WO2005119231A1 - Characteristic measuring apparatus and characteristic measuring method - Google Patents

Characteristic measuring apparatus and characteristic measuring method Download PDF

Info

Publication number
WO2005119231A1
WO2005119231A1 PCT/JP2005/010629 JP2005010629W WO2005119231A1 WO 2005119231 A1 WO2005119231 A1 WO 2005119231A1 JP 2005010629 W JP2005010629 W JP 2005010629W WO 2005119231 A1 WO2005119231 A1 WO 2005119231A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
characteristic
characteristic measuring
energy
measured
Prior art date
Application number
PCT/JP2005/010629
Other languages
French (fr)
Japanese (ja)
Inventor
Toshimasa Hashimoto
Junko Morikawa
Eita Hayakawa
Original Assignee
The Circle For The Promotion Of Science And Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Circle For The Promotion Of Science And Engineering filed Critical The Circle For The Promotion Of Science And Engineering
Publication of WO2005119231A1 publication Critical patent/WO2005119231A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Definitions

  • the present invention relates to a characteristic measuring instrument capable of easily measuring various characteristics of various samples including substances, materials, and systems, and the characteristic measuring instrument.
  • Signal and Z or signal processor that can be used particularly preferably in combination with various properties of various samples including substances, materials, and systems (eg, heat transfer, heat insulation, etc.)
  • the present invention relates to a characteristic measuring method capable of easily measuring the thermal characteristic of the material.
  • various materials, materials, and systems-related fields eg, polymers, biotechnology, semiconductor materials, ceramic materials, and f-heat materials
  • various properties for example, thermal conductivity or thermal diffusivity as thermal properties.
  • materials to be measured include, for example, insulating paper, foamed polymer materials, highly molecularly oriented polymer films, multilayer films, spin-coated thin films, cast films, vapor-deposited films, Fabrics, vacuum insulating materials, building materials, wall materials, refrigerator heat insulating materials, automobile roofing materials, and the like can be mentioned.
  • the instrument for property measurement, the property measurement method, and the signal generator of the present invention can be suitably used for measurement of various properties such as physical properties.
  • thermal properties for example, First, the prior art that evaluates the heat transfer properties
  • a laser flash method As a method for evaluating the heat transfer properties of a material, a laser flash method, a hot wire method, a probe method, and the like have been widely used. In these, the sample to be measured is molded according to the measurement, but it is often impossible to sample actual materials.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 3-1899547 Disclosure of the Invention
  • An object of the present invention is to provide a characteristic measuring instrument or a characteristic measuring method capable of solving the above-mentioned disadvantages of the prior art.
  • the inventor has found that at least one of the first and second members is movable, and at least the characteristic applying means and the characteristic measuring means are arranged close to each other at the time of characteristic measurement. like It has been found that configuring a characteristic measuring instrument is extremely effective in achieving the above object.
  • the characteristic measuring instrument of the present invention is based on the above findings, and more specifically, a first member having at least a part thereof having energy applying means, and a first member having an energy applying means disposed at least partially facing the first member.
  • a characteristic measuring instrument comprising at least a first member and a second member; at least one of the first and second members so as to be able to hold a sample between the first and second members.
  • One of the first and second members is movable, and at least one of the first and second members is provided with a characteristic measuring unit. At least at the time of measuring the characteristic, the characteristic measuring unit and the energy applying unit are arranged close to each other.
  • the characteristic change in the sample is measured by the characteristic measurement. Can be measured by means It is characterized in that the the.
  • a characteristic measuring method is provided, wherein a characteristic change based on the energy application is measured by characteristic measuring means arranged close to or in contact with the sample and close to the energy applying means. Is done.
  • a CPU a memory connected to the CPU
  • a signal generation Z analyzer including at least a DZA converter connected to the CPU and an A / D converter connected to the CPU; digital data previously written in the memory, A signal which can be A-converted into an AC voltage having a frequency and supplied to external energy applying means connected to the A-converter.
  • a file generator / analyzer is provided.
  • thermal characteristics for example, quality control of a heat insulating material, a building material, a biomaterial including a human body, and a performance evaluation of a material used for the purpose of heat transfer or heat insulation are performed at a manufacturing site It can be measured easily.
  • a temperature sensor As a temperature sensor (probe), a thin metal film, semiconductor thin film, thermistor, etc., with a small heat capacity is used as a resistance temperature sensor.
  • the device to be used in the present invention changes the temperature of the surface of the material to be measured by heating, and reaches the rear surface via the sandwiched sample.
  • a material having a known thermal conductivity is used to determine a change in amplitude, and by comparing with this, it is possible to convert to an apparent thermal conductivity.
  • a wide range of frequencies can be selected by selecting the thickness of the probe and the kind of substance, and the thickness and depth of the target sample can be defined. In other words, at low frequencies, more internal thermal conductivity is reflected, and at higher frequencies, only the surface thermal conductivity is reflected.
  • a high-performance thickness gauge can be incorporated to quickly convert to thermal diffusivity.
  • FIG. 1 is a schematic perspective view of a sample for explaining the definition of thermal conductivity and the like in the present invention.
  • FIG. 2 is a schematic perspective view of a sample for explaining unsteady heat conduction in the present invention.
  • Fig. 3 is a schematic graph (a) and a schematic phase difference graph (b) showing an example of temperature change measurement when an AC-like temperature change is applied to a sample.
  • FIG. 4 is a schematic cross-sectional view for explaining the concepts of “thermally thick” and “thermally thin”.
  • FIG. 5 is a diagram showing an example of a circuit diagram of a thin-film temperature sensor.
  • Figure 6 is a schematic diagram showing examples of AC power supply voltage and measurement signals.
  • FIG. 7 is a schematic Daraf showing an example of the phase delay (a) and the amplitude (b).
  • FIG. 8 is a schematic cross-sectional view showing one example of the property measuring instrument of the present invention.
  • FIG. 9 is a schematic perspective view showing one example of the characteristic measuring instrument of the present invention.
  • FIG. 10 is a block diagram showing an example of a circuit diagram suitably usable in the present invention.
  • FIG. 11 is a block diagram showing an example of a circuit diagram suitably usable in the present invention.
  • FIG. 2 is an example of a circuit diagram that can be suitably used in the present invention.
  • FIG. 1 and FIG. 13 are examples of a partial circuit diagram that can be suitably used in the present invention.
  • FIG. 14 is an example of a partial circuit diagram that can be suitably used in the present invention.
  • FIG. 15 is an example of a partial circuit diagram suitably usable in the present invention.
  • FIG. 16 is an example of a partial circuit diagram suitably usable in the present invention.
  • FIG. 17 is an example of a measurement method algorithm that can be suitably used in the present invention.
  • FIG. 18 is a schematic diagram for explaining steps of an example of a measurement method that can be suitably used in the present invention.
  • FIG. 19 is a schematic diagram for explaining steps of an example of a measurement method that can be suitably used in the present invention.
  • FIG. 20 is a schematic diagram for explaining steps of an example of a measurement method that can be suitably used in the present invention.
  • FIG. 21 shows screen display steps that can be suitably used in the present invention. This is an example.
  • FIG. 22 is an example of a screen display step suitably usable in the present invention.
  • FIG. 23 is an example of a screen display step suitably usable in the present invention.
  • FIG. 24 is an example of a screen display step suitably usable in the present invention.
  • FIG. 25 is a graph showing an example of thermal measurement data (sample: force glass) obtained in Example 1 of the present invention.
  • FIG. 26 is a graph showing an example of thermal measurement data (sample: PMMA film) obtained in Example 2 of the present invention.
  • FIG. 27 is a graph showing an example of the thermal measurement data ('sample: polyimide film) obtained in Example 3 of the present invention.
  • FIG. 28 is a graph showing an example of thermal measurement data (sample: PET film) obtained in Example 4 of the present invention.
  • FIG. 29 is a graph showing an example of thermal measurement data (sample: Kapton-1) obtained in Example 5 of the present invention.
  • FIG. 30 is a graph showing an example of thermal measurement data (sample... Kapton-2) obtained in Example 5 of the present invention.
  • FIG. 31 is a graph showing an example of the thermal measurement data (sample: cover glass) obtained in Example 5 of the present invention.
  • FIG. 32 is a graph showing an example of thermal measurement data (sample: PMM A) obtained in Example 5 of the present invention.
  • FIG. 33 is a graph showing an example of the thermal measurement data (sample: Kapton 3) obtained in Example 5 of the present invention.
  • FIG. 34 is a graph showing an example of thermal measurement data (sample: Kapton 4) obtained in Example 5 of the present invention.
  • the following symbols have the following meanings.
  • the characteristic measuring instrument of the present invention has at least a first member having energy applying means at least in a part thereof, and a second member for holding a sample. At least one of the first and second members is movable, and a sample to be measured can be held between the first and second members. At least one of the first and second members is provided with a characteristic measuring means, and at least at the time of measuring the characteristic, the characteristic measuring means and the energy applying means are arranged close to each other. Is configured. Energy is applied from the energy applying means to the sample arranged between the first and second members, and in response to the energy application, a characteristic change in the sample is measured by the characteristic measuring means. Can be measured.
  • One embodiment of the characteristic measuring instrument of the present invention is shown in the schematic cross-sectional view of FIG. In the embodiment of FIG. 8, at the time of measuring the sample, the energy applying means (heater serving as thermal energy applying means) and the characteristic measuring means (thermophysical property measuring means) are arranged so as to be “close” with the sample interposed therebetween. Have been.
  • the characteristic measuring instrument 10 of this embodiment includes a base 11 (first member) and an arm 12 (second member) rotatably supported at one end of the base 11. ), And a sample 13 to be measured can be held between the base 11 and the arm 12.
  • a heater 14 is arranged at the tip of the arm 12, and a sensor 15 (characteristic measuring means) is arranged at a position of the base 11 facing the heater 14. With such a characteristic measuring instrument 10, the thermal characteristics of the sample 13 can be measured.
  • an iron core 16 is further arranged on the arm 12, and the iron core 16 and the differential transformer 17 on the base 11 side facing the iron core 16 form a differential transformer for the iron core 16.
  • the degree of entry into 17 (corresponding to the thickness of sample 13) can be measured.
  • the outputs from the sensor 15 and the differential transformer 17 are amplified by a two-channel preamplifier 18 arranged in the base 11, and the output from the preamplifier 18 is passed through an AZD converter 19. Is input to the CPU 20.
  • the input to the heater 14 is input from the CPU 20 via the D / A converter 21 to the heater 14.
  • the output from the CPU 20 is displayed on the LCD panel 22 and analyzed by an external personal computer 23.
  • FIG. 8B is a schematic sectional view showing details of the heater 14 and the sensor 15 (sample portion). Each of these elements has a thin film resistor or a thermistor arranged on a substrate.
  • the heater 14 may be placed on a very small ball (not shown) so that the sample to be measured is sandwiched in parallel with the measurement surface of the sensor 15. In such an embodiment, the measurement accuracy can be further improved.
  • the thickness of the sample 13 can be measured simultaneously with the thermal characteristics of the sample 13 by detecting the displacement in the transformer coil 17. In this case, it is preferable to calibrate the zero thickness of the sample 13 (without the sample) in advance.
  • FIG. 9 is a schematic perspective view of the characteristic measuring device corresponding to FIG.
  • the lever 30 can press the sample sandwiched between the base 11 and the arm 12. This pressurization can be performed by a separately provided motor (not shown).
  • the operation speed can be further improved by combining a signal generation analyzer as described later. ⁇ (One mode of measurement method)
  • the optimum heat application condition can be determined for one sample by trial and error within a certain range.
  • the measurement data is stored in real time (along with the calibration probe) on the LCD panel 22 or a laptop personal computer (for example, connected to the CPU 20 if necessary).
  • Optimal heat application conditions conditions where the graph becomes linear
  • the thermal diffusivity ⁇ and the thermal conductivity
  • the display color on the liquid crystal panel 22 can be changed for different measurements as necessary.
  • the characteristic measuring instrument of the present invention can be widely used not only for thermophysical properties (for example, viscosity), but also for elastic modulus, dielectric constant, conductivity, and humidity, as described later.
  • the following characteristics can be measured.
  • Physical properties such as viscosity, dynamic elastic modulus
  • Thermal properties such as thermal diffusivity, thermal conductivity, thermal resistivity
  • Electrical properties such as dielectric Rate, conductivity
  • Other characteristics such as humidity
  • the type, mechanism, shape, size, and the like of the energy applying means are not particularly limited, as long as useful properties of the sample can be measured based on the energy application from the means. It can be appropriately selected and used. As such energy applying means, for example, those listed below can be used.
  • A. C Joule heating to thin film resistors, flash irradiation, modulation laser irradiation, and joule heating of chip resistors.
  • the type, mechanism, shape, size, and the like of the characteristic measuring means are not particularly limited as long as useful properties of the sample corresponding to the energy application from the energy applying means can be measured. It can be appropriately selected and used from the characteristic measuring means. As such a characteristic measuring means, for example, those listed below can be used.
  • Thin film resistors Thin film resistors, chip resistors, thermistors, thermocouples, RTDs, strain gauges Page, Peltier element, infrared detecting element, etc.
  • the first and second members constituting the characteristic measuring instrument can hold a sample to be measured (at least for a time required for characteristic measurement) between them.
  • the shape, material, size, and the like of the first and second members are not particularly limited as long as possible.
  • At least one of the first and second members is movable.
  • a movable mode for example, rotational movement, parallel movement
  • a mechanism for example, manual operation, motor use
  • the property measuring means and the energy applying means are arranged in close proximity to each other and the sample is arranged between the first and second members.
  • the property measuring means in response to the energy application from the energy applying means.
  • the characteristic measuring instrument of the present invention is a stapler (so-called stapler) type as shown in FIGS. It is preferable that
  • the characteristic measuring means is disposed in contact with or close to the sample.
  • the sample may be appropriately pressurized.
  • the degree of “proximity” of the characteristic measuring means to the sample is not particularly limited as long as a desired characteristic can be measured.
  • the energy applying means is arranged on the first member, but the characteristic measuring means may be arranged on the first member, or may be arranged on the second member. . Furthermore, when a plurality of characteristic measuring means are used, a part of them may be arranged on the first member, and the remaining characteristic measuring means may be arranged on the second member.
  • the energy applying means and the characteristic measuring means are arranged close to each other.
  • the degree of the “close proximity” is not particularly limited as long as a desired property can be measured. However, in a mode in which a fine region of a sample can be measured or in a mode in which a characteristic measuring instrument is miniaturized, the degree of “proximity” is preferably as follows.
  • the characteristic measuring means is arranged on the second member
  • the sample is sandwiched between the energy applying means and the characteristic measuring means.
  • the degree of “proximity” between the energy applying unit and the characteristic measuring unit corresponds to the thickness of the sample (or the desired thickness at the time of pressurization).
  • the characteristic measuring means is arranged on the first member
  • the energy applying means and the characteristic measuring means are arranged on the same side with respect to the sample.
  • the Rukoto. sand In other words, in this aspect, the energy applying means and the characteristic measuring means
  • the degree of "proximity” may be less than lcm, or even between 0.1 and 10 mm (particularly between 0.01 and 0.5 mm), as the distance between the "centers” of these means. preferable.
  • the signal generation / analyzer of the present invention includes at least a CPU, a memory connected to the CPU, a DZA converter connected to the CPU, and an AZD converter connected to the CPU.
  • a signal generator / analyzer for example, digital data written in advance in the memory is D / A converted to an AC voltage having a predetermined frequency, and the digital data is converted to an A / D converter.
  • a signal obtained by AZD converting an output from an external sensor for example, as shown in FIG.
  • the operation speed can be further improved. That is, in this case, in the signal generation / analyzer, the numerical data corresponding to the sine curve is held in the memory 1 in advance, the signal corresponding to the numerical data is A-converted, and the heater 14 (for example, FIG. ) Can be applied.
  • the detection signal from the sensor 15 can be A / D converted, converted to digital data, and compared by the CPU.
  • the operation speed can be significantly increased by using a gate array connected to the CPU. Further, in this embodiment, when a sine curve is generated, a cosine signal is also generated, so that calculation speed is increased. Can be further improved.
  • the proportional constant at this time is defined as the thermal diffusivity.
  • Equation (4) above is solved under the following conditions as shown in FIG.
  • T (d, t) T 0 ⁇ e ⁇ ⁇ dcos ⁇ d (6)
  • a 4 is represented.
  • Figures 3 (a) and (b) show schematic diagrams of the data. From the above equation (8), for a sample with a known thickness d, one surface is heated in an alternating current by changing the modulation frequency f, and the phase delay ⁇ ⁇ of the temperature change on the back surface at that time is measured. And the thermal diffusivity ⁇ can be determined. As described above, in the measurement in which an AC-like temperature change is applied to the sample, the thermal diffusivity is obtained from the phase difference of the temperature change between the heated surface and the back surface of the sample. High-precision measurement is possible.
  • thermal diffusion length because it has a dimension of length, and is one of the important parameters in this measurement method.
  • the relationship between the sample thickness d and the thermal diffusion length ⁇ is as shown in Figs. 4 (a) and (b).
  • thermo diffusion length is the wavelength of the temperature change, if it is larger than the thickness of the sample, that is, if it is thermally thin, the entire sample will undergo temperature fluctuations in the same cycle. In this case, the phase difference of the temperature fluctuation between the front surface and the back surface of the sample approaches 0, and the thermal diffusivity cannot be obtained from the equation (8). Therefore, the “thermally thick” condition required for Eq. (8) to be satisfied means that a temperature wave of at least one wavelength must be present in the sample.
  • a metal thin film is prepared by sputtering a metal such as gold (Au) on a sample, and the thin metal film is used as an AC heater.
  • a metal such as gold (Au)
  • Au gold
  • an AC heater for example, an AC current modulated by a function / synthesizer is supplied, and an AC-like temperature wave is generated in the sample by Joule heat at that time. Since the Joule heat is maximum at the peak value of the current regardless of whether the current is positive or negative, the cycle of the temperature change at this time is twice the alternating current as shown in equation (10).
  • the method of measuring the temperature change on the back surface of the sample depends on the change in resistance of the thin film resistance due to the temperature wave, the change in resistance of the thermistor, and the like.
  • the temperature sensor circuit incorporates a bridge circuit and a preamplifier, so that only the AC component of the probe resistance can be extracted as a voltage change. This signal is A / D converted to allow for further computer processing.
  • the amplitude of the temperature wave depends on the sputtering conditions, the temperature dependence of the resistance value of the temperature sensor, the amount of electricity, etc., but it should be deducted as the device constant by previously measuring the blank and measuring with a standard material. Can be done.
  • FIG. 11 An example of a basic system configuration (the measuring apparatus of the present invention) that can be suitably used for the measuring method of the present invention is shown in the block diagram of FIG. Circuits as shown in the block diagram of FIG. 11 are connected to the ports a to g in FIG. 10, respectively.
  • This system consists of a heat source having a DA conversion function and an amplification function for heating the sample with AC, a bypass circuit for detecting the temperature change on the back surface of the sample, and a pre-conditioner for converting the resistance change to voltage.
  • a preamplifier an AD converter, software with a Fourier function to extract a specific frequency component of temperature change on the back of the sample, an IC for calculation, a CPU for generating functions, It consists of a sample holder for crimping or holding a sample, a sample thickness measurement system, and a display element. It can be connected to a personal computer via USB if necessary.
  • FIG. 12 shows an example of a circuit diagram that can be suitably used in the present invention.
  • the circuit diagrams of FIGS. 13 to 16 are enlarged views of each part of the circuit diagram of FIG. Tables 1 to 6 below show examples of circuits, components, and elements that can be used for the circuits shown in Figs. For example, the following a-i
  • d Performs the sum of products of the sensor signal acquired via the AZD converter and the sine component waveform data of twice the frequency of the waveform memory (after inversion and non-inversion depending on whether the DZA output is positive or negative). Integration is performed every 100 000 times at intervals of 100 ms for 0.1 s, and is used as the basic integrated value of the signature.
  • the integration is performed every 100 000 times at intervals of 100 ms for 0.1 s, and is used as the basic integration value of cosine.
  • the AZD conversion value of the sample thickness data obtained from the thickness measurement unit g Gives the integration time (number of integrations) to obtain the basic integrated value. Usually 0.1 seconds or 1 wave longer.
  • SW1 Switch tact spst 12mm mom extend EG1024-ND Dec.02 TL1100FF160Q
  • SW2 Switch tact spst 12mm mom extend EG1024-ND Dec.02 TL1100FF160Q
  • Thickness 1 ⁇ ⁇ ⁇ 10 mm
  • the conductive material that can be suitably used for the AC heat source is not particularly limited as long as it generates heat by Joule heat when an electric current flows.
  • Examples of such conductive materials include, for example, gold, silver, platinum, copper, iron, zinc, antimony, iridium, chromenole, constantan, nickel, aluminum, chrome, nickel , Carbon, thermistor, thermocouple, etc. (sample)
  • thermal properties there is no particular limitation as long as the measurement of its properties (eg, thermal properties) is a useful sample.
  • samples include, for example, polymer compounds, rubber, organic dyes, ores, glass, ceramics, metal plates, aqueous solutions, greases, oils, gases, plant cells, animal cells, and various types of Industrial products, thermal insulation paper, foamed polymer materials, highly molecularly oriented polymer films, multilayer films, spin-coated thin films, cast films, vapor-deposited films, fabrics, composite materials, as well as banknotes, telephone cards, and plant materials Leaves.
  • the sample to be measured suitable in the thermal measurement mode of the present invention may be of any size as long as the measurement of its thermal characteristics is useful, but it is as flat as a temperature sensor (temperature probe). It is desirable to have a part. Even a conductive or liquid substance such as a metal plate can be measured by attaching a thin insulating film to the tip of the probe.
  • the measurement area depends on the size of the temperature probe used, etc. Usually, the size of the region to be formed is preferably about 5 mm ⁇ 5 mm, more preferably about 1 mm ⁇ 1 mm. There is no limit on the temperature probe size, as long as measurement is possible.
  • the magnitude and waveform of the temperature change to be given to at least a part of the sample to be measured are not particularly limited. That is, the input amplitude may be such that the sample is not damaged, and the waveform may be a sine wave or at least a temporal change that can be given to the sample.
  • a signal amplification and calculation device is built in the device, and the signal received by the sensor on the probe is received by the bridge circuit, and after AD conversion, it can be digitally subjected to Fourier transformation or mouth-in amplification. Is desirable.
  • the analysis needs to know the signal amplification, noise rejection, phase lag and amplitude attenuation from the surface, and its relationship to the frequency of the given temperature wave.
  • FIGS. Figures 21 to 24 are examples of displays at each stage of the actual measurement.
  • Heater section 14 The tip of the arm is the sensor section.To prevent rattling when the sample is sandwiched, when a constant load is applied, the sensor surface It adopts a method to ensure its behavior. It is desirable that the change width of the temperature wave be about 1 ° C. or less, preferably 1 ° C. or less, and more preferably 0.5 ° C. or less.
  • Temperature wave sensor 15 A sensor with the same lmm square size is attached to the opposite electrode of the heater. Temperature waves that have diffused through the sample are significantly attenuated, which requires a highly sensitive temperature sensor. In this device, it is desirable to use a thin film resistance sensor or thermistor sputtered with nickel. A special resin coat is applied to the surface for insulation and protection of the electrodes.
  • such an analyzer includes a frequency amplifier section and an analysis software section.
  • Such analyzers are located in the center of the Field Processor Gate Array (Xilinx, etc.) in the waveform processor and the CPU that performs calculations.
  • Main memory external AC output circuit DA converter, signal input circuit AD converter, thickness gauge analysis Circuit.
  • This analyzer can be connected to an external personal computer via an interface such as USB, and can control the captured data and save the captured data.
  • the block diagrams are shown in Figures 10 and 11.
  • the basic sine waveform and cosine wave delayed by 90 ° are written in the memory as table data in advance.
  • This signal is then received from the output amplitude control register to generate a continuous digital signal waveform with a constant frequency and amplitude.
  • This is an output to the sample section for AC heating through a DZA converter and an analog amplifier.
  • the data from the temperature sensor returned from the sample section is prepared by the preamplifier, then A / D converted, and the waveform Compare with internal output from memory. Since the temperature change is twice the frequency of the heater, sine and cosine waves of twice the frequency of the output to the heater are multiplied for a certain period of time and integrated to obtain a time average.
  • the signal on the back side and the sensor side is the intensity phase delay an- 1
  • the amplitude A is determined by the root mean square of the sine component and the cos component.
  • This frequency amplifier device portion includes a control portion and a sample portion, and includes, for example, a CPU + waveform processor (constituted by FPGA) + memory + AZD, D / A.
  • a CPU + waveform processor constituted by FPGA
  • the CPU is responsible for power-on waveform synthesis, switch reading, liquid crystal display, and RS232C communication.
  • the waveform processor and sum-of-products calculation are handled by the waveform processor.
  • the CPU synthesizes an arbitrary waveform and writes it to flash memory or the like.
  • the memory is disconnected from the CPU and connected to a waveform processor (such as a Field Programmable Gate Array FPA: sparta n2 XC2S100 from XI inx).
  • a waveform processor such as a Field Programmable Gate Array FPA: sparta n2 XC2S100 from XI inx.
  • a bit (Cos-bit) indicating the sign of the waveform and a bit (sin-bit) whose phase is shifted by 90 degrees are also written.
  • the waveform processor reads the peak value data from memory at 100 k times Z second and sends it to the DZA converter, while the waveform processor, for example, reads the sensor data via the A / D converter at 100 k times / second.
  • An interrupt is issued to CPU every 100 000 times (at 100 ms intervals) for the sine and cosine components.
  • the CPU further integrates this value an appropriate number of times, and uses it as a basic integrated value for each of the sine and cosine.
  • the phase difference is obtained from the value obtained by further integrating this basic integrated value for one measurement frequency.
  • the basic integration value is set to 0.1 second intervals in order to reduce the influence of power supply hum by making an integral multiple of the wave enter at either 50 Hz or 60 Hz. is there. Therefore, the minimum time required for measurement in this case is the longer of one wave of the measurement cycle or 0.1 second.
  • the memory can store, for example, output crest data for 2 seconds (200,000 points). Normally, it is sufficient to insert sine wave data that is one cycle in two seconds (the waveform depends on the program).
  • the measurement frequency can be changed by appropriately changing the reading interval from the memory.
  • the sample 13 is inserted into the predetermined position in FIG. 8 (between the heater 14 and the sensor 15), and the same measurement as described above is performed.
  • the thickness of the sample 13 is measured with the iron core 16 and the transformer 17.
  • the physical property value of the standard polymer and the measurement conditions (which can be specialized for other substances) are stored in memory, and the initial application is performed based on the measured thickness.
  • Frequency and voltage can be determined.Frequency scan before and after this, if the signal intensity is too much or less than that of the standard sample, increase or decrease the amplitude of the AC temperature wave according to the difference from the standard, and rescan the frequency Let. Calculate the correlation coefficient at three or more points, and if it deviates significantly from the straight line, change the frequency band to be measured again and perform the measurement again.
  • Amplitude change can be converted to thermal conductivity by comparing it with the attenuation of a standard material whose thermal conductivity and thermal diffusivity are known.
  • standard sample data, substrate thermal data, instrument correction factors, and measurement analysis programs can be written to main memory. With these values and the values taken in, the thermal diffusivity and then the thermal conductivity are calculated.
  • the above-described characteristic measuring instrument of the present invention can be used alone as an analysis lock-in system for the purpose of measuring thermal diffusivity and thermal conductivity with a small and light-weight, on-site measuring device.
  • the function of the function generator for heat generation, amplification at the same frequency as the given frequency It has a lock-in amplifier function, a thickness measurement function, an applied pressure control function, etc., and calculates these values and converts them into thermal diffusivity and thermal conductivity while considering the thickness and thermal conductivity of the sample.
  • a device that can display the results or transport the results to an external personal computer.
  • Normal mode Sends the measurement status, measurement frequency, calculated phase, and amplitude in text format. This can be transferred to another personal computer at the same time as it is sent to the display.
  • Slave mode The slave mode is entered when a predetermined command is received via the 232C.
  • frequency specification, waveform selection, etc. are possible (depending on the program). If a Windows program is prepared at the connection destination, it can be driven and analyzed even with that software.
  • a 16-bit A / D connected to a different CPU from the above can be prepared for signal input from the thickness gauge, and the thickness can be measured sequentially.
  • Thickness sensors can use differential transducers, strain gauges, dielectric constant measurement elements, etc., but conversion to thickness, correction values, etc. can be written to the flash memory and called up as needed. If the conversion factor to 0 or the thickness changes, it can be rewritten via the CPU.
  • the data acquisition speed can be as low as 100 Q times the sample for about Z seconds. For example, if a time constant of 1 second or more is inserted to avoid power hum, it is difficult to acquire a high-speed signal.
  • Thickness 1 4 5.3 m
  • the measured data is shown in the graph of Fig. 25.
  • the thermal characteristics of the PMMA film (Sumitomo Chemical, Technology # 125) were measured under the following conditions using the equipment shown in Figs.
  • Thickness 1 2 1.3 ⁇ m
  • the measured data is shown in the graph of Figure 26.
  • Thickness 1 23.6 ⁇ m
  • the measured data is shown in the graph of Figure 27.
  • the thermal characteristics of the PET film were measured using the equipment shown in Figs.
  • Thickness 1 23.7 ⁇ m
  • the measured data is shown in the graph of Fig. 28.
  • Figs. 29 to 34 and Table 7 show measurement examples of the following samples.
  • the measurement conditions are as follows: Fig. 29: Toray, kapton-1
  • Figure 33 Bundle, K ap t on — 3
  • Figure 34 Toray, K ap t on — 4
  • Table 7 Thousand-yen bill, 10,000-yen bill, one-dollar bill, power par glass 1, 2, 3, JR commuter pass, passnet power card, Shinseido card, business card 1, 2, 3, 4, BicCamera receipt Thermal paper

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A characteristic measuring apparatus provided with a first member having an energy applying means and a second member arranged to face the first member is provided. An accurate matching mechanism for an accurate waveform generation and input/output is provided by a high-speed waveform integrating circuit using a gate array and by reading out of digital data (numerical table). A sample can be held between the first and the second members, and a characteristic measuring means is arranged at least on one of the members. At the time of measuring a desired characteristic, the characteristic measuring means and the energy applying means are closely arranged. Thus, the characteristic measuring apparatus and the characteristic measuring method which permit simple and quick characteristic measurement are provided.

Description

特性測定用器具および特性測定方法 Characteristic measuring instrument and characteristic measuring method
技術分野 Technical field
本発明は、 物質 ·材料 · システムを始めとする種々の試料の諸特 性を簡便に測定することが可能な特性測定器具、 該特性測定器具と 明  The present invention relates to a characteristic measuring instrument capable of easily measuring various characteristics of various samples including substances, materials, and systems, and the characteristic measuring instrument.
を組み合わせて特に好適に使用することができるシグナル発生およ び Z又はシグナル処理器、 および物質 ·材料 · システムを始めとす る種々の試料の諸特性 (例えば、 伝熱書性 · 断熱性等の熱的特性) を 簡便に測定可能な特性測定方法に関する。 Signal and Z or signal processor that can be used particularly preferably in combination with various properties of various samples including substances, materials, and systems (eg, heat transfer, heat insulation, etc.) The present invention relates to a characteristic measuring method capable of easily measuring the thermal characteristic of the material.
背景技術 Background art
所望の物性を発現することができる材料 · 物質の開発等の観点か ら、 種々の物質 . 材料 . システム関連分野 (例えば、 高分子、 パイ ォテクノ ロジー、 半導体材料、 セラミ ック材料、 f熱材, 更には金 属ないし複合材料関連分野) を始めとする幅広い技術分野において 、 種々の特性 (例えば、 熱的特性たる熱伝導率または熱拡散率) を 簡便に測定したいという要請は、 ますます強まっている。 このよ う な測定の対象となる材料の例としては、 例えば、 断熱紙, 発泡高分 子材料, 高度に分子配向した高分子フィルム、 多層フィルム、 スピ ンコートした薄膜、 キャス ト膜、 蒸着膜、 布地、 更には真空断熱材 、 建材、 壁材料、 冷蔵庫断熱材、 自動車屋根材等を挙げることがで ぎる。  From the viewpoint of the development of materials and materials that can exhibit the desired physical properties, various materials, materials, and systems-related fields (eg, polymers, biotechnology, semiconductor materials, ceramic materials, and f-heat materials) In a wide range of technical fields including metal and composite materials-related fields, there is an increasing demand for easy measurement of various properties (for example, thermal conductivity or thermal diffusivity as thermal properties). ing. Examples of materials to be measured include, for example, insulating paper, foamed polymer materials, highly molecularly oriented polymer films, multilayer films, spin-coated thin films, cast films, vapor-deposited films, Fabrics, vacuum insulating materials, building materials, wall materials, refrigerator heat insulating materials, automobile roofing materials, and the like can be mentioned.
所望の物性を発現する材料の開発には、 当然ながら、 これらの物 性を精密に制御すること、 および品質管理を充分にする必要がある 。 更には、 このよ うな所望の物性を発現すべき構造 (特に微細構造 ) を有する材料の開発には、 該材料の特性を精密かつ簡便に評価す る分析技術が不可欠である。 Of course, to develop materials that exhibit desired physical properties, it is, of course, necessary to precisely control these physical properties and to ensure sufficient quality control. Furthermore, structures that should exhibit such desired physical properties (particularly, microstructures) In order to develop materials with the above characteristics, analytical techniques that accurately and easily evaluate the properties of the materials are indispensable.
本発明の特性測定用器具、 特性測定方法およびシグナル発生器は 、 物理的特性を始めとする種々の特性測定に好適に使用可能である が、 ここでは、 説明の便宜上、 熱的特性 (例えば、 伝熱物性) を評 価する先行技術について先ず述べる。  The instrument for property measurement, the property measurement method, and the signal generator of the present invention can be suitably used for measurement of various properties such as physical properties. Here, for convenience of explanation, thermal properties (for example, First, the prior art that evaluates the heat transfer properties) will be described.
材料の伝熱物性を評価する方法としては、 従来よ り、 レーザーフ ラッシュ法、 熱線法、 プローブ法等が広く用いられて来た。 これら は、 測定すべき試料を測定にあわせて成形しているが、 現実の材料 はサンプリ ングが不可能であることが多い。  As a method for evaluating the heat transfer properties of a material, a laser flash method, a hot wire method, a probe method, and the like have been widely used. In these, the sample to be measured is molded according to the measurement, but it is often impossible to sample actual materials.
温度波を利用して試料の熱拡散率を測定する方法として、 特開平 As a method of measuring the thermal diffusivity of a sample using a temperature wave,
3— 1 8 9 5 4 7号公報がある。 この方法によれば、 膜厚が 1 μ m 以上のブイルムの薄い電気絶縁物熱拡散率を測定するこ とができる が、 その測定の簡便性 (例えば、 手軽さ、 迅速性) は必ずしも充分 では無かった。 例えば、 このような測定を、 携帯可能な (すなわち 製造現場にも容易に持ち込に可能な) 装置で行う ことはできなかつ た。 There is 3-1 8 9 5 4 7 gazette. According to this method, it is possible to measure the thermal diffusivity of a thin electrical insulator of a film having a film thickness of 1 μm or more, but the simplicity of the measurement (for example, ease and speed) is not always sufficient. There was no. For example, such measurements could not be performed on portable (ie, easily brought into production) equipment.
[特許文献 1 ] 特開平 3— 1 8 9 5 4 7号公報 発明の開示  [Patent Document 1] Japanese Patent Application Laid-Open No. 3-1899547 Disclosure of the Invention
本発明の目的は、 上記した従来技術の欠点を解消可能な特性測定 用器具、 ないし特性測定方法を提供することにある。  An object of the present invention is to provide a characteristic measuring instrument or a characteristic measuring method capable of solving the above-mentioned disadvantages of the prior art.
本発明の他の目的は、 簡便且つ迅速な特性測定を可能とする特性 測定用器具、 ないし特性測定方法を提供することにある。  It is another object of the present invention to provide a characteristic measuring instrument and a characteristic measuring method that enable simple and quick characteristic measurement.
本発明者は鋭意研究の結果、 第 1および第 2の部材の少なく とも 一方の部材を可動と し、 且つ、 少なく とも特性測定時にはエネルギ 一印加手段および特性測定手段が互いに近接して配置されるように 特性測定用器具を構成することが、 上記目的の達成に極めて効果的 であることを見出した。 As a result of earnest research, the inventor has found that at least one of the first and second members is movable, and at least the characteristic applying means and the characteristic measuring means are arranged close to each other at the time of characteristic measurement. like It has been found that configuring a characteristic measuring instrument is extremely effective in achieving the above object.
本発明の特性測定用器具は上記知見に基づく ものであり、 よ り詳 しくは、 少なく ともその一部にエネルギー印加手段を有する第 1の 部材と、 該第 1の部材に対向して配置された第 2の部材とを少なく とも有する特性測定用器具であって ; 前記第 1および第 2の部材の 間に、 試料を保持可能なように、 これら第 1および第 2の部材の少 なく とも一方が可動であり、 前記第 1および第 2の部材の少なく と も一方に特性測定手段が配置され、 少なく とも特性の測定時には、 該特性測定手段と前記エネルギー印加手段とが近接して配置される ように構成され、 且つ、 該第 1および第 2の部材の間に配置された 試料に対して、 前記エネルギー印加手段からのエネルギー印加に対 応して、 該試料における特性変化を前記特性測定手段で測定可能と したことを特徴とするものである。  The characteristic measuring instrument of the present invention is based on the above findings, and more specifically, a first member having at least a part thereof having energy applying means, and a first member having an energy applying means disposed at least partially facing the first member. A characteristic measuring instrument comprising at least a first member and a second member; at least one of the first and second members so as to be able to hold a sample between the first and second members. One of the first and second members is movable, and at least one of the first and second members is provided with a characteristic measuring unit. At least at the time of measuring the characteristic, the characteristic measuring unit and the energy applying unit are arranged close to each other. In response to the application of energy from the energy applying means to a sample arranged between the first and second members, the characteristic change in the sample is measured by the characteristic measurement. Can be measured by means It is characterized in that the the.
本発明によれば、 更に、 エネルギー印加手段から試料にエネルギ 一を印加し、  According to the present invention, further, energy is applied to the sample from the energy applying means,
該試料に近接または接触して配置され、 且つ前記エネルギー印加 手段に近接して配置された特性測定手段によ り、 該エネルギー印加 に基づく特性変化を測定することを特徴とする特性測定方法が提供 される。  A characteristic measuring method is provided, wherein a characteristic change based on the energy application is measured by characteristic measuring means arranged close to or in contact with the sample and close to the energy applying means. Is done.
本発明によれば、 更に、 C P Uと、 該 C P Uに接続されたメモリ 一と、  According to the present invention, further, a CPU, a memory connected to the CPU,
前記 C P Uに接続された D Z A変換器と、 前記 C P Uに接続され た A / D変換器とを少なく とも含むシグナル発生 Z解析器であって ; 予め前記メモリー中に書き込まれたデジタルデータを、 所定の周 波数の交流電圧へ A変換して、 前記 A変換器に接続された 外部エネルギー印加手段に供給可能と したことを特徴とするシグナ ル発生/解析器が提供される。 A signal generation Z analyzer including at least a DZA converter connected to the CPU and an A / D converter connected to the CPU; digital data previously written in the memory, A signal which can be A-converted into an AC voltage having a frequency and supplied to external energy applying means connected to the A-converter. A file generator / analyzer is provided.
前記構成を有する本発明の特性測定器ないし特性測定方法を用い た場合には、 種々の物質 .材料 · システムを始めとする種々の試料 の諸特性を簡便に測定することができる。  When the characteristic measuring device or the characteristic measuring method of the present invention having the above-described configuration is used, various characteristics of various samples including various substances, materials, and systems can be easily measured.
また、 このような特性測定に際して、 本発明のシグナル発生/解 析器をも組み合わせて用いた場合には、 よ り迅速な特性の測定が可 能となる。  In addition, when such a characteristic measurement is used in combination with the signal generator / analyzer of the present invention, more rapid measurement of the characteristic is possible.
本発明において、 例えば、 熱的特性を測定する態様においては、 例えば、 断熱材の品質管理、 建築材料、 人体を含む生体材料、 伝熱 または断熱を目的に使われる材料の性能評価を製造現場でも簡便に 測定することができる。  In the present invention, for example, in a mode of measuring thermal characteristics, for example, quality control of a heat insulating material, a building material, a biomaterial including a human body, and a performance evaluation of a material used for the purpose of heat transfer or heat insulation are performed at a manufacturing site It can be measured easily.
本発明における主な好ましい態様を例示すれば、 以下の通りであ る。  Examples of the main preferred embodiments of the present invention are as follows.
( 1 ) 測定すべき試料 (ないし検体) の、 できるだけ平な部分を 選択し、 センサーとヒータ一の間に挟み込む。 この際接触を良くす るためにグリースなどを塗布しても良い。 原則的にはヒータ一側に 絶縁塗膜を施し、 試料に圧着できる。 取り付けたセンサー位置に到 達した温度波の、 位相変化と振幅減少を測定する。  (1) Select a flat part of the sample (or specimen) to be measured and sandwich it between the sensor and the heater. At this time, grease or the like may be applied to improve the contact. In principle, an insulation coating can be applied to one side of the heater and pressed against the sample. Measure the phase change and amplitude decrease of the temperature wave that reaches the position of the attached sensor.
( 2 ) また、 予めいくつかの熱物性が既知の物質を測定試料と し て、 プローブを通過した温度波の振幅との間で較正曲線を求めてお けば、 未知試料の測定の迅速化が可能となり、 しかも、 試料のいく つかの場所でのいわゆる分布測定が極めて容易となる。  (2) In addition, if a calibration curve is obtained between the temperature of the temperature wave that has passed through the probe and a sample whose thermophysical properties are known as the measurement sample, the measurement of the unknown sample can be accelerated. In addition, the so-called distribution measurement at several places of the sample becomes extremely easy.
( 3 ) 温度センサー (プローブ) と して、 熱容量の小さい金属薄 膜、 半導体薄膜、 サーミスターなどを抵抗温度センサーとして用い る態様。  (3) As a temperature sensor (probe), a thin metal film, semiconductor thin film, thermistor, etc., with a small heat capacity is used as a resistance temperature sensor.
( 4 ) 本発明に使用すべき装置が、 測定すべき材料の表面に加熱 によつて温度変化を与え、 挟み込んだ試料を経由して裏面に到達し た温度波のシグナルを増幅し、 ロ ックィン増幅またはフーリェ変換 する装置を少なく とも含む態様。 この態様によれば、 例えば、 測定 対象を熱伝導率既知の材料と して、 振幅変化を求めておき、 これと 比較することで見かけの熱伝導率へ換算することができる。 (4) The device to be used in the present invention changes the temperature of the surface of the material to be measured by heating, and reaches the rear surface via the sandwiched sample. An embodiment that includes at least a device for amplifying a signal of a heated temperature wave and performing Lockin amplification or Fourier transform. According to this aspect, for example, as a material to be measured, a material having a known thermal conductivity is used to determine a change in amplitude, and by comparing with this, it is possible to convert to an apparent thermal conductivity.
( 5 ) 測定すべき試料の温度変化を直流的に測定するのではなく 、 ノイズ除去効果の高いロ ックイン法を適用する態様。 このような 態様においては、 プローブの厚さや物質種類を選択することで、 幅 広く周波数を選択でき、 対象試料の厚さ深さを規定することができ る。 すなわち、 低周波では、 より内部の熱伝導性が反映され、 高周 波では表面のみの熱伝導性が反映される。 同時に高性能な厚み計を 組み込んで迅速に熱拡散率へ換算できる。 図面の簡単な説明  (5) A mode in which a lock-in method having a high noise removal effect is applied instead of measuring a temperature change of a sample to be measured in a DC manner. In such an embodiment, a wide range of frequencies can be selected by selecting the thickness of the probe and the kind of substance, and the thickness and depth of the target sample can be defined. In other words, at low frequencies, more internal thermal conductivity is reflected, and at higher frequencies, only the surface thermal conductivity is reflected. At the same time, a high-performance thickness gauge can be incorporated to quickly convert to thermal diffusivity. Brief Description of Drawings
図 1 は、 本発明における熱伝導率等の定義を説明するための、 試 料の模式斜視図である。  FIG. 1 is a schematic perspective view of a sample for explaining the definition of thermal conductivity and the like in the present invention.
図 2は、 本発明における非定常の熱伝導を説明するための、 試料 の模式斜視図である。  FIG. 2 is a schematic perspective view of a sample for explaining unsteady heat conduction in the present invention.
図 3は、 交流状の温度変化を試料に与えた際の温度変化測定例を 示す模式的なグラフ ( a ) および模式的な位相差グラフ ( b ) であ る。  Fig. 3 is a schematic graph (a) and a schematic phase difference graph (b) showing an example of temperature change measurement when an AC-like temperature change is applied to a sample.
図 4は、 「熱的に厚い」 、 および 「熱的に薄い」 の概念を説明す るための模式断面図である。  FIG. 4 is a schematic cross-sectional view for explaining the concepts of “thermally thick” and “thermally thin”.
図 5は、 薄膜温度センサーの回路図の例を示す図である。  FIG. 5 is a diagram showing an example of a circuit diagram of a thin-film temperature sensor.
図 6は、 交流電源電圧および測定シグナルの例を示す模式的ダラ フである。  Figure 6 is a schematic diagram showing examples of AC power supply voltage and measurement signals.
図 7は、 位相遅れ ( a ) および振幅.( b ) の例を示す模式的ダラ フである。 図 8は、 本発明の特性測定用器具の一例を示す模式断面図である FIG. 7 is a schematic Daraf showing an example of the phase delay (a) and the amplitude (b). FIG. 8 is a schematic cross-sectional view showing one example of the property measuring instrument of the present invention.
図 9は 、 本発明の特性測定用器具の一例を示す模式斜視図である FIG. 9 is a schematic perspective view showing one example of the characteristic measuring instrument of the present invention.
図 1 0は、 本発明において好適に使用可能な回路図の一例を示す ブ口ック図である。 FIG. 10 is a block diagram showing an example of a circuit diagram suitably usable in the present invention.
図 1 1は、 本発明において好適に使用可能な回路図の一例を示す ブ口 ック図である。  FIG. 11 is a block diagram showing an example of a circuit diagram suitably usable in the present invention.
2は、 本発明において好適に使用可能な回路図の一例である 図 1 図 1 3は、 本発明において好適に使用可能な部分回路図の一例で ある。 2 is an example of a circuit diagram that can be suitably used in the present invention. FIG. 1 and FIG. 13 are examples of a partial circuit diagram that can be suitably used in the present invention.
図 1 4は、 本発明において好適に使用可能な部分回路図の一例で ある。  FIG. 14 is an example of a partial circuit diagram that can be suitably used in the present invention.
図 1 5は、 本発明において好適に使用可能な部分回路図の一例で ある。  FIG. 15 is an example of a partial circuit diagram suitably usable in the present invention.
図 1 6は、 本発明において好適に使用可能な部分回路図の一例で ある。  FIG. 16 is an example of a partial circuit diagram suitably usable in the present invention.
図 1 7は、 本発明において好適に使用可能な測定方法アルゴリズ ムの一例である。  FIG. 17 is an example of a measurement method algorithm that can be suitably used in the present invention.
図 1 8は、 本発明において好適に使用可能な測定方法の一例のス テツプを説明するための模式図である。  FIG. 18 is a schematic diagram for explaining steps of an example of a measurement method that can be suitably used in the present invention.
図 1 9は、 本発明において好適に使用可能な測定方法の一例のス テップを説明するための模式図である。  FIG. 19 is a schematic diagram for explaining steps of an example of a measurement method that can be suitably used in the present invention.
図 2 0は、 本発明において好適に使用可能な測定方法の一例のス テツプを説明するための模式図である。  FIG. 20 is a schematic diagram for explaining steps of an example of a measurement method that can be suitably used in the present invention.
図 2 1は、 本発明において好適に使用可能な画面表示ステップの 一例である。 FIG. 21 shows screen display steps that can be suitably used in the present invention. This is an example.
図 2 2は、 本発明において好適に使用可能な画面表示ステップの 一例である。  FIG. 22 is an example of a screen display step suitably usable in the present invention.
図 2 3は、 本発明において好適に使用可能な画面表示ステップの 一例である。  FIG. 23 is an example of a screen display step suitably usable in the present invention.
図 2 4は、 本発明において好適に使用可能な画面表示ステップの 一例である。  FIG. 24 is an example of a screen display step suitably usable in the present invention.
図 2 5は、 本発明の実施例 1において得られた熱的測定データ ( 試料 : 力パーガラス) の一例を示すグラフである。  FIG. 25 is a graph showing an example of thermal measurement data (sample: force glass) obtained in Example 1 of the present invention.
図 2 6は、 本発明の実施例 2において得られた熱的測定データ ( 試料 : P M M Aフィルム) の一例を示すグラフである。  FIG. 26 is a graph showing an example of thermal measurement data (sample: PMMA film) obtained in Example 2 of the present invention.
図 2 7は、 本発明の実施例 3において得られた熱的測定データ (' 試料 : ポリイ ミ ドフィルム) の一例を示すグラフである。  FIG. 27 is a graph showing an example of the thermal measurement data ('sample: polyimide film) obtained in Example 3 of the present invention.
図 2 8は、 本発明の実施例 4において得られた熱的測定データ ( 試料 : P E Tフィルム) の一例を示すグラフである。  FIG. 28 is a graph showing an example of thermal measurement data (sample: PET film) obtained in Example 4 of the present invention.
図 2 9は、 本発明の実施例 5において得られた熱的測定データ ( 試料 : Kapton— 1 ) の一例を示すグラフである。  FIG. 29 is a graph showing an example of thermal measurement data (sample: Kapton-1) obtained in Example 5 of the present invention.
図 3 0は、 本発明の実施例 5において得られた熱的測定データ ( 試料 ·· Kapton— 2 ) の一例を示すグラフである。  FIG. 30 is a graph showing an example of thermal measurement data (sample... Kapton-2) obtained in Example 5 of the present invention.
図 3 1は、 本発明の実施例 5において得られた熱的測定データ ( 試料 : カバーガラス) の一例を示すグラフである。  FIG. 31 is a graph showing an example of the thermal measurement data (sample: cover glass) obtained in Example 5 of the present invention.
図 3 2は、 本発明の実施例 5において得られた熱的測定データ ( 試料 : P M M A ) の一例を示すグラフである。  FIG. 32 is a graph showing an example of thermal measurement data (sample: PMM A) obtained in Example 5 of the present invention.
図 3 3は、 本発明の実施例 5において得られた熱的測定データ ( 試料 : カプトン 3 ) の一例を示すグラフである。  FIG. 33 is a graph showing an example of the thermal measurement data (sample: Kapton 3) obtained in Example 5 of the present invention.
図 3 4は、 本発明の実施例 5において得られた熱的測定データ ( 試料 : カプトン 4 ) の一例を示すグラフである。 図中、 下記の符号は、 以下に示す意味を有する。 FIG. 34 is a graph showing an example of thermal measurement data (sample: Kapton 4) obtained in Example 5 of the present invention. In the figure, the following symbols have the following meanings.
1 0 ·· •特性測定用器具  1 0
1 1 ·· ベース  1 1 ... base
1 2 ·· .アーム  1 2 ... Arm
1 3 ·· ■ 料  1 3
1 4 ·· 'ヒーター  1 4 ... heater
1 5 ·· -センサー  1 5
1 6 ·· '鉄心  1 6
1 7 ·· '差動トランス 発明を実施するための最良の形態  1 7 ... 'Differential transformer Best mode for carrying out the invention
以下、 必要に応じて図面を参照しつつ本発明を更に具体的に説明 する。 以下の記载において量比を表す 「部」 および 「%」 は、 特に 断らない限り質量基準とする。  Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing the quantitative ratios are based on mass unless otherwise specified.
(特性測定用器具)  (Characteristic measuring instrument)
本発明の特性測定用器具は、 少なく ともその一部にエネルギー印 加手段を有する第 1の部材と、 試料を保持するための第 2の部材と を少なく とも有する。 該第 1および第 2の部材の少なく とも一方は 可動であり、 これら第 1の部材と第 2の部材との間に、 測定対象た る試料を保持することができる。 第 1および第 2の部材の少なく と も一方には特性測定手段が配置されており、 且つ、 少なく とも特性 の測定時には、 該特性測定手段と前記エネルギー印加手段とが近接 して配置されるように構成されている。 第 1および第 2の部材の間 に配置された試料に対して、 前記エネルギー印加手段からのェネル ギ一が印加され、 このエネルギー印加に対応して、 該試料における 特性変化を前記特性測定手段で測定することができる。  The characteristic measuring instrument of the present invention has at least a first member having energy applying means at least in a part thereof, and a second member for holding a sample. At least one of the first and second members is movable, and a sample to be measured can be held between the first and second members. At least one of the first and second members is provided with a characteristic measuring means, and at least at the time of measuring the characteristic, the characteristic measuring means and the energy applying means are arranged close to each other. Is configured. Energy is applied from the energy applying means to the sample arranged between the first and second members, and in response to the energy application, a characteristic change in the sample is measured by the characteristic measuring means. Can be measured.
(特性測定用器具の一態様) 本発明の特性測定用器具の一態様を図 8の模式断面図に示す。 こ の図 8の態様においては、 試料測定時には、 エネルギー印加手段 ( 熱エネルギー印加手段たるヒーター) と、 特性測定手段 (熱物性測 定手段) とは、 試料を挟んで 「近接」 するように配置されている。 (One embodiment of characteristic measuring instrument) One embodiment of the characteristic measuring instrument of the present invention is shown in the schematic cross-sectional view of FIG. In the embodiment of FIG. 8, at the time of measuring the sample, the energy applying means (heater serving as thermal energy applying means) and the characteristic measuring means (thermophysical property measuring means) are arranged so as to be “close” with the sample interposed therebetween. Have been.
図 8を参照して、 この態様の特性測定用器具 1 0は、 ベース 1 1 (第 1 の部材) と、 該ベース 1 1 の一端と回転可能に支持されてい るアーム 1 2 (第 2の部材) とを含み、 これらのベース 1 1および アーム 1 2の間に、 測定対象たる試料 1 3を挟持することが可能と されている。 アーム 1 2の先端部にはヒータ一 1 4が配置され、 ベ ース 1 1の該ヒータ一 1 4 と対向する位置には、 センサー 1 5 (特 性測定手段) が配置されている。 このような特性測定用器具 1 0に より、 試料 1 3の熱的特性が測定可能とされている。  Referring to FIG. 8, the characteristic measuring instrument 10 of this embodiment includes a base 11 (first member) and an arm 12 (second member) rotatably supported at one end of the base 11. ), And a sample 13 to be measured can be held between the base 11 and the arm 12. A heater 14 is arranged at the tip of the arm 12, and a sensor 15 (characteristic measuring means) is arranged at a position of the base 11 facing the heater 14. With such a characteristic measuring instrument 10, the thermal characteristics of the sample 13 can be measured.
図 8においては、 アーム 1 2に、 更に鉄心 1 6が配置され、 この 鉄心 1 6 と、 これに対向するベース 1 1側の差動トランス 1 7 とに よ り、 鉄心 1 6の差動トランス 1 7への進入の程度 (試料 1 3の厚 さに対応する) が測定可能とされている。  In FIG. 8, an iron core 16 is further arranged on the arm 12, and the iron core 16 and the differential transformer 17 on the base 11 side facing the iron core 16 form a differential transformer for the iron core 16. The degree of entry into 17 (corresponding to the thickness of sample 13) can be measured.
(データ処理の一態様)  (One form of data processing)
センサー 1 5および差動トランス 1 7からの出力は、 ベース 1 1 内に配置された 2チャンネルプリアンプ 1 8によつて増幅され、 該 プリ アンプ 1 8からの出力は、 A Z Dコンバータ 1 9を介して、 C P U 2 0に入力される。 他方、 ヒータ一 1 4への入力は、 C P U 2 0から Dノ Aコンパータ 2 1 を介して、 該ヒーター 1 4に入力され る。 C P U 2 0からの出力は液晶パネル 2 2で表示され、 また外部 パーソナルコンピューター 2 3でデータ解析される。  The outputs from the sensor 15 and the differential transformer 17 are amplified by a two-channel preamplifier 18 arranged in the base 11, and the output from the preamplifier 18 is passed through an AZD converter 19. Is input to the CPU 20. On the other hand, the input to the heater 14 is input from the CPU 20 via the D / A converter 21 to the heater 14. The output from the CPU 20 is displayed on the LCD panel 22 and analyzed by an external personal computer 23.
図 8 ( b ) は、 ヒータ一 1 4およびセンサー 1 5 (試料部) の詳 細を示す模式断面図である。 これらの素子は、 いずれも、 基板上に 薄膜抵抗またはサ一ミスターを配置してなる。 この図 8の態様にお いては、 必要に応じて、 ヒーター 1 4を、 極小のボール (図示せず ) 上に載せ、 被測定試料を、 センサー 1 5の測定面と平行に挟める よ うにしてもよい。 このような態様においては、 測定精度を更に高 めることができる。 FIG. 8B is a schematic sectional view showing details of the heater 14 and the sensor 15 (sample portion). Each of these elements has a thin film resistor or a thermistor arranged on a substrate. In the embodiment of FIG. If necessary, the heater 14 may be placed on a very small ball (not shown) so that the sample to be measured is sandwiched in parallel with the measurement surface of the sensor 15. In such an embodiment, the measurement accuracy can be further improved.
図 8の態様においては、 トランスコイル 1 7内の変位を検出する ことにより、 試料 1 3の熱特性と同時に、 該試料の厚さをも測定す ることができる。 この場合には、 試料 1 3のゼロ厚み (試料無しの 状態) を、 予めキャリブレーショ ンすることが好ましい。  In the embodiment of FIG. 8, the thickness of the sample 13 can be measured simultaneously with the thermal characteristics of the sample 13 by detecting the displacement in the transformer coil 17. In this case, it is preferable to calibrate the zero thickness of the sample 13 (without the sample) in advance.
図 9は、 図 8に対応する特性測定器の模式斜視図である。 この図 9の態様においては、 レバー 3 0により、 ベース 1 1 とアーム 1 2 との間に挟まれた試料への加圧が可能とされている。 この加圧は、 別に設けたモーター (図示せず) によって行う ことも可能である。 上記した図 8の態様においては、 後述するようなシグナル発生 解析器を組み合わせることによ り、 演算スピー ドを更に向上させる ことができる。 · (測定方法の一態様)  FIG. 9 is a schematic perspective view of the characteristic measuring device corresponding to FIG. In the embodiment shown in FIG. 9, the lever 30 can press the sample sandwiched between the base 11 and the arm 12. This pressurization can be performed by a separately provided motor (not shown). In the above-described embodiment of FIG. 8, the operation speed can be further improved by combining a signal generation analyzer as described later. · (One mode of measurement method)
図 8の態様においては、 1つの試料に対して、 熱印加条件をある 範囲内で試行錯誤して、 最適な熱印加条件を決めることができる。 この場合には、 例えば、 測定データは、 (キャリブレーショ ン · 力 ーブと ともに) リアルタイムで、 液晶パネル 2 2または (例えば、 必要に応じて C P U 2 0に接続する) ノート型のパーソナル · コン ピューター (図示せず) 上に表示させ、 最適な熱印加条件 (グラフ が線形になる条件) 例えば、 印加温度波の周波数の平方根とセンサ 一 1 5によって測定される位相の関係が直線になる条件をチェック することができる。 該パーソナル · コンピューターにおける演算に よ り、 自動的に、 熱拡散率 α (および熱伝導率 ) を計算すること ができる。 図 8の態様においては、 必要に応じて、 異なる測定について、 液 晶パネル 2 2における表示色を変化させることができる。 なお、 本 発明の特性測定器具は、 後述するよ うに、 熱物性以外 (例えば、 粘 度) 、 弾性率、 誘電率、 導電率、 湿度にも、 広く使用可能である。 In the embodiment of FIG. 8, the optimum heat application condition can be determined for one sample by trial and error within a certain range. In this case, for example, the measurement data is stored in real time (along with the calibration probe) on the LCD panel 22 or a laptop personal computer (for example, connected to the CPU 20 if necessary). Optimal heat application conditions (conditions where the graph becomes linear) For example, conditions where the relationship between the square root of the frequency of the applied temperature wave and the phase measured by the sensor 15 becomes linear Can be checked. By the calculation in the personal computer, the thermal diffusivity α (and the thermal conductivity) can be automatically calculated. In the embodiment shown in FIG. 8, the display color on the liquid crystal panel 22 can be changed for different measurements as necessary. In addition, the characteristic measuring instrument of the present invention can be widely used not only for thermophysical properties (for example, viscosity), but also for elastic modulus, dielectric constant, conductivity, and humidity, as described later.
(測定可能な特性)  (Measurable characteristics)
本発明の測定用器具を用いた場合には、 以下の特性が測定可能で ある。 ( 1 ) 物理的特性 ( i ) 力学的特性、 例えば粘度、 動的弾 性率 ( i i ) 熱的特性、 例えば、 熱拡散率、 熱伝導率、 熱抵抗率 ( i i i ) 電気的特性、 例えば誘電率、 導電率 ( 2 ) その他の特 性 例えば、 湿度  When the measuring instrument of the present invention is used, the following characteristics can be measured. (1) Physical properties (i) Mechanical properties, such as viscosity, dynamic elastic modulus (ii) Thermal properties, such as thermal diffusivity, thermal conductivity, thermal resistivity (iii) Electrical properties, such as dielectric Rate, conductivity (2) Other characteristics, such as humidity
(エネルギー印加手段)  (Energy application means)
本発明においては、 該手段からのエネルギー印加に基づき、 試料 の有用な特性が測定可能である限り、 エネルギー印加手段の種類、 メカニズム、 形状、 サイズ等は特に制限されず、 公知のエネルギー 印加手段から適宜選択して使用することができる。 このようなエネ ルギー印加手段と しては、 例えば、 以下に列挙するものが使用可能 である。  In the present invention, the type, mechanism, shape, size, and the like of the energy applying means are not particularly limited, as long as useful properties of the sample can be measured based on the energy application from the means. It can be appropriately selected and used. As such energy applying means, for example, those listed below can be used.
薄膜抵抗への a . c ジュール加熱、 フラッシュ照射、 変調レーザ 一照射、 チップ抵抗のジュール発熱等がある。  A. C Joule heating to thin film resistors, flash irradiation, modulation laser irradiation, and joule heating of chip resistors.
(特性測定手段)  (Characteristic measuring means)
本発明においては、 前記エネルギー印加手段からのエネルギー印 加に対応した、 試料の有用な特性が測定可能である限り、 特性測定 手段の種類、 メカニズム、 形状、 サイズ等は特に制限されず、 公知 の特性測定手段から適宜選択して使用することができる。 このよう な特性測定手段と しては、 例えば、 以下に列挙するものが使用可能 である。  In the present invention, the type, mechanism, shape, size, and the like of the characteristic measuring means are not particularly limited as long as useful properties of the sample corresponding to the energy application from the energy applying means can be measured. It can be appropriately selected and used from the characteristic measuring means. As such a characteristic measuring means, for example, those listed below can be used.
薄膜抵抗、 チップ抵抗、 サーミスタ、 熱電対、 測温抵抗体、 歪ゲ ージ、 ペルチヱ素子、 赤外検知素子等がある。 Thin film resistors, chip resistors, thermistors, thermocouples, RTDs, strain gauges Page, Peltier element, infrared detecting element, etc.
(好適なエネルギー印加手段一測定手段の組合せ)  (Preferred combination of energy applying means and measuring means)
本発明においては、 以下に示すような各種の特性測定に関連して 、 下記のエネルギー印加手段一特性測定手段の組合せが好適に使用 可能である。  In the present invention, the following combinations of energy applying means and characteristic measuring means can be suitably used in connection with various characteristic measurements as described below.
<測定すべき特性〉 <エネルギー印加手段 > <特性測定手段〉 熱的物性 ヒー.ター 温度センサー 粘度 ソレノィ ド振動板 加速度計、 歪ゲ ージ等  <Characteristics to be measured> <Energy applying means> <Characteristic measuring means> Thermal properties Heater Temperature sensor Viscosity solenoid diaphragm Accelerometer, strain gauge, etc.
誘電率、 導電率 金属電極 金属電極 動的弾性率 ソレノィ ド振動板 歪ゲージ  Dielectric constant, conductivity Metal electrode Metal electrode Dynamic elastic modulus Solenoid diaphragm Strain gauge
(第 1および第 2の部材)  (First and second members)
本発明において、 特性測定用器具を構成する第 1および第 2の部 材は、 これらの間に、 測定対象たる試料を (少なく とも、 特性の測 定に必要な時間の間) 保持することが可能である限り、 該第 1およ び第 2の部材の形状、 材質、 サイズ等は特に制限されない。  In the present invention, the first and second members constituting the characteristic measuring instrument can hold a sample to be measured (at least for a time required for characteristic measurement) between them. The shape, material, size, and the like of the first and second members are not particularly limited as long as possible.
第 1および第 2の部材の少なく とも一方は可動とされる。 このよ うな可動の態様 (例えば、 回転移動、 平行移動) 、 メカニズム (例 えば、 手動、 モーター利用) 等も、 上記試料保持が可能である限り 、 特に制限されない。 ただし、 本発明においては、 少なく とも特性 の測定時には、 該特性測定手段と前記エネルギー印加手段とが近接 して配置され、 且つ、 該第 1および第 2の部材の間に配置された試 料に対して、 前記エネルギー印加手段からのエネルギー印加に対応 して、 該試料における特性変化を前記特性測定手段で測定可能であ ることが必要である。  At least one of the first and second members is movable. Such a movable mode (for example, rotational movement, parallel movement), a mechanism (for example, manual operation, motor use), and the like are not particularly limited as long as the above-described sample holding is possible. However, in the present invention, at least at the time of measuring the property, the property measuring means and the energy applying means are arranged in close proximity to each other and the sample is arranged between the first and second members. On the other hand, it is necessary that the property change in the sample can be measured by the property measuring means in response to the energy application from the energy applying means.
簡便且つ携帯容易とする点からは、 本発明の特性測定器具は、 図 8および図 9に示すようなステープラー (いわゆるホッチキス) 型 とすることが好ましい。 In view of being simple and easy to carry, the characteristic measuring instrument of the present invention is a stapler (so-called stapler) type as shown in FIGS. It is preferable that
(試料との位置関係)  (Position relationship with sample)
本発明においては、 少なく とも特性の測定時には、 前記特性測定 手段が、 該試料に対して、 接触ないし近接して配置される。 「接触 」 に際しては、 試料が適宜加圧されるようにしても良い。 また、 特 性測定手段の試料に対する 「近接」 の程度は、 所望の特性が測定可 能である限り、 特に制限されない。  In the present invention, at least at the time of measuring the characteristic, the characteristic measuring means is disposed in contact with or close to the sample. At the time of “contact”, the sample may be appropriately pressurized. Further, the degree of “proximity” of the characteristic measuring means to the sample is not particularly limited as long as a desired characteristic can be measured.
(エネルギー印加手段一特性測定手段の位置関係)  (Position relation between energy applying means and characteristic measuring means)
本発明においては、 エネルギー印加手段が第 1の部材に配置され るが、 特性測定手段は、 該第 1の部材に配置されていてもよく、 ま た第 2の部材に配置されていてもよい。 更には、 複数の特性測定手 段を用いる場合、 それらの一部が第 1の部材に配置され、 且つ、 残 りの特性測定手段が第 2の部材に配置されていてもよい。  In the present invention, the energy applying means is arranged on the first member, but the characteristic measuring means may be arranged on the first member, or may be arranged on the second member. . Furthermore, when a plurality of characteristic measuring means are used, a part of them may be arranged on the first member, and the remaining characteristic measuring means may be arranged on the second member.
本発明においては、 少なく とも特性の測定時には、 エネルギー印 加手段と特性測定手段とが、 互いに近接して配置される。 この 「近 接」 の程度は、 所望の特性が測定可能である限り、 特に制限されな い。 ただし、 試料の微細領域を測定可能とする態様、 ないしは特性 測定器具を小型化する態様においては、 この 「近接」 の程度は、 以 下のようなものが好ましい。  In the present invention, at least at the time of measuring characteristics, the energy applying means and the characteristic measuring means are arranged close to each other. The degree of the “close proximity” is not particularly limited as long as a desired property can be measured. However, in a mode in which a fine region of a sample can be measured or in a mode in which a characteristic measuring instrument is miniaturized, the degree of “proximity” is preferably as follows.
( 1 ) 特性測定手段が第 2の部材に配置される態様 この態様にお いては、 所望の特性測定時には、 試料が、 エネルギー印加手段と特 性測定手段とによ り挟持されることとなる。 すなわち、 この態様に おいては、 エネルギー印加手段と特性測定手段の 「近接」 の程度は 、 該試料の厚み (ないしは所望の加圧時の厚み) に対応する。  (1) An aspect in which the characteristic measuring means is arranged on the second member In this aspect, at the time of measuring the desired characteristic, the sample is sandwiched between the energy applying means and the characteristic measuring means. . That is, in this embodiment, the degree of “proximity” between the energy applying unit and the characteristic measuring unit corresponds to the thickness of the sample (or the desired thickness at the time of pressurization).
( 2 ) 特性測定手段が第 1 の部材に配置される態様 この態様にお いては、 所望の特性測定時には、 エネルギー印加手段および特性測 定手段が、 試料に対して、 同一の側に配置されること となる。 すな わち、 この態様においては、 エネルギー印加手段と特性測定手段の(2) Embodiment in which the characteristic measuring means is arranged on the first member In this embodiment, at the time of desired characteristic measurement, the energy applying means and the characteristic measuring means are arranged on the same side with respect to the sample. The Rukoto. sand In other words, in this aspect, the energy applying means and the characteristic measuring means
「近接」 の程度は、 これらの手段の 「中心」 間の距離と して、 l c m以下、 更には 0. l〜 1 0 mm (特に、 0. 0 1〜0. 5 mm) であることが好ましい。 The degree of "proximity" may be less than lcm, or even between 0.1 and 10 mm (particularly between 0.01 and 0.5 mm), as the distance between the "centers" of these means. preferable.
(シグナル発生/解析器)  (Signal generation / analyzer)
本発明のシグナル発生/解析器は、 C P Uと、 該 C P Uに接続さ れたメモリーと、 前記 C P Uに接続された DZA変換器と、 前記 C P Uに接続された AZD変換器とを少なく とも含む。 このようなシ グナル発生/解析器においては、 例えば、 予め前記メモリー中に書 き込まれたデジタルデータを、 所定の周波数の交流電圧へ D/ A変 換して、 前記 Dノ A変換器に接続された外部エネルギー印加手段に 供給し、 前記 AZD変換器に接続された外部センサー (例えば、 図 8に示したようなもの) からの出力を A Z D変換して得たシグナル と、 前記交流電圧と同じまたは 2倍の周波数を有する正弦波および 余弦波もしくは矩形波等の周期関数とそれぞれ乗ずることにより、 該出力と同相成分と、 9 0° 成分とを演算可能となる。  The signal generation / analyzer of the present invention includes at least a CPU, a memory connected to the CPU, a DZA converter connected to the CPU, and an AZD converter connected to the CPU. In such a signal generator / analyzer, for example, digital data written in advance in the memory is D / A converted to an AC voltage having a predetermined frequency, and the digital data is converted to an A / D converter. A signal obtained by AZD converting an output from an external sensor (for example, as shown in FIG. 8) supplied to the connected external energy applying means and connected to the AZD converter; By multiplying by a periodic function such as a sine wave, a cosine wave, or a rectangular wave having the same or twice the frequency, the output, the in-phase component, and the 90 ° component can be calculated.
本発明のシグナル発生ノ解析器を、 上記した本発明の特性測定器 具と組み合わせることによ り、 演算スピー ドを更に向上させること ができる。 すなわち、 この場合、 該シグナル発生/解析器において 、 サインカーブに対応する数値データをメモリ一内に予め保持して 、 該数値データに対応するシグナルを A変換して、 ヒーター 1 4 (例えば図 8 ) に印加することができる。 この場合、 センサー 1 5からの検出シグナルは A/D変換して、 デジタル · データに変換 して、 C P Uで比較することができる。 この場合、 C P Uに接続さ れたゲー トアレイを用いることで演算スピー ドを著しく速くするこ とができる。 更に、 この態様においては、 サインカーブを発生さえ る際に、 コサインシグナルをも発生させることにより、 演算スピー ドを更に向上させることができる。 By combining the signal generation analyzer of the present invention with the above-described characteristic measuring instrument of the present invention, the operation speed can be further improved. That is, in this case, in the signal generation / analyzer, the numerical data corresponding to the sine curve is held in the memory 1 in advance, the signal corresponding to the numerical data is A-converted, and the heater 14 (for example, FIG. ) Can be applied. In this case, the detection signal from the sensor 15 can be A / D converted, converted to digital data, and compared by the CPU. In this case, the operation speed can be significantly increased by using a gate array connected to the CPU. Further, in this embodiment, when a sine curve is generated, a cosine signal is also generated, so that calculation speed is increased. Can be further improved.
(熱的測定の一態様における測定原理)  (Measurement principle in one mode of thermal measurement)
以下、 本発明において好適に利用可能な熱的測定の測定原理およ び測定のための装置について詳細に説明する (このよ うな熱的測定 の測定原理等に関しては、 例えば特許第 2 0 5 9 8 4 1号を参照す るこ とができる)  Hereinafter, the measurement principle of the thermal measurement and the apparatus for the measurement that can be suitably used in the present invention will be described in detail (for such a measurement principle of the thermal measurement, see, for example, Japanese Patent No. 205959). (Please refer to No. 841)
(熱伝導率 · 熱拡散率の定義)  (Definition of thermal conductivity and thermal diffusivity)
図 1に示すような面積 A、 板厚 dの板状の試料において、 試料の 片面が温度 Ί\ 、 反対面が温度 Τ 21 > Τ 2 ) の定常状態にあ るとき、 板厚方向の試料内部で一次元の熱伝導によってのみ熱量 Q が流れる場合、 この熱量 Qは次式により表される。 Area A as shown in FIG. 1, the plate-like sample having a thickness d, one side of the sample temperature I \, temperature opposite surface Τ 2 (Τ 1> Τ 2 ) steady-state near Rutoki, thickness When the heat quantity Q flows only by one-dimensional heat conduction inside the sample in the direction, this heat quantity Q is expressed by the following equation.
[数 1 ]  [Number 1]
Q = λ ■ (Τ,-Τ2)■ = λ ■ A■ このときの比例定数 Iが熱伝導率と定義される。 Q = λ ■ (Τ, -Τ 2 ) ■ = λ ■ A ■ The proportionality constant I at this time is defined as thermal conductivity.
試料内の濃度が非定常のときを考えた場合、 試料内の温度分布と 温度の時間的変化の間は、 試料の密度を ρ、 定圧比熱を C p とする と、 以下の熱拡散方程式で表される。  Considering the case where the concentration in the sample is unsteady, if the density of the sample is ρ and the specific heat at constant pressure is C p between the temperature distribution in the sample and the temporal change of temperature, the following heat diffusion equation expressed.
[数 2 ]  [Number 2]
Figure imgf000017_0001
このときの比例定数ひが熱拡散率として定義される。
Figure imgf000017_0001
The proportional constant at this time is defined as the thermal diffusivity.
熱拡散率 α と熱伝導率; L とは、 次式に示す関係を有する。  The thermal diffusivity α and the thermal conductivity; L have the relationship shown in the following equation.
[数 3 ] (交流状熱的変化の際の測定理論) [Number 3] (Measurement theory for AC-like thermal change)
本発明において、 交流状熱的変化を試料に与える際の測定理論に ついて説明する。  In the present invention, a description will be given of a measurement theory when applying an AC-like thermal change to a sample.
すなわち、 試料の非定常熱伝導について、 厚み方向 ( X軸方向) のみの一次元で考えると、 前述の熱拡散方程式 ( 2 ) は次式のよう になる。  In other words, when the unsteady heat conduction of the sample is considered in one dimension only in the thickness direction (X-axis direction), the above-mentioned thermal diffusion equation (2) is as follows.
[数 4 ] [Number 4]
T が τ  T is τ
= · ( 4 )  = · (4)
a t d x, 上記の ( 4 ) 式を、 図 2に示すように以下の条件で解く。  a t d x, Equation (4) above is solved under the following conditions as shown in FIG.
( i ) 測定すべき試料片方の面で試料温度が交流状に変化する。  (i) The sample temperature changes in alternating current on one side of the sample to be measured.
X = 0、 T = T。 - c o s ( ω t )  X = 0, T = T. -c o s (ω t)
( i i ) 温度波は無限に拡散する。  (i i) Temperature waves diffuse infinitely.
( i i i ) 測定すべき試料が、 下記式に示すように、 熱的に厚い  (ii) The sample to be measured is thermally thick as shown in the following formula.
[数 5 ] [Number 5]
2 or 2 or
d > d>
ω このとき、 その解は次式により表される。  At this time, the solution is expressed by the following equation.
[数 6 ]  [Number 6]
ω ω  ω ω
T (x ,t ) = Τ0 ■ e X ρ ■ x c o s ω · t一. ■ x ( 5 ) T (x, t) = Τ 0 ■ e X ρ ■ xcos ω · t-one. ■ x (5)
2■ a 2■ a ここで ωは変調周波数の角速度であり、 変調周波数を f とすると 、 ω = 2 · π . f で表される。 ( 5 ) 式において、 e x pの項が距 離 Xにおける温度増幅で、 c o sの項が Xにおける位相になる。 し たがって、 試料の厚み dにおける温度の時間による変化は、 次式に よ り表される。 [数 7 ] 2 ■ a 2 ■ a where ω is the angular velocity of the modulation frequency, and if the modulation frequency is f, it is expressed as ω = 2 · π.f. In equation (5), the term of exp is the temperature amplification at distance X, and the term of cos is the phase at X. Therefore, the change of the temperature with time in the sample thickness d is expressed by the following equation. [Number 7]
ω  ω
T (d,t) = T0 ■ e χ ρ d c o s ω d ( 6 ) T (d, t) = T 0 ■ e χ ρ dcos ω d (6)
2 - 2■ ここで温度の位相差にのみ着目すると、 位相差 Δ 0は x = 0の面 と X = dの面での位相の差分なので、  2-2 ■ Focusing only on the temperature phase difference, the phase difference Δ 0 is the phase difference between the x = 0 plane and the X = d plane.
[数 8 ] ω  [Equation 8] ω
Δ Θ = ( 7 )  Δ Θ = (7)
2■ 4 となり、  2 ■ 4
[数 9 ]  [Number 9]
Δ Θ = ( 8 )  Δ Θ = (8)
a 4 と表される。 図 3 ( a ) および ( b ) に、 データの模式図を示す。 上記 ( 8 ) 式より、 厚み dが既知の試料について、 一方の面を変 調周波数 f を変化させて交流状に加熱し、 そのときの裏面における 温度変化の位相遅れ Δ ø を測定することによって、 熱拡散率 αを求 めることができる。 このように、 交流状の温度変化を試料に与える 測定においては、 試料の加熱面と裏面における温度変化の位相差に より熱拡散率を求めるため、 温度の絶対値による誤差がほとんど問 題とならず、 高精度な測定が可能である。  a 4 is represented. Figures 3 (a) and (b) show schematic diagrams of the data. From the above equation (8), for a sample with a known thickness d, one surface is heated in an alternating current by changing the modulation frequency f, and the phase delay Δ ø of the temperature change on the back surface at that time is measured. And the thermal diffusivity α can be determined. As described above, in the measurement in which an AC-like temperature change is applied to the sample, the thermal diffusivity is obtained from the phase difference of the temperature change between the heated surface and the back surface of the sample. High-precision measurement is possible.
(熱拡散長)  (Thermal diffusion length)
前述した 「熱的に厚い」 という条件における  Under the condition of "thermally thick"
[数 1 0 ] [Number 1 0]
Figure imgf000019_0001
は長さの次元をもつことより、 熱拡散長とよばれ、 本測定法におい て重要なパラメーターの一つである。 試料の厚み d と熱拡散長 μの 関係は、 図 4 ( a ) および ( b ) に示すように、 d > μ : 熱的に厚い
Figure imgf000019_0001
Is called thermal diffusion length because it has a dimension of length, and is one of the important parameters in this measurement method. The relationship between the sample thickness d and the thermal diffusion length μ is as shown in Figs. 4 (a) and (b). d> μ: Thermally thick
dぐ μ : 熱的に薄いと定義される。 熱拡散長は温度変化の波 長であるため、 それが試料の厚みよ り大きい、 すなわち熱的に薄い 場合、 試料全体が同じ周期で温度変動を起こしてしまう。 この場合 、 試料表面と裏面における温度変動の位相差は 0に近づき、 熱拡散 率は ( 8 ) 式からは求められなくなる。 したがって、 ( 8 ) 式が成 立するために必要な 「熱的に厚い」 という条件は、 最低 1波長分以 上の温度波が、 試料内に存在する必要があるという ことを意味する  dgu μ: Defined as thermally thin. Since the thermal diffusion length is the wavelength of the temperature change, if it is larger than the thickness of the sample, that is, if it is thermally thin, the entire sample will undergo temperature fluctuations in the same cycle. In this case, the phase difference of the temperature fluctuation between the front surface and the back surface of the sample approaches 0, and the thermal diffusivity cannot be obtained from the equation (8). Therefore, the “thermally thick” condition required for Eq. (8) to be satisfied means that a temperature wave of at least one wavelength must be present in the sample.
(試料表面の加熱方法) (Method of heating the sample surface)
本発明において、 試料表面に熱源を設ける好ましい一態様につい て、 説明する。  In the present invention, a preferred embodiment in which a heat source is provided on a sample surface will be described.
このような態様においては、 試料に金 (A u ) 等の金属をスパッ タリ ングして金属薄膜を作成し、 それを交流ヒータ一と して利用す ることが好ましい。 このよ うな交流ヒーターには、 例えば、 ファン クシヨ ン · シンセサイザ一により変調した交流電流が通電され、 そ のときのジュール熱によって試料に交流状の温度波を発生させる。 ジュール熱は電流の正負を問わず、 そのピーク値において最大とな るため、 このときの温度変化の周期は、 ( 1 0 ) 式に示すように交 流電流の 2倍となる。  In such an embodiment, it is preferable that a metal thin film is prepared by sputtering a metal such as gold (Au) on a sample, and the thin metal film is used as an AC heater. In such an AC heater, for example, an AC current modulated by a function / synthesizer is supplied, and an AC-like temperature wave is generated in the sample by Joule heat at that time. Since the Joule heat is maximum at the peak value of the current regardless of whether the current is positive or negative, the cycle of the temperature change at this time is twice the alternating current as shown in equation (10).
[数 1 1 ]  [Number 1 1]
V = V。 ' c o s cy ' t) : l = l。 - c o s (co ' t) (9) V = V. 'c os cy' t): l = l. -c o s (co 't) (9)
P = I2 · R P = I 2 · R
= 10 2 ■ R■ c o s2(cu ' t ) = 1 0 2 ■ R ■ cos 2 (cu 't)
=( l0 2 ■ R/2)■ (1 + c o s (2 ■ ω■ t) ) (1 0) ここで、 Vは電圧、 I は電流、 Pは発熱量である。 したがって、 実際に加熱する周波数は、 通電する変調周波数の 2倍となる。 この 方法によると、 交流ヒーターの熱容量が、 プローブならびに測定試 料に比べて無視できるほど小さく応答がはやく交流に追随できる。 = (l 0 2 ■ R / 2) ■ (1 + cos (2 ■ ω ■ t)) (1 0) where V is voltage, I is current, and P is heat generation. Therefore, the actual heating frequency is twice as high as the applied modulation frequency. this According to the method, the heat capacity of the AC heater is negligibly small compared to the probe and the measurement sample, and the response can follow the AC quickly.
試料の裏面における温度変化の測定方法は、 温度波による薄膜抵 抗の抵抗変化、 サーミスタの抵抗変化等による。  The method of measuring the temperature change on the back surface of the sample depends on the change in resistance of the thin film resistance due to the temperature wave, the change in resistance of the thermistor, and the like.
温度センサーの回路には、 プリ ッジ回路とプリアンプが組み込ん であり、 プローブ抵抗の交流成分のみを電圧の変化として取り出せ る。 このシグナルは A D変換されて、 後段のコンピューター処理を 可能とする。  The temperature sensor circuit incorporates a bridge circuit and a preamplifier, so that only the AC component of the probe resistance can be extracted as a voltage change. This signal is A / D converted to allow for further computer processing.
温度波の振幅は、 スパッタ リ ングの条件、 温度センサーの抵抗値 の温度依存性、 通電量などに依存するが、 予めブランク測定ならび に標準物質で測定することで装置定数と して、 差し引く ことができ る。  The amplitude of the temperature wave depends on the sputtering conditions, the temperature dependence of the resistance value of the temperature sensor, the amount of electricity, etc., but it should be deducted as the device constant by previously measuring the blank and measuring with a standard material. Can be done.
(基本システム構成)  (Basic system configuration)
本発明の測定方法に好適に使用可能な基本的なシステム構成 (本 発明の測定装置) の一例を図 1 0のブロ ック図に示す。 図 1 0のポ ート a〜 gには、 それぞれ図 1 1のブロック図に示すような回路が 接続されている。  An example of a basic system configuration (the measuring apparatus of the present invention) that can be suitably used for the measuring method of the present invention is shown in the block diagram of FIG. Circuits as shown in the block diagram of FIG. 11 are connected to the ports a to g in FIG. 10, respectively.
このシステムは、 試料を交流で加熱するための D A変換機能と増 幅機能を持った熱源、 試料の裏面の温度変化を検知するためのパイ ァス回路、 抵抗変化を電圧に変換するためのプリ ッジ回路と、 プリ アンプ、 A Dコンパ一ター、 試料裏面における温度変化の特定の周 波数成分を抽出するためのフーリェ機能を持ったソフ トウェア、 計 算するための I C、 関数を発生させる C P U、 試料を圧着またはさ むための試料ホルダー、 試料厚さ計測システム、 表示素子からなる 。 必要に応じて U S Bなどを介してパーソナル ' コンピューターに 接続可能となっている。  This system consists of a heat source having a DA conversion function and an amplification function for heating the sample with AC, a bypass circuit for detecting the temperature change on the back surface of the sample, and a pre-conditioner for converting the resistance change to voltage. , A preamplifier, an AD converter, software with a Fourier function to extract a specific frequency component of temperature change on the back of the sample, an IC for calculation, a CPU for generating functions, It consists of a sample holder for crimping or holding a sample, a sample thickness measurement system, and a display element. It can be connected to a personal computer via USB if necessary.
(回路構成) 図 1 2に、 本発明において好適に使用可能な回路図の一例を示す 。 図 1 3〜 1 6の回路図は、 図 1 2の回路図の各部分を拡大して示 したものである。 図 1 1〜 1 6の回路に使用可能な回路 · 部品 . 素 子の一例を、 下記の表 1〜 6に示す。 例えば、 下記の a〜 i は図 1(Circuit configuration) FIG. 12 shows an example of a circuit diagram that can be suitably used in the present invention. The circuit diagrams of FIGS. 13 to 16 are enlarged views of each part of the circuit diagram of FIG. Tables 1 to 6 below show examples of circuits, components, and elements that can be used for the circuits shown in Figs. For example, the following a-i
1に対応する。 Corresponds to 1.
a 基本となる正弦波または矩形波波形の出力用波高データの 表、 および波形の正負に関するデータ、 位相を 9 0° ずらした出力 用波高データ 約 2 0万ポイント  a Basic sine wave or square wave waveform output wave height data table, plus or minus waveform data, output wave height data shifted by 90 ° phase About 200,000 points
b 表 aからの波形データ読み込み間隔の指定、 周波数制御 c 表 aから読み込んだ波形データに乗ずる数値の指定、 波形振 幅制御  b Specifying the interval for reading the waveform data from Table a, frequency control c Specifying the value to multiply the waveform data read from Table a, and controlling the waveform amplitude
d AZDコンバータを経由して取り込んだセンサー信号と、 波 形メモリ の 2倍の周波数のサイン成分波形データ (DZA出力の正 負によ り、 反転非反転の後) の積和を行う。 1 0 0 m s間隔で 1 0 000回毎の積算を 0. 1 s行い、 サインの基本積算値とする。  d Performs the sum of products of the sensor signal acquired via the AZD converter and the sine component waveform data of twice the frequency of the waveform memory (after inversion and non-inversion depending on whether the DZA output is positive or negative). Integration is performed every 100 000 times at intervals of 100 ms for 0.1 s, and is used as the basic integrated value of the signature.
e AZDコンバータを経由して取り込んだセンサー信号と、 波 形メモリ の 1倍あるいは 2倍の周波数のコサイン成分波形データ ( D/A出力の正負によ り、 反転非反転の後) の積和を行う。 1 00 m s間隔で 1 00 0 0回毎の積算を 0. 1 s行い、 コサインの基本 積算値とする。  e The product sum of the sensor signal acquired via the AZD converter and the cosine component waveform data of 1 or 2 times the frequency of the waveform memory (after inversion and non-inversion depending on whether the D / A output is positive or negative) Do. The integration is performed every 100 000 times at intervals of 100 ms for 0.1 s, and is used as the basic integration value of cosine.
f 厚み測定部より得られた試料厚さデータの AZD変換値 g 基本積算値を得るための積分時間 (積分回数) を与える。 通 常は 0. 1秒もしくは 1波ぶんの長い方とする。  f The AZD conversion value of the sample thickness data obtained from the thickness measurement unit g Gives the integration time (number of integrations) to obtain the basic integrated value. Usually 0.1 seconds or 1 wave longer.
h 測定部 ヒーター出力 (アナログ値)  h Measurement section heater output (analog value)
i 測定部 センサー信号 (アナログ値) [表 1 ] i Measurement section Sensor signal (analog value) [table 1 ]
1 A/Dコンバーター 厚み計用 1 A / D converter for thickness gauge
2 A/Dコンバーター センサー用 2 A / D converter for sensor
3 D/Aコンバーター 未使用 3 D / A converter not used
4 D/Aコンバータ一 ヒーター信号用 5 リファレンス記憶用フラッシュメモリ 4 D / A converter 1 Heater signal 5 Flash memory for reference storage
6 CPU 6 CPU
7 FPGA  7 FPGA
8 液晶パネルへ  8 To LCD panel
9 アンプ  9 amplifier
10 アンプ  10 amplifier
® 波形メモリ  ® Waveform memory
① 厚み計入力  ① Thickness gauge input
® ヒーター出力  ® Heater output
①センサー入力 ①Sensor input
part No. Date Code Manf No order numb destination LOT Codepart No. Date Code Manf No order numb destination LOT Code
7802 48 025F 7802 48 025F
7803  7803
7804 48M04F  7804 48M04F
7805  7805
7805  7805
7905 79L05/A 617/JRC  7905 79L05 / A 617 / JRC
BUZZ  BUZZ
C1 CAP 18PF 50V CERM 018PF PCC180CNCT-ND ECJ-2VC1H180J MR-1728 39040038 C1 CAP 18PF 50V CERM 018PF PCC180CNCT-ND ECJ-2VC1H180J MR-1728 39040038
C2 CAP 18PF 50V CERM 018PF PCC180CNCT-ND ECJ-2VC1H180J R-1728 39040038C2 CAP 18PF 50V CERM 018PF PCC180CNCT-ND ECJ-2VC1H180J R-1728 39040038
C3 1 .F C3 1 .F
C4 10 F 大容量層セラミックコンデンサ  C4 10 F Large capacity layer ceramic capacitor
C5 1 JULF  C5 1 JULF
C6 I OJ F 大容量層セラミックコンデンサ  C6 I OJ F Large capacitance ceramic capacitor
C7 10 F 大容量層セラミックコンデンサ C7 10 F Large capacity layer ceramic capacitor
Figure imgf000024_0001
Figure imgf000024_0001
C9 10jUF 大容量層セラミックコンデンサ  C9 10jUF Large capacitance ceramic capacitor
C10 10 F 大容量層セラミックコンデンサ  C10 10 F Large capacity layer ceramic capacitor
C11 10/zF 大容量層セラミックコンデンサ C11 10 / zF Large capacitance ceramic capacitor
Figure imgf000024_0002
Figure imgf000024_0002
C13 CAP CERAMIC 1000PF 100PF 311-1122-1-ND 0305CG102J9B200 MX- 7433  C13 CAP CERAMIC 1000PF 100PF 311-1122-1-ND 0305CG102J9B200 MX-7433
C14 1 F
Figure imgf000024_0003
C14 1 F
Figure imgf000024_0003
C19 1 F C19 1 F
C20 C20
C21 1 /F  C21 1 / F
C22 1 JLLF  C22 1 JLLF
C23 1 F  C23 1 F
C24 1 μ-F C24 1 μ-F
Figure imgf000025_0001
Figure imgf000025_0001
C26 1 ,uF  C26 1, uF
C27 1 j F  C27 1 j F
C28 1 F  C28 1 F
C29 CAP CERAMIC 1000PF 100PF 311-1122-1 -ND 0305CG102J9B200  C29 CAP CERAMIC 1000PF 100PF 311-1122-1 -ND 0305CG102J9B200
C30 1 jiiF  C30 1 jiiF
C31 1 JCF  C31 1 JCF
C32 1 zF  C32 1 zF
C33 1 AiF
Figure imgf000025_0002
C33 1 AiF
Figure imgf000025_0002
C36 1 JLLF  C36 1 JLLF
C37 Λ μ,  C37 Λ μ,
C38 10 F 大容量層セラミックコンデンサ  C38 10 F Large capacitance ceramic capacitor
C39 10 F 大容量層セラミックコンデンサ  C39 10 F Large capacitance ceramic capacitor
C40 1 AF C40 1 AF
Figure imgf000025_0003
Figure imgf000025_0003
C42 1 iF  C42 1 iF
C43 CY55Y5UIE CY55Y5U1017-100 zF超大容量層セラミックコンデンサ  C43 CY55Y5UIE CY55Y5U1017-100 zF Super large capacitance ceramic capacitor
C44 CY55Y5U1E CY55Y5U1W7-100; uF超大容量層セラミックコンデンサ  C44 CY55Y5U1E CY55Y5U1W7-100; uF ultra large capacity layer ceramic capacitor
C45 10 zF 大容量層セラミックコンデンサ  C45 10 zF Large capacitance ceramic capacitor
C46 1 /F  C46 1 / F
* 3 〔〕《寸 m ι Μ8/1· ΙΛ1ΗΟ>Ι0ΌΙ. Sョ Η* 3 [] 《Dimension m ι Μ8 / 1 · ΙΛ1ΗΟ> Ι0ΌΙ. S ョ Η
1 I Ο 1/1 ΙΛΙΗΟ 001· Sョ tl 1 I Ο 1/1 ΙΛΙΗΟ 001
1· !· MO l ΙΛΙΗΟ 00レ S3H ι M8/1- Ι ΙΗΟ»0ΌΙ- Sョ Η 1 !! MO l ΙΛΙΗΟ 00 レ S3H ι M8 / 1- Ι ΙΗΟ »0ΌΙ- S ョ Η
Figure imgf000026_0001
Ι Μ8/Ι- HO O Sョ hi
Figure imgf000026_0001
Ι Μ8 / Ι- HO OS ョ hi
90 9SSS60S 09 り Ι ί A00CHdIvB9-rtB ϋ OOlN-lOOOOLd 000 I· i MOl/L l/MHO 001- S3H  90 9SSS60S 09 Ι Ι ί A00CHdIvB9-rtB ϋ OOlN-lOOOOLd 000 Ii MOl / L l / MHO 001- S3H
90Z9992608 09l--DlAl A000ldN39-rtH OOOLN-lOOOOl-d 000 I- I MO VI V ΙΛΙΗΟ 001- Sョ fcl  90Z9992608 09l--DlAl A000ldN39-rtH OOOLN-lOOOOl-d 000 I- I MO VI V 001 001-S fcl
t-εε  t-εε
SOS  SOS
εοδ  εοδ
Z91.-01Λ1 AOOOSrJNョ 9-Hdョ Ό 002N-lOO00Sd 0003 I· MO I-/ 1- Ι ΙΗΟ OOS Sョ tl  Z91.-01 Λ1 AOOOSrJN 9-Hd Ό 002N-lOO00Sd 0003 IMO I- / 1- Ι ΙΗΟ OOS S tl
0S6 [■-dlAl丄 rlHMrlSOO LVS9080O6 ϋΜθΐ· ο·οΐ·-ΐ·ΐ·ε 200 I- M8/L ΙΛΙΗΟ 10 1. S3d  0S6 [■ -dlAl 丄 rlHMrlSOO LVS9080O6 ϋΜθΐ οοοΐ-εεε 200 I- M8 / L ΙΛΙΗΟ 10 1.S3d
S9いり! ΛΙ AOOOSdNョ 9-「yョ Π 003N-lOO002d 0002 V MO ill 11Η0 OOS Sョ hi  S9 required! ΛΙ AOOOSdN ョ 9- 「y ョ l 003N-lOO002d 0002 V MO ill 11Η0 OOS S ョ hi
MOd MOd
998-d>i QZZL ZV dN—い 0S9 !_-963\AaSSSXVlAI ΗΛΗα SSS—e曰" IVflCl Ol l/ 丄 laddSS SSSXVW 998-d> i QZZL ZV dN—Yes 0S9! _- 963 \ AaSSSXVlAI ΗΛΗα SSS—e says “IVflCl Ol l / 丄 laddSS SSSXVW
830808V Z0209 SSOS/SH SSdSSOSd^  830808V Z0209 SSOS / SH SSdSSOSd ^
ηΐΛΐ a ηΐΛΐ εα ηΐΛΐ a ηΐΛΐ εα
Π1Λ1 ZQ ηΐ ] ια Π1Λ1 ZQ ηΐ] ια
9NO SNO  9NO SNO
mo
Figure imgf000026_0002
ΐ7ΐ·Ν〇-α〇Ί LNO
mo
Figure imgf000026_0002
ΐ7ΐ-α〇Ί LNO
セ L- yy auHau a H u dya a R16 RES 100 OHM 1/1 OW 1 1000 P100CCT-N100Q ERJ-6ENF1000V Q-160 3092556706C L- yy auHau a H u dya a R16 RES 100 OHM 1/1 OW 1 1000 P100CCT-N100Q ERJ-6ENF1000V Q-160 3092556706
R17 RES 100 OHM 1/1 OW 1 1000 PIOOCCT-ΝΙΟΟΩ ERJ-6ENF1000V . Q-160 3092556706R17 RES 100 OHM 1/1 OW 1 1000 PIOOCCT-ΝΙΟΟΩ ERJ-6ENF1000V .Q-160 3092556706
R18 RES 100 OHM 1/1 OW 1 1000 P100CCT-N100Q ERJ-6ENF1000V MQ-160 3092556706R18 RES 100 OHM 1/1 OW 1 1000 P100CCT-N100Q ERJ-6ENF1000V MQ-160 3092556706
R19 RES 100 OHM 1/1 OW 1 1000 P100CCT-N100Q ERJ-6ENF1000V MQ-160 3092556706R19 RES 100 OHM 1/1 OW 1 1000 P100CCT-N100Q ERJ-6ENF1000V MQ-160 3092556706
R20 RES 10.0KOHM 1/8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930 R20 RES 10.0KOHM 1 / 8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930
R21 220  R21 220
R22 RES 10.0KOHM 1/8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930  R22 RES 10.0KOHM 1 / 8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930
R23 RES 10.0KOHM 1/8W 1002 31 -10.0Κ 10ΚΩ 9C08052A1002FKHFT P-1930  R23 RES 10.0KOHM 1 / 8W 1002 31 -10.0Κ 10ΚΩ 9C08052A1002FKHFT P-1930
R24 RES 10.0KOHM 1/8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930  R24 RES 10.0KOHM 1 / 8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930
R25 RES 10.0KOH 1/8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930  R25 RES 10.0KOH 1 / 8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930
R26 RES 10.0KOHM 1/8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930  R26 RES 10.0KOHM 1 / 8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930
R27 RES 10.0KOHM 1/8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930  R27 RES 10.0KOHM 1 / 8W 1002 311-10.0K 10ΚΩ 9C08052A1002FKHFTMP-1930
R28 RES 82 OHM 1/10W5°/c82R 311-82GCT82Q 9C06031A82R0JLHFT MS-2423  R28 RES 82 OHM 1 / 10W5 ° / c82R 311-82GCT82Q 9C06031A82R0JLHFT MS-2423
R29 RES 82 OHM 1/1 OW 5%82R 311-82GCT82Q 9C06031A82R0Jし HFT MS-2423  R29 RES 82 OHM 1/1 OW 5% 82R 311-82GCT82Q 9C06031A82R0J and HFT MS-2423
R30 RES 82 OHM 1门 0W5°/c82R 311-82GCT82Q 9C06031A82R0JLHFT MS-2423  R30 RES 82 OHM 1 门 0W5 ° / c82R 311-82GCT82Q 9C06031A82R0JLHFT MS-2423
R31 RES 82 OHM 1/1 OW 5%82R 311-82GCT82Q 9C06031A82R0Jし HFT MS-2423  R31 RES 82 OHM 1/1 OW 5% 82R 311-82GCT82Q 9C06031A82R0J and HFT MS-2423
R32 RES 82 OHM 1门 OW 5°/<82R 311-82GCT82Q 9C06031A82R0Jし HFT MS-2423  R32 RES 82 OHM 1 门 OW 5 ° / <82R 311-82GCT82Q 9C06031A82R0J HFT MS-2423
R33 RES 82 OHM 1/10W5°/d32R 311-82GCT82Q 9C06031A82R0Jし HFT MS-2423  R33 RES 82 OHM 1 / 10W5 ° / d32R 311-82GCT82Q 9C06031A82R0J HFT MS-2423
R34 RES 82 OHM 1/10W5%82R 311-82GCT82Q 9C06031A82R0Jし HFT MS-2423  R34 RES 82 OHM 1 / 10W5% 82R 311-82GCT82Q 9C06031A82R0J HFT MS-2423
R35 RES 82 OHM 1/1 OW 5%32R 311-82GCT82Q 9C06031A82R0Jし HFT MS-2423  R35 RES 82 OHM 1/1 OW 5% 32R 311-82GCT82Q 9C06031A82R0J HFT MS-2423
R36 RES 82 OHM 1/10W5°/cS2R 311-82GCT82Q 9C06031A82R0Jし HFT MS-2423  R36 RES 82 OHM 1 / 10W5 ° / cS2R 311-82GCT82Q 9C06031A82R0J HFT MS-2423
R37 RES 82 OHM 1/10W5°/c82R 311-82GCT82Q 9C06031A82R0JLHFT MS-2423  R37 RES 82 OHM 1 / 10W5 ° / c82R 311-82GCT82Q 9C06031A82R0JLHFT MS-2423
R38 RES 82 OHM 1/10W5%82R 311-82GCT82D 9C06031A82R0JLHFT MS-2423  R38 RES 82 OHM 1 / 10W5% 82R 311-82GCT82D 9C06031A82R0JLHFT MS-2423
R39 RES 82 OHM 1/1 OW 5%B2R 311-82GCT82D 9C06031A82R0JLHFT MS-2423  R39 RES 82 OHM 1/1 OW 5% B2R 311-82GCT82D 9C06031A82R0JLHFT MS-2423
SW1 Switch tact spst 12mm mom extend EG1024-ND Dec.02 TL1100FF160Q  SW1 Switch tact spst 12mm mom extend EG1024-ND Dec.02 TL1100FF160Q
SW2 Switch tact spst 12mm mom extend EG1024-ND Dec.02 TL1100FF160Q  SW2 Switch tact spst 12mm mom extend EG1024-ND Dec.02 TL1100FF160Q
U4 OP177/G 0 Analog devices  U4 OP177 / G 0 Analog devices
05 U5 OP177/G 0 Analog devices 05 U5 OP177 / G 0 Analog devices
U6 OP177/G 0 Analog devices  U6 OP177 / G 0 Analog devices
U7 OP177/G 0 Analog devices  U7 OP177 / G 0 Analog devices
U9 TI1C/A E IC SERIAL AOC LP CMO TLC4545IDGK 296-12746-5-ND NF-2721  U9 TI1C / A E IC SERIAL AOC LP CMO TLC4545IDGK 296-12746-5-ND NF-2721
U 10 TI G/AME IC SERIAL AOC LP CMO TLC4545IDGK 296-12746-5-ND NF-2721  U 10 TI G / AME IC SERIAL AOC LP CMO TLC4545IDGK 296-12746-5-ND NF-2721
U11 XR:  U11 XR:
U12 D01/3827 IC D/A CONV LP 16-BITDAC8501 E/250 12867229し Z-5655  U12 D01 / 3827 IC D / A CONV LP 16-BITDAC8501 E / 250 12867229 Z-5655
U13 D 01/3827 IC D/A CONV LP 16-B1TDAC8501 E/250 12867229 LZ-5655  U13 D 01/3827 IC D / A CONV LP 16-B1TDAC8501 E / 250 12867229 LZ-5655
U14 CR:  U14 CR:
U16 93C46B/I/SN0343/38E  U16 93C46B / I / SN0343 / 38E
U17 1 ΑΛ F Transistor GP NPN AMP MBT3904FSCT-ND BT390412867229 LQ-2022 U17 1 Α Λ F Transistor GP NPN AMP MBT3904FSCT-ND BT390412867229 LQ-2022
U18 QUTO  U18 QUTO
U20 CY7C1049 IC SRAM 512KX83.3V CY7C1049CV33-20VC 428-1488-5-ND LF-3172  U20 CY7C1049 IC SRAM 512KX83.3V CY7C1049CV33-20VC 428-1488-5-ND LF-3172
U21 XC18V01 IC PROM SERIAL CONRG C18V01 S020C 122-1237-12867229 JN-1964  U21 XC18V01 IC PROM SERIAL CONRG C18V01 S020C 122-1237-12867229 JN-1964
VR CW-2  VR CW-2
XC2S-144 XC2S50T IC FPGA 2.5V 384 CLB 122-1225-N D XC2S50-5TNJ-975  XC2S-144 XC2S50T IC FPGA 2.5V 384 CLB 122-1225-N D XC2S50-5TNJ-975
XTAL BB99/16.000M Crystal 16.000 MHZSMD 18PF 12867229 JA-1930 796268  XTAL BB99 / 16.000M Crystal 16.000 MHZSMD 18PF 12867229 JA-1930 796268
06 (測定条件の例) 06 (Example of measurement conditions)
本発明のシステム構成 (例えば、 図 8に示すもの) において、 好 適に使用可能な条件の例は、 以下の通りである。  In the system configuration of the present invention (for example, the one shown in FIG. 8), examples of conditions that can be suitably used are as follows.
( i ) 試料サイズ : 1 m m角以上で制限なし  (i) Sample size: 1 mm square or more with no limit
、 ι 1 ) 料厚み : 1 μ πι ~ 1 0 m m  , Ι 1) Thickness: 1 μ πι ~ 10 mm
本発明の熱的を測定する態様において、 交流熱源に好適に使用可 能な導電性物質は、 電流を流すことでジュール熱によ り発熱するも のである限り、 特に制限されない。 このような導電性物質の例とし ては、 例えば、 金、 銀、 白金、 銅、 鉄、 亜鉛、 アンチモン、 イ リ ジ ゥム、 ク ロメノレ、 コンスタンタン、 ニク ロム、 アルミニウム、 ク ロ ーム、 ニッケル、 カーボン、 サーミスター、 熱電対等が挙げられる (試料)  In the embodiment of the present invention for measuring thermal conductivity, the conductive material that can be suitably used for the AC heat source is not particularly limited as long as it generates heat by Joule heat when an electric current flows. Examples of such conductive materials include, for example, gold, silver, platinum, copper, iron, zinc, antimony, iridium, chromenole, constantan, nickel, aluminum, chrome, nickel , Carbon, thermistor, thermocouple, etc. (sample)
その特性 (例えば熱的特性) の測定が有用な試料である限り、 特 に制限されない。 このような試料の例として、 例えば、 高分子化合 物、 ゴム、 有機色素、 鉱石、 ガラス、 セラ ミ ックス、 金属板、 水溶 液、 グリース、 油、 気体、 植物細胞、 動物細胞、 更には、 各種工業 製品、 断熱紙、 発泡高分子材料、 高度に分子配向した高分子フィル ム、 多層フィルム、 スピンコー トした薄膜、 キャス ト膜、 蒸着膜、 布地、 複合材料更には紙幣、 テレホンカー ド、 植物の葉等を挙げる ことができる。  There is no particular limitation as long as the measurement of its properties (eg, thermal properties) is a useful sample. Examples of such samples include, for example, polymer compounds, rubber, organic dyes, ores, glass, ceramics, metal plates, aqueous solutions, greases, oils, gases, plant cells, animal cells, and various types of Industrial products, thermal insulation paper, foamed polymer materials, highly molecularly oriented polymer films, multilayer films, spin-coated thin films, cast films, vapor-deposited films, fabrics, composite materials, as well as banknotes, telephone cards, and plant materials Leaves.
本発明の熱的測定の態様において好適な被測定試料としては、 そ の熱的特性の測定が有用な領域である限り大きさは問わないが、 温 度センサー (温度プローブ) と同程度の平坦部分を有することが望 ましい。 金属板など導電性の物質あるいは液体状の物質であっても プローブ先端に薄い絶縁膜を取り付けることで測定が可能である。 測定領域は使用する温度プローブのサイズ等に依存するが、 測定 される領域のサイズは、 通常、 5 m m X 5 m m程度、 更には l m m X 1 m m程度であることが好ましい。 測定が可能ならば、 温度プロ ーブサイズに制限はない。 The sample to be measured suitable in the thermal measurement mode of the present invention may be of any size as long as the measurement of its thermal characteristics is useful, but it is as flat as a temperature sensor (temperature probe). It is desirable to have a part. Even a conductive or liquid substance such as a metal plate can be measured by attaching a thin insulating film to the tip of the probe. The measurement area depends on the size of the temperature probe used, etc. Usually, the size of the region to be formed is preferably about 5 mm × 5 mm, more preferably about 1 mm × 1 mm. There is no limit on the temperature probe size, as long as measurement is possible.
本発明において、 測定すべき試料の少なく とも一部に与えるべき 温度変化の大きさ、 波形には、 特に制限されない。 すなわち、 入力 振幅は試料にダメージを与えない程度であれば良く、 また波形も、 正弦波のほかに、 該試料に少なく とも経時的変化として与えること ができればよい。  In the present invention, the magnitude and waveform of the temperature change to be given to at least a part of the sample to be measured are not particularly limited. That is, the input amplitude may be such that the sample is not damaged, and the waveform may be a sine wave or at least a temporal change that can be given to the sample.
(データ処理手段の一例)  (Example of data processing means)
装置内にシグナル増幅、 演算装置が内蔵され、 プローブ上のセン サ一で受けたシグナルをブリ ッジ回路で受け、 A D変換した後、 デ ィジタル的にフーリェ変換または口ックイン増幅が可能であること が望ましい。 解析によって、 シグナルの増幅、 ノイズ除去、 表面と の位相遅れおよび振幅の減衰、 並びに与えた温度波の周波数との関 連を知る必要がある。  A signal amplification and calculation device is built in the device, and the signal received by the sensor on the probe is received by the bridge circuit, and after AD conversion, it can be digitally subjected to Fourier transformation or mouth-in amplification. Is desirable. The analysis needs to know the signal amplification, noise rejection, phase lag and amplitude attenuation from the surface, and its relationship to the frequency of the given temperature wave.
(測定方法の一態様)  (One aspect of the measurement method)
本発明において使用可能な測定方法 (アルゴリ ズム) の例を、 図 1 7のフローチャートに示す。 図 1 7において、 a〜!!で示した部 分は、 図 1 0および 1 1に示した a〜 hの回路に対応する動作であ る。  An example of a measurement method (algorithm) usable in the present invention is shown in the flowchart of FIG. In Fig. 17, a ~! ! The operation indicated by is the operation corresponding to the circuits a to h shown in FIGS. 10 and 11.
図 1 7における傾きおよび切片の計算の詳細な一例を、 図 1 8〜 2 0に示す。 図 2 1 〜 2 4は、 実際の測定の各段階における表示の 一例である。  Detailed examples of the calculation of the slope and intercept in FIG. 17 are shown in FIGS. Figures 21 to 24 are examples of displays at each stage of the actual measurement.
(装置構成の詳細)  (Details of device configuration)
図 8の詳細は構成例を、 以下に述べる。  Details of the configuration in FIG. 8 are described below.
( 1 ) ヒーター部 1 4 アーム先端がセンサー部で、 試料を挟んだ 時のがたを防ぐため、 一定加重が加えられたとき、 センサー面と平 行性を確保する方式をとつている。 温度波の変化幅は約 1 o°c以下 、 好ましくは 1 °C以下、 さらには 0. 5 °C以下であることが望まし い。 (1) Heater section 14 The tip of the arm is the sensor section.To prevent rattling when the sample is sandwiched, when a constant load is applied, the sensor surface It adopts a method to ensure its behavior. It is desirable that the change width of the temperature wave be about 1 ° C. or less, preferably 1 ° C. or less, and more preferably 0.5 ° C. or less.
( 2 ) 温度波センサー 1 5 ヒーターの対極にほぼ同じ l mm角の 大きさでセンサーが装着されている。 試料中を拡散してきた温度波 は著しく減衰し、 そのため高感度な温度センサーが必要となる。 本 装置では、 ニッケルをスパッタリ ングした薄膜抵抗センサーまたは サーミスターを使用することが望ましい。 表面は電極の絶縁を取る ためと保護のため特殊な樹脂コ一トを施す。  (2) Temperature wave sensor 15 A sensor with the same lmm square size is attached to the opposite electrode of the heater. Temperature waves that have diffused through the sample are significantly attenuated, which requires a highly sensitive temperature sensor. In this device, it is desirable to use a thin film resistance sensor or thermistor sputtered with nickel. A special resin coat is applied to the surface for insulation and protection of the electrodes.
( 3 ) 試料の接触 圧力印加 熱拡散率 · 熱伝導率の測定において は、 試料とセンサーの界面熱接触を考慮することが好ましい。 この 図 8のシステムは、 試料と電極の接触を確保するため、 接触面積を 小さく し、 また適度な圧力をアームの荷重によってかける方法を採 用している。 表面に柔らかな特殊樹脂をコー ト し、 固い試料の場合 にも密着性の向上を図ることができる。 絶縁膜分の寄与は、 厳重な チェック (例えば、 図 1 8〜図 2 0に基づく) で差し引く ことがで きる。  (3) Contact of sample When applying pressure, it is preferable to consider the thermal contact between the sample and the sensor when measuring the thermal diffusivity and thermal conductivity. The system in Fig. 8 employs a method in which the contact area is reduced and an appropriate pressure is applied by the load of the arm in order to ensure contact between the sample and the electrode. A special soft resin is coated on the surface to improve adhesion even with hard samples. The contribution of the insulation can be deducted by strict checks (eg, based on Figures 18-20).
(解析装置の一態様)  (One mode of analysis device)
このよ うな解析装置は、 図 1 0および図 1 1に示すように、 周波 数アンプ部と解析ソフ ト部からなる。 このような解析装置は、 波形 プロセッサーや計算させる C P Uに Field Programmable Gate Arra y (Xilinxなど) など中心に置き、 主メモリ、 外部への交流出力回 路 DAコンバータ、 シグナル入力回路 ADコンバータ、 厚み計解析 回路を有する。  As shown in FIGS. 10 and 11, such an analyzer includes a frequency amplifier section and an analysis software section. Such analyzers are located in the center of the Field Processor Gate Array (Xilinx, etc.) in the waveform processor and the CPU that performs calculations. Main memory, external AC output circuit DA converter, signal input circuit AD converter, thickness gauge analysis Circuit.
この解析装置は、 外部のパーソナル ' コンピューターとの U S B などのィンターフェースを介して接続可能であり、 取り込んで制御 ならびに取り込んだデータをセーブできる。 ブロ ックダイアグラムを図 1 0および図 1 1に示す。 メモリーに 基本となる正弦波形および 9 0 ° 遅れた余弦波を予め表データと し て書き込んでおく。 ついでこのシグナルを、 出力の振幅制御レジス タからのシグナルを受け、 一定の周波数と振幅を持った連続的なデ イジタルシグナル波形を発生させる。 これは DZ Aコンパ一ターと アナログアンプを通じて、 交流発熱用の試料部へ向けた出力とする 試料部から戻ってきた温度センサーからのデータをプリアンプで 整えたのち、 A/D変換した後、 波形メモリーからの内部出力と比 較する。 温度変化はヒーターの周波数の 2倍になるので、 ヒーター への出力の 2倍の周波数の正弦波、 余弦波をそれぞれ一定時間掛け 合わせて積算し、 時間平均を取る操作で行う。 This analyzer can be connected to an external personal computer via an interface such as USB, and can control the captured data and save the captured data. The block diagrams are shown in Figures 10 and 11. The basic sine waveform and cosine wave delayed by 90 ° are written in the memory as table data in advance. This signal is then received from the output amplitude control register to generate a continuous digital signal waveform with a constant frequency and amplitude. This is an output to the sample section for AC heating through a DZA converter and an analog amplifier.The data from the temperature sensor returned from the sample section is prepared by the preamplifier, then A / D converted, and the waveform Compare with internal output from memory. Since the temperature change is twice the frequency of the heater, sine and cosine waves of twice the frequency of the output to the heater are multiplied for a certain period of time and integrated to obtain a time average.
すなわち発生した温度波 (入力側、 ヒーター面) を基準として裏 面、 センサー側でのシグナルは、 強度 位相遅れ a n一 1 In other words, based on the generated temperature wave (input side, heater side), the signal on the back side and the sensor side is the intensity phase delay an- 1
( s i n/ c o s ) 、 振幅 Aは s i n成分および c o s成分の二乗 平均で決定される。 (sin / cos), the amplitude A is determined by the root mean square of the sine component and the cos component.
(周波数アンプ装置部分の一態様)  (One embodiment of the frequency amplifier unit)
この周波数アンプ装置部分は、 コン ト 口ール部と試料部からなり 、 例えば、 C P U +波形プロセッサ (F P GAで構成) +メモリ + AZD、 D/Aを含む。  This frequency amplifier device portion includes a control portion and a sample portion, and includes, for example, a CPU + waveform processor (constituted by FPGA) + memory + AZD, D / A.
C P Uは電源投入時の波形合成とスィ ッチ読み取り、 液晶表示、 R S 2 3 2 Cの通信を担当する。 波形出力、 積和演算は、 波形プロ セッサが担当する。  The CPU is responsible for power-on waveform synthesis, switch reading, liquid crystal display, and RS232C communication. The waveform processor and sum-of-products calculation are handled by the waveform processor.
動作時には、 C P Uが任意波形を合成しフラッシュメモリ等に書 き込む。 その後、 メモリ は C P Uから切り離され、 波形プロセッサ (Field Programmable Gate Array F P A : XIュ丄 inx社の sparta n2 X C 2 S 1 0 0など) と接続される。 メモリ には、 例えば、 波高値の他、 波形の正負を示すビッ ト ( C o s— b i t ) と、 その位相を 9 0度ずらしたビッ ト ( s i n— b i t ) も書き込んでおく。 波形プロセッサは 1 0 0 k回 Z秒の速度 で、 メモリから波高値データを読み取り、 DZAコンバータに送る 一方、 波形プロセッサは、 例えば、 1 0 0 k回/秒で A / Dコン パータ経由でセンサーシグナルを取り込む。 D/A出力の s i n— b i tが正ならばそのまま、 負ならば取り込んだシグナルを反転し てサイン成分積算値に加算する。 同様に c o s _b i t を使ってコ サイン成分積算値に加算する。 During operation, the CPU synthesizes an arbitrary waveform and writes it to flash memory or the like. After that, the memory is disconnected from the CPU and connected to a waveform processor (such as a Field Programmable Gate Array FPA: sparta n2 XC2S100 from XI inx). In the memory, for example, in addition to the peak value, a bit (Cos-bit) indicating the sign of the waveform and a bit (sin-bit) whose phase is shifted by 90 degrees are also written. The waveform processor reads the peak value data from memory at 100 k times Z second and sends it to the DZA converter, while the waveform processor, for example, reads the sensor data via the A / D converter at 100 k times / second. Capture the signal. If the sin-bit of the D / A output is positive, the signal is inverted as it is, and if negative, the acquired signal is inverted and added to the sine component integrated value. Similarly, add to the cosine component integrated value using cos_bit.
サイン、 コサイン成分の積算回数 1 0 0 0 0回毎 ( 1 0 0 m s間 隔) に C P Uに対して割り込みをかける。 C P Uはこれを更に適当 な回数積算し、 サイン、 コサインそれぞれの基本積算値とする。 こ の基本積算値を更に測定周波数の 1波分の時間だけ積算した値から 位相差を求める。 この場合、 基本積算値を 0. 1秒間隔とするのは 、 5 0 H z、 6 0 H zのいずれでも整数倍の波が入るようにするこ とで、 電源ハムの影響を減らすためである。 従って、 この場合の測 定に必要な最小時間は、 測定周期の 1波分または 0. 1秒の長い方 である。  An interrupt is issued to CPU every 100 000 times (at 100 ms intervals) for the sine and cosine components. The CPU further integrates this value an appropriate number of times, and uses it as a basic integrated value for each of the sine and cosine. The phase difference is obtained from the value obtained by further integrating this basic integrated value for one measurement frequency. In this case, the basic integration value is set to 0.1 second intervals in order to reduce the influence of power supply hum by making an integral multiple of the wave enter at either 50 Hz or 60 Hz. is there. Therefore, the minimum time required for measurement in this case is the longer of one wave of the measurement cycle or 0.1 second.
メモリ には、 例えば 2秒分 ( 2 0万ポイ ン ト) の出力用波高デー タを格納できる。 通常は 2秒で 1周期となる正弦波のデータを入れ ておけばよい (波形は、 プログラム次第である) 。  The memory can store, for example, output crest data for 2 seconds (200,000 points). Normally, it is sufficient to insert sine wave data that is one cycle in two seconds (the waveform depends on the program).
測定周波数を変える際は、 メモリからの読み出し間隔を適度変更 することによ り行う ことができる。  The measurement frequency can be changed by appropriately changing the reading interval from the memory.
(試料測定の一態様)  (One mode of sample measurement)
図 8のシステムを用いた測定方法の一態様について、 以下に説明 する。 まず試料 1 3を図 8の所定の位置 (ヒーター 1 4 とセンサー 1 5 との間) に挿入し、 上記したものと同様な測定を行う。 まず、 試料 1 3の厚みを、 鉄心 1 6 と トランス 1 7 とで測定する。 この測定の アルゴリズムにおいては、 例えば、 標準ポリマーの物性値と測定条 件 (別の物質へも特化できる) をメモリーに記憶しておき、 測定さ れた厚さをもとに、 初期の印可周波数と電圧を決めることができる この前後を周波数スキャンし、 もしシグナル強度が標準試料と較 ベて過不足すれば、 交流温度波の振幅を標準との差に応じて増減さ せ、 再度周波数スキャンをさせる。 3点以上の測定で相関係数を計 算し、 直線から大幅にずれる場合は、 再度測定する周波数帯を大き く変化させて再度測定する。 One embodiment of the measurement method using the system of FIG. 8 will be described below. First, the sample 13 is inserted into the predetermined position in FIG. 8 (between the heater 14 and the sensor 15), and the same measurement as described above is performed. First, the thickness of the sample 13 is measured with the iron core 16 and the transformer 17. In this measurement algorithm, for example, the physical property value of the standard polymer and the measurement conditions (which can be specialized for other substances) are stored in memory, and the initial application is performed based on the measured thickness. Frequency and voltage can be determined.Frequency scan before and after this, if the signal intensity is too much or less than that of the standard sample, increase or decrease the amplitude of the AC temperature wave according to the difference from the standard, and rescan the frequency Let. Calculate the correlation coefficient at three or more points, and if it deviates significantly from the straight line, change the frequency band to be measured again and perform the measurement again.
上記の周波数スキャンで得た直線から、 ブランク分を差し引く。 ついでこの値の二つの位相点 (例えば、 1 8 0 ° と 2 7 0 ° ) を決 めておき、 これらの値となる周波数を求め、 ここから直線の傾きを 計算し熱拡散率を算定し、 振幅から熱伝導率を算定する。  Subtract the blank from the straight line obtained by the above frequency scan. Next, two phase points of this value (for example, 180 ° and 270 °) are determined, and the frequencies at which these values are obtained are determined. From this, the slope of the straight line is calculated to calculate the thermal diffusivity. Calculate the thermal conductivity from the amplitude.
(熱拡散率 · 熱伝導率換算プログラムの一態様)  (One form of thermal diffusivity · thermal conductivity conversion program)
振幅変化は熱伝導率 · 熱拡散率既知の標準物質での減衰と比較す ることで、 熱伝導率へ換算することができる。 この場合、 例えば、 標準試料のデータ、 基盤の熱データ、 装置の補正係数、 および測定 解析プログラムを主メモリー へ書き込むことができる。 これらの値 と、 取り込まれた値で、 熱拡散率、 ついで熱伝導率が計算される。 Amplitude change can be converted to thermal conductivity by comparing it with the attenuation of a standard material whose thermal conductivity and thermal diffusivity are known. In this case, for example, standard sample data, substrate thermal data, instrument correction factors, and measurement analysis programs can be written to main memory. With these values and the values taken in, the thermal diffusivity and then the thermal conductivity are calculated.
(コンピューターとの接続) (Connection with computer)
上記した本発明の特性測定器具を、 小型軽量で、 現場測定型装置 で、 熱拡散率 · 熱伝導率を測定する目的で、 解析ロ ックイ ンシステ ムとして単独で使用することができる。 すなわち、 発熱用のファン クシヨ ンジェネレーター機能、 与えた周波数と同一周波数で増幅で きるロ ックインアンプ機能、 厚み計測機能、 印加圧力制御機能等を 有し、 それらの値を求めつつ、 試料の厚さや熱伝導性を考慮しなが ら、 熱拡散率 · 熱伝導率へ換算するプログラムを内蔵し、 結果を表 示または外部パーソナルコ ンピューターへ搬送できる装置とするこ とができる。 The above-described characteristic measuring instrument of the present invention can be used alone as an analysis lock-in system for the purpose of measuring thermal diffusivity and thermal conductivity with a small and light-weight, on-site measuring device. In other words, the function of the function generator for heat generation, amplification at the same frequency as the given frequency It has a lock-in amplifier function, a thickness measurement function, an applied pressure control function, etc., and calculates these values and converts them into thermal diffusivity and thermal conductivity while considering the thickness and thermal conductivity of the sample. And a device that can display the results or transport the results to an external personal computer.
( 1 ) 通常モー ド : 測定の状態、 測定周波数、 .計算された位相、 振 幅をテキス ト形式と して送出する。 これは、 表示部へ送られると同 時に、 ほかのパーソナルコンピュータ >転送できる。  (1) Normal mode: Sends the measurement status, measurement frequency, calculated phase, and amplitude in text format. This can be transferred to another personal computer at the same time as it is sent to the display.
( 2 ) スレーブモー ド : 2 3 2 C経由で所定の命令を受けるとスレ ーブモー ドになる。 リ モー ト操作の他、 周波数の指定、 波形選択等 が可能である (プログラム次第である) 。 接続先に Windows用プロ グラムを用意すれば、 そのソフ トでも駆動、 解析が可能である。 (2) Slave mode: The slave mode is entered when a predetermined command is received via the 232C. In addition to remote operation, frequency specification, waveform selection, etc. are possible (depending on the program). If a Windows program is prepared at the connection destination, it can be driven and analyzed even with that software.
(厚み測定の一態様) (One mode of thickness measurement)
上記とは別の C P Uに接続の 1 6 b i t A / Dを、 厚み計から のシグナル入力用に用意し、 逐次厚み測定を行う こともできる。 厚 みセンサーは差動ト ラ ンス、 歪みゲージ、 誘電率測定素子などが使 用可能であるが、 厚みへの換算、 補正値などは、 フラッシュメモリ 一へ書き込んでおき、 適宜呼び出して用いることができる 0 また厚 さへの換算係数が変化した場合は、 C P U経由で書き換えることが できる。 データ取込み速度は 1 0 0 Q回試料 Z秒程度とすることが できるが、 例えば、 電源ハム避けに 1秒以上の時定数を入れてある 場合には、 高速シグナルを取ることは難しい。 A 16-bit A / D connected to a different CPU from the above can be prepared for signal input from the thickness gauge, and the thickness can be measured sequentially. Thickness sensors can use differential transducers, strain gauges, dielectric constant measurement elements, etc., but conversion to thickness, correction values, etc. can be written to the flash memory and called up as needed. If the conversion factor to 0 or the thickness changes, it can be rewritten via the CPU. The data acquisition speed can be as low as 100 Q times the sample for about Z seconds. For example, if a time constant of 1 second or more is inserted to avoid power hum, it is difficult to acquire a high-speed signal.
以下、 実施例によ り本発明を更に具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
[実施例]  [Example]
実施例 1  Example 1
図 8 〜 9に示す装置を用いて、 下記の条件でホウケィ酸ガラス ( Mat sunami Mi c ro Cover Glas s ) の熱的特性を測定した。 周波数 : 2 2〜 1 0 0 H z、 ヒータ一入力 : 2 V、 1 H zステツ プ、 ヒーター抵抗 : 5 0 Ω、 センサー抵抗 : 2 k Ω、 積分時間 1秒 にて、 位相および振幅を測定した (η = 1 0 0 ) 。 Using the apparatus shown in FIGS. 8 to 9, the thermal characteristics of borosilicate glass (Matsunami Micro Cover Glas) were measured under the following conditions. Frequency: 22 to 100 Hz, Heater input: 2 V, 1 Hz step, Heater resistance: 50 Ω, Sensor resistance: 2 kΩ, Phase and amplitude measured at integration time of 1 second (Η = 100).
熱拡散率 : 3. 2 2 X 1 0 - 7 m 2 / Thermal diffusivity: 3. 2 2 X 1 0 - 7 m 2 /
標準偏差 : 0. 0 7 3 6 7  Standard deviation: 0.0 7 3 6 7
X 1 0一  X 1 0 1
: 0. 0 0 7 4 : 0.0 0 7 4
厚さ : 1 4 5. 3 m  Thickness: 1 4 5.3 m
標準偏差 : 0. 2 6 3 7 Standard deviation: 0.2 6 3 7
τπ Ρϊτ^τ : 0. 0 2 6 3  τπ Ρϊτ ^ τ: 0.0 2 6 3
実測データを図 2 5のグラフに示す。  The measured data is shown in the graph of Fig. 25.
実施例 2 Example 2
図 8〜 9に示す装置を用いて、 下記の条件で P MMAフィルム ( 住友化学、 テク ノ ロィ # 1 2 5 ) の熱的特性を測定した。  The thermal characteristics of the PMMA film (Sumitomo Chemical, Technology # 125) were measured under the following conditions using the equipment shown in Figs.
周波数 : 2 0〜 4 8 H z、 ヒーター入力 : 2 V、 0. 5 H zステ ップで周波数スキャン、 ヒータ一抵抗 : 5 0 Ω、 センサー抵抗 : 2 k Ω、 積分時間 1秒にて、 位相および振幅を測定した ( n = 2 0 ) 熱拡散率 : 0. 9 1 1 X 1 0 - 7 m2 Frequency: 20 to 48 Hz, heater input: 2 V, frequency scan in 0.5 Hz step, heater resistance: 50 Ω, sensor resistance: 2 kΩ, integration time 1 second, It was measured phase and amplitude (n = 2 0) thermal diffusivity: 0. 9 1 1 X 1 0 - 7 m 2
標準偏差 : 0. 0 3 0 8  Standard deviation: 0.03 0 8
標準誤差 : 0. 0 0 6 7 2  Standard error: 0.0 0 6 7 2
厚さ : 1 2 1 . 3 β m  Thickness: 1 2 1.3 β m
標準偏差 : 0. 4 1 3  Standard deviation: 0.4 1 3
標準誤差 : 0. 0 9 0 2  Standard error: 0.09 0 2
実測データを図 2 6のグラフに示す。  The measured data is shown in the graph of Figure 26.
実施例 3 Example 3
図 8〜 9に示す装置を用いて、 下記の条件でポリイ  Using the equipment shown in Figs. 8 and 9 under the following conditions,
(東レ、 kapton 1 0 0 H) の熱的特性を測定した。 周波数 : 2 0〜 4 8 H z、 ヒータ一入力 : 2 V、 0 . 5 H z ステ ップで周波数スキャン、 ヒーター抵抗 : 5 0 Ω、 センサー抵抗 : 2 k Ω、 積分時間 1秒にて、 位相および振幅を測定した ( η = 2 0 ) 熱拡散率 : 1 - 0 2 X 1 0 (Toray, kapton 100H) was measured for thermal properties. Frequency: 20 to 48 Hz, one heater input: 2 V, frequency scan in 0.5 Hz step, heater resistance: 50 Ω, sensor resistance: 2 kΩ, integration time 1 second, Phase and amplitude were measured (η = 20) Thermal diffusivity: 1-0 2 X 10
標準偏差 : 0 - 0 4 9 6  Standard deviation: 0-0 4 9 6
標準誤差 : 0 - 0 1 1 0 9  Standard error: 0-0 1 1 0 9
厚さ : 1 2 3 . 6 β m  Thickness: 1 23.6 βm
標準偏差 :  standard deviation :
標準誤差 :  Standard error:
実測データを図 2 7のグラフに示す。  The measured data is shown in the graph of Figure 27.
実施例 4 Example 4
図 8〜 9に示す装置を用いて、 下記の条件で P E Tフィルム (東 レ、 ルミ ラー S 1 0 ) の熱的特性を測定した。  The thermal characteristics of the PET film (Toray, Lumilar S10) were measured using the equipment shown in Figs.
周波数 : 2 0〜 4 8 H z、 ヒーター入力 : 2 V、 0 . 5 H zステ ップで周波数スキャン、 ヒーター抵抗 : 5 0 Ω、 センサ一抵抗 : 2 k Ω、 積分時間 1秒にて、 位相および振幅を測定した ( n = 2 0 ) 熱拡散率 : 0 . 9 1 9 X  Frequency: 20 to 48 Hz, heater input: 2 V, frequency scan in 0.5 Hz step, heater resistance: 50 Ω, sensor resistance: 2 kΩ, integration time 1 second, Phase and amplitude were measured (n = 20) Thermal diffusivity: 0.919 X
標準偏差 : 0 . 0 4 5 6  Standard deviation: 0.0 4 5 6
標準誤差 : 0 . 0 0 9 9  Standard error: 0.0 0 9 9
厚さ : 1 2 3 . 7 β m  Thickness: 1 23.7 β m
標準偏差 : 0 - 5 5 5  Standard deviation: 0-5 5 5
標準誤差 : 0 . 1 2 1  Standard error: 0.12 1
実測データを図 2 8のグラフに示す。  The measured data is shown in the graph of Fig. 28.
実施例 5 Example 5
図 2 9〜 3 4のグラフおよび表 7に、 下記試料の測定例を示す。 測定条件は、 以下の通り である 図 2 9 : 東レ、 kapton— 1 The graphs in Figs. 29 to 34 and Table 7 show measurement examples of the following samples. The measurement conditions are as follows: Fig. 29: Toray, kapton-1
図 3 0 : 罘 レ、 kapton— 2  Figure 30: Function, kapton—2
図 3 1 : カ ノ 一ガラス  Figure 31: Cano-glass
図 3 2 : P MM A  Figure 32: PMMA
図 3 3 : 束レ、 K a p t o n — 3  Figure 33: Bundle, K ap t on — 3
図 3 4 : : 東レ、 K a p t o n — 4  Figure 34:: Toray, K ap t on — 4
[表 7】 a = DxiO"7m2 · sec [Table 7] a = DxiO " 7 m 2 · sec
Figure imgf000038_0001
Figure imgf000038_0004
Figure imgf000038_0001
Figure imgf000038_0004
Figure imgf000038_0005
Figure imgf000038_0005
Figure imgf000038_0003
Figure imgf000038_0003
カバ一ガラス 3 さ; ί' '- , ,α '■  Cover glass 3 ; ''-,, α '■
153.9 3.58
Figure imgf000038_0002
153.5 3.59
153.9 3.58
Figure imgf000038_0002
153.5 3.59
153.5 3.35 153.5 3.35
153.2 3.47
Figure imgf000038_0006
153.2 3.47
Figure imgf000038_0006
153.1 3.51153.1 3.51
153.1 3.55153.1 3.55
153.0 3.83153.0 3.83
153.0 3.61 平均値 、 153.3 3.6 標準偏差' 0.3 01 く測定条件〉 153.0 3.61 Mean, 153.3 3.6 Standard deviation '0.3 01 Measurement conditions>
表 7 : 千円札、 一万円札、 1 ドル札、 力パーガラス 1, 2 , 3、 J R定期券、 パスネッ ト力一 ド、 新星堂カー ド、 名刺 1, 2, 3, 4、 ビックカメラレシー ト感熱紙  Table 7: Thousand-yen bill, 10,000-yen bill, one-dollar bill, power par glass 1, 2, 3, JR commuter pass, passnet power card, Shinseido card, business card 1, 2, 3, 4, BicCamera receipt Thermal paper
図 1 7等に示したアルゴリズム等によるオー トモー ドによる測定 周波数範囲約 1 0〜 3 0 0 H z、 交流印加電圧 2— 4 Vpp Auto mode measurement using the algorithm shown in Fig. 17, etc. Frequency range Approx. 10 to 300 Hz, AC applied voltage 2-4 V pp

Claims

1 . 少なく ともその一部にエネルギー印加手段を有する第 1の部 材と、 1. a first member having energy applying means at least in part thereof;
該第 1の部材に対向して配置された第 2の部材とを少なく とも有 する特性測定用器具であって ;  A characteristic measuring instrument having at least a second member disposed to face the first member;
 Blue
前記第 1および第 2の部材の間に、 試料を保持可能なよ うに、 こ れら第 1および第 2の部材の少なく とも一方が可動であり、  At least one of the first and second members is movable between the first and second members so as to hold a sample,
前記第 1および第 2の部材の少なく とも一方に特性測定手段が配 置され、 少なく とも特性の測定時には、 該特性測定手段と前記エネ ルギー印加手段とが近接して配置されるよ園うに構成され、 且つ、 該第 1および第 2の部材の間に配置された試料に対して、 前記ェ ネルギー印加手段からのエネルギー印加に対応して、 該試料におけ る特性変化を前記特性測定手段で測定可能と したことを特徴とする 特性測定用器具。  A characteristic measuring means is arranged on at least one of the first and second members, and at least at the time of measuring the characteristic, the characteristic measuring means and the energy applying means are arranged close to each other. And a characteristic change in the sample is measured by the characteristic measuring means in response to energy application from the energy applying means to the sample arranged between the first and second members. A characteristic measuring instrument characterized by being measurable.
2 . 前記特性測定手段が、 第 2の部材の少なく とも一部に配置さ れている請求項 1 に記載の特性測定用器具。  2. The characteristic measuring instrument according to claim 1, wherein the characteristic measuring means is arranged in at least a part of the second member.
3 . 前記特性測定手段が、 第 1の部材の少なく とも一部に配置さ れている請求項 1 または 2に記載の特性測定用器具。  3. The characteristic measuring instrument according to claim 1, wherein the characteristic measuring means is arranged at least in a part of the first member.
4 . 前記特性が物理的特性である請求項 1〜 3のいずれかに記载 の特性測定用器具。  4. The characteristic measuring instrument according to any one of claims 1 to 3, wherein the characteristic is a physical characteristic.
5 . 前記特性が熱的物性である請求項 4に記載の特性測定用器具  5. The property measuring instrument according to claim 4, wherein the property is a thermal property.
6 . 前記物理的特性が力学的物性である請求項 4に記載の特性測 定用器具。 6. The property measuring instrument according to claim 4, wherein the physical property is a mechanical property.
7 . 前記エネルギー印加手段および特性測定手段の少なく とも一 方が、 前記試料に接触した状態で、 前記特性が測定される請求項 1 〜 6のいずれかに記載の特性測定用器具。 7. The property is measured in a state where at least one of the energy applying means and the property measuring means is in contact with the sample. 7. The property measuring instrument according to any one of claims 6 to 6.
8 . 前記第 1 または第 2の部材の少なく とも一方に、 前記試料の 厚さを測定するための厚さ測定手段が配置されている請求項 1 〜 7 のいずれかに記載の特性測定用器具。  8. The property measuring instrument according to any one of claims 1 to 7, wherein a thickness measuring means for measuring a thickness of the sample is arranged on at least one of the first and second members. .
9 . 前記エネルギー印加手段から試料に対して周期的なジュール 発熱を与え、 これによ り該試料に発生した温度波を、 前記特性測定 手段によ り測定する請求項 5に記載の特性測定器具。  9. The property measuring instrument according to claim 5, wherein periodic joule heat is applied to the sample from the energy applying means, and a temperature wave generated in the sample is thereby measured by the property measuring means. .
1 0 . 前記第 1および Z又は第 2の部材に変位計が配置され、 試 料の厚みを逐次にモニター可能とした請求項 1〜 9のいずれかに記 載の特性測定器具。  10. The characteristic measuring instrument according to any one of claims 1 to 9, wherein a displacement meter is disposed on the first and Z or second members, and the thickness of the sample can be monitored sequentially.
1 1 . 前記第 1および第 2の部材間に配置された試料に印加すベ き印可圧力を可変と した請求項 1〜 1 0のいずれかに記載の特性測 定^具。  11. The characteristic measuring device according to any one of claims 1 to 10, wherein an applied pressure applied to the sample disposed between the first and second members is variable.
1 2 . 前記特性測定手段が、 温度、 湿度、 圧力センサーから選ば れた 2種類以上のセンサーを有し、 前記エネルギー印加手段から試 料に交流的にエネルギーを印加し、 該交流的エネルギー印加に基づ く複数の物性を測定可能とした請求項 1〜 1 1のいずれかに記載の 特性測定器具。  12. The characteristic measuring means has two or more types of sensors selected from temperature, humidity, and pressure sensors, and applies energy to the sample from the energy applying means in an alternating manner. The characteristic measuring instrument according to any one of claims 1 to 11, wherein a plurality of physical properties based on the characteristic can be measured.
1 3 . エネルギー印加手段から試料にエネルギーを印加し、 該試料に近接または接触して配置され、 且つ前記エネルギー印加 手段に近接して配置された特性測定手段によ り、 該エネルギー印加 に基づく特性変化を測定することを特徴とする特性測定方法。  13. Energy is applied to the sample from the energy applying means, and the characteristic based on the energy application is obtained by the characteristic measuring means arranged close to or in contact with the sample and arranged close to the energy applying means. A characteristic measuring method characterized by measuring a change.
1 4 . 前記エネルギーが熱エネルギーである請求項 1 3に記載の 特性測定方法。  14. The characteristic measuring method according to claim 13, wherein the energy is heat energy.
1 5 . 前記特性の測定に際して、 前記試料の厚さも測定する請求 項 1 3または 1 4に記載の特性測定方法。  15. The characteristic measuring method according to claim 13 or 14, wherein the thickness of the sample is also measured when the characteristic is measured.
1 6 . 前記試料の厚さに対応する標準試料のデータに基づき、 該 試料測定時に、 前記エネルギー印加時の周波数を決定する請求項 1 5に記載の特性測定方法。 16. Based on the data of the standard sample corresponding to the thickness of the sample, 16. The characteristic measuring method according to claim 15, wherein a frequency at which the energy is applied is determined at the time of measuring the sample.
1 7. 前記標準試料データとの比較に基づき、 前記エネルギー印 加時の周波数をスキャンする請求項 1 6に記載の特性測定方法。  17. The characteristic measuring method according to claim 16, wherein a frequency at the time of applying the energy is scanned based on a comparison with the standard sample data.
1 8. 前記スキャンによ り、 前記エネルギー印加時の周波数の最 適値を求める請求項 1 7に記載の特性測定方法。  18. The characteristic measuring method according to claim 17, wherein an optimal value of the frequency at the time of applying the energy is obtained by the scanning.
1 9. C P Uと、  1 9. C PU and
該 C P Uに接続されたメモリーと、  A memory connected to the CPU;
前記 C P Uに接続された DZA変換器と、  A DZA converter connected to the CPU;
前記 C P Uに接続された A/D変換器とを少なく とも含むシグナ ル発生 Z解析器であつて ;  A signal generating Z analyzer including at least an A / D converter connected to the CPU;
予め前記メモリ ー中に、 書き込まれた正弦波、 余弦波、 デューテ ィ可変の矩形波、 三角波等の周期的変化に対応した大容量のディジ タルデータのテーブルを有し、 このテーブルの読み出し間隔を変化 させることで随意に周波数を可変とするアルゴリズムを有し、 かつ A出力の振幅を可変でき測定シグナルをフィー ドパック して出 力強度を制御できるアルゴリ ズムを有する、 シグナル癸生 Z解析器  The memory has a large-capacity digital data table corresponding to a periodic change of a sine wave, a cosine wave, a variable-duty rectangular wave, a triangular wave, or the like written in advance in the memory. A signal analyzer that has an algorithm that can arbitrarily change the frequency by changing it, and an algorithm that can change the amplitude of the A output and feed pack the measurement signal to control the output intensity.
2 0. 前記 A/D変換器に接続された外部センサーからの出力を AZD変換して得たシグナルと、 前記印加交流電圧の周波数または 2倍の周波数を有する正弦波とを乗ずることによ り、 該出力と同相 成分を演算可能とした請求項 1 9に記載のシグナル発生ノ解析器。 20. By multiplying a signal obtained by AZD-converting the output from the external sensor connected to the A / D converter with a sine wave having the frequency of the applied AC voltage or twice the frequency. 10. The signal generation analyzer according to claim 19, wherein the output and the in-phase component can be calculated.
2 1. 前記 AZD変換器に接続された外部センサーからの出力を AZD変換して得たシグナルと、 前記交流電圧のまたは 2倍の周波 数を有する正弦波および余弦波もしくは矩形波および 9 0 ° 位相を ずらした矩形波とそれぞれ乗ずることによ り、 該出力と同相成分と 、 9 0 ° 成分とを演算可能と した請求項 20に記載のシグナル発生 '解析器, 2 1. A signal obtained by AZD converting the output from an external sensor connected to the AZD converter, and a sine wave, cosine wave or square wave having a frequency twice as high as the AC voltage, and 90 °. 21. The signal generation according to claim 20, wherein the output, the in-phase component, and the 90 ° component can be calculated by multiplying each of the phase-shifted rectangular waves. 'Analyzer,
PCT/JP2005/010629 2004-06-04 2005-06-03 Characteristic measuring apparatus and characteristic measuring method WO2005119231A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004167648A JP2005345385A (en) 2004-06-04 2004-06-04 Characteristic measuring instrument and characteristic measuring method
JP2004-167648 2004-06-04

Publications (1)

Publication Number Publication Date
WO2005119231A1 true WO2005119231A1 (en) 2005-12-15

Family

ID=35463019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010629 WO2005119231A1 (en) 2004-06-04 2005-06-03 Characteristic measuring apparatus and characteristic measuring method

Country Status (2)

Country Link
JP (1) JP2005345385A (en)
WO (1) WO2005119231A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286563A (en) * 2007-05-16 2008-11-27 Etou Denki Kk Thickness measuring instrument and thermal diffusivity or thermal conductivity measuring instrument using the thickness measuring instrument
CN104849299A (en) * 2015-05-29 2015-08-19 上海华特汽车配件有限公司 Foaming situation experimental device of automobile cavity sound insulation block
CN108369197A (en) * 2015-11-16 2018-08-03 马斯特里赫特大学 Use the device and method of thermal wave detection analyte

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362465B2 (en) * 2009-06-17 2013-12-11 株式会社アイフェイズ Thermal conductivity measuring method and thermal conductivity measuring device
JP5515033B2 (en) * 2010-06-23 2014-06-11 国立大学法人信州大学 Liquid crystal heating measurement method and sample heating mechanism used therefor
JP5650578B2 (en) * 2010-12-24 2015-01-07 株式会社アイフェイズ Data image recording apparatus, thermal analysis apparatus, data image recording method, image data normalization method, thermophysical quantity calculation method, and recorded image display method
JP6243811B2 (en) * 2014-07-22 2017-12-06 株式会社超高温材料研究センター Method and apparatus for measuring physical property values by steady method
US10139407B2 (en) 2016-04-11 2018-11-27 Universiteit Maastricht Methods for detecting bacteria using polymer materials
JP6665546B2 (en) * 2016-01-20 2020-03-13 株式会社リコー Detection device and image forming device
US10324087B2 (en) 2016-04-11 2019-06-18 Universiteit Maastricht Thermocouples comprising a polymer for detecting analytes and related methods
NL2023792B1 (en) * 2019-08-16 2021-03-24 Illumina Inc Method for measuring thermal resistance at interface between consumable and thermocycler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129659B2 (en) * 1980-03-26 1986-07-08 Eiko Seiki Sangyo Kk
JPH0143903B2 (en) * 1981-03-17 1989-09-25 Kyoto Electronics Mfg
JPH08316734A (en) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd Frequency synthesizer
JPH09101278A (en) * 1995-06-19 1997-04-15 Rheometric Scient Inc Device and method for simultaneously measuring rheological characteristic and thermal characteristic of sample
JP2777848B2 (en) * 1990-10-11 1998-07-23 セイコーインスツルメンツ株式会社 Thermomechanical analyzer
JP2990779B2 (en) * 1990-10-12 1999-12-13 日本電気精器株式会社 Signal waveform generation circuit by microcomputer
JP2002535642A (en) * 1999-01-21 2002-10-22 アルファ テクノロジーズ Method and apparatus for measuring viscous heating of viscoelastic materials
JP7095049B2 (en) * 2016-02-23 2022-07-04 エヌチェーン ホールディングス リミテッド Agent-based Turing complete transaction with integrated feedback within the blockchain system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129659B2 (en) * 1980-03-26 1986-07-08 Eiko Seiki Sangyo Kk
JPH0143903B2 (en) * 1981-03-17 1989-09-25 Kyoto Electronics Mfg
JP2777848B2 (en) * 1990-10-11 1998-07-23 セイコーインスツルメンツ株式会社 Thermomechanical analyzer
JP2990779B2 (en) * 1990-10-12 1999-12-13 日本電気精器株式会社 Signal waveform generation circuit by microcomputer
JPH08316734A (en) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd Frequency synthesizer
JPH09101278A (en) * 1995-06-19 1997-04-15 Rheometric Scient Inc Device and method for simultaneously measuring rheological characteristic and thermal characteristic of sample
JP2002535642A (en) * 1999-01-21 2002-10-22 アルファ テクノロジーズ Method and apparatus for measuring viscous heating of viscoelastic materials
JP7095049B2 (en) * 2016-02-23 2022-07-04 エヌチェーン ホールディングス リミテッド Agent-based Turing complete transaction with integrated feedback within the blockchain system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASHIMOTO K ET AL: "Fourier Henkan Netsu Bunsekiho ni yoru Usumaku no Netsu Kakusanritsu Sokutei.", MATERIALS SCIENCE & TECHNOLOGY., vol. 70, no. 6, 1 June 2000 (2000-06-01), pages 481 - 488, XP002994431 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286563A (en) * 2007-05-16 2008-11-27 Etou Denki Kk Thickness measuring instrument and thermal diffusivity or thermal conductivity measuring instrument using the thickness measuring instrument
CN104849299A (en) * 2015-05-29 2015-08-19 上海华特汽车配件有限公司 Foaming situation experimental device of automobile cavity sound insulation block
CN108369197A (en) * 2015-11-16 2018-08-03 马斯特里赫特大学 Use the device and method of thermal wave detection analyte
CN108369197B (en) * 2015-11-16 2020-09-15 马斯特里赫特大学 Apparatus and method for detecting analytes using thermal waves

Also Published As

Publication number Publication date
JP2005345385A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
WO2005119231A1 (en) Characteristic measuring apparatus and characteristic measuring method
Abad et al. Non-contact methods for thermal properties measurement
Zhao et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials
US4723908A (en) Dielectric probe; method and apparatus including its use
US7182510B2 (en) Apparatus and method for measuring thermal conductivity
Chien et al. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film
WO2008110947A1 (en) Apparatuses and methods for measuring and controlling thermal insulation
Fernández et al. Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors
Nolte et al. Thermal diffusivity of metals determined by lock-in thermography
Bodenschatz et al. Extending the 3ω method: Thermal conductivity characterization of thin films
Rahman et al. Measuring the thermal properties of anisotropic materials using beam-offset frequency domain thermoreflectance
Moghavvemi et al. A reliable and economically feasible remote sensing system for temperature and relative humidity measurement
Tao et al. Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods
JP7477500B2 (en) Steady-state thermoreflectance method and system for measuring thermal conductivity - Patents.com
Guo et al. Microscale heat-flux meter for low-dimensional thermal measurement and its application in heat-loss modified angstrom method
Merzlyakov Integrated circuit thermopile as a new type of temperature modulated calorimeter
Chen et al. A low cost surface plasmon resonance biosensor using a laser line generator
CN109738484A (en) Device and method based on heterogeneous content in sheet-like plane heat source measurement porous material
von Arx et al. Determination of the heat capacity of CMOS layers for optimal CMOS sensor design
Vales-Pinzon et al. Photothermal characterization of the thermal properties of materials using four characteristic modulation frequencies in two-layer systems
Muñoz et al. Quartz crystal Microbalance with dissipation monitoring for biomedical applications: Open source and low cost prototype with active temperature control
Schoeman et al. An analytic model employing an elliptical surface area to determine the gaseous thermal conductance of uncooled VOx microbolometers
Bentefour et al. Broadband photopyroelectric thermal spectroscopy of a supercooled liquid near the glass transition
Schulz et al. High-temperature behavior of housed piezoelectric resonators based on CTGS
Gustafsson et al. Measurement of Thermal Transport in Solids with the Hot Disc Method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase