組成物が、高分子化合物(6C)であることを確認した。  [0223] Fig. 64 shows an IR ^ vector chart of the obtained composition. From the IR ^ spectrum chart, it was confirmed that the obtained composition was a polymer compound (6C).
[0224] その後、高分子化合物(6C)を実施例 1における場合と同様にして、蛍光スペクトル を測定した。得られた蛍光スペクトルを図 65に示した。この蛍光スペクトルによって、 高分子化合物(6C)は、青色に発光することが確認された。  [0224] Thereafter, the fluorescence spectrum of the polymer compound (6C) was measured in the same manner as in Example 1. The obtained fluorescence spectrum is shown in FIG. From this fluorescence spectrum, it was confirmed that the polymer compound (6C) emitted blue light.
図面の簡単な説明  Brief Description of Drawings
[0225] [図 1]図 1は、この発明に係る一例としての発光素子を示す説明図である。 FIG. 1 is an explanatory view showing a light emitting device as an example according to the present invention.
[図 2]図 2は、この発明に係る他の例としての発光素子を示す説明図である。  FIG. 2 is an explanatory view showing a light emitting device as another example according to the present invention.
[図 3]図 3は、この発明に係るその他の例としての発光素子を示す説明図である。  FIG. 3 is an explanatory view showing a light emitting device as another example according to the present invention.
[図 4]図 4は、この発明に係る更に他の例としての発光素子を示す説明図である。  FIG. 4 is an explanatory view showing a light emitting device as still another example according to the present invention.
[図 5]図 5は、この発明の実施例にて合成された化合物(1A)を示す NMRスペクトル チャートである。  FIG. 5 is an NMR spectrum chart showing the compound (1A) synthesized in the example of the present invention.
[図 6]図 6は、この発明の実施例にて合成された化合物(1A)を示す IR ^ベクトルチヤ ートである。  FIG. 6 is an IR ^ vector chart showing the compound (1A) synthesized in the example of the present invention.
[図 7]図 7は、この発明の実施例にて合成された化合物(1B)を示す NMR ^ベクトル チャートである。  FIG. 7 is a NMR vector chart showing the compound (1B) synthesized in the example of the present invention.
[図 8]図 8は、この発明の実施例にて合成された化合物(1B)を示す IRスペクトルチヤ ートである。 FIG. 8 is an IR spectrum chart showing the compound (1B) synthesized in the example of the present invention. It is
[図 9]図 9は、この発明の実施例にて合成された化合物(1C)を示す NMRスペクトル チャートである。  FIG. 9 is an NMR spectrum chart showing the compound (1C) synthesized in the example of the present invention.
[図 10]図 10は、この発明の実施例にて合成されたィ匕合物(1C)を示す IR ^ベクトル チャートである。  [FIG. 10] FIG. 10 is an IR ^ vector chart showing the compound (1C) synthesized in the example of the present invention.
[図 11]図 11は、この発明の実施例にて合成されたィ匕合物( 1D)を示す NMR^ぺクト ノレチャートである。  FIG. 11 is an NMR spectrum chart showing the compound (1D) synthesized in the example of the present invention.
[図 12]図 12は、この発明の実施例にて合成されたィ匕合物( 1D)を示す IRスペクトル チャートである。  FIG. 12 is an IR spectrum chart showing the compound (1D) synthesized in the example of the present invention.
[図 13]図 13は、この発明の実施例にて合成されたィ匕合物( 1E)を示す NMRスぺタト ノレチャートである。  FIG. 13 is an NMR spectrum chart showing the compound (1E) synthesized in the example of the present invention.
[図 14]図 14は、この発明の実施例にて合成されたィ匕合物( 1E)を示す IR ^ベクトル チャートである。  FIG. 14 is an IR ^ vector chart showing a composite (1E) synthesized in an example of the present invention.
[図 15]図 15は、この発明の実施例にて合成されたィ匕合物( 1F)を示す NMR^ぺクト ノレチャートである。  FIG. 15 is an NMR spectrum chart showing the compound (1F) synthesized in the example of the present invention.
[図 16]図 16は、この発明の実施例にて合成されたィ匕合物( 1F)を示す IR ^ベクトル チャートである。  FIG. 16 is an IR ^ vector chart showing a composite (1F) synthesized in an example of the present invention.
[図 17]図 17は、この発明の実施例にて合成されたィ匕合物(1F)を示す蛍光スぺタト ノレチャートである。  FIG. 17 is a fluorescence spectrum chart showing the compound (1F) synthesized in the example of the present invention.
[図 18]図 18は、この発明の実施例にて合成されたィ匕合物(2A)を示す NMR^ぺクト ノレチャートである。  FIG. 18 is a NMR spectrum chart showing the compound (2A) synthesized in the example of the present invention.
[図 19]図 19は、この発明の実施例にて合成されたィ匕合物(2A)を示す IR ^ベクトル チャートである。  [FIG. 19] FIG. 19 is an IR ^ vector chart showing the compound (2A) synthesized in the example of the present invention.
[図 20]図 20は、この発明の実施例にて合成されたィ匕合物(2B)を示す NMRスぺタト ノレチャートである。  FIG. 20 is an NMR spectrum chart showing the compound (2B) synthesized in the example of the present invention.
[図 21]図 21は、この発明の実施例にて合成されたィ匕合物(2B)を示す IRスペクトル チャートである。  FIG. 21 is an IR spectrum chart showing the compound (2B) synthesized in the example of the present invention.
[図 22]図 22は、この発明の実施例にて合成されたィ匕合物(2C)を示す NMR^ぺクト ノレチャートである。 [FIG. 22] FIG. 22 shows NMR spectra showing the compound (2C) synthesized in the example of the present invention. It is a Nore chart.
[図 23]図 23は、この発明の実施例にて合成されたィ匕合物(2C)を示す IR ^ベクトル チャートである。  FIG. 23 is an IR ^ vector chart showing a composite (2C) synthesized in an example of the present invention.
[図 24]図 24は、この発明の実施例にて合成されたィ匕合物(2D)を示す NMR^ぺクト ノレチャートである。  FIG. 24 is an NMR spectrum chart showing a compound (2D) synthesized in an example of the present invention.
[図 25]図 25は、この発明の実施例にて合成されたィ匕合物(2D)を示す IRスペクトル チャートである。  FIG. 25 is an IR spectrum chart showing the compound (2D) synthesized in the example of the present invention.
[図 26]図 26は、この発明の実施例にて合成されたィ匕合物(2E)を示す NMRスぺタト ノレチャートである。  FIG. 26 is an NMR spectrum chart showing the compound (2E) synthesized in the example of the present invention.
[図 27]図 27は、この発明の実施例にて合成されたィ匕合物(2E)を示す IR ^ベクトル チャートである。  FIG. 27 is an IR ^ vector chart showing the compound (2E) synthesized in the example of the present invention.
[図 28]図 28は、この発明の実施例にて合成されたィ匕合物(2F)を示す NMR^ぺクト ノレチャートである。  FIG. 28 is an NMR spectrum chart showing the compound (2F) synthesized in the example of the present invention.
[図 29]図 29は、この発明の実施例にて合成されたィ匕合物(2F)を示す IR ^ベクトル チャートである。  FIG. 29 is an IR ^ vector chart showing the compound (2F) synthesized in the example of the present invention.
[図 30]図 30は、この発明の実施例にて合成された高分子化合物(2G)を示す NMR スペクトルチャートである。  FIG. 30 is an NMR spectrum chart showing the polymer compound (2G) synthesized in the example of the present invention.
[図 31]図 31は、この発明の実施例にて合成された高分子化合物(2G)を示す IRスぺ クトノレチャートである。  FIG. 31 is an IR spectrum chart showing the polymer compound (2G) synthesized in the example of the present invention.
[図 32]図 32は、この発明の実施例にて合成された高分子化合物(2G)を示す蛍光ス ぺクトノレチャートである。  FIG. 32 is a fluorescence spectrum chart showing the polymer compound (2G) synthesized in the example of the present invention.
[図 33]図 33は、この発明の実施例にて合成されたィ匕合物(3A)を示す NMR^ぺクト ノレチャートである。  FIG. 33 is a NMR spectrum chart showing the compound (3A) synthesized in the example of the present invention.
[図 34]図 34は、この発明の実施例にて合成されたィ匕合物(3A)を示す IR ^ベクトル チャートである。  FIG. 34 is an IR ^ vector chart showing a composite (3A) synthesized in the example of the present invention.
[図 35]図 35は、この発明の実施例にて合成されたィ匕合物(3B)を示す NMRスぺタト ノレチャートである。  FIG. 35 is an NMR spectrum chart showing the compound (3B) synthesized in the example of the present invention.
[図 36]図 36は、この発明の実施例にて合成されたィ匕合物(3B)を示す IRスペクトル チャートである。 FIG. 36 is an IR spectrum showing the compound (3B) synthesized in the example of the present invention. It is a chart.
[図 37]図 37は、この発明の実施例にて合成されたィ匕合物(3C)を示す NMR^ぺクト ノレチャートである。  FIG. 37 is a NMR spectrum chart showing the compound (3C) synthesized in the example of the present invention.
[図 38]図 38は、この発明の実施例にて合成されたィ匕合物(3C)を示す IR ^ベクトル チャートである。  FIG. 38 is an IR ^ vector chart showing a composite (3C) synthesized in an example of the present invention.
[図 39]図 39は、この発明の実施例にて合成されたィ匕合物(3D)を示す NMR^ぺクト ノレチャートである。  FIG. 39 is an NMR spectrum chart showing the compound (3D) synthesized in the example of the present invention.
[図 40]図 40は、この発明の実施例にて合成されたィ匕合物(3D)を示す IRスペクトル チャートである。  FIG. 40 is an IR spectrum chart showing the compound (3D) synthesized in the example of the present invention.
[図 41]図 41は、この発明の実施例にて合成されたィ匕合物(3E)を示す NMRスぺタト ノレチャートである。  FIG. 41 is an NMR spectrum chart showing the compound (3E) synthesized in the example of the present invention.
[図 42]図 42は、この発明の実施例にて合成されたィ匕合物(3E)を示す IR ^ベクトル チャートである。  FIG. 42 is an IR ^ vector chart showing a composite (3E) synthesized in an example of the present invention.
[図 43]図 43は、この発明の実施例にて合成された高分子化合物(3F)を示す NMR スペクトルチャートである。  FIG. 43 is an NMR spectrum chart showing the polymer compound (3F) synthesized in the example of the present invention.
[図 44]図 44は、この発明の実施例にて合成された高分子化合物(3F)を示す IR^ぺ クトノレチャートである。  FIG. 44 is an IR spectrum chart showing the polymer compound (3F) synthesized in the example of the present invention.
[図 45]図 45は、この発明の実施例にて合成された高分子化合物(3F)を示す蛍光ス ぺクトノレチャートである。  FIG. 45 is a fluorescence spectrum chart showing a polymer compound (3F) synthesized in an example of the present invention.
[図 46]図 46は、この発明の実施例にて合成されたィ匕合物 (4B)を示す NMRスぺタト ノレチャートである。  FIG. 46 is an NMR spectrum chart showing the compound (4B) synthesized in the example of the present invention.
[図 47]図 47は、この発明の実施例にて合成されたィ匕合物 (4B)を示す IRスペクトル チャートである。  FIG. 47 is an IR spectrum chart showing the compound (4B) synthesized in the example of the present invention.
[図 48]図 48は、この発明の実施例にて合成されたィ匕合物 (4C)を示す NMR^ぺクト ノレチャートである。  FIG. 48 is an NMR spectrum chart showing the compound (4C) synthesized in the example of the present invention.
[図 49]図 49は、この発明の実施例にて合成されたィ匕合物 (4C)を示す IR ^ベクトル チャートである。  FIG. 49 is an IR ^ vector chart showing the compound (4C) synthesized in the example of the present invention.
[図 50]図 50は、この発明の実施例にて合成されたィ匕合物 (4C)を示す蛍光スぺタト ノレチャートである。 [FIG. 50] FIG. 50 shows a fluorescent spectrum showing a compound (4C) synthesized in an example of the present invention. It is a Nore chart.
[図 51]図 51は、この発明の実施例にて合成されたィ匕合物(5A)を示す NMR^ぺクト ノレチャートである。  FIG. 51 is a NMR spectrum chart showing the compound (5A) synthesized in the example of the present invention.
[図 52]図 52は、この発明の実施例にて合成されたィ匕合物(5A)を示す IR ^ベクトル チャートである。  FIG. 52 is an IR ^ vector chart showing a composite (5A) synthesized in an example of the present invention.
[図 53]図 53は、この発明の実施例にて合成されたィ匕合物(5B)を示す NMRスぺタト ノレチャートである。  FIG. 53 is an NMR spectrum chart showing the compound (5B) synthesized in the example of the present invention.
[図 54]図 54は、この発明の実施例にて合成されたィ匕合物(5B)を示す IRスペクトル チャートである。  FIG. 54 is an IR spectrum chart showing the compound (5B) synthesized in the example of the present invention.
[図 55]図 55は、この発明の実施例にて合成されたィ匕合物(5C)を示す NMR^ぺクト ノレチャートである。  FIG. 55 is a NMR spectrum chart showing the compound (5C) synthesized in the example of the present invention.
[図 56]図 56は、この発明の実施例にて合成されたィ匕合物(5C)を示す IR ^ベクトル チャートである。  FIG. 56 is an IR ^ vector chart showing a composite (5C) synthesized in an example of the present invention.
[図 57]図 57は、この発明の実施例にて合成されたィ匕合物(5D)を示す NMR^ぺクト ノレチャートである。  FIG. 57 is an NMR spectrum chart showing the compound (5D) synthesized in the example of the present invention.
[図 58]図 58は、この発明の実施例にて合成されたィ匕合物(5D)を示す IRスペクトル チャートである。  FIG. 58 is an IR spectrum chart showing the compound (5D) synthesized in the example of the present invention.
[図 59]図 59は、この発明の実施例にて合成されたィ匕合物(5D)を示す蛍光スぺタト ノレチャートである。  FIG. 59 is a fluorescence spectrum chart showing the composite (5D) synthesized in the example of the present invention.
[図 60]図 60は、この発明の実施例にて合成されたィ匕合物(6A)を示す NMR^ぺクト ノレチャートである。  FIG. 60 is an NMR spectrum chart showing the compound (6A) synthesized in the example of the present invention.
[図 61]図 61は、この発明の実施例にて合成されたィ匕合物(6A)を示す IR ^ベクトル チャートである。  FIG. 61 is an IR ^ vector chart showing a composite (6A) synthesized in an example of the present invention.
[図 62]図 62は、この発明の実施例にて合成されたィ匕合物(6B)を示す NMRスぺタト ノレチャートである。  FIG. 62 is an NMR spectrum chart showing the compound (6B) synthesized in the example of the present invention.
[図 63]図 63は、この発明の実施例にて合成されたィ匕合物(6B)を示す IRスペクトル チャートである。  FIG. 63 is an IR spectrum chart showing the compound (6B) synthesized in the example of the present invention.
[図 64]図 64は、この発明の実施例にて合成された高分子化合物(6C)を示す IRスぺ クトノレチャートである。 FIG. 64 shows an IR spectrum showing the polymer compound (6C) synthesized in the example of the present invention. It is a ktonore chart.
[図 65]図 65は、この発明の実施例にて合成された高分子化合物(6C)を示す蛍光ス ぺクトノレチャートである。  FIG. 65 is a fluorescence spectrum chart showing a polymer compound (6C) synthesized in an example of the present invention.
符号の説明 Explanation of symbols
1 基板  1 Board
2 透明電極  2 Transparent electrode
3 発光層  3 Light emitting layer
3a 発光層  3a Light emitting layer
3b 発光層  3b Light emitting layer
4 電極層  4 Electrode layer
5 ホール輸送層  5 hole transport layer
6 電子輸送層  6 Electron transport layer
8 電子輸送層  8 Electron transport layer
A 発光素子  A Light-emitting element
B 発光素子  B Light emitting element
C 発光素子  C Light-emitting element
D 発光素子  D Light emitting element

Claims

請求の範囲 The scope of the claims
以下の式(1)で示される構造を有することを特徴とする発光化合物。  A light-emitting compound having a structure represented by the following formula (1):
Figure imgf000051_0001
Figure imgf000051_0001
〔前記式(1)において、 Aは、下記式(2)〜(13)で表されるいずれかの基である。〕 [In the formula (1), A represents any group represented by the following formulas (2) to (13). ]
[化 2] [Chemical 2]
Figure imgf000051_0002
Figure imgf000051_0002
〔ただし、式(2)において、 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示し、 2個の R1は互いに同一であっても相違して!/、ても良!、。〕 [In the formula (2), two R 1 s each represent an alkyl group having 1 to 20 carbon atoms, and the two R 1 s may be the same or different from each other! / . ]
[化 3] [Chemical 3]
Figure imgf000051_0003
〔ただし、式(3)において、 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示し、 2個の R1は互いに同一であっても相違して!/、ても良!、。〕
Figure imgf000051_0003
[In the formula (3), two R 1 s each represent an alkyl group having 1 to 20 carbon atoms, and the two R 1 s may be the same or different from each other! / . ]
[化 4] [Chemical 4]
Figure imgf000052_0001
Figure imgf000052_0001
c R!  c R!
2一 化 5]  2 Unification 5]
Hウ H
( 5 ) ( Five )
〔ただし、式(5)において、 Rは Hまたはメチル基を示す。〕 [In the formula ( 5 ), R represents H or a methyl group. ]
[化 6] [Chemical 6]
Figure imgf000053_0001
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000053_0002
Figure imgf000053_0003
Figure imgf000053_0003
以下の式(14)で示される繰り返し単位構造を有することを特徴とする発光高分子 化合物。 A light-emitting polymer compound having a repeating unit structure represented by the following formula (14):
[化 7]  [Chemical 7]
Figure imgf000053_0004
Figure imgf000053_0004
〔ただし、式(14)において、 2個の R1はそれぞれ炭素数 1〜20のアルキル基を示し 、 2個の R1は互いに同一であっても相違していても良い。〕 [However, in the formula (14), two R 1 s each represent an alkyl group having 1 to 20 carbon atoms, and the two R 1 s may be the same or different from each other. ]
[3] 以下の式(15)で示される構造を有することを特徴とする発光高分子化合物。
Figure imgf000054_0001
[3] A light-emitting polymer compound having a structure represented by the following formula (15):
Figure imgf000054_0001
〔ただし、式(15)において、 R2は Hまたはメチル基を示す。〕 [In the formula (15), R 2 represents H or a methyl group. ]
以下の式(16)で示される繰り返し単位構造を有することを特徴とする発光高分子 化合物。  A light-emitting polymer compound having a repeating unit structure represented by the following formula (16):
Figure imgf000054_0002
Figure imgf000054_0002
〔ただし、式(16)において、 Rは Hまたはメチル基を示す。〕 [In the formula (16), R represents H or a methyl group. ]
一対の電極間に、前記請求項 1に記載の発光化合物または前記請求項 2〜4のい ずれか 1項に記載の発光高分子化合物を含有する発光層を設けてなることを特徴と する発光素子。  A light emitting layer comprising a light emitting layer containing the light emitting compound according to claim 1 or the light emitting polymer compound according to any one of claims 2 to 4 between a pair of electrodes. element.
PCT/JP2005/019107 2004-10-19 2005-10-18 Light-emitting compound, light-emitting polymer compound and light-emitting device WO2006043539A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-304016 2004-10-19
JP2004304016 2004-10-19

Publications (1)

Publication Number Publication Date
WO2006043539A1 true WO2006043539A1 (en) 2006-04-27

Family

ID=36202954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019107 WO2006043539A1 (en) 2004-10-19 2005-10-18 Light-emitting compound, light-emitting polymer compound and light-emitting device

Country Status (2)

Country Link
TW (1) TW200613288A (en)
WO (1) WO2006043539A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046246A1 (en) * 2005-10-17 2007-04-26 Hirose Engineering Co., Ltd. Luminescent composition and light-emitting device
GB2471062A (en) * 2009-04-16 2010-12-22 Cambridge Display Tech Ltd Organic light-emitting polymers and devices
US20110152491A1 (en) * 2008-06-23 2011-06-23 Basf Se Novel polymers
JP4962314B2 (en) * 2005-02-25 2012-06-27 東レ株式会社 Light emitting device material and light emitting device
US8610345B2 (en) 2005-09-08 2013-12-17 Toray Industries, Inc. Light-emitting device material and light-emitting device
CN108947926A (en) * 2018-08-03 2018-12-07 瑞声科技(南京)有限公司 It is a kind of based on pyrene-oxadiazole derivatives bipolarity compound and its application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1222970A (en) * 1967-08-15 1971-02-17 Ici Ltd New oxadiazole compounds
JPH09255725A (en) * 1996-03-25 1997-09-30 Kemipuro Kasei Kk Oxadiazolylated polymer, production thereof, and organic electroluminescent element made using the same
JP2000281663A (en) * 1999-03-30 2000-10-10 Fuji Photo Film Co Ltd Oxadiazole derivative, material for electroluminescenct device and electroluminescenct device
EP1477544A2 (en) * 2003-05-16 2004-11-17 Hirose Engineering Co., Ltd. Blue Light-emitting Compounds, Blue Light-emitting Polymers, Processes of Preparing the Blue Light-emitting Compounds and Luminescent Element Including the Blue Light-emitting Polymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1222970A (en) * 1967-08-15 1971-02-17 Ici Ltd New oxadiazole compounds
JPH09255725A (en) * 1996-03-25 1997-09-30 Kemipuro Kasei Kk Oxadiazolylated polymer, production thereof, and organic electroluminescent element made using the same
JP2000281663A (en) * 1999-03-30 2000-10-10 Fuji Photo Film Co Ltd Oxadiazole derivative, material for electroluminescenct device and electroluminescenct device
EP1477544A2 (en) * 2003-05-16 2004-11-17 Hirose Engineering Co., Ltd. Blue Light-emitting Compounds, Blue Light-emitting Polymers, Processes of Preparing the Blue Light-emitting Compounds and Luminescent Element Including the Blue Light-emitting Polymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THOMAS KRJ ET AL: "Green and Yellow Electroluminescent Dipolar Carbazole Derivatives: Features and Benefits of Electron-Withdrawing Segments.", CHEMISTRY OF MATERIALS., vol. 14, no. 9, September 2002 (2002-09-01), pages 3852 - 3859, XP001192539 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962314B2 (en) * 2005-02-25 2012-06-27 東レ株式会社 Light emitting device material and light emitting device
US8610345B2 (en) 2005-09-08 2013-12-17 Toray Industries, Inc. Light-emitting device material and light-emitting device
WO2007046246A1 (en) * 2005-10-17 2007-04-26 Hirose Engineering Co., Ltd. Luminescent composition and light-emitting device
US20110152491A1 (en) * 2008-06-23 2011-06-23 Basf Se Novel polymers
GB2471062A (en) * 2009-04-16 2010-12-22 Cambridge Display Tech Ltd Organic light-emitting polymers and devices
GB2471062B (en) * 2009-04-16 2012-10-31 Cambridge Display Tech Ltd Organic light-emitting materials and devices
CN108947926A (en) * 2018-08-03 2018-12-07 瑞声科技(南京)有限公司 It is a kind of based on pyrene-oxadiazole derivatives bipolarity compound and its application

Also Published As

Publication number Publication date
TW200613288A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
WO2006043539A1 (en) Light-emitting compound, light-emitting polymer compound and light-emitting device
EP1516903A1 (en) Light-emitting compound and polymer and luminescent element
KR20050109482A (en) Blue light-emitting compound, method for producing same and light-emitting device utilizing same
US20050118454A1 (en) Luminescent compound emitting white light, illuminator and organic el element emitting white light
JP2000357588A (en) Organic electroluminescent element
EP1477544A2 (en) Blue Light-emitting Compounds, Blue Light-emitting Polymers, Processes of Preparing the Blue Light-emitting Compounds and Luminescent Element Including the Blue Light-emitting Polymers
WO2006101009A1 (en) Nile red-based red luminescent compound, and luminescent element using the same
KR20060024446A (en) Blue light emitting polymer, method for producing same, and light emitting device utilizing same
TWI247790B (en) Luminescent compound emitting Nile-red light, process for producing the same and luminescent element utilizing the same
EP1528611A2 (en) White light-emitting compound, process for producing the same and luminescent element utilizing the same
JP2005035965A (en) White luminescent compound, method for producing the same and white luminescent element
JP3798985B2 (en) White light emitting illumination device and white light emitting organic EL element using a single compound
JP4653903B2 (en) Salicylideneaniline-based polymer, method for producing the same, and multicolor light emitting material using the same
US20060252933A1 (en) Nile red light-emitting compound, method for producing nile red light-emitting compound, and light-emitting device
JP2005154404A (en) Blue color light-emitting compound, blue color light-emitting polymer, method for producing blue color light-emitting compound and light-emitting element utilizing blue color light-emitting polymer
JP2005097129A (en) Red light-emitting device, red light-emitting compound, method for preparing red light-emitting compound and light-emitting device utilizing the same
KR20050083873A (en) White organic fluorescent compound
WO2006001239A1 (en) White light-emitting compound, white light-emitting polymer compound, method for producing those, and light-emitting device
KR20050061593A (en) Luminescent polymers and light emitting devices
JP2003277371A (en) Nile red-type compound, method for producing the same, nile red-type compound emitting red light and method for producing the same
JP2004018400A (en) Nile red system red light-emitting compound, method for producing the same and light-emitting element using the same
JP2006191138A (en) White light emitting illumination device and white light emitting organic el element by single compound
JP2005132743A (en) Red light-emitting compound, red light-emitting polymer and light-emitting element using these compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP