WO2006001119A1 - Dielectric resonator, dielectric filter, and method for fabricating dielectric filter - Google Patents

Dielectric resonator, dielectric filter, and method for fabricating dielectric filter Download PDF

Info

Publication number
WO2006001119A1
WO2006001119A1 PCT/JP2005/007974 JP2005007974W WO2006001119A1 WO 2006001119 A1 WO2006001119 A1 WO 2006001119A1 JP 2005007974 W JP2005007974 W JP 2005007974W WO 2006001119 A1 WO2006001119 A1 WO 2006001119A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating electrode
dielectric
conductor
resonant
resonant conductor
Prior art date
Application number
PCT/JP2005/007974
Other languages
French (fr)
Japanese (ja)
Inventor
Soichi Nakamura
Hideyuki Kato
Hirofumi Miyamoto
Hideki Tsukamoto
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE112005001123T priority Critical patent/DE112005001123T5/en
Priority to JP2006528381A priority patent/JP4310469B2/en
Publication of WO2006001119A1 publication Critical patent/WO2006001119A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/007Manufacturing frequency-selective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block

Definitions

  • the present invention relates to a dielectric resonator, a dielectric filter, and a dielectric filter manufacturing method applied to a high frequency circuit.
  • FIG. 9 is a structural example of a conventional dielectric resonator using a dielectric block, and is an external perspective view thereof.
  • a resonant conductor forming hole 2 in which a resonant conductor 3 is formed on the inner surface is provided inside a substantially rectangular parallelepiped dielectric block 1, and one of the resonant conductor forming holes 2 is provided.
  • Outer conductors 4 are formed on the outer surfaces of the five surfaces excluding the end surfaces.
  • the remaining surface of the dielectric block 1 is an open portion 5 where the outer conductor is not formed.
  • the outer conductor 4 and the resonant conductor 3 constitute a dielectric resonator 17 having the open portion 5 as an open end face.
  • dielectric filter provided with the dielectric resonator, there is a structure having a plurality of resonant conductor forming holes and input / output electrodes.
  • a conductor such as an input / output electrode or an adjacent resonance conductor provided in the outer conductor and a deletion portion facing the conductor are mutually connected. Adjust the capacitance to adjust the coupling coefficient. Further, in such a configuration, the resonance frequency is adjusted by changing the equivalent resonator length by forming a deletion site at a position facing the outer conductor.
  • a processing tool such as a reuter is used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-343903
  • the characteristic can be adjusted by the position, size, and number of deleted parts. Heat is generated. This is accompanied by a decrease in adjustment accuracy due to changes in characteristics due to heat and a deterioration in unloaded Q value due to thermal reduction of dielectric ceramics.
  • an object of the present invention is to solve the above problems, improve the accuracy of characteristic adjustment, suppress characteristic deterioration, and cope with downsizing, a dielectric resonator, a dielectric filter, and a dielectric It is in providing the manufacturing method of a filter.
  • a resonant conductor forming hole in which a resonant conductor is formed on an inner surface is provided in the dielectric block, an outer conductor is formed on an outer surface of the dielectric block, and the resonant conductor
  • An open portion of the resonant conductor is provided in the vicinity of at least one opening of the forming hole, and the floating electrode portion electrically insulated from the resonant conductor force is provided in or near the open portion, and the floating electrode portion And a floating electrode insulating part formed around the wire.
  • the shape of the resonant conductor of the resonator in which these are formed is changed, and the characteristics of the resonator are changed.
  • the deleted portion is formed in a floating electrode shape, the deleted area is increased and the floating electrode insulating portion can be suppressed.
  • the same adjustment effect is obtained when only the floating electrode insulating part is deleted and when the floating electrode part itself is also deleted.
  • the dielectric resonator according to the present invention is characterized in that the open portion and the floating electrode insulating portion share a part of each.
  • This shape eliminates the need to delete the shared part, and therefore the area to be deleted can be suppressed to the remaining floating electrode insulating parts only.
  • the open portion and the floating electrode insulating portion are separated. It is characterized by being formed away.
  • the dielectric resonator of the present invention is characterized in that two or more floating electrode portions are provided in or near the open portion provided in one resonance conductor forming hole. .
  • the dielectric filter of the present invention includes any one of the above-described dielectric resonators and input / output means coupled to the dielectric resonators.
  • the coupling coefficient between the resonator in which the floating electrode portion and the floating electrode insulating portion are formed as described above and the input / output electrodes, the coupling coefficient between the resonators, and the resonator length are used.
  • the area to be removed is limited to the floating electrode insulation by making the removed part a floating electrode.
  • the dielectric resonator described above The same adjustment effect can be obtained as when the electrode portion itself is deleted.
  • the floating electrode insulating portion is formed in a region where the resonant conductor is formed, so that the resonant conductor force is separated and the floating electrode portion is formed. It is characterized in that the filter characteristics are determined by the resonant conductor removing process to be provided.
  • This resonance conductor removal step adjusts the resonance frequency of each resonator based on the coupling coefficient between the resonators, the strength of external coupling between the resonator and the input / output electrodes, and the resonator length.
  • the deletion part is made a floating electrode shape
  • the deletion area is limited to the floating electrode insulation part, and the floating electrode part and the floating electrode insulation part are both deleted while suppressing the deletion area. Achieve the same adjustment effect.
  • the dielectric filter manufacturing method of the present invention is characterized in that the resonant conductor removing step is a conductor removing step by laser processing of the floating electrode insulating portion.
  • processing is performed by irradiation from the outside of the resonant conductor forming hole regardless of the size of the resonant conductor forming hole.
  • the deleted area can be made only in the floating electrode insulating portion other than the shared portion, the heat generated during processing can be further suppressed, the deterioration of unloaded Q and the amount of characteristic change Can be suppressed, and the adjustment accuracy of the dielectric resonator can be improved.
  • the deleted area can be minimized, and no-load Q is deteriorated due to heat generated during processing.
  • the characteristic change can be suppressed, and the adjustment accuracy of the dielectric resonator can be improved.
  • the deleted area can be suppressed only to the floating electrode insulating portion.
  • the deleted area can be suppressed only to the floating electrode insulating portion.
  • heat generated during processing and processing time can be suppressed, deterioration of the unloaded Q of the dielectric filter and characteristic change can be suppressed, and characteristic adjustment accuracy can be improved.
  • the processing for adjusting the characteristics of the dielectric filter can be performed without inserting the processing tool into the resonant conductor forming hole. Can do.
  • FIG. 1 is an external perspective view of a dielectric filter according to a first embodiment.
  • FIG. 2 In the dielectric filter according to the first embodiment, (A) is a BB cross-sectional view of FIG. 1, and (B) is an upper cross-section of FIG.
  • FIG. 3 is an enlarged view of a floating electrode part and a floating electrode insulating part according to the first embodiment, (A) is a front view, and (B) is a cross-sectional view.
  • FIG. 4 is an external view in a resonance conductor removing step according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along the line AA in the resonant conductor removal step according to the first embodiment.
  • FIG. 6 is a cross-sectional view taken along the line BB in the resonant conductor removing process according to the first embodiment.
  • FIG. 7 is an external perspective view of a dielectric filter according to a second embodiment.
  • FIG. 8 is a cross-sectional view of a dielectric filter according to a third embodiment.
  • FIG. 9 is an external perspective view of a conventional dielectric resonator.
  • FIG. 1 is an external perspective view of the dielectric filter 16.
  • FIG. 2 (A) is a cross-sectional view of the BB portion in FIG.
  • FIG. 2B is a top view of the dielectric filter shown in FIG.
  • a substantially rectangular parallelepiped dielectric block 1 is provided with a plurality of resonant conductor forming holes 2A, 2B, and 2C provided with resonant conductors 3A, 3B, and 3C on their inner surfaces.
  • the outer conductor 4 is provided on the five surfaces of the dielectric block 1 except for the upper end surface.
  • Resonant conductor formation holes 2A, 2B, and 2C are provided so as to penetrate the upper end surface and the lower end surface of Fig. 1.
  • the resonant conductors 3A, 3B, 3C and outer conductor 4 are connected to each other on the lower end surface of Fig. 1. Yes.
  • input / output electrodes 6A and 6B are formed.
  • Floating electrode portions 7A, 7B, and 7C and floating electrode insulating portions 15A, 15B, and 15C are formed at the upper ends of the resonant conductor forming holes 2A, 2B, and 2C, respectively.
  • the dielectric filter 16 is a quarter-wave filter.
  • Cab represents the capacitance generated near the open area between the resonant conductors 3A and 3B.
  • Cbc represents the capacitance generated near the open area between the resonant conductors 3B and 3C.
  • Ce represents the capacitance generated between the resonant conductor 3C and the input / output electrode 6B.
  • Ca represents the self-capacitance generated between the resonant conductor 3A and the outer conductor 4.
  • the floating electrode portion 7 A and the floating electrode insulating portion 15 A are formed in a portion facing the outer conductor 4.
  • This structure shortens the equivalent resonator length of the resonator composed of the resonant conductor 3A, reduces the area where the resonant conductor 3A and the outer conductor 4 face each other, and reduces the self-capacitance (Ca in Fig. 2). . Due to changes in the resonator length and self-capacitance, the resonant frequency of the resonator by the resonant conductor 3A increases synergistically.
  • the floating electrode portion 7B and the floating electrode insulating portion 15B are formed at portions facing the adjacent resonant conductor forming hole 2A.
  • This structure shortens the equivalent resonator length of the resonator that also has the resonance conductor 3B force, and adjusts the resonance frequency higher.
  • the structure reduces the opposing area on the open side of each of the resonant conductors 3 A and 3 B, and the capacitance between the resonators (Ca The coupling coefficient is adjusted by reducing b).
  • the frequency adjustment and the coupling coefficient adjustment are performed by changing the coupling coefficient between the resonators and the resonance frequency of the resonators when the floating electrode portion 7B and the floating electrode insulating portion 15B are long in the axial direction and short in the width direction. Can be done simultaneously. Further, when the floating electrode portion 7B and the floating electrode insulating portion 15B are short in the axial direction and long in the width direction, only the coupling coefficient between the resonators can be performed almost independently.
  • the floating electrode portion 7C and the floating electrode insulating portion 15C are formed at a portion facing the input / output electrode 6B.
  • the equivalent resonator length of the resonator composed of the resonant conductor 3C is shortened and the resonance frequency is increased.
  • This structure also reduces the capacitance (capacitance Ce in FIG. 2) between the resonator by the resonant conductor 3C and the input / output electrode 6B, and strengthens the external coupling between the resonator and the input / output electrode 6B. This is determined so that the floating electrode 7C and the floating electrode insulating portion 15C are not provided and become smaller than the case.
  • FIG. 3 (A) is an enlarged view of the floating electrode portion 7A and the floating electrode insulating portion 15A in the first embodiment.
  • FIG. 3B is an enlarged cross-sectional view of the YY cross section in FIG.
  • 9A, 9B, 9C, and 9D are angles in contact with the resonant conductor of the floating electrode insulating part
  • 8A, 8B, 8C, and 8D are angles in contact with the floating electrode part of the floating electrode insulating part. It is.
  • the floating electrode portion 7A and the floating electrode insulating portion 15A formed on the resonant conductor are partially shared by the sides 9A-9D.
  • the width of each side of the floating electrode insulating portion 15A is 0.05 mm, the length is 0.45 mm for the sides 8A-8B, and 0.5 mm for the 9B-9C.
  • the floating electrode insulating portion 15A is formed into a groove shape having a depth of 5 m, and the outer conductor 4 and the floating electrode portion 7A are insulated.
  • the deleted area in the conductor deleting step is compared between the case where the floating electrode portion 7A and the floating electrode insulating portion 15A are present and the case where the floating electrode portion 7A is removed.
  • the conductor removal area is 0.07 square mm.
  • the conductor removal area is 0.25 mm 2.
  • FIGS. 1 to 3 a method for adjusting the characteristics of the dielectric filter shown in FIGS. 1 to 3 will be described with reference to FIGS. 4 to 6.
  • the same parts as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
  • FIG. 5 is a diagram showing the left side force of the dielectric filter in the state shown in FIG. 1, and the dielectric filter portion is shown as a cross-sectional view of the AA portion shown in FIG.
  • FIG. 6 is a view of the dielectric filter as viewed from the front side surface in the state shown in FIG. 1, and the dielectric filter portion is shown as a cross-sectional view of the BB portion shown in FIG.
  • FIG. 4 is a diagram of the dielectric filter viewed from above in the state shown in FIG.
  • the laser emission port of the laser generator 13 is caused to perform a two-dimensional operation on a horizontal plane.
  • the laser emitted laser also reflects the laser emitted perpendicularly to the horizontal plane with reflection points 10A to 11D of the reflecting mirrors 11A to 11D: LOD.
  • LOD reflection points 10A to 11D of the reflecting mirrors 11A to 11D: LOD.
  • FIG. 5 when the laser is emitted so as to be reflected by the laser reflecting mirror 11A and the processing point 12A is processed, in FIG. 4, the laser is caused to draw an orbit like an arrow at the reflecting point 10A. .
  • the laser reflected at the reflection point 10A is drawn with a trajectory similar to the arrow at the reflection point 1 OA at the processing point 12A, and the resonant conductor is removed.
  • the laser can draw a trajectory that goes from corner 9A to corner 9B in Fig. 3 and then to corners 9C and 9D.
  • the floating electrode insulating portion 15A is removed to form the floating electrode portion 7A.
  • the processing point 12C floats by drawing a trajectory similar to the arrow of the reflection point 10C.
  • the laser is emitted so as to be reflected by the laser reflector 11D, and a trajectory similar to the arrow at the reflection point 1 OD is drawn at the processing point 12D.
  • the floating electrode portion 7 is formed by processing the floating electrode insulating portion 15C and processing the floating electrode insulating portion 15D.
  • the processing is performed by the laser, but since the deleted area of the electrode is only the area of the floating electrode insulating portion, the generation of heat is largely suppressed, and the electrode and the dielectric ceramic are reduced or made into a semiconductor. Can be prevented. As a result, the amount of deterioration and characteristic change of no-load Q can be greatly suppressed.
  • the degradation of no-load Q can be suppressed, the amount of change in characteristics before and after the process when recovering the no-load Q can be suppressed.
  • the characteristic adjustment accuracy can also be improved.
  • FIG. 7 is an external perspective view of the dielectric filter 16 in which both end faces of the resonant conductor forming holes 2A to 2C are open portions 5A and 5B.
  • the dielectric filter 16 is a half-wave filter. Yes.
  • coupling electrodes 14A to 14F are provided in the open portions 5A and 5B.
  • a part of the floating electrode portion 7A that has a shape extending over the resonant conductor forming hole 2A and the coupling electrode 14A, and a balanced shape between the resonant conductor forming hole 2A and the coupling electrode 14D.
  • a part of a floating electrode 7E is provided.
  • the resonant conductor forming hole 2B is provided with a floating electrode portion 7B having a shape extending over the resonant conductor forming hole 2A and the coupling electrode 14A.
  • the resonant conductor forming hole 2C is provided with a floating electrode portion 7C having a shape in which an open portion and a floating electrode insulating portion are separately formed.
  • the coupling electrode 14A is provided with a part of the floating electrode portion 7A having a shape extending over the resonance conductor forming hole 2A and the coupling electrode 14A.
  • the part on the side of the coupling electrode 14A and the part on the side of the resonance conductor forming hole 2A constitute the floating electrode part 7A.
  • the coupling electrode 14B is provided with a part of the floating electrode portion 7B having a shape extending over the resonant conductor forming hole 2B and the coupling electrode 14B.
  • the part on the coupling electrode 14B side and the part on the resonance conductor forming hole 2B side constitute a floating electrode part 7B.
  • the floating electrode 7D is provided on the coupling electrode 14B so as to share part of the end of the coupling electrode.
  • the coupling electrode 14D spans the resonance conductor forming hole 2A and the coupling electrode 14D.
  • a part of the floating electrode portion 7E having a shape is provided.
  • the part on the coupling electrode 14D side and the part on the resonance conductor forming hole 2A side constitute a floating electrode part 7E.
  • the floating electrode portions 7A to 7D are formed in the same manner as the conductor removal step in the first embodiment. Further, in the conductor removal step of the floating electrode portion 7E, the dielectric filter 16 is turned upside down and the open portion 5B is disposed so as to face the laser generator 13 of FIG. 6, and the conductor removal step of the first embodiment is performed. It is formed in the same way as
  • Fig. 8 shows a resonator in which the outer conductor 4 is formed on both end faces of the resonant conductor forming holes 2A to 2C, and the resonant conductor non-formed portions 5A to 5C are annularly provided on the inner surface of the resonant conductor forming hole. is there .
  • the dielectric filter 16 is a quarter-wave filter.
  • the floating electrode portion 7A has a shape partially shared with the open portion 5A.
  • the floating electrode insulating portion 15B has a shape partially shared with the open portion 5B, and two floating electrode portions 7B and 7C are formed at the same time.
  • the floating electrode insulating portion 15C is formed separately from the open portion 5C, and the floating electrode portions 7D and 7E are formed at the same time.
  • the floating electrode portions 7A to 7E are removed in the same manner as the conductor removal step in the first embodiment.
  • An example of the structure of a dielectric duplexer comprising the dielectric filter of claim 5 is a dielectric duplexer comprising two sets of the filters shown in the first to third embodiments in one dielectric block.
  • a structure having one excitation hole for coupling each filter and three input / output electrodes including a common input / output electrode can be mentioned. Even when a dielectric duplexer is configured in this way, by forming the floating electrode part and the floating electrode insulating part by the method shown in the first to third embodiments, the unloaded Q value is lowered and the adjustment accuracy is deteriorated. And suppress. As a result, the pass frequency band can be easily adjusted.
  • the resonant conductor forming hole is formed as a step hole having a square cross section and a circular cross section. It may be a hole with a single cross-sectional shape. Further, the cross-sectional shape may be a square shape, a circular shape, an elliptical shape, or an oval shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A dielectric filter (16) comprising a floating electrode part (7A) for regulating the resonance frequency and the capacitance and a floating electrode insulating part (15A) formed in a resonant conductor forming hole (2A). Consequently, machining area is reduced while attaining characteristic adjusting effects similar to those attained when the floating electrode part (7A) is removed entirely. Machining heat generated due to a small machining area is also reduced, and lowering of no-load Q and degradation of regulation accuracy due to physical property change of the dielectric filter (16) are suppressed. Reduction in size is also dealt with by employing laser machining.

Description

誘電体共振器、誘電体フィルタ、および誘電体フィルタの製造方法 技術分野  Technical field of dielectric resonator, dielectric filter, and method of manufacturing dielectric filter
[0001] この発明は、高周波回路に適用される誘電体共振器、誘電体フィルタおよび誘電 体フィルタの製造方法に関するものである。 背景技術  The present invention relates to a dielectric resonator, a dielectric filter, and a dielectric filter manufacturing method applied to a high frequency circuit. Background art
[0002] 図 9は誘電体ブロックを用いた従来の誘電体共振器の構造例であり、その外観斜 視図である。  FIG. 9 is a structural example of a conventional dielectric resonator using a dielectric block, and is an external perspective view thereof.
[0003] 図 9に示すように、略直方体形状の誘電体ブロック 1の内部には、内面に共振導体 3を形成した共振導体形成孔 2が設けられており、共振導体形成孔 2の一方の端面 を除く五面の外面には外導体 4が形成されている。そして誘電体ブロック 1の残りの一 面を、前記外導体が形成されていない開放部 5としている。これら外導体 4と共振導 体 3とにより、開放部 5を開放端面とする誘電体共振器 17を構成している。  [0003] As shown in FIG. 9, a resonant conductor forming hole 2 in which a resonant conductor 3 is formed on the inner surface is provided inside a substantially rectangular parallelepiped dielectric block 1, and one of the resonant conductor forming holes 2 is provided. Outer conductors 4 are formed on the outer surfaces of the five surfaces excluding the end surfaces. The remaining surface of the dielectric block 1 is an open portion 5 where the outer conductor is not formed. The outer conductor 4 and the resonant conductor 3 constitute a dielectric resonator 17 having the open portion 5 as an open end face.
[0004] また、前記誘電体共振器を備えた誘電体フィルタとして、複数の共振導体形成孔と 入出力電極とを持つ構造のものもある。  [0004] Further, as a dielectric filter provided with the dielectric resonator, there is a structure having a plurality of resonant conductor forming holes and input / output electrodes.
[0005] これらの誘電体共振器の共振周波数、誘電体フィルタの周波数特性、各共振器同 士の結合係数、入出力電極と共振導体形成孔との間の結合係数を調整する方法に 、共振導体の一部を部分削除する方法がある (例えば特許文献 1参照)。  [0005] The method of adjusting the resonance frequency of these dielectric resonators, the frequency characteristics of the dielectric filter, the coupling coefficient of each resonator, and the coupling coefficient between the input / output electrode and the resonant conductor formation hole There is a method in which a part of a conductor is partially deleted (for example, see Patent Document 1).
[0006] このような構成では、共振導体に削除部位を設けることにより、外導体に設けられた 入出力電極や隣接する共振導体などの導体と、その導体に対向する削除部位との 間で相互容量を調整して、結合係数を調整する。また、このような構成では、外導体 と対向する位置に削除部位を形成することにより、等価的な共振器長を変化させて、 共振周波数を調整する。  [0006] In such a configuration, by providing a deletion portion in the resonant conductor, a conductor such as an input / output electrode or an adjacent resonance conductor provided in the outer conductor and a deletion portion facing the conductor are mutually connected. Adjust the capacitance to adjust the coupling coefficient. Further, in such a configuration, the resonance frequency is adjusted by changing the equivalent resonator length by forming a deletion site at a position facing the outer conductor.
[0007] そして、このような共振導体を削除する際には、リュータのような加工器具が用いら れる。  [0007] When removing such a resonant conductor, a processing tool such as a reuter is used.
特許文献 1:特開平 5 - 343903号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 5-343903
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0008] ところで前記共振導体の部分削除による特性調整方法では、削除部位の位置、サ ィズ、個数により前記特性を調整できるが、前記リューター等の機械的加工器具によ る方法では、削除時に熱が発生する。そのため、熱による特性変化による調整精度 の低下と、誘電体セラミックスが熱還元することによる無負荷 Q値の劣化とが伴う。  [0008] By the way, in the characteristic adjustment method by partial deletion of the resonant conductor, the characteristic can be adjusted by the position, size, and number of deleted parts. Heat is generated. This is accompanied by a decrease in adjustment accuracy due to changes in characteristics due to heat and a deterioration in unloaded Q value due to thermal reduction of dielectric ceramics.
[0009] また、共振器の小型化に伴い、機械的加工器具を用いた削除部位の加工にも加工 器具自体のサイズの限界により、共振導体形成孔の内部に挿入することに困難が伴  [0009] In addition, along with the downsizing of the resonator, it is difficult to insert the part into the resonant conductor forming hole due to the size limit of the processing tool itself even when processing the deleted part using a mechanical processing tool.
[0010] そこで、この発明の目的は、上記の問題を解決し、特性調整の精度を向上させ、特 性劣化を抑制し、小型化に対応した誘電体共振器、誘電体フィルタ、および誘電体 フィルタの製造方法を提供することにある。 Accordingly, an object of the present invention is to solve the above problems, improve the accuracy of characteristic adjustment, suppress characteristic deterioration, and cope with downsizing, a dielectric resonator, a dielectric filter, and a dielectric It is in providing the manufacturing method of a filter.
課題を解決するための手段  Means for solving the problem
[0011] (1) この発明の誘電体共振器は、内面に共振導体を形成した共振導体形成孔を誘 電体ブロックに設け、該誘電体ブロックの外面に外導体を形成し、前記共振導体形 成孔の少なくとも一方の開口部付近に前記共振導体の開放部を設けており、さらに 前記開放部又はその付近に、前記共振導体力 電気的に絶縁された浮き電極部と、 該浮き電極部を周回して形成された浮き電極絶縁部とを備えたことを特徴として 、る  (1) In the dielectric resonator according to the present invention, a resonant conductor forming hole in which a resonant conductor is formed on an inner surface is provided in the dielectric block, an outer conductor is formed on an outer surface of the dielectric block, and the resonant conductor An open portion of the resonant conductor is provided in the vicinity of at least one opening of the forming hole, and the floating electrode portion electrically insulated from the resonant conductor force is provided in or near the open portion, and the floating electrode portion And a floating electrode insulating part formed around the wire.
[0012] このように、浮き電極および浮き電極絶縁部を設けることにより、これらが形成された 共振器の共振導体の形状が変化して、共振器の特性が変化する。この際、削除部位 を浮き電極形状にすることにより、削除面積が浮き電極絶縁部のみに抑えられる。こ こで浮き電極絶縁部のみを削除した場合と、浮き電極部自体も含めて削除した場合 とでは同じ調整効果が得られる。 As described above, by providing the floating electrode and the floating electrode insulating portion, the shape of the resonant conductor of the resonator in which these are formed is changed, and the characteristics of the resonator are changed. At this time, by forming the deleted portion in a floating electrode shape, the deleted area is increased and the floating electrode insulating portion can be suppressed. Here, the same adjustment effect is obtained when only the floating electrode insulating part is deleted and when the floating electrode part itself is also deleted.
[0013] (2) また、この発明の誘電体共振器は、前記開放部と前記浮き電極絶縁部とが、そ れぞれの一部を共有して 、ることを特徴として 、る。  [0013] (2) Further, the dielectric resonator according to the present invention is characterized in that the open portion and the floating electrode insulating portion share a part of each.
[0014] この形状により、共有する部位の削除が不要となるので、削除面積を残りの浮き電 極絶縁部のみに抑えられる。 [0014] This shape eliminates the need to delete the shared part, and therefore the area to be deleted can be suppressed to the remaining floating electrode insulating parts only.
[0015] (3) また、この発明の誘電体共振器は、前記開放部と前記浮き電極絶縁部とが分 離形成されて 、ることを特徴として 、る。 [0015] (3) Further, in the dielectric resonator according to the invention, the open portion and the floating electrode insulating portion are separated. It is characterized by being formed away.
[0016] この形状により、浮き電極部と浮き電極絶縁部の形成箇所に制約を受けない。  [0016] With this shape, there are no restrictions on the positions where the floating electrode portion and the floating electrode insulating portion are formed.
[0017] (4) また、この発明の誘電体共振器は、 1つの前記共振導体形成孔に設けられた 前記開放部またはその付近に、 2以上の前記浮き電極部を備えたことを特徴として 、 る。 (4) Further, the dielectric resonator of the present invention is characterized in that two or more floating electrode portions are provided in or near the open portion provided in one resonance conductor forming hole. .
[0018] この形状により、複数回での調整による削除面積の増加においても、削除面積を最 小限に抑えられる。  [0018] With this shape, even when the deleted area is increased by multiple adjustments, the deleted area can be minimized.
[0019] (5) また、この発明の誘電体フィルタは、前述のいずれかの誘電体共振器と該誘電 体共振器に結合する入出力手段とを備えたことを特徴としている。  [0019] (5) Further, the dielectric filter of the present invention includes any one of the above-described dielectric resonators and input / output means coupled to the dielectric resonators.
[0020] この構成により、前述のように浮き電極部および浮き電極絶縁部が形成された共振 器と、入出力電極との結合係数や、共振器間の結合係数や、共振器長に基づく各共 振器の周波数を調整する場合に、削除部位を浮き電極形状にすることにより、削除 面積が浮き電極絶縁部のみに抑えられ、この場合にも、前述の誘電体共振器と同様 に、浮き電極部自体も含めて削除したときと同じ調整効果が得られる。  [0020] With this configuration, the coupling coefficient between the resonator in which the floating electrode portion and the floating electrode insulating portion are formed as described above and the input / output electrodes, the coupling coefficient between the resonators, and the resonator length are used. When adjusting the frequency of the resonator, the area to be removed is limited to the floating electrode insulation by making the removed part a floating electrode. In this case as well, as with the dielectric resonator described above, The same adjustment effect can be obtained as when the electrode portion itself is deleted.
[0021] (6) また、この発明の誘電体フィルタの製造方法は、前記共振導体の形成領域内 に前記浮き電極絶縁部を形成することにより、前記共振導体力 分離して前記浮き 電極部を設ける共振導体除去工程によって、フィルタ特性を定めることを特徴として いる。  [0021] (6) In the dielectric filter manufacturing method of the present invention, the floating electrode insulating portion is formed in a region where the resonant conductor is formed, so that the resonant conductor force is separated and the floating electrode portion is formed. It is characterized in that the filter characteristics are determined by the resonant conductor removing process to be provided.
[0022] この共振導体除去工程により、共振器間の結合係数や、共振器と入出力電極との 外部結合の強さや、共振器長に基づく各共振器の共振周波数を調整する。この際、 削除部位を浮き電極形状にすることにより、削除面積を浮き電極絶縁部のみに抑え ることで、削除面積を抑制しながら、浮き電極部と浮き電極絶縁部を共に削除したと きと同じ調整効果を実現する。  [0022] This resonance conductor removal step adjusts the resonance frequency of each resonator based on the coupling coefficient between the resonators, the strength of external coupling between the resonator and the input / output electrodes, and the resonator length. At this time, when the deletion part is made a floating electrode shape, the deletion area is limited to the floating electrode insulation part, and the floating electrode part and the floating electrode insulation part are both deleted while suppressing the deletion area. Achieve the same adjustment effect.
[0023] (7) またこの発明の誘電体フィルタの製造方法は、共振導体除去工程が、前記浮き 電極絶縁部のレーザー加工による導体の除去工程であることを特徴としている。  (7) The dielectric filter manufacturing method of the present invention is characterized in that the resonant conductor removing step is a conductor removing step by laser processing of the floating electrode insulating portion.
[0024] この加工法による工程により、共振導体形成孔のサイズにかかわらず、共振導体形 成孔の外部からの照射によって加工を行う。  [0024] By the process by this processing method, processing is performed by irradiation from the outside of the resonant conductor forming hole regardless of the size of the resonant conductor forming hole.
発明の効果 [0025] (1) この発明によれば、削除面積を浮き電極絶縁部のみに抑制できるために、加工 時に発生する熱による無負荷 Qの劣化と特性変化を抑制でき、誘電体共振器の調整 精度を向上させることができる。 The invention's effect [0025] (1) According to the present invention, since the deleted area can be suppressed only to the floating electrode insulating portion, it is possible to suppress degradation of no-load Q and change in characteristics due to heat generated during processing, and adjustment of the dielectric resonator. Accuracy can be improved.
[0026] (2) また、この発明によれば、削除面積を共有部位以外の浮き電極絶縁部のみに できるために、加工時に発生する熱がさらに抑制でき、無負荷 Qの劣化と特性変化 量の変化が抑制でき、誘電体共振器の調整精度を向上させることができる。 [0026] (2) Further, according to the present invention, since the deleted area can be made only in the floating electrode insulating portion other than the shared portion, the heat generated during processing can be further suppressed, the deterioration of unloaded Q and the amount of characteristic change Can be suppressed, and the adjustment accuracy of the dielectric resonator can be improved.
[0027] (3) また、この発明によれば、浮き電極部と浮き電極絶縁部の形成箇所の決定に制 約を受けないので、誘電体共振器の設計の自由度を高くすることができる。 [0027] (3) Further, according to the present invention, since there is no restriction on the determination of the formation location of the floating electrode portion and the floating electrode insulating portion, the degree of freedom in designing the dielectric resonator can be increased. .
[0028] (4) また、この発明によれば、複数回での調整による削除面積の増加においても、 削除面積を最小限に抑えることができ、加工時に発生する熱による無負荷 Qの劣化 と特性変化が抑制でき、誘電体共振器の調整精度を向上させることができる。 [0028] (4) Further, according to the present invention, even when the deleted area is increased by multiple adjustments, the deleted area can be minimized, and no-load Q is deteriorated due to heat generated during processing. The characteristic change can be suppressed, and the adjustment accuracy of the dielectric resonator can be improved.
[0029] (5) また、この発明によれば、削除面積を浮き電極絶縁部のみに抑制できるために[0029] (5) Further, according to the present invention, the deleted area can be suppressed only to the floating electrode insulating portion.
、加工時に発生する熱による無負荷 Qの劣化と特性変化が抑制でき、誘電体フィル タの調整精度を向上させることができる。 In addition, it is possible to suppress deterioration of no-load Q and changes in characteristics due to heat generated during processing, and improve the adjustment accuracy of the dielectric filter.
[0030] (6) また、この発明によれば、削除面積を浮き電極絶縁部のみに抑制できるために[0030] (6) Further, according to the present invention, the deleted area can be suppressed only to the floating electrode insulating portion.
、加工時に発生する熱と加工時間が抑制でき、誘電体フィルタの無負荷 Qの劣化と 特性変化が抑制でき、特性調整精度を向上させることができる。 In addition, heat generated during processing and processing time can be suppressed, deterioration of the unloaded Q of the dielectric filter and characteristic change can be suppressed, and characteristic adjustment accuracy can be improved.
[0031] (7) また、この発明によれば、レーザー加工により削除部位を削除することにより、 加工器具を共振導体形成孔内部に挿入することなく誘電体フィルタの特性調整用の 加工を行うことができる。 [0031] (7) Further, according to the present invention, by deleting the deleted portion by laser processing, the processing for adjusting the characteristics of the dielectric filter can be performed without inserting the processing tool into the resonant conductor forming hole. Can do.
また、誘電体をレーザー加工すると、リューター等の機械的加工器具による加工時 以上の熱が発生し、機械的加工器具による加工に比べ無負荷 Qの劣化量や特性変 化量は大きくなつてしまう場合がある。しかし、この発明によれば削除面積を浮き電極 絶縁部の面積のみに抑制するために、熱の発生も抑制できる。これにより、無負荷 Q の劣化量や特性変化量を大幅に抑制することができる。  In addition, when laser processing dielectrics, more heat is generated than when processing with a mechanical processing tool such as a leuter, and the amount of deterioration and characteristic change of unloaded Q is larger than when processing with a mechanical processing tool. There is a case. However, according to the present invention, since the deleted area is limited only to the area of the floating electrode insulating portion, generation of heat can also be suppressed. As a result, the amount of deterioration and characteristic change of no-load Q can be greatly suppressed.
また、無負荷 Qの劣化を回復させる処理を行う場合の処理前後での特性変化量も In addition, the amount of change in characteristics before and after processing when recovering the degradation of no-load Q
、この発明の製造方法を採用することで小さくすることができる。これにより、無負荷 Q の回復処理後の特性調整精度を改善することができる。 図面の簡単な説明 By adopting the manufacturing method of the present invention, the size can be reduced. As a result, it is possible to improve the characteristic adjustment accuracy after the no-load Q recovery process. Brief Description of Drawings
[図 1]第 1の実施形態に係る誘電体フィルタの外観斜視図である。 FIG. 1 is an external perspective view of a dielectric filter according to a first embodiment.
[図 2]第 1の実施形態に係る誘電体フィルタにおいて (A)は図 1の B— B断面図で、( B)は図 1の上側断面である。  [FIG. 2] In the dielectric filter according to the first embodiment, (A) is a BB cross-sectional view of FIG. 1, and (B) is an upper cross-section of FIG.
[図 3]第 1の実施形態に係る、浮き電極部と浮き電極絶縁部の拡大図であり、(A)は 正面図、(B)は断面図である。  FIG. 3 is an enlarged view of a floating electrode part and a floating electrode insulating part according to the first embodiment, (A) is a front view, and (B) is a cross-sectional view.
[図 4]第 1の実施形態に係る共振導体除去工程における外観図である。  FIG. 4 is an external view in a resonance conductor removing step according to the first embodiment.
[図 5]第 1の実施形態に係る共振導体除去工程における A— A断面図である。  FIG. 5 is a cross-sectional view taken along the line AA in the resonant conductor removal step according to the first embodiment.
[図 6]第 1の実施形態に係る共振導体除去工程における B— B断面図である。  FIG. 6 is a cross-sectional view taken along the line BB in the resonant conductor removing process according to the first embodiment.
[図 7]第 2の実施形態に係る誘電体フィルタの外観斜視図である。  FIG. 7 is an external perspective view of a dielectric filter according to a second embodiment.
[図 8]第 3の実施形態に係る誘電体フィルタの断面図である。  FIG. 8 is a cross-sectional view of a dielectric filter according to a third embodiment.
[図 9]従来の誘電体共振器の外観斜視図である。  FIG. 9 is an external perspective view of a conventional dielectric resonator.
符号の説明 Explanation of symbols
1 -誘電体ブロック  1-Dielectric block
2-共振導体形成孔  2-resonant conductor formation hole
3-共振導体  3-resonant conductor
4-外導体  4-outer conductor
5-開放部  5-open part
6-入出力電極  6-Input / output electrodes
7-浮き電極部  7-Floating electrode
8-角  8-square
9-角  9-square
10 レーザー反射点  10 Laser reflection point
11 レーザー反射鏡  11 Laser reflector
12 レーザー加工点  12 Laser machining points
13 レーザー発生装置  13 Laser generator
14 結合用電極  14 Coupling electrode
15 浮き電極絶縁部 16—誘電体フィルタ 15 Floating electrode insulation 16—Dielectric filter
17—誘電体共振器  17—Dielectric resonator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 〈第 1の実施形態〉  <First Embodiment>
図 1は誘電体フィルタ 16の外観斜視図である。図 2 (A)は図 1における B— B部分 の断面図である。図 2 (B)は図 1に記した誘電体フィルタの上面図である。  FIG. 1 is an external perspective view of the dielectric filter 16. FIG. 2 (A) is a cross-sectional view of the BB portion in FIG. FIG. 2B is a top view of the dielectric filter shown in FIG.
[0035] 図 1において、略直方体形状の誘電体ブロック 1には、それぞれの内面に共振導体 3A、 3B、 3Cを備えた複数の共振導体形成孔 2A、 2B、 2Cを設けている。誘電体ブ ロック 1の上端面を除く五面は外導体 4を設けている。共振導体形成孔 2A、 2B、 2C は、図 1上端面側と下端面側とに貫通するように設け、図 1下端面側では共振導体 3 A、 3B、 3Cと外導体 4を導通させている。また、入出力電極 6A、 6Bを形成している。 また、共振導体形成孔 2A、 2B、 2Cの上端部には、それぞれ浮き電極部 7A、 7B、 7 Cと浮き電極絶縁部 15A、 15B、 15Cとを形成している。このような構成により誘電体 フィルタ 16は、 4分の 1波長フィルタとなっている。  In FIG. 1, a substantially rectangular parallelepiped dielectric block 1 is provided with a plurality of resonant conductor forming holes 2A, 2B, and 2C provided with resonant conductors 3A, 3B, and 3C on their inner surfaces. The outer conductor 4 is provided on the five surfaces of the dielectric block 1 except for the upper end surface. Resonant conductor formation holes 2A, 2B, and 2C are provided so as to penetrate the upper end surface and the lower end surface of Fig. 1. The resonant conductors 3A, 3B, 3C and outer conductor 4 are connected to each other on the lower end surface of Fig. 1. Yes. In addition, input / output electrodes 6A and 6B are formed. Floating electrode portions 7A, 7B, and 7C and floating electrode insulating portions 15A, 15B, and 15C are formed at the upper ends of the resonant conductor forming holes 2A, 2B, and 2C, respectively. With this configuration, the dielectric filter 16 is a quarter-wave filter.
[0036] 図 2において、図 1と同一部分には同一符号を付している。 Cabは共振導体 3A— 3 B間の開放部付近に生じる容量を表している。また、 Cbcは共振導体 3B— 3C間の 開放部付近に生じる容量を表している。 Ceは共振導体 3Cと入出力電極 6Bとの間に 生じる容量を表している。 Caは共振導体 3Aと外導体 4の間に生じる自己容量を表し ている。  In FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals. Cab represents the capacitance generated near the open area between the resonant conductors 3A and 3B. Cbc represents the capacitance generated near the open area between the resonant conductors 3B and 3C. Ce represents the capacitance generated between the resonant conductor 3C and the input / output electrode 6B. Ca represents the self-capacitance generated between the resonant conductor 3A and the outer conductor 4.
[0037] 図 1において、浮き電極部 7Aと浮き電極絶縁部 15Aとを、外導体 4に対向する部 位に形成している。この構造により、共振導体 3Aから成る共振器の等価的な共振器 長を短くするとともに、共振導体 3Aと外導体 4との対向する面積を減らし、自己容量( 図 2中の Ca)を小さくする。共振器長と自己容量の変化により、共振導体 3Aによる共 振器の共振周波数は、相乗的に高くなる。  In FIG. 1, the floating electrode portion 7 A and the floating electrode insulating portion 15 A are formed in a portion facing the outer conductor 4. This structure shortens the equivalent resonator length of the resonator composed of the resonant conductor 3A, reduces the area where the resonant conductor 3A and the outer conductor 4 face each other, and reduces the self-capacitance (Ca in Fig. 2). . Due to changes in the resonator length and self-capacitance, the resonant frequency of the resonator by the resonant conductor 3A increases synergistically.
[0038] また、浮き電極部 7Bと浮き電極絶縁部 15Bとを、隣り合う共振導体形成孔 2Aに対 向する部位に形成している。この構造により、共振導体 3B力も成る共振器の等価的 な共振器長を短くし、共振周波数を高く調整している。また、該構造により共振導体 3 A, 3Bそれぞれの開放部側の対向する面積を減らし、共振器間の容量(図 2中の Ca b)を小さくすることによって結合係数を調整している。 [0038] Further, the floating electrode portion 7B and the floating electrode insulating portion 15B are formed at portions facing the adjacent resonant conductor forming hole 2A. This structure shortens the equivalent resonator length of the resonator that also has the resonance conductor 3B force, and adjusts the resonance frequency higher. In addition, the structure reduces the opposing area on the open side of each of the resonant conductors 3 A and 3 B, and the capacitance between the resonators (Ca The coupling coefficient is adjusted by reducing b).
[0039] この周波数調整と結合係数調整は、浮き電極部 7Bおよび浮き電極絶縁部 15Bが 軸方向に長く幅方向に短い場合には、共振器間の結合係数と当該共振器の共振周 波数を同時的に行うことができる。また、浮き電極部 7Bおよび浮き電極絶縁部 15B が軸方向に短く幅方向に長 ヽ場合には、共振器間の結合係数のみを略独立的に行 うことができる。 [0039] The frequency adjustment and the coupling coefficient adjustment are performed by changing the coupling coefficient between the resonators and the resonance frequency of the resonators when the floating electrode portion 7B and the floating electrode insulating portion 15B are long in the axial direction and short in the width direction. Can be done simultaneously. Further, when the floating electrode portion 7B and the floating electrode insulating portion 15B are short in the axial direction and long in the width direction, only the coupling coefficient between the resonators can be performed almost independently.
[0040] また、浮き電極部 7Cと浮き電極絶縁部 15Cとを、入出力電極 6Bに対向する部位 に形成している。この構造により、共振導体 3Cから成る共振器の等価的な共振器長 を短くし、共振周波数を高くなるように定めている。また、該構造により共振導体 3Cに よる共振器と入出力電極 6Bとの間の容量(図 2中の容量 Ce)を減少させ、その共振 器と入出力電極 6Bとの間の外部結合の強さを、浮き電極 7Cと浮き電極絶縁部 15C が無 、場合に比べて小さくなるように定めて 、る。  [0040] Further, the floating electrode portion 7C and the floating electrode insulating portion 15C are formed at a portion facing the input / output electrode 6B. With this structure, the equivalent resonator length of the resonator composed of the resonant conductor 3C is shortened and the resonance frequency is increased. This structure also reduces the capacitance (capacitance Ce in FIG. 2) between the resonator by the resonant conductor 3C and the input / output electrode 6B, and strengthens the external coupling between the resonator and the input / output electrode 6B. This is determined so that the floating electrode 7C and the floating electrode insulating portion 15C are not provided and become smaller than the case.
[0041] また、図 3 (A)は第 1の実施形態における浮き電極部 7Aと浮き電極絶縁部 15Aの 拡大図である。図 3 (B)は図 3 (A)における Y—Y断面における断面拡大図である。  FIG. 3 (A) is an enlarged view of the floating electrode portion 7A and the floating electrode insulating portion 15A in the first embodiment. FIG. 3B is an enlarged cross-sectional view of the YY cross section in FIG.
[0042] 図 3 (A)において、 9A、 9B、 9C、 9Dは浮き電極絶縁部の共振導体と接する角で あり、 8A、 8B、 8C、 8Dは浮き電極絶縁部の浮き電極部と接する角である。  In FIG. 3 (A), 9A, 9B, 9C, and 9D are angles in contact with the resonant conductor of the floating electrode insulating part, and 8A, 8B, 8C, and 8D are angles in contact with the floating electrode part of the floating electrode insulating part. It is.
[0043] 当該実施形態にお!ヽては共振導体に形成した浮き電極部 7Aと浮き電極絶縁部 1 5Aとを、辺 9A— 9Dにおいて一部共有させている。また、浮き電極絶縁部 15Aの各 辺の幅を 0. 05mm,長さを辺 8A— 8Bは 0. 45mm, 9B— 9Cは 0. 5mmとしている 。また、図 3 (B)において浮き電極絶縁部 15Aを深さ 5 mの溝形状として、外導体 4 と浮き電極部 7Aとを絶縁をして 、る。  In this embodiment, the floating electrode portion 7A and the floating electrode insulating portion 15A formed on the resonant conductor are partially shared by the sides 9A-9D. In addition, the width of each side of the floating electrode insulating portion 15A is 0.05 mm, the length is 0.45 mm for the sides 8A-8B, and 0.5 mm for the 9B-9C. Further, in FIG. 3B, the floating electrode insulating portion 15A is formed into a groove shape having a depth of 5 m, and the outer conductor 4 and the floating electrode portion 7A are insulated.
[0044] ここで、浮き電極部 7Aおよび浮き電極絶縁部 15Aがある場合と、浮き電極部 7Aが 除去された場合とで、導体削除工程における削除面積を比べる。図 2 (A)において、 浮き電極部 7A及び浮き電極絶縁部 15Aがある場合は、導体削除面積は 0. 07平方 mmである。一方、浮き電極部 7Aも除去された場合には導体削除面積は、 0. 25平 方 mmである。浮き電極部 7Aを除去する場合に比べ当該実施形態は、削除面積を 3 . 5分の 1以下に抑制している。この削除面積の抑制により、加工熱の発生を低減し、 誘電体共振器における無負荷 Qの劣化と特性変化を抑えている。 [0045] 次に、図 1〜図 3に示した誘電体フィルタの特性調整方法について、図 4〜図 6を基 に説明する。これらの図において、図 1 ·図 2に示したものと同一部分には同一符号を 付している。 Here, the deleted area in the conductor deleting step is compared between the case where the floating electrode portion 7A and the floating electrode insulating portion 15A are present and the case where the floating electrode portion 7A is removed. In FIG. 2A, when there is a floating electrode portion 7A and a floating electrode insulating portion 15A, the conductor removal area is 0.07 square mm. On the other hand, when the floating electrode portion 7A is also removed, the conductor removal area is 0.25 mm 2. Compared with the case where the floating electrode portion 7A is removed, this embodiment suppresses the deleted area to 1 / 3.5 or less. By controlling the deleted area, the generation of processing heat is reduced, and deterioration of no-load Q and changes in characteristics in the dielectric resonator are suppressed. Next, a method for adjusting the characteristics of the dielectric filter shown in FIGS. 1 to 3 will be described with reference to FIGS. 4 to 6. In these figures, the same parts as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
[0046] 図 4〜図 6はいずれも誘電体フィルタの特性調整工程における図である。図 5は、 図 1に示した状態で誘電体フィルタを左側面力 見た図であり、誘電体フィルタ部分 は、図 1に示した A— A部分の断面図として示している。同様に図 6は、図 1に示した 状態で誘電体フィルタを手前側面から見た図であり、誘電体フィルタ部分は、図 1に 示した B—B部分の断面図として示している。図 4は、図 1に示した状態で誘電体フィ ルタを上側から見た図である。  4 to 6 are diagrams in the characteristic adjustment process of the dielectric filter. FIG. 5 is a diagram showing the left side force of the dielectric filter in the state shown in FIG. 1, and the dielectric filter portion is shown as a cross-sectional view of the AA portion shown in FIG. Similarly, FIG. 6 is a view of the dielectric filter as viewed from the front side surface in the state shown in FIG. 1, and the dielectric filter portion is shown as a cross-sectional view of the BB portion shown in FIG. FIG. 4 is a diagram of the dielectric filter viewed from above in the state shown in FIG.
[0047] 図 4において、レーザー発生装置 13のレーザー出射口に、水平面での 2次元動作 をさせる。レーザー出射ロカも水平面と鉛直に出射させたレーザーを、反射鏡 11 A 〜 11 Dの反射点 10A〜: LODで反射させる。反射鏡でレーザーの軌道を水平面から 鉛直面に座標変換することで、レーザーに、加工点 12A〜12Dでの鉛直面での 2次 元軌道を描かせる。  In FIG. 4, the laser emission port of the laser generator 13 is caused to perform a two-dimensional operation on a horizontal plane. The laser emitted laser also reflects the laser emitted perpendicularly to the horizontal plane with reflection points 10A to 11D of the reflecting mirrors 11A to 11D: LOD. By changing the coordinates of the laser trajectory from the horizontal plane to the vertical plane using the reflector, the laser can draw a two-dimensional trajectory on the vertical plane at the processing points 12A to 12D.
[0048] 例えば、図 5において、レーザーをレーザー反射鏡 11Aで反射するように出射させ て、加工点 12Aを加工する場合、図 4において、レーザーに反射点 10Aで矢印のよ うな軌道を描かせる。反射点 10Aで反射させたレーザーに、加工点 12Aで反射点 1 OAの矢印と相似の軌道を描力せて、共振導体を除去する。その際、レーザー加工 点 12Aでは、レーザーに図 3の角 9Aから角 9Bに進み、次いで角 9C、角 9Dへと進 む軌道を描カゝせる。このレーザーの軌道に沿って、浮き電極絶縁部 15Aを除去し、 浮き電極部 7Aを形成する。  [0048] For example, in FIG. 5, when the laser is emitted so as to be reflected by the laser reflecting mirror 11A and the processing point 12A is processed, in FIG. 4, the laser is caused to draw an orbit like an arrow at the reflecting point 10A. . The laser reflected at the reflection point 10A is drawn with a trajectory similar to the arrow at the reflection point 1 OA at the processing point 12A, and the resonant conductor is removed. At that time, at laser processing point 12A, the laser can draw a trajectory that goes from corner 9A to corner 9B in Fig. 3 and then to corners 9C and 9D. Along the laser orbit, the floating electrode insulating portion 15A is removed to form the floating electrode portion 7A.
[0049] また、同様にレーザーをレーザー反射鏡 11Bで反射するように出射させて、加工点 12Bを加工する場合、加工点 12Bで反射点 10Bの矢印と相似の軌道を描カゝせて浮 き電極絶縁部 15Bを除去して、浮き電極部 7Bを形成する。  [0049] Similarly, when the laser beam is emitted so as to be reflected by the laser reflector 11B and the machining point 12B is machined, the trajectory similar to the arrow of the reflection point 10B is drawn at the machining point 12B and floated. The floating electrode insulating portion 15B is removed to form the floating electrode portion 7B.
[0050] また、同様にレーザーをレーザー反射鏡 11Cで反射するように出射させて、加工点 12Cを加工する場合、加工点 12Cで反射点 10Cの矢印と相似の軌道を描力せて浮 き電極絶縁部 15Cを除去する。そして同様に、レーザーをレーザー反射鏡 11Dで反 射するように出射させて、加工点 12Dで反射点 1 ODの矢印と相似の軌道を描かせて 浮き電極絶縁部 15Dを除去する。この浮き電極絶縁部 15Cの加工と浮き電極絶縁 部 15Dの加工とによって浮き電極部 7を形成する。 [0050] Similarly, when the laser beam is emitted so as to be reflected by the laser reflecting mirror 11C and the processing point 12C is processed, the processing point 12C floats by drawing a trajectory similar to the arrow of the reflection point 10C. Remove electrode insulation 15C. Similarly, the laser is emitted so as to be reflected by the laser reflector 11D, and a trajectory similar to the arrow at the reflection point 1 OD is drawn at the processing point 12D. Remove floating electrode insulation 15D. The floating electrode portion 7 is formed by processing the floating electrode insulating portion 15C and processing the floating electrode insulating portion 15D.
[0051] このように、レーザーにより加工を行うが、電極の削除面積は浮き電極絶縁部の面 積のみであるため、熱の発生を大きく抑え、電極や誘電体セラミックスが還元されたり 半導体化されたりすることを防ぐことができる。これにより無負荷 Qの劣化量や特性変 化量が大幅に抑制できる。  [0051] As described above, the processing is performed by the laser, but since the deleted area of the electrode is only the area of the floating electrode insulating portion, the generation of heat is largely suppressed, and the electrode and the dielectric ceramic are reduced or made into a semiconductor. Can be prevented. As a result, the amount of deterioration and characteristic change of no-load Q can be greatly suppressed.
このように、無負荷 Qの劣化を抑制できるため、以後に無負荷 Qを回復させる処理 を行う場合の処理前後での特性変化量を抑制でき、これにより、無負荷 Qの回復処 理後の特性調整精度も改善できる。  In this way, since the degradation of no-load Q can be suppressed, the amount of change in characteristics before and after the process when recovering the no-load Q can be suppressed. The characteristic adjustment accuracy can also be improved.
[0052] 〈第 2の実施形態〉  <Second Embodiment>
図 7は、共振導体形成孔 2A〜2Cの両端面を開放部 5A、 5Bとした、誘電体フィル タ 16の外観斜視図であり、誘電体フィルタ 16は、 2分の 1波長フィルタとなっている。  FIG. 7 is an external perspective view of the dielectric filter 16 in which both end faces of the resonant conductor forming holes 2A to 2C are open portions 5A and 5B. The dielectric filter 16 is a half-wave filter. Yes.
[0053] この実施形態においては開放部 5A、 5Bに結合用電極 14A〜14Fを設けている。  In this embodiment, coupling electrodes 14A to 14F are provided in the open portions 5A and 5B.
共振導体形成孔 2Aには、共振導体形成孔 2Aと結合用電極 14Aとにまたがる形状 である浮き電極部 7Aの一部、および共振導体形成孔 2Aと結合用電極 14Dとにまた 力 ¾形状である浮き電極 7Eの一部を設けている。また共振導体形成孔 2Bには、共 振導体形成孔 2Aと結合用電極 14Aとにまたがる形状である浮き電極部 7Bを設けて いる。そして、共振導体形成孔 2Cには、開放部と浮き電極絶縁部が分離形成された 形状の浮き電極部 7Cを設けて 、る。  In the resonant conductor forming hole 2A, a part of the floating electrode portion 7A that has a shape extending over the resonant conductor forming hole 2A and the coupling electrode 14A, and a balanced shape between the resonant conductor forming hole 2A and the coupling electrode 14D. A part of a floating electrode 7E is provided. The resonant conductor forming hole 2B is provided with a floating electrode portion 7B having a shape extending over the resonant conductor forming hole 2A and the coupling electrode 14A. The resonant conductor forming hole 2C is provided with a floating electrode portion 7C having a shape in which an open portion and a floating electrode insulating portion are separately formed.
[0054] また結合用電極 14Aには、共振導体形成孔 2Aと結合用電極 14Aとにまたがる形 状である浮き電極部 7Aの一部を設けて 、る。この結合用電極 14A側の一部と前記 共振導体形成孔 2A側の一部とで、浮き電極部 7Aを構成して 、る。  Further, the coupling electrode 14A is provided with a part of the floating electrode portion 7A having a shape extending over the resonance conductor forming hole 2A and the coupling electrode 14A. The part on the side of the coupling electrode 14A and the part on the side of the resonance conductor forming hole 2A constitute the floating electrode part 7A.
[0055] また結合用電極 14Bには、共振導体形成孔 2Bと結合用電極 14Bとにまたがる形 状である浮き電極部 7Bの一部を設けている。この結合用電極 14B側の一部と前記 共振導体形成孔 2B側一部とで、浮き電極部 7Bを構成している。それとともに結合用 電極 14Bには、浮き電極 7Dを結合用電極の端部を一部共有するような配置で設け ている。  [0055] The coupling electrode 14B is provided with a part of the floating electrode portion 7B having a shape extending over the resonant conductor forming hole 2B and the coupling electrode 14B. The part on the coupling electrode 14B side and the part on the resonance conductor forming hole 2B side constitute a floating electrode part 7B. At the same time, the floating electrode 7D is provided on the coupling electrode 14B so as to share part of the end of the coupling electrode.
[0056] また、結合用電極 14Dには、共振導体形成孔 2Aと結合用電極 14Dとにまたがる 形状である浮き電極部 7Eの一部を設けている。この結合用電極 14D側の一部と前 記共振導体形成孔 2A側の一部とで、浮き電極部 7Eを構成して ヽる。 [0056] Further, the coupling electrode 14D spans the resonance conductor forming hole 2A and the coupling electrode 14D. A part of the floating electrode portion 7E having a shape is provided. The part on the coupling electrode 14D side and the part on the resonance conductor forming hole 2A side constitute a floating electrode part 7E.
[0057] 当該実施形態におけるレーザーによる導体除去工程では、浮き電極部 7A〜7Dを 前記第 1の実施形態の導体除去工程と同様に形成する。また浮き電極部 7Eの導体 除去工程では、誘電体フィルタ 16を上下反転させ、開放部 5Bが図 6のレーザー発 生装置 13と対向するように配置し、前記第 1の実施形態の導体除去工程と同様に形 成する。  [0057] In the conductor removal step by laser in the embodiment, the floating electrode portions 7A to 7D are formed in the same manner as the conductor removal step in the first embodiment. Further, in the conductor removal step of the floating electrode portion 7E, the dielectric filter 16 is turned upside down and the open portion 5B is disposed so as to face the laser generator 13 of FIG. 6, and the conductor removal step of the first embodiment is performed. It is formed in the same way as
[0058] 〈第 3の実施形態〉  <Third Embodiment>
図 8は、共振導体形成孔 2A〜2Cの両端面に共に外導体 4を形成し、共振導体形 成孔内面に環状に設けた共振導体非形成部 5A〜5Cを開放部とした共振器である 。このような構成により誘電体フィルタ 16は、 4分の 1波長フィルタとなっている。共振 導体形成孔 2Aにおいて、浮き電極部 7Aを、開放部 5Aと部分共有された形状として いる。共振導体形成孔 2Bにおいても、浮き電極絶縁部 15Bを、開放部 5Bと部分共 有された形状としており、二つの浮き電極部 7B、 7Cを同時に形成している。共振導 体形成孔 2Cにおいては、浮き電極絶縁部 15Cを、開放部 5Cとは分離形成された形 状としており、浮き電極部 7D、 7Eを同時に形成している。  Fig. 8 shows a resonator in which the outer conductor 4 is formed on both end faces of the resonant conductor forming holes 2A to 2C, and the resonant conductor non-formed portions 5A to 5C are annularly provided on the inner surface of the resonant conductor forming hole. is there . With this configuration, the dielectric filter 16 is a quarter-wave filter. In the resonant conductor forming hole 2A, the floating electrode portion 7A has a shape partially shared with the open portion 5A. Also in the resonant conductor forming hole 2B, the floating electrode insulating portion 15B has a shape partially shared with the open portion 5B, and two floating electrode portions 7B and 7C are formed at the same time. In the resonant conductor forming hole 2C, the floating electrode insulating portion 15C is formed separately from the open portion 5C, and the floating electrode portions 7D and 7E are formed at the same time.
[0059] 浮き電極部 7B、 7Cと浮き電極部 7D、 7Eのように、浮き電極の数を増やすことによ り、 1回の調整で目標特性に達しなくても追加調整を行うことができる。  [0059] Like the floating electrode portions 7B and 7C and the floating electrode portions 7D and 7E, by increasing the number of floating electrodes, additional adjustment can be performed even if the target characteristic is not reached by one adjustment. .
[0060] 当該実施形態におけるレーザーによる導体除去工程では、浮き電極部 7A〜7Eを 前記第 1の実施形態の導体除去工程と同様に除去する。  [0060] In the conductor removal step by laser in the present embodiment, the floating electrode portions 7A to 7E are removed in the same manner as the conductor removal step in the first embodiment.
[0061] 〈第 4の実施形態〉  <Fourth Embodiment>
請求項 5の誘電体フィルタをから構成される誘電体デュプレクサの構造例としては、 1つの誘電体ブロックに第 1〜第 3の実施形態で示したフィルタを二組備えた誘電体 デュプレクサであって、それぞれのフィルタを結合する一つの励振孔をもち、共有の 入出力電極を含めて三つの入出力電極を備えた構造のものが挙げられる。このよう に誘電体デュプレクサを構成する場合も、第 1〜第 3の実施形態で示した方法により 浮き電極部と浮き電極絶縁部を形成することにより、無負荷 Q値の低下と調整精度の 劣化とを抑制する。そのため通過周波数帯域の調整が容易にできる。 尚、上述の第 1の実施形態と第 2の実施形態とでは、共振導体形成孔を断面四角 形状と断面円形状とのステップ孔として形成しているが、第 3の実施形態のように単 一断面形状の孔でもよい。また、断面形状は四角形状、円形状、楕円形状、もしくは 長円形状でもよぐ形を問わない。 An example of the structure of a dielectric duplexer comprising the dielectric filter of claim 5 is a dielectric duplexer comprising two sets of the filters shown in the first to third embodiments in one dielectric block. A structure having one excitation hole for coupling each filter and three input / output electrodes including a common input / output electrode can be mentioned. Even when a dielectric duplexer is configured in this way, by forming the floating electrode part and the floating electrode insulating part by the method shown in the first to third embodiments, the unloaded Q value is lowered and the adjustment accuracy is deteriorated. And suppress. As a result, the pass frequency band can be easily adjusted. In the first embodiment and the second embodiment described above, the resonant conductor forming hole is formed as a step hole having a square cross section and a circular cross section. It may be a hole with a single cross-sectional shape. Further, the cross-sectional shape may be a square shape, a circular shape, an elliptical shape, or an oval shape.

Claims

請求の範囲 The scope of the claims
[1] 内面に共振導体を形成した共振導体形成孔を誘電体ブロックに設け、該誘電体ブ ロックの外面に外導体を形成し、前記共振導体形成孔の少なくとも一方の開口部付 近に前記共振導体の開放部を設けてなる誘電体共振器において、  [1] A resonant conductor forming hole in which a resonant conductor is formed on the inner surface is provided in the dielectric block, an outer conductor is formed on the outer surface of the dielectric block, and the at least one opening of the resonant conductor forming hole is near the opening. In a dielectric resonator provided with an open portion of a resonant conductor,
前記開放部又はその付近に、前記共振導体力 電気的に絶縁された浮き電極部と、 該浮き電極部を周回して形成された浮き電極絶縁部とを備えたことを特徴とする誘電 体共振器。  A dielectric resonance comprising: a floating electrode part electrically insulated from the resonance conductor force; and a floating electrode insulation part formed around the floating electrode part at or near the open part. vessel.
[2] 前記開放部と前記浮き電極絶縁部とがそれぞれの一部を共有していることを特徴と する、請求項 1に記載の誘電体共振器。  2. The dielectric resonator according to claim 1, wherein the open portion and the floating electrode insulating portion share a part of each.
[3] 前記開放部と前記浮き電極絶縁部とが分離形成されて!ヽることを特徴とする、請求 項 1又は 2に記載の誘電体共振器。 3. The dielectric resonator according to claim 1, wherein the open portion and the floating electrode insulating portion are separately formed.
[4] 1つの前記共振導体形成孔に設けられた前記開放部またはその付近に、 2以上の 前記浮き電極部を備えたことを特徴とする、請求項 1〜3の!ヽずれかに記載の誘電体 共振器。 [4] The method according to any one of claims 1 to 3, wherein two or more floating electrode portions are provided in or near the open portion provided in one resonance conductor forming hole. Dielectric resonator.
[5] 請求項 1〜4のいずれかに記載の誘電体共振器と該誘電体共振器に結合する入 出力手段とを備えた誘電体フィルタ。  [5] A dielectric filter comprising the dielectric resonator according to any one of claims 1 to 4 and input / output means coupled to the dielectric resonator.
[6] 請求項 5に記載の誘電体フィルタの製造方法であって、 [6] The method for producing a dielectric filter according to claim 5,
前記共振導体の形成領域内に前記浮き電極絶縁部を形成することにより、前記共振 導体から分離して前記浮き電極部を設ける共振導体除去工程によって、フィルタ特 性を定めることを特徴とする誘電体フィルタの製造方法。  The dielectric is characterized in that a filter characteristic is determined by a resonant conductor removing step of providing the floating electrode portion separately from the resonant conductor by forming the floating electrode insulating portion in a region where the resonant conductor is formed. A method for manufacturing a filter.
[7] 前記共振導体除去工程が、前記浮き電極絶縁部のレーザー加工による導体の除 去工程である、請求項 6に記載の誘電体フィルタの製造方法。 7. The dielectric filter manufacturing method according to claim 6, wherein the resonant conductor removing step is a conductor removing step by laser processing of the floating electrode insulating portion.
PCT/JP2005/007974 2004-06-24 2005-04-27 Dielectric resonator, dielectric filter, and method for fabricating dielectric filter WO2006001119A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112005001123T DE112005001123T5 (en) 2004-06-24 2005-04-27 Dielectric resonator, dielectric filter and method for producing a dielectric filter
JP2006528381A JP4310469B2 (en) 2004-06-24 2005-04-27 Dielectric resonator, dielectric filter, and method of manufacturing dielectric filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-186813 2004-06-24
JP2004186813 2004-06-24

Publications (1)

Publication Number Publication Date
WO2006001119A1 true WO2006001119A1 (en) 2006-01-05

Family

ID=35781659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007974 WO2006001119A1 (en) 2004-06-24 2005-04-27 Dielectric resonator, dielectric filter, and method for fabricating dielectric filter

Country Status (3)

Country Link
JP (1) JP4310469B2 (en)
DE (1) DE112005001123T5 (en)
WO (1) WO2006001119A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016947A1 (en) * 2007-07-30 2009-02-05 Murata Manufacturing Co., Ltd. Dielectric resonator device and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183309A (en) * 1991-11-08 1993-07-23 Murata Mfg Co Ltd Dielectric resonator and its characteristic adjustment method
JPH06164205A (en) * 1992-11-17 1994-06-10 Oki Electric Ind Co Ltd Dielectric filter
JPH06350314A (en) * 1993-06-04 1994-12-22 Matsushita Electric Ind Co Ltd Laser trimming device for adjusting resonance requency of dielectric resonator
JPH07245503A (en) * 1994-03-02 1995-09-19 Murata Mfg Co Ltd Dielectric filter
JP2001274604A (en) * 2000-01-18 2001-10-05 Murata Mfg Co Ltd Dielectric filter, antenna multicoupler and communication unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183309A (en) * 1991-11-08 1993-07-23 Murata Mfg Co Ltd Dielectric resonator and its characteristic adjustment method
JPH06164205A (en) * 1992-11-17 1994-06-10 Oki Electric Ind Co Ltd Dielectric filter
JPH06350314A (en) * 1993-06-04 1994-12-22 Matsushita Electric Ind Co Ltd Laser trimming device for adjusting resonance requency of dielectric resonator
JPH07245503A (en) * 1994-03-02 1995-09-19 Murata Mfg Co Ltd Dielectric filter
JP2001274604A (en) * 2000-01-18 2001-10-05 Murata Mfg Co Ltd Dielectric filter, antenna multicoupler and communication unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016947A1 (en) * 2007-07-30 2009-02-05 Murata Manufacturing Co., Ltd. Dielectric resonator device and its manufacturing method
JPWO2009016947A1 (en) * 2007-07-30 2010-10-14 株式会社村田製作所 Dielectric resonator device and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2006001119A1 (en) 2008-04-17
DE112005001123T5 (en) 2007-05-16
JP4310469B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP2733621B2 (en) Frequency adjustment method for three-conductor filter
JP4591509B2 (en) Filter element and method of manufacturing filter element
JP4539422B2 (en) Chip-type multistage filter device
JP3632597B2 (en) Filter, duplexer and communication device
JPH08250904A (en) Dielectric filter
JP2829352B2 (en) Bandwidth adjustment method of three-conductor structure filter
WO2006001119A1 (en) Dielectric resonator, dielectric filter, and method for fabricating dielectric filter
US11962287B2 (en) Acoustic wave filter
JP2001060805A (en) Dielectric resonator and dielectric filter
JPH08330808A (en) Dielectric filter
JP4242738B2 (en) Multilayer bandpass filter
JP3125671B2 (en) Dielectric filter
JP2000286617A (en) Laminated strip line resonator
JP2006238195A (en) Laminated dielectrics filter
JP4172742B2 (en) Multilayer dielectric filter
JP4172741B2 (en) Multilayer dielectric filter
JP3142328B2 (en) Method of adjusting characteristics of dielectric resonator
JP4005990B2 (en) Multilayer dielectric filter
JP2002076705A (en) Laminated dielectric filter
JP2004140878A (en) Laminated dielectric filter
JPH09321503A (en) Dielectric filter
JPH11186807A (en) Lamination band pass filter and method for controlling its band width
JPH10150302A (en) Dielectric filter
JP2003087006A (en) Band-pass filter and manufacturing method therefor
JP2001016010A (en) Stripline resonator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528381

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120050011232

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005001123

Country of ref document: DE

Date of ref document: 20070516

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607