WO2005118900A1 - Creep-resistant magnesium alloy - Google Patents

Creep-resistant magnesium alloy Download PDF

Info

Publication number
WO2005118900A1
WO2005118900A1 PCT/JP2005/006007 JP2005006007W WO2005118900A1 WO 2005118900 A1 WO2005118900 A1 WO 2005118900A1 JP 2005006007 W JP2005006007 W JP 2005006007W WO 2005118900 A1 WO2005118900 A1 WO 2005118900A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
sample
creep
mass
present
Prior art date
Application number
PCT/JP2005/006007
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Omura
Original Assignee
Ryobi Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd. filed Critical Ryobi Ltd.
Publication of WO2005118900A1 publication Critical patent/WO2005118900A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C

Definitions

  • the present invention relates to a creep-resistant magnesium alloy, and particularly to a creep-resistant magnesium alloy having excellent creep resistance and corrosion resistance required for use in a high-temperature environment and free from structural defects such as structural cracks and excellent die-casting properties. About.
  • an Mg-A1-Ca alloy As an alloy used as a material for automobile parts, an Mg-A1-Ca alloy is known. Recently, an Mg-A 1 -Ca-Sr-Mn alloy has been proposed (for example, see Patent Document 1). This alloy has excellent creep resistance and corrosion resistance, with A1 of 2.0 to 6.0% by mass. & Is 0.3 to 2.0%, 3]: is 0.01 to 1.0%, Mn is 0.1 to 1.0%, and the balance is Mg and impurities. In addition, Si was added to the above alloy in an amount of 0.
  • an Mg-Al-Si-Sn-based alloy has been proposed (for example, see Patent Document 2).
  • This alloy contains 0.01 to 4.0% of A1 by mass, 0.2 to 2.0% of 31 and 6.0 to 20.0% of Sn, and the balance consists of Mg and impurities. Alloy.
  • Patent document 1 JP 2001-316675A
  • Patent Document 2 JP-A-7-3374
  • the creep resistance decreases and cracks occur.
  • the corrosion resistance of the Mg-A1-Si-Sn-based alloy is very inferior to that of the Mg-A1-Ca-Sr-Mn-based alloy.
  • an object of the present invention is to provide a creep-resistant magnesium alloy excellent in creep resistance, corrosion resistance and die-casting property.
  • the present invention relates to the following: A1 is 2.5 to 6.5% by mass; Ca is 0.3 to 3.0% by mass; Sn is 0.15 to 3.0% by mass; It provides a creep-resistant magnesium alloy containing 0.1 to 0.5% by mass, with the balance being Mg and unavoidable impurities.
  • A1 is 2.5 to 6.5% by mass
  • Ca is 0.3 to 3.0% by mass
  • Sn is 0.15 to 3.0% by mass
  • It provides a creep-resistant magnesium alloy containing 0.1 to 0.5% by mass, with the balance being Mg and unavoidable impurities.
  • the S r 0. from 01 to 0. It preferably contains 3 mass 0/0.
  • the machinability is further improved, and the effect of preventing machinability cracks and grain boundary cracks is further improved.
  • FIG. 1 (a) is a front view showing the shape of a test piece used for evaluation of cracking performance in experiment 1.
  • FIG. 1 (b) is a side view showing the shape of a test piece used in the evaluation of cracking performance in experiment 1.
  • FIG. 2 is a view showing a measurement result regarding an evaluation of a crack resistance of a creep-resistant magnesium alloy according to an embodiment of the present invention and a comparative material by Experiment 1.
  • FIG. 3 is a view showing the shape of a test piece used in the creep resistance test in Experiment 2.
  • FIG. 4 is a side view showing a state of a creep resistance test in Experiment 2.
  • FIG. 5 is a side view showing a method for measuring the displacement of a test piece in the creep resistance test of Experiment 2.
  • FIG. 6 is a view showing the measurement results of a creep resistance experiment I of the creep-resistant magnesium alloy and the comparative material according to the embodiment of the present invention.
  • FIG. 7 is a view showing the measurement results of a creep resistance experiment II of the creep resistant magnesium alloy and the comparative material according to the embodiment of the present invention.
  • FIG. 8 Experiment 3 of creep-resistant magnesium alloy and comparative material according to the embodiment of the present invention. The figure which shows the measurement result regarding the corrosion resistance experiment of FIG.
  • FIG. 9 is a view showing a result of an E PMA analysis of a creep-resistant magnesium alloy according to an embodiment of the present invention.
  • FIG. 10 is a view showing the measurement results of the creep resistance test of the creep-resistant magnesium alloy according to the embodiment of the present invention and the comparative material in Experiment 4.
  • FIG. 11 is a microstructure photograph of an Mg—A1-Ca—Mn-based alloy that is a comparative material for a creep-resistant magnesium alloy according to an embodiment of the present invention.
  • FIG. 12 is a microstructure photograph of a creep-resistant magnesium alloy according to an embodiment of the present invention.
  • FIG. 13 is a view showing the shape of a test piece used in the creep resistance test in Experiment 5.
  • FIG. 14 is a view showing a state of a creep resistance test in Experiment 5.
  • FIG. 15 Diagrams showing the results of measurements of the creep resistance test of the creep-resistant magnesium alloy and the comparative material in Experiment 5.
  • a 1 (aluminum) has a mass of 2.5 to 6.5 mass 0 /.
  • the C a (calcium) is 0.3-3.0 mass 0 /.
  • the Sn (tin) is 0.15-3.0 mass 0 /.
  • Mn manganese
  • S r sinrontium
  • Al, Ca, Sn, Mn, and Mg are essential elements, and Sr is an optional element.
  • the amount of A1 added is 6.0 mass. If the ratio exceeds / 0 , a large amount of the Mg 17 Al 12 compound is crystallized, so that high creep resistance cannot be obtained. Therefore, the amount of A1 added was set to 6.0% by mass or less. On the other hand, if the addition amount of A1 is less than 2.5% by mass, the formability such as the fluidity of the molten metal decreases, and the die casting becomes difficult. Therefore, the amount of A1 added was set to 2.5% by mass or more.
  • Addition of Ca improves the flame retardancy of the Mg alloy, and enables forging even at a somewhat high melt temperature. However, if it is added too much, it tends to cause structural cracking and seizure, Goods are not obtained. If the added amount of Ca exceeds 3.0% by mass, it is easy to cause cracking and seizure to a mold, and it is not possible to obtain a sound product. Therefore, the addition amount of Ca was set to 3.0 mass ° / 0 or less. On the other hand, the added amount of Ca was 0.3 mass. If it is less than / 0 , sufficient creep resistance cannot be obtained. Therefore, the addition amount of Ca was set to 0.3% by mass or more.
  • Addition of Mn has an effect on the corrosion resistance, but if the addition amount of Mn exceeds 0.5% by mass, the die-casting becomes difficult due to deterioration of the formability such as seizure to a mold. Therefore, the added amount of Mn is 0.5 mass. / 0 or less. On the other hand, if the added amount of Mn is less than 0.1% by mass, the corrosion resistance decreases. Therefore, the added amount of Mn is 0.1 mass. / 0 or more.
  • a small amount of Sr has little effect on creep resistance, but the addition of Sr improves the morphology of the Mg alloy and prevents grain boundary cracking and the like. If the added amount of Sr exceeds 0.3% by mass, seizure or the like tends to occur. Therefore, the addition amount of Sr was set to 0.3% by mass or less. On the other hand, the amount of Sr added was 0.01 mass. If the ratio is less than / 0 , the effect on shrinkage cracks and grain boundary cracks cannot be obtained. Therefore, the amount of Sr added was set to 0.01% by mass or more.
  • Table 1 shows the composition ratio of the samples used in the experiment.
  • Sample 1 and Sample 2 are alloys described in JP-A-2001-316752
  • Sample 3 is an alloy described in JP-A-7-3374
  • Samples 4 and 5 are Samples 6 and 7 are alloys according to an embodiment of the invention
  • Sample 8 is an ADC12 alloy
  • Sample 9 is an AZ9 ID alloy, in which the weight percent is outside the scope of the embodiments of the present invention.
  • the alloy of the embodiment of the present invention and the comparative material were evaluated for crackability.
  • Sample 1 shown in Table 1 (alloy_1 of JP-A-2001-31 6752), sample 4 (alloy-1 of the present embodiment-1), sample 5 (alloy-1 of the present embodiment 2), sample 6 and Using each of Sample 7 (an alloy in which the added mass% of Sn is out of the range of the present invention) and the four types of manufacturing conditions shown in Table 2, the shapes shown in FIGS. 1 (a) and 1 (b) were used. Specimens were fabricated and the cracking rate was examined.
  • the shape of the specimen 1 in FIGS. 1 (a) and 1 (b) is such that the length of the parallel portion is 105 mm and the corner R of the constrained end has a radius of curvature Omm.
  • Table 2 The shape of the specimen 1 in FIGS. 1 (a) and 1 (b) is such that the length of the parallel portion is 105 mm and the corner R of the constrained end has a
  • a test piece 2 as shown in FIG. 3 was manufactured using (the alloy 1 of the present embodiment 1) and the sample 8 (ADC 12).
  • samples 1 and 2 (alloys 1 and 2 of JP-A-2001-3166752), sample 3 (alloy of JP-A-7-3374), and sample 4 (alloys 1 and 2 of this embodiment) were used.
  • Sample 8 (ADC 12) and Sample 9 (AZ91D) were used to fabricate a test piece 2 as shown in FIG.
  • Test piece 2 was an ASTM B-85 tensile test piece (parallel diameter 6.35 mm, distance between gauges 57.5 mm, length 21 Omm).
  • Sample 4 (Alloy-1 of this embodiment) is superior to that of Sample 1 (Alloy-1 of JP-A-2001-3166752), and Sample 3 (Alloy-1 of JP-A-7-3374) You can see that it is much better than).
  • Sample 4 (alloy 1 of this embodiment) is considered to have improved creep resistance due to the addition of Ca and Sn, and the same creep resistance as sample 8 (ADC 12), which is an aluminum die-cast alloy was gotten.
  • Sample 2 (alloy No. 1 in JP-A-2001-316752) is considered to have reduced creep resistance due to the addition of Si.
  • the addition of Ca and Si improves the creep resistance.However, when both are used together, the effect is not obtained, and conversely, the creep resistance is considered to decrease.
  • the solid solution range for Mg is extremely narrow, so that it does not form a solid solution, but Sn dissolves well in Mg and forms a solid solution with Mg,
  • FIG. 8 shows the results.
  • the corrosion resistance of Sample 4 (alloy-1 of the present embodiment) and Sample 5 (alloy-1 of the present embodiment) was as shown in Sample 2 (Japanese Unexamined Patent Publication No. 2001-31).
  • sample 7 (adding 0.35% by mass of Sn) was inferior to that of sample 5 (alloy No. 2 of the present embodiment), and the amount of Sn added exceeded 3.0%.
  • the corrosion resistance is expected to decrease. This is thought to be due to the crystallization of intermetallic compounds that adversely affect corrosion resistance.
  • E PMA analysis was performed on the alloy according to the embodiment of the present invention.
  • the composition of the sample analyzed was Mg-4.5% A1-1.7% Ca-0.15% Mn-0.7% Sn, and the results are shown in FIG.
  • Sn partially dissolved in the Mg matrix, and Sn was crystallized at the grain boundaries.
  • S n at the grain boundaries, not put out Mg Ha Mari crystal, A 1 2 C a and S n compounds gave the grain boundary crystallized.
  • it is a force S Mg Ca-based compound in which crystallization of Mg is partially observed.
  • Al 2 Ca was crystallized in the form of links in the matrix, and a structure effective for creep resistance was obtained.
  • Samples 10 and 11 are Mg-A1-Ca-Mn-based alloys as comparative materials
  • Sample 12 is an alloy having the same composition as the sample subjected to EPMA analysis
  • Sample 13 Is an alloy according to an embodiment of the present invention
  • Sample 14 is an ADC 12 alloy.
  • Three specimens were prepared for one sample, and all the specimens were tested.
  • Figure 10 shows the displacement of each test piece and the average value of each sample. From Fig. 10, creep resistance of Samples 12 and 13 is better than Samples 10 and 11. You can see that.
  • FIGS. 11 and 12 show microstructure photographs of Samples 11 and 12, respectively.
  • sample 11 has many cracks at the grain boundaries.
  • the Mg_Al-Ca-Mn alloy is considered to have cracked because the grain boundaries are extremely unstable.
  • FIG. 12 no grain boundary crack was observed in Sample 12, which is the alloy of the present embodiment.
  • the S n added Caro the modification effect of the grain boundary, such as A 1 2 C a crystallizes in the grain boundary was observed.
  • Table 4 shows the samples used in the experiment.
  • Sample 15 is an alloy according to an embodiment of the present invention
  • Sample 16 is an alloy outside the scope of the present invention
  • Sample 17 is an ADC12 alloy
  • Sample 18 is an AZ91D alloy.
  • the test piece 10 used in the experiment had a parallel part diameter of 6.0 mm, 0.1 mm, a distance between gauge points of 52 mm, and a length of 15 Omm.
  • Specimen 10 was produced by producing under the production conditions shown in Condition 4 of Table 2. Then, as shown in Fig. 14, the test piece was placed in the preheating furnace 11 set at 150 ° C, the strain gauge 12 was fixed to the test piece 10, a load of 35 MPa was applied, and the strain was measured at each elapsed time. did.
  • Table 4 shows the samples used in the experiment.
  • Sample 15 is an alloy according to an embodiment of the present invention
  • Sample 16 is an alloy outside the scope of the present invention
  • Sample 17 is an ADC12 alloy
  • Sample 18 is an AZ
  • Figure 15 shows the results of the creep test of Experiment 5. As can be seen from the results of Samples 15 and 16, it was recognized that the addition of Sn improved the creep resistance. In addition, it can be seen that the creep resistance of the sample 15 which is the alloy according to the present embodiment is superior to the sample 17 which is the ADC12 alloy. This is believed to thermally From Jona A 1 2 C a compound S n addition as described above is because you put the grain boundary crystallized.
  • the creep-resistant magnesium alloy according to the present invention is not limited to the above embodiment, and various modifications and improvements can be made within the scope described in the claims. '
  • the creep-resistant magnesium alloy of the present invention can be used as an alloy used as a material for automobile parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

A creep-resistant magnesium alloy, which has a chemical composition, in mass %, that Al: 2.5 to 6.5 %, Ca: 0.3 to 3.0% , Sn: 0.15 to 3.0 %, Mn: 0.1 to 0.5 % and the balance: Mg and inevitable impurities. Optionally, the magnesium alloy further comprises 0.01 to 0.3 mass % of Sr. The sample 4, which is an embodiment of the above creep-resistant magnesium alloy, has exhibited the creep resistance being superior to those of sample 1 and sample 2 (the alloy-1,2 in JP 2001-316752 A), sample 3 (the alloy in JP 07-3374 A) and sample 9 (AZ91D).

Description

明細書  Specification
耐クリープマグネシウム合金  Creep resistant magnesium alloy
技術分野 ·  Technical field ·
本発明は、 耐クリープマグネシウム合金に関し、 特に、 高温環境下使用で要求される耐 クリープ性及び耐食性を有し、 しかも铸造割れなどの鎳造欠陥が生じない、 ダイカスト性 に優れた耐クリープマグネシウム合金に関する。  The present invention relates to a creep-resistant magnesium alloy, and particularly to a creep-resistant magnesium alloy having excellent creep resistance and corrosion resistance required for use in a high-temperature environment and free from structural defects such as structural cracks and excellent die-casting properties. About.
背景技術  Background art
自動車用部品の素材に使用される合金として、 Mg- A 1- C a系合金が知られている。 また、 最近では Mg- A 1- Ca- S r - Mn系合金が提案されている (例えば、 特許文献 1 参照) 。 この合金は耐クリープ性及ぴ耐食性に優れ、 質量%で A 1が 2. 0〜6. 0%、 。&が0. 3〜2. 0%、 3 ]:が0. 01〜1. 0%、 Mnが 0. 1〜1. 0%を含み、 残部が Mg及び不純物かからなる合金である。また、上記合金に、更に S iを質量%で 0. As an alloy used as a material for automobile parts, an Mg-A1-Ca alloy is known. Recently, an Mg-A 1 -Ca-Sr-Mn alloy has been proposed (for example, see Patent Document 1). This alloy has excellent creep resistance and corrosion resistance, with A1 of 2.0 to 6.0% by mass. & Is 0.3 to 2.0%, 3]: is 0.01 to 1.0%, Mn is 0.1 to 1.0%, and the balance is Mg and impurities. In addition, Si was added to the above alloy in an amount of 0.
1〜1. 0%又は Z nを質量%で 0. 2〜1. 0%添加した合金も提案されている。 Alloys in which 1 to 1.0% or Zn is added in an amount of 0.2 to 1.0% by mass are also proposed.
また、耐クリープ性に優れた合金として、 Mg- Al- S i- Sn系合金が提案されている (例えば、 特許文献 2参照) 。 この合金は、 質量%で A1が 0. 0〜4. 0%、 31が0 . 2〜2. 0%、 Snが 6. 0〜20. 0%を含み、 残部が Mg及ぴ不純物からなる合金 である。  Further, as an alloy having excellent creep resistance, an Mg-Al-Si-Sn-based alloy has been proposed (for example, see Patent Document 2). This alloy contains 0.01 to 4.0% of A1 by mass, 0.2 to 2.0% of 31 and 6.0 to 20.0% of Sn, and the balance consists of Mg and impurities. Alloy.
特許文献 1 :特開 2001— 316752号公報  Patent document 1: JP 2001-316675A
特許文献 2 :特開平 7— 3374号公報  Patent Document 2: JP-A-7-3374
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
し力 し、 従来の Mg- A 1- C a- S r- Mn系合金では、 C aを含有するため金型への焼 付きゃ錄造割れが発生するなどダイカスト性が悪く、 実製品のダイカストは困難である。 また、 S rを添加することにより割れを防止する効果を多少は得ているが、 焼付きなどへ の効果が得られていない。 湯流れ性を向上させるために、 A 1を増加させることが考えら れるが、 耐クリープ性が低下する。 そして、 この合金に S iを添加すると耐クリープ性及 び耐食性が低下する。また、液相線'固相線温度が上昇し、溶湯温度を上げる必要が生じ、 铸造し難くなる。 耐クリープ性が低下する原因は、 熱的不安定な Mg12Al 17化合物が粒 界に晶出し易くなるためである。 また、 この合金に Z nを添加すると耐クリープ性が低下 し、 割れが発生する。 また、 Mg- A1- S i- Sn系合金は、 耐食性が Mg- A 1- C a- S r - Mn系合金と比較して非常に劣っている。 However, conventional Mg-A1-Ca-Sr-Mn-based alloys have poor die-casting properties such as seizure to molds due to the inclusion of Ca, and die-casting of actual products It is difficult. In addition, although the effect of preventing cracking is obtained to some extent by adding Sr, the effect on seizure and the like is not obtained. It is conceivable to increase A1 in order to improve the fluidity, but the creep resistance decreases. When Si is added to this alloy, the creep resistance and the corrosion resistance are reduced. In addition, the temperature of the liquidus line increases, and it becomes necessary to raise the temperature of the molten metal. The cause of the decrease in creep resistance is that the thermally unstable Mg 12 Al 17 compound This is because it is easy to crystallize in the world. Also, when Zn is added to this alloy, the creep resistance decreases and cracks occur. Moreover, the corrosion resistance of the Mg-A1-Si-Sn-based alloy is very inferior to that of the Mg-A1-Ca-Sr-Mn-based alloy.
そこで、 本発明は、 耐クリープ性、 耐食性及ぴダイカスト性に優れた耐クリープマグネ シゥム合金を提供することを目的とする。  Then, an object of the present invention is to provide a creep-resistant magnesium alloy excellent in creep resistance, corrosion resistance and die-casting property.
課題を解決するための手段  Means for solving the problem
上記目的を達成するために、 本発明は、 A1を 2. 5〜6. 5質量%、 Caを 0. 3〜 3. 0質量%、 Snを 0. 15〜 3. 0質量%、 Mnを 0. 1〜0. 5質量%含み、 残部 が Mgと不可避的不純物からなる耐クリープマグネシウム合金を提供している。 Mg— A 1 -C a—Mn系合金から Mg—A 1一 C a— S n—Mn系合金に合金系を変えることに よって、 耐クリープ性及び铸造性 (ダイカスト性) を向上させることができ、 耐食性も良 好となる。  In order to achieve the above object, the present invention relates to the following: A1 is 2.5 to 6.5% by mass; Ca is 0.3 to 3.0% by mass; Sn is 0.15 to 3.0% by mass; It provides a creep-resistant magnesium alloy containing 0.1 to 0.5% by mass, with the balance being Mg and unavoidable impurities. By changing the alloy system from an Mg-A1-Ca-Mn-based alloy to an Mg-A1-Ca-Sn-Mn-based alloy, it is possible to improve creep resistance and formability (die-casting properties). It has good corrosion resistance.
ここで、 S rを 0. 01〜0. 3質量0 /0含むことが好ましい。 S rを 0. 01〜0. 3 質量%添加することで铸造性がさらに向上し、 铸造割れや粒界割れ防止にさらに効果があ る。 Here, the S r 0. from 01 to 0. It preferably contains 3 mass 0/0. By adding Sr in an amount of 0.01 to 0.3% by mass, the machinability is further improved, and the effect of preventing machinability cracks and grain boundary cracks is further improved.
図面の簡単な説明  Brief Description of Drawings
[図 1 (a) ]実験 1の割れ性の評価に用いた試片の形状を示す正面図。  FIG. 1 (a) is a front view showing the shape of a test piece used for evaluation of cracking performance in experiment 1.
[図 1 (b) ]実験 1の割れ性の評価に用いた試片の形状を示す側面図。  FIG. 1 (b) is a side view showing the shape of a test piece used in the evaluation of cracking performance in experiment 1.
[図 2]本発明の実施の形態による耐クリープマグネシウム合金及び比較材料の実験 1 による割れ性の評価に関する測定結果を示す図。  FIG. 2 is a view showing a measurement result regarding an evaluation of a crack resistance of a creep-resistant magnesium alloy according to an embodiment of the present invention and a comparative material by Experiment 1.
[図 3 ]実験 2の耐クリープ性の実験に用いた試片の形状を示す図。  FIG. 3 is a view showing the shape of a test piece used in the creep resistance test in Experiment 2.
[図 4 ]実験 2の耐クリープ性実験の様子を示す側面図。  FIG. 4 is a side view showing a state of a creep resistance test in Experiment 2.
[図 5 ]実験 2の耐クリープ性実験における試験片の変位の測定方法をしめす側面図。  FIG. 5 is a side view showing a method for measuring the displacement of a test piece in the creep resistance test of Experiment 2.
[図 6]本発明の実施の形態による耐クリープマグネシウム合金及び比較材料の耐クリ ープ性実験 Iの測定結果を示す図。  FIG. 6 is a view showing the measurement results of a creep resistance experiment I of the creep-resistant magnesium alloy and the comparative material according to the embodiment of the present invention.
[図 7]本発明の実施の形態による耐クリープマグネシウム合金及ぴ比較材料の耐クリ ープ性実験 IIの測定結果を示す図。  FIG. 7 is a view showing the measurement results of a creep resistance experiment II of the creep resistant magnesium alloy and the comparative material according to the embodiment of the present invention.
[図 8 ]本発明の実施の形態による耐クリープマグネシゥム合金及ぴ比較材料の実験 3 の耐食性実験に関する測定結果を示す図。 [FIG. 8] Experiment 3 of creep-resistant magnesium alloy and comparative material according to the embodiment of the present invention. The figure which shows the measurement result regarding the corrosion resistance experiment of FIG.
[図 9]本発明の実施の形態による耐クリープマグネシウム合金について E PMA分析 の結果を示す図。  FIG. 9 is a view showing a result of an E PMA analysis of a creep-resistant magnesium alloy according to an embodiment of the present invention.
[図 10]実験 4における本発明の実施の形態による耐クリープマグネシウム合金及び 比較材料の耐クリープ性実験の測定結果を示す図。  FIG. 10 is a view showing the measurement results of the creep resistance test of the creep-resistant magnesium alloy according to the embodiment of the present invention and the comparative material in Experiment 4.
[図 11]本発明の実施の形態による耐クリープマグネシウム合金に対する比較材料で ある Mg— A 1一 C a— Mn系合金のミクロ組織写真。  FIG. 11 is a microstructure photograph of an Mg—A1-Ca—Mn-based alloy that is a comparative material for a creep-resistant magnesium alloy according to an embodiment of the present invention.
[図 12]本発明の実施の形態による耐クリープマグネシウム合金のミク口組織写真。  FIG. 12 is a microstructure photograph of a creep-resistant magnesium alloy according to an embodiment of the present invention.
[図 13]実験 5の耐クリープ性の実験に用いた試片の形状を示す図。  FIG. 13 is a view showing the shape of a test piece used in the creep resistance test in Experiment 5.
[図 14]実験 5の耐クリープ性実験の様子を示す図。 ' [図 15 ]実験 5の耐クリープマグネシウム合金及ぴ比較材料の耐クリープ性実験の測 定結果を示す図。  FIG. 14 is a view showing a state of a creep resistance test in Experiment 5. '[FIG. 15] Diagrams showing the results of measurements of the creep resistance test of the creep-resistant magnesium alloy and the comparative material in Experiment 5.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態による耐クリープ Mg合金について説明する。 この耐クリープ Mg 合金は、 A 1 (アルミニウム) が 2. 5〜6. 5質量0/。、 C a (カルシウム) が 0. 3〜 3. 0質量0/。、 S n (スズ) が 0. 15〜3. 0質量0 /。、 Mn (マンガン) が 0. 1〜0. 5質量0 /0、 S r (ストロンチウム) が 0. 01〜0. 3質量%含まれ、 残部は Mg (マグ ネシゥム) と不可避的不純物である。 Al、 Ca、 S n、 Mn、 Mgは必須の元素であり、 S rは任意の元素である。 The creep-resistant Mg alloy according to the embodiment of the present invention will be described. In this creep resistant Mg alloy, A 1 (aluminum) has a mass of 2.5 to 6.5 mass 0 /. The C a (calcium) is 0.3-3.0 mass 0 /. The Sn (tin) is 0.15-3.0 mass 0 /. , Mn (manganese) is 0.1 to 0.5 mass 0/0, S r (strontium) is included from 01 to 0.3 wt% 0.1, the remainder being unavoidable impurities and Mg (mug Neshiumu). Al, Ca, Sn, Mn, and Mg are essential elements, and Sr is an optional element.
ここで、 A 1を添加すると湯流れ性や割れ性などの錄造性に効果があるが、 Mg 17A 1 i 2化合物を晶出するため耐クリープ性が低下する。 A 1の添加量が 6. 0質量。 /0を越える と、 Mg17Al 12化合物が多く晶出するため高い耐クリープ性が得られない。 従って、 A 1添加量は 6. 0質量%以下とした。 一方、 A 1の添加量が 2. 5質量%未満であると、 湯流れ性などの铸造性が低下し、 ダイカストが困難となる。 従って、 A 1添加量は 2. 5 質量%以上とした。 Here, is effective in錄造of such fluidity and cracking resistance The addition of A 1, creep resistance is lowered to crystallize the Mg 17 A 1 i 2 compound. The amount of A1 added is 6.0 mass. If the ratio exceeds / 0 , a large amount of the Mg 17 Al 12 compound is crystallized, so that high creep resistance cannot be obtained. Therefore, the amount of A1 added was set to 6.0% by mass or less. On the other hand, if the addition amount of A1 is less than 2.5% by mass, the formability such as the fluidity of the molten metal decreases, and the die casting becomes difficult. Therefore, the amount of A1 added was set to 2.5% by mass or more.
C aを添加すると Mg合金の難燃性を向上させ、 ある程度の高い溶湯温度でも铸造を可 能とする。 しかし、 添加しすぎると铸造割れ及び焼付きを起こしやすくなり、 健全な鎵造 品が得られない。 C aの添加量が 3. 0質量%を越えると、 铸造割れや金型への焼付きを おこしやすく、 健全な铸造品を得ることができない。 従って、 C aの添加量は、 3. 0質 量 °/0以下とした。 一方で、 C aの添加量が 0. 3質量。 /0未満であると、 十分な耐クリープ 強度が得られない。 従って、 C aの添加量は 0. 3質量%以上とした。 Addition of Ca improves the flame retardancy of the Mg alloy, and enables forging even at a somewhat high melt temperature. However, if it is added too much, it tends to cause structural cracking and seizure, Goods are not obtained. If the added amount of Ca exceeds 3.0% by mass, it is easy to cause cracking and seizure to a mold, and it is not possible to obtain a sound product. Therefore, the addition amount of Ca was set to 3.0 mass ° / 0 or less. On the other hand, the added amount of Ca was 0.3 mass. If it is less than / 0 , sufficient creep resistance cannot be obtained. Therefore, the addition amount of Ca was set to 0.3% by mass or more.
Mg_A 1 _C a系合金で A 1と C aだけでは金型に焼付きが発生し、 ダイカストが困 難であるが、 Snを添加すると焼付きが激減する。 また、 Snを添加すると凝固組織が改 質し、熱的不安定な Mg12A 1 i 7化合物が粒界に晶出することを防ぐことができる。ただ、 S nの添加量が 3. 0質量%を越えると、 耐食性は低下し、 A Z 91 D合金並の耐食性が 得られない。 従って、 Sn添加量は 3. 0質量%以下とした。 一方、 311の添加量が0. 15質量%未満であると、 铸造割れや金型への焼付きをおこしゃすく、 健全な鎵造品を得 ることができない。 従って、 Snの添加量は 0. 1 5質量%以上とした。 In the case of Mg_A 1 _Ca alloy, seizure occurs in the mold only with A 1 and Ca, making die casting difficult. However, adding Sn drastically reduces seizure. Further, the addition of Sn can modify the solidified structure and prevent the thermally unstable Mg 12 A 1 i 7 compound from crystallizing at the grain boundaries. However, when the added amount of Sn exceeds 3.0% by mass, the corrosion resistance is reduced, and the corrosion resistance equivalent to that of the AZ91D alloy cannot be obtained. Therefore, the amount of Sn added was set to 3.0% by mass or less. On the other hand, if the added amount of 311 is less than 0.15% by mass, it is difficult to produce a sound product because the product tends to crack or seize on the mold. Therefore, the amount of Sn added was 0.15% by mass or more.
Mnを添加すると耐食性に効果があるが、 Mnの添加量が 0. 5質量%を越えると、 金 型への焼付きが発生するなど铸造性が低下しダイカストが困難となる。 従って、 Mnの添 加量は、 0. 5質量。 /0以下とした。 一方で、 Mnの添加量が 0. 1質量%未満であると、 耐食性が低下する。 従って、 Mnの添加量は、 0. 1質量。 /0以上とした。 Addition of Mn has an effect on the corrosion resistance, but if the addition amount of Mn exceeds 0.5% by mass, the die-casting becomes difficult due to deterioration of the formability such as seizure to a mold. Therefore, the added amount of Mn is 0.5 mass. / 0 or less. On the other hand, if the added amount of Mn is less than 0.1% by mass, the corrosion resistance decreases. Therefore, the added amount of Mn is 0.1 mass. / 0 or more.
少量の S rは、 耐クリープ性において効果が少ないが、 S rを添加すると Mg合金の錶 造性を向上し、 粒界割れなどを防ぐことができる。 S rの添加量が 0. 3質量%を越える と、 焼付きなどが発生しやすくなる。 従って、 S rの添加量は 0. 3質量%以下とした。 一方、 S rの添加量が 0. 01質量。 /0未満であると、 ひけ割れや粒界割れ等への効果はあ まり得られない。 従って、 S rの添加量は 0. 01質量%以上とした。 A small amount of Sr has little effect on creep resistance, but the addition of Sr improves the morphology of the Mg alloy and prevents grain boundary cracking and the like. If the added amount of Sr exceeds 0.3% by mass, seizure or the like tends to occur. Therefore, the addition amount of Sr was set to 0.3% by mass or less. On the other hand, the amount of Sr added was 0.01 mass. If the ratio is less than / 0 , the effect on shrinkage cracks and grain boundary cracks cannot be obtained. Therefore, the amount of Sr added was set to 0.01% by mass or more.
なお、最小量の通常存在する不可避的不純物は 0. 004質量%未満の e (鉄)、 0. 001質量0/。未満の N i (ニッケル) 、 0. 08質量0/。未満の Cu (銅) 、 0. 01質量0 /0 未満の Zn (亜鉛) 等である。 The minimum amount of usually unavoidable impurities present in less than 0.004 wt% e (iron), 0.001 mass 0 /. Less than Ni (nickel), 0.08 mass 0 /. Cu (copper) below, which is like 0.01 wt 0/0 less than Zn (zinc).
本発明の実施の形態の合金と比較材料について種々の実験を行った。 実験に用いた試料 の組成比は表 1に示すとおりである。 ここで、 試料 1及ぴ試料 2は特開 2001— 3 16 752号公報に記載の合金であり、 試料 3は特開平 7-3374号公報に記載の合金であ り、 試料 4及び 5は本発明の実施の形態による合金であり、 試料 6及び 7は、 Snの添加 質量%が本発明の実施の形態の範囲外である合金であり、試料 8は AD C 12合金であり、 試料 9は A Z 9 I D合金である。 Various experiments were performed on the alloy according to the embodiment of the present invention and the comparative material. Table 1 shows the composition ratio of the samples used in the experiment. Here, Sample 1 and Sample 2 are alloys described in JP-A-2001-316752, Sample 3 is an alloy described in JP-A-7-3374, and Samples 4 and 5 are Samples 6 and 7 are alloys according to an embodiment of the invention; Sample 8 is an ADC12 alloy, and Sample 9 is an AZ9 ID alloy, in which the weight percent is outside the scope of the embodiments of the present invention.
表 1  table 1
Figure imgf000007_0001
Figure imgf000007_0001
(実験 1)  (Experiment 1)
本発明の実施の形態の合金と比較材料について割れ性の評価を行った。 表 1に示した試 料 1 (特開 2001 -31 6752号の合金 _ 1) 、試料 4 (本実施の形態の合金— 1 ) 、 試料 5 (本実施の形態の合金一 2) 試料 6及び試料 7 (S nの添加質量%が本発明の範囲 外である合金) それぞれを用いて、 表 2に示す 4種の錄造条件で、 図 1 (a) 、 図 1 (b) に示す形状の試片を铸造し、 割れの発生率を調べた。 図 1 (a) 、 図 1 (b) の試片 1の 形状は、平行部の長さが 105 mmであり、拘束端部の角部 Rは、曲率半径 Ommである。 表 2  The alloy of the embodiment of the present invention and the comparative material were evaluated for crackability. Sample 1 shown in Table 1 (alloy_1 of JP-A-2001-31 6752), sample 4 (alloy-1 of the present embodiment-1), sample 5 (alloy-1 of the present embodiment 2), sample 6 and Using each of Sample 7 (an alloy in which the added mass% of Sn is out of the range of the present invention) and the four types of manufacturing conditions shown in Table 2, the shapes shown in FIGS. 1 (a) and 1 (b) were used. Specimens were fabricated and the cracking rate was examined. The shape of the specimen 1 in FIGS. 1 (a) and 1 (b) is such that the length of the parallel portion is 105 mm and the corner R of the constrained end has a radius of curvature Omm. Table 2
Figure imgf000007_0002
Figure imgf000007_0002
割れについては、 目視及びカラーチェックによってチェックした。 割れ性の評価は、 表 Cracks were checked visually and by color check. See Table
2の各条件で 10個の試片 1を作成し、 铸造後に割れの発生した試片 1の数から割れ発生 率を算出した。 図 2は、 その結果を示しており、 表 2の条件 1の結果は斜線、 条件 2の結 果は白塗り、 条件 3の結果は黒塗り、 条件 4の結果は灰色で示されている。 試料 4 (本実 施の形態の合金一 1) では、 条件 1、 条件 2及び条件 4において割れは発生しなかった。 また、 試料 5 (本実施の形態の合金— 2) 及び試料 7 (S n 0. 35質量%添加) では、 条件 1及び条件 2において割れは発生しなかつた。 ■ Ten specimens 1 were prepared under the respective conditions of 2, and the crack occurrence rate was calculated from the number of specimens 1 having cracks after fabrication. Figure 2 shows the results.The results of Condition 1 in Table 2 are shaded, and the results of Condition 2 are shaded. Fruits are white, condition 3 results are black, condition 4 results are gray. In sample 4 (alloy 1 of this embodiment), no cracks occurred under conditions 1, 2, and 4. In sample 5 (alloy-2 of the present embodiment) and sample 7 (adding 0.35% by mass of Sn), cracking did not occur under conditions 1 and 2. ■
試料 1 (特開 2001— 316752号の合金一 1 ) では、 全ての条件かつ 10個の全 ての試料において割れが発生した。 従って、 Snを添加した試料 4 (本実施の形態の合金 一 1) 及び試料 5 (本実施の形態の合金一 2) の方が明らかに割れ性が優れていることが 分かる。 試料 1 (特開 2001—316752号の合金— 1) は、 C a添加によって割れ が発生したものと考えられる。 また、 C a添加によってダイカスト性が低下する (特に湯 流れ性の低下及び焼付きが増加) 。 し力 し、 試料 4 (本実施の形態の合金一 1 ) 及び試料 In sample 1 (alloy 1 1 of JP-A-2001-316752), cracks occurred in all conditions and in all 10 samples. Accordingly, it can be seen that Sample 4 (alloy-1 of the present embodiment) and Sample 5 (alloy-1 of the present embodiment) to which Sn was added had clearly superior cracking properties. It is probable that Sample 1 (alloy-1 of JP-A-2001-316752) had cracks due to the addition of Ca. In addition, the addition of Ca decreases the die-casting property (especially, the flowability of the hot water and the seizure increase). Specimen 4 (Alloy 1 of this embodiment) and Sample 4
5 (本実施の形態の合金一 2) では、 更に S nを添加することにより、 割れが減少したも のと考えられる。 また、 Snを添加することにより、 金型への焼付き性が減少する。 試料It is considered that cracking was reduced in 5 (Alloy-1 of the present embodiment) by further adding Sn. Also, by adding Sn, the seizure to the mold is reduced. sample
6 (S n 0. 1質量%添加) では、 全ての条件において 20%以上の割れが発生し、 Sn 添加による効果はあまり認められなかった。 試料 7 (S n 0. 35質量%添加) では、 割 れ性に効果があることが分かった。 With 6 (Sn 0.1 mass% addition), cracks of 20% or more occurred under all conditions, and the effect of Sn addition was not so much recognized. Sample 7 (adding 0.35% by mass of Sn) was found to be effective in cracking.
(実験 2 )  (Experiment 2)
本発明の実施の形態の合金と比較材料について耐クリープ性の実験を行った。 250°C の温度雰囲気で 43時間曲げ荷重を負荷する耐クリープ性実験 Iと、 200°Cの温度雰囲 気で 100時間曲げ荷重を負荷する耐クリープ性実験 IIとを行いそれぞれ変位を測定した。 耐クリープ性実験 Iでは、 試料 1 (特開 2001— 316752号の合金一 1 ) 、 試料 4 Experiments were performed on the creep resistance of the alloy according to the embodiment of the present invention and the comparative material. Displacement was measured by conducting creep resistance experiment I in which a bending load was applied for 43 hours in a 250 ° C temperature atmosphere and creep resistance experiment II in which a bending load was applied for 100 hours in a 200 ° C temperature atmosphere. . In the creep resistance experiment I, sample 1 (alloy 1 1 of JP-A-2001-316752), sample 4
(本実施の形態の合金一 1) 及び試料 8 (ADC 12) を用いて図 3に示すような試験片 2を铸造した。 耐クリープ性実験 IIでは、 試料 1、 2 (特開 2001— 316752号の 合金一 1、 2) 、 試料 3 (特開平 7— 3374号の合金) 、 試料 4 (本実施の形態の合金 一 1) 、 試料 8 (ADC 12) 及ぴ試料 9 (AZ 91D) を用いて図 3に示すような試験 片 2を铸造した。 試験片 2は、 ASTMの B-85の引張試験片 (平行部の直径 6. 35m m、 標点間距離 57.5 mm, 長さ 21 Omm) であり、 図 4に示されるように、 試験片 2の両端を支持具 3 a、 3 bにて支持し、支持台 3 aと 3 bの間の距離は 15 Ommとし、 試験片 2の中央部に 2 k gの重り 4を吊り下げ、 所定の時間試験片 2に荷重をかけ、 試験 片 2に曲げ変位を生じさせた。 A test piece 2 as shown in FIG. 3 was manufactured using (the alloy 1 of the present embodiment 1) and the sample 8 (ADC 12). In the creep resistance test II, samples 1 and 2 (alloys 1 and 2 of JP-A-2001-3166752), sample 3 (alloy of JP-A-7-3374), and sample 4 (alloys 1 and 2 of this embodiment) were used. ), Sample 8 (ADC 12) and Sample 9 (AZ91D) were used to fabricate a test piece 2 as shown in FIG. Test piece 2 was an ASTM B-85 tensile test piece (parallel diameter 6.35 mm, distance between gauges 57.5 mm, length 21 Omm). Are supported by supports 3a and 3b, the distance between the supports 3a and 3b is 15 Omm, A 2 kg weight 4 was hung at the center of the test piece 2, a load was applied to the test piece 2 for a predetermined time, and a bending displacement was caused in the test piece 2.
次に、 変位の測定方法について説明する。 図 5に示すように、 試験片 2の一端側の試験 片 2の中心から 75 mmの位置を固定部材 5により固定し、 他端側の高さをハイトゲージ 6により測定し変位を算出した。 図 6は耐クリープ性実験 Iの結果、 図 7は耐クリープ性 実験 IIを示している。 耐クリープ性実験 IIにおいて試料 9 (AZ 91D) の変位は 35 m mであったが、 図 7では図示の都合上 4. 5 mmとしている。 図 7から試料 4 (本実施の 形態の合金一 1 ) の耐クリープ性は、試料 1 (特開 2001— 316752号の合金一 1 ) よりも優れ、試料 3 (特開平 7— 3374号の合金)よりも格段に優れているのが分かる。 試料 4 (本実施の形態の合金一 1 ) は、 C a及び Sn添加により耐クリープ性が向上した ものと考えられ、 アルミダイカスト合金である試料 8 (ADC 12) と同程度の耐クリー プ性が得られた。  Next, a method of measuring the displacement will be described. As shown in FIG. 5, a position 75 mm from the center of the test piece 2 on one end side of the test piece 2 was fixed by the fixing member 5, and the height on the other end side was measured by the height gauge 6 to calculate the displacement. Figure 6 shows the results of creep resistance experiment I, and Figure 7 shows creep resistance experiment II. In the creep resistance experiment II, the displacement of sample 9 (AZ91D) was 35 mm, but in Fig. 7 it is 4.5 mm for the sake of illustration. From FIG. 7, the creep resistance of Sample 4 (Alloy-1 of this embodiment) is superior to that of Sample 1 (Alloy-1 of JP-A-2001-3166752), and Sample 3 (Alloy-1 of JP-A-7-3374) You can see that it is much better than). Sample 4 (alloy 1 of this embodiment) is considered to have improved creep resistance due to the addition of Ca and Sn, and the same creep resistance as sample 8 (ADC 12), which is an aluminum die-cast alloy was gotten.
また、 試料 2 (特開 2001— 316752号の合金一 2) は、 S i添加により耐クリ ープ性が低下したものと考えられる。 一般的に、 C a及び S iを添加すると耐クリープ性 が向上することが知られているが、 両者を併用するとその効果は得られず、 逆に耐クリー プ性は低下するものと考えられる。 また、 S iを添加しても Mgに対する固溶範囲が極め て狭いため固溶しないが、 S nは Mgに対してよく固溶し、 Mgと共に固溶体を形成し、 Sample 2 (alloy No. 1 in JP-A-2001-316752) is considered to have reduced creep resistance due to the addition of Si. Generally, it is known that the addition of Ca and Si improves the creep resistance.However, when both are used together, the effect is not obtained, and conversely, the creep resistance is considered to decrease. . In addition, even if Si is added, the solid solution range for Mg is extremely narrow, so that it does not form a solid solution, but Sn dissolves well in Mg and forms a solid solution with Mg,
5 n添カ卩による Mg合金の固溶強化が期待できる。 The solid solution strengthening of the Mg alloy by 5n-added kama can be expected.
(実験 3 )  (Experiment 3)
本発明の実施の形態の合金と比較材料について、 塩水噴霧試験 (J I SZ 2371) に より耐食性の実験を行った。 図 8はその結果を示しており、 試料 4 (本実施の形態の合金 - 1 ) 及び試料 5 (本実施の形態の合金一 2) の耐食性は、 試料 2 (特開 2001— 31 For the alloy and the comparative material according to the embodiment of the present invention, an experiment on corrosion resistance was performed by a salt spray test (JISZ2371). FIG. 8 shows the results. The corrosion resistance of Sample 4 (alloy-1 of the present embodiment) and Sample 5 (alloy-1 of the present embodiment) was as shown in Sample 2 (Japanese Unexamined Patent Publication No. 2001-31).
6752号の合金 _ 2) 及ぴ試料 3 (特開平 7— 3374号の合金) よりも優れているの が分かる。 試料 3 (特開平 7— 3374号の合金一 2) の耐食性が低下しているのは、 耐 食性を低下させる S n及び S iが添加されているためである。 一般的に、 Snを添加する と耐食性が低下することが知られているが、 試料 4 (本実施の形態の合金一 1 ) 及ぴ試料 5 (本実施の形態の合金—2) の耐食性は、 試料 9 (AZ 91D) と同程度であり耐食性 の低下は見られなかった。 It can be seen that it is superior to the alloy of No. 6752-2) and the sample 3 (the alloy of JP-A No. 7-3374). The reason why the corrosion resistance of Sample 3 (Alloy-1 of JP-A No. 7-3374) is lowered is that Sn and Si, which reduce the corrosion resistance, are added. It is generally known that the addition of Sn decreases the corrosion resistance. However, the corrosion resistance of Sample 4 (alloy 1-1 of the present embodiment) and Sample 5 (alloy-2 of the present embodiment) are , Equivalent to Sample 9 (AZ 91D) and corrosion resistant No decrease was seen.
これは、 本実施の形態の S nの添加範囲においては、 Mgマトリックス中に S nが固溶 して固溶体を形成することにより、 Mgマトリックス総体の電位が上がり、 M gマトリツ タスと金属間化合物などの析出物との電位差が小さくなり、 局部腐食が促進されなくなる ためだと考えられる。 また、 Mgに対する S nの固溶域が広い高温からダイカストを急冷 することにより、 耐食性に影響しない固溶体、 又は多少は耐食性に効果がある固溶体が得 られ、 かつ耐食性を低下させる金属間化合物などの析出物があまり生成されないことが考 えられる。 しかし、 試料 7 (S n 0. 35質量%添加) では、 試料 5 (本実施の形態の合 金一 2) と比較して耐食性は劣っており、 Snの添加量が 3. 0%を越えると耐食性は低 下するものと思われる。 これは、 耐食性に悪影響を及ぼす金属間化合物が晶出するためと 考えられる。  This is because, in the range of addition of Sn in the present embodiment, the solid solution of Sn in the Mg matrix to form a solid solution increases the potential of the entire Mg matrix, and the Mg matrix and the intermetallic compound. This is probably because the potential difference with the precipitates such as is reduced, and local corrosion is not promoted. In addition, by rapidly cooling the die cast from a high temperature where the solid solution area of Sn to Mg is wide, a solid solution that does not affect the corrosion resistance or a solid solution that is somewhat effective in the corrosion resistance can be obtained and an intermetallic compound that reduces the corrosion resistance can be obtained. It is considered that precipitates are not generated much. However, the corrosion resistance of sample 7 (adding 0.35% by mass of Sn) was inferior to that of sample 5 (alloy No. 2 of the present embodiment), and the amount of Sn added exceeded 3.0%. The corrosion resistance is expected to decrease. This is thought to be due to the crystallization of intermetallic compounds that adversely affect corrosion resistance.
(実験 4)  (Experiment 4)
本発明の実施の形態の合金について E PMA分析を行なった。 分析を行なった試料の組 成は、 Mg— 4. 5%A 1 - 1. 7 % C a - 0. 15%Mn - 0. 7%Snであり、 図 9 に結果を示している。 図 9に示すように、 Snは、 一部が Mgマトリックス中に固溶し、 他部が粒界に晶出している。 また S nを添加することによって、 粒界において、 Mgはあ まり晶出せず、 A 12C a及び S n化合物が粒界に晶出した。 尚、一部に Mgの晶出も認め られる力 S、 Mg C a系化合物である。 Al 2Caはマトリックス中にリンク状に晶出してお り、 耐クリープ性に効果的な組織が得られた。 更に、 耐クリープ性を低下させる原因の一 つである Mg A 1化合物は見られなかった。 E PMA analysis was performed on the alloy according to the embodiment of the present invention. The composition of the sample analyzed was Mg-4.5% A1-1.7% Ca-0.15% Mn-0.7% Sn, and the results are shown in FIG. As shown in Fig. 9, Sn partially dissolved in the Mg matrix, and Sn was crystallized at the grain boundaries. Also by the addition of S n, at the grain boundaries, not put out Mg Ha Mari crystal, A 1 2 C a and S n compounds gave the grain boundary crystallized. In addition, it is a force S, Mg Ca-based compound in which crystallization of Mg is partially observed. Al 2 Ca was crystallized in the form of links in the matrix, and a structure effective for creep resistance was obtained. Furthermore, there was no Mg A1 compound that was one of the causes of the decrease in creep resistance.
当該試料と比較材料について耐クリープ性の実験を行った。 試験方法は、 (実験 2) の 耐クリープ性実験 Iと同じである。 実験に用いた試料を表 3に示す。, ここで、 試料 10及 び試料 11は、 比較材料である Mg— A 1— C a— Mn系合金であり、 試料 12は EPM A分析を行なった試料と同一組成の合金であり、 試料 13は本発明の実施の形態による合 金であり、 試料 14は ADC 12合金である。 1つの試料に対し 3本の試験片を用意し、 全ての試験片について試験を行なった。 各試験片の変位と、 各試料の平均値を図 10に示 す。 図 10から試料 12及ぴ 13の耐クリープ性は、 試料 10及ぴ 11よりも優れている ことが分かる。上述のように Mg— Al—Ca— Mn系合金に S nを添加することにより、 熱的に安定な A 12C a化合物が粒界に晶出し易くなり、 熱的不安定な Mg 12A 117化合 物の晶出を防ぐことができ、 耐クリープ性が向上したものと考えられる。 更に、 上述のよ うに Snの一部は、 Mgマトリックス中に固溶したため、 固溶強化が得られたものと考え られる。 An experiment on creep resistance was performed on the sample and the comparative material. The test method is the same as the creep resistance test I in (Experiment 2). Table 3 shows the samples used in the experiment. Here, Samples 10 and 11 are Mg-A1-Ca-Mn-based alloys as comparative materials, Sample 12 is an alloy having the same composition as the sample subjected to EPMA analysis, and Sample 13 Is an alloy according to an embodiment of the present invention, and Sample 14 is an ADC 12 alloy. Three specimens were prepared for one sample, and all the specimens were tested. Figure 10 shows the displacement of each test piece and the average value of each sample. From Fig. 10, creep resistance of Samples 12 and 13 is better than Samples 10 and 11. You can see that. As described above Mg- Al-Ca-a Mn alloy by the addition of S n, thermally stable A 1 2 C a compound is easily crystallized at grain boundaries, thermally labile Mg 12 A it is possible to prevent crystallization of 1 17 compound, it is believed that the creep resistance is improved. Furthermore, as described above, a part of Sn dissolved in the Mg matrix, and thus it is considered that solid solution strengthening was obtained.
表 3  Table 3
Figure imgf000011_0001
Figure imgf000011_0001
また、 図 11及び 12に、 試料 11及び 12の.ミクロ組織写真を示している。 図 1 1に 示すように、 試料 11では粒界に割れが多数発生している。 Mg_A l— Ca— Mn系合 金は、 粒界が極めて不安定であるため、 割れが発生したと考えられる。 一方、 図 12に示 すように本実施の形態の合金である試料 12では、 粒界割れは見られなかった。 S n添カロ により、 粒界に A 12C aが晶出するなどの粒界の改質効果が認められた。 FIGS. 11 and 12 show microstructure photographs of Samples 11 and 12, respectively. As shown in FIG. 11, sample 11 has many cracks at the grain boundaries. The Mg_Al-Ca-Mn alloy is considered to have cracked because the grain boundaries are extremely unstable. On the other hand, as shown in FIG. 12, no grain boundary crack was observed in Sample 12, which is the alloy of the present embodiment. The S n added Caro, the modification effect of the grain boundary, such as A 1 2 C a crystallizes in the grain boundary was observed.
(実験 5)  (Experiment 5)
本発明の実施の形態の合金と比較材料について耐クリープ性の実験を行った。 実験に用 いた試料を表 4に示す。 試料 15は本発明の実施の形態による合金であり、 試料 16は本 発明の実施の形態の範囲外である合金であり、 試料 17は ADC12合金であり、 試料 1 8は AZ 91 D合金である。 図 13に示すように、 実験に用いた試験片 10は、 平行部の 直径 6. 0士 0. 1mm、 標点間距離 52mm、 長さ 15 Ommである。 表 2の条件 4に 示す錶造条件で铸造を行い試験片 10を作製した。 そして、 図 14に示すように 150°C に設定された予熱炉 11内に試験片を配置し、 試験片 10にストレインゲージ 12を固定 し、 荷重を 35MP a加え、 経過時間ごとの歪を測定した。 表 4 Experiments were performed on the creep resistance of the alloy according to the embodiment of the present invention and the comparative material. Table 4 shows the samples used in the experiment. Sample 15 is an alloy according to an embodiment of the present invention, Sample 16 is an alloy outside the scope of the present invention, Sample 17 is an ADC12 alloy, and Sample 18 is an AZ91D alloy. . As shown in Fig. 13, the test piece 10 used in the experiment had a parallel part diameter of 6.0 mm, 0.1 mm, a distance between gauge points of 52 mm, and a length of 15 Omm. Specimen 10 was produced by producing under the production conditions shown in Condition 4 of Table 2. Then, as shown in Fig. 14, the test piece was placed in the preheating furnace 11 set at 150 ° C, the strain gauge 12 was fixed to the test piece 10, a load of 35 MPa was applied, and the strain was measured at each elapsed time. did. Table 4
Figure imgf000012_0001
Figure imgf000012_0001
図 1 5に実験 5のクリープ試験の結果を示している。 試料 1 5及び試料 1 6の結果から 分かるように、 S nを添加することにより、 耐クリープ性が向上することが認められた。 また、 本実施の形態による合金である試料 1 5の耐クリープ性は、 AD C 1 2合金である 試料 1 7よりも優れていることが分かる。 これは、 上述のように S n添加により熱的に安 定な A 1 2 C a化合物が粒界に晶出したためであると考えられる。 Figure 15 shows the results of the creep test of Experiment 5. As can be seen from the results of Samples 15 and 16, it was recognized that the addition of Sn improved the creep resistance. In addition, it can be seen that the creep resistance of the sample 15 which is the alloy according to the present embodiment is superior to the sample 17 which is the ADC12 alloy. This is believed to thermally From Jona A 1 2 C a compound S n addition as described above is because you put the grain boundary crystallized.
本発明による耐クリープマグネシウム合金は、 上述した実施の形態に限定されず、 特許 請求の範囲に記載した範囲で種々の変形や改良が可能である。 '  The creep-resistant magnesium alloy according to the present invention is not limited to the above embodiment, and various modifications and improvements can be made within the scope described in the claims. '
産業上の利用可能性  Industrial applicability
本発明の耐クリープマグネシウム合金は、 自動車用部品の素材に使用される合金として 利用することができる。  The creep-resistant magnesium alloy of the present invention can be used as an alloy used as a material for automobile parts.

Claims

請求の範囲 The scope of the claims
[1] A1を 2. 5〜6. 5質量0 /。、 〇 &を0. 3〜3. 0質量0 /。、 Snを 0. 15〜 3 . 0質量%、 Mnを 0. 1〜0. 5質量。 /0含み、 残部が Mgと不可避的不純物からなるこ とを特徴とする耐クリープマグネシゥム合金。 [1] A1 2.5-6.5 mass 0 /. , 〇 & 0.3-3.0 mass 0 /. , Sn 0.15 to 3.0% by mass, Mn 0.1 to 0.5% by mass. / 0 , the balance being Mg and unavoidable impurities, characterized by being a creep-resistant magnesium alloy.
[2] S rを 0. 01〜0. 3質量%含むことを特徴とする請求項 1に記載の耐クリープ マグネシウム合金。  [2] The creep-resistant magnesium alloy according to claim 1, wherein Sr is contained in an amount of 0.01 to 0.3% by mass.
PCT/JP2005/006007 2004-06-03 2005-03-23 Creep-resistant magnesium alloy WO2005118900A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-166323 2004-06-03
JP2004166323A JP2007270159A (en) 2004-06-03 2004-06-03 Creep-resistant magnesium alloy

Publications (1)

Publication Number Publication Date
WO2005118900A1 true WO2005118900A1 (en) 2005-12-15

Family

ID=35462925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006007 WO2005118900A1 (en) 2004-06-03 2005-03-23 Creep-resistant magnesium alloy

Country Status (2)

Country Link
JP (1) JP2007270159A (en)
WO (1) WO2005118900A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016136781A1 (en) * 2015-02-26 2017-12-21 株式会社栗本鐵工所 Heat-resistant magnesium alloy
CN113981286A (en) * 2021-11-01 2022-01-28 吉林大学 Corrosion-resistant high-strength plastic magnesium alloy and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852082B2 (en) * 2008-09-29 2012-01-11 株式会社豊田中央研究所 Magnesium alloy
CN102648300B (en) 2009-12-07 2015-06-17 友和安股份公司 Magnesium alloy
CN103290290A (en) * 2013-06-26 2013-09-11 重庆大学 Low-cost wrought magnesium alloy and preparation method thereof
JP7315941B2 (en) * 2018-10-03 2023-07-27 地方独立行政法人東京都立産業技術研究センター POWDER MATERIAL AND MANUFACTURING METHOD OF MAGNESIUM ALLOY MEMBER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613863A (en) * 1984-06-15 1986-01-09 Ube Ind Ltd Die casting magnesium alloy
US20030084968A1 (en) * 2001-11-05 2003-05-08 Boris Bronfin High strength creep resistant magnesium alloys
JP2004084066A (en) * 2002-06-24 2004-03-18 Toyota Central Res & Dev Lab Inc Magnesium alloy porous body and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613863A (en) * 1984-06-15 1986-01-09 Ube Ind Ltd Die casting magnesium alloy
US20030084968A1 (en) * 2001-11-05 2003-05-08 Boris Bronfin High strength creep resistant magnesium alloys
JP2004084066A (en) * 2002-06-24 2004-03-18 Toyota Central Res & Dev Lab Inc Magnesium alloy porous body and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016136781A1 (en) * 2015-02-26 2017-12-21 株式会社栗本鐵工所 Heat-resistant magnesium alloy
EP3263725A4 (en) * 2015-02-26 2018-01-03 Kurimoto, Ltd. Heat-resistant magnesium alloy
US10550453B2 (en) 2015-02-26 2020-02-04 Kurimoto, Ltd. Heat-resistant magnesium alloy
CN113981286A (en) * 2021-11-01 2022-01-28 吉林大学 Corrosion-resistant high-strength plastic magnesium alloy and preparation method thereof
CN113981286B (en) * 2021-11-01 2022-06-21 吉林大学 Corrosion-resistant high-strength plastic magnesium alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2007270159A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US9243312B2 (en) Aluminum alloy casting and production method thereof
EP3121302B1 (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
JP4539572B2 (en) Magnesium alloys and castings for casting
US9180515B2 (en) Magnesium alloy and magnesium-alloy cast product
JP5209162B2 (en) Magnesium-based cast alloy with excellent high temperature characteristics
JPH10324941A (en) Magnesium alloy having excellent high temperature characteristic and die castability
US20020088512A1 (en) Aluminum die casting alloy, aluminum die cast product and production process
JP2006291327A (en) Heat-resistant magnesium alloy casting
WO2005118900A1 (en) Creep-resistant magnesium alloy
JP2002275569A (en) CREEP RESISTANT Mg ALLOY
EP1477577B1 (en) Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
JP4202298B2 (en) Heat-resistant magnesium alloy for die casting and die-cast products of the same alloy
JP5383314B2 (en) Creep-resistant magnesium alloy
JP2005240129A (en) Heat resistant magnesium alloy casting
JP5852039B2 (en) Heat-resistant magnesium alloy
JP6778675B2 (en) Heat resistant magnesium alloy
US11959155B2 (en) Heat-resistant magnesium alloy for casting
JP6091806B2 (en) Aluminum alloy brazing sheet for ERW welded tube
JP2001247925A (en) High ductility magnesium alloy excellent in fluidity and magnesium alloy material
JPS59133341A (en) High strength cu alloy with superior corrosion resistance and hot workability
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
JP2005240130A (en) Heat resistant magnesium alloy casting
JP3652937B2 (en) Aluminum alloy with excellent strength and corrosion resistance
JP2005187894A (en) Heat resistant magnesium alloy casting
WO2004024967A1 (en) CREEP-RESISTANT Mg ALLOY

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP