WO2005118619A1 - Dipeptide exhibiting antihypertensive action - Google Patents

Dipeptide exhibiting antihypertensive action Download PDF

Info

Publication number
WO2005118619A1
WO2005118619A1 PCT/JP2005/010168 JP2005010168W WO2005118619A1 WO 2005118619 A1 WO2005118619 A1 WO 2005118619A1 JP 2005010168 W JP2005010168 W JP 2005010168W WO 2005118619 A1 WO2005118619 A1 WO 2005118619A1
Authority
WO
WIPO (PCT)
Prior art keywords
phe
food
drink
blood pressure
ace
Prior art date
Application number
PCT/JP2005/010168
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Kanauchi
Kiharu Igarashi
Original Assignee
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Beer Kabushiki Kaisha filed Critical Kirin Beer Kabushiki Kaisha
Priority to JP2006514131A priority Critical patent/JPWO2005118619A1/en
Publication of WO2005118619A1 publication Critical patent/WO2005118619A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06026Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a dipeptide having a blood pressure lowering effect, a composition containing the dipeptide, a method for extracting and producing the composition from brewer's yeast, a food and beverage, a functional food, and a food or beverage containing the dipeptide or the composition.
  • a composition containing the dipeptide a method for extracting and producing the composition from brewer's yeast, a food and beverage, a functional food, and a food or beverage containing the dipeptide or the composition.
  • Hypertension is called a silent killer and has no major symptoms. If left unchecked, it can cause a variety of illnesses, including cerebrovascular disorders, which are the leading causes of death, heart disease, and even arteriosclerosis. Various treatments are currently used to treat hypertension, but there are concerns about the side effects of some of them.
  • Angiotensin II (Asp-Arg-Val-Try-Ile-His-Pro-Phe), a potent vasoconstrictor known as a causative agent of hypertension, is an inactive peptide, angiotensin. From I (Asp-Arg-Val_Try-Ile-His-Pro-Phe-His-Leu), the C-terminal His-Leu is cleaved by angiotensin converting enzyme (ACE) while it circulates through the lung and kidney.
  • ACE angiotensin converting enzyme
  • renin-angiotensin system RAS
  • angiotensin converting enzyme ACE
  • ACE angiotensin converting enzyme
  • Non-Patent Documents 1 and 2 Various peptide compounds that inhibit ACE activity have been synthesized so far (Patent Documents 1 and 2).
  • peptides derived from milk proteins, seafood and plant origin have been found to act as a substrate that antagonizes the substrate for angiotensin I converting enzyme, and as a result, maintain a low blood pressure elevation level.
  • ingestion of barrel is effective for prevention of hypertension.
  • Non-Patent Documents 3 to 6 Non-Patent Documents 4 to 9
  • RJ royal jelly
  • Non-Patent Document 10 It has also been reported that oral administration of peptides released at that time lowers the blood pressure of spontaneously hypertensive rats (HSHR) (Non-Patent Document 11).
  • Patent Document 1 JP-A-57-53447
  • Patent Document 2 JP-A-2-282395
  • Patent Document 3 Japanese Patent Application Laid-Open No. 5-958
  • Patent Document 4 JP-A-11 29594
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2002-29995
  • Patent Document 6 JP-A-2002-291452
  • Non-patent Document 1 Seki Eiji et al., "Hypertensive effect of sardine protein-derived peptide and Valy tyrosine", Journal of Japan Nutrition 'Food Association, (1999) 52, p.271-277
  • Non-Patent Document 2 Ohtsuru Katsu et al., "Effects of Maitake Administration on Blood Pressure and Body Weight of Spontaneously Hypertensive Rats", Journal of the Japan Food Industry Association, (1999) 46, p.806-814.
  • Non-Patent Document 3 Shunro Kawagishi, Ed., "Biochemical Chemistry Experimental Method 38: Research Methods for Biological Function Modulating Substances in Foods", Gakkai Shuppan Center, (1996), p.116-129
  • Non-Patent Document 6 Hiroyuki Ueda et al., "Preparation of ⁇ -converting enzyme-inhibiting peptide from sardine protein hydrolyzate and its separation", Journal of the Japanese Society of Agricultural Chemistry, (1991) 65, ⁇ .1223-1228
  • Patent Document 7 Matsui, T. et al., Preparation and Characterization of Novel Bioactive Peptides responsible for Angiotensin I-Converting Enzyme Inhibition from Wheat Germ., J. Peptide ScL, (1999) 5, p.289-297
  • Non-Patent Document 8 Hiroyuki Ueda et al., "Angiotensin I-converting enzyme inhibitory peptide present in pepsin hydrolyzate of heated sardine muscle", Journal of the Japanese Society of Agricultural Chemistry, (1992) Vol.66, N 0.1, pp.25-29
  • Non-Patent Aiden 9 Saiga, A. et al., Angiotensin onverting Enzyme Inhibitory Peptides in a Hydrolyzed Cmcken Breast Muscle Extract., J. Agric. Food Chem. (2003) 51, pp.1741-1745
  • Non-Patent Document 10 Kazumichi Suzuki et al., “Angiotensin-converting enzyme inhibitory activity of royal jelly hydrolyzate by protease”, Journal of Japan Society for Food Science and Technology, (2003) 50, p.286-288
  • Non-patent Document 11 Kazumichi Suzuki Et al., “Blood pressure regulating effect of proteolytic enzyme-treated oral jelly on spontaneously developing blood pressure in rats”, Journal of Japan Society for Food Science and Technology, (2003) 50, p.47-462.
  • the present invention provides a substance having an inhibitory activity on angiotensin I converting enzyme and exhibiting an antihypertensive effect, a method for producing the substance, and foods, beverages, functional foods and pharmaceuticals containing the substance.
  • the purpose is to:
  • the present inventors conducted intensive studies to solve the above-mentioned problems, and when a peptide fraction derived from a hydrolyzate of dried brewer's yeast was administered to spontaneously hypertensive rats (SHR), the blood pressure of rats Found to descend.
  • SHR spontaneously hypertensive rats
  • the present inventors searched for a peptide that inhibits angiotensin I converting enzyme (ACE) activity from the hydrolyzate of dried brewer's yeast, and found that two types of peptides, Ala_Phe and Gly_Phe, which have a hypotensive effect. was found.
  • ACE angiotensin I converting enzyme
  • a composition for inhibiting angiotensin-converting enzyme comprising at least one selected from the group consisting of arayurpheniralanine (Ala-Phe), glycylfuranlaranine (Gly_Phe), and a salt thereof. .
  • a method for producing a composition for inhibiting angiotensin converting enzyme comprising the following steps a) to c):
  • composition for inhibiting angiotensin I converting enzyme produced by the method according to the above [4] or [5].
  • a material for food or drink comprising the dipeptide or the salt thereof according to the above [1] or [2].
  • a food or drink comprising the dipeptide or the salt thereof according to the above [1] or [2].
  • a food or drink material comprising the composition according to the above [3] or [6].
  • a pharmaceutical composition comprising the dipeptide according to the above [1] and [2] or a salt thereof.
  • a pharmaceutical composition comprising the composition according to the above [3] or [6].
  • the peptides Ala_Phe, Gly-Phe and salts thereof according to the present invention, and compositions containing them have angiotensin I converting enzyme (ACE) inhibitory activity.
  • the peptide of the present invention, a salt thereof, and a composition containing the same exhibit an effect of suppressing an increase in blood pressure.
  • the material for food and drink, food and drink, and the pharmaceutical composition containing the peptide of the present invention, a salt thereof, or a composition containing the same can suppress an increase in blood pressure, for example, by oral administration.
  • FIG. 1 is a schematic diagram showing a procedure for preparing a dried beer yeast hydrolyzate.
  • FIG. 2 is a schematic diagram showing the procedure for measuring the ACE inhibitory activity of a hydrolyzate of dried brewer's yeast.
  • FIG. 3 is a diagram showing a feed feeding scheme for each experimental group.
  • FIG. 4 is a graph showing changes in blood pressure in each experimental group.
  • FIG. 5 is a diagram showing a blood pressure change amount in each experimental group.
  • FIG. 6 is a schematic diagram showing a procedure for measuring angiotensin I converting enzyme activity in serum.
  • FIG. 7 is a schematic diagram showing a procedure for preparing a sampnole for measuring angiotensin I converting enzyme activity of renal power.
  • FIG. 8 is a schematic diagram showing an experimental procedure used to identify a 50% EtOH-eluting fractional ACE inhibitor.
  • FIG. 9 is a diagram showing an elution pattern of a yeast alcalase hydrolyzate by S-marked hadex_G-25 column chromatography and an ACE inhibitory activity of the eluted fraction.
  • FIG. 10 is a view showing a reverse phase preparative HPLC chromatogram of fraction 18. Peak fractions AC are shown.
  • FIG. 11 is a view showing a reverse phase preparative HPLC chromatogram of fraction 18. Peak fraction D to F are shown.
  • FIG. 12 is a view showing an HPLC chromatogram obtained by subjecting a mixture of fraction B and fraction E to gel filtration HPLC.
  • FIG. 13 shows the mass spectrum of fraction G and the chemical structural formula of phenylalanine.
  • FIG. 14 shows the mass spectrum of fraction H and the chemical structural formula of arayurfeniralanin.
  • Fig. 15 shows the mass spectrum of fraction I and the chemical structural formula of dalysylphenylalanine.
  • FIG. 16 is a graph showing changes in systolic blood pressure following a single oral administration of AF or GF.
  • FIG. 17 is a graph showing changes in the maximum systolic blood pressure change associated with a single oral administration of AF or GF.
  • the peptides, arayurpheniralanine (Ala-Phe), dalysylphenyliralanine (Gly-Phe), and their salts each have angiotensin converting enzyme (ACE) inhibitory activity.
  • arayurpheniralanine means a dipeptide containing an N-terminal alanine residue and a C-terminal feniralanine residue.
  • Examples of the salt of arauelfeniralanine in the present invention include a sodium salt and a potassium salt.
  • dalysylphenylalanine means a dipeptide containing an N-terminal glycine residue and a C-terminal fenylalanine residue.
  • Examples of the salt of glycinolephenylalanine in the present invention include a sodium salt and a potassium salt.
  • the peptide Ala_Phe, Gly-Phe or a salt thereof of the present invention can be prepared by a peptide synthesis method known to those skilled in the art, for example, but not limited to, a chemical or enzymatic cleavage method, a chemical synthesis method (solution Phase method, solid phase method, column method, batch method, etc.), chromatographic purification It can be manufactured by utilizing a method such as a method.
  • a method such as a method.
  • a composition containing at least one selected from the group consisting of the peptides Ala-Phe and Gly-Phe of the present invention and a salt thereof also has angiotensin converting enzyme inhibitory activity. Therefore, such a composition of the present invention can be used as a composition for inhibiting angiotensin I converting enzyme (ACE).
  • the composition containing at least one selected from the group consisting of the peptides Ala_Phe, Gly-Phe and salts thereof according to the present invention comprises a peptide fraction obtained from brewer's yeast hydrolyzate (hereinafter referred to as AF / GF brewer's yeast). (Referred to as the derived fraction).
  • fraction derived from AF / GF brewer's yeast according to the present invention can be prepared using any method known to those skilled in the art by the following steps a) to:
  • Alanylpheniralanine Al-Phe
  • Gly-Phe glycylphenylalananine
  • the molecular weight of the peptide contained in the beer yeast-derived fraction is preferably in the range of 150 to 2,000, but is not limited thereto.
  • the brewer's yeast used for the production of the fraction derived from the AF / GF brewer's yeast may be any yeast used for brewing beer, but may be Saccharomyces cerevisiae, Saccharomyces cerevisiae (Saccharomyces pastorianus), Saccharomyces bayanus and the like are preferred.
  • the brewer's yeast according to the present invention may be in a dry state (for example, in a powder form or a granular form) or may be in a culture.
  • the term “culture” includes a culture solution containing cells (cells) in culture and a medium, and culture cells separated from the culture solution.
  • Hydrolysis methods applied to brewer's yeast typically include enzymatic or chemical hydrolysis methods.
  • Enzymatic hydrolysis methods include, for example, alkaline protease, neutral Examples include a method of treating with a protease containing a protease and an acidic protease.
  • an alkaline protease Alcalase 2.4L FG; manufactured by novozymes
  • Examples of the chemical hydrolysis method include a method of treating with a strong acid or strong alkali.
  • any conditions used in known hydrolysis methods may be used.
  • the amount of enzyme added in the enzymatic method is usually 0.001% or more, preferably 0.1 to 10%, per 1 g of protein.
  • the reaction pH and reaction temperature are preferably set near the optimum pH and the optimum temperature of the enzyme used.
  • the reaction time can be appropriately set by those skilled in the art according to the type of enzyme, the amount added, the reaction temperature, and the reaction pH, but is usually in the range of 30 minutes to 40 hours.
  • the hydrolysis reaction can be stopped according to a known method including heating of the reaction mixture, inactivation of the enzyme by a change in pH, etc., filtration of the enzyme by ultrafiltration, and the like.
  • a technique for fractionating the fraction derived from AF / GF brewer's yeast various techniques used for analysis of organic substances can be used. Examples of such a fractionation technique include membrane filtration such as ultrafiltration and microfiltration, size exclusion chromatography such as gel permeation chromatography and gel filtration chromatography (eg, high performance liquid chromatography), and partition chromatography. , Adsorption chromatography, ion exchange chromatography and the like. Specifically, for example, it is preferable to fractionate the hydrolyzate of brewer's yeast by chromatography, identify a fraction containing Ala-Phe and Z or Gly-Phe, and fractionate it.
  • the beer yeast hydrolyzate may be sequentially subjected to different chromatography to obtain a more purified fraction.
  • the beer yeast hydrolyzate is first passed through a chromatography packed with an adsorbent (for example, Amberlite TM XAD-2 TM resin) to which a substance having hydrophobicity is adsorbed, and the organic solvent (for example, ethanol (50 to 100%).
  • an adsorbent for example, Amberlite TM XAD-2 TM resin
  • the organic solvent for example, ethanol (50 to 100%
  • the fraction containing the hydrophobic substance is collected by eluting the adsorbed fraction with (EtOH) or methanol), and the fraction is further fractionated by a chromatographic method such as HPLC.
  • the ACE inhibitory activity may be measured, a fraction having high ACE inhibitory activity may be collected, and the obtained fraction may be further fractionated by HPLC, etc.
  • An adsorbent that adsorbs a substance having hydrophobicity Amberlite ( R ) XAD-2 TM resin manufactured by Rohm &Haas; polystyrene dibutylbenzene copolymer, average pore diameter 90A, specific surface area 300m 2 / g , A pore volume of 42% a true density of 1.02g / ml), Amberlite 1 M XAD-4 1 M resins.
  • the beer yeast hydrolyzate is preferably subjected to centrifugation or filtration to remove solid components before being subjected to chromatography.
  • the fraction derived from AF / GF brewer's yeast produced in this manner contains 8 1 & 11 ⁇ 2 (molecular weight 236.12), Gly-Phe (molecular weight 222.10) and / or a salt thereof. If fractionation is performed to a fraction containing only a single peak and amino acid analysis or mass spectrometry is performed, Ala-Phe, Gly-Phe or a salt thereof contained in that fraction can be more clearly confirmed. it can.
  • Amino acid analysis and mass analysis may be performed according to methods known to those skilled in the art. For example, amino acid analysis can be performed using an amino acid analyzer (ATO MLC-703) according to the manufacturer's instructions.
  • Mass spectrometry can be performed using a liquid chromatograph / tandem mass spectrometer (LC / MS / MS; L-Q Advantage ion trap mass spectrometer (Thermo Finmgan)) or the like.
  • the above-mentioned fraction derived from AF / GF brewer's yeast can be used as it is as a solution for inhibiting angiotensin converting enzyme in a solution state.
  • the AF / GF brewer's yeast-derived fraction that has been subjected to further treatment such as concentration and / or removal of ethanol may be used as the composition for inhibiting angiotensin converting enzyme.
  • Any method may be used for the concentration, and examples thereof include a heat concentration method, a heat concentration method under reduced pressure, a concentration method using ethanol precipitation, and a concentration method using activated carbon or an ion exchange resin.
  • AF / GF beer yeast-derived fractions can be dried and used as a composition for inhibiting angiotensin converting enzyme.
  • the method for such drying include an arbitrary method such as an air drying method, a freeze drying method, a spray drying method, a reduced pressure drying method, and a heating drying method.
  • the composition for inhibiting angiotensin M converting enzyme (ACE) of the present invention may contain, in addition to Ala-Phe, Gly_Phe and / or a salt thereof, optionally any excipient conventionally added to a drug. (Water, stabilizers, buffers, preservatives, antioxidants, etc.).
  • the present invention relates to alanylpheniralanine (Ala-Phe) and / or glycylph, such as the above-mentioned AF / GF brewer's yeast-derived fraction or a single peak fraction further fractionated from the fraction.
  • the present invention also relates to a method for producing a composition containing enylalanine (Gly-Phe).
  • the process for the preparation of such a composition according to the invention comprises at least the following steps a) to c):
  • the hydrolysis method applied to brewer's yeast in step a) is as described above.
  • the hydrophobic adsorbent used in step b) includes, but is not limited to, Amberlite XAD resin series adsorbents such as Amberlite XAD_2, Amberlite XAD_4, Amberlite XAD_7, and Amberlite XAD-10 (Rohm & Haas, USA). Amberlite XAD-2 is particularly preferred as the hydrophobic adsorbent used in step b).
  • step c) of this production method an aqueous ethanol solution having an arbitrary concentration within a range of 0 to 100% (excluding 0%), preferably 50 to 100%, may be appropriately used. it can.
  • various column elution procedures such as stepwise elution and gradient elution can be used.
  • the adsorbed substance eluted in the above step c) may include both arayurpheniralanine (Ala-Phe) and dalysylfeniralanine (Gly_Phe).
  • the adsorbed substance eluted in step c) is further separated by a known fractionation method such as chromatography, thereby containing arayurpheniralanine (Ala_Phe) or glycylfuranalanine (Gly-Phe) alone. Isolate the fractions.
  • angiotensin I converting enzyme (ACE) inhibitory activity of Ala_Phe, Gly_Phe, their salts, and compositions containing them can be measured by the method described in Non-Patent Document 3. An example of the measurement method will be described below.
  • the method for measuring ACE inhibitory activity in the present invention is based on the in vitro extraction method of ethyl acetate.
  • Angiotensin I converting enzyme (ACE) inhibition rate is calculated, and the ACE inhibition activity is expressed using the calculated rate as an index (see Non-Patent Document 3, FIG. 2).
  • ACE angiotensin I converting enzyme
  • a test sample to be tested for ACE inhibitory activity is prepared using distilled water to a concentration of 10 mg / ml.
  • the angiotensin converting enzyme was prepared by dissolving the tripeptide Hip-His-Leu and NaCl in a borate buffer (pH 8.3) so that the final concentrations in the reaction solution were 5 mM and 400 mM, respectively.
  • the ACE inhibition rate (%) is calculated by the following equation.
  • Inhibition rate (%) ⁇ (Ec-Eb)-Es ⁇ / (Ec-Eb) x 100
  • this inhibition rate indicates ACE inhibitory activity.
  • the Ala-Phe, Gly_Phe, or a salt thereof, or the composition for inhibiting angiotensin I converting enzyme (ACE) containing the same of the present invention can be used as a material for food or drink.
  • ACE angiotensin I converting enzyme
  • the food and drink material may be, but is not limited to, liquid, powder, granule, or solid.
  • Examples of the food and drink material of the present invention include yeast extract and the like.
  • the food or drink material contains a high content of Ala-Phe, Gly-Phe, or a salt thereof, or a composition for inhibiting angiotensin converting enzyme (ACE) containing the same.
  • the present invention also relates to foods and beverages to which Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting angiotensin I converting enzyme (ACE) containing the same is added.
  • ACE angiotensin I converting enzyme
  • food and drink includes, but is not limited to, beverages, foods, and functional foods.
  • the amount of Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting ACE containing the same, in a food or drink is not particularly limited.
  • Ala-Phe, Gly-Phe and salts thereof Examples of the compounding amount that gives a total power of 0.001 to 100% by weight can be exemplified.
  • the actual blending amount can be appropriately determined by those skilled in the art in consideration of the type of food or drink, the desired taste or texture.
  • a further preferred embodiment of the present invention provides a food or drink product in which Ala-Phe, Gly_Phe, or a salt thereof, or an ACE-inhibiting composition containing the same has been added to increase the amount thereof (additionally increased amount). It is.
  • a food or drink according to the present invention may contain Ala-Phe, Gly-Phe, or a salt thereof, or an ACE-inhibiting composition containing them, in any effective amount of 4 or a combination thereof in an effective amount. It is particularly preferred to contain.
  • Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting angiotensin converting enzyme (ACE) containing the same is contained in a food or drink by any appropriate method available to those skilled in the art. I'll do it.
  • ACE angiotensin converting enzyme
  • Ala-Phe, Gly_Phe, or their salts, or The ACE composition containing them may be incorporated into foods after being prepared in liquid, solid or granular form. Alternatively, they may be directly mixed or dissolved in food or drink, or may be carried in food or drink.
  • Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting ACE containing the same may be applied, coated, penetrated, or sprayed on food.
  • Ala-Phe, Gly_Phe, or a salt thereof, or an ACE-inhibiting composition containing them may be uniformly distributed or unevenly distributed in food or drink.
  • Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting ACE containing the same may be unevenly distributed at a specific site in a food.
  • Ala_Phe, Gly_Phe, or a salt thereof, or an ACE-inhibiting composition containing them is dissolved in a beverage in a freeze-dried state, for example, after dissolving in water and uniformly mixing by stirring, It is preferably added to beverages, water and the like.
  • Ala_Phe, Gly_Phe, or a salt thereof, or an ACE-inhibiting composition containing them is mixed with a solid food, for example, it is preferably added to a food material, mixed uniformly by stirring, and then processed. .
  • foods and beverages containing Ala_Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting ACE containing them can be further processed. Such processed products are also included in the scope of the present invention.
  • Additives include, but are not limited to, color formers (such as sodium nitrite), coloring agents (such as gardenia pigment, red 102, etc.), flavors (such as orange flavors), and sweeteners (such as stevia, astel palm).
  • color formers such as sodium nitrite
  • coloring agents such as gardenia pigment, red 102, etc.
  • flavors such as orange flavors
  • sweeteners such as stevia, astel palm
  • Preservatives sodium acetate, sorbic acid, etc.
  • emulsifiers sodium chondroitin sulfate, propylene glycol fatty acid ester, etc.
  • antioxidants diisodium EDTA, vitamin C, etc.
  • pH adjusters taenoic acid, etc.
  • chemical seasoning Additives sodium inosinate, etc.
  • thickeners thickeners
  • swelling agents calcium carbonate, etc.
  • defoamers calcium phosphate, etc.
  • binders sodium polyphosphate, etc.
  • nutrient enhancers Calcium enhancer, vitamin A, etc.
  • the type of beverage of the present invention is not particularly limited.
  • the beverage of the present invention includes, for example, tea beverages (unfermented tea such as brown rice tea and green tea, fermented tea such as black tea, semi-fermented tea such as oolong tea and jasmine tea, Tochu tea, persimmon leaf tea, Kumasa tea, Beverages including gear baron tea, corn tea, hub tea, chrysanthemum tea, etc.), fruit and vegetable beverages (orange, apple, grape, peach, strawberry, banana, lemon, etc., tomato, carrot, cabbage, celery) Beverages containing vegetable juices, etc.), alcoholic beverages (beverages, low-malt beer, whiskey, wine, liqueurs, etc.), carbonated beverages, lactic acid beverages, dairy beverages (coffee milk, fruit milk, functional milk, etc.) ), Soft drinks, low
  • the type of food of the present invention is not particularly limited.
  • the food of the present invention may be a fresh food or a processed food.
  • baked sweets such as cookies, breads, cakes, rice crackers, etc.
  • Japanese sweets such as yokan
  • cold desserts such as pudding, jelly and ice cream
  • sweets such as chewing gum and candy
  • snacks such as crackers and chips, nosta, udon , Buckwheat, etc.
  • fish paste products such as rikamaboko, ham, fish sausage, miso, soy sauce, dressing, mayonnaise
  • seasonings such as sweeteners, tofu, konnyaku, other tsukudani, dumplings, coco
  • Specific examples include various dishes such as cookie, salad, soup, stew, bread, cut vegetables, fish fillets, processed meat, and the like.
  • the food or drink containing the above-mentioned composition for inhibiting Ala-Phe, Gly-Phe, or a salt thereof, or an angiotensin I converting enzyme (ACE) containing the same is preferably a functional food.
  • the “functional food” of the present invention means a food having a certain function, for example, a health functional food including a special health food and a nutritional food, a special use food (food for a sick person, a pregnant woman and a nursing woman). Foods, infant formulas, foods for the elderly, etc.) as well as general health foods such as dietary supplements, health supplements, supplements, and beauty foods (eg, diet foods).
  • the functional food of the present invention also includes a health food to which a health claim based on a food standard of Codex (FAO / WHO Joint Food Standards Committee) is applied.
  • the functional food of the present invention includes solid preparations such as tablets, granules, powders, pills, and capsules; It may be in the form of liquid preparations such as liquid preparations, suspensions and syrups, or preparations such as jewel preparations, or in the form of ordinary foods and drinks (for example, beverages, powdered tea leaves, confectionery, etc.).
  • solid preparations such as tablets, granules, powders, pills, and capsules
  • liquid preparations such as liquid preparations, suspensions and syrups, or preparations such as jewel preparations, or in the form of ordinary foods and drinks (for example, beverages, powdered tea leaves, confectionery, etc.).
  • ordinary foods and drinks for example, beverages, powdered tea leaves, confectionery, etc.
  • ACE angiotensin I converting enzyme
  • the functional food of the present invention is not limited, but is preferably used for lowering blood pressure. Specifically, the functional food is intended for those who want to lower blood pressure. It is preferable that the power is good.
  • a person whose blood pressure is desired to be lowered generally means a person whose blood pressure is high, and although the blood pressure is significantly higher than the average value of people of the same age of the same age, the blood pressure is still high.
  • Hypertension refers to individuals who have not been diagnosed with hypertension, but also includes those who subjectively perceive that their blood pressure is routinely high and that they need to lower their blood pressure.
  • Targeting a person whose blood pressure is desired to be lowered '' indicates or indicates that the food or drink is suitable for the intake of a person whose blood pressure is desired to be reduced, and the blood pressure elevation level of the person who took it is indicated. This means that the effects of suppressing blood pressure and lowering blood pressure are expected.
  • the statement or labeling that the food / drink is suitable for ingestion by persons for whom hypotension is desired has been approved in accordance with the statutory provisions for functional health foods such as special health foods and nutritional foods. It may comply with the function labeling (nutrition ingredient function labeling or health use labeling).
  • the present invention also relates to a pharmaceutical composition containing, as an active ingredient, Ala-Phe, Gly-Phe, or a salt thereof, or a composition for inhibiting angiotensin I converting enzyme (ACE) containing the same.
  • ACE angiotensin I converting enzyme
  • the pharmaceutical composition of the present invention may contain a carrier or additive acceptable for pharmaceutical preparations.
  • carriers and additives are water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium alginate, water-soluble dextran, carboxymethyl.
  • artificial cell structures such as ribosomes.
  • the additives to be used are selected appropriately or in combination according to the dosage form of the preparation.
  • the pharmaceutical composition of the present invention may further contain other pharmacological components.
  • the pharmaceutical composition of the present invention can be administered orally or parenterally, but is preferably administered orally.
  • the pharmaceutical composition of the present invention to be orally administered includes solid preparations such as tablets, granules, powders, pills, and capsules, and jewels, and liquid preparations such as liquids, suspensions, and syrups. It can be in shape.
  • the pharmaceutical composition of the present invention may be supplied as a dry product intended to be redissolved when used.
  • the oral solid preparation may contain additives generally used in pharmacy, such as a binder, an excipient, a lubricant, a disintegrant, and a wetting agent.
  • the liquid preparation for oral use may contain additives generally used in medicine, such as stabilizers, buffers, flavoring agents, preservatives, fragrances and coloring agents.
  • the pharmaceutical composition of the present invention has a blood pressure lowering effect, it can be used as a blood pressure lowering agent.
  • the antihypertensive agent of the present invention can significantly suppress the blood pressure elevation level or significantly lower the blood pressure.
  • the antihypertensive agent of the present invention can reduce, for example, systolic blood pressure to a level of 90 to 60% of the blood pressure before administration by 8 hours after a single administration.
  • the dose of the pharmaceutical composition of the present invention varies depending on the age and weight of the subject to be administered, the route of administration, and the number of administrations, and can be widely varied according to the discretion of those skilled in the art.
  • the pharmaceutical composition of the present invention may be administered once, or may be administered repeatedly at intervals of 6 to 8 hours.
  • Subjects to which the pharmaceutical composition of the present invention is administered include humans, domestic animals, pet animals, and experimental (test) animals. And other mammals. In particular, mammals whose blood pressure (systolic blood pressure) is significantly higher than the average of healthy individuals on a daily basis, and mammals whose blood pressure (systolic blood pressure) tends to be higher than the average of healthy individuals. Alternatively, mammals having a predisposition (genetic or environmental predisposition) to hypertension are preferred as subjects to which the pharmaceutical composition of the present invention is administered.
  • the pharmaceutical composition of the present invention can be very usefully used for continuous use, since there is little concern about side effects.
  • Ala-Phe, Gly-Phe and their salts, and the composition for inhibiting angiotensin I converting enzyme (ACE) of the present invention have a blood pressure lowering effect.
  • This blood pressure lowering effect can be confirmed by a method known to those skilled in the art. In the present invention, for example, the following can be confirmed.
  • SHR spontaneously hypertensive rats
  • male which can be purchased from Japan SLC
  • Ala_Phe Gly-Phe or a salt thereof of the present invention prepared as 16 mg / ml H0.
  • composition for inhibiting angiotensin converting enzyme (ACE) containing them is orally administered by 1 ml per animal.
  • blood pressure is measured by the tail cuff method using a non-invasive automatic blood pressure device BP-98A manufactured by Softron Co., Ltd. I do.
  • the blood pressure measurement is performed by pre-incubating the rats at 37 ° C for about 10 to 15 minutes, and immediately thereafter.
  • the blood pressure measurement is preferably performed a plurality of times (2 to 3 times) continuously.
  • the blood pressure is expressed as an average of a plurality of measured values of the measured maximum systolic blood pressure value.
  • the blood pressure lowering effect in the present invention can be evaluated based on the blood pressure values thus measured and calculated.
  • the systolic blood pressure after administration (systolic blood pressure) is 95-60 as compared to the systolic blood pressure immediately before administration. Up to the level of / 0 , preferably 90. / 0-60. When the blood pressure drops to the level of / 0 , it is assumed that there is a blood pressure lowering effect.
  • FIG. 1 shows an outline of the procedure for preparing the fraction derived from the hydrolyzate of dried beer yeast used in this example.
  • the adsorbed fraction on the XAD-2 column was eluted using 50% EtOH and 100% EtOH in sequence.
  • Each of the obtained fractions was concentrated under reduced pressure, and further freeze-dried.
  • the freeze-dried product (powder) of each fraction thus obtained was used in the following Examples.
  • the angiotensin I converting enzyme (ACE) inhibitory activity was calculated by calculating the angiotensin I converting enzyme (ACE) inhibition rate according to the ⁇ ethyl acetate extraction method '' described in Non-Patent Document 3, and expressed as an index.
  • the ethyl acetate extraction method is a method that utilizes the cleavage of the peptide His-Leu from Hip (hippuric acid) -His-Leu using ACE, and the extraction of Hip released thereby with ethyl acetate.
  • FIG. 2 shows an outline of the procedure for measuring the ACE inhibitory activity used in this example.
  • Table 1 shows the calculated inhibition rates (%) as indexes of the ACE inhibitory activity.
  • Spontaneously hypertensive rats male, 10 weeks old, initial weight average 300 g
  • SHR Spontaneously hypertensive rats
  • the feed given to the rats is a basic feed (here, referred to as "Con (-)”), a feed obtained by adding 1% of NaCl to the basic feed (here, referred to as “Con (+)”), Con (+ ) To 50% EtOH-eluting fraction (“Alka”) 0.4% added to the feed (herein referred to as “(+) + Alka”), and Con (+) to the dried beer yeast powder (rkouboj).
  • a feed supplemented with 3% here, referred to as “(+) + Koubo” was used. Table 2 shows the feed composition.
  • the experimental group was composed of a control group (Con (-) group) fed Con (-) as an experimental diet, a group fed Con (+) as an experimental diet (Con (+) group), and an experimental group.
  • a control group Con (-) group
  • Con (+) as an experimental diet
  • an experimental group In the first half, (+) + Alka was fed as an experimental meal ((+) + Alka group), and in the second half of the experiment, (+) + Koubo was fed as an experimental meal instead of (+) + Alka ((+) + Koubo) Group), and each group had 5 rats.
  • Feeding of feed to rats in each experimental group was performed as shown in FIG.
  • the date when feeding of the feed (Con (-)) to each experimental group was started was set to the 0th day.
  • Con (-) was given an experimental diet (Con (-), Con (+), (+) + Alka, respectively).
  • Con (+) was given to the Con (+) group and (+) + Alka group
  • Con (-) was given to the Con (-) group.
  • the experimental food of each experimental group was given again until the end of the experiment, except that (+) + Alka group was given (+) + Koubo instead of (+) + Alka, and (+) + Koubo group Called.
  • Table 3 shows body weight on day, cumulative feed intake for 6 days, and body weight gain. Each value represents the mean soil standard error (SEM) of 5 rats in each experimental group.
  • Table 4 shows the body weight on the sixth day, the cumulative feed intake and body weight gain for the 16 days up to the 22nd day, and the liver weight at the time of dissection. Each value represents the mean soil standard error (SEM) for the 5 rats included in each experimental group.
  • the blood pressure of rats was measured by the tail cuff method using a non-invasive automatic blood pressure device BP-98A manufactured by SOFTRON CORPORATION. Rats were pre-incubated at 37 ° C for approximately 10-15 minutes before measurement, and then three consecutive blood pressure measurements were performed. The measured value was expressed as the average of the three measurements.
  • the change in blood pressure based on the obtained blood pressure measurement values is shown in Fig. 4, and the change in blood pressure based on the blood pressure change amount when the blood pressure measurement value on day 2 was set to 0 in each rat is shown in Fig. 5.
  • the Con (-) group was fed a Con (-) diet, the Con (+) group was fed a Con (+) diet, and the (+) + Alka group was fed a (+) + Koubo diet.
  • the (+) + Koubo group was fed to the (+) + Alka group (here, referred to as the (+) + Koubo group) compared to the Con (+) group. Showed a significantly lower blood pressure elevation level (Figure 5).
  • the rats in each experimental group were laparotomized under Nembutal anesthesia (0.1 ml / 100 g body weight), and blood was directly collected from the heart using a syringe. The collected blood was placed in a test tube, left at room temperature for 1 hour, and then centrifuged (3,000 rpm, 15 ° C., 15 min) to separate serum.
  • Serum angiotensin I converting enzyme (ACE) activity in serum was measured by Lieberman et al. (Jack Lieberman, MD: Elevation of Serum Angiotensin—Convertmg—Enzyme (A and E) Level in S arcoidosis. The American Journal of Medicine, 59, pp. 365-3 7 (1975)), and Kasaha ra et al. (Kasahara, Y. and Ashihara, Y .: Colorimetry of angiotensin-I converting enzyme activity in serum.Clin. Chem., Pp. 1922-1925 (1981)) according to the method of ethyl acetate extraction.
  • Ethyl acetate extraction method uses ACE to extract dipeptides from Hip-His-Leu. This method is based on the cleavage of His-Leu and extraction of hippuric acid (Hip) released with it with ethyl acetate.
  • FIG. 6 shows an outline of the procedure for measuring ACE activity in serum used in this example.
  • Table 5 shows the ACE activity in the serum.
  • analysis of variance was performed between the three groups of the Con (-) group, the Con (+) group, and the (+) + Koubo group, and the significance was examined. These significant differences were examined by Duncan's multiple comparison test. Tests using Student's t_test were also performed for significant differences between the two groups. As a result, the ACE activity in the serum showed no significant difference among the three groups of the Con (-) group, the Con (+) group and the (+) Koubo group.
  • Fig. 7 shows the outline of the procedure for preparing a sample for measuring ACE activity from kidney. About 0.7 g of frozen kidney tissue is placed in a Teflon homogenizer, and 10 volumes of a buffer (50 mM
  • the ACE activity was measured in the same manner as in the case of the serum described in (4) above, by quantifying hippuric acid using the ethyl acetate extraction method, and calculating based on the measured value.
  • ACE activity per mg of the protein contained in the kidney tissue was calculated.
  • Table 6 shows the ACE activity in the kidney.
  • analysis of variance (ANOVA) was conducted between the Con (-) group, Con (+) group and (+) + Koubo group to examine the significance. did. Those significant differences were examined by Duncan's multiple comparison test. Tests using Student's t_test were also performed for significant differences between the two groups. ACE activity in the kidney was significantly lower and higher in the (+) Koubo group than in the Con (-) and Con (+) groups (p ⁇ 0.01).
  • An angiotensin I-converting enzyme inhibitor was identified from the 50% EtOH-eluted fraction showing high ACE inhibitory activity in Example 2.
  • Example 2 dried brewer's yeast was hydrolyzed with alcalase, centrifuged, and filtered to obtain a supernatant. The supernatant was passed through an XAD-2 column, and the column was washed with water. The peptides were eluted using% EtOH. Further, the fraction eluted with 50% EtOH was concentrated on a rotary evaporator to remove ethanol, and then lyophilized to prepare a lyophilized product of the fraction eluted with 50% EtOH.
  • FIG. 8 shows the procedure used in this example to identify an ACE inhibitor from this freeze-dried product.
  • FIG. 9 shows the obtained elution pattern by S-marked hadex-G-25 column chromatography.
  • the absorbance at 280 nm was measured for each fraction.
  • the ACE inhibitory activity of the fraction having a high absorbance was measured in the same manner as in Example 2.
  • the ACE inhibitory activities of the eluted fractions 17, 18, 19, 20 and 24 are shown in Table 7 (Table 7). Fractions 17 to 19 showing high ACE inhibitory activity were concentrated under reduced pressure using a rotary evaporator, and then lyophilized.
  • the lyophilized product of the fraction showing high ACE inhibitory activity prepared in the above (1) was dissolved in distilled water and then subjected to reverse phase preparative HPLC.
  • reverse phase preparative HPLC Develosil C30-UG-5 (25 mm x 250 mm) was used as a column, and 1) 5% MeCN and 2) 20% MeCN were used as developing solvents.
  • FIGS. 10 and 11 show HPLC chromatograms obtained by subjecting fraction 18 prepared in (1) above to reverse phase preparative HPLC (Develosil C30-UG-5 (25 mm ⁇ 250 mm)). Show me. Major peaks were observed around 30, 50 and 70 minutes (elution time). The main peaks are shown as A to C in FIG. 10 and D to F in FIG.
  • the ACE inhibitory activity of the main peak was measured in the same manner as in Example 2.
  • the ACE inhibitory activity (inhibition rate) of the fraction containing peak A (fraction A) and the fraction containing peak B (fraction B) were 18% and 23%.
  • the ACE inhibitory activities (inhibition rates) of the fractions containing peaks E and F fractions E and F were 18% and 14%, respectively.
  • Hydrolysis was performed at 110 ° C for 24 hours using a reaction heater in a state where the light was shielded from light. After cooling, suction filtration was performed using a G-4 glass filter. After concentrating the filtrate to dryness, 2 ml of 0.2 N sodium citrate buffer (pH 2.2) was added to dissolve the amino acids, and the mixture was subjected to finolator filtration (hydrophilicity: 0.2 zm) to obtain a sample for amino acid analysis. And For the analysis, an amino acid analyzer (ATO MLC-703 type) was used.
  • FIG. 13 shows the mass spectrum obtained for Fraction G and the chemical structural formula of phenylalanine.
  • Fraction H gave m / z 237 [M + H] + and m / z 166 [M + H] + as a secondary ion for MS / MS analysis, indicating that alanylpheniralanine (Ala- Phe or AF).
  • Figure 14 shows the mass spectrum and Arani obtained for fraction H. 1 shows a chemical structural formula of rufiniralanine.
  • FIG. 15 shows the mass spectrum obtained for Fraction I and the chemical structural formula of glycylpheniralanine.
  • Fig. 16 shows a graph showing the transition of systolic blood pressure based on this data.
  • a blood pressure change value when the blood pressure at 0 hour in each rat is set to 0 is calculated, and a change in the blood pressure change amount based on the calculated value is shown in a graph in FIG.
  • both AF and GF showed a blood pressure lowering effect in spontaneously hypertensive (SHR) rats.
  • SHR spontaneously hypertensive
  • the blood pressure drop in the AF group and the GF group was not clearly shown due to the large fluctuations in the blood pressure of the control rats.
  • AF group and GF group showed clearly lower blood pressure than control group
  • the blood pressure was maintained at a low level until at least 8 hours after the administration.
  • the peptides and compositions according to the present invention can effectively inhibit the activity of angiotensin I converting enzyme.
  • by incorporating the peptide and the composition according to the present invention into foods and drinks, functional foods and pharmaceuticals, foods and drinks, functional foods and pharmaceuticals having a hypotensive effect can be produced.

Abstract

A novel substance having an inhibitory activity on angiotensin I converting enzyme and exhibiting an antihypertensive action; a process for producing the novel substance; and a food or beverage, or functional food, or pharmaceutical composition comprising the novel substance. There are provided alanylphenylalanine (Ala-Phe), glycylphenylalanine (Gly-Phe), and salts thereof. Further, there is provided an inhibitory composition for angiotensin I converting enzyme comprising the same, and provided, comprising them, a material for food or beverage, food or beverage, or pharmaceutical composition.

Description

明 細 書  Specification
血圧降下作用を有するジペプチド  Dipeptide with hypotensive action
技術分野  Technical field
[0001] 本発明は、血圧降下作用を有するジペプチド、該ジペプチドを含む組成物、該組 成物のビール酵母からの抽出製造法、並びに該ジペプチド又は組成物を含有する 飲食品、機能性食品及び医薬品に関する。  The present invention relates to a dipeptide having a blood pressure lowering effect, a composition containing the dipeptide, a method for extracting and producing the composition from brewer's yeast, a food and beverage, a functional food, and a food or beverage containing the dipeptide or the composition. About pharmaceuticals.
背景技術  Background art
[0002] 現在国民の 4人に 1人は高血圧であると言われている。高血圧はサイレントキラーと 言われ、大きな症状は無い。し力し放っておくと、主要死因の上位を占めている脳血 管障害や、心疾患、さらに動脈硬化など、各種疾病を引き起こす。高血圧の治療とし て、現在、さまざまな治療薬が使用されているが、そのレ、くつかについては、副作用 の問題が懸念されている。  [0002] At present, one in four people is said to have high blood pressure. Hypertension is called a silent killer and has no major symptoms. If left unchecked, it can cause a variety of illnesses, including cerebrovascular disorders, which are the leading causes of death, heart disease, and even arteriosclerosis. Various treatments are currently used to treat hypertension, but there are concerns about the side effects of some of them.
[0003] 高血圧の原因物質として知られる、強力な血管収縮物質であるアンジォテンシン II ( Asp-Arg-Val-Try-Ile-His-Pro-Phe)は、不活性型ペプチドであるアンジォテンシン I (Asp- Arg- Val_Try-Ile-His-Pro- Phe-His-Leu)から、それが肺及び腎臓を循環する 間に C末端側の His-Leuがアンジォテンシン変換酵素 (ACE)により切断されることに よって生成されることが知られている。近年では、このアンジォテンシン Iからアンジォ テンシン IIへの変換を伴う腎臓のレニン一アンジォテンシン系(RAS)力 高血圧症の 約 90%を占める本態性高血圧の発症に密接に関連しているとの報告もなされている 。一方でアンジォテンシンド変換酵素 (ACE)は、キュン一カリクレイン系において降圧 ペプチドであるブラジキニンの分解を不活化する反応も触媒する。これらのこと力 、 ACE活性を阻害すれば、血圧上昇が抑制され、高血圧の抑制につながることが予測 される。  [0003] Angiotensin II (Asp-Arg-Val-Try-Ile-His-Pro-Phe), a potent vasoconstrictor known as a causative agent of hypertension, is an inactive peptide, angiotensin. From I (Asp-Arg-Val_Try-Ile-His-Pro-Phe-His-Leu), the C-terminal His-Leu is cleaved by angiotensin converting enzyme (ACE) while it circulates through the lung and kidney. It is known that it is generated by performing In recent years, the renin-angiotensin system (RAS) in the kidneys associated with the conversion of angiotensin I to angiotensin II has been closely linked to the development of essential hypertension, which accounts for about 90% of hypertension. Have been reported. On the other hand, angiotensin converting enzyme (ACE) also catalyzes the reaction that inactivates the degradation of the antihypertensive peptide bradykinin in the Kun-kallikrein system. If these ACE activities are inhibited, it is expected that an increase in blood pressure will be suppressed, leading to suppression of hypertension.
[0004] これまでに、 ACE活性を阻害する様々なペプチド化合物が合成されてきてレ、る(特 許文献 1及び 2)。また、乳タンパク質、魚介類及び植物起源のペプチド類からも、ァ ンジォテンシン I変換酵素の基質と拮抗する基質として作用し、その結果血圧上昇レ ベルを低く維持するペプチド類が見出されており、それらの食品としての長期間にわ たる摂取は高血圧の予防に有効であることが報告されている(非特許文献 1〜3)。最 近では、 ACEを特異的に阻害したり、アンジォテンシン Iと同じように ACEの基質として 作用して相対的に低レ、 ACE活性をもたらしたりすることにより血圧上昇を抑制し、高 血圧を改善 ·予防する成分を、様々な食品起源のタンパク質から創製 ·探索 ·分離す る試みが活発に行われている(特許文献 3〜6、非特許文献 4〜9)。また、機能性食 品素材の一つであるローヤルゼリー(RJ)に含まれるタンパク質は、タンパク質分解酵 素処理によって ACE阻害活性が著しく増強することが見出されており(非特許文献 1 0)、その際に遊離したペプチド類の経口投与によって、高血圧自然発症ラッ HSHR) の血圧を降下させることも合わせて報告されてレ、る(非特許文献 11)。 [0004] Various peptide compounds that inhibit ACE activity have been synthesized so far (Patent Documents 1 and 2). In addition, peptides derived from milk proteins, seafood and plant origin have been found to act as a substrate that antagonizes the substrate for angiotensin I converting enzyme, and as a result, maintain a low blood pressure elevation level. For a long time as those foods It has been reported that ingestion of barrel is effective for prevention of hypertension (Non-Patent Documents 1 to 3). More recently, it has been shown to specifically inhibit ACE and, similarly to angiotensin I, act as a substrate for ACE to produce relatively low levels of ACE activity, thereby suppressing blood pressure elevation and increasing hypertension. There are active attempts to create, search for, and isolate components that improve and prevent food from various food-derived proteins (Patent Documents 3 to 6, Non-Patent Documents 4 to 9). In addition, it has been found that the protein contained in royal jelly (RJ), which is one of the functional food materials, significantly enhances the ACE inhibitory activity by proteolytic enzyme treatment (Non-Patent Document 10). It has also been reported that oral administration of peptides released at that time lowers the blood pressure of spontaneously hypertensive rats (HSHR) (Non-Patent Document 11).
特許文献 1 :特開昭 57— 53447号公報 Patent Document 1: JP-A-57-53447
特許文献 2:特開平 2— 282395号公報 Patent Document 2: JP-A-2-282395
特許文献 3:特開平 5— 958号公報 Patent Document 3: Japanese Patent Application Laid-Open No. 5-958
特許文献 4:特開平 11 29594号公報 Patent Document 4: JP-A-11 29594
特許文献 5:特開 2002— 29995号公幸艮 Patent Document 5: Japanese Unexamined Patent Publication No. 2002-29995
特許文献 6 :特開 2002— 291452号公報 Patent Document 6: JP-A-2002-291452
非特許文献 1 :関栄治ら著, 「イワシタンパク質由来のペプチドならびに Valy卜 Tyrosi neの降圧作用」, 日本栄養'食糧学会誌, (1999) 52, p.271-277 Non-patent Document 1: Seki Eiji et al., "Hypertensive effect of sardine protein-derived peptide and Valy tyrosine", Journal of Japan Nutrition 'Food Association, (1999) 52, p.271-277
非特許文献 2 :大鶴勝ら著, 「マイタケ投与が高血圧自然発症ラットの血圧および体 重に及ぼす影響」, 日本食品工業学会誌,(1999) 46, p.806-814 Non-Patent Document 2: Ohtsuru Katsu et al., "Effects of Maitake Administration on Blood Pressure and Body Weight of Spontaneously Hypertensive Rats", Journal of the Japan Food Industry Association, (1999) 46, p.806-814.
非特許文献 3 :川岸舜朗編, 「生物化学実験法 38 食品中の生体機能調節物質研 究法」,学会出版センター, (1996), p.116-129 Non-Patent Document 3: Shunro Kawagishi, Ed., "Biochemical Chemistry Experimental Method 38: Research Methods for Biological Function Modulating Substances in Foods", Gakkai Shuppan Center, (1996), p.116-129
非特霄千文献 4: Sato, M. et al., Angiotensin I_し onverting Enzyme Inhibitory Peptides Derived from Wakame (Undaria pinnatifida) and Their Antihypertensive Effect in Sp ontaneously Hypertensive Rats., J. Agric. Food. Chem., (2002) 50, p.6245-6252 非特許文献 5 : Nakamura, Y. et al., Purification and characterization of Angiotensin- converting enzyme inhibitors from sour milk., J. Dairy Sci., (1995) 78, p.777-783 非特許文献 6 :受田浩之ら著, 「イワシタンパク質加水分解物からの ΑΝΏ変換酵素 阻害ペプチドの調製とその分離」, 日本農芸化学会誌, (1991) 65, ρ.1223-1228 特許文献 7 : Matsui, T. et al., Preparation and Characterization of Novel Bioactive Peptides Responsible for Angiotensin I-Converting Enzyme Inhibition from Wheat Germ., J. Peptide ScL, (1999) 5, p.289- 297 Sato, M. et al., Angiotensin I_ onverting Enzyme Inhibitory Peptides Derived from Wakame (Undaria pinnatifida) and Their Antihypertensive Effect in Spontaneously Hypertensive Rats., J. Agric. Food. Chem., ( 2002) 50, p. 6245-6252 Non-Patent Document 5: Nakamura, Y. et al., Purification and characterization of Angiotensin-converting enzyme inhibitors from sour milk., J. Dairy Sci., (1995) 78, p. 777 -783 Non-Patent Document 6: Hiroyuki Ueda et al., "Preparation of ΑΝΏ-converting enzyme-inhibiting peptide from sardine protein hydrolyzate and its separation", Journal of the Japanese Society of Agricultural Chemistry, (1991) 65, ρ.1223-1228 Patent Document 7: Matsui, T. et al., Preparation and Characterization of Novel Bioactive Peptides Responsible for Angiotensin I-Converting Enzyme Inhibition from Wheat Germ., J. Peptide ScL, (1999) 5, p.289-297
非特許文献 8 :受田浩之ら著, 「加熱イワシ筋肉のペプシン加水分解物中に存在す るアンジォテンシン I変換酵素阻害ペプチド」, 日本農芸化学会誌,(1992) Vol.66, N 0.1, pp.25-29  Non-Patent Document 8: Hiroyuki Ueda et al., "Angiotensin I-converting enzyme inhibitory peptide present in pepsin hydrolyzate of heated sardine muscle", Journal of the Japanese Society of Agricultural Chemistry, (1992) Vol.66, N 0.1, pp.25-29
非特許乂献 9: Saiga, A. et al., Angiotensinトし onverting Enzyme Inhibitory Peptides in a Hydrolyzed Cmcken Breast Muscle Extract., J. Agric. Food Chem. (2003) 51, pp.1741-1745  Non-Patent Aiden 9: Saiga, A. et al., Angiotensin onverting Enzyme Inhibitory Peptides in a Hydrolyzed Cmcken Breast Muscle Extract., J. Agric. Food Chem. (2003) 51, pp.1741-1745
非特許文献 10 :鈴木和道ら著, 「プロテアーゼによるローヤルゼリー分解物のアンジ ォテンシン変換酵素阻害活性」, 日本食品科学工学会誌, (2003) 50, p.286-288 非特許文献 11:鈴木和道ら, 「血圧自然発症ラットに対する蛋白質分解酵素処理口 ーャルゼリーの血圧調節作用」, 日本食品科学工学会誌, (2003) 50, p.47-462 発明の開示  Non-Patent Document 10: Kazumichi Suzuki et al., “Angiotensin-converting enzyme inhibitory activity of royal jelly hydrolyzate by protease”, Journal of Japan Society for Food Science and Technology, (2003) 50, p.286-288 Non-patent Document 11: Kazumichi Suzuki Et al., "Blood pressure regulating effect of proteolytic enzyme-treated oral jelly on spontaneously developing blood pressure in rats", Journal of Japan Society for Food Science and Technology, (2003) 50, p.47-462.
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、アンジォテンシン I変換酵素の阻害活性を有し、血圧降下作用を示す物 質、該物質の製造方法、並びに該物質を含む飲食品、機能性食品及び医薬品を提 供することを目的とする。 [0005] The present invention provides a substance having an inhibitory activity on angiotensin I converting enzyme and exhibiting an antihypertensive effect, a method for producing the substance, and foods, beverages, functional foods and pharmaceuticals containing the substance. The purpose is to:
課題を解決するための手段  Means for solving the problem
[0006] 本研究者らは、上記課題を解決するために鋭意研究を行い、乾燥ビール酵母の加 水分解物に由来するペプチド画分を高血圧自然発症ラット (SHR)に投与すると、ラット の血圧が降下することを見出した。そこで本発明者らは、乾燥ビール酵母加水分解 物中から、アンジォテンシン I変換酵素 (ACE)活性を阻害するペプチドの探索を行つ たところ、血圧降下作用を有する 2種のペプチド Ala_Phe及び Gly_Pheが見出された。 本発明はこれらの知見に基づいて完成されたものであり、すなわち以下の通りである [0006] The present inventors conducted intensive studies to solve the above-mentioned problems, and when a peptide fraction derived from a hydrolyzate of dried brewer's yeast was administered to spontaneously hypertensive rats (SHR), the blood pressure of rats Found to descend. Thus, the present inventors searched for a peptide that inhibits angiotensin I converting enzyme (ACE) activity from the hydrolyzate of dried brewer's yeast, and found that two types of peptides, Ala_Phe and Gly_Phe, which have a hypotensive effect. Was found. The present invention has been completed based on these findings, that is, as follows:
[0007] [1]ァラエルフエ二ルァラニン(Ala-Phe)であるジペプチド又はその塩。 [1] A dipeptide or a salt thereof which is araelfeniralanine (Ala-Phe).
[0008] [2]ダリシルフェニルァラニン(Gly-Phe)であるジペプチド又はその塩。 [0009] [3]ァラユルフェ二ルァラニン(Ala-Phe)、グリシルフヱ二ルァラニン(Gly_Phe)、及び それらの塩からなる群より選択される少なくとも 1つを含有する、アンジォテンシン変 換酵素阻害用組成物。 [2] A dipeptide which is dalysylphenylalanine (Gly-Phe) or a salt thereof. [3] A composition for inhibiting angiotensin-converting enzyme, comprising at least one selected from the group consisting of arayurpheniralanine (Ala-Phe), glycylfuranlaranine (Gly_Phe), and a salt thereof. .
[0010] [4]以下の工程 a)〜c)を含む、アンジォテンシン変換酵素阻害用組成物の製造方法  [4] A method for producing a composition for inhibiting angiotensin converting enzyme, comprising the following steps a) to c):
[0011] a)ビール酵母を加水分解する工程、 [0011] a) a step of hydrolyzing brewer's yeast,
b)その加水分解物をクロマトグラフィー法によって分画する工程、及び c)ァラニルフエ二ルァラニン (Ala-Phe)及び/又はグリシルフェニルァラニン(Gly- Phe)を含有する画分を分取する工程  b) a step of fractionating the hydrolyzate by a chromatographic method, and c) a step of fractionating a fraction containing alanylpheniralanine (Ala-Phe) and / or glycylphenylalananine (Gly-Phe).
[5]ァラエルフエ二ルァラニン(Ala-Phe)及び/又はグリシルフェニルァラニン(Gly_P he)を含有する画分が、分子量 150〜2,000のペプチドを含む画分である、上記 [4]に 記載の方法。  [5] The above-mentioned [4], wherein the fraction containing araelpheniralanine (Ala-Phe) and / or glycylphenylalanine (Gly_Phe) is a fraction containing a peptide having a molecular weight of 150 to 2,000. The described method.
[0012] [6]上記 [4]又は [5]に記載の方法により製造された、アンジォテンシン I変換酵素阻害 用組成物。  [6] A composition for inhibiting angiotensin I converting enzyme produced by the method according to the above [4] or [5].
[0013] [7]上記 [1]又は [2]に記載のジペプチド又はその塩を含有する、飲食品用素材。  [7] A material for food or drink, comprising the dipeptide or the salt thereof according to the above [1] or [2].
[0014] [8]上記 [1]又は [2]に記載のジペプチド又はその塩を含有する、飲食品。  [8] A food or drink comprising the dipeptide or the salt thereof according to the above [1] or [2].
[0015] [9]上記 [1]又は [2]に記載のジペプチド又はその塩を添加増量した飲食品。  [9] A food or drink, to which the dipeptide or the salt thereof according to the above [1] or [2] is added and increased.
[0016] [10]上記 [3]又は [6]に記載の組成物を含有する、飲食品用素材。  [10] A food or drink material comprising the composition according to the above [3] or [6].
[0017] [11]上記 [10]に記載の飲食品用素材を添加した飲食品。  [11] A food or drink to which the material for food or drink according to the above [10] is added.
[0018] [12]飲料である、上記 [8]、 [9]又は [11]に記載の飲食品。  [12] The food or beverage according to the above [8], [9] or [11], which is a beverage.
[0019] [13]血圧を降下させるための、上記 [8]、 [9]、 [11]又は [12]記載の飲食品。  [13] The food or drink according to the above [8], [9], [11] or [12] for lowering blood pressure.
[0020] [14]上記 [1]及び [2]に記載のジペプチド又はその塩を含有する、医薬組成物。  [14] A pharmaceutical composition comprising the dipeptide according to the above [1] and [2] or a salt thereof.
[0021] [15]上記 [3]又は [6]に記載の組成物を含有する、医薬組成物。  [15] A pharmaceutical composition comprising the composition according to the above [3] or [6].
[0022] [16]血圧降下剤である、上記 [14]又は [15]に記載の医薬組成物。  [16] The pharmaceutical composition according to the above [14] or [15], which is a blood pressure lowering agent.
[0023] [17]以下の工程 a)〜c)を含む、ァラユルフェ二ルァラニン (Ala-Phe)及び Z又はダリ シルフェニルァラニン(Gly-Phe)を含有する組成物の製造方法。  [17] A method for producing a composition containing arayurpheniralanine (Ala-Phe) and Z or dalysylphenylalananine (Gly-Phe), comprising the following steps a) to c):
[0024] a)ビール酵母を加水分解する工程、 [0024] a) a step of hydrolyzing brewer's yeast,
b)その加水分解物を、疎水性吸着剤を充填したカラムに通液する工程、及び c) 50〜100%の濃度のエタノール水溶液を用いて、その疎水性吸着剤から吸着物 質を溶出させる工程 b) passing the hydrolyzate through a column filled with a hydrophobic adsorbent, and c) A step of eluting the adsorbed substance from the hydrophobic adsorbent using an aqueous ethanol solution having a concentration of 50 to 100%.
発明の効果  The invention's effect
[0025] 本発明に係るペプチド Ala_Phe、 Gly-Phe及びそれらの塩、並びにそれらを含む組 成物は、アンジォテンシン I変換酵素 (ACE)阻害活性を有する。本発明のペプチド、 その塩、及びそれらを含む組成物は、血圧上昇を抑制する効果を発揮する。本発明 のペプチド、その塩、又はそれらを含む組成物を含有する飲食品用素材、飲食品及 び医薬組成物は、例えば経口投与によって、血圧上昇を抑制することができる。  [0025] The peptides Ala_Phe, Gly-Phe and salts thereof according to the present invention, and compositions containing them have angiotensin I converting enzyme (ACE) inhibitory activity. The peptide of the present invention, a salt thereof, and a composition containing the same exhibit an effect of suppressing an increase in blood pressure. The material for food and drink, food and drink, and the pharmaceutical composition containing the peptide of the present invention, a salt thereof, or a composition containing the same can suppress an increase in blood pressure, for example, by oral administration.
[0026] 本明細書は本願の優先権の基礎である日本国特許出願 2004-166223号の明細書 および/または図面に記載される内容を包含する。  [0026] This description includes part or all of the contents as disclosed in the description and / or drawings of Japanese Patent Application No. 2004-166223, which is a priority document of the present application.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]図 1は、乾燥ビール酵母加水分解物の調製手順を示す概略図である。  FIG. 1 is a schematic diagram showing a procedure for preparing a dried beer yeast hydrolyzate.
[図 2]図 2は、乾燥ビール酵母加水分解物の ACE阻害活性の測定手順を示す概略 図である。  FIG. 2 is a schematic diagram showing the procedure for measuring the ACE inhibitory activity of a hydrolyzate of dried brewer's yeast.
[図 3]図 3は、各実験群への飼料給与スキームを示す図である。  FIG. 3 is a diagram showing a feed feeding scheme for each experimental group.
[図 4]図 4は、各実験群における血圧の推移を表す図である。  FIG. 4 is a graph showing changes in blood pressure in each experimental group.
[図 5]図 5は、各実験群における血圧変化量を表す図である。  FIG. 5 is a diagram showing a blood pressure change amount in each experimental group.
[図 6]図 6は、血清中のアンジォテンシン I変換酵素活性の測定手順を示す概略図で ある。  FIG. 6 is a schematic diagram showing a procedure for measuring angiotensin I converting enzyme activity in serum.
[図 7]図 7は、腎臓力 のアンジォテンシン I変換酵素活性測定用サンプノレの調製手 順を示す概略図である。  [Fig. 7] Fig. 7 is a schematic diagram showing a procedure for preparing a sampnole for measuring angiotensin I converting enzyme activity of renal power.
[図 8]図 8は、 50%EtOH溶出画分力 ACE阻害物質を同定するために用いた実験手 順を示す概略図である。  FIG. 8 is a schematic diagram showing an experimental procedure used to identify a 50% EtOH-eluting fractional ACE inhibitor.
[図 9]図 9は、 S印 hadex_G-25カラムクロマトグラフィーによる酵母アルカラーゼ加水分 解物の溶出パターンと、溶出画分の ACE阻害活性を示す図である。  FIG. 9 is a diagram showing an elution pattern of a yeast alcalase hydrolyzate by S-marked hadex_G-25 column chromatography and an ACE inhibitory activity of the eluted fraction.
[図 10]図 10は、画分 18の逆相分取 HPLCクロマトグラムを示す図である。ピーク画分 A〜Cが示されている。  FIG. 10 is a view showing a reverse phase preparative HPLC chromatogram of fraction 18. Peak fractions AC are shown.
[図 11]図 11は、画分 18の逆相分取 HPLCクロマトグラムを示す図である。ピーク画分 D〜Fが示されている。 FIG. 11 is a view showing a reverse phase preparative HPLC chromatogram of fraction 18. Peak fraction D to F are shown.
[図 12]図 12は、画分 Bと画分 Eの混合物をゲル濾過 HPLCに掛けて得られた HPLCク 口マトグラムを示す図である。  FIG. 12 is a view showing an HPLC chromatogram obtained by subjecting a mixture of fraction B and fraction E to gel filtration HPLC.
[図 13]図 13は、画分 Gのマススペクトラムとフヱニルァラニンの化学構造式を示す。  FIG. 13 shows the mass spectrum of fraction G and the chemical structural formula of phenylalanine.
[図 14]図 14は、画分 Hのマススペクトラムとァラユルフェ二ルァラニンの化学構造式を 示す。  FIG. 14 shows the mass spectrum of fraction H and the chemical structural formula of arayurfeniralanin.
[図 15]図 15は、画分 Iのマススペクトラムとダリシルフヱ二ルァラニンの化学構造式を 示す。  [Fig. 15] Fig. 15 shows the mass spectrum of fraction I and the chemical structural formula of dalysylphenylalanine.
[図 16]図 16は、 AF又は GFの単回経口投与に伴う収縮期血圧の変動を示す図であ る。  FIG. 16 is a graph showing changes in systolic blood pressure following a single oral administration of AF or GF.
[図 17]図 17は、 AF又は GFの単回経口投与に伴う最大収縮期血圧変化量の推移を 示す図である。  FIG. 17 is a graph showing changes in the maximum systolic blood pressure change associated with a single oral administration of AF or GF.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
[0029] 1)アンジォテンシン I変換酵素(ACE)阻害活性を有する、ペプチド Ala-Phe、 Gly-Phe 及びそれらの塩、並びにそれらを含むアンジォテンシン I変換酵素阻害用組成物 本発明に係るペプチドである、ァラユルフェ二ルァラニン (Ala-Phe)、ダリシルフェニ ルァラニン(Gly-Phe)及びそれらの塩は、それぞれ、アンジォテンシン変換酵素(AC E)阻害活性を有する。  [0029] 1) Peptides Ala-Phe, Gly-Phe and salts thereof having angiotensin I converting enzyme (ACE) inhibitory activity, and a composition for inhibiting angiotensin I converting enzyme containing the same according to the present invention The peptides, arayurpheniralanine (Ala-Phe), dalysylphenyliralanine (Gly-Phe), and their salts each have angiotensin converting enzyme (ACE) inhibitory activity.
[0030] 本発明において、ァラユルフェ二ルァラニン (Ala_Phe)とは、 N末端のァラニン残基 と C末端のフエ二ルァラニン残基とを含むジペプチドを意味する。本発明におけるァ ラエルフエ二ルァラニンの塩としては、ナトリウム塩、カリウム塩等が挙げられる。  [0030] In the present invention, arayurpheniralanine (Ala_Phe) means a dipeptide containing an N-terminal alanine residue and a C-terminal feniralanine residue. Examples of the salt of arauelfeniralanine in the present invention include a sodium salt and a potassium salt.
[0031] 本発明では、ダリシルフヱ二ルァラニン(Gly-Phe)は、 N末端のグリシン残基と C末端 のフエ二ルァラニン残基とを含むジペプチドを意味する。本発明におけるグリシノレフ ェニルァラニンの塩としては、ナトリウム塩、カリウム塩等が挙げられる。  [0031] In the present invention, dalysylphenylalanine (Gly-Phe) means a dipeptide containing an N-terminal glycine residue and a C-terminal fenylalanine residue. Examples of the salt of glycinolephenylalanine in the present invention include a sodium salt and a potassium salt.
[0032] 本発明のペプチド Ala_Phe、 Gly-Phe又はそれらの塩は、当業者に公知のペプチド 合成法、例えば、限定するものではないが、化学的若しくは酵素的切断法、化学合 成法 (液相法、固相法、カラム法及びバッチ法等)、クロマトグラフィー法による精製抽 出法等を利用して製造することができる。ペプチド合成法の詳細は、例えば" The Pep tides: Analysis, Synthesis, Biology, Vol. 1〜5, E. ross, J. Meienhofer編; Vol.6〜9 , S. Udenfriend, J. Meienhofer, Academic Press, New York (1979〜1987)、「ペプチド 合成の基礎と実験」(泉屋信夫ら著,丸善 (株)(1985) )等に記載されている。 [0032] The peptide Ala_Phe, Gly-Phe or a salt thereof of the present invention can be prepared by a peptide synthesis method known to those skilled in the art, for example, but not limited to, a chemical or enzymatic cleavage method, a chemical synthesis method (solution Phase method, solid phase method, column method, batch method, etc.), chromatographic purification It can be manufactured by utilizing a method such as a method. For details of the peptide synthesis method, see, for example, "The Peptides: Analysis, Synthesis, Biology, Vol. 1-5, edited by E. ross, J. Meienhofer; Vol. 6-9, S. Udenfriend, J. Meienhofer, Academic Press. And New York (1979-1987), “Basics and Experiments of Peptide Synthesis” (Nobuo Izumiya et al., Maruzen Co., Ltd. (1985)) and the like.
[0033] また本発明のペプチド Ala- Phe、 Gly- Phe及びそれらの塩力 なる群力 選択される 少なくとも 1つを含有する組成物も、アンジォテンシン変換酵素阻害活性を有する。 従って本発明のこのような組成物は、アンジォテンシン I変換酵素 (ACE)阻害用組成 物として用いることができる。本発明のペプチド Ala_Phe、 Gly-Phe及びそれらの塩か らなる群から選択される少なくとも 1つを含有する組成物は、ビール酵母加水分解物 力 得られるペプチド画分(以下、 AF/GFビール酵母由来画分と呼ぶ)として調製す ることちでさる。 [0033] Further, a composition containing at least one selected from the group consisting of the peptides Ala-Phe and Gly-Phe of the present invention and a salt thereof also has angiotensin converting enzyme inhibitory activity. Therefore, such a composition of the present invention can be used as a composition for inhibiting angiotensin I converting enzyme (ACE). The composition containing at least one selected from the group consisting of the peptides Ala_Phe, Gly-Phe and salts thereof according to the present invention comprises a peptide fraction obtained from brewer's yeast hydrolyzate (hereinafter referred to as AF / GF brewer's yeast). (Referred to as the derived fraction).
[0034] 本発明に係る AF/GFビール酵母由来画分は、当業者に公知の任意の手法を用い て、以下の工程 a)〜 :  [0034] The fraction derived from AF / GF brewer's yeast according to the present invention can be prepared using any method known to those skilled in the art by the following steps a) to:
a)ビール酵母を加水分解する工程、  a) hydrolyzing brewer's yeast,
b)その加水分解物をクロマトグラフィー法によって分画する工程、及び c)ァラニルフエ二ルァラニン (Ala-Phe)及び/又はグリシルフェニルァラニン(Gly- Phe)を含有する画分を分取する工程を含む方法によって製造することができる。ビー ル酵母由来画分に含まれるペプチドの分子量は、 150〜2000の範囲にあることが望 ましいが、これに限定されるものではない。  b) a step of fractionating the hydrolyzate by a chromatographic method, and c) a step of fractionating a fraction containing alanylpheniralanine (Ala-Phe) and / or glycylphenylalananine (Gly-Phe). Can be produced. The molecular weight of the peptide contained in the beer yeast-derived fraction is preferably in the range of 150 to 2,000, but is not limited thereto.
[0035] AF/GFビール酵母由来画分の製造に使用するビール酵母は、ビールの醸造に用 いられる任意の酵母であってよレ、が、サッカロミセス'セレピシェ(Saccharomyces cere visiae)、サッカロミセス'ハストリアヌス (Saccharomyces pastorianus)、サッ刀口ミセス' バヤナス(Saccharomyces bayanus)等を用いることが好ましレ、。本発明に係るビール 酵母は、乾燥状態 (例えば粉末状又は顆粒状)であってもよいし、培養物であっても よい。本明細書で用いる「培養物」とは、培養中の細胞(菌体)と培地とを含む培養液 、及び培養液から分離された培養細胞を包含する。  [0035] The brewer's yeast used for the production of the fraction derived from the AF / GF brewer's yeast may be any yeast used for brewing beer, but may be Saccharomyces cerevisiae, Saccharomyces cerevisiae (Saccharomyces pastorianus), Saccharomyces bayanus and the like are preferred. The brewer's yeast according to the present invention may be in a dry state (for example, in a powder form or a granular form) or may be in a culture. As used herein, the term “culture” includes a culture solution containing cells (cells) in culture and a medium, and culture cells separated from the culture solution.
[0036] ビール酵母に適用する加水分解法には、典型的には酵素的又は化学的な加水分 解法がある。酵素的な加水分解法としては、例えば、アルカリ性プロテアーゼ、中性 プロテアーゼ、及び酸性プロテア一ゼ等を含むプロテアーゼによって処理する方法 が挙げられる。本発明で用いるプロテアーゼとしては、アルカリ性プロテアーゼ(アル カラーゼ(Alcalase 2.4L FG ;novozymes社製)等)が好ましレ、が、これに限定されるも のではない。化学的な加水分解法としては、例えば、強酸又は強アルカリによって処 理する方法が挙げられる。加水分解の条件としては、公知の加水分解法で用いられ る任意の条件を用いればよい。酵素法における酵素の添加量は、通常、タンパク質 1 g当たり 0.001%以上、好ましくは 0.1〜10%が適当である。反応 pH及び反応温度は、 使用する酵素の至適 pH、至適温度付近に設定することが好ましい。反応時間は、酵 素の種類、添加量、反応温度、反応 pHに合わせて当業者が適宜設定することができ るが、通常は、 30分〜 40時間の範囲である。加水分解反応の停止は、反応混合液の 加熱や pH変化等による酵素の失活、限外濾過等による酵素の濾別等を含む公知の 方法に従って行うことができる。 [0036] Hydrolysis methods applied to brewer's yeast typically include enzymatic or chemical hydrolysis methods. Enzymatic hydrolysis methods include, for example, alkaline protease, neutral Examples include a method of treating with a protease containing a protease and an acidic protease. As the protease used in the present invention, an alkaline protease (Alcalase 2.4L FG; manufactured by novozymes) and the like are preferable, but not limited thereto. Examples of the chemical hydrolysis method include a method of treating with a strong acid or strong alkali. As the hydrolysis conditions, any conditions used in known hydrolysis methods may be used. The amount of enzyme added in the enzymatic method is usually 0.001% or more, preferably 0.1 to 10%, per 1 g of protein. The reaction pH and reaction temperature are preferably set near the optimum pH and the optimum temperature of the enzyme used. The reaction time can be appropriately set by those skilled in the art according to the type of enzyme, the amount added, the reaction temperature, and the reaction pH, but is usually in the range of 30 minutes to 40 hours. The hydrolysis reaction can be stopped according to a known method including heating of the reaction mixture, inactivation of the enzyme by a change in pH, etc., filtration of the enzyme by ultrafiltration, and the like.
AF/GFビール酵母由来画分を分画するための手法として、有機物の分析に用いる 様々な技術を用いることができる。そのような分画技術としては、例えば、限外濾過や 精密濾過等の膜濾過、ゲル浸透クロマトグラフィーやゲル濾過クロマトグラフィー(例 えば、高速液体クロマトグラフィー)等のサイズ排除クロマトグラフィー、分配クロマトグ ラフィー、吸着クロマトグラフィー、イオン交換クロマトグラフィー等が挙げられる。具体 的には例えば、ビール酵母加水分解物をクロマトグラフィーにかけて分画し、 Ala-Phe 及び Z又は Gly-Pheを含む画分を同定し、それを分取することが好ましい。ビール酵 母加水分解物を順次異なるクロマトグラフィーにかけて、より精製された画分を得ても よい。この場合、ビール酵母加水分解物を、まず、疎水性を有する物質が吸着される 吸着剤(例えば Amberlite™XAD-2™樹脂を充填したクロマトグラフィーに通し、有機 溶媒(例えばエタノール(50〜100%EtOH)やメタノール等)で吸着画分を溶出させる ことにより疎水性を有する物質を含む画分を分取し、その画分を HPLC等のクロマトグ ラフィ一法によってさらに分画し、各画分の ACE阻害活性を測定し、高レ、 ACE阻害活 性を有する画分を分取し、得られた画分をさらに HPLC等で分画してもよい。疎水性 を有する物質を吸着する吸着剤としては、 Amberlite(R)XAD-2™樹脂(Rohm & Haas社 製;ポリスチレンージビュルベンゼン共重合体、平均細孔径 90A、比表面積 300m2/g 、細孔容積率 42%、真の密度 1.02g/ml)、 Amberlite1 MXAD-41 M樹脂等が挙げられる 。ビール酵母加水分解物は、クロマトグラフィーにかける前に、遠心分離や濾過等で 固形成分を除去することが好ましレ、。 As a technique for fractionating the fraction derived from AF / GF brewer's yeast, various techniques used for analysis of organic substances can be used. Examples of such a fractionation technique include membrane filtration such as ultrafiltration and microfiltration, size exclusion chromatography such as gel permeation chromatography and gel filtration chromatography (eg, high performance liquid chromatography), and partition chromatography. , Adsorption chromatography, ion exchange chromatography and the like. Specifically, for example, it is preferable to fractionate the hydrolyzate of brewer's yeast by chromatography, identify a fraction containing Ala-Phe and Z or Gly-Phe, and fractionate it. The beer yeast hydrolyzate may be sequentially subjected to different chromatography to obtain a more purified fraction. In this case, the beer yeast hydrolyzate is first passed through a chromatography packed with an adsorbent (for example, Amberlite ™ XAD-2 ™ resin) to which a substance having hydrophobicity is adsorbed, and the organic solvent (for example, ethanol (50 to 100% The fraction containing the hydrophobic substance is collected by eluting the adsorbed fraction with (EtOH) or methanol), and the fraction is further fractionated by a chromatographic method such as HPLC. The ACE inhibitory activity may be measured, a fraction having high ACE inhibitory activity may be collected, and the obtained fraction may be further fractionated by HPLC, etc. An adsorbent that adsorbs a substance having hydrophobicity Amberlite ( R ) XAD-2 ™ resin (manufactured by Rohm &Haas; polystyrene dibutylbenzene copolymer, average pore diameter 90A, specific surface area 300m 2 / g , A pore volume of 42% a true density of 1.02g / ml), Amberlite 1 M XAD-4 1 M resins. The beer yeast hydrolyzate is preferably subjected to centrifugation or filtration to remove solid components before being subjected to chromatography.
[0038] AF/GFビール酵母由来画分の具体的な製造方法の例は、実施例 1及び 4に記載 した。 [0038] Examples of a specific method for producing a fraction derived from AF / GF brewer's yeast are described in Examples 1 and 4.
[0039] このようにして製造される AF/GFビール酵母由来画分は、八1& 1½ (分子量236.12) 、 Gly-Phe (分子量 222.10)及び/又はその塩を含有する。単一ピークのみを含む画 分にまで分画して、アミノ酸分析又は質量分析を行えば、その画分に含まれる Ala-P he、 Gly-Phe又はそれらの塩をさらに明確に確認することができる。アミノ酸分析や質 量分析は当業者に公知の方法に従って行えばよい。例えばアミノ酸分析は、アミノ酸 分析計 (ATO MLC-703型)を用いて、製造業者の説明書に従って実施することがで きる。また質量分析は、液体クロマトグラフ/タンデム型質量分析装置 (LC/MS/MS ; Lし Q Advantage ion trap mass spectrometer (Thermo Finmgan))等を用い飞ィ丁つこと ができる。  [0039] The fraction derived from AF / GF brewer's yeast produced in this manner contains 8 1 & 1½ (molecular weight 236.12), Gly-Phe (molecular weight 222.10) and / or a salt thereof. If fractionation is performed to a fraction containing only a single peak and amino acid analysis or mass spectrometry is performed, Ala-Phe, Gly-Phe or a salt thereof contained in that fraction can be more clearly confirmed. it can. Amino acid analysis and mass analysis may be performed according to methods known to those skilled in the art. For example, amino acid analysis can be performed using an amino acid analyzer (ATO MLC-703) according to the manufacturer's instructions. Mass spectrometry can be performed using a liquid chromatograph / tandem mass spectrometer (LC / MS / MS; L-Q Advantage ion trap mass spectrometer (Thermo Finmgan)) or the like.
[0040] 以上のような AF/GFビール酵母由来画分は、そのままの溶液状態で、アンジォテン シン変換酵素阻害用組成物として用いることができる。あるいは、 AF/GFビール酵母 由来画分に、例えば濃縮及び/又はエタノール除去等のさらなる処理を施したもの を、アンジォテンシン変換酵素阻害用組成物として用いてもよい。濃縮には、任意の 手法を用いればよいが、加熱濃縮法、減圧加熱濃縮法やエタノール沈殿による濃縮 方法、及び活性炭やイオン交換樹脂による濃縮法などが挙げられる。 AF/GFビール 酵母由来画分を乾燥させて、アンジォテンシン変換酵素阻害用組成物として用いる こともできる。そのような乾燥のための手法としては、風乾法、凍結乾燥法、スプレー ドライ法、減圧乾燥法、及び加熱乾燥法等の任意の手法が挙げられる。本発明のァ ンジォテンシ M変換酵素(ACE)阻害用組成物は、 Ala-Phe、 Gly_Phe及び/又はそ れらの塩に加えて、場合により、薬剤に慣用的に添加される任意の賦形剤(水、安定 化剤、緩衝剤、保存剤、及び抗酸化剤等)をさらに含んでいてもよい。  The above-mentioned fraction derived from AF / GF brewer's yeast can be used as it is as a solution for inhibiting angiotensin converting enzyme in a solution state. Alternatively, the AF / GF brewer's yeast-derived fraction that has been subjected to further treatment such as concentration and / or removal of ethanol may be used as the composition for inhibiting angiotensin converting enzyme. Any method may be used for the concentration, and examples thereof include a heat concentration method, a heat concentration method under reduced pressure, a concentration method using ethanol precipitation, and a concentration method using activated carbon or an ion exchange resin. AF / GF beer yeast-derived fractions can be dried and used as a composition for inhibiting angiotensin converting enzyme. Examples of the method for such drying include an arbitrary method such as an air drying method, a freeze drying method, a spray drying method, a reduced pressure drying method, and a heating drying method. The composition for inhibiting angiotensin M converting enzyme (ACE) of the present invention may contain, in addition to Ala-Phe, Gly_Phe and / or a salt thereof, optionally any excipient conventionally added to a drug. (Water, stabilizers, buffers, preservatives, antioxidants, etc.).
[0041] なお本発明は、上記の AF/GFビール酵母由来画分又はその画分からさらに分画し た単一ピーク画分などの、ァラニルフエ二ルァラニン (Ala-Phe)及び/又はグリシルフ ェニルァラニン (Gly-Phe)を含有する組成物の製造方法にも関する。本発明のそのよ うな組成物の製造方法は、本明細書でも既に上述しているが、少なくとも以下の工程 a)〜c): [0041] The present invention relates to alanylpheniralanine (Ala-Phe) and / or glycylph, such as the above-mentioned AF / GF brewer's yeast-derived fraction or a single peak fraction further fractionated from the fraction. The present invention also relates to a method for producing a composition containing enylalanine (Gly-Phe). The process for the preparation of such a composition according to the invention, which has already been described herein above, comprises at least the following steps a) to c):
a)ビール酵母を加水分解する工程、  a) hydrolyzing brewer's yeast,
b)その加水分解物を、疎水性吸着剤を充填したカラムに通液する工程、及び c)濃度が 0〜100% (好ましくは 50〜100%)のエタノール水溶液を用いて、その疎 水性吸着剤から吸着物質を溶出させる工程、  b) passing the hydrolyzate through a column packed with a hydrophobic adsorbent, and c) hydrophobic adsorption using an aqueous ethanol solution having a concentration of 100 to 100% (preferably 50 to 100%). Eluting the adsorbed substance from the agent,
を含む。  including.
[0042] この製造方法において、工程 a)でビール酵母に適用する加水分解法は上述の通り である。また、工程 b)で用いる疎水性吸着剤としては、限定するものではないが、 Amb erlite XAD_2、 Amberlite XAD_4、 Amberlite XAD_7、及び Amberlite XAD-10などの Amberlite XAD樹脂シリーズの吸着剤(Rohm & Haas, USA)が挙げられる。工程 b)で 用いる疎水性吸着剤としては、とりわけ Amberlite XAD-2が好適である。  [0042] In this production method, the hydrolysis method applied to brewer's yeast in step a) is as described above. The hydrophobic adsorbent used in step b) includes, but is not limited to, Amberlite XAD resin series adsorbents such as Amberlite XAD_2, Amberlite XAD_4, Amberlite XAD_7, and Amberlite XAD-10 (Rohm & Haas, USA). Amberlite XAD-2 is particularly preferred as the hydrophobic adsorbent used in step b).
[0043] さらに、この製造方法の工程 c)では、 0〜100% (但し 0%を除く)、好ましくは 50〜100 %の範囲に含まれる任意の濃度のエタノール水溶液を、適宜使用することができる。 この工程 c)における溶出法としては、例えばステップワイズ溶出、グラディエント溶出 などの様々なカラム溶出手順を用いることができる。  Further, in step c) of this production method, an aqueous ethanol solution having an arbitrary concentration within a range of 0 to 100% (excluding 0%), preferably 50 to 100%, may be appropriately used. it can. As the elution method in this step c), various column elution procedures such as stepwise elution and gradient elution can be used.
[0044] 上記の工程 c)で溶出させた吸着物質には、ァラユルフェ二ルァラニン (Ala-Phe)及 びダリシルフヱ二ルァラニン(Gly_Phe)の両方が含まれ得る。その場合、工程 c)で溶 出させた吸着物質をさらにクロマトグラフィー等の公知の分画方法によって分離する ことにより、ァラユルフェ二ルァラニン(Ala_Phe)又はグリシルフヱ二ルァラニン(Gly-P he)を単独で含む画分を単離してもょレ、。  [0044] The adsorbed substance eluted in the above step c) may include both arayurpheniralanine (Ala-Phe) and dalysylfeniralanine (Gly_Phe). In this case, the adsorbed substance eluted in step c) is further separated by a known fractionation method such as chromatography, thereby containing arayurpheniralanine (Ala_Phe) or glycylfuranalanine (Gly-Phe) alone. Isolate the fractions.
[0045] 2) Ala_Phe、 Glv_Phe、及びそれらの塩、並びにそれらを含むアンジォテンシン I変换 酵素阳.害用組成物の、アンジォテンシン I変換酵素阳.害活性  [0045] 2) Ala_Phe, Glv_Phe, and salts thereof, and angiotensin I-converting enzyme containing them. Angiotensin I-converting enzyme of harmful composition.
Ala_Phe、 Gly_Phe、及びそれらの塩、並びにそれらを含む組成物のアンジォテンシ ン I変換酵素 (ACE)阻害活性は、非特許文献 3に記載の方法で測定することができる 。以下測定法の例示を行う。  The angiotensin I converting enzyme (ACE) inhibitory activity of Ala_Phe, Gly_Phe, their salts, and compositions containing them can be measured by the method described in Non-Patent Document 3. An example of the measurement method will be described below.
[0046] 本発明における ACE阻害活性測定法は、酢酸ェチル抽出法に従って in vitroでの アンジォテンシン I変換酵素 (ACE)阻害率を算出し、それを指標として ACE阻害活性 を表すものである(非特許文献 3、図 2を参照)。具体的には、まず、 ACE阻害活性を 調べる被験サンプノレを、 lOmg/ml濃度になるように蒸留水を用いて調製する。また、ト リペプチド Hip-His- Leu、及び NaClを、反応溶液中の終濃度がそれぞれ 5mM、 400m Mになるようにホウ酸バッファー(pH8.3)に溶解したものを、アンジォテンシン変換酵 素の基質溶液として調製する。次いで、被験サンプル溶液 15 μ ΐに、調製した基質溶 液を 125 μ ΐ加え、 37°Cで 5分間インキュベートする。続いて、アンジォテンシン変換酵 素(ACE)溶液(60mU/mlになるようにホウ酸バッファー (pH8.3)で調製したもの) 50 μ 1 を加え、 37°Cで 30分間インキュベートする。次に、 IN HC1 125 μ 1を加えて反応を停 止させ、酢酸ェチル 0.75mlを加えて十分混合し、遠心分離(3,000rpm、 15°C、 10分) を行う。上層の酢酸ェチル層を採取し、減圧乾固したものを、蒸留水 1.0mlに溶解さ せる。最後に、その 228nmにおける吸光度を測定する。 [0046] The method for measuring ACE inhibitory activity in the present invention is based on the in vitro extraction method of ethyl acetate. Angiotensin I converting enzyme (ACE) inhibition rate is calculated, and the ACE inhibition activity is expressed using the calculated rate as an index (see Non-Patent Document 3, FIG. 2). Specifically, first, a test sample to be tested for ACE inhibitory activity is prepared using distilled water to a concentration of 10 mg / ml. The angiotensin converting enzyme was prepared by dissolving the tripeptide Hip-His-Leu and NaCl in a borate buffer (pH 8.3) so that the final concentrations in the reaction solution were 5 mM and 400 mM, respectively. Prepared as a substrate solution. Next, add 125 µl of the prepared substrate solution to 15 µl of the test sample solution, and incubate at 37 ° C for 5 minutes. Then, add 50 μl of angiotensin converting enzyme (ACE) solution (prepared with borate buffer (pH 8.3) to 60 mU / ml), and incubate at 37 ° C for 30 minutes. Next, add 125 μl of IN HC1 to stop the reaction, add 0.75 ml of ethyl acetate, mix well, and centrifuge (3,000 rpm, 15 ° C, 10 minutes). The upper ethyl acetate layer is collected and dried under reduced pressure and dissolved in 1.0 ml of distilled water. Finally, the absorbance at 228 nm is measured.
[0047] 対照サンプルとしては、被験サンプル 50 μ 1に IN HC1 125 μ 1を加えて 37°Cで 5分間 インキュベートし、次いで基質溶液 125 μ 1と ACE溶液 50 /i lを加えて 37°Cで 30分間ィ ンキュペートした後、上記と同様に酢酸ェチル 0.75mlを加え、さらにそれ以後の一連 の操作を行って、サンプルブランクを調製する。また、被験サンプル溶液の代わりに ホウ酸バッファー 50 /i lを加えて基質溶液 125 μ ΐとともに 37°Cで 5分間インキュベート し、次いで IN HC1 125 μ 1をカロえ、続いて ACE溶液 50 μ 1を加えて 37°Cで 30分間イン キュペートした後、上記と同様に酢酸ェチル 0.75mlを加え、さらにそれ以後の一連の 操作を行って、ブランクを調製する。さらに、被験サンプル溶液の代わりに蒸留水を 加えること以外は上記と同様の一連の操作を行って、コントロールを調製する。サン プルブランク、ブランク、及びコントロールの吸光度測定を、上記と同様にして行う。  [0047] As a control sample, add 125 µl of IN HC1 to 50 µl of the test sample, incubate at 37 ° C for 5 minutes, and then add 125 µl of the substrate solution and 50 / il of the ACE solution, and add After incubating for 30 minutes, add 0.75 ml of ethyl acetate in the same manner as above, and perform a series of subsequent operations to prepare a sample blank. Alternatively, add 50 μl of borate buffer instead of the test sample solution, incubate with 125 μl of the substrate solution at 37 ° C for 5 minutes, and then calcine 125 μl of IN HC1 and then add 50 μl of the ACE solution. In addition, after incubating at 37 ° C for 30 minutes, add 0.75 ml of ethyl acetate in the same manner as above, and perform a series of subsequent operations to prepare a blank. Furthermore, a control is prepared by performing a series of operations similar to the above except that distilled water is added instead of the test sample solution. The absorbance of the sample blank, blank and control is measured in the same manner as described above.
[0048] このようにして得られる吸光度の測定値に基づき、 ACEの阻害率(%)を以下の式に より算出する。  [0048] Based on the measured absorbance values thus obtained, the ACE inhibition rate (%) is calculated by the following equation.
[0049] 阻害率(%) = {(Ec-Eb) - Es}/(Ec - Eb) X 100  [0049] Inhibition rate (%) = {(Ec-Eb)-Es} / (Ec-Eb) x 100
Ec : コントローノレの吸光度  Ec: Absorbance of controller
Eb : ブランクの吸光度  Eb: Absorbance of blank
Es:被験サンプルの吸光度 サンプノレブランクの吸光度 本発明においては、この阻害率(%)で ACE阻害活性を表す。阻害率(%)が高い ほど ACE阻害活性も高 阻害率が低いほど ACE阻害活性も低レ、。 Es: Absorbance of test sample Absorbance of sampnole blank In the present invention, this inhibition rate (%) indicates ACE inhibitory activity. The higher the inhibition rate (%), the higher the ACE inhibitory activity. The lower the inhibition rate, the lower the ACE inhibitory activity.
[0050] 3) Ala_Phe、 Glv_Phe、若しくはそれらの塩、又は本発明のアンジォテンシン変換酵 素 (ACE)阳.害用組成物を含有する飲食品及び飲食品用素材  [0050] 3) Ala_Phe, Glv_Phe, or a salt thereof, or the angiotensin-converting enzyme (ACE) of the present invention II. Food and drink and food and drink material containing the harmful composition
本発明の、 Ala-Phe、 Gly_Phe、若しくはそれらの塩、又はそれらを含むアンジォテ ンシン I変換酵素 (ACE)阻害用組成物は、飲食品用素材として用いることができる。 この飲食品用素材は、適量を添加することにより、例えば血圧降下作用等の機能性 を飲食品に付与することができる。この飲食品用素材は、限定するものではないが、 液体状、粉末状、顆粒状、又は固形状等であってよい。本発明の飲食品用素材とし ては、例えば酵母エキス等が包含される。好ましくは、この飲食品用素材は、 Ala-Phe 、 Gly-Phe,若しくはそれらの塩、又はそれらを含むアンジォテンシン変換酵素 (ACE )阻害用組成物を高含量で含む。  The Ala-Phe, Gly_Phe, or a salt thereof, or the composition for inhibiting angiotensin I converting enzyme (ACE) containing the same of the present invention can be used as a material for food or drink. By adding an appropriate amount of this food / drink material, functionality such as, for example, a blood pressure lowering effect can be imparted to the food / drink. The food and drink material may be, but is not limited to, liquid, powder, granule, or solid. Examples of the food and drink material of the present invention include yeast extract and the like. Preferably, the food or drink material contains a high content of Ala-Phe, Gly-Phe, or a salt thereof, or a composition for inhibiting angiotensin converting enzyme (ACE) containing the same.
[0051] 本発明は、 Ala-Phe, Gly_Phe、若しくはそれらの塩、又はそれらを含むアンジォテ ンシン I変換酵素 (ACE)阻害用組成物を添加した飲食品にも関する。本明細書にお いて「飲食品」とは、限定するものではないが、飲料、食品及び機能性食品を包含す る。  [0051] The present invention also relates to foods and beverages to which Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting angiotensin I converting enzyme (ACE) containing the same is added. As used herein, “food and drink” includes, but is not limited to, beverages, foods, and functional foods.
[0052] Ala-Phe, Gly_Phe、若しくはそれらの塩、又はそれらを含む ACE阻害用組成物の飲 食品への配合量は特に限定されず、例えば、 Ala-Phe, Gly-Phe及びそれらの塩の総 量力 0.001〜100重量%となる配合量を例示することができる。但し実際の配合量は 、飲食品の種類や求める味や食感を考慮して、当業者が適宜定めることができる。  [0052] The amount of Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting ACE containing the same, in a food or drink is not particularly limited. For example, Ala-Phe, Gly-Phe and salts thereof Examples of the compounding amount that gives a total power of 0.001 to 100% by weight can be exemplified. However, the actual blending amount can be appropriately determined by those skilled in the art in consideration of the type of food or drink, the desired taste or texture.
[0053] 本発明のさらに好ましい態様は、 Ala- Phe、 Gly_Phe、若しくはそれらの塩、又はそ れらを含む ACE阻害用組成物を添加してその量を増大させた(添加増量した)飲食 品である。このような本発明に係る飲食品は、 Ala-Phe, Gly- Phe、若しくはそれらの塩 、又はそれらを含む ACE阻害用組成物のいずれ力 4つを、又はそれらを組み合わせ て、有効量にて含有することが特に好ましい。  [0053] A further preferred embodiment of the present invention provides a food or drink product in which Ala-Phe, Gly_Phe, or a salt thereof, or an ACE-inhibiting composition containing the same has been added to increase the amount thereof (additionally increased amount). It is. Such a food or drink according to the present invention may contain Ala-Phe, Gly-Phe, or a salt thereof, or an ACE-inhibiting composition containing them, in any effective amount of 4 or a combination thereof in an effective amount. It is particularly preferred to contain.
[0054] Ala-Phe, Gly_Phe、若しくはそれらの塩、又はそれらを含むアンジォテンシンド変換 酵素 (ACE)阻害用組成物は、当業者が利用可能である任意の適切な方法によって 、飲食品に含有させればよレ、。例えば、 Ala-Phe, Gly_Phe、若しくはそれらの塩、又 はそれらを含む ACE組成物は、液状、固体若しくは顆粒状にカ卩ェしてから食品に含 有させてもよい。あるいは飲食品中に直接混合又は溶解してもよいし、飲食品中に坦 め込んでもよレ、。 Ala-Phe、 Gly_Phe、若しくはそれらの塩、又はそれらを含む ACE阻 害用組成物は、食品に塗布、被覆、浸透又は吹き付けてもよい。 Ala- Phe、 Gly_Phe、 若しくはそれらの塩、又はそれらを含む ACE阻害用組成物は、飲食品中に均一に分 布していてもよいし、不均一に分布していてもよレ、。あるいは Ala- Phe、 Gly_Phe、若し くはそれらの塩、又はそれらを含む ACE阻害用組成物は、食品中の特定部位に偏在 していてもよレ、。 Ala_Phe、 Gly_Phe、若しくはそれらの塩、又はそれらを含む ACE阻 害用組成物を、凍結乾燥させた状態で飲料に溶解する場合には、例えば水に溶解 させ、攪拌により均一に混合させた後、飲料、水等に添加することが好ましい。また、 Ala_Phe、 Gly_Phe、若しくはそれらの塩、又はそれらを含む ACE阻害用組成物を固 形食品に混合する場合は、例えば食品材料に添加し、攪拌により均一に混合した後 、加工することが好ましい。また、 Ala_Phe、 Gly_Phe、若しくはそれらの塩、又はそれ らを含む ACE阻害用組成物を含有させた飲食品をさらに加工することもできる。その ような加工製品も、本発明の範囲に包含される。あるいはまた、 Ala_Phe、 Gly_Phe、 若しくはそれらの塩、又はそれらを含む ACE阻害用組成物それ自体を、固形成形し たり、カプセルや糖衣錠等の形状に製剤したりしたものも、本発明の飲食品に包含さ れる。 [0054] Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting angiotensin converting enzyme (ACE) containing the same is contained in a food or drink by any appropriate method available to those skilled in the art. I'll do it. For example, Ala-Phe, Gly_Phe, or their salts, or The ACE composition containing them may be incorporated into foods after being prepared in liquid, solid or granular form. Alternatively, they may be directly mixed or dissolved in food or drink, or may be carried in food or drink. Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting ACE containing the same may be applied, coated, penetrated, or sprayed on food. Ala-Phe, Gly_Phe, or a salt thereof, or an ACE-inhibiting composition containing them may be uniformly distributed or unevenly distributed in food or drink. Alternatively, Ala-Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting ACE containing the same may be unevenly distributed at a specific site in a food. When Ala_Phe, Gly_Phe, or a salt thereof, or an ACE-inhibiting composition containing them is dissolved in a beverage in a freeze-dried state, for example, after dissolving in water and uniformly mixing by stirring, It is preferably added to beverages, water and the like. When Ala_Phe, Gly_Phe, or a salt thereof, or an ACE-inhibiting composition containing them is mixed with a solid food, for example, it is preferably added to a food material, mixed uniformly by stirring, and then processed. . In addition, foods and beverages containing Ala_Phe, Gly_Phe, or a salt thereof, or a composition for inhibiting ACE containing them, can be further processed. Such processed products are also included in the scope of the present invention. Alternatively, Ala_Phe, Gly_Phe, or a salt thereof, or an ACE-inhibiting composition itself containing the same, which is solid-formed or formulated in the form of a capsule, a sugar-coated tablet, or the like, is also included in the food and drink of the present invention. Included.
本発明の飲食品の製造においては、飲食品に慣用的に使用される各種添加物を 使用してもよい。添加物としては、限定するものではないが、発色剤(亜硝酸ナトリウ ム等)、着色料 (クチナシ色素、赤 102等)、香料 (オレンジ香料等)、甘味料 (ステビ ァ、アステルパーム等)、保存料 (酢酸ナトリウム、ソルビン酸等)、乳化剤(コンドロイ チン硫酸ナトリウム、プロピレングリコール脂肪酸エステル等)、酸化防止剤(EDTA ニナトリウム、ビタミン C等)、 pH調整剤(タエン酸等)、化学調味料 (イノシン酸ナトリウ ム等)、増粘剤 (キサンタンガム等)、膨張剤 (炭酸カルシウム等)、消泡剤 (リン酸カル シゥム)等、結着剤 (ポリリン酸ナトリウム等)、栄養強化剤 (カルシウム強化剤、ビタミン A等)等が挙げられる。さらに、ォタネニンジンエキス、ェゾゥコギエキス、ユーカリェキ ス、杜仲茶エキス等の機能性素材を添加してもよレ、。 [0056] 本発明の飲料の種類は、特に限定されない。本発明の飲料は、例えば、お茶系飲 料(玄米茶や緑茶等の不発酵茶、紅茶等の発酵茶、ウーロン茶やジャスミン茶等の 半発酵茶、杜仲茶、柿の葉茶、熊笹茶、ギヤバロン茶、コーン茶、ハブ茶、菊花茶等 を含む飲料)、果物 ·野菜系飲料 (オレンジ、りんご、ぶどう、もも、いちご、バナナ、レ モンなどの果汁や、トマト、ニンジン、キャベツ、セロリなどの野菜汁を含む飲料)、ァ ルコール性飲料 (ビール、発泡酒、ウィスキー、ワイン、リキュール類等を含む飲料)、 炭酸飲料、乳酸菌飲料、乳飲料 (コーヒー牛乳、フルーツ牛乳、機能性牛乳等)、清 涼飲料、低カロリー飲料等の飲料を具体的に例示することができる。各種飲料の製 造法等については、既存の参考書、例えば「最新'ソフトドリンクス」 (2003) (株式会社 光琳)等を参考にすることができる。 In the production of the food and drink of the present invention, various additives commonly used in food and drink may be used. Additives include, but are not limited to, color formers (such as sodium nitrite), coloring agents (such as gardenia pigment, red 102, etc.), flavors (such as orange flavors), and sweeteners (such as stevia, astel palm). , Preservatives (sodium acetate, sorbic acid, etc.), emulsifiers (sodium chondroitin sulfate, propylene glycol fatty acid ester, etc.), antioxidants (disodium EDTA, vitamin C, etc.), pH adjusters (taenoic acid, etc.), chemical seasoning Additives (sodium inosinate, etc.), thickeners (xanthan gum, etc.), swelling agents (calcium carbonate, etc.), defoamers (calcium phosphate, etc.), binders (sodium polyphosphate, etc.), nutrient enhancers ( Calcium enhancer, vitamin A, etc.). In addition, functional materials such as Panax ginseng extract, Ezodokogi extract, Eucalyptus and Tochu tea extract may be added. [0056] The type of beverage of the present invention is not particularly limited. The beverage of the present invention includes, for example, tea beverages (unfermented tea such as brown rice tea and green tea, fermented tea such as black tea, semi-fermented tea such as oolong tea and jasmine tea, Tochu tea, persimmon leaf tea, Kumasa tea, Beverages including gear baron tea, corn tea, hub tea, chrysanthemum tea, etc.), fruit and vegetable beverages (orange, apple, grape, peach, strawberry, banana, lemon, etc., tomato, carrot, cabbage, celery) Beverages containing vegetable juices, etc.), alcoholic beverages (beverages, low-malt beer, whiskey, wine, liqueurs, etc.), carbonated beverages, lactic acid beverages, dairy beverages (coffee milk, fruit milk, functional milk, etc.) ), Soft drinks, low-calorie drinks, and the like. With respect to the production method of various beverages, etc., it is possible to refer to existing reference books, for example, “Latest 'Soft Drinks'” (2003) (Korin Co., Ltd.).
[0057] 本発明の食品の種類は、特に限定されない。本発明の食品は、生鮮食品であって もよいし、加工食品であってもよい。例えば、クッキー、パン、ケーキ、煎餅などの焼き 菓子、羊羹などの和菓子、プリン、ゼリー、アイスクリーム類などの冷菓、チューインガ ム、キャンディ等の菓子類、クラッカー、チップス等のスナック類、ノスタ、うどん、そば 等の麵類、力まぼこ、ハム、魚肉ソーセージ等の魚肉練り製品、みそ、しょう油、ドレツ シング、マヨネーズ、甘味料等の調味料類、豆腐、こんにやぐその他佃煮、餃子、コ 口ッケ、サラダ、スープ、シチュー等の各種総菜、パン、カット野菜、魚の切り身、加工 肉等を具体的に例示することができる。  [0057] The type of food of the present invention is not particularly limited. The food of the present invention may be a fresh food or a processed food. For example, baked sweets such as cookies, breads, cakes, rice crackers, etc., Japanese sweets such as yokan, cold desserts such as pudding, jelly and ice cream, sweets such as chewing gum and candy, snacks such as crackers and chips, nosta, udon , Buckwheat, etc., fish paste products such as rikamaboko, ham, fish sausage, miso, soy sauce, dressing, mayonnaise, seasonings such as sweeteners, tofu, konnyaku, other tsukudani, dumplings, coco Specific examples include various dishes such as cookie, salad, soup, stew, bread, cut vegetables, fish fillets, processed meat, and the like.
[0058] 上記の Ala-Phe、 Gly- Phe、若しくはそれらの塩、又はそれらを含むアンジォテンシ ン I変換酵素 (ACE)阻害用組成物を含有する飲食品は、好ましくは機能性食品であ る。本発明の「機能性食品」は、一定の機能をもつ食品を意味し、例えば、特定保健 用食品及び栄養機能食品を含む保健機能食品、特定用途食品(病者用食品、妊産 婦-授乳婦用粉乳、乳児用調整粉乳、高齢者用食品等)に加えて、栄養補助食品、 健康補助食品、サプリメント及び美容食品(例えばダイエット食品)等のいわゆる健康 食品全般を包含する。本発明の機能性食品はまた、コーデックス(FAO/WHO合同 食品規格委員会)の食品規格に基づく健康強調表示 (Health claim)が適用される健 康食品を包含する。  [0058] The food or drink containing the above-mentioned composition for inhibiting Ala-Phe, Gly-Phe, or a salt thereof, or an angiotensin I converting enzyme (ACE) containing the same is preferably a functional food. The “functional food” of the present invention means a food having a certain function, for example, a health functional food including a special health food and a nutritional food, a special use food (food for a sick person, a pregnant woman and a nursing woman). Foods, infant formulas, foods for the elderly, etc.) as well as general health foods such as dietary supplements, health supplements, supplements, and beauty foods (eg, diet foods). The functional food of the present invention also includes a health food to which a health claim based on a food standard of Codex (FAO / WHO Joint Food Standards Committee) is applied.
[0059] 本発明の機能性食品は、錠剤、顆粒剤、散剤、丸剤、カプセル剤等の固形製剤、 液剤、懸濁剤、シロップ剤等の液体製剤、あるいはジエル剤等の製剤の形状であつ てもよいし、通常の飲食品の形状 (例えば、飲料、粉状茶葉、菓子等)であってもよい [0059] The functional food of the present invention includes solid preparations such as tablets, granules, powders, pills, and capsules; It may be in the form of liquid preparations such as liquid preparations, suspensions and syrups, or preparations such as jewel preparations, or in the form of ordinary foods and drinks (for example, beverages, powdered tea leaves, confectionery, etc.). Good
[0060] 機能性食品への Ala-Phe、 Gly- Phe、若しくはそれらの塩、又はそれらを含むアンジ ォテンシン I変換酵素 (ACE)阻害用組成物の配合量、配合方法、並びに機能性食品 に配合しうる添加物については、上記の飲食品の記載と同じである。 [0060] Ala-Phe, Gly-Phe, a salt thereof, or a composition for inhibiting angiotensin I converting enzyme (ACE) containing them in a functional food, a compounding method, a compounding method, and a functional food The possible additives are the same as those described for the food and drink above.
[0061] 本発明の機能性食品は、限定するものではなレ、が、特に血圧を降下させるための ものであることが好ましぐ具体的には、血圧降下が望まれる人を対象とするものであ ること力 S好ましい。本発明において「血圧降下が望まれる人」とは、一般的には血圧 が高めな人を意味し、客観的には同年代の同性の人々の平均値と比べて血圧が有 意に高いけれどもまだ高血圧とは診断されていない人を指すが、血圧が日常的に高 めであって血圧を降下させる必要性を感じると主観的に認識している人も包含される ものとする。「血圧降下が望まれる人を対象とする」とは、血圧降下が望まれる人の摂 取に適した飲食品である旨が記載又は表示されており、それを摂取した人の血圧上 昇レベルを抑制したり、血圧を降下させたりする効果が期待されることを意味する。血 圧降下が望まれる人の摂取に適した飲食品である旨の記載又は表示は、例えば特 定保健用食品及び栄養機能食品等の保健機能食品について法令上の規定に基づ いて認められた機能表示 (栄養成分機能表示又は保健用途の表示)に従ったもので あってよい。  [0061] The functional food of the present invention is not limited, but is preferably used for lowering blood pressure. Specifically, the functional food is intended for those who want to lower blood pressure. It is preferable that the power is good. In the present invention, "a person whose blood pressure is desired to be lowered" generally means a person whose blood pressure is high, and although the blood pressure is significantly higher than the average value of people of the same age of the same age, the blood pressure is still high. Hypertension refers to individuals who have not been diagnosed with hypertension, but also includes those who subjectively perceive that their blood pressure is routinely high and that they need to lower their blood pressure. `` Targeting a person whose blood pressure is desired to be lowered '' indicates or indicates that the food or drink is suitable for the intake of a person whose blood pressure is desired to be reduced, and the blood pressure elevation level of the person who took it is indicated. This means that the effects of suppressing blood pressure and lowering blood pressure are expected. The statement or labeling that the food / drink is suitable for ingestion by persons for whom hypotension is desired has been approved in accordance with the statutory provisions for functional health foods such as special health foods and nutritional foods. It may comply with the function labeling (nutrition ingredient function labeling or health use labeling).
[0062] 4) Ala-Phe. Glv_Phe、若しくはそれらの塩、又はそれらを含むアンジォテンシン変換 酵素 (ACE)阳.害用組成物を含有する医薬組成物  [0062] 4) Ala-Phe. Glv_Phe, or a salt thereof, or angiotensin-converting enzyme (ACE) containing them II. Pharmaceutical composition containing harmful composition
本発明は、 Ala-Phe、 Gly- Phe、若しくはそれらの塩、又はそれらを含むアンジォテ ンシン I変換酵素 (ACE)阻害用組成物を有効成分として含有する医薬組成物にも関 する。  The present invention also relates to a pharmaceutical composition containing, as an active ingredient, Ala-Phe, Gly-Phe, or a salt thereof, or a composition for inhibiting angiotensin I converting enzyme (ACE) containing the same.
[0063] 本発明の医薬組成物には、医薬製剤上許容される担体又は添加物を配合してもよ レ、。このような担体及び添加物の例として、水、医薬的に許容される有機溶剤、コラ 一ゲン、ポリビュルアルコール、ポリビュルピロリドン、カルボキシビ二ルポリマー、ァ ルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ぺクチ ン、キサンタンガム、アラビアゴム、カゼイン、ゼラチン、寒天、グリセリン、プロピレング リコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステア リン酸、ヒト血清ァノレブミン、マンニトール、ソルビトール、ラタトース、医薬添加物とし て許容される界面活性剤などの他、リボゾームなどの人工細胞構造物などが挙げら れる。使用される添加物は、製剤の剤形に応じて適宜又は組み合わせて選択される 。本発明の医薬組成物は、さらに他の薬理成分を含有していてもよい。 [0063] The pharmaceutical composition of the present invention may contain a carrier or additive acceptable for pharmaceutical preparations. Examples of such carriers and additives are water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium alginate, water-soluble dextran, carboxymethyl. Starch sodium, penchi , Xanthan gum, gum arabic, casein, gelatin, agar, glycerin, propylene glycol, polyethylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum anolebumin, mannitol, sorbitol, ratatose, acceptable as a pharmaceutical additive And artificial cell structures such as ribosomes. The additives to be used are selected appropriately or in combination according to the dosage form of the preparation. The pharmaceutical composition of the present invention may further contain other pharmacological components.
[0064] 本発明の医薬組成物は、経口的又は非経口的に投与することができるが、特に経 口的に投与することが好ましい。経口的に投与される本発明の医薬組成物は、錠剤 、顆粒剤、散剤、丸剤、カプセル剤などの固形製剤、ジエル剤、あるいは液剤、懸濁 剤、シロップ剤などの液体製剤等の剤形であってよレ、。液体製剤として用いる場合に は、本発明の医薬組成物を使用する際に再溶解させることを意図した乾燥物として 供給してもよい。 [0064] The pharmaceutical composition of the present invention can be administered orally or parenterally, but is preferably administered orally. The pharmaceutical composition of the present invention to be orally administered includes solid preparations such as tablets, granules, powders, pills, and capsules, and jewels, and liquid preparations such as liquids, suspensions, and syrups. It can be in shape. When used as a liquid preparation, the pharmaceutical composition of the present invention may be supplied as a dry product intended to be redissolved when used.
[0065] 上記剤形のうち経口用固形製剤は、薬学上一般に使用される結合剤、賦形剤、滑 沢剤、崩壊剤、湿潤剤などの添加剤を含有してもよい。また、経口用液体製剤は、薬 学上一般に使用される安定剤、緩衝剤、矯味剤、保存剤、芳香剤、着色剤などの添 加剤を含有してもよい。  [0065] Of the above dosage forms, the oral solid preparation may contain additives generally used in pharmacy, such as a binder, an excipient, a lubricant, a disintegrant, and a wetting agent. Further, the liquid preparation for oral use may contain additives generally used in medicine, such as stabilizers, buffers, flavoring agents, preservatives, fragrances and coloring agents.
[0066] 本発明の医薬組成物は、血圧降下作用を有することから、血圧降下剤として用いる ことができる。本発明の血圧降下剤は、血圧の上昇レベルを有意に抑制するか、ある いは血圧を有意に降下させることができる。本発明の血圧降下剤は、例えば、最大 収縮期血圧を、単回投与から 8時間後までに、投与前の血圧の 90〜60%のレベルま で、降下させることができる。  [0066] Since the pharmaceutical composition of the present invention has a blood pressure lowering effect, it can be used as a blood pressure lowering agent. The antihypertensive agent of the present invention can significantly suppress the blood pressure elevation level or significantly lower the blood pressure. The antihypertensive agent of the present invention can reduce, for example, systolic blood pressure to a level of 90 to 60% of the blood pressure before administration by 8 hours after a single administration.
[0067] また、本発明の医薬組成物の投与量は、投与対象の年齢及び体重、投与経路、投 与回数により異なり、当業者の裁量によって広範囲に変更することができる。例えば、 経口的に投与する場合には、本発明の Ala-Phe、 Gly_Phe、若しくはそれらの塩、又 はそれらを含むアンジォテンシン I変換酵素 (ACE)阻害用組成物の乾燥重量で、 1 日にっき体重 lkg当たり lmg〜lgであることが好ましレ、。本発明の医薬組成物は、単 回投与でもよいが、 6〜8時間の間隔で反復的に投与してもよい。  [0067] The dose of the pharmaceutical composition of the present invention varies depending on the age and weight of the subject to be administered, the route of administration, and the number of administrations, and can be widely varied according to the discretion of those skilled in the art. For example, in the case of oral administration, the composition of the present invention for inhibiting Ala-Phe, Gly_Phe, or a salt thereof, or angiotensin I converting enzyme (ACE) inhibitor containing the same, for one day, Nikkei body weight, preferably between lmg and lg per kg. The pharmaceutical composition of the present invention may be administered once, or may be administered repeatedly at intervals of 6 to 8 hours.
[0068] 本発明の医薬組成物を投与する対象は、ヒト、家畜、愛玩動物、実験 (試験)動物 等を含む哺乳動物である。特に、血圧(収縮期血圧)が健常な個体の平均値よりも日 常的に有意に高い哺乳動物、血圧 (収縮期血圧)が健常な個体の平均値よりも高く なりやすい傾向のある哺乳動物、あるいは、高血圧の素因(遺伝的又は環境的素因) を有する哺乳動物が、本発明の医薬組成物を投与する対象として好ましい。本発明 の医薬組成物は、副作用の心配が少ないことから、継続的に利用する上で非常に有 用に用いることができる。 [0068] Subjects to which the pharmaceutical composition of the present invention is administered include humans, domestic animals, pet animals, and experimental (test) animals. And other mammals. In particular, mammals whose blood pressure (systolic blood pressure) is significantly higher than the average of healthy individuals on a daily basis, and mammals whose blood pressure (systolic blood pressure) tends to be higher than the average of healthy individuals. Alternatively, mammals having a predisposition (genetic or environmental predisposition) to hypertension are preferred as subjects to which the pharmaceutical composition of the present invention is administered. The pharmaceutical composition of the present invention can be very usefully used for continuous use, since there is little concern about side effects.
[0069] 5) Ala-Phe. Glv_Phe及びそれらの塩、並びにそれらを含むアンジォテンシンド 換酵
Figure imgf000018_0001
[0069] 5) Ala-Phe. Glv_Phe and salts thereof, and angiotensin-converting yeast containing them
Figure imgf000018_0001
本発明の、 Ala-Phe、 Gly-Phe及びそれらの塩、並びにアンジォテンシン I変換酵素( ACE)阻害用組成物は、血圧降下作用を有する。この血圧降下作用は、当業者に公 知の方法によって確認することができる力 本発明においては例えば次のようにして 確言忍すること力 Sできる。  Ala-Phe, Gly-Phe and their salts, and the composition for inhibiting angiotensin I converting enzyme (ACE) of the present invention have a blood pressure lowering effect. This blood pressure lowering effect can be confirmed by a method known to those skilled in the art. In the present invention, for example, the following can be confirmed.
[0070] まず、 12時間絶食させた高血圧自然発症ラット (SHR) (雄、 日本 SLCから購入可能) に、 16mg/ml H 0として調製した本発明の Ala_Phe、 Gly-Phe若しくはそれらの塩又は  [0070] First, spontaneously hypertensive rats (SHR) (male, which can be purchased from Japan SLC) which had been fasted for 12 hours were treated with Ala_Phe, Gly-Phe or a salt thereof of the present invention prepared as 16 mg / ml H0.
2  2
それらを含むアンジォテンシン変換酵素 (ACE)阻害用組成物を、一匹当たり lml経 口投与する。経口投与直前(0時間)、並びに経口投与の 2、 4、 6及び 8時間後に、(株 )ソフトロン社製の非観血式自動血圧装置 BP-98Aを用いて Tail cuff法により血圧測 定を行う。血圧測定は、ラットを 37°Cで約 10〜15分間予備保温し、そのすぐ後に行う 。血圧測定は連続して複数回(2〜3回)行うことが好ましい。  The composition for inhibiting angiotensin converting enzyme (ACE) containing them is orally administered by 1 ml per animal. Immediately before oral administration (0 hour) and 2, 4, 6 and 8 hours after oral administration, blood pressure is measured by the tail cuff method using a non-invasive automatic blood pressure device BP-98A manufactured by Softron Co., Ltd. I do. The blood pressure measurement is performed by pre-incubating the rats at 37 ° C for about 10 to 15 minutes, and immediately thereafter. The blood pressure measurement is preferably performed a plurality of times (2 to 3 times) continuously.
[0071] 血圧は、測定した最大収縮期血圧値について複数回の測定値の平均として表す。  The blood pressure is expressed as an average of a plurality of measured values of the measured maximum systolic blood pressure value.
データは、分散分析 (ANOVA)、 Duncanの多重比較検定法、 Student's t_test等によ つて統計的に処理し、実験群間での有意差及び有意性を検討することが好ましい。  It is preferable to statistically process the data by analysis of variance (ANOVA), Duncan's multiple comparison test, Student's t_test, etc. to examine the significant differences and significance between the experimental groups.
[0072] 本発明における血圧降下作用は、このようにして測定及び算出された血圧の値で 評価することができる。本発明では、投与後の最大収縮期血圧 (収縮期血圧)が投与 直前の最大収縮期血圧と比較して 95〜60。/0のレベルまで、好ましくは 90。/0〜60。/0の レベルまで低下している場合に、血圧降下作用があるものとする。 [0072] The blood pressure lowering effect in the present invention can be evaluated based on the blood pressure values thus measured and calculated. In the present invention, the systolic blood pressure after administration (systolic blood pressure) is 95-60 as compared to the systolic blood pressure immediately before administration. Up to the level of / 0 , preferably 90. / 0-60. When the blood pressure drops to the level of / 0 , it is assumed that there is a blood pressure lowering effect.
[0073] 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本 明細書にとり入れるものとする。 実施例 [0073] All publications, patents, and patent applications cited in this specification are incorporated herein by reference in their entirety. Example
[0074] 以下、本発明を実施例を用いてさらに具体的に説明する。但し、本発明はこれら実 施例にその技術的範囲が限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to Examples. However, the technical scope of the present invention is not limited to these embodiments.
[0075] [実施例 1]乾燥ビール酵母加水分解物由来画分の調製 Example 1 Preparation of Fraction Derived from Dry Beer Yeast Hydrolyzate
本実施例で用レ、た乾燥ビール酵母加水分解物由来画分の調製手順の概略を図 1 に示す。  FIG. 1 shows an outline of the procedure for preparing the fraction derived from the hydrolyzate of dried beer yeast used in this example.
[0076] まず、キリンビール株式会社製の乾燥ビール酵母粉末 (サッカロミセス'セレビシェ( Saccharomyces cerevisiae);商品名キリン乾燥ビール酵母 A) 50gに、 0.05N NaOH 5 00ml、及びアルカラーゼ(Alcalase 2.4L FG ;novozymes社製) 10mlを添加し、 50°Cで 1 2時間攪拌しながら加水分解を行った。その後、 4°C下、 10,000 X gで 20分の遠心分 離を行い、その上清を Toyo No.2濾紙を用いて濾過した。濾液を XAD-2カラム(Rohm & Haas社製)に通し、非吸着画分を含む透過液を得た。一方、 XAD-2カラムへの吸 着画分を、順次、 50%EtOH、 100%EtOHを用いて溶出した。得られたそれぞれの画 分を減圧下で濃縮し、さらに凍結乾燥した。このようにして得られた各画分の凍結乾 燥物 (粉末状)を、以下の実施例において使用した。  First, 50 g of dried beer yeast powder (Saccharomyces cerevisiae; trade name: Kirin dried beer yeast A) manufactured by Kirin Brewery Co., Ltd., 0.05 N NaOH 500 ml, and alcalase (Alcalase 2.4L FG; novozymes) 10 ml) and hydrolyzed while stirring at 50 ° C. for 12 hours. Thereafter, the mixture was centrifuged at 10,000 X g for 20 minutes at 4 ° C, and the supernatant was filtered using Toyo No. 2 filter paper. The filtrate was passed through an XAD-2 column (manufactured by Rohm & Haas) to obtain a permeate containing a non-adsorbed fraction. On the other hand, the adsorbed fraction on the XAD-2 column was eluted using 50% EtOH and 100% EtOH in sequence. Each of the obtained fractions was concentrated under reduced pressure, and further freeze-dried. The freeze-dried product (powder) of each fraction thus obtained was used in the following Examples.
[0077] [実施例 2]乾燥ビール酵母加水分解物由来画分の in vitroにおけるアンジォテンシ ン I変換酵素 (ACE)阻害活性  Example 2 In Vitro Angiotensin I Converting Enzyme (ACE) Inhibitory Activity of Fraction Derived from Dried Beer Yeast Hydrolyzate
アンジォテンシン I変換酵素 (ACE)阻害活性は、非特許文献 3に記載の「酢酸ェチ ル抽出法」に従ってアンジォテンシン I変換酵素 (ACE)阻害率を算出し、それを指標 として表した。酢酸ェチル抽出法は、 ACEを用いて Hip (馬尿酸) -His-Leuからジぺプ チド His-Leuを切断し、それによつて遊離した Hipを酢酸ェチルで抽出することを利用 した方法である。図 2に、本実施例で用いた ACE阻害活性の測定手順の概略を示し た。  The angiotensin I converting enzyme (ACE) inhibitory activity was calculated by calculating the angiotensin I converting enzyme (ACE) inhibition rate according to the `` ethyl acetate extraction method '' described in Non-Patent Document 3, and expressed as an index. . The ethyl acetate extraction method is a method that utilizes the cleavage of the peptide His-Leu from Hip (hippuric acid) -His-Leu using ACE, and the extraction of Hip released thereby with ethyl acetate. . FIG. 2 shows an outline of the procedure for measuring the ACE inhibitory activity used in this example.
[0078] ACE阻害活性の指標とする、算出された阻害率(%)を表 1に示す。  [0078] Table 1 shows the calculated inhibition rates (%) as indexes of the ACE inhibitory activity.
1] 乾燥ピール酵母加水分解物に由来する画分の ACE阻害率 (%) 1] ACE inhibition (%) of fractions derived from dried peel yeast hydrolyzate
被験サンプル 阻害率 (%)  Test sample inhibition rate (%)
XAD-2カラム非吸着面分 5 6  XAD-2 column non-adsorption surface 5 6
XAD-2カラムからの 50%EtOH溶出画分 8 1  50% EtOH elution fraction from XAD-2 column 8 1
XAD-2カラムからの 100%P,t,0H溶出面分 9 5  100% P, t, 0H elution surface from XAD-2 column 9 5
[0079] 表 1に示される通り、 50%EtOH溶出画分と 100%EtOH溶出画分はいずれも高い阻害 率を示したことから、それらが高レ、ACE阻害活性を有することが分かった。 [0079] As shown in Table 1, the 50% EtOH-eluted fraction and the 100% EtOH-eluted fraction both showed high inhibition rates, indicating that they had high ACE inhibitory activity.
[0080] XAD-2カラム非吸着画分の ACE阻害活性は低レ、ことから、乾燥ビール酵母加水分 解物中に含まれる ACE阻害物質は疎水性を有することが推察された。  [0080] The ACE inhibitory activity of the non-adsorbed fraction of the XAD-2 column was low, indicating that the ACE inhibitor contained in the hydrolyzate of dried brewer's yeast had hydrophobicity.
[0081] [実施例 3]乾燥ビール酵母加水分解物由来画分及び乾燥ビール酵母の in vivoにお ける血圧上昇抑制作用  Example 3 In Vivo Blood Pressure Inhibitory Effect of Fraction Derived from Dried Beer Yeast Hydrolyzate and Dried Beer Yeast
(1)実験動物への乾燥ビール酵母加水分解物由来画分の給与  (1) Feeding the fraction derived from the hydrolyzate of dried beer yeast to experimental animals
日本 SLCから購入した、高血圧自然発症ラット(SHR) (雄、 10週令、初体重平均 300 g)を用いた。  Spontaneously hypertensive rats (SHR) (male, 10 weeks old, initial weight average 300 g) purchased from Japan SLC were used.
[0082] 飼育は、個別のワイヤーゲージに入れ、室温 22°C ± 2°C、湿度は 40〜60%、明暗 周期は 12時間(7時〜 19時)の条件下で行った。飼育期間は 22日間とした。飼料は午 後 10時から翌日の午前 11時まで与え、水は自由摂取とした。  [0082] Breeding was carried out in individual wire gauges, at room temperature of 22 ° C ± 2 ° C, humidity of 40 to 60%, and light / dark cycle of 12 hours (7:00 to 19:00). The breeding period was 22 days. Food was given from 10 pm to 11 am the following day, and water was available ad libitum.
[0083] ラットに与える飼料は、基本飼料(ここでは「Con (-)」と称する)、基本飼料に NaClを 1 %添加した飼料(ここでは「Con(+)」と称する)、 Con(+)に 50%EtOH溶出画分(「Alka」 ) 0.4%を添カ卩した飼料 (ここでは「(+)+Alka」と称する)、及び Con(+)に上記乾燥ビール 酵母粉末( rkouboj )を 3%添加した飼料(ここでは「(+)+Koubo」と称する)を用いた。 飼料組成を表 2に示した。  [0083] The feed given to the rats is a basic feed (here, referred to as "Con (-)"), a feed obtained by adding 1% of NaCl to the basic feed (here, referred to as "Con (+)"), Con (+ ) To 50% EtOH-eluting fraction (“Alka”) 0.4% added to the feed (herein referred to as “(+) + Alka”), and Con (+) to the dried beer yeast powder (rkouboj). A feed supplemented with 3% (here, referred to as “(+) + Koubo”) was used. Table 2 shows the feed composition.
[表 2] 飼料組成 [Table 2] Feed composition
成分 Con (-) Con (+) C÷) +Alka (+) +Koubo カゼィン 20 20 20 20 ひ-コーンスタ'—チ: スクロー 6 . 5 64. 1 61. 5 ス =2 : 1  Ingredients Con (-) Con (+) C ÷) + Alka (+) + Koubo casein 20 20 20 20 h-cornstarch-sucrose 6.5 64.1 611.5 5s = 2: 1
セノンロース ウダ一 5 5 5 5 コーン油 5 5 5  Senonloose Udaichi 5 5 5 5 Corn oil 5 5 5
ミネラル¾合 MX) 3. 5 3. 5 3. 5 3. 5 ビタミン混合 (MN-ys- VX) 1 1 1 1  3.5 3.5 3.5 3.5 Mixing vitamins (MN-ys-VX) 1 1 1 1
NaCl ― T I 1  NaCl ― T I 1
Alka 一 - 0. 4 一  Alka one-0.4. One
酵母粉末 一 一 - 3  Yeast powder 1-3
ロ' p卜 100 100 100 100  B'p 100 100 100 100 100
[0084] 実験群は、 Con (-)を実験食として給与する対照群(Con (-)群)、 Con(+)を実験食とし て給与する群(Con (+)群)、及び、実験前半に (+)+Alkaを実験食として給与((+)+Alka 群)し、実験後半には (+)+Alkaの代わりに (+)+Kouboを実験食として給与((+)+Koubo 群)する群とし、各群のラットを 5匹とした。 [0084] The experimental group was composed of a control group (Con (-) group) fed Con (-) as an experimental diet, a group fed Con (+) as an experimental diet (Con (+) group), and an experimental group. In the first half, (+) + Alka was fed as an experimental meal ((+) + Alka group), and in the second half of the experiment, (+) + Koubo was fed as an experimental meal instead of (+) + Alka ((+) + Koubo) Group), and each group had 5 rats.
[0085] 各実験群のラットへの飼料の給与は図 3に示すようにして行った。本実施例では、 各実験群への飼料 (Con(- ))の給与を開始した日付を、 0日目とした。最初の 2日間は 全ての実験群に Con (-)を与え、その後 4日間は各実験群に実験食(それぞれ、 Con (- )、 Con(+)、(+)+Alka)を与えた。さらにその後 4日間は、 Con(+)群及び (+)+Alka群には Con(+)、 Con (-)群にはそのまま Con (-)を与えた。その後は実験終了まで再び各実験 群の実験食を与えたが、但し (+)+Alka群には (+)+Alkaの代わりに (+)+Kouboを給与し、 (+)+Koubo群と称した。  [0085] Feeding of feed to rats in each experimental group was performed as shown in FIG. In the present example, the date when feeding of the feed (Con (-)) to each experimental group was started was set to the 0th day. For the first two days, all experimental groups were given Con (-), and for the next four days, each experimental group was given an experimental diet (Con (-), Con (+), (+) + Alka, respectively). For the next 4 days, Con (+) was given to the Con (+) group and (+) + Alka group, and Con (-) was given to the Con (-) group. After that, the experimental food of each experimental group was given again until the end of the experiment, except that (+) + Alka group was given (+) + Koubo instead of (+) + Alka, and (+) + Koubo group Called.
[0086] 各実験群のラットについては、飼料摂取量と体重を毎日 9時〜 11時に測定した。 2  [0086] With respect to the rats in each experimental group, the food intake and body weight were measured every day from 9:00 to 11:00. 2
日目の体重、 6日間の累積飼料摂取量、及び体重増加量を表 3に示す。各値は、各 実験群のラット 5匹の平均値土標準誤差 (SEM)を表す。  Table 3 shows body weight on day, cumulative feed intake for 6 days, and body weight gain. Each value represents the mean soil standard error (SEM) of 5 rats in each experimental group.
[表 3] 6 B間のラットの飼料摂取量及び体重增加 [Table 3] Feed intake and body weight increase of rats between 6 B
—実験! ~  —Experiment! ~
Con (-) Con (+) (+) +Alka  Con (-) Con (+) (+) + Alka
2日目の体直 (g〕 301. 06+4 235. SS±7 300742 ±5~ Day 2 (g) 301.06 + 4 235. SS ± 7 30 0 742 ± 5 ~
6 H聞の累積飼料摂取量 (g) 112. 84±丄. 3 120. 26土 2. 40 1 . 44±2. 8  6 Cumulative feed intake per hour (g) 112.84 ± 丄. 3 120.26 Sat 2.40 1.44 ± 2.8
6日間の休重増加量 (g) 5. 24±1. 12 10. 98±2. 72 6. 76土 1. 75  6 days rest increase (g) 5.24 ± 1.12 10.98 ± 2.72 6.76 Sat 1.75
[0087] また、 6日目の体重と、それ以降 22日目までの 16日間の累積飼料摂取量と体重増 加量、及び解剖時の肝重量を表 4に示す。各値は、各実験群に含まれるラット 5匹に ついての平均値土標準誤差 (SEM)を表す。 [0087] Table 4 shows the body weight on the sixth day, the cumulative feed intake and body weight gain for the 16 days up to the 22nd day, and the liver weight at the time of dissection. Each value represents the mean soil standard error (SEM) for the 5 rats included in each experimental group.
[表 4]  [Table 4]
6日目以降のラッ 卜の飼料摂取量及ぴ体重増加 Feed intake and weight gain of rats from day 6
雄群  Male group
Con (-) Con (-i-) (+) +Koubo  Con (-) Con (-i-) (+) + Koubo
6日目の体重 (g) 311. 94± 5 3 307. 3土 5. 9  Day 6 weight (g) 311.94 ± 5 3307.3 Sat 5.9
16日間の累積飼枓摂取量 (g) 278.は 7- 3 319. 1士 L6. 0 27B. 7土 G, 5  Cumulative feed intake for 16 days (g) 278. 7- 3 319. 1 person L6. 0 27B. 7 Sat. G, 5
16 間の体重増加量 (g) 22. 32± 1. 7 29. 34±4. 3 22. 9 ±2. 6 解剖時の肝重量 (体重に対する%〕 3, 96上 0. 06 3, 86±0. 1 3. 73±0. 06  Weight gain between 16 (g) 22. 32 ± 1.7 7 29.34 ± 4.3 22.9 ± 2.6 Liver weight at autopsy (% of body weight) 3, 96 above 0.03, 86 ± 0.13.73 ± 0.06
[0088] 表 3に示すように、 6日目までは、累積飼料摂取量、体重増加量のいずれにおいて も各群間で有意差はみられなかった。 6日目以降 22日目までの 16日間では、表 4に 示すように、(+)Koubo群は、 Con(+)群に比べて、累積飼料摂取量と体重増加量のい ずれにおいても有意に低レ、か、又は低い傾向を示した。解剖時の肝重量 (体重比) については、 Con (-)群、 Con(+)群、(+)Koubo群間で有意な差はみられなかった。 [0088] As shown in Table 3, no significant difference was observed between the groups in any of the cumulative feed intake and body weight gain up to the sixth day. From the 6th day to the 22nd day, as shown in Table 4, the (+) Koubo group showed a significant increase in both cumulative feed intake and weight gain compared to the Con (+) group, as shown in Table 4. Showed a low level or a low tendency. There was no significant difference in liver weight (weight ratio) at the time of dissection among the Con (-) group, Con (+) group, and (+) Koubo group.
[0089] (2)血圧測定  [0089] (2) Blood pressure measurement
本実施例では、ラットの血圧測定を、(株)ソフトロン社製の非観血式自動血圧装置 B P-98Aを用いて Tail cuff法により行った。ラットは、測定前に 37°Cで約 10〜15分間予 備保温し、その後連続して血圧測定を 3回行った。測定値はその 3回の測定の平均 値として表した。得られた血圧測定値に基づく血圧の推移を図 4に、各ラットにおける 2日目の血圧測定値を 0とした場合の血圧変化量に基づく血圧の変動を図 5に示した  In this example, the blood pressure of rats was measured by the tail cuff method using a non-invasive automatic blood pressure device BP-98A manufactured by SOFTRON CORPORATION. Rats were pre-incubated at 37 ° C for approximately 10-15 minutes before measurement, and then three consecutive blood pressure measurements were performed. The measured value was expressed as the average of the three measurements. The change in blood pressure based on the obtained blood pressure measurement values is shown in Fig. 4, and the change in blood pressure based on the blood pressure change amount when the blood pressure measurement value on day 2 was set to 0 in each rat is shown in Fig. 5.
[0090] 図 5に示したデータについては、 Con (-)群、 Con(+)群及び (+)+Alka群の 3群間、並 びに Con (-)群、 Con(+)群及び (+)+Koubo群の 3群間に関して、分散分析 (ANOVA)を 行って有意性を検討した。またそれらの有意差は Duncanの多重比較検定法で検討 した。また、 2群間の有意差については、 Student's t-testによる検定も行った。 [0090] Regarding the data shown in Fig. 5, among the three groups of the Con (-) group, the Con (+) group and the (+) + Alka group, the Con (-) group, the Con (+) group, and the ( Analysis of variance (ANOVA) was performed for the three groups of +) + Koubo to examine the significance. In addition, those significant differences were examined by Duncan's multiple comparison test method. did. In addition, the significant difference between the two groups was also tested by Student's t-test.
[0091] この結果、実験食(Con(-)、 Con(+)、 (+) +Alka)に変更してから 3日間飼料を給与した 後の血圧測定では、(+)+Alka群が Con(+)群に比べて有意に低い血圧上昇レベルを 示した(図 5)。その後、 Con(_)、 Con(+)、(+)+Alka食を 4回給与した後で、 Con(+)群と (+ )+Alka群には Con(+)食、 Con (-)群にはそのまま Con (-)食を給与した 4日間の血圧測 定では、実験群間の血圧上昇レベルに有意な差は認められなかった(図 5)。さらに、 続レ、て Con (-)群には Con (-)食、 Con(+)群には Con(+)食、(+)+Alka群には (+)+Koubo食 を給与したところ、 12〜20日目の血圧測定では、(+)+Alka群に (+)+Koubo食を給与し た群(ここでは、(+)+Koubo群と称する)が Con(+)群に比べて有意に低い血圧上昇レ ベルを示した(図 5)。 [0091] As a result, blood pressure measurement after feeding for 3 days after changing to the experimental diet (Con (-), Con (+), (+) + Alka) showed that the (+) + Alka group The blood pressure elevation level was significantly lower than that of the (+) group (Fig. 5). Then, after feeding Con (_), Con (+), and (+) + Alka diets four times, Con (+) diet and Con (+) diet for Con (+) group and (+) + Alka group Blood pressure measurement for 4 days in which the group was fed the Con (-) diet without any change showed no significant difference in blood pressure elevation between the experimental groups (Figure 5). The Con (-) group was fed a Con (-) diet, the Con (+) group was fed a Con (+) diet, and the (+) + Alka group was fed a (+) + Koubo diet. On the other hand, in the blood pressure measurement on the 12th to 20th days, the (+) + Koubo group was fed to the (+) + Alka group (here, referred to as the (+) + Koubo group) compared to the Con (+) group. Showed a significantly lower blood pressure elevation level (Figure 5).
[0092] 以上の結果から、(+)+Alka食及び (+)+Koubo食が、血圧上昇抑制効果を有すること が示された。後述の (4)及び (5)で示されるように、 Con(+)群と (+)+Koubo群との間で血 清中の ACE活性に有意な差が認められないこと、腎臓における ACE活性については (+)+Koubo群にぉレ、て Con (-)群及び Con(+)群より低レ、値が示されることから、 (+) +Kou bo食による血圧上昇レベルの抑制は、少なくとも部分的には、腎臓における ACE活 性が低く維持されることに起因するものと推察された。  [0092] From the above results, it was shown that the (+) + Alka diet and the (+) + Koubo diet had an effect of suppressing an increase in blood pressure. As shown in (4) and (5) below, there is no significant difference in ACE activity in serum between the Con (+) group and the (+) + Koubo group, The activity was lower in the (+) + Koubo group than in the Con (-) group and the Con (+) group, and the level was lower than that in the Con (-) group. It was inferred, at least in part, that ACE activity in the kidney was kept low.
[0093] (3) 血清の調製  [0093] (3) Preparation of serum
飼育最終日(22日目)に、各実験群のラットについて、ネンブタール麻酔下(0.1ml/ 体重 100g)で開腹し、シリンジを用いて心臓より直接採血を行った。採血した血液は、 試験管に入れ、室温で 1時間放置した後、遠心分離(3,000rpm、 15°C、 15min)を行い 、血清を分離した。  On the last day of breeding (day 22), the rats in each experimental group were laparotomized under Nembutal anesthesia (0.1 ml / 100 g body weight), and blood was directly collected from the heart using a syringe. The collected blood was placed in a test tube, left at room temperature for 1 hour, and then centrifuged (3,000 rpm, 15 ° C., 15 min) to separate serum.
[0094] (4)血清中のアンジォテンシン I変換酵素活性の測定  [0094] (4) Measurement of angiotensin I converting enzyme activity in serum
血清中のアンジォテンシン I変換酵素(ACE)活性の測定は、 Liebermanら(Jack Lie berman,M.D. : Elevation of Serum Angiotensin—Convertmg—Enzyme (Aし E) Level in S arcoidosis. The American Journal of Medicine, 59, pp.365 - 3り 7 (1975))、及び Kasaha raら (Kasahara, Y. and Ashihara, Y. : Colorimetry of angiotensin-I converting enzyme activity in serum. Clin. Chem., pp.1922-1925 (1981))の方法に従い、酢酸ェチル 抽出法により行った。酢酸ェチル抽出法は、 ACEを用いて Hip-His-Leuからジぺプチ ド His-Leuを切断し、それによつて遊離した馬尿酸 (Hip)を酢酸ェチルで抽出すること を利用した方法である。図 6に、本実施例で用いた血清中の ACE活性の測定手順の 概略を示す。 Serum angiotensin I converting enzyme (ACE) activity in serum was measured by Lieberman et al. (Jack Lieberman, MD: Elevation of Serum Angiotensin—Convertmg—Enzyme (A and E) Level in S arcoidosis. The American Journal of Medicine, 59, pp. 365-3 7 (1975)), and Kasaha ra et al. (Kasahara, Y. and Ashihara, Y .: Colorimetry of angiotensin-I converting enzyme activity in serum.Clin. Chem., Pp. 1922-1925 (1981)) according to the method of ethyl acetate extraction. Ethyl acetate extraction method uses ACE to extract dipeptides from Hip-His-Leu. This method is based on the cleavage of His-Leu and extraction of hippuric acid (Hip) released with it with ethyl acetate. FIG. 6 shows an outline of the procedure for measuring ACE activity in serum used in this example.
[0095] 血清中の ACE活性を表 5に示す。表 5に示したデータについては、 Con (-)群、 Con( +)群及び (+)+Koubo群の 3群間で分散分析 (ANOVA)を行って、有意性を検討した。そ れらの有意差は Duncanの多重比較検定法で検討した。また、 2群間の有意差につい ては Student's t_testによる検定も行った。その結果、血清中の ACE活性については 、 Con (-)群、 Con(+)群及び (+)Koubo群の 3群間で有意な差が示されな力 た。  [0095] Table 5 shows the ACE activity in the serum. With respect to the data shown in Table 5, analysis of variance (ANOVA) was performed between the three groups of the Con (-) group, the Con (+) group, and the (+) + Koubo group, and the significance was examined. These significant differences were examined by Duncan's multiple comparison test. Tests using Student's t_test were also performed for significant differences between the two groups. As a result, the ACE activity in the serum showed no significant difference among the three groups of the Con (-) group, the Con (+) group and the (+) Koubo group.
[表 5] tftl淸中の ACR活性  [Table 5] ACR activity in tftl 淸
実驗群  Experiment group
Con (-) C。n (+) (+) +Koubo  Con (-) C. n (+) (+) + Koubo
ACE (U/ff 淸 1ml) 10. 9±0. 6 10. 8±0· 6 12. 0± 0. 1  ACE (U / ff 淸 1ml) 10.9 ± 0.6 10.8 ± 0 6 12.0 ± 0.1
[0096] (5)腎臓における ACE酵素活性の測定 [0096] (5) Measurement of ACE enzyme activity in kidney
腎臓からの ACE活性測定用サンプルの調製手順の概略を図 7に示した。凍結した 約 0.7gの腎臓組織をテフロン製ホモジナイザーに入れ、 10倍量の緩衝液(50mM Na  Fig. 7 shows the outline of the procedure for preparing a sample for measuring ACE activity from kidney. About 0.7 g of frozen kidney tissue is placed in a Teflon homogenizer, and 10 volumes of a buffer (50 mM
2 Two
B Oと 200mM H BOとを混合し、 pH8.3に調整)を加えてホモジナイズした後、 4°C下Mix B O and 200 mM HBO, adjust to pH 8.3), homogenize, and
4 7 3 3 4 7 3 3
で遠心分離(10,000卬 m、 20分)を行った。パスツールピペットで採取した上清を、測 定用サンプルとした。  Centrifugation (10,000 卬 m, 20 minutes). The supernatant collected with a Pasteur pipette was used as a measurement sample.
[0097] ACE活性の測定は、上記 (4)に記載した血清の場合と同様に、酢酸ェチル抽出法を 用いて馬尿酸の定量を行い、その測定値に基づいて算出した。  [0097] The ACE activity was measured in the same manner as in the case of the serum described in (4) above, by quantifying hippuric acid using the ethyl acetate extraction method, and calculating based on the measured value.
[0098] さらに、腎臓組織に含まれるタンパク質 lmg当たりの ACE活性を算出するため、 Low ryりの方法 (Lowry, OH., Rosenbrough, NJ., Farr, AJ. and Randall RJ. : Protein meas urement with the Folin phenol reagent. J. Biol. Chem., 193, pp.265-275 (1951))に 従って、使用した約 0.7gの腎臓組織に含まれるタンパク量を定量した。  [0098] Furthermore, in order to calculate ACE activity per mg of protein contained in kidney tissue, a Lowry method (Lowry, OH., Rosenbrough, NJ., Farr, AJ. And Randall RJ .: Protein measurement with According to the Folin phenol reagent. J. Biol. Chem., 193, pp. 265-275 (1951)), the amount of protein contained in about 0.7 g of kidney tissue used was quantified.
[0099] 得られた測定値から、腎臓組織に含まれるタンパク質 lmg当たりの ACE活性を算出 した。腎臓における ACE活性を表 6に示す。また表 6のデータについては、 Con (-)群 、 Con(+)群及び (+)+Koubo群の 3群間で分散分析 (ANOVA)を行って、有意性を検討 した。それらの有意差は Duncanの多重比較検定法で検討した。また、 2群間の有意 差については Student's t_testによる検定も行った。腎臓での ACE活性については、 Con (-)群及び Con(+)群と比較して、(+)Koubo群で有意に低レ、値が示された(pく 0.01) [0099] From the obtained measured values, the ACE activity per mg of the protein contained in the kidney tissue was calculated. Table 6 shows the ACE activity in the kidney. Regarding the data in Table 6, analysis of variance (ANOVA) was conducted between the Con (-) group, Con (+) group and (+) + Koubo group to examine the significance. did. Those significant differences were examined by Duncan's multiple comparison test. Tests using Student's t_test were also performed for significant differences between the two groups. ACE activity in the kidney was significantly lower and higher in the (+) Koubo group than in the Con (-) and Con (+) groups (p <0.01).
[表 6] [Table 6]
腎臓における ACEffi-性  ACEffi-sexuality in the kidney
実験群  Experimental group
Con (-) Con (+) (+) +Koubo  Con (-) Con (+) (+) + Koubo
ACE (U) 60. 27 ±4. 8 55. 8I ±3. 4 32. 70 ± 11, 99  ACE (U) 60.27 ± 4.8 8 55.8I ± 3.4 32.70 ± 11,99
ACE (U/タンパク質 lg〕 44. 62 ± 8, 14 41. 31 ± 1. 63 14, 58±3. 97*  ACE (U / protein lg) 44.62 ± 8, 14 41.31 ± 1.63 14, 58 ± 3.97 *
*: 対照群と比較して有意差あり (p<0. 01) ""  *: Significant difference compared to control group (p <0.01) ""
[0100] [実施例 4]アンジォテンシン I変換酵素阻害物質の探索及び構造解析 [Example 4] Search and structural analysis of angiotensin I converting enzyme inhibitor
(1)カラムクロマトグラフィーによる分画  (1) Fractionation by column chromatography
実施例 2で高レ、ACE阻害活性を示した 50%EtOH溶出画分から、アンジォテンシン I 変換酵素阻害物質の同定を試みた。  An angiotensin I-converting enzyme inhibitor was identified from the 50% EtOH-eluted fraction showing high ACE inhibitory activity in Example 2.
[0101] まず、実施例 1と同様にして、乾燥ビール酵母をアルカラーゼにより加水分解し、遠 心分離後に濾過して上清を得、それを XAD-2カラムに通し、カラムを水洗後、 50%Et OHを用いてペプチド類の溶出を行った。さらに、 50%EtOH溶出画分をロータリーェ バポレーターで濃縮してエタノールを除去し、次いで凍結乾燥することにより、 50%Et OH溶出画分の凍結乾燥物を調製した。この凍結乾燥物から ACE阻害物質を同定す るために本実施例で用いた手順を図 8に示す。  [0101] First, in the same manner as in Example 1, dried brewer's yeast was hydrolyzed with alcalase, centrifuged, and filtered to obtain a supernatant. The supernatant was passed through an XAD-2 column, and the column was washed with water. The peptides were eluted using% EtOH. Further, the fraction eluted with 50% EtOH was concentrated on a rotary evaporator to remove ethanol, and then lyophilized to prepare a lyophilized product of the fraction eluted with 50% EtOH. FIG. 8 shows the procedure used in this example to identify an ACE inhibitor from this freeze-dried product.
[0102] 凍結乾燥物を蒸留水に溶解した後、その可溶画分を Sephadex-G-25カラムクロマト グラフィー(展開溶媒:蒸留水)にかけて、 18の画分に分画した。得られた S印 hadex- G-25カラムクロマトグラフィーによる溶出パターンを図 9に示す。各画分について 280 nmでの吸光度を測定した。吸光度が高かった画分については、実施例 2と同様の方 法で ACE阻害活性も測定した。 280nmで高い吸光度を示した画分 17〜19は、 ACE阻 害活性(阻害率)の値もそれぞれ 61%、 62%、 64%と高かった。溶出画分 17、 18、 19、 20 及び 24の ACE阻害活性を表 7に示す (表 7)。高い ACE阻害活性を示した画分 17〜1 9を、ロータリーエバポレーターにより減圧下で濃縮した後、凍結乾燥した。  After dissolving the lyophilized product in distilled water, the soluble fraction was subjected to Sephadex-G-25 column chromatography (developing solvent: distilled water) to fractionate into 18 fractions. FIG. 9 shows the obtained elution pattern by S-marked hadex-G-25 column chromatography. The absorbance at 280 nm was measured for each fraction. The ACE inhibitory activity of the fraction having a high absorbance was measured in the same manner as in Example 2. Fractions 17 to 19, which exhibited high absorbance at 280 nm, also had high ACE inhibitory activities (inhibition rates) of 61%, 62%, and 64%, respectively. The ACE inhibitory activities of the eluted fractions 17, 18, 19, 20 and 24 are shown in Table 7 (Table 7). Fractions 17 to 19 showing high ACE inhibitory activity were concentrated under reduced pressure using a rotary evaporator, and then lyophilized.
[表 7] 酵母アル力ラーゼ加水分解物由来画分の ACE阻害活性 画分番号 阻害率% [Table 7] ACE inhibitory activity of the fraction derived from the yeast allylase hydrolyzate Fraction number% inhibition
画分 1 7 6 1  Fraction 1 7 6 1
画分 1 8 6 2  Fraction 1 8 6 2
画分 1 9 6 4  Fraction 1 9 6 4
画分 2 0 4 7  Fraction 2 0 4 7
画分 2 1 2 1  Fraction 2 1 2 1
[0103] (2)逆相分取 HPLCによる分画 ·精製 [0103] (2) Fractionation and purification by reversed-phase preparative HPLC
上記 (1)で調製された高レ、 ACE阻害活性を示した画分の凍結乾燥物を、蒸留水に 溶解した後、さらに逆相分取 HPLCにかけた。なお逆相分取 HPLCでは、カラムとして Develosil C30-UG-5 (25mm X 250mm)を、展開溶媒として 1) 5%MeCN、及び 2) 20%M eCNを用レ、、展開溶媒 2)力 分で 100%となるリニアグラジェント(線形勾配)で展開さ せた。流速は 2.0ml/分、検出は 215nmで行った。  The lyophilized product of the fraction showing high ACE inhibitory activity prepared in the above (1) was dissolved in distilled water and then subjected to reverse phase preparative HPLC. In reverse phase preparative HPLC, Develosil C30-UG-5 (25 mm x 250 mm) was used as a column, and 1) 5% MeCN and 2) 20% MeCN were used as developing solvents. Was developed with a linear gradient (linear gradient) of 100%. The flow rate was 2.0 ml / min and detection was at 215 nm.
[0104] 図 10及び図 11は、上記 (1)で調製された画分 18を逆相分取 HPLC (Develosil C30- UG-5 (25mm X 250mm) )を行なって得られた HPLCクロマトグラムを示してレ、る。主要 なピークは 30、 50、 70分付近 (溶出時間)で見られた。それらの主要なピークを図 10 では A〜C、図 11では D〜Fとして示した。主要なピークについては、実施例 2と同様 にして ACE阻害活性を測定した。ピーク Aを含む画分 (画分 A)、ピーク Bを含む画分( 画分 B)の ACE阻害活性(阻害率)は、 18%、 23%であった。同様に、ピーク E、ピーク Fをそれぞれ含む画分(画分 E、画分 F)の ACE阻害活性(阻害率)は、 18%、 14%で あった。  FIGS. 10 and 11 show HPLC chromatograms obtained by subjecting fraction 18 prepared in (1) above to reverse phase preparative HPLC (Develosil C30-UG-5 (25 mm × 250 mm)). Show me. Major peaks were observed around 30, 50 and 70 minutes (elution time). The main peaks are shown as A to C in FIG. 10 and D to F in FIG. The ACE inhibitory activity of the main peak was measured in the same manner as in Example 2. The ACE inhibitory activity (inhibition rate) of the fraction containing peak A (fraction A) and the fraction containing peak B (fraction B) were 18% and 23%. Similarly, the ACE inhibitory activities (inhibition rates) of the fractions containing peaks E and F (fractions E and F) were 18% and 14%, respectively.
[0105] 次に、高い ACE阻害活性を示した画分 B及び画分 Eを混合し、それをゲル濾過 HPL Cに供した。ゲル濾過 HPLCでは、カラムとして Develosil 300 Diol-5 (10mm X 250mm) を用い、展開溶媒としては蒸留水を用いた。検出は 215nmで行い、主要なピーク画分 について上記と同様に ACE阻害活性を測定した。得られたゲル濾過 HPLCクロマトグ ラムを図 12に示す。 3つの主要なピーク G〜Iが得られたが、それらのピークを含む画 分 (画分 G〜I)はレ、ずれも ACE阻害活性を示した (表 8)。  [0105] Next, Fraction B and Fraction E showing high ACE inhibitory activity were mixed, and subjected to gel filtration HPLC. In gel filtration HPLC, Develosil 300 Diol-5 (10 mm × 250 mm) was used as a column, and distilled water was used as a developing solvent. Detection was performed at 215 nm, and the ACE inhibitory activity was measured for the major peak fraction in the same manner as described above. The gel filtration HPLC chromatograph obtained is shown in FIG. Three major peaks G to I were obtained, and the fractions containing those peaks (fractions G to I) also showed ACE inhibitory activity (Table 8).
[表 8] 画分 阻害率 (%) [Table 8] Fraction inhibition rate (%)
画分 G 8 7  Fraction G 8 7
画分 H 2 0  Fraction H 2 0
画分 I 4 5  Fraction I 4 5
[0106] なお、ピーク画分 G〜Iにつレ、ては、再度 Develosil C30-UG-5 (4.6mm X 250mm)に よる逆相分取 HPLC分析を行い、ピークの単一性を確認した。 [0106] The peak fractions G to I were analyzed again by reverse-phase preparative HPLC analysis using Develosil C30-UG-5 (4.6 mm x 250 mm) to confirm the uniformity of the peaks. .
[0107] (3)アミノ酸分析及び晳量分析 (LC/MS *MS)  [0107] (3) Amino acid analysis and mass analysis (LC / MS * MS)
上記 (2)で得られた単一ピークを含むピーク画分 G〜Iのそれぞれにつレ、て、アミノ酸 分析を行った。ピーク画分を 0.5ml取り、それに 12N HC1 0.5mlを加え、さらに、 α _メ ルカプト酢酸を一滴入れ、 Νガスで試験管内の空気を置換した。次いでアルミホイル  An amino acid analysis was performed for each of the peak fractions G to I including the single peak obtained in (2) above. 0.5 ml of the peak fraction was taken, 0.5 ml of 12N HC1 was added thereto, and a drop of α-mercaptoacetic acid was further added, and the air in the test tube was replaced with a gas. Then aluminum foil
2  2
で遮光した状態でリアクションヒーターを使用して、 110°Cで 24時間かけて加水分解を 行った。放冷後、 G-4グラスフィルターを用いて吸引濾過した。濾液を濃縮乾固した 後、 0.2Nのクェン酸ナトリウム緩衝液(pH2.2) 2mlを加えてアミノ酸を溶解させ、フィノレ ター濾過(親水性; 0.2 z m)を行ったものを、アミノ酸分析用サンプノレとした。分析には 、アミノ酸分析計 (ATO MLC- 703型)を用いた。  Hydrolysis was performed at 110 ° C for 24 hours using a reaction heater in a state where the light was shielded from light. After cooling, suction filtration was performed using a G-4 glass filter. After concentrating the filtrate to dryness, 2 ml of 0.2 N sodium citrate buffer (pH 2.2) was added to dissolve the amino acids, and the mixture was subjected to finolator filtration (hydrophilicity: 0.2 zm) to obtain a sample for amino acid analysis. And For the analysis, an amino acid analyzer (ATO MLC-703 type) was used.
[0108] アミノ酸分析の結果、画分 Gにはアミノ酸として Pheのみが検出された。一方、画分 H ではァラニン (Ala):フエ二ルァラニン(Phe) = 1:1、画分 Iではグリシン(Gly):フエニル ァラニン(Phe) =2:1〜1: 1のアミノ酸モル比が検出された。このように、画分 G〜Iはい ずれも、フエ二ルァラニンを含んでいた。  As a result of amino acid analysis, only Phe was detected as an amino acid in fraction G. On the other hand, in fraction H, alanine (Ala): phenylalanine (Phe) = 1: 1, and in fraction I, glycine (Gly): phenylalanine (Phe) = 2: 1 to 1: 1 amino acid molar ratio was detected. Was done. Thus, all of fractions GI contained fenilalanine.
[0109] 続いて画分 G〜Iについて、液体クロマトグラフ Zタンデム型質量分析装置 (LC/MS /Ms ; LCQ Advantage ion trap mass spectrometer (Thermo Pinmgan))を用レヽ飞貧 分析を行った。  [0109] Subsequently, the fractions G to I were subjected to level analysis using a liquid chromatograph Z tandem mass spectrometer (LC / MS / Ms; LCQ Advantage ion trap mass spectrometer (Thermo Pinmgan)).
[0110] その結果、画分 Gは、 m/z 166 [ M+H]+を与えたことから、フエ二ルァラニン(Phe、又 は F)と同定された。図 13に、画分 Gについて得られたマススペクトラムとフエ二ルァラ ニンの化学構造式を示す。画分 Hは、 m/z 237 [ M+H]+を与え、さらに MS/MS分析の 2次イオンとして m/z 166 [M+H]+を与えたことから、ァラニルフエ二ルァラニン (Ala-Phe 、又は AF)と同定された。図 14に、画分 Hについて得られたマススペクトラムとァラニ ルフヱ二ルァラニンの化学構造式を示す。画分 Iは、 m/z 223 [ M+H]+を与え、さらに 2 次イオンとして m/z 166 [M+H]+を与えたことから、グリシルフヱ二ルァラニン (Gly_Phe 、又は GF)と同定された。図 15に、画分 Iについて得られたマススペクトラムとグリシル フエ二ルァラニンの化学構造式を示す。 [0110] As a result, Fraction G was identified as phenylalanine (Phe or F) because it gave m / z 166 [M + H] + . FIG. 13 shows the mass spectrum obtained for Fraction G and the chemical structural formula of phenylalanine. Fraction H gave m / z 237 [M + H] + and m / z 166 [M + H] + as a secondary ion for MS / MS analysis, indicating that alanylpheniralanine (Ala- Phe or AF). Figure 14 shows the mass spectrum and Arani obtained for fraction H. 1 shows a chemical structural formula of rufiniralanine. Fraction I gave m / z 223 [M + H] + and further gave m / z 166 [M + H] + as a secondary ion, and thus was identified as glycylphenylalanine (Gly_Phe or GF). Was done. FIG. 15 shows the mass spectrum obtained for Fraction I and the chemical structural formula of glycylpheniralanine.
[0111] [実施例 5]合成 AF及び GFによる血圧降下作用 [Example 11] Blood pressure lowering effect of synthetic AF and GF
BACHEM(Bachem AG, Hauptstrasse 144, CH-4416, Budendorf)に合成を委託し 入手した、合成ァラユルフェ二 t  Synthetic alayurfenite obtained by outsourcing the synthesis to BACHEM (Bachem AG, Hauptstrasse 144, CH-4416, Budendorf) t
1+ルァラニン (AF)又はグリシルフヱ二ルァラニン (GF)を、 12時間絶食させた SHRラット(雄、 21週齢、 366g〜396g;日本 SLCから購入)に、 16mg /ml H 0として一匹当たり lmlを経口投与した。経口投与直前(0時間)、並びに経口 投与の 2、 4、 6及び 8時間後に、(株)ソフトロン社製の非観血式自動血圧測定装置 BP -98Aを用いて Tail cuff法により血圧測定を 2回行った。実験群は、 AF投与群(2匹) 、 GF投与群(2匹)、対照群 (AF又は GFの代わりに蒸留水を lml経口投与; 1匹)とし た。  1+ luananine (AF) or glycylpanolananine (GF) was given to SHR rats (male, 21 weeks old, 366g-396g; purchased from Japan SLC) fasted for 12 hours at 16mg / ml H0 as lml / animal. Was orally administered. Immediately before oral administration (0 hour) and 2, 4, 6 and 8 hours after oral administration, blood pressure is measured by the tail cuff method using a non-invasive automatic blood pressure measurement device BP-98A manufactured by Softron Co., Ltd. Was performed twice. The experimental group was an AF administration group (2 animals), a GF administration group (2 animals), and a control group (1 ml oral administration of distilled water instead of AF or GF; 1 animal).
[0112] この結果を表 9に示す。表中の AF投与群及び GF投与群のデータは、各群のラット の血圧測定値の平均値土標準誤差 (SEM)である。  [0112] The results are shown in Table 9. The data of the AF administration group and the GF administration group in the table are the mean values of the standard errors of the blood (SEM) of the blood pressure measurement values of the rats in each group.
[表 9] 実験群  [Table 9] Experimental group
AF投与群 ( mHg) GF投与群 (mmHg) 対照群 (mm¾〉 ϋ時閭 20 5. 6 191 AF group (mHg) GF group (mmHg) Control group (mm ()
2時間 lti9上 7. 5 179. 75±6, 0 160 m 173. 75土 4. 9 169. 75±4. 1 2 hours on lti9 7.5 179.75 ± 6,0 160 m 173.75 Sat 4.9 169.75 ± 4.1
S時間 161. 5 ± 8. 3 151. 5± 7, 2 170 S time 161.5 ± 8.3 151.5 ± 7, 2 170
3時間 159±4. 9 152. 5± : 8 201. 5 3 hours 159 ± 4.9 9 152.5 ±: 8 201.5
[0113] このデータに基づく収縮期血圧の推移を示すグラフを図 16に示す。また、各ラット における 0時間の血圧を 0としたときの血圧変化値を算出し、その値に基づく血圧の 変化量の推移を図 17にグラフで示す。 [0113] Fig. 16 shows a graph showing the transition of systolic blood pressure based on this data. In addition, a blood pressure change value when the blood pressure at 0 hour in each rat is set to 0 is calculated, and a change in the blood pressure change amount based on the calculated value is shown in a graph in FIG.
[0114] 図 16に示される通り、 AFと GFはいずれも高血圧自然発症 (SHR)ラットにおいて血圧 降下作用を示した。対照群ラットの血圧変動が大きいために、投与の 2、 4、 6時間後 では AF投与群、 GF投与群における血圧降下は明瞭には示されていなレ、が、投与の 8時間後には、 AF投与群と GF投与群は対照群に比べて明らかに低い血圧を示した [0115] 図 17に示される通り、 AF投与群と GF投与群では、少なくとも投与の 8時間後まで血 圧が降下したまま維持されてレ、た。 [0114] As shown in Fig. 16, both AF and GF showed a blood pressure lowering effect in spontaneously hypertensive (SHR) rats. At 2, 4 and 6 hours after administration, the blood pressure drop in the AF group and the GF group was not clearly shown due to the large fluctuations in the blood pressure of the control rats. AF group and GF group showed clearly lower blood pressure than control group [0115] As shown in Fig. 17, in the AF administration group and the GF administration group, the blood pressure was maintained at a low level until at least 8 hours after the administration.
産業上の利用可能性  Industrial applicability
[0116] 本発明に係るペプチド及び組成物は、アンジォテンシン I変換酵素の活性を効果的 に阻害することができる。また本発明に係るペプチド及び組成物は、飲食品、機能性 食品及び医薬品に含有させることにより、血圧降下作用をもつ飲食品、機能性食品 及び医薬品を製造することができる。 [0116] The peptides and compositions according to the present invention can effectively inhibit the activity of angiotensin I converting enzyme. In addition, by incorporating the peptide and the composition according to the present invention into foods and drinks, functional foods and pharmaceuticals, foods and drinks, functional foods and pharmaceuticals having a hypotensive effect can be produced.

Claims

請求の範囲 The scope of the claims
[I] ァラエルフエ二ルァラニン (Ala-Phe)であるジペプチド又はその塩。  [I] A dipeptide which is araelfeniralanine (Ala-Phe) or a salt thereof.
[2] ダリシルフェニルァラニン(Gly-Phe)であるジペプチド又はその塩。 [2] A dipeptide which is dalysylphenylalanine (Gly-Phe) or a salt thereof.
[3] ァラエルフエ二ルァラニン (Ala-Phe)、グリシルフェニルァラニン(Gly-Phe)、及びそ れらの塩からなる群より選択される少なくとも 1つを含有する、アンジォテンシン変換 酵素阻害用組成物。  [3] Angiotensin-converting enzyme inhibitor containing at least one selected from the group consisting of araelpheniralanine (Ala-Phe), glycylphenylalanan (Gly-Phe), and salts thereof. Composition.
[4] 以下の工程 a)〜c)を含む、アンジォテンシン I変換酵素阻害用組成物の製造方法。  [4] A method for producing a composition for inhibiting angiotensin I converting enzyme, comprising the following steps a) to c).
a)ビール酵母を加水分解する工程、  a) hydrolyzing brewer's yeast,
b)その加水分解物をクロマトグラフィー法によって分画する工程、及び c)ァラニルフエ二ルァラニン (Ala-Phe)及び/又はグリシルフェニルァラニン(Gly- Phe)を含有する画分を分取する工程  b) a step of fractionating the hydrolyzate by a chromatographic method, and c) a step of fractionating a fraction containing alanylpheniralanine (Ala-Phe) and / or glycylphenylalananine (Gly-Phe).
[5] ァラユルフェ二ルァラニン(Ala-Phe)及び/又はグリシルフヱ二ルァラニン(Gly_Phe [5] Arayurpheniralanine (Ala-Phe) and / or glycylfuranylalanine (Gly_Phe)
)を含有する画分が、分子量 150〜2,000のペプチドを含む画分である、請求項 4に記 載の方法。 5. The method according to claim 4, wherein the fraction containing the peptide having a molecular weight of 150 to 2,000.
[6] 請求項 4又は 5に記載の方法により製造された、アンジォテンシン I変換酵素阻害用 組成物。  [6] A composition for inhibiting angiotensin I converting enzyme produced by the method according to claim 4 or 5.
[7] 請求項 1又は 2に記載のジペプチド又はその塩を含有する、飲食品用素材。  [7] A food and drink material containing the dipeptide according to claim 1 or 2 or a salt thereof.
[8] 請求項 1又は 2に記載のジペプチド又はその塩を含有する、飲食品。 [8] A food or drink comprising the dipeptide according to claim 1 or 2 or a salt thereof.
[9] 請求項 1又は 2に記載のジペプチド又はその塩を添加増量した飲食品。 [9] A food or drink to which the dipeptide according to claim 1 or 2 or a salt thereof is added to increase the amount.
[10] 請求項 3又は 6に記載の組成物を含有する、飲食品用素材。 [10] A material for food or drink, comprising the composition according to claim 3 or 6.
[I I] 請求項 10に記載の飲食品用素材を添加した飲食品。  [II] A food or drink to which the food or drink material according to claim 10 is added.
[12] 飲料である、請求項 8、 9又は 11に記載の飲食品。 [12] The food or drink according to claim 8, 9 or 11, which is a drink.
[13] 血圧を降下させるための、請求項 8、 9、 11又は 12に記載の飲食品。  [13] The food or drink according to claim 8, 9, 11 or 12 for lowering blood pressure.
[14] 請求項 1又は 2に記載のジペプチド又はその塩を含有する、医薬組成物。 [14] A pharmaceutical composition comprising the dipeptide according to claim 1 or 2 or a salt thereof.
[15] 請求項 3又は 6に記載の組成物を含有する、医薬組成物。 [15] A pharmaceutical composition comprising the composition according to claim 3 or 6.
[16] 血圧降下剤である、請求項 14又は 15に記載の医薬組成物。 [16] The pharmaceutical composition according to claim 14 or 15, which is a hypotensive agent.
[17] 以下の工程 a)〜c)を含む、ァラニルフエ二ルァラニン (Ala-Phe)及び/又はグリシル フエ二ルァラニン (Gly-Phe)を含有する組成物の製造方法。 a)ビール酵母を加水分解する工程、 [17] A method for producing a composition containing alanylpheniralanine (Ala-Phe) and / or glycylpheniralanine (Gly-Phe), comprising the following steps a) to c). a) hydrolyzing brewer's yeast,
b)その加水分解物を、疎水性吸着剤を充填したカラムに通液する工程、及び c)濃度 50〜100%のエタノール水溶液を用いて、その疎水性吸着剤から吸着物質 を溶出させる工程  b) passing the hydrolyzate through a column packed with a hydrophobic adsorbent, and c) eluting the adsorbed substance from the hydrophobic adsorbent using a 50-100% ethanol aqueous solution
PCT/JP2005/010168 2004-06-03 2005-06-02 Dipeptide exhibiting antihypertensive action WO2005118619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006514131A JPWO2005118619A1 (en) 2004-06-03 2005-06-02 Dipeptide having hypotensive action

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-166223 2004-06-03
JP2004166223 2004-06-03

Publications (1)

Publication Number Publication Date
WO2005118619A1 true WO2005118619A1 (en) 2005-12-15

Family

ID=35462881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010168 WO2005118619A1 (en) 2004-06-03 2005-06-02 Dipeptide exhibiting antihypertensive action

Country Status (2)

Country Link
JP (1) JPWO2005118619A1 (en)
WO (1) WO2005118619A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008057964A3 (en) * 2006-11-02 2008-08-28 Coca Cola Co High-potency sweetener composition with rubisco protein, rubiscolin, rubiscolin derivatives, ace inhibitory peptides, and combinations thereof, and compositions sweetened therewith
JP4493725B1 (en) * 2009-10-02 2010-06-30 株式会社 ファイナルフューチャーインターナショナル Composition having lipolysis promoting action
JP2013043887A (en) * 2011-08-26 2013-03-04 Bhn Kk Hypotensive agent
US9101160B2 (en) 2005-11-23 2015-08-11 The Coca-Cola Company Condiments with high-potency sweetener
WO2015163905A1 (en) * 2014-04-25 2015-10-29 General Mills, Inc. Food products having sweetness enhancer
JP2019172674A (en) * 2018-03-29 2019-10-10 株式会社ウォーターエージェンシー Compositions used for ace inhibition, suppression of blood pressure elevation, or blood pressure decrease, and methods for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256387A (en) * 1991-06-14 1994-09-13 Suetsuna Yoko New peptide, its production and hypotensive agent comprising the same as active ingredient
JPH08245694A (en) * 1995-03-09 1996-09-24 Sanei Touka Kk Vasodepressor substance and zein capable of being easily degraded with protease and used as its production intermediate and their production
JPH0956361A (en) * 1995-06-15 1997-03-04 Kirin Brewery Co Ltd Production of yeast extract
JP2000191691A (en) * 1998-05-29 2000-07-11 Ichiban Shokuhin Kk Angiotensin converting enzyme inhibitory peptide
JP2003102425A (en) * 2001-09-27 2003-04-08 Kirin Brewery Co Ltd Enzyme suspension food material and drink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256387A (en) * 1991-06-14 1994-09-13 Suetsuna Yoko New peptide, its production and hypotensive agent comprising the same as active ingredient
JPH08245694A (en) * 1995-03-09 1996-09-24 Sanei Touka Kk Vasodepressor substance and zein capable of being easily degraded with protease and used as its production intermediate and their production
JPH0956361A (en) * 1995-06-15 1997-03-04 Kirin Brewery Co Ltd Production of yeast extract
JP2000191691A (en) * 1998-05-29 2000-07-11 Ichiban Shokuhin Kk Angiotensin converting enzyme inhibitory peptide
JP2003102425A (en) * 2001-09-27 2003-04-08 Kirin Brewery Co Ltd Enzyme suspension food material and drink

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEUNG H. ET AL.: "Binging of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence.", J. BIOL. CHEM., vol. 255, 1980, pages 401 - 407, XP002991358 *
SUETSUNA K. ET AL.: "Isolation and characterization of angiotensin I-converting enzyme inhibitor dipeptides derived from Allium sativum L (garlic).", J. NUTR. BIOCHEM., vol. 9, 1998, pages 415 - 419, XP002991359 *
YONEKURA M. ET AL.: "Isolation and application of physiologically active peptides from soybean whey and okara proteins.", SOY PROTEIN RESEARCH., vol. 6, 2003, JAPAN, pages 88 - 93, XP002980477 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101160B2 (en) 2005-11-23 2015-08-11 The Coca-Cola Company Condiments with high-potency sweetener
WO2008057964A3 (en) * 2006-11-02 2008-08-28 Coca Cola Co High-potency sweetener composition with rubisco protein, rubiscolin, rubiscolin derivatives, ace inhibitory peptides, and combinations thereof, and compositions sweetened therewith
JP4493725B1 (en) * 2009-10-02 2010-06-30 株式会社 ファイナルフューチャーインターナショナル Composition having lipolysis promoting action
WO2011039999A1 (en) * 2009-10-02 2011-04-07 株式会社 ファイナルフューチャーインターナショナル Composition having lipolysis-promoting effect
JP2011074051A (en) * 2009-10-02 2011-04-14 Final Future International Inc Composition having lipolysis-promotive effect
EP2484370A4 (en) * 2009-10-02 2014-02-26 Final Future International Inc Composition having lipolysis-promoting effect
US9399043B2 (en) 2009-10-02 2016-07-26 Final Future International, Inc. Composition having lipolysis-promoting effect
JP2013043887A (en) * 2011-08-26 2013-03-04 Bhn Kk Hypotensive agent
WO2015163905A1 (en) * 2014-04-25 2015-10-29 General Mills, Inc. Food products having sweetness enhancer
JP2019172674A (en) * 2018-03-29 2019-10-10 株式会社ウォーターエージェンシー Compositions used for ace inhibition, suppression of blood pressure elevation, or blood pressure decrease, and methods for producing the same

Also Published As

Publication number Publication date
JPWO2005118619A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
CN103254278B (en) Bioactive peptides identified in enzymatic hydrolyzates of milk caseins and method of obtaining same
CA2526891C (en) Angiotensin-converting enzyme inhibitory peptides
EP2380901B1 (en) Angiotensin converting enzyme inhibitory peptide
JP2007523940A (en) Antihypertensive peptide
AU2002366037B2 (en) Novel peptide having angiotensin convertase inhibitory effect
WO2005118619A1 (en) Dipeptide exhibiting antihypertensive action
WO2009035169A1 (en) Peptide having anti-hypertensive activity
JP2009137929A (en) Method for producing polyphenol extract, prophylactic agent for osteoporosis, saccharide-digesting enzyme inhibitor, functional compositions using them, and food composition, food composition for specified health use, quasi-drug composition, and pharmaceutical composition each containing the functional composition
JPH06293796A (en) Adipose cell differentiation-inhibiting peptide and adipose cell differentation-inhibiting agent containing the peptide as active ingredient
JP3592593B2 (en) Angiotensin converting enzyme inhibitor
WO2007037297A1 (en) Composition effective for prevention and treatment of adult disease
JP2007261999A (en) Hypotensive peptide derived from royal jelly
WO2013125622A1 (en) Dipeptidyl peptidase-iv inhibitor
Zhang et al. Angiotensin I‐converting enzyme inhibitory activity of Acetes chinensis peptic hydrolysate and its antihypertensive effect in spontaneously hypertensive rats
WO2005061529A1 (en) Peptide inhibiting angiontensin converting enzyme
JP2006342134A (en) Medicine given by using ank-khak and method for producing the same
JP6369951B2 (en) Dipeptidyl peptidase-IV inhibitor
JP2000106826A (en) Composition containing chlorella peptide
US20220330595A1 (en) Angiotensin-converting enzyme inhibitor, blood pressure-lowering agent, and beverages and food products
JP2017210445A (en) Angiotensin-converting enzyme inhibitor containing urolithin
US20060040872A1 (en) Calcium channel inhibitor
WO2000012109A1 (en) α-GLUCOSIDASE INHIBITOR
JP2001240600A (en) Purification method for peptide
WO2024038888A1 (en) Composition
JP2012171936A (en) Hypotensive or functional composition, and food composition, specified health food composition, quasidrug composition, and drug composition containing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514131

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase