WO2005123637A1 - 単結晶、ナノ配線用材料、電子素子、および、ナノ配線用材料の製造方法 - Google Patents

単結晶、ナノ配線用材料、電子素子、および、ナノ配線用材料の製造方法 Download PDF

Info

Publication number
WO2005123637A1
WO2005123637A1 PCT/JP2005/011393 JP2005011393W WO2005123637A1 WO 2005123637 A1 WO2005123637 A1 WO 2005123637A1 JP 2005011393 W JP2005011393 W JP 2005011393W WO 2005123637 A1 WO2005123637 A1 WO 2005123637A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
insulating
molecules
molecule
resistivity
Prior art date
Application number
PCT/JP2005/011393
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yamamoto
Original Assignee
Riken
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken, Japan Science And Technology Agency filed Critical Riken
Priority to JP2006514844A priority Critical patent/JPWO2005123637A1/ja
Priority to EP05752925A priority patent/EP1760058A1/en
Priority to US11/629,904 priority patent/US7771820B2/en
Publication of WO2005123637A1 publication Critical patent/WO2005123637A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/24Halogenated aromatic hydrocarbons with unsaturated side chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a material for a nano-wiring that can be used for a nano-level electronic device, a single crystal used for the same, an electronic device using the material for a nano-wiring, and a method for producing a material for a nano-wiring.
  • nanowire materials used for electronics are based on wiring in a two-dimensional plane.
  • electron beam lithography, multi-layer circuit technology based on it, and integrated circuit technology using self-assembled monolayer (SAM) are known (Oka a, Yuji; Aono, Masakazu. Nature, 409). , 683-684 (2001).).
  • SAM self-assembled monolayer
  • the technology for wiring in a two-dimensional plane has a limit in the integration density of elements, no matter how fine the pattern.
  • An object of the present invention is to solve the above problems, and an object of the present invention is to provide a crystalline nano-wiring material that can be used for a nano-level wiring.
  • the present inventors have conducted intensive studies, and have found that supramolecules obtained by accumulating weak, reversible interactions acting between molecules and organizing the molecules into an ordered aggregate are obtained. It is considered that the object of the present invention can be achieved by adopting the method. That is, the present invention has been completed by employing a crystal in which an insulating portion (insulating film of a wiring wire) having much higher insulating properties is provided on the surface of the conductive portion. By employing such means, the material for nanowiring of the present invention can be obtained without synthesizing a complex compound. Specifically, this was achieved by the following means.
  • the conductive part has a conductive part in which conductive molecules are connected in series, and an insulating part made of insulating molecules covering the conductive part, and the resistivity of the insulating part is the resistivity of the conductive part.
  • the conductive molecule is at least one selected from the group consisting of a cation radical salt, an anion radical salt, an organometallic complex, and a chalcogen-containing organic compound; Is a molecular single crystal containing an aromatic ring and a halogen atom.
  • conductive part has a conductive part and an insulating part covering the conductive part, and the resistivity of the insulating part is 1000000 times or more of the resistivity of the conductive part
  • conductive molecules having a molecular weight of 150 to 800 are serially arranged in rows 1 to 16 in parallel, and the insulating portion is in a molecular weight of 500 to 100 0.
  • a molecular single crystal which is composed of 0 insulating molecules, and can be obtained by electrolysis of a solution containing the conductive molecules and the insulating molecules.
  • a single-crystal supramolecular structure having a conductive portion in which conductive molecules are connected in series and an insulating portion made of insulating molecules covering the conductive portion, and the resistivity of the insulating portion is: A material for nano-wiring having a resistivity of 100 000 times or more of the resistivity of the conductive portion. 5.
  • the single crystal has a conductive portion, and an insulating portion covering the conductive portion, and the resistivity of the insulating portion is a resistivity of the conductive portion.
  • the conductive portion, the conductive molecules having a molecular weight of 150 to 800 are serially arranged in one row to 16 rows, and the insulating portion is A nano-wiring material comprising insulating molecules having a molecular weight of 500 to 1000 and further obtained by electrolysis of a solution containing the conductive molecules and the insulating molecules.
  • nanowiring material according to 4 or 5 wherein the conductive molecule is any one selected from the group consisting of a cation radical salt, an anion radical salt, an organic metal complex, and a chalcogen-containing organic compound.
  • the single crystal has a conductive portion in which conductive molecules are connected in series and an insulating portion made of insulating molecules covering the conductive portion, and has a resistance corresponding to the insulating portion.
  • the conductivity is at least 100,000 times the resistivity of the conductive portion, and the conductive molecule is selected from the group consisting of a cation radical salt, an anion radical salt, an organometallic complex, and a chalcogen-containing organic compound.
  • the material for nanowiring which is any one selected, wherein the insulating portion is a compound containing an organic molecule.
  • the insulating molecule is a molecule containing a benzene ring and a halogen atom.
  • nanowire material according to any one of 5 to 8, wherein the single crystal is a supramolecular structure.
  • the conductive portion includes a first layer and a second layer arranged in parallel, and the second layer is formed on the first layer by a conductive portion of the first layer and the second layer.
  • the nanowiring material according to any one of items 4 to 17, wherein the conductive material of the second layer is laminated so as to be substantially perpendicular to the conductive material.
  • the resistivity of the insulating portion is 10 7 times or more of the resistivity of the conductive portion, nanowire material according to any one of 4 to 19.
  • FIG. 1 shows a conceptual diagram of the first embodiment of the present invention.
  • 1 indicates a conductive portion
  • 2 indicates an insulating portion
  • 3 indicates a conductive molecule
  • 4 indicates an insulating molecule.
  • FIG. 2 shows a conceptual diagram of the second embodiment of the present invention.
  • FIG. 3 shows the concept of the third embodiment of the present invention. The figure is shown.
  • 1 indicates a conductive portion
  • 2 indicates an insulating portion.
  • FIG. 4 shows a model diagram of the crystal structure employed in the example.
  • FIG. 5 shows the relationship between the current value and time of the nanowire material of the present invention. DETAILED DESCRIPTION OF THE INVENTION
  • the molecule referred to in the present invention is an aggregate of chemically stable atoms in which one or more atoms are connected to each other by a covalent bond, and is used to include, for example, a monoatomic molecule such as a halide ion. Is done.
  • the conductive molecules of the present invention are not particularly limited as long as the conductive molecules can be arranged in series and, if necessary, further in parallel.
  • regular arrangement for example, it is possible to provide an insulating portion covering the periphery by applying supramolecular theory, and as a result, it becomes possible to form a dense portion as in the present invention.
  • a single crystal and a nano-wiring material having a simple structure can be obtained.
  • the conductive molecule of the present invention is preferably any one selected from the group consisting of a cation radical salt, an anion radical salt, an organometallic complex, and a loaded lucogen organic compound.
  • the molecular weight of the conductive molecule used in the present invention is not particularly limited as long as the crystal of the present invention can be formed, but is preferably 150 to 800.
  • the resistivity of the conductive molecules employed in this onset Ming is preferably 1 at 0 5 Omega cm or less, and more preferably less than 1 Omega cm.
  • the cation radical salt of the present invention is preferably one obtained by oxidizing a donor molecule.
  • the donor molecule is not particularly limited unless it departs from the gist of the present invention, For example, a compound having a fulvalene skeleton or a compound having a perylene skeleton is preferable, a compound having a fulvalene skeleton is more preferable, and tetraselenafulvalene is still more preferable.
  • the anion radical salt of the present invention is preferably one obtained by reducing an axceptor-based molecule or partially oxidizing an anionic metal complex. Among these, those obtained by reducing the receptor molecule are preferable.
  • the axceptor molecule of the present invention is not particularly limited unless it departs from the gist of the present invention.
  • 7,7,8,8-tetracyanoquinonedimethane (TCNQ), dicyanoquinonedimine (DCNQ I) and various substituted quinones (Chloranil, etc.) are preferred, and 7,7,8,8-tetracyanoquinonedimethane (TCNQ) and dicyanoquinonedimine (DCNQ I) are more preferred.
  • the anionic metal complex is not particularly limited unless it departs from the gist of the present invention, but a compound having a dithiolene metal skeleton (M (dm it) 2 ) (M is Ni, Pd, P t), M (mn t) 2 (M is Ni, Pd, P t) and a phthalocyanine complex, and a compound having a dithiolene metal skeleton (M (dm it) 2 ) (M is Ni, Pd, Pt) are more preferred.
  • a charge transfer complex of one of these acceptors with the donor molecule exemplified in the above (1-1) can also be preferably used.
  • the metal complex of the present invention is preferably obtained by oxidizing a negative ion-based metal complex until it becomes neutral.
  • the negative ion-based metal complex that can be used here is not particularly limited as long as it does not depart from the gist of the present invention, and widely known ones can be employed. Specifically, N i (tmd t) 2 is cited.
  • the chalcogen-containing organic compound of the present invention is preferably an organic compound containing a selenium atom or sulfur.
  • the organic compound containing a selenium atom is preferably a compound having a cyclic compound, for example, a compound having a fulvalene skeleton and a pentalene skeleton, and a compound having a fulvalene skeleton is preferable.
  • a compound having a heterocyclic skeleton containing sulfur is more preferable, and examples thereof include a compound having a thiophene skeleton, a dithiophene skeleton, a thiazole skeleton, a thiane skeleton, and / or a dithiane skeleton.
  • Preferred examples of the sulfur-containing organic compound of the present invention include: a compound having a tetrathiafulvalene (TTF) skeleton; a compound having a dithiolene metal skeleton (M (dm it) 2 ) (M is Ni, Pd, P t).
  • TTF tetrathiafulvalene
  • TTF tetrathiafulvalene
  • EDT-TTF ethylenedithiotetrathiafulvalene
  • BED T-TTF bis (ethylenedithio) tetrathiafulvalene
  • Ethylenedithiotetrathiafulvalene (EDT-TTF) is more preferred.
  • the compounds exemplified in the above (1-1) to (1-3), which correspond to the organic compounds containing chalcogen, can also be preferably used.
  • the insulating molecule of the present invention is not particularly limited unless it departs from the gist of the present invention, but is preferably a molecule containing a carbon-carbon double bond and a halogen atom, or an aromatic ring (more preferably, a benzene ring ) And a halogen atom.
  • the molecular weight of the insulating molecule used in the present invention is not particularly limited as long as it can constitute the crystal of the present invention, but is preferably 300 to 3000. Further, the resistivity of the insulating molecule used in the present invention is preferably 10 10 ⁇ cm or more, and 10 13 ⁇ cm or more. More preferably, it is not less than cm.
  • the carbon-carbon double bond contained in the insulating molecule of the present invention is preferred.
  • the molecule having a carbon-carbon double bond and a halogen atom of the present invention is preferably a molecule having the above-mentioned chain having a carbon-carbon double bond as a main chain, and the hydrogen atom of which is substituted with a halogen atom.
  • the halogen atom preferably contains a fluorine atom, a chlorine atom, a bromine atom and / or an iodine atom, and more preferably contains a fluorine atom and / or an iodine atom.
  • the benzene ring contained in the molecule of the present invention containing a benzene ring and a hydrogen atom or a benzene atom is preferably a single benzene ring, or one in which two or more benzene rings are bonded by one or more single bonds. And those having a biphenyl skeleton are more preferred.
  • the number of carbon atoms formed by these benzene rings is preferably 20 or more, more preferably 20 to 80.
  • the halogen atom preferably contains a fluorine atom, a chlorine atom, a bromine atom and / or an iodine atom, and more preferably contains a fluorine atom and / or an iodine atom.
  • the molecule of the present invention containing a benzene ring and a halogen atom preferably has a triple bond, more preferably a carbon-carbon triple bond.
  • a molecule having a carbon-carbon triple bond as a substituent of the benzene ring (or a skeleton portion containing a benzene ring) is preferable.
  • an alkynyl group is preferable, and an ethur group is more preferable. Further, it is preferable that these alkynyl groups are substituted with a halogen atom.
  • the insulating molecule of the present invention further includes a compound containing an aromatic ring (more preferably, a benzene ring) and a halogen atom, a compound having a triple bond, a biphenyl skeleton, and an organic compound having 20 or more carbon atoms.
  • a compound containing an aromatic ring more preferably, a benzene ring
  • a halogen atom a compound having a triple bond
  • a biphenyl skeleton a compound having 20 or more carbon atoms.
  • Molecules satisfying at least one of a compound, a compound containing fluorine, a compound having two-fold symmetry, and a compound having strong intermolecular interaction are preferable.
  • alkyl biphenyl phenols, amides, carboxylic acids and the like preferred are alkyl biphenyl phenols, amides, carboxylic acids and the like, and specifically, 2, 2 ', 4, 4', 6, 6, 6, 1-hexafluoro-3, 3,, 5,5, -tetrahydroethynylbiphenyl, 2,2,6,6-tetramethyl-1,4,4-dihydroxycarbonyl 2,3,5,5,1-tetrakisodoyl
  • Preferred examples include nyl and the like.
  • the single crystal of the present invention is a molecular single crystal having high anisotropy in electrical resistivity.
  • the high anisotropy in here means that when measuring the electrical resistivity with respect to a direction substantially orthogonal to each other, the ratio of the value of preferably 100,000 times or more, more preferably 10 7 times or more .
  • the conductive portion in which conductive molecules are connected in series, and an insulating portion made of insulating molecules covering the conductive portion, and the resistivity of the insulating portion is equal to that of the conductive portion. It is a molecular single crystal with a resistivity of 100000 times or more.
  • the insulating molecule combined with preferred conductive molecule but not specifically in Japanese as long as it satisfies the above requirements, for example, resistivity of 10- 5 ⁇ cn! With conductive molecules of ⁇ 10 ° ⁇ cm, resistivity is 10 8 Qcn!
  • resistivity is 10 8 Qcn!
  • a combination with insulating molecules of up to 10 15 Q cm and / or a combination of conductive molecules with molecular weight of 150 to 800 and insulating molecules with molecular weight of 500 to 10,000 is preferred.
  • the insulating molecules are preferably bonded via a halogen atom.
  • the halogen atom is bonded via at least one of a bromine atom and an iodine atom. It is more preferable that they are bonded via at least an iodine atom. Note that a halogen atom here is included in an insulating molecule.
  • the composition ratio (mol%) of the conductive molecules and the insulating molecules in the crystal of the present invention is preferably from 10 to 90:90 to 10, more preferably from 20 to 70:80 to 30.
  • the molecule of the present invention may include a molecule (or atom) that does not correspond to any of the conductive molecule and the insulating molecule of the present invention without departing from the spirit of the present invention. In this case, it is preferable that the molecule (atom) accounts for 50 mol% or less of the entire crystal. Note that the crystal of the present invention only needs to maintain crystallinity to such an extent that it can be used as a material for nano-wiring, and within such a range, crystals having incomplete periodicity are included. . Further, the crystal of the present invention is preferably a supramolecular architecture.
  • the nanowiring material of the present invention is preferably composed of a single crystal and composed of a supramolecular structure.
  • the thickness of the insulating portion of the present invention is preferably at least 1.0 nm. With such a range, the leakage current between the wires can be kept very small.
  • the nanowire material of the present invention can be produced, for example, by applying supramolecular theory.
  • the nanowiring material of the present invention uses the concept of molecular self-assembly or crystal engineering to automatically create a wire-like structure when constituent molecules crystallize. It can take the method of.
  • the molecules forming the insulating film portion and the conductive molecules forming the conductive portion are strongly connected by a non-covalent bond (eg, a halogen bond).
  • a non-covalent bond eg, a halogen bond
  • it is completely different from a conventionally known one-dimensional wire such as a platinum complex simply crystallized.
  • the thickness of the insulating film portion, the thickness of the conductive portion, and the relative arrangement of the wire-shaped wiring can be controlled.
  • the method for producing a crystal of the present invention includes a method of dissolving a conductive molecule, an insulating molecule, and other molecules as necessary in a solvent, and electrolyzing the obtained solution on an electrode. It can be employed favorably.
  • Preferred other molecules include halide ions and moisturates at the jib, and chloride ions (eg, tetraphenylphosphonium chloride). Is more preferable.
  • the solvent used for the electrolysis is not particularly limited as long as it does not deviate from the gist of the present invention, but is preferably ethanol, methanol, benzene, dichloromethane, or a mixture thereof.
  • the electrolysis can be performed by applying a voltage between the electrodes.
  • the voltage for electrolysis is preferably 1 to 25V.
  • the material of the electrode used for the electrolysis is not particularly limited.
  • gold (Au), titanium (T i), chromium (C r), thallium (T a), copper (Cu), aluminum (A 1) , Molybdenum (Mo), tungsten (W), nickel (Ni), palladium (Pd), platinum (Pt), silver (Ag), tin (Sn), etc., and combinations thereof are preferred.
  • Au gold
  • Ti titanium
  • C r chromium
  • T a thallium
  • Cu copper
  • Al A 1
  • Molybdenum (Mo) Molybdenum
  • Ni nickel
  • platinum (Pt) silver
  • Ag silver
  • tin (Sn), etc. and combinations thereof are preferred.
  • FIG. 1 (a) shows a conceptual diagram of a first embodiment of a nanowiring material of the present invention, where 1 is a conductive portion in which conductive molecules are connected in series, and 2 is a conductive portion.
  • the insulating portion made of insulating molecules to be coated is shown.
  • the conductive molecules 3 are in the form of a wire in which the molecules are arranged in a line, and a state in which the insulating molecules 4 surround the periphery. Has become.
  • the conductive molecule and the insulating molecule are combined to form a crystal.
  • the conductive molecules exhibit high conductivity in the direction in which the conductive molecules are connected, and have extremely high insulating properties in a direction perpendicular to the direction (the direction of the arrow in FIG. 1).
  • a crystal containing conductive molecules and insulating molecules even if it is composed of a plurality of nano-wiring materials as in the second embodiment described below, insulation between each nano-wiring material can be achieved. Sex can be dramatically improved.
  • the regularity in controlling the relative arrangement between the materials for nanowiring is very low.
  • FIG. 2 shows a conceptual diagram of a second embodiment of the nanowiring material of the present invention.
  • the nanowiring material of the first embodiment is arranged in parallel to form a first layer.
  • the nano-wiring material is laminated so as to be substantially perpendicular to the conductive portion of the nano-wiring material of the first layer to form a second layer, and further, if necessary, the nano-wiring material of the second layer
  • the nano-wiring material is laminated so as to be substantially orthogonal to the conductive portion of the substrate, and the nano-wiring material layer is laminated below. That is, the conductive portions of the nano-wiring material are stacked so as to be orthogonal to each other.
  • orthogonal two-fold symmetric molecules as the insulating molecules.
  • the following compounds are preferred.
  • substantially orthogonal means, for example, that the element is perpendicular to such a degree that it can be used as an electronic element, and does not necessarily mean that the element must be exactly orthogonal. To taste.
  • the conductive portion of the first embodiment only one row of conductive molecules is provided. In this embodiment, however, the number of rows of conductive molecules is reduced to a plurality of rows, thereby breaking the molecular row. It is more preferable because it can cope with the case.
  • the number of rows of conductive molecules is preferably 2 to 16.
  • the configuration of the second embodiment can be configured by using the nanowire material of the present embodiment.
  • the work of arbitrarily aligning the materials for nano-wiring as in the first embodiment with each other, for example, as in the second embodiment, and making a contact can be easily performed.
  • the conductive portions are not left uncovered, the conductive portions do not come into contact with each other and cause a short circuit.
  • the present invention is capable of large-scale regular arrangement using crystallinity, and is very useful.
  • the nanowire material of the present invention can be arranged in a three-dimensional space.
  • materials for nano-wiring such as carbon nanotubes and current semiconductor technology basically assume wiring in a two-dimensional plane and do not have a three-dimensional spread. So on the other hand, in the present invention, the materials for nanowiring are aligned using the periodicity of the crystal, so that the three-dimensional arrangement is possible. This is a huge difference when considering the number of elements that can be packed into a unit volume.
  • THF tetraselenafulvalene
  • HFTIEB Tetratetraethynylbiphenyl
  • the crystal was (TSeF) Cl (HFTIEB).
  • This crystal has a nanometer-scale wire structure (for example, a 1 nm thick, l ⁇ 9mm long wire structure) by conductive molecules (TSeF), and a wire between wires by insulating molecules (HFTIEB).
  • the resistivity can be as high as 10 13 Q cm. This is the same level of insulation as the epoxy resin currently used for electronic product substrates.
  • TSeF was synthesized according to the method described in E. M. Engler and V. V. Patel, J. Araer. Chem. Soc, vol. 96, 7376 (1974).
  • the HFTIEB molecule was synthesized by the following synthetic route.
  • trifluorobenzene is reacted in the presence of tetrahydrofuran (THF) to give hexafluorobiphenyl, and iodine is added in the presence of sulfuric acid to introduce trimethylsilylacetylene.
  • THF tetrahydrofuran
  • iodine is added in the presence of sulfuric acid to introduce trimethylsilylacetylene.
  • the trimethylsilyl group (TMS) was substituted with iodine to obtain HFTIEB.
  • TSeF 10mg, Tetraphenylphosphonium Chloride 20mg, HFTIEB 80mg, methanophore 2ml, kuguchiguchi benzene 18ml are placed in an H-type cell and subjected to constant current electrolysis for 2 weeks with a platinum electrode.
  • a single crystal of (TseF) Cl (HFTIEB) grew on the positive electrode.
  • the crystal structure was determined by X-ray diffraction.
  • FIG. 4 (a) and (b) The model of the crystal is shown in Fig. 4 (a) and (b).
  • the dotted line indicates a halogen bond.
  • the resistivity measurement in the b-axis direction in FIG. 4 was performed by the usual four-terminal method.
  • the resistivity measurement in the c-axis direction in Fig. 4 was basically performed by the two-terminal method.
  • a guard electrode was provided around one of the electrodes.
  • the measuring equipment is manufactured by Keithley
  • TSeF tetraselenafulvalene
  • the nanowiring material of the present invention can be widely used as an electronic device in the field of electronics. Specifically, it can be used for semiconductors, displays, recording devices, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

ナノレベルの配線用ワイヤーに用いることができるナノ配線用材料を提供する。電気抵抗率の異方性が高い分子単結晶を採用した。

Description

明 細 書
単結晶、 ナノ配線用材料、 電子素子、 および、
ナノ配線用材料の製造方法 技術分野
本発明は、ナノレベルの電子素子に用いることができるナ 配線用材料、 これに 用いる単結晶、 および、 ナノ配線用材料を用いた電子素子、 ならびに、 ナノ配線用 材料の製造方法に関する。 技術背景
近年の目覚しいエレク トロニタス化に伴い、様々なナノ配線用材料が検討されて いる。現在のエレクトロ二タスに使われているナノ配線材料は、 2次元面内での配 線を基本としている。 例えば、 電子線リソグラフィ一と、 それに基づく多層回路技 術や、 S AM (Self- Assembled Monolayer)を使った集積回路技術などが知られて レヽる (Oka a, Yuji ; Aono, Masakazu. Nature, 409, 683—684 (2001) . )。 し力 し、 2次元面内に配線を行う技術はいくらパターンを細かく しても素子の集積密度に 限界がある。
また、従来から知られている微細加工技術では、平面基板に対して光や電子線を 照射する必要があるため、光や物質が透過するためのスペースが要求され、必然的 に一回の工程で一層しか回路の描画できなかった。
一方、 例えば、 H. R. Zeller et al, J. Phys. Chem. Solids, 35, 77 (1974) では、結晶化することにより 3次元周期性を持ったナノレベルのワイヤーを作製し ている。 し力 しながら、 絶縁性を有する部分の性能や、 配線用ワイヤーの相対配置 が制御不可能等の理由により、ナノ配線用ワイヤーとしての可能性は、 ほとんど見 出せない。 発明の開示 本発明は上記課題を解決することを目的としたものであって、ナノレベルの配線 用ワイヤーに用いることができる結晶性のナノ配線用材料を提供することを目的 とする。
上記課題のもと、 本発明者が鋭意検討を行った結果、 分子間に働く弱い、 可逆的 な相互作用を集積して、分子を秩序ある集合体に組織化することにより得られる超 分子を採用すれば、 本発明の課題を達成できると考えた。 すなわち、 導電性部分の 表面に、従来よりも絶縁性のはるかに高い絶縁性部分(配線用ワイヤーの絶縁性被 膜) をつけた結晶を採用することにより、 本発明を完成するに至った。 このような 手段を採用することにより、複雑な化合物を-合成することなく、本発明のナノ配線 用材料が得られる。 具体的には、 下記手段により、 達成された。
1 . 電気抵抗率の異方性が高い分子単結晶。
2 . 導電性分子が直列した導電性部分と、 前記導電性部分を被覆する絶縁 性分子からなる絶縁性部分とを有し、前記絶縁性部分の抵抗率は、前記導電性部分 の抵抗率の 1 0 0 0 0 0倍以上であり、 前記導電性分子は、 カチオンラジカル塩、 ァニオンラジカル塩、有機金属錯体および含カルコゲン有機化合物からなる群から 選択されるいずれかであり、 前記絶縁性分子は、 芳香環とハロゲン原子を含む、 分 子単結晶。
3 . 導電性部分と、 前記導電性部分を被覆する絶縁性部分とを有し、 前記 絶縁性部分の抵抗率は、前記導電性部分の抵抗率の 1 0 0 0 0 0倍以上であり、前 記導電性部分は、分子量 1 5 0〜 8 0 0の導電性分子が直列したものが 1列〜 1 6 列並列しており、前記絶縁性部分は、分子量 5 0 0〜 1 0 0 0 0の絶縁性分子から なり、 さらに、 前記導電性分子と、 前記絶縁性分子を含む溶液の電気分解により得 られうる、 分子単結晶。
4 . 導電性分子が直列した導電性部分と、 前記導電性部分を被覆する絶縁 性分子からなる絶縁性部分とを有する単結晶の超分子構造体からなり、前記絶縁性 部分の抵抗率は、前記導電性部分の抵抗率の 1 0 0 0 0 0倍以上であるナノ配線用 材料。 5 . 単結晶からなり、 前記単結晶は、 導電性部分と、 前記導電性部分を被 覆する絶縁性部分とを有し、前記絶縁性部分の抵抗率は、前記導電性部分の抵抗率 の 1 0 0 0 0 0倍以上であり、前記導電性部分は、分子量 1 5 0〜 8 0 0の導電性 分子が直列したものが 1列〜 1 6列並列しており、前記絶縁性部分は、分子量 5 0 0〜 1 0 0 0 0の絶縁性分子からなり、 さらに、 前記導電性分子と、 前記絶縁性分 子を含む溶液の電気分解により得られたものであるナノ配線用材料。
6 . 前記導電性分子は、 カチオンラジカル塩、 ァニオンラジカル塩、 有機 金属錯体および含カルコゲン有機化合物からなる群から選択されるいずれかであ る 4または 5に記載のナノ配線用材料。
7 .単結晶からなり、前記単結晶は、導電性分子が直列した導電性部分と、 前記導電性部分を被覆する絶縁性分子からなる絶縁性部分とを有し、前記絶縁性部 分の抵抗率は、前記導電性部分の抵抗率の 1 0 0 0 0 0倍以上であり、前記導電性 分子は、 カチオンラジカル塩、 ァニオンラジカル塩、 有機金属錯体および含カルコ ゲン有機化合物からなる群から選択されるいずれかであり、前記絶縁性部分は、有 機分子を含む化合物であるナノ配線用材料。
8 . 前記絶縁性分子が、 ベンゼン環とハロゲン原子を含む分子である 4〜 7のいずれかに記載のナノ配線用材料。
9 . 前記単結晶が、 超分子構造体である 5〜8のいずれかに記載のナノ配 線用材料。
1 0 . 前記導電性分子が、 フルバレン骨格を有する 4〜 9のいずれかに記 載のナノ配線用材料。
1 1 . 前記導電性分子が、 テトラセレナフルバレンである 1 0に記載のナ ノ配線用材料。
1 2 . 前記絶縁性分子が、 芳香族骨格を有する 4〜1 1のいずれかに記載 のナノ配線用材料。
1 3 . 前記絶縁性分子が、 アルキニル基を持つ芳香族である 1 2に記載の ナノ配線用材料。 14. 前記絶縁性分子が、 ハロゲン原子を含む 4〜13のいずれかに記載 のナノ配線用材料。
15. 前記絶縁性分子同士は、 ハロゲン原子を介して結合している 14に 記載のナノ配線用材料。
16. 前記絶縁性分子が 2回対称を持つ、 4〜1 5のいずれかに記載のナ ノ配線用材料。
1 7. 2以上の導電性部分が集束して、 前記絶縁性部分に被覆されている 4〜16のいずれかに記載のナノ配線用材料。
18. 少なくとも、 前記導電性部分が並列した第 1の層と第 2の層とから なり、前記第 2の層は、前記第 1の層の上に前記第 1の層の導電性部分と前記第 2 の層の導電性部分とが略直交するように積層されている、 4〜1 7のいずれかに記 載のナノ配線用材料。
1 9. 前記第 1の層と、 前記第 2の層が交互に積層している、 18に記載 のナノ配線用材料。
20.前記絶縁性部分の抵抗率は、前記導電性部分の抵抗率の 107倍以上 である、 4〜19のいずれかに記載のナノ配線用材料。
21. 絶縁性部分の厚みが 1. O nm以上である、 4〜 20のいずれかに 記載のナノ配線用材料
22. 4〜21のいずれかに記載のナノ配線用材料を用いた電子素子。
23. 導電性分子と絶縁性分子を含む溶液を、 互いの分子の相互作用によ り超分子構造体とする工程を含む、 4〜21のいずれかに記載のナノ配線用材料の 製造方法。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態の概念図を示す。 図 1中、 1は導電性部分を、 2は絶縁性部分を、 3は導電性分子を、 4は絶縁性分子をぞれぞれ示す。 図 2は、 本発明の第 2の実施形態の概念図を示す。 図 3は、本発明の第 3の実施形態の概念 図を示す。 図 3中、 1は導電性部分を、 2は絶縁性部分をそれぞれ示す。 図 4は、 実施例で採用する結晶構造の模型図を示す。 図 5は、本発明のナノ配線用材料の電 流値と時間の関係を示す。 発明の詳細な説明
以下において、本発明の内容について詳細に説明する。 尚、 本願明細書において 「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用さ れる。 また、 本発明でいう分子は、 1以上の原子が互いに共有結合で結ばれた、 化 学的に安定な原子の集合体で、例えば、ハロゲン化物イオンなどの単原子分子も含 む趣旨で使用される。
( 1 ) 導電性分子
本発明の導電性分子は、 直列して、 必要に応じて、 直列した導電性分子がさらに 並列して 在できるものであれば、 特に定めるものではない。 本発明では、 導電性 分子がマク口スケールでの規則性をもつて並んでレ、ることが極めて重要である。こ のように規則性を持って並べることができる結果、例えば、超分子の理論を応用し て、その周囲を被覆する絶縁性部分を設けることが可能になり、結果として本発明 のような密な構成の単結晶およびナノ配線用材料が得られる。
具体的には、 本発明の導電性分子は、 好ましくは、 カチオンラジカル塩、 ァニォ ンラジカル塩、有機金属錯体および含力ルコゲン有機化合物からなる群から選択さ れるいずれかである。本発明で採用する導電性分子の分子量は、本発明の結晶を構 成できる限り特に定めるものではないが 1 5 0〜8 0 0が好ましい。 さらに、本発 明で採用する導電性分子の抵抗率は、 1 0 5 Ω c m以下であることが好ましく、 1 Ω c m以下であることがより好ましい。
( 1 - 1 ) カチオンラジカル塩
本発明のカチオンラジカル塩は、 ドナー系分子を酸化して得られるものが好まし い。 ドナー系分子は、 本発明の趣旨を逸脱しない限り特に定めるものではないが、 例えば、 フルバレン骨格を有する化合物、ペリレン骨格を有する化合物を有する化 合物が好ましく、 フルバレン骨格を有する化合物がより好ましく、テトラセレナフ ルバレンがさらに好ましい。
(1 -2) ァニオンラジカル塩
本発明のァニオンラジカル塩は、 ァクセプター系分子を還元して、 あるいは、負 イオン系金属錯体を部分酸化して得られるものが好ましい。 これらの中でも、 ァク セプター系分子を還元して得られるものが好ましい。
本発明のァクセプター系分子は、本発明の趣旨を逸脱しない限り特に定めるもの ではないが、 7, 7, 8, 8—テトラシァノキノンジメタン (TCNQ)、 ジシァ ノキノンジィミン (DCNQ I) および各種置換キノン類 (クロラニル等) が好ま しく、 7, 7, 8, 8—テトラシァノキノンジメタン (TCNQ) およびジシァノ キノンジィミン (DCNQ I) がより好ましい。
一方、負イオン系金属錯体は、本発明の趣旨を逸脱しない限り特に定めるもので はないが、 ジチオレン金属骨格を有する化合物 (M (dm i t ) 2) (Mは、 N i、 P d、 P t)、 M (mn t ) 2 (Mは、 N i、 P d、 P t ) およびフタロシアニン錯 体が好ましく、 ジチオレン金属骨格を有する化合物 (M (dm i t) 2) (Mは、 N i、 P d、 P t ) がより好ましい。
また、 上記 (1— 1) で例示した化合物であって、 ァユオンラジカル塩に該当す るものも好ましく採用することができる。
また、 これらァクセプタ一分子と、 上記 (1— 1) で例示したドナー分子との電 荷移動錯体についても好ましく採用することができる。
(1 -3) 有機金属錯体
本発明の金属錯体は、負イオン系金属錯体を中性になるまで酸化して得られるも のが好ましい。 ここで用いることができる負イオン系金属錯体は、本発明の趣旨を 逸脱しない限り、 特に定めるものではなく、 広く公知のものを採用できる。 具体的 には、 N i (tmd t) 2が挙げられる。
また、 上記 (1— 1) 〜 (1 _2) で例示した化合物であって、 金属錯体に該当 するものも好ましく採用することができる。
(1 -4) 含カルコゲン有機化合物
本発明の含カルコゲン有機化合物は、セレン原子または硫黄を含む有機化合物が 好ましい。
セレン原子を含む有機化合物としては、環状化合物を有するものが好ましく、例 えば、 フルバレン骨格およびペンタレン骨格を有するものが挙げられ、 フルバレン 骨格を有するものが好ましい。
硫黄を含む有機化合物とレては、硫黄を含むヘテロ環骨格を有する化合物がより 好ましく、 例えば、 チオフヱン骨格、 ジチォフェン骨格、 チアゾール骨格、 チアン 骨格および またはジチアン骨格を有するものが挙げられる。本発明の硫黄を含む 有機化合物の好ましい例としては、 テトラチアフルバレン (TTF) 骨格を有する 化合物ゃジチオレン金属骨格を有する化合物 (M (dm i t ) 2) (Mは、 N i、 P d、 P t) が挙げられる。 テトラチアフルバレン (TTF) 骨格を有する化合物と しては、 テトラチアフルバレン (TTF)、 エチレンヂチォテトラチアフルバレン (EDT-TTF) およびビス (エチレンヂチォ) テトラチアフルバレン (BED T-TTF)が好ましく、エチレンヂチォテトラチアフルバレン(EDT— TTF) がより好ましい。
また、 上記 (1— 1) 〜 (1— 3) で例示した化合物であって、 含カルコゲン有 機化合物に該当するものも好ましく採用することができる。
(2) 絶縁性分子
本発明の絶縁性分子は、本発明の趣旨を逸脱しない限り特に定めるものではない が、 好ましくは、 炭素一炭素 2重結合とハロゲン原子を含む分子、 または、 芳香環 (より好ましくは、 ベンゼン環) と、 ハロゲン原子とを含む分子である。
また、本発明で採用する絶縁性分子の分子量は、本発明の結晶を構成できる限り 特に定めるものではないが、 300〜3000が好ましい。 さらに、 本発明で採用 する絶縁性分子の抵抗率は、 1010Ω cm以上であることが好ましく、 1013Ω c m以上であることがより好ましい。
本発明の絶縁性分子に含まれる炭素一炭素 2重結合としては、エチレンが好まし レ、。 そして、 本発明の炭素一炭素 2重結合とハロゲン原子を含む分子としては、 上 記炭素一炭素 2重結合を有する鎖を主鎖とし、その水素原子がハロゲン原子で置換 されているものが好ましい。 ハロゲン原子としては、 フッ素原子、 塩素原子、 臭素 原子および またはョゥ素原子を含むものが好ましく、フッ素原子および/または ョゥ素原子を含むものがより好ましい。
本発明のベンゼン環とノ、ロゲン原子とを含む分子に含まれるベンゼン環として は、 1つのベンゼン環のみ、 あるいは、 2つ以上のベンゼン環が 1または 2以上の 単結合によって結合したものが好ましく、ビフエ二ル骨格を有するものがより好ま しレ、。 また、 これらのベンゼン環によって構成される炭素数は、 2 0以上であるこ とが好ましく、 2 0〜8 0であることがさらに好ましレ、。
ハロゲン原子としては、 フッ素原子、塩素原子、 臭素原子および/またはヨウ素 原子を含むものが好ましく、フッ素原子および またはヨウ素原子を含むものがよ り好ましい。
さらに、本発明のベンゼン環と、 ハロゲン原子とを含む分子は、 3重結合を有す ることが好ましく、 炭素一炭素 3重結合であることがより好ましい。 特に、 前記べ ンゼン環 (もしくは、 ベンゼン環を含む骨格部分) の置換基として、 炭素一炭素 3 重結合を有している分子が好ましい。 このような置換基としては、 アルキニル基が 好ましく、 ェチュル基がより好ましい。 さらに、 これらのアルキニル基は、 ハロゲ ン原子で置換されていていることが好ましい。
本発明の絶縁性分子は、 さらには、 芳香環 (より好ましくは、 ベンゼン環) とハ ロゲン原子とを含む化合物であって、 3重結合、 ビフヱニル骨格を有する化合物、 炭素数 2 0以上の有機化合物、 フッ素を含む化合物、 2回対称を持つ化合物、 およ び、強い分子間相互作用を有する化合物のいずれか 1以上を満たす分子が好ましい。 このような絶縁性分子として、 ノヽロゲン化アルキルビフヱニル、 アミ ド、 カルボン 酸等が好ましく、具体的には、 2, 2 ', 4, 4 ', 6 , 6, 一へキサフルオロー 3, 3,, 5, 5, ーテトラョードエチニルビフエニル、 2, 2, 6, 6, ーテトラメ チル一 4, 4, 一ジヒ ドロキシカルボ二ルー 3, 3 5, 5, 一テトラキスヨ一 ドエチェルビフヱニル等が好ましい例として挙げられる。
(3) 導電性分子と絶縁性分子からなる単結晶
(3- 1) 本発明の単結晶は、 電気抵抗率の異方性が高い分子単結晶である。 こ こで異方性が高いとは、互いに略直交する方向に対して電気抵抗率を測定した時に、 その値の比が好ましくは 100000倍以上、 より好ましくは 107倍以上である ことをいう。
より具体的には、導電性分子が直列した導電性部分と、前記導電性部分を被覆す る絶縁性分子からなる絶縁性部分とを有し、絶縁性部分の抵抗率は、導電性部分の 抵抗率の 100000倍以上である分子単結晶である。
好ましい導電性分子と絶縁性分子組み合わせとしては、上記要件を満たす限り特 に定めるものではないが、 例えば、 抵抗率が 10— 5Ω cn!〜 10°Ω cmの導電性 分子と、 抵抗率が 108Q cn!〜 1015Q c mの絶縁性分子との組み合わせ、 およ び/または分子量が 1 50〜800の導電性分子と、分子量が 500〜 10000 の絶縁性分子との組み合わせの関係にあるものが好ましい。
本発明の結晶は、絶縁性分子同士がハロゲン原子を介して結合しているのが好ま しく、 この場合のハロゲン原子としては、臭素原子およびヨウ素原子のいずれか 1 以上を介して結合しているのが好ましく、少なくともョゥ素原子を介して結合して いるのがより好ましい。 なお、 ここでいうハロゲン原子は、 絶縁性分子に含まれる ものである。
本発明の結晶中の導電性分子と絶縁性分子の構成比 (モル%) は、 10〜90 : 90〜10が好ましく、 20〜70 : 80〜 30がより好ましい。 さらに、 本発明 の分子は、本発明の趣旨を逸脱しない範囲内で、本発明でいう導電性分子および絶 縁性分子のいずれにも相当しない分子 (または原子) を含んでいても良い。 この場 合、 該分子 (原子) は、 結晶全体の 50モル%以下であることが好ましい。 尚、 本発明の結晶は、 例えば、 ナノ配線用材料に用いることができる程度に結晶 性を保っていれば良く、そのような範囲内であれば周期性が完全でないものも含ま れる趣旨である。また、本発明の結晶は、超分子構造体(Supramolecular architecture) であることが好ましい。
また、 本発明のナノ配線材料は、 単結晶から構成され、 超分子構造体から構成さ れるものが好ましい。
さらにまた、本発明の絶縁性部分の厚みは、 1 . 0 n m以上であるのが好ましい。 このような範囲とすることにより、ワイヤー間の漏れ電流をごく微量にとどめるこ とができる。
( 3 - 2 ) 本発明のナノ配線用材料の製造方法
本発明のナノ配線用材料は、例えば、超分子の理論を応用することにより作製す ることができる。 具体的には、 本発明のナノ配線用材料では、 分子の自己組織化、 あるいはクリスタルエンジニアリング (Crystal Engineering) という概念を用い て、構成分子が結晶化する際に自動的にワイヤー状の構造を作り出すという手法を 採ることができる。すなわち、絶縁膜部分を構成する分子と導電性部分を構成する 導電性分子は、 非共有性の結合 (例えば、 ハロゲン結合) で強く結びつけられてい る。 すなわち、 従来から知られている、 白金錯体のような一次元のワイヤーがただ 単純に結晶化したものとは全く異なる。 そして、 本発明では、 分子の構成の設計が 可能であるため、 絶縁膜部分を厚くしたり、 導電性部分を太くしたり、 また、 ワイ ヤー状の配線の相対配置を制御することができる。
例えば、電子技術総合研究所彙報 第 5 6卷 第 4号 第 6頁に記載の方法を採 用して作製することができる。
本発明の結晶の製造方法は、 具体的には、 導電性分子と、 絶縁性分子、 必要に応 じて他の分子を溶媒に溶解し、得られた溶液を電極上で電気分解する方法を好まし く採用することができる。
他の分子としては、ハロゲン化物イオンやジブ口モアウレ一トが好ましい例とし て挙げられ、 塩化物イオン (例えば、 テトラフェニルホスホニゥムクロリ ド) がよ り好ましい。
電気分解に用いる溶媒は、本発明の趣旨を逸脱しない限り特に定めるものではな いが、 好ましくは、 エタノーノレ、 メタノール、 クロ口ベンゼンおよびジクロロメタ ンならびにこれらの混合液である。
電気分解の方法としては、電極間に電圧をかけることにより電気分解することが できる。 電気分解のための電圧は、 1〜25Vが好ましい。
電気分解に用いる電極の材料は、特に定めるものではなく、例えば、金(Au)、 チタン (T i )、 クロム (C r )、 タリウム (T a)、 銅 (Cu)、 アルミニウム (A 1)、 モリブデン (Mo)、 タングステン (W)、 ニッケル (N i )、 パラジウム (P d)、 白金 (P t)、 銀 (Ag)、 錫 (S n) 等、 ならびに、 これらを組み合わせた ものを好ましく採用できる。
(4) ナノ配線用材料
以下、 図面に従って、本発明のナノ配線用材料の好ましい実施形態について説明 する。 図 1 (a) は、 本発明のナノ配線用材料の第 1の実施形態の概念図を示した ものであって、 1は導電性分子が直列した導電性部分を、 2は導電性部分を被覆す る絶縁性分子からなる絶縁性部分を示している。ここで、図 1 (b)に示すとおり、 第 1の実施例において、導電性分子 3は、分子が一列に並んでワイヤー状となって おり、 その周囲を絶縁性分子 4が取り囲んだ状態となっている。 そして、 導電性分 子と絶縁性分子は結合して結晶を構成している。
このような構成とすることにより、導電性分子が連なつた方向には高い導電性を 示し、 これと垂直な方向 (図 1の矢印の方向) には、 極めて高い絶縁性を有するこ とになる。 さらに、 導電性分子と絶縁性分子を含む結晶を採用することにより、 次 に述べる第 2の実施形態のように複数のナノ配線用材料から構成しても、それぞれ のナノ配線用材料間の絶縁性を飛躍的に高めることができる。 さらに、結晶として 構成できるため、ナノ配線用材料同士の間の相対配置を制御する際の規則性が非常 にょい。 図 2は、本発明のナノ配線用材料の第 2の実施形態の概念図を示したものであつ て、 第 1の実施形態のナノ配線用材料を並列させて第 1の層とし、 次に、 第 1の層 のナノ配線用材料の導電性部分に略直交するようにナノ配線用材料を積層して第 2の層とし、 さらに、 必要に応じて、 第 2の層のナノ配線用材料の導電性部分に略 直交するようにナノ配線用材料を積層し、以下、ナノ配線用材料の層を積層したも のである。すなわち、ナノ配線材料の導電性部分が層毎に直交するよう積層されて いる。
本実施形態のように、ナノ配線用材料を略直交化させるためには、絶縁性分子と して、 直交する 2回対称分子を採用するとよい。 例えば、 以下に示す化合物が好ま しい。
Figure imgf000013_0001
Figure imgf000013_0002
ここで、 略直交とは、例えば、 電子素子として用いることができる程度に垂直な ことをレ、い、必ずしも、正確に直交していることを要求する趣旨ではないことを意 味する。
このような構成とすることにより、実際に電子素子の配線用ワイヤーとして機能 させることができる。
Figure imgf000014_0001
上記第 1の実施形態の導電性部分では、 導電性分子の列が一列のみであつたが、 本実施形態では、導電性分子の列を複数列とすることにより、分子列が切れてしま つた場合に対応が可能となりより好ましい。導電性分子の列の数は 2〜 1 6が好ま しい。 さらに、 本実施形態のナノ配線用材料を用いて、 上記第 2の実施形態の構成 とすることも可能である。
本発明では、 第 1の実施形態のようなナノ配線用材料同士を、 例えば、 第 2の実 施形態のように任意に整列させたり、接点を作ったりする作業が容易にできるよう になった。 また、導電性部分がむき出しのままでないため、 導電性部分同士が接触 して短絡してしまうといったこともなくなった。すなわち本 明は、結晶性を使つ た大規模で規則的な配置が可能であり、 大いに利用価値がある。
さらに、 本発明のナノ配線用材料は、 三次元空間で配列させることができる。 例 えば、カーボンナノチューブを始めとするナノ配線用材料の研究や現在の半導体技 術は基本的に二次元面内での配線を前提としており、三次元的な広がりが無い。 そ れに対して本発明では結晶の周期性を利用してナノ配線用材料の整列を行ってい るので三次元的に配列が可能である。これは単位体積に詰め込むことのできる素子 の数を考えたときに非常に大きな違いとなる。仮に、配線技術の分解能が一次元あ たり 10000あつたとすると、 二次元平面で素子を並べた場合には 100002 =108bit = 100メガビッ卜の素子が配置可能であるのに対し、 三次元空間で 素子を並べた場合には 100003= 1012bit = 1テラビッ トの素子を埋め込 むことができ、 飛躍的にその数が向上する。 従って、 本発明は極めて優位である。 実施例
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材 料、 使用量、 割合、 処理内容、 処理手順等は、 本発明の趣旨を逸脱しない限り、 適 宜、 変更することができる。 従って、 本発明の範囲は以下に示す具体例に限定され るものではない。
(1)導電性分子として、テトラセレナフルバレン(TSeF = tetraselenafulvalene) を用い、 絶縁性分子として、 2, 2,, 4, 4,, 6, 6, 一へキサフルオロー 3, 3,, 5, 5, ーテトラョードエチニルビフエニル (HFTIEB) を用いた。
結晶は、 (TSeF)Cl (HFTIEB)とした。 この結晶は、 導電性分子 (TSeF) によって、 ナノメートノレスケールのワイヤー構造 (例えば、 太さ 1 nm、 長さ l〜9mmのヮ ィヤー構造) を持ち、 絶縁性分子 (HFTIEB)によって、 ワイヤー間の抵抗率は、 10 13Q cmにも達する。 これは、 現在電子製品の基板に使われているエポキシ樹脂 などと同レベルの絶縁性である。
(2) TSeF分子の合成
TSeF の合成は、 E. M. Engler and V. V. Patel, J. Araer. Chem. Soc, vol.96, 7376 (1974)に示す方法に従って行った。
(3) HFTIEBの合成
HFTIEB分子は、 下記合成経路により合成した。
Figure imgf000016_0001
TMS HFTIEB I
まず、 トリフルォロベンゼンを、 テトラヒ ドロフラン (THF) の存在下で反応さ せて、 へキサフルォロビフエニルとし、 さらに、 硫酸の存在下でヨウ素付加し、 ト リメチルシリルアセチレンを導入し、 トリメチルシリル基(TMS)をヨウ素置換し、 HFTIEBを得た。
( 4 ) (TSeF) CI (HFTIEB)結晶の作製
TSeF 10mg、 テトラフエ二ノレフォスホニゥムクロリ ド (Tetraphenylphosphonium Chloride) 20mg、 HFTIEB 80mg、 メタノ一ノレ 2ml、 ク口口ベンゼン 18mlを H型セル に入れ、 白金電極により 2週間、 定電流電気分解を行った。 その結果、 正電極上に (TseF) Cl (HFTIEB)の単結晶が成長した。 結晶構造は、 X線回折により行った。 格子 定数は、 Monoclinic, P2/a, Z = 1, a = 20. 481, b = 4. 073, c = 20. 159 A, · = 108. 75 0, V = 1592. 4 A3, R = 0. 044, G0F = 1. 045であった。
また、 結晶の模型を図 4 ( a ) および (b ) に示した。 図 4 ( b ) において、 点 線はハロゲン結合を示す。
( 5 ) 抵抗率測定
図 4における b軸方向の抵抗率測定は通常の 4端子法にて行った。 また、図 4の c軸方向の抵抗率測定は基本的に 2端子法で行ったが、表面電流の影響を除くため に片方の電極の周りにはガード電極を設けて行った。測定機器はケースレー社製の
4200 -S C Sというパラメーターアナライザーと、口ックゲ一ト社製特注治具 を用いて行った。非常に抵抗率が高いため、試料のキャパシタンスを飽和させる時 間を十分にとつて測定を行つた。
TSeF (= tetraselenafulvalene) が重なった方向 ( b軸) には低い抵抗率 (1 0 5Ω cm) を示し、 それと垂直な c軸方向には非常に高い絶縁性を示した。 b軸方 向と c軸方向における抵抗率の比は約 1 00000000倍であった。
印可電圧は 200 V、 1 00V、 0V、 一 1 00V、 一 200Vと変化させて、 線形性があることを確認した。 測定結果を図 5に示した。 産業上の利用可能性
本発明のナノ配線用材料は、電子素子として、エレク トロ二タスの分野で広く利 用することができる。 具体的には、 半導体やディスプレイ、 記録装置等に利用する ことができる。

Claims

請 求 の 範 囲
1 . 電気抵抗率の異方性が高い分子単結晶。
2 . 導電性分子が直列した導電性部分と、 前記導電性部分を被覆する絶縁 性分子からなる絶縁性部分とを有し、前記絶縁性部分の抵抗率は、前記導電性部分 の抵抗率の 1 0 0 0 0 0倍以上であり、 前記導電性分子は、 カチオンラジカル塩、 ァニオンラジカル塩、有機金属錯体および含カルコゲン有機化合物からなる群から 選択されるいずれかであり、 前記絶縁性分子は、 芳香環とハロゲン原子を含む、 分 子単結晶。
3 . 導電性部分と、 前記導電性部分を被覆する絶縁性部分とを有し、 前記 絶縁性部分の抵抗率は、前記導電性部分の抵抗率の 1 0 0 0 0 0倍以上であり、前 記導電性部分は、分子量 1 5 0〜 8 0 0の導電性分子が直列したものが 1列〜 1 6 列並列しており、前記絶縁性部分は、分子量 5 0 0〜 1 0 0 0 0の絶縁性分子から なり、 さらに、 前記導電性分子と、 前記絶縁性分子を含む溶液の電気分解により得 られうる、 分子単結晶。
4 . 導電性分子が直列した導電性部分と、 前記導電性部分を被覆する絶縁 性分子からなる絶縁性部分とを有する単結晶の超分子構造体からなり、前記絶縁性 部分の抵抗率は、前記導電性部分の抵抗率の 1 0 0 0 0 0倍以上であるナノ配線用 材料。
5 . 単結晶からなり、 前記単結晶は、 導電性部分と、 前記導電性部分を被 覆する絶縁性部分とを有し、前記絶縁性部分の抵抗率は、前記導電性部分の抵抗率 の 1 0 0 0 0 0倍以上であり、前記導電性部分は、分子量 1 5 0〜 8 0 0の導電性 分子が直列したものが 1列〜 1 6列並列しており、前記絶縁性部分は、分子量 5 0 0〜 1 0 0 0 0の絶縁性分子からなり、 さらに、 前記導電性分子と、 前記絶縁性分 子を含む溶液の電気分解により得られたものであるナノ配線用材料。
6 . 前記導電性分子は、 カチオンラジカル塩、 ァニオンラジカル塩、 有機 金属錯体および含カルコゲン有機化合物からなる群から選択されるいずれかであ る請求項 4または 5に記載のナノ配線用材料。
7 .単結晶からなり、前記単結晶は、導電性分子が直列した導電性部分と、 前記導電性部分を被覆する絶縁性分子からなる絶縁性部分とを有し、前記絶縁性部 分の抵抗率は、前記導電性部分の抵抗率の 1 0 0 0 0 0倍以上であり、前記導電性 分子は、 カチオンラジカル塩、 ァニオンラジカル塩、 有機金属錯体および含カルコ ゲン有機化合物からなる群から選択されるいずれかであり、前記絶縁性部分は、有 機分子を含む化合物であるナノ配線用材料。
8 . 前記絶縁性分子が、 ベンゼン環とハロゲン原子を含む分子である請求 項 4〜 7のいずれか 1項に記載のナノ配線用材料。
9 . 前記単結晶が、 超分子構造体である請求項 5〜 8のいずれか 1項に記 載のナノ配線用材料。
1 0 . 前記導電性分子が、 フルバレン骨格を有する請求項 4〜 9のいずれ か 1項に記載のナノ配線用材料。
1 1 . 前記導電性分子が、 テトラセレナフルバレンである請求項 1 0に記 載のナノ配線用材料。
1 2 . 前記絶縁性分子が、 芳香族骨格を有する請求項 4〜1 1のいずれか 1項に記載のナノ配線用材料。
1 3 . 前記絶縁性分子が、 アルキニル基を持つ芳香族である請求項 1 2に 記載のナノ配線用材料。
1 4 . 前記絶縁性分子が、 ハロゲン原子を含む請求項 4〜1 3のいずれか 1項に記載のナノ配線用材料。
1 5 . 前記絶縁性分子同士は、 ハロゲン原子を介して結合している請求項 1 4に記載のナノ配線用材料。
1 6 . 前記絶縁性分子が 2回対称を持つ、 請求項 4〜1 5のいずれか 1項 に記載のナノ配線用材料。
1 7 . 2以上の導電性部分が集束して、 前記絶縁性部分に被覆されている 請求項 4〜 1 6のいずれか 1項に記載のナノ配線用材料。
18. 少なくとも、 前記導電性部分が並列した第 1の層と第 2の層とから なり、前記第 2の層は、前記第 1の層の上に前記第 1の層の導電性部分と前記第 2 の層の導電性部分とが略直交するように積層されている、請求項 4〜 1 7のいずれ か 1項に記載のナノ配線用材料。
19. 前記第 1の層と、 前記第 2の層が交互に積層している、 請求項 18 に記載のナノ配線用材料。
20.前記絶縁性部分の抵抗率は、前記導電性部分の抵抗率の 107倍以 : である、 請求項 4〜1 9のいずれか 1項に記載のナノ配線用材料。
21. 絶縁性部分の厚みが 1. 0 nm以上である、 請求項 4〜20のいず れか 1項に記載のナノ配線用材料
22. 請求項 4〜 21のいずれか 1項に記載のナノ配線用材料を用いた電 子素子。
23. 導電性分子と絶縁性分子を含む溶液を、 互いの分子の相互作用によ り超分子構造体とする工程を含む、請求項 4〜 21のいずれか 1項に記載のナノ配 線用材料の製造方法。
PCT/JP2005/011393 2004-06-17 2005-06-15 単結晶、ナノ配線用材料、電子素子、および、ナノ配線用材料の製造方法 WO2005123637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006514844A JPWO2005123637A1 (ja) 2004-06-17 2005-06-15 単結晶、ナノ配線用材料、電子素子、および、ナノ配線用材料の製造方法
EP05752925A EP1760058A1 (en) 2004-06-17 2005-06-15 Single crystal, material for nanowiring, electronic device, and process for producing material for nanowiring
US11/629,904 US7771820B2 (en) 2004-06-17 2005-06-15 Monocrystal, nano wire material, electronic element, and method of producing nano wire material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004179175 2004-06-17
JP2004-179175 2004-06-17

Publications (1)

Publication Number Publication Date
WO2005123637A1 true WO2005123637A1 (ja) 2005-12-29

Family

ID=35509591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011393 WO2005123637A1 (ja) 2004-06-17 2005-06-15 単結晶、ナノ配線用材料、電子素子、および、ナノ配線用材料の製造方法

Country Status (5)

Country Link
US (1) US7771820B2 (ja)
EP (1) EP1760058A1 (ja)
JP (1) JPWO2005123637A1 (ja)
TW (1) TW200616932A (ja)
WO (1) WO2005123637A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302479A (ja) * 2008-06-17 2009-12-24 Denso Corp ワイヤ状構造体、ワイヤ状構造体の製造方法、熱電変換素子、及びペルチェ素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208553B1 (en) * 1999-07-01 2001-03-27 The Regents Of The University Of California High density non-volatile memory device incorporating thiol-derivatized porphyrins
US7186355B2 (en) * 2000-02-04 2007-03-06 Massachusetts Institute Of Technology Insulated nanoscopic pathways, compositions and devices of the same
KR101008294B1 (ko) * 2001-03-30 2011-01-13 더 리전트 오브 더 유니버시티 오브 캘리포니아 나노구조체 및 나노와이어의 제조 방법 및 그로부터 제조되는 디바이스
US6949206B2 (en) * 2002-09-05 2005-09-27 Nanosys, Inc. Organic species that facilitate charge transfer to or from nanostructures
US7317047B2 (en) * 2002-09-24 2008-01-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US7291503B2 (en) * 2003-05-21 2007-11-06 Massachusetts Institute Of Technology Reversible resistivity-based sensors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENGLER E.M. ET AL: "Structure Control in Organic Metals Synthesis of Tetraselenofulvalene and Its Charge Transfer Salt with Tetracyano-P-Quinodimethane", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 96, no. 23, 1974, pages 7376 - 7378, XP002994472 *
KATO R. ET AL: "Multivarious faces of organic metals based on se-substituted bedt-TTF family", SYNTHETIC METALS, vol. 56, no. 1, 1993, pages 2084 - 2089, XP002994473 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302479A (ja) * 2008-06-17 2009-12-24 Denso Corp ワイヤ状構造体、ワイヤ状構造体の製造方法、熱電変換素子、及びペルチェ素子

Also Published As

Publication number Publication date
US20080124545A1 (en) 2008-05-29
EP1760058A1 (en) 2007-03-07
TW200616932A (en) 2006-06-01
JPWO2005123637A1 (ja) 2008-04-10
US7771820B2 (en) 2010-08-10

Similar Documents

Publication Publication Date Title
Batail et al. Electrocrystallization, an invaluable tool for the construction of ordered, electroactive molecular solids
Bryce et al. Electrically conductive Langmuir–Blodgett films of charge-transfer materials
Ward Electrochemical aspects of low-dimensional molecular solids
WO2007125671A1 (ja) 電界効果トランジスタ
Yamamoto et al. Supramolecular insulating networks sheathing conducting nanowires based on organic radical cations
JP6653905B2 (ja) 微小スイッチおよびそれを用いる電子デバイス
Ren et al. A general electrochemical strategy for synthesizing charge‐transfer complex micro/nanowires
Kazheva et al. Molecular conductors with 8, 8′-diiodo cobalt bis (dicarbollide) anion
Jang et al. Effective Control of Chlorine Contents in MAPbI3–x Cl x Perovskite Solar Cells Using a Single-Source Vapor Deposition and Anion-Exchange Technique
JPWO2011111736A1 (ja) 電界効果型トランジスタ及びその製造方法
WO2005123637A1 (ja) 単結晶、ナノ配線用材料、電子素子、および、ナノ配線用材料の製造方法
Saravanan et al. Coordination-Controlled One-Dimensional Molecular Chains in Hexapodal Adenine–Silver Ultrathin Films
Yamazaki et al. Structure determination and negative differential resistance of tetraarylporphyrin/polyoxometalate 2: 1 complexes
Zhang et al. Substitution effects on the electrical tranporting properties of tetrathia [22] annulene [2, 1, 2, 1]: experimental and theoretical investigations
Chen et al. Molecular electronic devices
EP1553642A1 (en) Switching element
Valade et al. Molecular inorganic conductors and superconductors
JPWO2004073081A1 (ja) スイッチング素子
Blundell et al. Enantiopure and racemic radical-cation salts of B (mandelate) 2− and B (2-chloromandelate) 2− anions with BEDT-TTF
Hu et al. The initial growth behavior of perylene on Cu (100)
KR102435048B1 (ko) 유기 결정을 구비하는 위상학적 초전도체 및 이를 구비하는 전자소자
Yamada A new approach in the design of organic superconductors
WO2006095435A1 (ja) 架橋配位子、金属錯体、及び金属錯体集積構造物
Pohl et al. Structure of Organic Crystals
CN118159545A (zh) 电子开关器件

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514844

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005752925

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005752925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11629904

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11629904

Country of ref document: US