WO2006000381A1 - Finishing monoblock for a billet lamination plant for producing high-quality wire rods - Google Patents

Finishing monoblock for a billet lamination plant for producing high-quality wire rods Download PDF

Info

Publication number
WO2006000381A1
WO2006000381A1 PCT/EP2005/006703 EP2005006703W WO2006000381A1 WO 2006000381 A1 WO2006000381 A1 WO 2006000381A1 EP 2005006703 W EP2005006703 W EP 2005006703W WO 2006000381 A1 WO2006000381 A1 WO 2006000381A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamination
module
monoblock
cages
finishing
Prior art date
Application number
PCT/EP2005/006703
Other languages
English (en)
French (fr)
Other versions
WO2006000381A8 (en
Inventor
Gianfranco Mantovan
Roberto Formentin
Original Assignee
Vai Pomini S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vai Pomini S.R.L. filed Critical Vai Pomini S.R.L.
Priority to EP05753857A priority Critical patent/EP1771260B1/en
Priority to BRPI0512031-4A priority patent/BRPI0512031A/pt
Priority to DE602005019742T priority patent/DE602005019742D1/de
Priority to US11/628,013 priority patent/US8037729B2/en
Priority to AT05753857T priority patent/ATE459434T1/de
Publication of WO2006000381A1 publication Critical patent/WO2006000381A1/en
Publication of WO2006000381A8 publication Critical patent/WO2006000381A8/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/08Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts
    • B21B31/10Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts by horizontally displacing, i.e. horizontal roll changing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/02Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/005Cantilevered roll stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B2013/003Inactive rolling stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/14Couplings, driving spindles, or spindle carriers specially adapted for, or specially arranged in, metal-rolling mills

Definitions

  • the present invention refers to a finishing monoblock for a billet lamination plant for producing high- quality wire rods.
  • a lamination plant or rolling mill of billets for producing high-quality wire rods according to established technology, a billet previously taken to a suitable temperature for hot lamination between 750 0 C and over 1000 0 C is subjected to lamination so as to gradually reduce its section to the desired value.
  • high mechanical characteristics like resistance to breaking and to yielding and deformability in drawing, are equally of particular importance.
  • one of the critical sections thus consists of the finishing monoblock that, through a plurality of lamination cages, reduces the size of the billet producing the wire rod to be sent to the calibrator or directly to the winding machine.
  • the lamination rollers or cylinders of the lamination cages are arranged alternately staggered for example by 90 degrees, so as to laminate the billet in the final steps with subsequent deformations for example with round-oval-round section.
  • a monoblock according to the prior art is schematically illustrated in figures 1 to 3 in a schematic perspective view, in a top side view with respect to the lamination axis, indicated by the arrow F, and once again in a perspective view with the calibrator arranged downstream of the monoblock, respectively.
  • a lamination monoblock 1 comprises two parallel mechanical transmissions, a first transmission 2 and a second transmission 2', connected through a command reducer 3 in turn connected through gears 4 to the work driving motor 5.
  • the mechanical transmissions are equipped with pairs of conical gears 6 and with gears 7 that transmit the rotation in cascade to the lamination cylinders 8 of the various cages Gl, G2, ..., Gn of the lamination monoblock 1.
  • such a monoblock foresees ten lamination cages Gl-GlO in succession, commanded alternately through the two transmissions 2 and 2', so that the first transmission 2 commands the odd cages Gl, G3, ..., G9, which produce a reduction in section transforming the round bar going in into an oval bar, whereas the second transmission 2' commands the even cages, G2, G4, ..., GlO, which produce a reduction in section transforming the oval bar going in into a round bar.
  • the calibrator 9 is arranged equipped with two cages Hl and H2 and relative apparatuses comprising the mechanical transmissions 2 and 2' actuated by the command reducer 3 in turn connected through gears 4 to the work driving motor 5', the pair of conical gears 6 and of gears 7 transmitting the rotation in cascade to the calibration cylinders 8' .
  • the tenth cage When the required size allows a product to be laminated, finishing it, for example, at the eighth cage, in the case illustrated and described previously of a group of 10 cages, to maximise the lamination speed at the eighth cage, given the mechanical configuration of the group, the tenth cage reaches very high speeds and, furthermore, turning freely, in other words without its mechanical members being engaged. In such operating conditions the mechanical parts tend to wear quickly. If, for example, one laminates at a speed of 90 m/s at the eighth cage, the tenth cage rotates at a speed of about 140 m/s turning freely. This harmful situation is currently solved by limiting the rotation speed in the eighth cage to 70-75 m/s so as not to exceed the speed of 115-120 m/s in the tenth cage turning freely.
  • the speed limitation is also necessary when the product is already dimensionally finished right from the sixth or else the fourth or even the second cage. Therefore, the lamination speeds must necessarily be limited according to the maximum speed turning freely- permitted in the last cage.
  • Another drawback, inherent to rolling mills according to the prior art, is relative to the fact that to laminate a different diameter, for example a smaller subsequent diameter, it is necessary to stop the lamination line, disassemble the lamination rollers and the relative guide apparatuses, assemble the rollers and the apparatuses for the new diameter to be produced and take care of adjusting the opening of the rollers themselves. Such operations are carried out with the lamination line stopped. The same operations are also necessary when large amounts of wire rod with the same diameter are produced, since after a certain working time the wear of the elements forces their replacement.
  • the general purpose of the present invention is, therefore, that of providing a finishing monoblock for a billet lamination plant suitable for maximising the output speed and therefore the production for all diameters of the laminated product .
  • Another purpose of the present invention is that of providing a finishing monoblock that allows a reduction in energy consumption and wear of the mechanical parts.
  • Also falling within the purposes of the present invention is to provide a finishing monoblock that allows the reduction in stop times of the rolling mill for maintenance and/or exchange of cylinders and relative apparatuses and connected adjustments.
  • Figures 1 to 3 are schematic views of finishing monoblocks for billet lamination plants according to the prior art;
  • Figure 4 is a schematic plan view of a finishing monoblock according to an embodiment of the invention in a first way of operating;
  • Figure 5 is a schematic plan view of the finishing monoblock of figure 4 in a second way of operating;
  • Figure 6 is a schematic plan view of a finishing monoblock according to a different embodiment of the invention in a first way of operating;
  • Figure 7 is a schematic plan view of the finishing monoblock of figure 6 in a second way of operating;
  • Figures 8 and 9 are schematic perspective views of the monoblock according to the invention;
  • Figures 10 to 12 are schematic plan views of a calibrator to be connected to the finishing monoblock according to the invention, in three different operating positions;
  • Figures 13 tol5 are schematic plan views of a monoblock according to the invention made in a different configuration;
  • Figure 16 are schematic plan views of a monoblock according to the invention made in a different configuration;
  • Figure 16 are schematic plan
  • a finishing monoblock for a billet lamination plant comprises at least one first module Ml and a second module M2' , M2' ' .
  • the modules Ml, M2' , M2' ' comprise a plurality of lamination cages Gl, G2, G3 , Gn arranged in sequence suitable for forming a lamination line for the lamination of the billet in input along the direction indicated by the arrow F, so as to make a wire rod, or generally a laminated product, of predetermined section.
  • the modules comprise two parallel mechanical transmissions, a first transmission 22 and a second transmission 22', such transmissions are in turn connected and actuated through at least one command reducer 23 arranged downstream of the second module M2' , M2' ' in turn connected through gears 24 to a work driving motor 25 arranged in series with the monoblock.
  • the mechanical transmissions 22, 22' are equipped with pairs of conical gears 26 and with gears 27 that transmit the rotation in cascade to the lamination cylinders 28 of the various cages Gl, G2, ..., Gn of the modules Ml, M2' , M2' ' of the lamination monoblock.
  • such a monoblock foresees ten lamination cages Gl-GlO in succession, commanded alternately through the two transmissions 22 and 22', so that the first transmission 22 commands the odd cages Gl, G3, ..., G9 whereas the second transmission 22' commands the even cages, G2, G4, ..., GlO.
  • M2' at least two detachable joints 40 are foreseen comprising (also with reference to figures 19 and 20) a male fitting portion 41 and a female fitting portion 42 and operable through levers 43.
  • Such joints are arranged along the transmissions 22 and 22', so as to allow the quick disconnection and reconnection of the first module Ml with the second M2' and M2 ' ' .
  • the second module is made in the form of two substantially identical groups M2' and M2' ' , in other words comprising two series of cages that in this case are the last four cages G7-G10 exactly replicated.
  • Such groups are able to slide since they are supported by at least one trolley 33 that can translate on suitably arranged guides 32.
  • a mouthed duct 31 is foreseen that crosses the command reducer 23 and guides the wire rod to a calibrator 29.
  • a calibrator 29 is arranged downstream of the second module M2, M2' and is in turn equipped with two cages Hl and H2 and relative apparatuses comprising the mechanical transmissions 22 and 22' actuated by its own command reducer 23' in turn connected through gears 24 to the work driving motor 25' .
  • the calibration cylinders 28' there are the pairs of conical gears 26 and gears 27.
  • the first module Ml is also made so that it can slide on guides 32 being supported by a trolley 33.
  • a mouthed duct 31 is, therefore, foreseen to guide the billet entering into the second module and another guides the wire rod going out from the calibrator beyond the mouthed duct 31 that guides the wire rod from the second module to the calibrator.
  • a calibrator 29 is illustrated that is made so that it can slide on guides 32 being supported by a trolley 33 and equipped with two identical calibration groups C and C ' , and, arranged centrally, between the two groups C and C ' , of a mouthed duct 31.
  • the function is substantially the same as that of the second modules M2' and M2' ' , i.e.
  • the monoblock has the command reducer 23 arranged between the first module Ml and the second module M2' , M2' ' , connected to both through detachable joints 40, and actuated by a side motor 25 (figures 18b-18d) with respect to the lamination line identified by the arrow F, or by two opposite side motors 25a and 25b (figures 13-16) or by two side motors 25a and 25b arranged in series (figure 18a) .
  • the maximum level of optimisation of production is obtained and it is indeed possible to completely stop the non-operative module be it the first module Ml or the second module M2' , M2' ' , to reach the maximum speed in the operating module.
  • the presence of a plurality of detachable joints 40 arranged between different lamination cages allows its disconnection and therefore the prolongation of the operating life of the unused cages.
  • the possibility of making the modules and/or the calibrator able to slide allows the stops of the lamination line for intervention to be reduced to the minimum.
  • the proposed new monoblock has a command reducer arranged between the sixth and the seventh cage or else between the fourth and the sixth. It is thus possible to consider the group as consisting of two modules: - first module Ml arranged upstream of the command reducer 23; - second module M2' , M2' ' arranged downstream of the command reducer 23. Different combinations of the two modules are foreseen.
  • the second module can comprise 4 or 6 cages and foresee two groups of translatable cages.
  • two detachable joints are foreseen, one for each of the main transmissions 22, 22' that allow the second module of the main reducer to be disconnected.
  • Two detachable joints are also foreseen to detach the cages G9 and GlO from the transmission in the case of the group of 6+4 cages; or else to detach the cages 7- 10 in the case of the group of 4+6 cages in the respective modules, so that if the finishing cage is the eighth G8, or else the sixth G6, the subsequent cages remain stopped.
  • the lamination line foresees the calibrator 29 with the two cages Hl and H2 with round-round channels that in the case of round wire rod or of a round bar take care of increasing the precision of shape and the nominal size of the product and of recovering - i.e. taking back to the desired size - the initial and final parts of the skein of the wire rod that are larger or smaller in size due to the lack of shrinkage on the material during the passage of the top and bottom of the skein.
  • the first module Ml is foreseen in the case of a block for wire rod made up for example of 10 cages, with 6 or else 4 cages. It can be fixed or else translatable in relation to the production mixes.
  • the solution with 4 cages in the first fixed module and six cages on the second translatable modules may be suitable.
  • the module or the group is mounted on the trolley 33 that is translated sideways by hydraulic cylinders or by cable systems.
  • the advantages of the present invention can be summed up as follows: - Increase in production as a consequence of the increased speed for all of the products that are finished starting from the eighth cage on a group with ten cages (i.e. eighth G8 - sixth G6 - fourth G4 - second cage G2) , such an increase can reach 30%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Wire Processing (AREA)
  • Catching Or Destruction (AREA)
PCT/EP2005/006703 2004-06-24 2005-06-21 Finishing monoblock for a billet lamination plant for producing high-quality wire rods WO2006000381A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05753857A EP1771260B1 (en) 2004-06-24 2005-06-21 Finishing monoblock for a billet lamination plant for producing high-quality wire rods
BRPI0512031-4A BRPI0512031A (pt) 2004-06-24 2005-06-21 monobloco de acabamento para uma instalação de laminação de tarugo, e, linha de laminação
DE602005019742T DE602005019742D1 (de) 2004-06-24 2005-06-21 Endwalzmonoblock für eine knüppellaminieranlage zur herstellung von qualitativ hochwertigen walzdrähten
US11/628,013 US8037729B2 (en) 2004-06-24 2005-06-21 Finishing monoblock for a billet lamination plant for producing high-quality wire rods
AT05753857T ATE459434T1 (de) 2004-06-24 2005-06-21 Endwalzmonoblock für eine knüppellaminieranlage zur herstellung von qualitativ hochwertigen walzdrähten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI2004A001268 2004-06-24
IT001268A ITMI20041268A1 (it) 2004-06-24 2004-06-24 MONOBLOCCO FINITORE PER UN IMPIANTO DI LòAMINAZIONE DI BILLETTE PER PRODURRE GERVELLE DI ALTA QUALITA'

Publications (2)

Publication Number Publication Date
WO2006000381A1 true WO2006000381A1 (en) 2006-01-05
WO2006000381A8 WO2006000381A8 (en) 2006-12-21

Family

ID=34978629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006703 WO2006000381A1 (en) 2004-06-24 2005-06-21 Finishing monoblock for a billet lamination plant for producing high-quality wire rods

Country Status (10)

Country Link
US (1) US8037729B2 (ru)
EP (1) EP1771260B1 (ru)
CN (1) CN100484651C (ru)
AT (1) ATE459434T1 (ru)
BR (1) BRPI0512031A (ru)
DE (1) DE602005019742D1 (ru)
ES (1) ES2342182T3 (ru)
IT (1) ITMI20041268A1 (ru)
RU (1) RU2374016C2 (ru)
WO (1) WO2006000381A1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659493A2 (en) 1993-12-22 1995-06-28 Morgan Construction Company Single strand block-type rolling mill
EP1228817A2 (en) * 2001-01-31 2002-08-07 Morgan Construction Company High speed finishing block

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665746A (en) * 1970-03-02 1972-05-30 Blaw Knox Co Combination rolling mill
JPH0722761B2 (ja) * 1991-11-14 1995-03-15 愛知製鋼株式会社 誘導装置を備えた鋼材整形装置
US5595083A (en) * 1994-08-01 1997-01-21 Morgan Construction Company Modular rolling mill
US5823036A (en) * 1997-08-19 1998-10-20 Braner Usa, Inc. Roll forming machine and method for changing rolls
US6148654A (en) * 1997-10-15 2000-11-21 Asc Machine Tools, Inc. Convertible roll forming apparatus
US6053022A (en) * 1998-09-14 2000-04-25 Morgan Construction Company Modular rolling mill
IT1312424B1 (it) * 1999-06-30 2002-04-17 Techint Spa Metodo ed impianto per la laminazione di una billetta continuaalimentata da un forno di riscaldo billette disposto a monte di un
US7191629B1 (en) * 2006-04-13 2007-03-20 Morgan Construction Company Modular rolling mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659493A2 (en) 1993-12-22 1995-06-28 Morgan Construction Company Single strand block-type rolling mill
EP1228817A2 (en) * 2001-01-31 2002-08-07 Morgan Construction Company High speed finishing block

Also Published As

Publication number Publication date
EP1771260A1 (en) 2007-04-11
ATE459434T1 (de) 2010-03-15
ITMI20041268A1 (it) 2004-09-24
BRPI0512031A (pt) 2008-02-06
RU2374016C2 (ru) 2009-11-27
WO2006000381A8 (en) 2006-12-21
RU2006143802A (ru) 2008-07-27
US20080011038A1 (en) 2008-01-17
DE602005019742D1 (de) 2010-04-15
EP1771260B1 (en) 2010-03-03
CN100484651C (zh) 2009-05-06
US8037729B2 (en) 2011-10-18
CN1976766A (zh) 2007-06-06
ES2342182T3 (es) 2010-07-02

Similar Documents

Publication Publication Date Title
EP0512735B1 (en) Method for continuously hot rolling of ferrous long products
CN104741386B (zh) 一种集中传动线棒材轧机
CN102686324B (zh) 带有单独驱动的线材轧机机架
MX2008002183A (es) Laminadora modular.
EP0987067B1 (en) Modular rolling mill
CN205042878U (zh) 一种高速线材减定径机生产装置
US6405573B1 (en) Wire rod rolling line
EP1771260B1 (en) Finishing monoblock for a billet lamination plant for producing high-quality wire rods
KR20150097477A (ko) 압연 스테이션 및 압연기 플랜트
EP1827722B1 (en) Finishing monoblock with optimised transmission ratio for a billet rolling plant
CN102947017B (zh) 高速线材轧制装置和方法
CN212442579U (zh) 一种单机架独立传动模块化轧机及机组
MXPA02000946A (es) Bloque de acabado de alta velocidad.
MXPA02000947A (es) Seccion de acabado del laminador.
EP2616194B1 (en) Apparatus for high productivity rolling, particularly for milling section bars or rods
KR101417228B1 (ko) 압연 장치
CN210160334U (zh) 连续精密锻制机
JP7163225B2 (ja) 圧延方法および圧延装置
JP2023510090A (ja) 熱間圧延機のため、および、金属の平板製品の製造のための熱間圧延スタンド、熱間圧延機、並びに、熱間圧延機の作動のための方法
CN116833219A (zh) 一种钼线生产全连轧工艺
Augusti Innovations in bar and section mills
JPWO2021116460A5 (ru)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11628013

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005753857

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580020719.0

Country of ref document: CN

Ref document number: 4721/CHENP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006143802

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005753857

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628013

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0512031

Country of ref document: BR