WO2005119686A2 - Procede pour augmenter la largeur de bande d'une memoire ddr dans des modules sdram ddr - Google Patents

Procede pour augmenter la largeur de bande d'une memoire ddr dans des modules sdram ddr Download PDF

Info

Publication number
WO2005119686A2
WO2005119686A2 PCT/US2005/018679 US2005018679W WO2005119686A2 WO 2005119686 A2 WO2005119686 A2 WO 2005119686A2 US 2005018679 W US2005018679 W US 2005018679W WO 2005119686 A2 WO2005119686 A2 WO 2005119686A2
Authority
WO
WIPO (PCT)
Prior art keywords
cas
precharge
memory
page
ras
Prior art date
Application number
PCT/US2005/018679
Other languages
English (en)
Other versions
WO2005119686A3 (fr
Inventor
Ryan M. Petersen
Franz Michael Shuette
Original Assignee
Ocz Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocz Technology filed Critical Ocz Technology
Priority to EP05760508.1A priority Critical patent/EP1776641B1/fr
Priority to AU2005251173A priority patent/AU2005251173B2/en
Publication of WO2005119686A2 publication Critical patent/WO2005119686A2/fr
Publication of WO2005119686A3 publication Critical patent/WO2005119686A3/fr

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1015Read-write modes for single port memories, i.e. having either a random port or a serial port
    • G11C7/1018Serial bit line access mode, e.g. using bit line address shift registers, bit line address counters, bit line burst counters
    • G11C7/1021Page serial bit line access mode, i.e. using an enabled row address stroke pulse with its associated word line address and a sequence of enabled column address stroke pulses each with its associated bit line address
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1066Output synchronization
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1072Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits

Definitions

  • the present invention generally relates to memory devices, and more particularly relates to increasing the bandwidth of DDR (double data rate) SDRAM (synchronous dynamic random access memory) modules.
  • DDR double data rate
  • SDRAM synchronous dynamic random access memory
  • the present invention provides a method of increasing DDR memory bandwidth in DDR SDRAM modules.
  • DDR memory has an inherent feature called the Variable Early Read command, where the read command is issued one CAS latency before the end of an ongoing transfer.
  • the Variable Early Read command the effect of the CAS latency is minimized in terms of the effect on bandwidth.
  • the enhanced bandwidth technology achieved with this invention optimizes the remaining two access latencies (t RP and t co) for optimal bandwidth.
  • Figure 1 is a schematic overview of an internal bank of a memory device: After a row has been selected and activated (highlighted area on left), the Column Address Strobe (CAS) can select a block of logically coherent addresses within this row (right). The number of page hits is limited among other factors by the limited number of column addresses within each page. Note that, per DRAM convention, rows are running vertically and columns horizontally.
  • Figure 2 is a timing diagram for two modules, one running at t RCD -4.
  • the effective bandwidth is the ratio between data transfers (diamonds): NoOps (arrows) which, in the case of EB is 8:7 without EB, this ratio is 8:10, meaning that every transfer of 16 bits is penalized with either 7 or 10 subsequent bus idle cycles (Abbreviations used: t RC D; RAS-to-CAS delay; CL: CAS latency; t R P : precharge-to-activate delay; Clk: clock; Act: row activate command; Rd: read command; Pr: Precharge command, NoOp: No Operation).
  • Figure 3 shows the effect of issuing an Early Read Command on back-to-back transactions of consecutively requested data blocks within the same page. Following one Row Activate Command, three Read commands are given at a CAS Latency of either 2, 2.5 or 3. The squares are the data transfers that belong to the square-shaped Read Command. The graph shows that the net effect of increasing the CAS latency is a single cycle delay within a string of (in this case) 12 consecutive transfers but no degradation of bandwidth. The double-arrows indicate the CAS latency which is amended by moving the read command further to the left (relative to the end of the previous b ⁇ ist). (Abbreviations used: Clk: clock; Act: row activate command; Rd: read command; Pr: Precharge command, CL: CAS Latency).
  • Figure 4 illustrates an alternate embodiment of the present invention.
  • Tjie present, invention provides enhanced bandwidth (EB) technology as a means of increasing memory bandwidth through the optimization of memory latencies for the best possible interaction between the system memory and the chipset and memory controller.
  • EB enhanced bandwidth
  • Memory bandwidth is influenced by two major factors; frequencies and latencies.
  • Transfer frequency is important since the theoretical peak bandwidth is defined by the bus width (in number of bits) multiplied by the frequency.
  • Theoretical peak bandwidth is defined as the physical limit of the number of bytes that can be transferred from sender to receiver without counting idle bus period.
  • the total theoretical peak bandwidth is a factor of the operating frequency alone. In real life, however, this equation is not adequate.
  • No computer system regardless of how well it is optimized, is able to achieve peak transfer rates in a sustained fashion since only a limited number of back-to-back transactions can be carried out.
  • Initial access latencies, along with memory-internal parameters such as page boundaries within the memory devices, pose an effective barrier to the actual peak bandwidth.
  • Each page hit specifies a block of 64 column addresses that results in an output of eight transfers of eight bits each (in the case of an x8 memory device).
  • subsequent blocks do not need to follow a contiguous column address pattern as long as the sequence is predetermined. This is important for the understanding how, within a given page, the Column Address Strobe (CAS) can jump back and forth between higher and lower addresses without missing the page.
  • CAS Column Address Strobe
  • a read command is issued.
  • the time taken for this entire process is the RAS-to-CAS delay (t C D ) ⁇
  • Both t RP and t RC D are the two main factors that cause a reduction in effective memory bandwidth.
  • the CAS latency (CL) determines the number of penalty cycles incurred between the read command and the start of data output to the bus.
  • a read command can be issued concurrent with an ongoing data burst. This means that the read command for the next data burst can be issued before an ongoing data transfer is exhausted with the result that the latency cycles are hidden behind the previous transfer.
  • CAS latency therefore plays a much smaller role in limiting bandwidth than RAS-to-CAS Delay or Precharge latency.
  • CL CAS latency
  • EB technology further capitalizes on another feature possible in DDR through the Variable Early Read Command. Early Read Command compensates for higher CAS latencies by changing the time at which a read command is issued relative to an ongoing transfer.
  • the 2.5-2-3 (CL-t R P -t R C D )will deliver bandwidth that is indistinguishable from CL-2 modules, and t R P and t R D latencies that are both lower than the CAS latency CL, such as 2.5,-2,-2 (CL-t P -t RCD ), will work even better.
  • Current computer technology uses a dedicated memory controller that is either part of the chipset or else integrated directly on the CPU itself, This memory controller genprates the addresses and commands at pre-specified timing intervals.
  • one embodiment of the current .t ⁇ y ti$n,it ⁇ usjjr ⁇ ted in Figure 4 uses a mejnpry cqnttoller integrated on the mernory module 400' that includes a data buffer 410 and is fanning out to the individual memory ,; integrated chips 420 to generate the addresses and commands at the specified latencies.
  • a fully buffered module connected to the core logic 500 via a high-speed serial bus 510 will see the same or better improvement of bandwidth according to the method of the invention.

Abstract

La présente invention concerne un procédé destiné à augmenter la largeur de bande d'une mémoire DDR dans des modules SDRAM DDR. La mémoire DDR comprend une fonction intégrée, appelée commande de prélecture variable, délivrée en fonction d'un temps d'attente CAS avant la fin d'une rafale de données en cours de traitement. L'utilisation de la commande de prélecture variable permet de réduire au minimum l'effet du temps d'attente CAS sur la largeur de bande. La technique d'amélioration de la largeur de bande mise en oeuvre optimise les deux temps d'attente d'accès ( tRP and tRCD) restants pour une largeur de bande optimale. Ces optimisations dans le SPD produisent des largeurs de bande considérablement meilleures dans des applications réelles.
PCT/US2005/018679 2004-05-26 2005-05-26 Procede pour augmenter la largeur de bande d'une memoire ddr dans des modules sdram ddr WO2005119686A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05760508.1A EP1776641B1 (fr) 2004-05-26 2005-05-26 Procede pour augmenter la largeur de bande d'une memoire ddr dans des modules sdram ddr
AU2005251173A AU2005251173B2 (en) 2004-05-26 2005-05-26 Method of increasing DDR memory bandwidth in DDR SDRAM modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52157004P 2004-05-26 2004-05-26
US60/521,570 2004-05-26

Publications (2)

Publication Number Publication Date
WO2005119686A2 true WO2005119686A2 (fr) 2005-12-15
WO2005119686A3 WO2005119686A3 (fr) 2007-01-11

Family

ID=35463605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/018679 WO2005119686A2 (fr) 2004-05-26 2005-05-26 Procede pour augmenter la largeur de bande d'une memoire ddr dans des modules sdram ddr

Country Status (5)

Country Link
US (1) US8151030B2 (fr)
EP (1) EP1776641B1 (fr)
AU (1) AU2005251173B2 (fr)
TW (1) TWI380314B (fr)
WO (1) WO2005119686A2 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8055833B2 (en) 2006-10-05 2011-11-08 Google Inc. System and method for increasing capacity, performance, and flexibility of flash storage
US8438328B2 (en) 2008-02-21 2013-05-07 Google Inc. Emulation of abstracted DIMMs using abstracted DRAMs
US7392338B2 (en) 2006-07-31 2008-06-24 Metaram, Inc. Interface circuit system and method for autonomously performing power management operations in conjunction with a plurality of memory circuits
US8335894B1 (en) 2008-07-25 2012-12-18 Google Inc. Configurable memory system with interface circuit
US7386656B2 (en) 2006-07-31 2008-06-10 Metaram, Inc. Interface circuit system and method for performing power management operations in conjunction with only a portion of a memory circuit
US9171585B2 (en) 2005-06-24 2015-10-27 Google Inc. Configurable memory circuit system and method
US20080082763A1 (en) 2006-10-02 2008-04-03 Metaram, Inc. Apparatus and method for power management of memory circuits by a system or component thereof
US8111566B1 (en) 2007-11-16 2012-02-07 Google, Inc. Optimal channel design for memory devices for providing a high-speed memory interface
US8081474B1 (en) 2007-12-18 2011-12-20 Google Inc. Embossed heat spreader
US8130560B1 (en) 2006-11-13 2012-03-06 Google Inc. Multi-rank partial width memory modules
US8386722B1 (en) 2008-06-23 2013-02-26 Google Inc. Stacked DIMM memory interface
US8077535B2 (en) 2006-07-31 2011-12-13 Google Inc. Memory refresh apparatus and method
US9542352B2 (en) 2006-02-09 2017-01-10 Google Inc. System and method for reducing command scheduling constraints of memory circuits
US8397013B1 (en) 2006-10-05 2013-03-12 Google Inc. Hybrid memory module
US8041881B2 (en) 2006-07-31 2011-10-18 Google Inc. Memory device with emulated characteristics
US8089795B2 (en) 2006-02-09 2012-01-03 Google Inc. Memory module with memory stack and interface with enhanced capabilities
US8796830B1 (en) 2006-09-01 2014-08-05 Google Inc. Stackable low-profile lead frame package
US8060774B2 (en) 2005-06-24 2011-11-15 Google Inc. Memory systems and memory modules
US20080028136A1 (en) 2006-07-31 2008-01-31 Schakel Keith R Method and apparatus for refresh management of memory modules
US8327104B2 (en) 2006-07-31 2012-12-04 Google Inc. Adjusting the timing of signals associated with a memory system
US9507739B2 (en) 2005-06-24 2016-11-29 Google Inc. Configurable memory circuit system and method
US8169233B2 (en) 2009-06-09 2012-05-01 Google Inc. Programming of DIMM termination resistance values
US8359187B2 (en) 2005-06-24 2013-01-22 Google Inc. Simulating a different number of memory circuit devices
US8244971B2 (en) 2006-07-31 2012-08-14 Google Inc. Memory circuit system and method
US8090897B2 (en) 2006-07-31 2012-01-03 Google Inc. System and method for simulating an aspect of a memory circuit
US10013371B2 (en) 2005-06-24 2018-07-03 Google Llc Configurable memory circuit system and method
US7379316B2 (en) 2005-09-02 2008-05-27 Metaram, Inc. Methods and apparatus of stacking DRAMs
US9632929B2 (en) 2006-02-09 2017-04-25 Google Inc. Translating an address associated with a command communicated between a system and memory circuits
JP2007249837A (ja) * 2006-03-17 2007-09-27 Nec Electronics Corp メモリ制御装置、メモリ制御方法及び携帯機器
US7724589B2 (en) 2006-07-31 2010-05-25 Google Inc. System and method for delaying a signal communicated from a system to at least one of a plurality of memory circuits
US8209479B2 (en) 2007-07-18 2012-06-26 Google Inc. Memory circuit system and method
US8080874B1 (en) 2007-09-14 2011-12-20 Google Inc. Providing additional space between an integrated circuit and a circuit board for positioning a component therebetween
US8171181B2 (en) * 2008-05-05 2012-05-01 Micron Technology, Inc. Memory module with configurable input/output ports

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960003526B1 (ko) * 1992-10-02 1996-03-14 삼성전자주식회사 반도체 메모리장치
US6004142A (en) * 1997-03-04 1999-12-21 Micron Technology, Inc. Interposer converter to allow single-sided contact to circuit modules
US6330636B1 (en) * 1999-01-29 2001-12-11 Enhanced Memory Systems, Inc. Double data rate synchronous dynamic random access memory device incorporating a static RAM cache per memory bank
US6151236A (en) * 2000-02-29 2000-11-21 Enhanced Memory Systems, Inc. Enhanced bus turnaround integrated circuit dynamic random access memory device
DE10229120B4 (de) 2002-06-28 2004-05-27 Infineon Technologies Ag Verfahren, Adapterkarte und Anordnung zum Einbau von Speichermodulen
US7035150B2 (en) * 2002-10-31 2006-04-25 Infineon Technologies Ag Memory device with column select being variably delayed
US6963516B2 (en) * 2002-11-27 2005-11-08 International Business Machines Corporation Dynamic optimization of latency and bandwidth on DRAM interfaces
US20050086037A1 (en) * 2003-09-29 2005-04-21 Pauley Robert S. Memory device load simulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP1776641A4

Also Published As

Publication number Publication date
EP1776641A2 (fr) 2007-04-25
AU2005251173A1 (en) 2005-12-15
US8151030B2 (en) 2012-04-03
WO2005119686A3 (fr) 2007-01-11
TWI380314B (en) 2012-12-21
EP1776641B1 (fr) 2013-05-01
TW200614256A (en) 2006-05-01
US20050278474A1 (en) 2005-12-15
AU2005251173B2 (en) 2009-09-03
EP1776641A4 (fr) 2007-12-05

Similar Documents

Publication Publication Date Title
US8151030B2 (en) Method of increasing DDR memory bandwidth in DDR SDRAM modules
JP5032337B2 (ja) 有向自動リフレッシュ同期
EP0978842B1 (fr) Dispositif de mémoire à semiconducteurs synchrone à accès à rafale
US5889714A (en) Adaptive precharge management for synchronous DRAM
JP5228472B2 (ja) 半導体メモリおよびシステム
EP1894109B1 (fr) Indicateur non-dram et procede d'acces a des donnees non stockees dans une matrice dram
US7251192B2 (en) Register read for volatile memory
US6226755B1 (en) Apparatus and method for enhancing data transfer to or from a SDRAM system
JP2005222581A5 (fr)
JP2005517242A (ja) アドレス空間、バスシステム、メモリコントローラ及びデバイスシステム
US20130229885A1 (en) Semiconductor memory device and access method thereof
US8688892B2 (en) System and method for increasing DDR memory bandwidth in DDR SDRAM modules
US20040088472A1 (en) Multi-mode memory controller
JP3523004B2 (ja) 同期式ランダムアクセスメモリ
JP2008102932A (ja) メモリ・アクセスを実施する方法および装置
JP2000195253A (ja) Dram及びdramのデ―タ・アクセス方法
US6643194B2 (en) Write data masking for higher speed drams
US20030103387A1 (en) Packet-based integrated circuit dynamic random access memory device incorporating an on-chip row register cache to reduce data access latencies
US7617354B2 (en) Abbreviated burst data transfers for semiconductor memory
US6545932B1 (en) SDRAM and method for data accesses of SDRAM
US6650573B2 (en) Data input/output method
US6785190B1 (en) Method for opening pages of memory with a single command
EP2851802B1 (fr) Procédé de programmation de mémoire et contrôleur de mémoire
JP4759213B2 (ja) 高速データアクセスのためのdram
CN108027765B (zh) 一种内存访问方法以及计算机系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005760508

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005251173

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005251173

Country of ref document: AU

Date of ref document: 20050526

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005251173

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005760508

Country of ref document: EP