WO2005124333A1 - Polarographe - Google Patents

Polarographe Download PDF

Info

Publication number
WO2005124333A1
WO2005124333A1 PCT/CN2005/000817 CN2005000817W WO2005124333A1 WO 2005124333 A1 WO2005124333 A1 WO 2005124333A1 CN 2005000817 W CN2005000817 W CN 2005000817W WO 2005124333 A1 WO2005124333 A1 WO 2005124333A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
input
output
recorder
auxiliary amplifier
Prior art date
Application number
PCT/CN2005/000817
Other languages
English (en)
French (fr)
Inventor
Wentao Liu
Original Assignee
Wentao Liu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wentao Liu filed Critical Wentao Liu
Publication of WO2005124333A1 publication Critical patent/WO2005124333A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Definitions

  • the invention relates to a polarograph.
  • Polarograph is an important instrument for measuring the concentration of Zn, Cd, Pb, Cu in water.
  • the polarographs mainly include an operating voltage generator, a potentiostat, an electrolytic cell, a current-to-voltage converter, a differentiator, a signal compensator, a main amplifier, and a data processing device.
  • the data processing device mainly uses a microcomputer, a recorder, etc., and is used for processing the measurement data outputted by the main amplifier to calculate the concentrations of Zn, Cd, Pb, Cu, and the like.
  • the amplification factor of the main amplifier can generally be adjusted to adjust the sensitivity of the polarograph.
  • the sensitivity of the above polarograph can be adjusted by adjusting the amplification factor of the main amplifier, it can only be output at one magnification at the same time. Due to the simultaneous measurement of the concentrations of various substances such as Zn, Cd, Pb, Cu, etc., the magnitude of the measured signals produced by these substances tends to vary greatly, and often the measured signal of one substance is small, and the other is very Big phenomenon. In this case, since the main amplifier uses the same signal amplification factor, it is difficult to balance the larger and smaller measurement signals. Generally, the sensitivity measurement is required for smaller signals, and the sensitivity measurement is required for larger signals. The main amplifier is more suitable for the amplification factor. Therefore, when measuring the concentration of various substances, the main amplifier is also subjected to multiple measurements with different magnifications. The measurement process is cumbersome and the work efficiency is low.
  • the technical problem to be solved by the present invention is that the existing polar spectrometer can only use one kind of amplification factor at the same time, the measurement process is cumbersome and the work efficiency is low.
  • the present invention adopts the following technical solutions: a polarograph comprising a signal compensator, a main amplifier and a data processing device, the output of the signal compensator being connected to the input of the main amplifier, the output of the main amplifier and the data One of the inputs of the processing device is connected. Its special features are: It also includes an auxiliary amplifier 1. The input of the auxiliary amplifier 1 is connected to the output of the main amplifier, and the output of the auxiliary amplifier 1 is connected to the input of the data processing device.
  • the above technical solution of the present invention mainly improves the output mode of the main amplifier based on the existing polar spectrometer, and the other parts are basically the same as the existing polar spectrometer.
  • the input of the main amplifier of the existing polarograph is connected to the output of the signal compensator, and the output of the main amplifier is directly connected with the data.
  • the input of the processing device is connected.
  • the output end of the main amplifier is respectively connected to two different input ends of the data processing device through two paths, one way is that the output end of the main amplifier is directly connected with the input end of the data output device.
  • the amplification factor of the signal output by the signal compensator is the amplification factor of the main amplifier, and the other way is that the output of the main amplifier is connected to the input end of the data processing device via the auxiliary amplifier 1
  • the amplification factor of the signal outputted by the signal to the signal compensator is the product of the amplification factor of the main amplifier and the amplification factor of the auxiliary amplifier 1. In this way, two different magnification measurement signals can be obtained in the same measurement.
  • the output end of the main amplifier is respectively connected to two different input ends of the data processing device through two paths, one of which is directly connected by a connecting wire, and one way may also be adopted.
  • the amplification factor of the auxiliary amplifier is different from the amplification factor of the auxiliary amplifier 1, and is generally one.
  • the use of an auxiliary amplifier instead of a direct connection using a connecting wire is also within the scope of the present invention.
  • the main amplifier can be amplified in one or more stages.
  • the present invention further includes an auxiliary amplifier 2 based on the above technical solution.
  • the input of the auxiliary amplifier 2 is connected to the output of the main amplifier, and the output of the auxiliary amplifier 2 is connected to the input of the data processing device.
  • the output end of the main amplifier is respectively connected to three different input ends of the data processing device through three paths, so that three kinds of amplification factors can be simultaneously performed on the signal output by the signal compensator. Magnification.
  • the present invention further includes an auxiliary amplifier 3 based on the above technical solution.
  • the input of the auxiliary amplifier 3 is connected to the output of the main amplifier, and the output of the auxiliary amplifier 3 is connected to the input of the data processing device.
  • the auxiliary amplifier 3 since the auxiliary amplifier 3 is added, the output end of the main amplifier is respectively connected to four different input ends of the data processing device through four paths, so that four kinds of amplification factors can be simultaneously performed on the signal output by the signal compensator. Magnification.
  • the auxiliary amplifier can be amplified in one or more stages.
  • the present invention can also add more auxiliary amplifiers according to actual needs on the basis of the above technical solutions.
  • the data processing device of the present invention can adopt a single chip microcomputer, and different input ends of the I/O ports of the single chip respectively serve as one of the input ends of the data processing device, the second input terminal, the third input terminal and the fourth input terminal, the main amplifier and the auxiliary amplifier. 1.
  • the output terminals of the auxiliary amplifier 2 and the auxiliary amplifier 3 are respectively connected to different input terminals of the I/O port of the single chip microcomputer.
  • the obtained four-channel amplified signal is input into the single-chip microcomputer for storage, and is processed by the single-chip microcomputer, and then transmitted to the microcomputer to calculate the measurement result. Since the output signals of the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 are analog signals, the above-mentioned technical solution is required to have a built-in A/D converter.
  • the microcontroller in the above technical solution does not have a built-in A/D converter, it can be connected in the following manner:
  • the output terminals of the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 pass through the A/D converter 4, A/, respectively.
  • the D converter 5, the A/D converter 6, and the A/D converter 7 are connected to the microcontroller I/O port.
  • the analog signals of the outputs of the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 are converted into an A/D converter 4, an A/D converter 5, an A/D converter 6, and an A/D converter 7, respectively, into The digital signal is then input into the microcontroller for processing.
  • the data processing device of the present invention can also adopt a multi-spectral recorder.
  • the different inputs of the multi-spectral recorder are respectively used as one of the input ends of the data processing device, the second input terminal, the third input terminal and the fourth input terminal.
  • the outputs of the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2 and the auxiliary amplifier 3 are respectively connected to different inputs of the multispectral recorder.
  • the obtained four-channel amplified signal is input into the multi-spectral recorder, and the signal spectrum of four different magnifications is simultaneously printed by the multi-spectral recorder.
  • the data processing apparatus of the present invention can also employ the recorder 8, the recorder 9, the recorder 10, and the recorder 11, the inputs of the recorder 8, the recorder 9, the recorder 10, and the recorder 11 as input to the data processing device, respectively.
  • the outputs of the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 are connected to the inputs of the recorder 8, the recorder 9, the recorder 10, and the recorder 11, respectively.
  • the recorder 8, the recorder 9, the recorder 10, and the recorder 11 are all ordinary recorders. After the signals outputted by the signal compensator are simultaneously amplified by four amplification factors, the obtained four-channel amplified signals are respectively input to the recorder 8, the recorder 9, the recorder 10, and the recorder 11, and the recorder 8, the recorder 9, The recorder 10 and the recorder 11 respectively print out signal spectra of four different magnifications.
  • the auxiliary amplifier 1, the auxiliary amplifier 2 and the auxiliary amplifier 3 of the present invention respectively include an operational amplifier A, an operational amplifier A 2 , a resistor, a resistor R 2 , a resistor R 3 , a resistor, a resistor R 5 , a resistor, a capacitor, and a capacitor C 2 ;
  • One end of the resistor is connected to the output of the main amplifier as an input terminal of the auxiliary amplifier, and the other end of the resistor is connected to the inverting input terminal of the operational amplifier ⁇ ;
  • the two ends of the resistor R 2 are respectively connected to the inverting input terminal and the output end of the operational amplifier connection; non-inverting input of the operational amplifier and an end of resistor R 3 is connected to an end, the other end of the resistor R 3;
  • the two ends of the capacitor are respectively connected to the inverting input terminal and the output terminal of the operational amplifier Aj; end of the resistor of the operational amplifier a
  • the output terminal is connected, and the other end of
  • the auxiliary amplifier 1, the auxiliary amplifier 2 and the auxiliary amplifier 3 are both amplified in two stages, wherein the operational amplifier, the resistor, the resistor R 2 , the resistor R 3 and the capacitor constitute the first stage amplification, the operational amplifier A 2 , the resistor, the resistor, the resistor And capacitor C 2 constitutes a second stage of amplification. If only the first stage amplification is used, the output signal spectrum is opposite to the direction of the main amplifier output signal spectrum, which is inconvenient to analyze and calculate the spectrum. Therefore, after the second stage amplification, the signal is inverted again.
  • the signal spectrum output after two-stage amplification is the same as the signal spectrum output from the main amplifier.
  • the signal outputted by the signal compensator can be simultaneously amplified by two or more amplification factors, and the amplified signal data is stored or output by the data processing device.
  • Analyst selection Analysts can be from different magnifications The appropriate data is selected for analysis, and there is generally no case where the signal data of all the magnifications is too large or too small. In this way, the analyst can generally analyze the concentration of the measured substance by one measurement. Especially when measuring the concentration of several different substances in the same solution, the analyst can analyze the concentration of various substances by measuring the data at different magnifications in one measurement. Compared with the existing polarograph, the measurement process is simple and the measurement time is saved.
  • Figure 1 is a circuit block diagram of Embodiment 1 of the present invention.
  • Figure 2 is a circuit block diagram of Embodiment 2 of the present invention.
  • Figure 3 is a circuit block diagram of Embodiment 3 of the present invention.
  • FIG. 4 is a circuit diagram of the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 in Embodiment 1, Embodiment 2, and Embodiment 3 of the present invention;
  • Fig. 5 is a diagram showing the connection relationship between the A/D converter 4, the AID converter 5, the A/D converter 6 and the A/D converter 7 and the single chip microcomputer in the embodiment 1 of the present invention.
  • this embodiment is a polarograph for measuring the concentration of Zn, Cd, Pb, Cu, etc. in water, which is mainly composed of a working voltage generator, a potentiostat, and an electrolytic cell. , current-to-voltage converter, differentiator 12, differentiator 13, transfer switch, signal compensator, main amplifier, auxiliary amplifier 1, auxiliary amplifier 2, auxiliary amplifier 3, A/D converter 4, A/D converter 5
  • the A/D converter 6, the A/D converter 7, and the data processing device are composed.
  • the electrolytic cell includes an auxiliary electrode, a working electrode, and a reference electrode.
  • the working voltage generator can be a linear scan voltage generator or a pulse scan voltage generator.
  • the potentiostat is used to synchronize the voltage of the solution in the electrolytic cell with the operating voltage.
  • a current-to-voltage converter is used to convert the current signal on the working electrode into a voltage signal.
  • the switch uses a band switch.
  • the output of the current-to-voltage converter is connected to the input terminal f of the changeover switch and the input of the differentiator 12, and the output of the differentiator 12 is connected to the input terminal g of the changeover switch and the input of the differentiator 13, the differentiator 13
  • the output is connected to the input h of the transfer switch.
  • the output of the transfer switch is connected to the input of the signal compensator, and the output of the signal compensator is The input of the main amplifier is connected.
  • the current-to-voltage converter outputs a measured signal
  • the differentiator 12 is configured to take a first derivative of the measured signal outputted by the current-voltage converter
  • the differentiator 13 is configured to take a second derivative of the first derivative signal output by the differentiator 12.
  • the switch can select the output of one of the current-voltage converter, the differentiator 12 and the differentiator 13 to be connected with the input of the signal compensator, so that the analyst can select the current-voltage converter according to the specific situation for each measurement.
  • One of the output measured signal, the first derivative signal output from the differentiator 12, and the second derivative signal output from the differentiator 13 is input to the signal compensator.
  • the signal compensator is mainly used for zero compensation and slope compensation of the measured signal.
  • the zero compensation signal, the slope compensation signal and the measured signal, the first derivative signal and the second derivative signal are one of the three. plus.
  • the composite signal output from the signal compensator is input to the main amplifier for amplification.
  • the data processing device adopts single chip IC1, and the single chip IC1 adopts 80C51.
  • the microcontroller IC1 does not have a built-in A/D converter, so the analog signals output by the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 need to pass through the A/D converter 4, the A/D converter 5, and the A/D, respectively.
  • the converter 6 and the A/D converter 7 are converted into digital signals before being input to the microcontroller IC1.
  • the output terminals of the main amplifier are respectively connected to the input terminals of the A/D converter 4, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3.
  • the outputs of the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 are respectively converted to A/D conversion.
  • the input terminal of the A/D converter 6 and the A/D converter 7 is connected.
  • the output terminals of the AD converter 4, the A/D converter 5, the A/D converter 6, and the A/D converter 7 are connected to the I/O port of the microcontroller IC1. As shown in FIG.
  • the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 respectively include an operational amplifier ⁇ , an operational amplifier A 2 , a resistor, a resistor R 2 , a resistor R 3 , a resistor, a resistor R 5 , a resistor R 6 , and a capacitor Q. And capacitor C 2 .
  • One end of the resistor is connected to the output of the main amplifier as an input of the auxiliary amplifier, and the other end of the resistor is connected to the inverting input of the operational amplifier A.
  • Both ends of the resistor R 2 are respectively connected to the inverting input terminal and the output terminal of the operational amplifier ⁇ .
  • One end of the resistor R of the operational amplifier A 3! Noninverting input terminal connected to the other end of the resistor R 3.
  • Both ends of the capacitor d are respectively connected to the inverting input terminal and the output terminal of the operational amplifier A.
  • One end of the resistor is connected to the output of the operational amplifier ⁇ , and the other end of the resistor is connected to the inverting input of the operational amplifier A 2 .
  • Both ends of the resistor R 5 are respectively connected to the inverting input terminal and the output terminal of the operational amplifier A 2 .
  • One end of the resistor is connected to the non-inverting input of the operational amplifier A 2 and the other end of the resistor is grounded.
  • Both ends of the capacitor C 2 are respectively connected to the inverting input terminal and the output terminal of the operational amplifier A 2 .
  • the output of the operational amplifier A 2 acts as the output of the auxiliary amplifier through the corresponding After the A/D converter, it is connected to the I/O port of the microcontroller IC1.
  • the auxiliary amplifier 1, the auxiliary amplifier 2 and the auxiliary amplifier 3 can obtain different amplification factors by selecting or adjusting parameters of the relevant components.
  • the operational amplifier and operational amplifier A 2 can be composed of the same integrated circuit LM348. As shown in FIG. 5, the A/D converter 4, the A/D converter 5, the A/D converter 6 and the A/D converter 7 use the same ⁇ integrated circuit IC2, and the integrated circuit IC2 is shared by the MAX197BCNL integrated circuit IC2.
  • A/D converters 4 of which are used in this embodiment as AD converter 4, A/D converter 5, A/D converter 6 and A/D converter 7, integrated circuit IC2
  • the 16-pin, 17-pin, 18-pin, and 19-pin are used as the input terminals of the A/D converter 4, the A/D converter 5, the A/D converter 6, and the AD converter 7, respectively.
  • the outputs of the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 are connected to the 16-pin, 17-pin, 18-pin, and 19-pin of the integrated circuit IC2, respectively.
  • the integrated circuit IC2 is connected to the single chip IC1.
  • the single chip IC1 is mainly used for storing the synthesized signal data of different magnifications of the output of the A/D converter 4, the A/D converter 5, the A/D converter 6 and the A/D converter 7, for data processing and control cleaning, Enrichment, rest time and other parameters.
  • this embodiment is a polarograph for measuring the contents of Zn, Cd, Pb, Cu, etc. in water, which is mainly composed of a working voltage generator, a potentiostat, an electrolytic cell, and a current one.
  • the voltage converter, the differentiator 12, the differentiator 13, the transfer switch, the signal compensator, the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, the auxiliary amplifier 3, and the data processing device are composed.
  • the data processing apparatus of the present embodiment employs a multispectral recorder, so that the A/D converter 4, the A/D converter 5, the A/D converter 6, and the A/D converter 7 in Embodiment 1 are omitted. .
  • the components used in 3 and the connection relationship between them are the same as those in Embodiment 1, and will not be described again here.
  • the outputs of the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 of this embodiment are respectively connected to four different signal inputs of the multispectral recorder.
  • the multispectral recorder is mainly used to print signal spectra of different amplifications of the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3.
  • this embodiment is a polarograph for measuring the contents of Zn, Cd, Pb, Cu, etc. in water, which is mainly composed of a working voltage generator, a potentiostat, an electrolytic cell, and a current one.
  • the voltage converter, the differentiator 12, the differentiator 13, the transfer switch, the signal compensator, the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, the auxiliary amplifier 3, and the data processing device are composed.
  • the data processing apparatus of this embodiment employs a recorder 8, a recorder 9, a recorder 10, and a recorder 11, a recorder 8, a recorder 9, a recorder 10, and a recorder 11 using an ordinary recorder.
  • the outputs of the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3 are connected to the inputs of the recorder 8, the recorder 9, the recorder 10, and the recorder 11, respectively.
  • the recorder 8, the recorder 9, the recorder 10, and the recorder 11 are used to print signal spectra of different magnifications of the main amplifier, the auxiliary amplifier 1, the auxiliary amplifier 2, and the auxiliary amplifier 3, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Amplifiers (AREA)

Description

极谱仪
技术领域:
本发明涉及一种极谱仪。
背景技术:
极谱仪是测量水中 Zn、 Cd、 Pb、 Cu等浓度的重要仪器。 目前己有的极 谱仪主要包括工作电压发生器、 恒电位器、 电解池、 电流一电压转换器、 微 分器、 信号补偿器、 主放大器和数据处理设备。 其中数据处理设备主要采用 微机、 记录仪等, 它用于对主放大器输出的测量数据进行处理, 从而计算出 Zn、 Cd、 Pb、 Cu等的浓度。 其中主放大器的放大倍数一般可以调节, 从而 调节极谱仪的灵敏度。 上述极谱仪的灵敏度虽然可以通过调节主放大器的放 大倍数进行调节, 但在同一时刻只能以一种放大倍数进行输出。 由于同时测 量 Zn、 Cd、 Pb、 Cu等多种物质的浓度, 这些物质产生的被测量信号的大小 往往相差很大, 经常出现一种物质的被测量信号很小, 而另一种的又很大的 现象。 在这种情况下, 由于主放大器采用同一信号放大倍数, 较大和较小的 测量信号就难以兼顾, 通常对较小的信号需要调高灵敏度测量,对较大的信 号需要降低灵敏度测量, 才能选择出主放大器较合适的放大倍数, 因此, 在 测量多种物质的浓度时, 也要对主放大器采用不同的放大倍数经过多次测量 来完成, 测量过程烦琐, 工作效率较低。
发明内容:
本发明要解决的技术问题是, 现有的极谱仪在同一时刻主放大器只能釆 用一种放大倍数, 测量过程烦琐, 工作效率低。 为解决该技术问题, 本发明 采用以下技术方案: 极谱仪, 包括信号补偿器、 主放大器和数据处理设备, 信号补偿器的输出端与主放大器的输入端连接, 主放大器的输出端与数据处 理设备的输入端之一连接。 它的特殊之处是: 还包括辅助放大器 1。 辅助放 大器 1的输入端与主放大器的输出端连接, 辅助放大器 1的输出端与数据处 理设备的输入端之二连接。
本发明的上述技术方案主要在现有的极谱仪的基础上, 对主放大器的输 出方式进行了改进, 其它部分与现有的极谱仪基本相同。 现有的极谱仪的主 放大器的输入端与信号补偿器的输出端连接, 主放大器的输出端直接与数据 处理设备的输入端连接。 而本发明的上述技术方案中主放大器的输出端经过 两条途径分别与数据处理设备的两个不同的输入端连接, 一条途径是主放大 器的输出端直接用连线与数据输出设备的输入端之一连接, 这条途径对信号 补偿器输出的信号的放大倍数就是主放大器的放大倍数, 另一条途径是主放 大器的输出端经过辅助放大器 1与数据处理设备的输入端之二连接, 这条途 径对信号补偿器输出的信号的放大倍数是主放大器的放大倍数与辅助放大器 1 的放大倍数的乘积。 这样, 在同一次测量中可以得到两种不同放大倍数的 测量信号。 在本发明的上述技术方案中, 主放大器的输出端经过两条途径分 别与数据处理设备的两个不同的输入端连接, 其中的一条途径是采用连接导 线直接连接, 这条途径也可以采用一个辅助放大器代替, 该辅助放大器的放 大倍数与辅助放大器 1的放大倍数不同, 一般为 1。 采用辅助放大器代替采 用连接导线直接连接的方法, 同样在本发明的保护范围内。 主放大器可以采 用一级或多级放大。
为了对信号补偿器输出的信号同时进行三种放大倍数的放大, 本发明在 上述技术方案的基础上还包括辅助放大器 2。 辅助放大器 2的输入端与主放 大器的输出端连接, 辅助放大器 2的输出端与数据处理设备的输入端之三连 接。
上述技术方案中, 由于增加了辅助放大器 2, 使主放大器的输出端经过 三条途径分别与数据处理设备的三个不同的输入端连接, 从而可以同时对信 号补偿器输出的信号进行三种放大倍数的放大。
为了对信号补偿器输出的信号同时进行四种放大倍数的放大, 本发明在 上述技术方案的基础上还包括辅助放大器 3。 辅助放大器 3的输入端与主放 大器的输出端连接, 辅助放大器 3的输出端与数据处理设备的输入端之四连 接。
上述技术方案中, 由于增加了辅助放大器 3, 使主放大器的输出端经过 四条途径分别与数据处理设备的四个不同的输入端连接, 从而可以同时对信 号补偿器输出的信号进行四种放大倍数的放大。 辅助放大器可以采用一级或 多级放大。 为了对信号补偿器输出的信号同时进行更多不同放大倍数的放大, 在上 述技术方案的基础上, 本发明还可以根据实际需要增加更多的辅助放大器。
本发明的数据处理设备可以采用单片机, 单片机 I/O口的不同输入端分 别作为数据处理设备的输入端之一、输入端之二、输入端之三和输入端之四, 主放大器、 辅助放大器 1、 辅助放大器 2和辅助放大器 3的输出端分别与单 片机 I/O口的不同输入端连接。
对信号补偿器输出的信号同时进行四种放大倍数的放大后, 得到的四路 放大信号输入单片机中储存, 由单片机进行数据处理, 然后传输到微机中计 算出测量结果。 由于上述主放大器、 辅助放大器 1、 辅助放大器 2和辅助放 大器 3的输出信号都是模拟信号, 因此要求上述技术方案中单片机具备内置 A/D转换器。
如果上述技术方案中的单片机没有内置 A/D转换器,可以采用以下方式 进行连接: 主放大器、 辅助放大器 1、 辅助放大器 2和辅助放大器 3的输出 端分别通过 A/D转换器 4、 A/D转换器 5、 A/D转换器 6和 A/D转换器 7与 单片机 I/O口连接。
主放大器、 辅助放大器 1、 辅助放大器 2和辅助放大器 3的输出的模拟 信号分别经过 A/D转换器 4、 A/D转换器 5、 A/D转换器 6和 A/D转换器 7 转换为数字信号后再输入单片机进行处理。
本发明的数据处理设备还可以采用多谱图记录仪, 多谱图记录仪的不同 输入端分别作为数据处理设备的输入端之一、 输入端之二、 输入端之三和输 入端之四, 主放大器、 辅助放大器 1、 辅助放大器 2和辅助放大器 3的输出 端分别与多谱图记录仪的不同输入端连接。
对信号补偿器输出的信号同时进行四种放大倍数的放大后, 得到的四路 放大信号输入多谱图记录仪中, 由多谱图记录仪同时打印出四种不同放大倍 数的信号谱图。
本发明的数据处理设备还可以采用记录仪 8、 记录仪 9、 记录仪 10和记 录仪 11, 记录仪 8、 记录仪 9、 记录仪 10和记录仪 11的输入端分别作为数 据处理设备的输入端之一、 输入端之二、 输入端之三和输入端之四, 主放大 器、 辅助放大器 1、 辅助放大器 2和辅助放大器 3的输出端分别与记录仪 8、 记录仪 9、 记录仪 10和记录仪 11的输入端连接。
记录仪 8、记录仪 9、记录仪 10和记录仪 11都是普通的记录仪。对信号 补偿器输出的信号同时进行四种放大倍数的放大后, 得到的四路放大信号分 别输入记录仪 8、 记录仪 9、 记录仪 10和记录仪 11, 由记录仪 8、 记录仪 9、 记录仪 10和记录仪 11分别打印出四种不同放大倍数的信号谱图。
本发明的辅助放大器 1、 辅助放大器 2和辅助放大器 3分别包括运算放 大器 A,、 运算放大器 A2、 电阻 、 电阻 R2、 电阻 R3、 电阻 、 电阻 R5、 电阻 、 电容 和电容 C2; 电阻 的一端作为辅助放大器的输入端与主放 大器的输出端连接, 电阻 的另一端与运算放大器 ^的反相输入端连接; 电阻 R2的两端分别与运算放大器 的反相输入端和输出端连接; 电阻 R3 的一端与运算放大器 的同相输入端连接, 电阻 R3的另一端接地; 电容 的两端分别与运算放大器 Aj的反相输入端和输出端连接; 电阻 的一端与 运算放大器 A!的输出端连接,电阻 的另一端与运算放大器 A2的反相输入 端连接; 电阻 R5的两端分别与运算放大器 A2的反相输入端和输出端连接; 电阻 的一端与运算放大器 A2的同相输入端连接, 电阻 的另一端接地; 电容 C2的两端分别与运算放大器 A2的反相输入端和输出端连接; 运算放大 器 A2的输出端作为辅助放大器的输出端与数据处理设备的输入端连接。
辅助放大器 1、 辅助放大器 2和辅助放大器 3都是经过了两级放大, 其 中运算放大器 、 电阻 、 电阻 R2、 电阻 R3和电容 组成第一级放大, 运算放大器 A2、 电阻 、 电阻 、 电阻 和电容 C2组成第二级放大。 如 果只采用第一级放大,输出的信号谱图与主放大器输出信号谱图的方向相反, 不便于对谱图进行分析计算, 因此需要经过第二级放大后将信号再经过一次 反相, 这样经过两级放大后输出的信号谱图与主放大器输出的信号谱图的方 向相同。
与现有的极谱仪相比, 由于本发明增加了辅助放大器, 可以对信号补偿 器输出的信号同时进行两种以上放大倍数的放大, 放大后的信号数据经过数 据处理设备储存或者输出, 供分析人员选用。 分析人员可以从不同放大倍数 的数据中选取合适的数据进行分析, 一般不存在所有放大倍数的信号数据都 过大或者过小的情况。 这样, 分析人员一般可以通过一次测量就能分析出被 测物质的浓度。 特别是在测量同一被测溶液中的几种不同物质的浓度时, 分 析人员可以通过一次测量, 选用不同放大倍数的数据, 分析出各种不同物质 的浓度。 本发明与现有极谱仪相比, 测量过程简单, 节省测量时间。
附图说明:
图 1为本发明的实施例 1的电路方框图;
图 2为本发明的实施例 2的电路方框图;
图 3为本发明的实施例 3的电路方框图;
图 4为本发明的实施例 1、 实施例 2和实施例 3中的辅助放大器 1、 辅 助放大器 2和辅助放大器 3的电路图;
图 5为本发明的实施例 1中 A/D转换器 4、 AID转换器 5、 A/D转换器 6和 A/D转换器 7与单片机的连接关系图。
具体实施方式:
下面结合附图对本发明的实施例进行详细描述。
实施例 1 :
如图 1、 图 4和图 5所示, 本实施例是一种用于测量水中 Zn、 Cd、 Pb、 Cu等浓度的极谱仪, 它主要由工作电压发生器、恒电位器、 电解池、 电流一 电压转换器、微分器 12、微分器 13、 转换开关、信号补偿器、主放大器、辅 助放大器 1、 辅助放大器 2、 辅助放大器 3、 A/D转换器 4、 A/D转换器 5、 A/D转换器 6、 A/D转换器 7和数据处理设备组成。 电解池中包括辅助电极、 工作电极和参比电极。 工作电压发生器可以采用线性扫描电压发生器, 也可 以采用脉冲扫描电压发生器。 恒电位器用于使电解池内的溶液的电压与工作 电压同步变化。 电流一电压转换器用于把工作电极上的电流信号转换为电压 信号。 转换开关采用波段开关。 电流一电压转换器的输出端与转换开关的输 入端 f和微分器 12的输入端连接, 微分器 12的输出端与转换开关的输入端 g和微分器 13的输入端连接, 微分器 13的输出端与转换开关的输入端 h连 接。 转换开关的输出端与信号补偿器的输入端连接, 信号补偿器的输出端与 主放大器的输入端连接。电流一电压转换器输出被测量信号,微分器 12用于 对电流一电压转换器输出的被测量信号取一阶导数,微分器 13用于对微分器 12输出的一阶导数信号取二阶导数。 转换开关可以选择电流一电压转换器、 微分器 12和微分器 13三者之一的输出端与信号补偿器的输入端连接, 使分 析人员每次测量只能根据具体情况选择电流一电压转换器输出的被测量信 号、 微分器 12输出的一阶导数信号和微分器 13输出的二阶导数信号三者之 一输入信号补偿器。 信号补偿器主要用于对被测量信号进行零点补偿和斜度 补偿, 在信号补偿器中零点补偿信号、 斜度补偿信号与被测量信号、 一阶导 数信号和二阶导数信号三者之一相加。 信号补偿器输出的合成信号输入主放 大器进行放大。 数据处理设备采用单片机 IC1 , 单片机 IC1采用 80C51。 该 单片机 IC1没有内置 A/D转换器, 因此主放大器、 辅助放大器 1、 辅助放大 器 2和辅助放大器 3输出的模拟信号需要分别经过 A/D转换器 4、 A/D转换 器 5、 A/D转换器 6和 A/D转换器 7转换为数字信号后才能输入单片机 IC1 中。 主放大器的输出端分别与 A/D转换器 4、 辅助放大器 1、 辅助放大器 2 和辅助放大器 3的输入端连接,辅助放大器 1、辅助放大器 2和辅助放大器 3 的输出端分别与 A/D转换器 5、A/D转换器 6和 A/D转换器 7的输入端连接。 A D转换器 4、 A/D转换器 5、 A/D转换器 6和 A/D转换器 7的输出端与单 片机 IC1的 I/O口连接。 如图 4所示, 辅助放大器 1、 辅助放大器 2和辅助 放大器 3分别包括运算放大器 ^、 运算放大器 A2、 电阻 、 电阻 R2、 电阻 R3、 电阻 、 电阻 R5、 电阻 R6、 电容 Q和电容 C2。 电阻 的一端作为辅 助放大器的输入端与主放大器的输出端连接,电阻 的另一端与运算放大器 A,的反相输入端连接。 电阻 R2的两端分别与运算放大器 ^的反相输入端和 输出端连接。 电阻 R3的一端与运算放大器 A!的同相输入端连接, 电阻 R3 的另一端接地。 电容 d的两端分别与运算放大器 A,的反相输入端和输出端 连接。 电阻 的一端与运算放大器 ^的输出端连接, 电阻 的另一端与运 算放大器 A2的反相输入端连接。电阻 R5的两端分别与运算放大器 A2的反相 输入端和输出端连接。 电阻 的一端与运算放大器 A2的同相输入端连接, 电阻 的另一端接地。电容 C2的两端分别与运算放大器 A2的反相输入端和 输出端连接。 运算放大器 A2的输出端作为辅助放大器的输出端经过相应的 A/D转换器后与单片机 IC1的 I/O口连接。 辅助放大器 1、 辅助放大器 2和 辅助放大器 3可以通过选择或者调节有关元器件的参数来获得不同的放大倍 数。 其中运算放大器 和运算放大器 A2可以采用同一块集成电路 LM348 组成。 如图 5所示, A/D转换器 4、 A/D转换器 5、 A/D转换器 6和 A/D转 换器 7采用同一±夬集成电路 IC2,集成电路 IC2采用 MAX197BCNL集成电 路 IC2共有 8个 A/D转换器, 本实施例中使用了其中的 4个, 分别作为 A D 转换器 4、 A/D转换器 5、 A/D转换器 6和 A/D转换器 7, 集成电路 IC2的 16脚、 17脚、 18脚和 19脚分别作为 A/D转换器 4、 A/D转换器 5、 A/D转 换器 6和 A D转换器 7的输入端。在本实施例中,主放大器、辅助放大器 1、 辅助放大器 2和辅助放大器 3的输出端分别与集成电路 IC2的 16脚、 17脚、 18脚和 19脚连接。 集成电路 IC2与单片机 IC1连接。 单片机 IC1主要用于 贮存 A/D转换器 4、 A/D转换器 5、 A/D转换器 6和 A/D转换器 7输出的不 同放大倍数的合成信号数据、 进行数据处理和控制清洗、 富集、 静置时间等 参数。
实施例 2:
如图 2和图 4所示, 本实施例是一种用于测量水中 Zn、 Cd、 Pb、 Cu等 含量的极谱仪, 它主要由工作电压发生器、 恒电位器、 电解池、 电流一电压 转换器、微分器 12、微分器 13、 转换开关、信号补偿器、 主放大器、辅助放 大器 1、辅助放大器 2、辅助放大器 3和数据处理设备组成。本实施例的数据 处理设备采用多谱图记录仪, 因此省去了实施例 1中的 A/D转换器 4、 A/D 转换器 5、 A/D转换器 6和 A/D转换器 7。 本实施例中工作电压发生器、 恒 电位器、 电解池、 电流一电压转换器、 微分器 12、 微分器 13、转换开关、信 号补偿器、 主放大器、 辅助放大器 1、 辅助放大器 2和辅助放大器 3所采用 的元器件以及它们之间的连接关系与实施例 1的相同, 这里不再赘述。 本实 施例的主放大器、 辅助放大器 1、 辅助放大器 2和辅助放大器 3的输出端分 别与多谱图记录仪的四个不同信号输入端连接。 多谱图记录仪主要用于打印 主放大器、 辅助放大器 1、 辅助放大器 2和辅助放大器 3输出的不同放大倍 数的信号谱图。 实施例 3:
如图 3和图 4所示, 本实施例是一种用于测量水中 Zn、 Cd、 Pb、 Cu等 含量的极谱仪, 它主要由工作电压发生器、 恒电位器、 电解池、 电流一电压 转换器、微分器 12、微分器 13、转换开关、信号补偿器、 主放大器、辅助放 大器 1、辅助放大器 2、辅助放大器 3和数据处理设备组成。本实施例的数据 处理设备采用记录仪 8、 记录仪 9、 记录仪 10和记录仪 11, 记录仪 8、 记录 仪 9、记录仪 10和记录仪 11都采用普通记录仪。本实施例采用记录仪 8、记 录仪 9、 记录仪 10和记录仪 11共四台普通记录仪代替实施例 2中的多谱图 记录仪, 其它部分所采用的元器件以及它们之间的连接关系与实施例 2的相 同, 这里不再赘述。 本实施例中主放大器、 辅助放大器 1、 辅助放大器 2和 辅助放大器 3的输出端分别与记录仪 8、 记录仪 9、 记录仪 10和记录仪 11 的输入端连接。记录仪 8、记录仪 9、记录仪 10和记录仪 11分别用于打印主 放大器、 辅助放大器 1、 辅助放大器 2和辅助放大器 3输出的不同放大倍数 的信号谱图。

Claims

权 利 要 求 书
1. 极谱仪, 包括信号补偿器、主放大器和数据处理设备, 信号补偿器的 输出端与主放大器的输入端连接, 主放大器的输出端与数据处理设备的输入 端之一连接; 其特征是: 还包括辅助放大器 ( 1 ); 辅助放大器 1的输入端与 主放大器的输出端连接,辅助放大器 (1 )的输出端与数据处理设备的输入端 之二连接。
2. 根据权利要求 1所述的极谱仪, 其特征是: 还包括辅助放大器(2); 辅助放大器 (2) 的输入端与主放大器的输出端连接, 辅助放大器 (2) 的输 出端与数据处理设备的输入端之三连接。
3. 根据权利要求 2所述的极谱仪, 其特征是: 还包括辅助放大器(3); 辅助放大器 (3) 的输入端与主放大器的输出端连接, 辅助放大器 (3) 的输 出端与数据处理设备的输入端之四连接。
4. 根据权利要求 3所述的极谱仪, 其特征是: 数据处理设备采用单片 机, 单片机 I/O口的不同输入端分别作为数据处理设备的输入端之一、 输入 端之二、 输入端之三和输入端之四, 主放大器、 辅助放大器(1 )、 辅助放大 器(2)和辅助放大器(3)的输出端分别与单片机 I/O口的不同输入端连接。
5. 根据权利要求 4所述的极谱仪, 其特征是: 主放大器、 辅助放大器 ( 1 )、辅助放大器(2)和辅助放大器 (3)的输出端分别通过 A/D转换器(4)、
A/D转换器(5)、 A/D转换器(6)和 A/D转换器(7)与单片机 I/O口连接。
6. 根据权利要求 3所述的极谱仪, 其特征是: 数据处理设备采用多谱 图记录仪,多谱图记录仪的不同输入端分别作为数据处理设备的输入端之一、 输入端之二、 输入端之三和输入端之四, 主放大器、 辅助放大器(1 )、 辅助 放大器(2) 和辅助放大器(3 ) 的输出端分别与多谱图记录仪的不同输入端 连接。
7. 根据权利要求 3所述的极谱仪, 其特征是: 数据处理设备采用记录 仪(8)、记录仪 (9)、记录仪 (10)和记录仪(11 ),记录仪(8)、记录仪(9)、 记录仪(10)和记录仪(11 )的输入端分别作为数据处理设备的输入端之一、 输入端之二、 输入端之三和输入端之四, 主放大器、 辅助放大器(1)、 辅助 放大器(2) 和辅助放大器(3) 的输出端分别与记录仪(8)、 记录仪(9)、 记录仪 (10)和记录仪(11) 的输入端连接。
8. 根据权利要求 1、 2、 3、 4、 5、 6或 7所述的极谱仪, 其特征是: 辅 助放大器( 1 )、辅助放大器(2)和辅助放大器(3 )分别包括运算放大器( )、 运算放大器(A2)、电阻(R!)、电阻( )、电阻( )、电阻( )、电阻( )、 电阻 ( )、 电容(Q)和电容(C2); 电阻 ( ) 的一端作为辅助放大器的 输入端与主放大器的输出端连接, 电阻( ) 的另一端与运算放大器( ) 的反相输入端连接; 电阻(R2) 的两端分别与运算放大器 (Ai) 的反相输入 端和输出端连接; 电阻( )的一端与运算放大器 (A!)的同相输入端连接, 电阻(R3) 的另一端接地; 电容(d) 的两端分别与运算放大器(A!) 的反 相输入端和输出端连接; 电阻( ) 的一端与运算放大器( ) 的输出端连 接, 电阻( )的另一端与运算放大器(A2)的反相输入端连接; 电阻(R5) 的两端分别与运算放大器(A2) 的反相输入端和输出端连接; 电阻( ) 的 一端与运算放大器(A2) 的同相输入端连接, 电阻 ( ) 的另一端接地; 电 容 (C2) 的两端分别与运算放大器(A2) 的反相输入端和输出端连接; 运算 放大器 (A2) 的输出端作为辅助放大器的输出端与数据处理设备的输入端连 接。
PCT/CN2005/000817 2004-06-18 2005-06-09 Polarographe WO2005124333A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200420069575.0 2004-06-18
CNU2004200695750U CN2702309Y (zh) 2004-06-18 2004-06-18 极谱仪

Publications (1)

Publication Number Publication Date
WO2005124333A1 true WO2005124333A1 (fr) 2005-12-29

Family

ID=34777881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000817 WO2005124333A1 (fr) 2004-06-18 2005-06-09 Polarographe

Country Status (2)

Country Link
CN (1) CN2702309Y (zh)
WO (1) WO2005124333A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434908C (zh) * 2006-10-24 2008-11-19 东北电力大学 一种全固态Zn离子选择电极及其制备方法
CN101498683B (zh) * 2008-03-06 2012-06-27 核工业北京化工冶金研究院 在线极谱分析仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348632A (en) * 1980-09-15 1982-09-07 International Business Machines Corporation Servosystem operating about noise component error signal
SU991278A2 (ru) * 1979-10-02 1983-01-23 Казанский Ордена Трудового Красного Знамени Авиационный Институт Им.А.Н.Туполева Способ пол рографического анализа и устройство дл его осуществлени
SU1006988A1 (ru) * 1980-10-22 1983-03-23 Томский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Политехнический Институт Им.С.М.Кирова Пол рограф переменного тока
SU1408348A1 (ru) * 1987-01-13 1988-07-07 Казанский Авиационный Институт Им.А.Н.Туполева Пол рографический переменно-токовый концентратомер
JPH06317559A (ja) * 1993-04-30 1994-11-15 Ngk Spark Plug Co Ltd 水蒸気センサ装置
CN2409517Y (zh) * 1999-12-18 2000-12-06 刘文涛 灵敏度可自动调节的极谱仪
WO2001025774A1 (en) * 1999-10-06 2001-04-12 Laitinen Vellonen Sakari Method for analysing a papermaking process and an electrochemical sensor for analysing liquid
CN1385698A (zh) * 2002-06-24 2002-12-18 天津地质研究院 智能型伏安极谱仪

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU991278A2 (ru) * 1979-10-02 1983-01-23 Казанский Ордена Трудового Красного Знамени Авиационный Институт Им.А.Н.Туполева Способ пол рографического анализа и устройство дл его осуществлени
US4348632A (en) * 1980-09-15 1982-09-07 International Business Machines Corporation Servosystem operating about noise component error signal
SU1006988A1 (ru) * 1980-10-22 1983-03-23 Томский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Политехнический Институт Им.С.М.Кирова Пол рограф переменного тока
SU1408348A1 (ru) * 1987-01-13 1988-07-07 Казанский Авиационный Институт Им.А.Н.Туполева Пол рографический переменно-токовый концентратомер
JPH06317559A (ja) * 1993-04-30 1994-11-15 Ngk Spark Plug Co Ltd 水蒸気センサ装置
WO2001025774A1 (en) * 1999-10-06 2001-04-12 Laitinen Vellonen Sakari Method for analysing a papermaking process and an electrochemical sensor for analysing liquid
CN2409517Y (zh) * 1999-12-18 2000-12-06 刘文涛 灵敏度可自动调节的极谱仪
CN1385698A (zh) * 2002-06-24 2002-12-18 天津地质研究院 智能型伏安极谱仪

Also Published As

Publication number Publication date
CN2702309Y (zh) 2005-05-25

Similar Documents

Publication Publication Date Title
CN110609072B (zh) 一种普鲁士蓝膜生物电极的微弱信号检测电路
JP4658795B2 (ja) 電池検査装置、電圧測定器、及び固定治具
CN109298061B (zh) 便携式微量癌症抗原多参量定量传感检测系统及方法
CA2448866A1 (en) Fuel cell voltage monitoring system and method thereof
CN110735699A (zh) 一种氮氧化物传感器控制器
CN1971302A (zh) 电压极性变换电路以及电池充放电电流检测电路和方法
CN107124179A (zh) 一种检测微弱光电流信号的锁相放大器
CN1862265A (zh) 一种功率放大器线性指标的检测装置和方法
WO2005124333A1 (fr) Polarographe
CN110068394A (zh) 一种芯片温度检测电路和音频功率放大器
TWI485373B (zh) Dual switching sensing device and dual switching sensing circuit
TW201939013A (zh) 多通道檢測系統
EP0744837A3 (en) Analog signal input circuitry with an analog-to-digital converter in a semiconductor device
CN116930797A (zh) 一种电池内阻的检测电路
TWI527456B (zh) Array read device, dual function read device and detection circuit
JP2003282158A (ja) 電池電圧測定回路
Hosseini et al. CMOS multi-frequency lock-in sensor for impedance spectroscopy in microbiology applications
JPS59125043A (ja) 分光螢光光度計
US8896292B2 (en) System and method for gain adjustment in transimpedance amplifier configurations for analyte measurement
Ulbricht et al. A monolithically integrated two-axis magnetic field sensor system
JP3046008U (ja) クランプ型漏れ電流計
CN200979575Y (zh) 一种电容电桥测试仪
CN219935966U (zh) 一种支持多档位切换的高精度大电流采集电路
CN218956473U (zh) 一种检测尼古丁含量的三电极电化学信号检测装置
CN112904111B (zh) 一种离子信号检测电路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase