WO2005122180A1 - Method for inspecting semiconductor memory - Google Patents

Method for inspecting semiconductor memory Download PDF

Info

Publication number
WO2005122180A1
WO2005122180A1 PCT/JP2004/007962 JP2004007962W WO2005122180A1 WO 2005122180 A1 WO2005122180 A1 WO 2005122180A1 JP 2004007962 W JP2004007962 W JP 2004007962W WO 2005122180 A1 WO2005122180 A1 WO 2005122180A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
temperature
polarization state
semiconductor memory
writing
Prior art date
Application number
PCT/JP2004/007962
Other languages
French (fr)
Japanese (ja)
Inventor
Yukinobu Hikosaka
Tomohiro Takamatsu
Yoshinori Obata
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2004/007962 priority Critical patent/WO2005122180A1/en
Priority to JP2006514366A priority patent/JP4387407B2/en
Priority to CN200480043138A priority patent/CN100592426C/en
Publication of WO2005122180A1 publication Critical patent/WO2005122180A1/en
Priority to US11/593,018 priority patent/US7982466B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5002Characteristic

Definitions

  • the present invention relates to a method for testing a semiconductor memory device, and more particularly to a method for testing a semiconductor memory device using a ferroelectric substance.
  • FIG. 6A is a sectional view schematically showing a configuration of a ferroelectric capacitor.
  • a ferroelectric layer 105 is sandwiched between the lower electrode 101 and the upper electrode 102 to form a ferroelectric capacitor.
  • the lower electrode is connected to, for example, a plate line PL, and the upper electrode is connected to a bit line BL via, for example, a switching transistor.
  • the first upward polarization state S 1 remains in the ferroelectric layer 105.
  • a pulse voltage of the opposite polarity is applied, a downward second polarization state S2 remains in the ferroelectric layer 105.
  • FIG. 6B is a graph showing a hysteresis characteristic of the ferroelectric layer capacitor.
  • the horizontal axis is the voltage applied to the lower electrode 101 with respect to the upper electrode.
  • the vertical axis indicates the polarization P (charge) of the ferroelectric layer.
  • Vc coercive voltage
  • FIG. 6D shows a state change when a positive pulse Vp is applied to the lower electrode of the ferroelectric capacitor in the polarization state S2.
  • the state of the ferroelectric capacitor changes from S2 to T1, and the amount of positive charge U is released from the upper electrode 102 to the bit line BL.
  • the pulse voltage falls, the state of the ferroelectric capacitor changes from T1 to S2, and the amount of negative charge Ua is released from the upper electrode 102 to the bit line BL.
  • FIG. 6E shows a state change when a negative polarity pulse Vn is applied to the lower electrode of the ferroelectric capacitor in the polarization state S2.
  • Vn negative polarity pulse
  • the state of the strong dielectric capacitor changes from S2 to T2
  • the upper electrode 102 emits a negative charge N to the bit line BL.
  • the state of the ferroelectric capacitor changes from T2 to S1
  • the upper electrode 102 emits the positive charge Na to the bit line BL.
  • FIG. 6F shows a state change when a negative pulse Vn is applied to the lower electrode of the ferroelectric capacitor in the polarization state S1.
  • a ferroelectric capacitor shows a phenomenon called imprint.
  • the horizontal axis and the vertical axis show the voltage and polarization of the lower electrode as in FIG. 6B. If the polarization state S1 is maintained, the hysteresis characteristic tends to change from H0 to HI. If the opposite polarization state S2 is maintained, the hysteresis characteristic changes from H0 to H2, which is the opposite direction to HI.
  • FIG. 8A shows an example of a memory cell configuration of a 2-transistor, 2-capacitor (2T / 2C) FeRAM.
  • One FeRAM memory cell includes two ferroelectric capacitors Cx, Cy and switching transistors Tx, Ty each having a drain electrode connected to an upper electrode of each ferroelectric capacitor.
  • the source electrodes of the two switching transistors Tx and Ty are connected to the bit lines BL and / BL, the gate electrodes are commonly connected to the word line WL, and the lower electrodes of the ferroelectric capacitors Cx and Cy are commonly connected to the plate line PL.
  • the sense amplifier SA is connected between the bit lines BL and / BL.
  • the ferroelectric capacitors Cx and Cy store information of opposite polarities. For example, when “1” is stored, information “1” is stored in the ferroelectric capacitor Cx, and "0" is stored in the ferroelectric capacitor Cy. At the time of reading, the voltage difference between the bit line BL and the bit line ZBL is detected by the sense amplifier SA.
  • a 1T / 1C configuration in which one transistor and one capacitor constitute one memory cell is also used.
  • a combination of the right transistor and the ferroelectric capacitor is used, and a reference cell is used instead of the combination of the left transistor and the ferroelectric capacitor.
  • the amount of charge that can be distinguished is reduced by half, but there is no essential difference, the following description will be made using 2T / 2C as an example.
  • FIG. 8B shows an inspection procedure of the FeRAM.
  • FIG. 8C is a diagram showing a pulse voltage applied to two ferroelectric capacitors Cx and Cy included in one FeRAM and a charge output emitted to a bit line according to the procedure of FIG. 8B. Note that the pulse voltage is indicated by a voltage with respect to the lower electrode when the upper electrode is set to the reference voltage.
  • step ST100 first data is written. After that, reading of the same data, writing and reading of the second data of the opposite polarity are performed, so that the first data is called the same state (SS) and the second data is called the opposite polarity state (OS).
  • SS same state
  • OS opposite polarity state
  • a positive pulse voltage Vp is applied to the capacitors Cx and Cy to align both capacitors to the polarization state of "0".
  • a positive polarity voltage is applied to the capacitor Cx, and a negative polarity pulse voltage is applied to the capacitor Cy.
  • First data (SS) is stored.
  • both capacitors in which the first data (SS) has been written are left in a heated state, for example, at 150 ° C. for a long time, for example, for 10 hours.
  • the deterioration of the stored information is accelerated in the heating state.
  • a hysteresis shift due to imprinting may occur.
  • the first data (SS) is read in step ST120.
  • a positive pulse voltage is applied to both capacitors.
  • step ST130 second data (OS) having the opposite polarity is written.
  • a positive pulse voltage Vp is applied to both capacitors to align both capacitors to a polarization state of "0"
  • a negative pulse voltage Vn is applied to capacitor Cx.
  • imprinting occurs, the stored polarization is reduced. .
  • step ST140 the written second data is once left, for example, for 5 seconds. It has a function to stabilize relaxation and temperature, and to prevent the evaluation of imprint from becoming too sweet.
  • the second data (OS) is read.
  • a positive pulse voltage Vp is applied to both capacitors.
  • a positive charge P corresponding to “” is released from the capacitor Cx and a positive charge U corresponding to “0” is released to each bit line from the capacitor Cy, and the second data ( ⁇ S) is read, and the stored information is lost, so “1” is written again to the capacitor Cx and “0” to the capacitor Cy based on the read information.
  • the second data may not be read out.
  • the imprint characteristics can be detected. Rye
  • the process returns from step ST150 to step ST100, and the same detection steps are repeated.
  • a device inspection for determining the presence or absence of a defect in all the memory cells and a monitor inspection for measuring the amount of charge read from the selected memory cells are performed.
  • FIG. 9A is a table collectively showing the conditions of the device inspection and the monitor inspection.
  • the voltage, temperature, and time for device inspection and monitor inspection are shown for each step. All device inspection voltages are performed at the minimum voltage in the operating voltage region. This is to make the conditions strict and make a strict judgment.
  • the temperature is 150 ° C in the thermal storage step ST110, and the other steps are high temperature.
  • the standing time is 10 hours for the thermal standing step ST110 and 5 seconds for the step ST140.
  • the monitor detection voltage is the center voltage of the operating voltage region.
  • the temperature is 150 ° C. in the thermal standing step ST110 and room temperature in the other steps.
  • the standing time is 10 hours for the heat standing step ST110 and 30 seconds for the step ST140.
  • the voltage and temperature in the data writing and reading processes are constant.
  • Japanese Patent Application Laid-Open No. 2001-67896 proposes measuring the operating voltage of data of opposite polarity before and after high-temperature storage, and inspecting imprint occurrence from the difference.
  • Japanese Patent Application Laid-Open No. 2002-8397 discloses that after the first data is written at the maximum operating voltage (in this embodiment, the number of times the predetermined imprint occurs), the imprint is generated, and then the second data having the opposite polarity is written. It is proposed to write, leave, and read the data to perform the inspection reflecting the imprint.
  • An object of the present invention is to provide a method for inspecting a semiconductor memory device, which can evaluate imprint characteristics in a short time.
  • a ferroelectric capacitor of a semiconductor memory device having a nonvolatile memory using a ferroelectric capacitor (a) writing a first polarization state at a first write voltage
  • step (d) after the step (c), writing a second polarization state opposite to the first polarization state;
  • At least one of the voltage and temperature for writing and reading differs depending on the process, and the retention performance is inspected in the steps (a), (b) and (c), and the subsequent steps (d), (e) and ( In step f), there is provided a semiconductor memory device inspection method for inspecting imprint performance.
  • the temperature or voltage of the step (a) is different from the temperature or voltage of the step (c).
  • Imprint characteristics can be evaluated in a short period of time by impressing and accelerating the imprint.
  • FIG. 1 is a flowchart showing a flow of a method for detecting a semiconductor memory device having a ferroelectric capacitor.
  • FIGS. 2A-2D are tables and graphs explaining experiments in which the temperature for writing and reading OS was changed.
  • FIGS. 3A to 3C are a table and a graph explaining an experiment in a case where the storage time after OS writing is set to a high temperature and the storage time is changed.
  • FIGS. 4A to 4C are a table and a graph illustrating an experiment when the OS write voltage is changed.
  • FIG. 5A to FIG. 5C are a table and a graph for explaining an experiment when the SS write voltage is changed.
  • 6A to 6F are a cross-sectional view and a graph illustrating a ferroelectric capacitor.
  • FIG. 7A to FIG. 7C are graphs for explaining imprinting of a ferroelectric capacitor.
  • 8A to 8C are an equivalent circuit diagram, a flowchart, and a diagram for explaining detection of a ferroelectric capacitor.
  • FIG. 9A and FIG. 9B are a table showing a method of detecting a ferroelectric capacitor and a graph showing a life measurement result of device detection.
  • FIG. 9B is a graph showing the result of performing the life evaluation of the defective bit by repeatedly performing the inspection flow shown in FIG. 8B.
  • the horizontal axis indicates the integration time
  • the vertical axis indicates the number of defective bits of the retention characteristic (SS) and the imprint characteristic (OS).
  • the SS bad bit is good with no bit out in a 504 hour life evaluation.
  • the number of OS failure bits was one bit in a short time, and started to increase from over 100 hours, reaching 5 bits in 504 hours. Since the number of defective bits is extremely small, it has been more than 500 hours to detect the occurrence of imprint. If imprinting is found to occur, it will mainly improve the ferroelectric layer fabrication process. If detection takes more than 500 hours, feedback is slow and development time is prolonged and development costs rise.
  • FIG. 1 is a flowchart showing a flow of a method for detecting a semiconductor memory device having a ferroelectric capacitor. Basically includes SS writing step ST100, heat leaving step ST110, SS reading step ST120, OS writing step ST130, ⁇ S leaving step ST140, OS reading step ST150 similar to the detection method shown in FIG. 8B. By changing the voltage and temperature of force data writing and data reading, an attempt was made to make the imprint look larger or to accelerate it.
  • FIG. 2 is a table and a graph illustrating an experiment in which the temperature of writing and reading of the OS was changed.
  • Figure 2A is a table that summarizes the experimental conditions. As shown in the top row, Steps ST100, OS writing step ST130, OS leaving step ST140, and OS reading step ST150 will be described.
  • SS writing step ST100 was performed at room temperature (approximately 25 ° C) at 3.6 V instead of the conventional minimum voltage and high temperature. It was expected that writing at high voltage would add more habit to the ferroelectric.
  • the heat leaving step ST110 and the SS reading step ST120 were performed in the same manner as in the past.
  • OS writing step ST130 is 2.7V and the temperature is -45. C, _5 ° C, run at 25 ° C, leaving step ST140 as long as 15 minutes, perform at high temperature of 85 ° C, and ⁇ S reading step ST150 reduce the temperature by 2.7V Performed at ° C and 85 ° C.
  • the combination of write temperature and read temperature is (_45 ° C, _45.C), (-45 ° C, 85.C), (-5 ° C, 85.C), (25.C, 85 ° C)
  • FIG. 2C shows a change in hysteresis expected when the ferroelectric is cooled to a low temperature.
  • the hysteresis changes from the dashed line to the solid line, and expands in the horizontal direction (voltage direction).
  • the high voltage Vc will be high and writing will be difficult.
  • FIG. 2D shows a change in hysteresis expected when the ferroelectric is heated to a high temperature.
  • the hysteresis changes from the broken line to the solid line, and the vertical direction (polarization direction) decreases.
  • a decrease in polarization (demagnetization) will make reading difficult.
  • FIG. 2B shows the experimental results.
  • the number of defective bits was 0. It can be considered that writing and reading can be performed normally even at the minimum operating temperature.
  • the force reading temperature was changed to 85 ° C, the number of defective bits increased to 1471. The imprint should have looked big.
  • the writing temperature was raised to 5 ° C, the number of defective bits became 0.
  • the writing temperature was raised to 25 ° C (room temperature), the number of defective bits was 0.
  • Figure 3 is a table and a graph that describe an experiment in which the temperature after leaving the OS was elevated and the duration was varied.
  • Figure 3A is a table that summarizes the experimental conditions.
  • the SS writing step ST100 was performed at a voltage of 3.7 V and at room temperature (about 25 ° C).
  • ⁇ S writing step ST130 was performed at 2.6 V and room temperature, and then, leaving step ST140 was performed at 0, 1, 10, 20, 60 (min) and 90 ° C.
  • OS reading step ST150 was performed at 2.6 V and room temperature.
  • FIG. 3B is a graph showing ⁇ S standing time dependency.
  • the horizontal axis shows the integrated value of the SS heat storage time, and the vertical axis shows the difference between the charge amount P from the capacitor Cx and the charge amount U from the capacitor Cy when reading the OS. ⁇
  • the measurement results are plotted for each of the samples with S standing times of 0, 1, 10, 20, and 60 (minutes). Under all conditions, the OS charge decreases as the thermal storage time increases. It is considered that the decrease in the OS charge indicates that the imprint is progressing.
  • FIG. 3C shows the percentage (OS rate) of how much the amount of OS charge decreased when the heat exposure time was 1000 hours with respect to the OS charge amount when the heat exposure time was 24 hours. It is the graph shown. Shows the OS rate for each OS idle time. Since the steps ST100 and ST110 where the imprint is considered to occur in each sample are the same, it is considered that the larger the absolute value of the OS rate, the stronger the influence of the imprint is. The tendency is that the absolute value of the OS rate tends to increase as the OS leaving time increases, and that the increase tends to saturate when the OS leaving time exceeds 10 minutes.
  • the ⁇ S leaving time should be set to 10 minutes or more to make the imprint appear large.
  • the OS leaving temperature is set to the maximum temperature of 85 ° C., it is preferable to further extend the leaving time when the operating temperature is left lower than 85 ° C.
  • the high temperature of step ST140 in FIG. 1 for more than 10 minutes indicates this.
  • FIG. 4 is a table and a graph illustrating an experiment when the ⁇ S write voltage is changed.
  • FIG. 4A is a table summarizing the experimental conditions.
  • the SS writing step ST100 and the ⁇ S reading step ST150 are the same as those in FIG. 3A.
  • OS write step ST130 write power
  • the pressure was changed to 2.2V, 2.6V, and 3.0V.
  • the temperature is room temperature.
  • OS standing step ST140 was made sufficiently long, 20 minutes, and the temperature was further increased to 90 ° C.
  • FIG. 4B is a graph showing OS write voltage dependency.
  • the horizontal axis shows the integrated value of the SS heat storage time, and the vertical axis shows the difference between the charge amount P from the capacitor Cx and the charge amount U from the capacitor Cy when reading the OS.
  • ⁇ Measurement results are plotted for each sample of 3.0V, 2.6V, and 2.2V S write voltage. Under all conditions, the OS charge decreased with increasing heat exposure time. ⁇ The decrease in S charge is considered to indicate that imprinting is progressing.
  • FIG. 4C shows the ratio ( ⁇ S rate) of how much the amount of OS charge decreased when the heat exposure time was 1000 hours to the amount of OS charge when the heat exposure time was 24 hours. This is the graph indicated by.
  • the ⁇ s rate is shown for each OS write voltage. Since the steps ST100 and ST110 at which imprint is considered to occur at each sample are the same, it is considered that the larger the absolute value of the OS rate, the stronger the influence of imprint is. As the OS write voltage decreases, the absolute value of the OS rate tends to increase. For example, it may be preferable to write the OS at the lowest operating voltage. The low voltage at step ST130 in FIG. 1 indicates this.
  • FIG. 5 is a table and a graph illustrating an experiment when the SS write voltage is changed.
  • FIG. 5A is a table summarizing the experimental conditions.
  • SS write step The write voltage of ST100 was changed to 4.4V, 3.7V, and 3.0V.
  • the temperature is room temperature.
  • the OS writing step ST130 was performed at a voltage of 2.6 V and at room temperature. That is, the SS write voltage was set higher than the SS read voltage.
  • OS leaving step ST140 and OS reading step ST150 are the same as those in FIG. 4A.
  • FIG. 5B is a graph showing the SS write voltage dependency.
  • the horizontal axis shows the integrated value of the SS heat storage time, and the vertical axis shows the difference between the charge amount P from the capacitor Cx and the charge amount U from the capacitor Cy when reading the OS.
  • the measurement results are plotted for each of the SS writing voltage samples of 4.4V, 3.7V and 3.OV. Under all conditions, the OS charge decreased with increasing heat exposure time. ⁇ The decrease in S charge is considered to indicate that imprinting is progressing.
  • Figure 5C shows the percentage (OS rate) of how much the amount of OS charge decreased when the heat exposure time was 1000 hours compared to the OS charge amount when the heat exposure time was 24 hours. It is the graph shown. OS rate is shown for each SS write voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Semiconductor Memories (AREA)

Abstract

A method for inspecting a semiconductor memory having a nonvolatile memory employing a ferroelectric capacitor is disclosed which comprises the following steps (a)-(c) after leaving the ferroelectric capacitor in a first polarized state: step (a) for writing a second polarized state reverse to the first polarized state; step (b) for leaving the ferroelectric capacitor in the second polarized state; and step (c) for reading the second polarized state. The temperature or the voltage in the step (a) is lower than the temperature or the voltage in the step (c). This method for inspecting a semiconductor memory enables to evaluate the imprint characteristics in a short time.

Description

明 細 書  Specification
半導体記憶装置の検査方法  Inspection method for semiconductor memory device
技術分野  Technical field
[0001] 本発明は、半導体記憶装置の検査方法に関し、特に強誘電体を用いた半導体記 憶装置の検査方法に関する。  The present invention relates to a method for testing a semiconductor memory device, and more particularly to a method for testing a semiconductor memory device using a ferroelectric substance.
背景技術  Background art
[0002] 近年、携帯用機器の普及、省エネルギの要請、廃棄物削減の要請などに伴い、電 源を切っても記憶内容を保持できる不揮発性記憶装置の需要が高まっている。強誘 電体キャパシタを用いた半導体記憶装置 (FeRAM)は、低電圧動作、多数回書き換 え可能な不揮発性記憶装置であり、論理回路と混載された集積回路装置などに広く 利用されるようになっている。  [0002] In recent years, with the spread of portable devices, the demand for energy saving, the demand for waste reduction, and the like, the demand for non-volatile storage devices that can retain stored contents even when the power is turned off has been increasing. Semiconductor memory devices (FeRAMs) using strong dielectric capacitors are non-volatile memory devices that operate at a low voltage and can be rewritten many times, and are widely used in integrated circuit devices mixed with logic circuits. It has become.
[0003] 図 6Aは、強誘電体キャパシタの構成を概略的に示す断面図である。下部電極 101 、上部電極 102の間に強誘電体層 105が挟持されて、強誘電体キャパシタを構成し ている。下部電極は例えばプレート線 PLに接続され、上部電極は例えばスィッチン グトランジスタを介してビット線 BLに接続される。  FIG. 6A is a sectional view schematically showing a configuration of a ferroelectric capacitor. A ferroelectric layer 105 is sandwiched between the lower electrode 101 and the upper electrode 102 to form a ferroelectric capacitor. The lower electrode is connected to, for example, a plate line PL, and the upper electrode is connected to a bit line BL via, for example, a switching transistor.
[0004] 下部電極 101に対して上部電極 102に相対的に正極性のパルス電圧を印加する と、強誘電体層 105に上向きの第 1の分極状態 S1が残る。逆極性のパルス電圧を印 加すれば、強誘電体層 105に下向きの第 2の分極状態 S2が残る。  When a positive pulse voltage is applied to the lower electrode 101 relative to the upper electrode 102, the first upward polarization state S 1 remains in the ferroelectric layer 105. When a pulse voltage of the opposite polarity is applied, a downward second polarization state S2 remains in the ferroelectric layer 105.
[0005] 図 6Bは、強誘電体層キャパシタのヒステリシス特性を示すグラフである。横軸は、下 部電極 101に印加する、上部電極を基準とした電圧である。縦軸は強誘電体層の分 極 P (電荷)を示す。印加電圧を走查すると矢印で示すように履歴特性 (ヒステリシス) を伴って状態変化する。ヒステリシス曲線が電圧軸と交差する点の電圧が抗電圧 Vc である。以下より詳細に説明する。いま、強誘電体層が分極 S1の状態にあり、下部電 極 101に正極性のパルス Vpを印加するとする。  FIG. 6B is a graph showing a hysteresis characteristic of the ferroelectric layer capacitor. The horizontal axis is the voltage applied to the lower electrode 101 with respect to the upper electrode. The vertical axis indicates the polarization P (charge) of the ferroelectric layer. When the applied voltage is run, the state changes with hysteresis as shown by the arrow. The voltage at the point where the hysteresis curve crosses the voltage axis is the coercive voltage Vc. This will be described in more detail below. Now, it is assumed that the ferroelectric layer is in the state of polarization S1 and a positive pulse Vp is applied to the lower electrode 101.
[0006] 図 6Cに示すように、下部電極の電圧の増加と共に、強誘電体層は矢印で示すよう に状態変化し、上向きの分極は減少し、さらに電圧を増加していくと下向きの分極が 増加していく。ピーク電圧 VIで状態 T1となる。この間に、正電荷が下部電極に流入 し、上部電極 102からビット線 BLに正電荷量 Pが放出される。印加電圧の降下と共に 、強誘電体層は状態 T1から状態 S2に変化する。この変化とともに上部電極 102から ビット線 BLに負電荷量 Paが放出される。 [0006] As shown in Fig. 6C, as the voltage of the lower electrode increases, the state of the ferroelectric layer changes as indicated by an arrow, the upward polarization decreases, and as the voltage further increases, the downward polarization decreases. Increase. State T1 at peak voltage VI. During this time, positive charges flow into the lower electrode Then, a positive charge P is emitted from the upper electrode 102 to the bit line BL. As the applied voltage drops, the ferroelectric layer changes from state T1 to state S2. With this change, a negative charge Pa is released from the upper electrode 102 to the bit line BL.
[0007] 図 6Dは、分極状態 S2の強誘電体キャパシタの下部電極に正極性のパルス Vpを 印加した時の状態変化を示す。ノ^レス電圧の立ち上がりと共に、強誘電体キャパシ タは S2から T1に状態変化し、上部電極 102からビット線 BLに正電荷量 Uが放出さ れる。パルス電圧が立ち下がると、強誘電体キャパシタは T1から S2に状態変化し、 上部電極 102からビット線 BLに負電荷量 Uaが放出される。  FIG. 6D shows a state change when a positive pulse Vp is applied to the lower electrode of the ferroelectric capacitor in the polarization state S2. With the rise of the noise voltage, the state of the ferroelectric capacitor changes from S2 to T1, and the amount of positive charge U is released from the upper electrode 102 to the bit line BL. When the pulse voltage falls, the state of the ferroelectric capacitor changes from T1 to S2, and the amount of negative charge Ua is released from the upper electrode 102 to the bit line BL.
[0008] 図 6Eは、分極状態 S2の強誘電体キャパシタの下部電極に負極性のパルス Vnを 印加した時の状態変化を示す。負極性のパルス電圧 Vnの立ち上がりと共に、強誘 電体キャパシタは S2から T2に状態変化し、上部電極 102はビット線 BLに負電荷量 Nを放出する。負極性のパルス電圧 Vnの立ち下がりと共に、強誘電体キャパシタは T2から S1に状態変化し、上部電極 102はビット線 BLに正電荷量 Naを放出する。  FIG. 6E shows a state change when a negative polarity pulse Vn is applied to the lower electrode of the ferroelectric capacitor in the polarization state S2. With the rise of the negative pulse voltage Vn, the state of the strong dielectric capacitor changes from S2 to T2, and the upper electrode 102 emits a negative charge N to the bit line BL. With the fall of the negative pulse voltage Vn, the state of the ferroelectric capacitor changes from T2 to S1, and the upper electrode 102 emits the positive charge Na to the bit line BL.
[0009] 図 6Fは、分極状態 S1の強誘電体キャパシタの下部電極に負極性のパルス Vnを 印加した時の状態変化を示す。負極性のパルス電圧の立ち上がりと共に、強誘電体 キャパシタは S1から T2に状態変化し、上部電極 102からビット線 BLに負電荷量 Dが 放出される。負極性のパルス電圧が立ち下がると、強誘電体キャパシタは T2から S1 に状態変化し、上部電極 102からビット線 BLに正電荷量 Daが放出される。  FIG. 6F shows a state change when a negative pulse Vn is applied to the lower electrode of the ferroelectric capacitor in the polarization state S1. With the rise of the negative pulse voltage, the state of the ferroelectric capacitor changes from S1 to T2, and the amount of negative charges D is released from the upper electrode 102 to the bit line BL. When the negative pulse voltage falls, the state of the ferroelectric capacitor changes from T2 to S1, and the positive charge Da is released from the upper electrode 102 to the bit line BL.
[0010] 図 7Aに示すように、強誘電体キャパシタにはインプリントと呼ばれる現象を示す。図 において、横軸、縦軸は図 6B同様下部電極の電圧、分極を示す。分極状態 S1を保 持し続けると、ヒステリシス特性が H0から HIに変化していく傾向がある。逆の分極状 態 S2を保持しつづけると、ヒステリシス特性が、 H0から HIと逆方向の H2に変化して レ、 頃向がある。  As shown in FIG. 7A, a ferroelectric capacitor shows a phenomenon called imprint. In the figure, the horizontal axis and the vertical axis show the voltage and polarization of the lower electrode as in FIG. 6B. If the polarization state S1 is maintained, the hysteresis characteristic tends to change from H0 to HI. If the opposite polarization state S2 is maintained, the hysteresis characteristic changes from H0 to H2, which is the opposite direction to HI.
図 7Bに示すように、分極状態 S1を保持し続けて、ヒステリシス特性が H0から HIに インプリントされると、その後逆極性の S2を書き込んだ時、蓄積される分極量は分極 量 Δ Ρ1減少してしまう。  As shown in Fig. 7B, when the polarization state S1 is maintained and the hysteresis characteristic is imprinted from H0 to HI, when writing S2 of the opposite polarity, the amount of polarization stored decreases by Δ 量 1 Resulting in.
[0011] 図 7Cに示すように、分極状態 S2を保持し続けて、ヒステリシス特性が H0から H2に インプリントされると、その後逆極性の S1を書き込んだ時、蓄積される分極量は分極 量 Δ Ρ2減少してしまう。分極量が減少して読み出せなくなれば、記憶装置の機能が 失われてしまう。 [0011] As shown in FIG. 7C, when the polarization state S2 is maintained and the hysteresis characteristic is imprinted from H0 to H2, when the opposite polarity S1 is written thereafter, the amount of polarization accumulated is polarized. The amount Δ Ρ2 decreases. If the amount of polarization decreases and the data cannot be read, the function of the storage device is lost.
[0012] 図 8Aは、 2トランジスタ、 2キャパシタ(2T/2C)の FeRAMのメモリセル構成例を 示す。 1つの FeRAMメモリセルは、 2つの強誘電体キャパシタ Cx, Cyとそれぞれの 強誘電体キャパシタの上部電極にドレイン電極が接続されたスイッチングトランジスタ Tx, Tyとを含む。 2つのスイッチングトランジスタ Tx, Tyのソース電極はビット線 BL, /BLに接続され、ゲート電極はワード線 WLに共通に接続され、強誘電体キャパシ タ Cx, Cyの下部電極は共通にプレート線 PLに接続される。ビット線 BL, /BL間に はセンスアンプ SAが接続されてレ、る。  FIG. 8A shows an example of a memory cell configuration of a 2-transistor, 2-capacitor (2T / 2C) FeRAM. One FeRAM memory cell includes two ferroelectric capacitors Cx, Cy and switching transistors Tx, Ty each having a drain electrode connected to an upper electrode of each ferroelectric capacitor. The source electrodes of the two switching transistors Tx and Ty are connected to the bit lines BL and / BL, the gate electrodes are commonly connected to the word line WL, and the lower electrodes of the ferroelectric capacitors Cx and Cy are commonly connected to the plate line PL. Connected to. The sense amplifier SA is connected between the bit lines BL and / BL.
[0013] 強誘電体キャパシタ Cx, Cyには逆極性の情報を記憶する。例えば" 1 "を記憶する 場合、強誘電体キャパシタ Cxに情報" 1"を記憶し、強誘電体キャパシタ Cyには" 0" を記憶する。読み出し時には、ビット線 BLとビット線 ZBLの電圧差をセンスアンプ S Aが検出する。  [0013] The ferroelectric capacitors Cx and Cy store information of opposite polarities. For example, when "1" is stored, information "1" is stored in the ferroelectric capacitor Cx, and "0" is stored in the ferroelectric capacitor Cy. At the time of reading, the voltage difference between the bit line BL and the bit line ZBL is detected by the sense amplifier SA.
[0014] 1トランジスタ、 1キャパシタで 1つのメモリセルを構成する 1T/1C構成も用いられる 。この場合、例えば右側のトランジスタと強誘電体キャパシタとの組合せが用いられ、 左側のトランジスタと強誘電体キャパシタとの組合せの代わりにリファレンスセルが用 レ、られる。識別可能な電荷量が半減するが、本質的な差はないので、以下 2T/2C を例にとって説明する。  [0014] A 1T / 1C configuration in which one transistor and one capacitor constitute one memory cell is also used. In this case, for example, a combination of the right transistor and the ferroelectric capacitor is used, and a reference cell is used instead of the combination of the left transistor and the ferroelectric capacitor. Although the amount of charge that can be distinguished is reduced by half, but there is no essential difference, the following description will be made using 2T / 2C as an example.
[0015] 図 8Bは、 FeRAMの検査手順を示す。図 8Cは、図 8Bの手順に従って 1つの FeR AMに含まれる 2つの強誘電体キャパシタ Cx, Cyに印加されるパルス電圧とビット線 に放出される電荷出力を示すダイアグラムである。なお、パルス電圧は上部電極を基 準電圧とした時の下部電極に対する電圧で示す。  FIG. 8B shows an inspection procedure of the FeRAM. FIG. 8C is a diagram showing a pulse voltage applied to two ferroelectric capacitors Cx and Cy included in one FeRAM and a charge output emitted to a bit line according to the procedure of FIG. 8B. Note that the pulse voltage is indicated by a voltage with respect to the lower electrode when the upper electrode is set to the reference voltage.
[0016] まず、ステップ ST100で、第 1データの書き込みが行われる。その後、同一データ の読み出し、逆極性の第 2データの書き込み、読み出しが行なわれるので、第 1デー タを同一状態(SS)、第 2データを逆極性状態(OS)と呼ぶ。  First, in step ST100, first data is written. After that, reading of the same data, writing and reading of the second data of the opposite polarity are performed, so that the first data is called the same state (SS) and the second data is called the opposite polarity state (OS).
[0017] 図 8Cの左側に示すように、まずキャパシタ Cx, Cyに正極性のパルス電圧 Vpを印 加し、両キャパシタを" 0"の分極状態に揃える。続いてキャパシタ Cxには正極性のパ ノレス電圧、キャパシタ Cyには負極性のパルス電圧を印加し、キャパシタ Cxに" 1 "を、 キャパシタ Cyに" 0"を書き込む。第 1データ(SS)が記憶される。 [0017] As shown on the left side of FIG. 8C, first, a positive pulse voltage Vp is applied to the capacitors Cx and Cy to align both capacitors to the polarization state of "0". Subsequently, a positive polarity voltage is applied to the capacitor Cx, and a negative polarity pulse voltage is applied to the capacitor Cy. Write "0" to the capacitor Cy. First data (SS) is stored.
[0018] 次のステップ ST110では、第 1データ(SS)を書き込んだ両キャパシタを加熱状態 、例えば 150°Cで長時間、例えば 10時間放置する。記憶した情報の劣化が加熱状 態で加速される。インプリントにともなうヒステリシスシフトが発生する可能性もある。そ の後、ステップ ST120で第 1データ(SS)を読み出す。  In the next step ST110, both capacitors in which the first data (SS) has been written are left in a heated state, for example, at 150 ° C. for a long time, for example, for 10 hours. The deterioration of the stored information is accelerated in the heating state. A hysteresis shift due to imprinting may occur. After that, the first data (SS) is read in step ST120.
[0019] 図 8Cの中央左側に示すように、両キャパシタに正極性のパルス電圧を印加する。  As shown on the left side of the center of FIG. 8C, a positive pulse voltage is applied to both capacitors.
パルス電圧の立ち上がり時にキャパシタ Cxからは" 0"に対応する正電荷 U、キャパシ タ Cyからは " 1"に対応する正電荷 Pがそれぞれのビット線に放出され、その差により 記憶した第 1データ(SS)を読み出す。読み出しにより記憶した情報は失われるので 、読み出した情報に基づき、再びキャパシタ Cxには" 0"、キャパシタ Cyには " 1"を書 き込む。分極が減磁していると、第 1データが読み出せないこともある。第 1データ(S S)の読み出しにより、リテンション特性が検查できる。  At the rise of the pulse voltage, a positive charge U corresponding to "0" is released from the capacitor Cx and a positive charge P corresponding to "1" is released from the capacitor Cy to each bit line, and the first data stored by the difference is stored. Read (SS). Since information stored by reading is lost, "0" is written again to the capacitor Cx and "1" is written to the capacitor Cy based on the read information. If the polarization is demagnetized, the first data may not be able to be read. Retention characteristics can be detected by reading the first data (SS).
[0020] ステップ ST130で逆極性の第 2データ(OS)を書き込む。図 8C中央右側に示すよ うに、両キャパシタに正極性のパルス電圧 Vpを印加して両キャパシタを" 0"の分極状 態に揃え、その後キャパシタ Cxには負極性のパルス電圧 Vnを印加しで ' 1"を書き込 み、キャパシタ Cyには正極性のパルス電圧 Vpを印加して" 0"を書き込む。インプリン トが生じてレ、る場合、記憶される分極は減少してレ、る。  [0020] In step ST130, second data (OS) having the opposite polarity is written. As shown on the right side of the center of Fig. 8C, a positive pulse voltage Vp is applied to both capacitors to align both capacitors to a polarization state of "0", and then a negative pulse voltage Vn is applied to capacitor Cx. Write '1' and apply a positive polarity pulse voltage Vp to the capacitor Cy to write '0'. When imprinting occurs, the stored polarization is reduced. .
[0021] ステップ ST140で、書き込んだ第 2データを一旦、例えば 5秒、放置する。リラクゼ ーシヨンや温度の安定化を行なわせ、インプリントの評価が甘くなることを防止する作 用がある。  [0021] In step ST140, the written second data is once left, for example, for 5 seconds. It has a function to stabilize relaxation and temperature, and to prevent the evaluation of imprint from becoming too sweet.
[0022] 次のステップ ST150で、第 2データ(OS)の読出を行なう。図 8C右側に示すように 、両キャパシタに正極性のパルス電圧 Vpを印加する。ノ^レス電圧の立ち上がり時に キャパシタ Cxからは" に対応する正電荷 P、キャパシタ Cyからは" 0"に対応する正 電荷 Uがそれぞれのビット線に放出され、その差により記憶した第 2データ(〇S)を読 み出す。読み出しにより記憶した情報は失われるので、読み出した情報に基づき、再 びキャパシタ Cxには " 1"、キャパシタ Cyには'' 0"を書き込む。  [0022] In the next step ST150, the second data (OS) is read. As shown on the right side of FIG. 8C, a positive pulse voltage Vp is applied to both capacitors. At the rise of the noise voltage, a positive charge P corresponding to “” is released from the capacitor Cx and a positive charge U corresponding to “0” is released to each bit line from the capacitor Cy, and the second data ( 〇S) is read, and the stored information is lost, so “1” is written again to the capacitor Cx and “0” to the capacitor Cy based on the read information.
[0023] 第 1データのインプリントにより、分極量が減少していると第 2データが読み出せな レ、こともある。第 2データ(〇S)の読み出しにより、インプリント特性が検查できる。ライ フ評価を行なう時は、ステップ ST150力らステップ ST100に戻り、同様の検查ステツ プを繰り返す。 If the amount of polarization is reduced by imprinting the first data, the second data may not be read out. By reading the second data (ΔS), the imprint characteristics can be detected. Rye When the evaluation is performed, the process returns from step ST150 to step ST100, and the same detection steps are repeated.
[0024] 実際の FeRAMの検査においては、全メモリセルに対して欠陥の有無を判定する デバイス検査と、選択したメモリセルに対して読み出した電荷量を測定するモニタ検 查とが行なわれる。  In an actual FeRAM inspection, a device inspection for determining the presence or absence of a defect in all the memory cells and a monitor inspection for measuring the amount of charge read from the selected memory cells are performed.
[0025] 図 9Aは、デバイス検査とモニタ検査の条件をまとめて示す表である。デバイス検查 とモニタ検査の電圧、温度、時間を各ステップごとに示す。デバイス検査の電圧は、 全て動作電圧領域中の最小電圧で行なう。条件を厳しくして厳密に判定するためで ある。温度は、熱放置ステップ ST110は 150°C、他のステップは高温である。放置時 間は、熱放置ステップ ST110は 10時間、ステップ ST140は 5秒である。モニタ検查 の電圧は、動作電圧領域の中心電圧である。温度は熱放置ステップ ST110では 15 0°C、他のステップでは室温である。放置時間は、熱放置ステップ ST110は 10時間 、ステップ ST140は 30秒である。デバイス検査、モニタ検査のそれぞれにおいて、 データ書き込み、読み出しの工程の電圧、温度は一定である。  FIG. 9A is a table collectively showing the conditions of the device inspection and the monitor inspection. The voltage, temperature, and time for device inspection and monitor inspection are shown for each step. All device inspection voltages are performed at the minimum voltage in the operating voltage region. This is to make the conditions strict and make a strict judgment. The temperature is 150 ° C in the thermal storage step ST110, and the other steps are high temperature. The standing time is 10 hours for the thermal standing step ST110 and 5 seconds for the step ST140. The monitor detection voltage is the center voltage of the operating voltage region. The temperature is 150 ° C. in the thermal standing step ST110 and room temperature in the other steps. The standing time is 10 hours for the heat standing step ST110 and 30 seconds for the step ST140. In each of the device inspection and the monitor inspection, the voltage and temperature in the data writing and reading processes are constant.
[0026] FeRAMの構成、製造方法は、例えば引用により本願に取り込む、 USP5, 953, 6 19に開示されている。 FeRAMの検査方法は、例えば引用により本願に取り込む、 U SP6, 008, 659に開示されてレヽる。  The configuration and manufacturing method of FeRAM are disclosed in US Pat. No. 5,953, 618, which is incorporated herein by reference, for example. An inspection method of FeRAM is disclosed in USP 6,008,659, which is incorporated herein by reference, for example.
[0027] FeRAMで特に問題となるのは、インプリントの検査である。特開 2001— 67896号 公報は、高温保存の前後で逆極性のデータの動作加減電圧を測定し、その差からィ ンプリントの起き具合を検査することを提案する。特開 2002-8397号公報は、第 1デ ータを最大動作電圧で書き込んで (実施例では所定のインプリントが起こる回数だけ 書き込んで)インプリントを生じさせた後、逆極性の第 2データの書き込み、放置、読 み出しを行なってインプリントを反映した検查を行なうことを提案する。  [0027] A particular problem in FeRAM is imprint inspection. Japanese Patent Application Laid-Open No. 2001-67896 proposes measuring the operating voltage of data of opposite polarity before and after high-temperature storage, and inspecting imprint occurrence from the difference. Japanese Patent Application Laid-Open No. 2002-8397 discloses that after the first data is written at the maximum operating voltage (in this embodiment, the number of times the predetermined imprint occurs), the imprint is generated, and then the second data having the opposite polarity is written. It is proposed to write, leave, and read the data to perform the inspection reflecting the imprint.
発明の開示  Disclosure of the invention
[0028] 本発明の目的は、インプリント特性を短時間で評価できる半導体記憶装置の検査 方法を提供することである。  An object of the present invention is to provide a method for inspecting a semiconductor memory device, which can evaluate imprint characteristics in a short time.
本発明の 1観点によれば、強誘電体キャパシタを用いた不揮発性メモリを有する半 導体記憶装置の強誘電体キャパシタに対して、 (a)第 1の分極状態を第 1の書き込み電圧で書き込む工程と、 According to one aspect of the present invention, there is provided a ferroelectric capacitor of a semiconductor memory device having a nonvolatile memory using a ferroelectric capacitor. (a) writing a first polarization state at a first write voltage,
(b)前記第 1の分極状態を熱放置する工程と、  (b) thermally leaving the first polarization state;
(c)前記第 1の分極状態を第 1の読み出し電圧で読み出す工程と、  (c) reading the first polarization state at a first read voltage;
(d)前記工程 (c)の後、前記第 1の分極状態と逆の第 2の分極状態を書き込む工程 と、  (d) after the step (c), writing a second polarization state opposite to the first polarization state;
(e)前記第 2の分極状態を放置する工程と、  (e) leaving the second polarization state;
(f)前記第 2の分極状態を第 2の読み出し電圧で読み出す工程と、  (f) reading the second polarization state at a second read voltage;
を含み、書き込み、読み出しの電圧、温度の少なくとも一方が工程により異なり、前記 工程 (a)、 (b)、(c)でリテンション性能を検査し、引き続く前記工程 (d)、(e)、(f)でィ ンプリント性能を検査する半導体記憶装置の検査方法が提供される。  At least one of the voltage and temperature for writing and reading differs depending on the process, and the retention performance is inspected in the steps (a), (b) and (c), and the subsequent steps (d), (e) and ( In step f), there is provided a semiconductor memory device inspection method for inspecting imprint performance.
[0029] 本発明の他の観点によれば、強誘電体キャパシタを用いた不揮発性メモリを有する 半導体記憶装置の強誘電体キャパシタに対して、第 1の分極状態で放置した後、According to another aspect of the present invention, after the ferroelectric capacitor of the semiconductor memory device having the nonvolatile memory using the ferroelectric capacitor is left in the first polarization state,
(a)前記第 1の分極状態と逆の第 2の分極状態を書き込む工程と、 (a) writing a second polarization state opposite to the first polarization state,
(b)前記第 2の分極状態を放置する工程と、  (b) leaving the second polarization state;
(c)前記第 2の分極状態を読み出す工程と、  (c) reading the second polarization state;
を含み、前記工程 (a)の温度または電圧が前記工程 (c)の温度または電圧と異なる 半導体記憶装置の検査方法が提供される。  Wherein the temperature or voltage of the step (a) is different from the temperature or voltage of the step (c).
[0030] インプリントを大きく見せる力、加速することにより短時間でインプリント特性を評価 できる。 [0030] Imprint characteristics can be evaluated in a short period of time by impressing and accelerating the imprint.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]図 1は、 強誘電体キャパシタを有する半導体記憶装置の検查方法のフローを 示すフローチャートである。  FIG. 1 is a flowchart showing a flow of a method for detecting a semiconductor memory device having a ferroelectric capacitor.
[図 2]図 2A— 2Dは、 OSの書き込み、読み出しの温度を代えた実験を説明する表とグ ラフである。  [FIG. 2] FIGS. 2A-2D are tables and graphs explaining experiments in which the temperature for writing and reading OS was changed.
[0032] [図 3]図 3A— 3Cは、 OS書き込み後の放置を高温にし、放置時間を変化させた場合 の実験を説明する表とグラフである。  [FIG. 3] FIGS. 3A to 3C are a table and a graph explaining an experiment in a case where the storage time after OS writing is set to a high temperature and the storage time is changed.
[図 4]図 4A— 4Cは、 OS書き込み電圧を変化させた時の実験を説明する表とグラフで ある。 [0033] [図 5]図 5A— 5Cは、 SS書き込み電圧を変化させた時の実験を説明する表とグラフで ある。 [FIG. 4] FIGS. 4A to 4C are a table and a graph illustrating an experiment when the OS write voltage is changed. FIG. 5A to FIG. 5C are a table and a graph for explaining an experiment when the SS write voltage is changed.
[図 6]図 6A— 6Fは、強誘電体キャパシタを説明する断面図およびグラフである。  6A to 6F are a cross-sectional view and a graph illustrating a ferroelectric capacitor.
[0034] [図 7]図 7A— 7Cは、強誘電体キャパシタのインプリントを説明するグラフである。 FIG. 7A to FIG. 7C are graphs for explaining imprinting of a ferroelectric capacitor.
[図 8]図 8A— 8Cは、強誘電体キャパシタの検查を説明する等価回路図、フローチヤ ート、ダイアグラムである。  8A to 8C are an equivalent circuit diagram, a flowchart, and a diagram for explaining detection of a ferroelectric capacitor.
[0035] [図 9]図 9A, 9Bは、強誘電体キャパシタの検查方法を示す表、およびデバイス検查 のライフ測定結果を示すグラフである。 FIG. 9A and FIG. 9B are a table showing a method of detecting a ferroelectric capacitor and a graph showing a life measurement result of device detection.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] まず、従来の検査方法で本発明者らが FeRAMデバイスのライフ評価を行なった結 果を示す。 First, the results of the present inventors' evaluation of the life of the FeRAM device by the conventional inspection method will be described.
図 9Bは、図 8Bに示す検査フローを繰り返し行なって不良ビットのライフ評価を行な つた結果を示すグラフである。横軸は積算時間を示し、縦軸はリテンション特性(SS) とインプリント特性(OS)の不良ビット数を示す。 SS不良ビットは、 504時間のライフ評 価で 1ビットも出ていなぐ良好である。 OS不良ビットは、短時間で 1ビットあり、 100時 間を越える頃から増加し始め、 504時間で 5ビットになった。不良ビット数は極めて少 ないのでインプリントの発生を検出するのに 500時間以上も力、かっている。インプリン トが生じることが判明した場合、主に強誘電体層の製造プロセスを改善することにな る。検出に 500時間以上もかかると、フィードバックがなかなかかからず、開発時間が 長くなり、開発コストも上がってしまう。  FIG. 9B is a graph showing the result of performing the life evaluation of the defective bit by repeatedly performing the inspection flow shown in FIG. 8B. The horizontal axis indicates the integration time, and the vertical axis indicates the number of defective bits of the retention characteristic (SS) and the imprint characteristic (OS). The SS bad bit is good with no bit out in a 504 hour life evaluation. The number of OS failure bits was one bit in a short time, and started to increase from over 100 hours, reaching 5 bits in 504 hours. Since the number of defective bits is extremely small, it has been more than 500 hours to detect the occurrence of imprint. If imprinting is found to occur, it will mainly improve the ferroelectric layer fabrication process. If detection takes more than 500 hours, feedback is slow and development time is prolonged and development costs rise.
[0037] 図 1は、強誘電体キャパシタを有する半導体記憶装置の検查方法のフローを示す フローチャートである。基本的には図 8Bに示した検查方法と同様の SS書き込みステ ップ ST100、熱放置ステップ ST110、 SS読み出しステップ ST120, OS書き込みス テツプ ST130、〇S放置ステップ ST140, OS読み出しステップ ST150を含む力 デ ータ書き込みとデータ読み出しの電圧、温度を変更してインプリントを大きく見せたり 、加速することを試みた。  FIG. 1 is a flowchart showing a flow of a method for detecting a semiconductor memory device having a ferroelectric capacitor. Basically includes SS writing step ST100, heat leaving step ST110, SS reading step ST120, OS writing step ST130, ΔS leaving step ST140, OS reading step ST150 similar to the detection method shown in FIG. 8B. By changing the voltage and temperature of force data writing and data reading, an attempt was made to make the imprint look larger or to accelerate it.
[0038] 図 2は、 OSの書き込み、読み出しの温度を代えた実験を説明する表とグラフである 。図 2Aは実験条件をまとめて示す表である。最上段に示すように、 SS書き込みステ ップ ST100、 OS書き込みステップ ST130、 OS放置ステップ ST140、 OS読み出し ステップ ST150について説明する。 SS書き込みステップ ST100は、従来の最低電 圧、高温に代え、 3. 6V,室温 (約 25°C)で行なった。高電圧で書き込む方が強誘電 体により強く癖をつけるであろうと期待したものである。熱放置ステップ ST110, SS読 み出しステップ ST120は従来同様に行なった。 FIG. 2 is a table and a graph illustrating an experiment in which the temperature of writing and reading of the OS was changed. Figure 2A is a table that summarizes the experimental conditions. As shown in the top row, Steps ST100, OS writing step ST130, OS leaving step ST140, and OS reading step ST150 will be described. SS writing step ST100 was performed at room temperature (approximately 25 ° C) at 3.6 V instead of the conventional minimum voltage and high temperature. It was expected that writing at high voltage would add more habit to the ferroelectric. The heat leaving step ST110 and the SS reading step ST120 were performed in the same manner as in the past.
[0039] OS書き込みステップ ST130は、 2. 7Vで、温度を— 45。C、 _5°C、 25°Cで行レ、、放 置ステップ ST140は、 15分と長めにし、 85°Cの高温で行い、〇S読み出しステップ S T150は、 2. 7Vで温度を一 45°Cと 85°Cで行なった。書き込み温度、読み出し温度 の組合せは、 (_45°C、 _45。C)、(― 45°C、 85。C)、 (― 5°C、 85。C)、 (25。C、 85°C) の 4種類である。 - 45°Cは最低動作温度、 85°Cは最高動作温度である。  [0039] OS writing step ST130 is 2.7V and the temperature is -45. C, _5 ° C, run at 25 ° C, leaving step ST140 as long as 15 minutes, perform at high temperature of 85 ° C, and ΔS reading step ST150 reduce the temperature by 2.7V Performed at ° C and 85 ° C. The combination of write temperature and read temperature is (_45 ° C, _45.C), (-45 ° C, 85.C), (-5 ° C, 85.C), (25.C, 85 ° C) There are four types. -45 ° C is the minimum operating temperature, 85 ° C is the maximum operating temperature.
[0040] 図 2Cは、強誘電体を低温にした時に期待されるヒステリシスの変化を示す。低温に するとヒステリシスは破線から実線で示すように変化し、横方向(電圧方向)に拡がる 。高電圧 Vcが高くなり、書き込みにくくなるであろう。  FIG. 2C shows a change in hysteresis expected when the ferroelectric is cooled to a low temperature. At low temperatures, the hysteresis changes from the dashed line to the solid line, and expands in the horizontal direction (voltage direction). The high voltage Vc will be high and writing will be difficult.
[0041] 図 2Dは、強誘電体を高温にした時に期待されるヒステリシスの変化を示す。高温に するとヒステリシスは破線から実線で示すように変化し、縦方向(分極方向)が縮小す る。分極が減少(減磁)することにより、読み出しにくくなるであろう。  FIG. 2D shows a change in hysteresis expected when the ferroelectric is heated to a high temperature. When the temperature is increased, the hysteresis changes from the broken line to the solid line, and the vertical direction (polarization direction) decreases. A decrease in polarization (demagnetization) will make reading difficult.
[0042] 図 2Bは実験結果を示す。 45°Cで書き込み、読み出しを行った場合、欠陥ビット 数は 0であった。最低動作温度でも書き込み、読み出しが正常に行えると考えること ができょう。ところ力 読みだし温度を 85°Cに変更すると、欠陥ビット数は 1471に増 カロした。インプリントが大きく見えたことになるのであろう。書き込み温度を 5°Cに昇 温すると欠陥ビット数は 0となった。書き込み温度を 25°C (室温)に昇温しても、欠陥 ビット数は 0であった。  FIG. 2B shows the experimental results. When writing and reading were performed at 45 ° C, the number of defective bits was 0. It can be considered that writing and reading can be performed normally even at the minimum operating temperature. However, when the force reading temperature was changed to 85 ° C, the number of defective bits increased to 1471. The imprint should have looked big. When the writing temperature was raised to 5 ° C, the number of defective bits became 0. Even when the writing temperature was raised to 25 ° C (room temperature), the number of defective bits was 0.
[0043] 詳しい理由は不明である力 S、〇Sを低温で書き込み、高温で読み出すと、インプリン トが強調されて検出できると考えられる。デバイス検査の欠陥判定結果を説明したが 、モニタ検查を行い、電荷量を検出すれば、書き込み温度、読みだし温度の温度差 の影響がより明瞭となろう。この結果のみからは、 90°Cの温度差ではインプリントは大 きく見えず、 130°Cの温度差ではインプリントが著しく大きく見えることになる。 100°C 以上の温度差が好ましいであろう。 [0044] 図 1のステップ ST130, ST150をそれぞれ低温、高温で行なうのはこのようなイン プリント強調効果を期待するものである。 When the forces S and ΔS, for which the detailed reason is unknown, are written at a low temperature and read at a high temperature, it is considered that the imprint can be emphasized and detected. Although the results of the defect determination in the device inspection have been described, if the monitor inspection is performed and the charge amount is detected, the influence of the temperature difference between the writing temperature and the reading temperature will be clearer. From these results alone, the imprint does not look large at a temperature difference of 90 ° C, and the imprint looks remarkably large at a temperature difference of 130 ° C. A temperature difference of 100 ° C or more would be preferred. Performing steps ST130 and ST150 in FIG. 1 at a low temperature and a high temperature, respectively, expects such an imprint enhancement effect.
図 3は、 OS書き込み後の放置を高温にし、放置時間を変化させた場合の実験を説 明する表とグラフである。図 3Aは実験条件をまとめて示す表である。 SS書き込みス テツプ ST100は、電圧 3. 7V、室温(約 25°C)で行なった。〇S書き込みステップ ST 130は 2. 6V、室温で行い、その後の放置ステップ ST140の放置時間を 0、 1 , 10, 20, 60 (分)、 90°Cで行なった。 OS読みだしステップ ST150は、 2. 6V、室温で行 なった。  Figure 3 is a table and a graph that describe an experiment in which the temperature after leaving the OS was elevated and the duration was varied. Figure 3A is a table that summarizes the experimental conditions. The SS writing step ST100 was performed at a voltage of 3.7 V and at room temperature (about 25 ° C). 〇S writing step ST130 was performed at 2.6 V and room temperature, and then, leaving step ST140 was performed at 0, 1, 10, 20, 60 (min) and 90 ° C. OS reading step ST150 was performed at 2.6 V and room temperature.
[0045] 図 3Bは、〇S放置時間依存性を示すグラフである。横軸は SS熱放置時間の積算 値を示し、縦軸は OS読みだし時のキャパシタ Cxからの電荷量 Pとキャパシタ Cyから の電荷量 Uの差を示す。〇S放置時間 0, 1, 10, 20, 60 (分)の各サンプルについて 、測定結果をプロットしてある。どの条件でも、熱放置時間の増加と共に、 OS電荷量 は減少している。 OS電荷量の減少は、インプリントが進んでいることを示すと考えら れる。  FIG. 3B is a graph showing ΔS standing time dependency. The horizontal axis shows the integrated value of the SS heat storage time, and the vertical axis shows the difference between the charge amount P from the capacitor Cx and the charge amount U from the capacitor Cy when reading the OS.測定 The measurement results are plotted for each of the samples with S standing times of 0, 1, 10, 20, and 60 (minutes). Under all conditions, the OS charge decreases as the thermal storage time increases. It is considered that the decrease in the OS charge indicates that the imprint is progressing.
[0046] 図 3Cは、熱放置時間が 24時間の時の OS電荷量に対し、熱放置時間が 1000時 間の時の OS電荷量がどの程度減少したかの比率(OSレート)を%で示したグラフで ある。 OS放置時間ごとに OSレートを示す。各サンプルでインプリントが発生すると考 えられるステップ ST100, ST110は同一であるので、 OSレートの絶対値が大きいほ ど、インプリントの影響が強く表れていると考えられる。 OS放置時間が長くなると、 OS レートの絶対値が大きくなる傾向が示されている力 S、 OS放置時間が 10分を越えると 増加の傾向は飽和しているようである。  [0046] FIG. 3C shows the percentage (OS rate) of how much the amount of OS charge decreased when the heat exposure time was 1000 hours with respect to the OS charge amount when the heat exposure time was 24 hours. It is the graph shown. Shows the OS rate for each OS idle time. Since the steps ST100 and ST110 where the imprint is considered to occur in each sample are the same, it is considered that the larger the absolute value of the OS rate, the stronger the influence of the imprint is. The tendency is that the absolute value of the OS rate tends to increase as the OS leaving time increases, and that the increase tends to saturate when the OS leaving time exceeds 10 minutes.
[0047] インプリントを大きく見せるには、〇S放置時間は 10分以上にするとよいことが判る。  [0047] It can be seen that the ΔS leaving time should be set to 10 minutes or more to make the imprint appear large.
なお、 OS放置温度を最高温度 85°Cとしているが、それより低い温度で放置した時は 、放置時間をさらに長くすることが好ましいであろう。図 1のステップ ST140の高温、 1 0分以上はこのことを示す。  Although the OS leaving temperature is set to the maximum temperature of 85 ° C., it is preferable to further extend the leaving time when the operating temperature is left lower than 85 ° C. The high temperature of step ST140 in FIG. 1 for more than 10 minutes indicates this.
[0048] 図 4は、〇S書き込み電圧を変化させた時の実験を説明する表とグラフである。図 4 Aは、実験条件をまとめて示す表である。 SS書き込みステップ ST100、〇S読みだし ステップ ST150は、図 3Aと同様である。 OS書き込みステップ ST130の書き込み電 圧を 2. 2V、 2. 6V、 3. OVに変化させた。温度は室温である。さらに、 OS放置ステツ プ ST140を 20分と十分長くし、温度もさらに高く 90°Cとした。 FIG. 4 is a table and a graph illustrating an experiment when the ΔS write voltage is changed. FIG. 4A is a table summarizing the experimental conditions. The SS writing step ST100 and the ΔS reading step ST150 are the same as those in FIG. 3A. OS write step ST130 write power The pressure was changed to 2.2V, 2.6V, and 3.0V. The temperature is room temperature. In addition, OS standing step ST140 was made sufficiently long, 20 minutes, and the temperature was further increased to 90 ° C.
[0049] 図 4Bは、 OS書き込み電圧依存性を示すグラフである。横軸は SS熱放置時間の積 算値を示し、縦軸は OS読みだし時のキャパシタ Cxからの電荷量 Pとキャパシタ Cyか らの電荷量 Uの差を示す。〇S書き込み電圧 3. 0V、 2. 6V、 2. 2Vの各サンプルに ついて、測定結果をプロットしてある。どの条件でも、熱放置時間の増加と共に、 OS 電荷量は減少している。〇S電荷量の減少は、インプリントが進んでいることを示すと 考えられる。 FIG. 4B is a graph showing OS write voltage dependency. The horizontal axis shows the integrated value of the SS heat storage time, and the vertical axis shows the difference between the charge amount P from the capacitor Cx and the charge amount U from the capacitor Cy when reading the OS. 〇 Measurement results are plotted for each sample of 3.0V, 2.6V, and 2.2V S write voltage. Under all conditions, the OS charge decreased with increasing heat exposure time.減少 The decrease in S charge is considered to indicate that imprinting is progressing.
[0050] 図 4Cは、熱放置時間が 24時間の時の OS電荷量に対し、熱放置時間が 1000時 間の時の OS電荷量がどの程度減少したかの比率(〇Sレート)を%で示したグラフで ある。 OS書き込み電圧ごとに〇sレートを示す。各サンプノレでインプリントが発生する と考えられるステップ ST100, ST110は同一であるので、 OSレートの絶対値が大き レ、ほど、インプリントの影響が強く表れていると考えられる。 OS書き込み電圧が低くな ると、 OSレートの絶対値が大きくなる傾向が示されている。例えば OS書き込みは最 低動作電圧で行うのが好ましいであろう。図 1のステップ ST130の低電圧はこのこと を示す。  [0050] FIG. 4C shows the ratio (〇S rate) of how much the amount of OS charge decreased when the heat exposure time was 1000 hours to the amount of OS charge when the heat exposure time was 24 hours. This is the graph indicated by. The Δs rate is shown for each OS write voltage. Since the steps ST100 and ST110 at which imprint is considered to occur at each sample are the same, it is considered that the larger the absolute value of the OS rate, the stronger the influence of imprint is. As the OS write voltage decreases, the absolute value of the OS rate tends to increase. For example, it may be preferable to write the OS at the lowest operating voltage. The low voltage at step ST130 in FIG. 1 indicates this.
[0051] 図 5は、 SS書き込み電圧を変化させた時の実験を説明する表とグラフである。図 5 Aは、実験条件をまとめて示す表である。 SS書き込みステップ ST100の書き込み電 圧を 4. 4V、 3. 7V、 3. OVと変化させた。温度は室温である。 OS書き込みステップ S T130は、電圧 2. 6V、室温で行なった。即ち、 SS書き込み電圧は SS読み出し電圧 より高く設定した。 OS放置ステップ ST140、 OS読みだしステップ ST150は、図 4Aと 同様である。  FIG. 5 is a table and a graph illustrating an experiment when the SS write voltage is changed. FIG. 5A is a table summarizing the experimental conditions. SS write step The write voltage of ST100 was changed to 4.4V, 3.7V, and 3.0V. The temperature is room temperature. The OS writing step ST130 was performed at a voltage of 2.6 V and at room temperature. That is, the SS write voltage was set higher than the SS read voltage. OS leaving step ST140 and OS reading step ST150 are the same as those in FIG. 4A.
[0052] 図 5Bは、 SS書き込み電圧依存性を示すグラフである。横軸は SS熱放置時間の積 算値を示し、縦軸は OS読みだし時のキャパシタ Cxからの電荷量 Pとキャパシタ Cyか らの電荷量 Uの差を示す。 SS書き込み電圧 4. 4V、 3. 7V、 3. OVの各サンプルに ついて、測定結果をプロットしてある。どの条件でも、熱放置時間の増加と共に、 OS 電荷量は減少している。〇S電荷量の減少は、インプリントが進んでいることを示すと 考えられる。 [0053] 図 5Cは、熱放置時間が 24時間の時の OS電荷量に対し、熱放置時間が 1000時 間の時の OS電荷量がどの程度減少したかの比率(OSレート)を%で示したグラフで ある。 SS書き込み電圧ごとに OSレートを示す。 OS書き込み、放置、読み出しは同条 件なので、〇Sレートの絶対値が大きいほど、インプリントが強く発生していると考えら れる。 SS書き込み電圧が高くなると、 OSレートの絶対値が大きくなる傾向が示されて いる。例えば SS書き込みは最高動作電圧で行うのが好ましいであろう。図 1のステツ プ ST100の高電圧はこのことを示す。 FIG. 5B is a graph showing the SS write voltage dependency. The horizontal axis shows the integrated value of the SS heat storage time, and the vertical axis shows the difference between the charge amount P from the capacitor Cx and the charge amount U from the capacitor Cy when reading the OS. The measurement results are plotted for each of the SS writing voltage samples of 4.4V, 3.7V and 3.OV. Under all conditions, the OS charge decreased with increasing heat exposure time.減少 The decrease in S charge is considered to indicate that imprinting is progressing. [0053] Figure 5C shows the percentage (OS rate) of how much the amount of OS charge decreased when the heat exposure time was 1000 hours compared to the OS charge amount when the heat exposure time was 24 hours. It is the graph shown. OS rate is shown for each SS write voltage. Since OS writing, leaving, and reading are the same conditions, it is considered that imprint occurs more strongly as the absolute value of the ΔS rate is larger. It has been shown that the absolute value of the OS rate tends to increase as the SS write voltage increases. For example, it may be preferable to perform SS writing at the highest operating voltage. The high voltage at step ST100 in FIG. 1 indicates this.
[0054] 以上、実施例に沿って本発明を説明したが、本発明はこれらに限定されるものでは ない。例えば、種々の変更、改良、組合せが可能なことは当業者に自明であろう。  As described above, the present invention has been described with reference to the examples. However, the present invention is not limited to these examples. For example, it will be apparent to those skilled in the art that various modifications, improvements, and combinations are possible.

Claims

請求の範囲 The scope of the claims
[1] 強誘電体キャパシタを用いた不揮発性メモリを有する半導体記憶装置の強誘電体キ ャパシタに対して、  [1] For a ferroelectric capacitor of a semiconductor memory device having a nonvolatile memory using a ferroelectric capacitor,
(a)第 1の分極状態を第 1の書き込み電圧で書き込む工程と、  (a) writing a first polarization state at a first write voltage,
(b)前記第 1の分極状態を熱放置する工程と、  (b) thermally leaving the first polarization state;
(c)前記第 1の分極状態を第 1の読み出し電圧で読み出す工程と、  (c) reading the first polarization state at a first read voltage;
(d)前記工程 (c)の後、前記第 1の分極状態と逆の第 2の分極状態を書き込む工程 と、  (d) after the step (c), writing a second polarization state opposite to the first polarization state;
(e)前記第 2の分極状態を放置する工程と、  (e) leaving the second polarization state;
(f)前記第 2の分極状態を第 2の読み出し電圧で読み出す工程と、  (f) reading the second polarization state at a second read voltage;
を含み、書き込み、読み出しの電圧、温度の少なくとも一方が工程により異なり、前記 工程 (a)、(b)、(c)でリテンション性能を検査し、引き続く前記工程(d)、(e)、(f)でィ ンプリント性能を検査する半導体記憶装置の検査方法。  At least one of the voltage and temperature for writing and reading differs depending on the process, and the retention performance is inspected in the steps (a), (b) and (c), and the subsequent steps (d), (e) and ( Inspection method of semiconductor memory device for inspecting imprint performance in f).
[2] 前記工程 (d)の温度が前記工程 (f)の温度より低い請求の範囲 1記載の半導体記憶 装置の検査方法。 [2] The inspection method for a semiconductor memory device according to claim 1, wherein the temperature in the step (d) is lower than the temperature in the step (f).
[3] 前記工程 (d)の温度が前記工程 (f)の温度より 100°C以上低レ、請求の範囲 2記載の 半導体記憶装置の検査方法。 3. The method for testing a semiconductor memory device according to claim 2, wherein the temperature of the step (d) is lower than the temperature of the step (f) by 100 ° C. or more.
[4] 前記第 2の書き込み電圧が、前記第 1の書き込み電圧より低い請求の範囲 1一 3のい ずれか 1項記載の半導体記憶装置の検査方法。 4. The semiconductor memory device inspection method according to claim 1, wherein the second write voltage is lower than the first write voltage.
[5] 前記第 1の書き込み電圧が、前記第 1の読み出し電圧より高い請求の範囲 1一 3のい ずれか 1項記載の半導体記憶装置の検査方法。 5. The semiconductor memory device inspection method according to claim 1, wherein the first write voltage is higher than the first read voltage.
[6] 前記工程 (e)が、前記第 2の分極状態を 10分以上放置する請求の範囲 1一 3のいず れか 1項記載の半導体記憶装置の製造方法。 6. The method of manufacturing a semiconductor memory device according to claim 1, wherein in the step (e), the second polarization state is left for at least 10 minutes.
[7] 強誘電体キャパシタを用いた不揮発性メモリを有する半導体記憶装置の強誘電体キ ャパシタに対して、第 1の分極状態で放置した後、 [7] After the ferroelectric capacitor of the semiconductor memory device having the nonvolatile memory using the ferroelectric capacitor is left in the first polarization state,
(a)前記第 1の分極状態と逆の第 2の分極状態を書き込む工程と、  (a) writing a second polarization state opposite to the first polarization state,
(b)前記第 2の分極状態を放置する工程と、 (c)前記第 2の分極状態を読み出す工程と、 (b) leaving the second polarization state; (c) reading the second polarization state;
を含み、前記工程 (a)の温度または電圧が前記工程 (c)の温度または電圧と異なる 半導体記憶装置の検査方法。  A method for inspecting a semiconductor memory device, wherein the temperature or voltage in the step (a) is different from the temperature or voltage in the step (c).
[8] 前記工程 (a)の温度または電圧が工程 (c)の温度または電圧より低レ、請求の範囲 7 記載の半導体記憶装置の検査方法。 8. The method according to claim 7, wherein the temperature or the voltage in the step (a) is lower than the temperature or the voltage in the step (c).
[9] 前記工程 (a)の温度が前記工程(c)の温度より 100°C以上低レ、請求の範囲 8記載の 半導体記憶装置の検査方法。 9. The method of claim 8, wherein the temperature of the step (a) is lower than the temperature of the step (c) by 100 ° C. or more.
[10] 前期工程 (b)が、 10分以上の放置である請求の範囲 7— 9のいずれ力 4項記載の半 導体記憶装置の検査方法。 [10] The method for inspecting a semiconductor memory device according to claim 7, wherein the first step (b) is left for 10 minutes or more.
PCT/JP2004/007962 2004-06-08 2004-06-08 Method for inspecting semiconductor memory WO2005122180A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/007962 WO2005122180A1 (en) 2004-06-08 2004-06-08 Method for inspecting semiconductor memory
JP2006514366A JP4387407B2 (en) 2004-06-08 2004-06-08 Inspection method of semiconductor memory device
CN200480043138A CN100592426C (en) 2004-06-08 2004-06-08 Method for inspecting semiconductor memory
US11/593,018 US7982466B2 (en) 2004-06-08 2006-11-06 Inspection method for semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/007962 WO2005122180A1 (en) 2004-06-08 2004-06-08 Method for inspecting semiconductor memory

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/593,018 Continuation US7982466B2 (en) 2004-06-08 2006-11-06 Inspection method for semiconductor memory

Publications (1)

Publication Number Publication Date
WO2005122180A1 true WO2005122180A1 (en) 2005-12-22

Family

ID=35503339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007962 WO2005122180A1 (en) 2004-06-08 2004-06-08 Method for inspecting semiconductor memory

Country Status (4)

Country Link
US (1) US7982466B2 (en)
JP (1) JP4387407B2 (en)
CN (1) CN100592426C (en)
WO (1) WO2005122180A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124514A1 (en) * 2013-11-05 2015-05-07 Purdue Research Foundation Lifetime of Ferroelectric Devices
US9934840B2 (en) * 2014-03-11 2018-04-03 Texas Instruments Incorporated Method and circuit enabling ferroelectric memory to be fixed to a stable state
US9786349B1 (en) 2016-07-01 2017-10-10 Micron Technology, Inc. Cell performance recovery using cycling techniques

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102600A (en) * 1997-09-29 1999-04-13 Fujitsu Ltd Test method of ferroelectric memory

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086412A (en) * 1990-11-21 1992-02-04 National Semiconductor Corporation Sense amplifier and method for ferroelectric memory
US5337279A (en) * 1992-03-31 1994-08-09 National Semiconductor Corporation Screening processes for ferroelectric memory devices
US5432731A (en) * 1993-03-08 1995-07-11 Motorola, Inc. Ferroelectric memory cell and method of sensing and writing the polarization state thereof
US5677865A (en) * 1995-09-11 1997-10-14 Micron Technology, Inc. Ferroelectric memory using reference charge circuit
US6008659A (en) * 1996-03-15 1999-12-28 Ramtron International Corporation Method of measuring retention performance and imprint degradation of ferroelectric films
JPH09288891A (en) * 1996-04-19 1997-11-04 Matsushita Electron Corp Semiconductor memory
JP3305627B2 (en) * 1997-08-06 2002-07-24 富士通株式会社 Semiconductor device and manufacturing method thereof
US6281534B1 (en) * 1998-10-13 2001-08-28 Symetrix Corporation Low imprint ferroelectric material for long retention memory and method of making the same
JP2001067896A (en) 1999-08-27 2001-03-16 Matsushita Electronics Industry Corp Method for inspecting semiconductor memory and semiconductor memory
JP3884193B2 (en) * 1999-09-14 2007-02-21 株式会社東芝 Semiconductor memory device and test method thereof
JP2002008397A (en) 2000-06-22 2002-01-11 Matsushita Electric Ind Co Ltd Test method for semiconductor memory
TW514918B (en) * 2000-11-17 2002-12-21 Macronix Int Co Ltd Method and structure for sensing the polarity of ferro-electric capacitor in the ferro-electric memory
US6735546B2 (en) * 2001-08-31 2004-05-11 Matrix Semiconductor, Inc. Memory device and method for temperature-based control over write and/or read operations
US6878980B2 (en) * 2001-11-23 2005-04-12 Hans Gude Gudesen Ferroelectric or electret memory circuit
US6928376B2 (en) * 2002-10-03 2005-08-09 Texas Instruments Incorporated Apparatus and methods for ferroelectric ram fatigue testing
US6898104B2 (en) * 2002-11-12 2005-05-24 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor memory with sense amplifier
KR20040070564A (en) * 2003-02-04 2004-08-11 삼성전자주식회사 Ferroelectric capacitor and method of manufacturing the same
US7085150B2 (en) * 2004-12-20 2006-08-01 Texas Instruments Incorporated Methods for enhancing performance of ferroelectic memory with polarization treatment
JP4143094B2 (en) * 2006-03-07 2008-09-03 株式会社東芝 Ferroelectric memory device
JP2008071440A (en) * 2006-09-14 2008-03-27 Matsushita Electric Ind Co Ltd Ferroelectric memory device and its control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102600A (en) * 1997-09-29 1999-04-13 Fujitsu Ltd Test method of ferroelectric memory

Also Published As

Publication number Publication date
CN1957424A (en) 2007-05-02
US20070058416A1 (en) 2007-03-15
US7982466B2 (en) 2011-07-19
JPWO2005122180A1 (en) 2008-04-10
CN100592426C (en) 2010-02-24
JP4387407B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US9830990B2 (en) Semiconductor memory device
US6522567B2 (en) Semiconductor memory device and semiconductor integrated device using the same
US8441833B2 (en) Differential plate line screen test for ferroelectric latch circuits
US9842662B2 (en) Screening for data retention loss in ferroelectric memories
US20060120135A1 (en) Semiconductor memory device
JP3727157B2 (en) Semiconductor memory device and test method thereof
JP2000067597A (en) Ferroelectric memory, manufacture of ferroelectric memory, and test method for ferroelectric memory
JP2002093154A (en) Ferroelectric memory
US9607717B2 (en) Reliability screening of ferroelectric memories in integrated circuits
US6826099B2 (en) 2T2C signal margin test mode using a defined charge and discharge of BL and /BL
US7982466B2 (en) Inspection method for semiconductor memory
US9552880B2 (en) Screening for later life stuck bits in ferroelectric memories
US20040095799A1 (en) 2T2C signal margin test mode using different pre-charge levels for BL and/BL
US7477536B2 (en) Ferroelectric random access memory device and method of driving the same
JPH11102600A (en) Test method of ferroelectric memory
US20020008986A1 (en) Data reading method and semiconductor memory device
KR100838639B1 (en) Method for inspecting semiconductor memory
US6876590B2 (en) 2T2C signal margin test mode using a defined charge exchange between BL and/BL
US7120045B2 (en) Reference voltage generating apparatus for use in a ferroelectric random access memory (FRAM) and a driving method therefor
US6731554B1 (en) 2T2C signal margin test mode using resistive element
US6781866B2 (en) Semiconductor memory and writing method and reading method for the same
JP2001217401A (en) Manufacturing method of ferroelectric ram
JP2002008397A (en) Test method for semiconductor memory
Noh et al. Issues and reliability of high-density FeRAMs
Kang et al. The reliability of FeRAMS with 2T/2C or 1T/1C type cell structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043138.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514366

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11593018

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067023295

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 11593018

Country of ref document: US

122 Ep: pct application non-entry in european phase