WO2005117352A1 - ネットワークシステム - Google Patents

ネットワークシステム Download PDF

Info

Publication number
WO2005117352A1
WO2005117352A1 PCT/JP2004/007386 JP2004007386W WO2005117352A1 WO 2005117352 A1 WO2005117352 A1 WO 2005117352A1 JP 2004007386 W JP2004007386 W JP 2004007386W WO 2005117352 A1 WO2005117352 A1 WO 2005117352A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
communication
operation information
information
network system
Prior art date
Application number
PCT/JP2004/007386
Other languages
English (en)
French (fr)
Inventor
Leping Huang
Original Assignee
Nokia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Corporation filed Critical Nokia Corporation
Priority to CNA2004800430502A priority Critical patent/CN1954552A/zh
Priority to US11/596,099 priority patent/US7903622B2/en
Priority to JP2006513783A priority patent/JP3915007B2/ja
Priority to EP04745422A priority patent/EP1758302A4/en
Priority to PCT/JP2004/007386 priority patent/WO2005117352A1/ja
Publication of WO2005117352A1 publication Critical patent/WO2005117352A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3209Monitoring remote activity, e.g. over telephone lines or network connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0287Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level changing the clock frequency of a controller in the equipment
    • H04W52/029Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level changing the clock frequency of a controller in the equipment reducing the clock frequency of the controller
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a network system, and more specifically, to reduction of power consumption and communication quality of a network system.
  • Wireless LAN technology is very rarely incorporated into mobile phones, which are widely used in laptop computers and PDAs. This is mainly because wireless LAN consumes large power.
  • IEEE802.il specification a wireless LAN standard, specifies a method called the Power Saving Protocol (PSP). With this method, a station that is not an access point only needs to monitor the network once during the N beacon intervals. While not monitoring the network, the station switches to sleep mode, thus saving power consumption. Data arriving at the access point during the sleep mode is temporarily stored by the access point, and is passed to the communication station when communication resumes.
  • PSP Power Saving Protocol
  • APSD Power Save Delivery
  • the basic idea of APSD is similar to that of PSP, and the time spent by the wireless LAN device monitoring the network is reduced as much as possible, and during periods when the network is not monitored, the wireless LAN device is put into sleep mode to reduce power consumption. It's about saving.
  • voltage hopping which changes the operating frequency and supply voltage of an information processing IC according to the load. Since the power consumption of an IC is proportional to the operating frequency and also to the square of the supply voltage, dynamically controlling these can effectively reduce power consumption.
  • next-generation wireless LAN In the next-generation wireless LAN, real-time applications such as VoIP (Voice over IP) technology and VOD (Video On Demand) technology are considered to be widely used. In real-time applications, it is important to ensure quality of service (QoS) for communications. Therefore, next-generation wireless LAN technology is required to solve the difficult task of reducing system power consumption while maintaining communication quality.
  • VoIP Voice over IP
  • VOD Video On Demand
  • Non-Patent Document 1 IEEE802.11e draft
  • Non-patent Document 2 Hiroshi Kawaguchi et al., "CVS (Cooperative Voltage Scaling) and Voltage Hopping by Cooperation of OS, Application, and Hardware for Low-Power Real-Time Embedded Systems," IEICE Technical Report May 2001
  • the present invention is intended to reduce power consumption while satisfying required communication quality in a network system.
  • the present invention provides a network system including a first communicator, a second communicator that communicates with the first communicator, and a protocol group used for the communication.
  • the protocol group includes first-direction IC operation information for transmitting IC operation information relating to an operation of a first information processing IC of the first communication device to the first communication device to the second communication device.
  • Transmission means, and second direction IC operation information transmission means for transmitting the IC operation information from the second communication device to the first communication device, wherein the first communication device creates the IC operation information.
  • the second communication device transmits the transmitted IC operation information to the second communication device.
  • the second communication device Approving all or a part of the operation information and transmitting the approved IC operation information to the first communication device using the second-direction IC operation information transmitting means, wherein the first communication device A network system, wherein the operating frequency and the Z or the supply voltage of the first information processing IC are adjusted according to the approved IC operation information. If the second communicator does not approve all of the transmitted IC operation information, a new U ⁇ IC operation information is created and transmitted to the first communicator. Is also good.
  • the IC operation information may include information on a maximum processing speed of the first information processing IC, and the second communicator transmits the transmitted IC operation information in consideration of the maximum processing speed. Can be configured to approve all or part of
  • the IC operation information relates to an operation frequency, a Z, or a supply voltage that can be taken by the first information processing IC.
  • the first communication device is configured to perform communication with the IC in consideration of at least one of communication quality required for the communication, throughput required for the communication, and channel access delay in the communication. It is preferable to create operation information.
  • the IC operation information includes the operation frequency of the first information processing IC
  • the first communication device operates according to the operation frequency approved by the second communication device.
  • the supply voltage of the first information processing IC suitable for the operating frequency is calculated, and the supply voltage of the first information processing IC is set to the calculated supply voltage. .
  • the IC operation information may be quality information relating to communication quality required for the communication.
  • the quality information relates to, for example, a time limit for processing unit data such as one PDU (Protocol Data Unit).
  • PDU Protocol Data Unit
  • the present invention when it is applied to communication based on the IEEE802.11e standard, it is configured to use a TSPEC parameter group as the IC operation information. Can do.
  • the first communication device performs processing required within the time limit regarding quality information approved by the second communication device within an operating frequency and Z or a supply voltage that the first information processing ic can take.
  • the first information processing IC can be configured to adjust the first information processing IC to the lowest operating frequency and Z or the supply voltage capable of performing the following.
  • the first communication device is configured to operate the first information processing ic in the operating frequency and Z or the supply voltage which can be taken by the first information processing ic.
  • the second communication device transmits second IC operation information to the second communication device, and the second communication device acknowledges all or a part of the transmitted second IC operation information and performs the second direction IC operation. Transmitting the approved second IC operation information to the first communication device by using information transmission means, and the first communication device further transmits the first information in accordance with the approved second IC operation information;
  • the network system according to the present invention can be configured to adjust the operating frequency and the Z or the supply voltage of the processing IC.
  • the first communication device changes the supply voltage of the first information processing IC, thereby processing the physical layer of the first communication device.
  • the delay time changes, in order to comply with the IEEE802.11e standard, the processing delay time of the physical layer is estimated and held, and the value of the Timestamp field of the MAC frame is transmitted before the MAC frame is transmitted. It must be configured to update to the estimated processing delay time.
  • the second communication device includes a communication quality change required for communication with the first communication device and a communication quality change required for communication with the first communication device. Change in put, change in communication quality required for communication with a communication device other than the first communication device, change in throughput required for communication with a communication device other than the first communication device.
  • the IC operation information that has not been approved once is newly approved, and the newly approved IC operation information is transmitted to the first communication device.
  • the first information processing IC operation frequency and Z or the supply voltage may be adjusted according to the newly approved IC operation information.
  • the first communication device is used by the first communication device. And means for transmitting power information to the first communication device and the second communication device.
  • the second communication device can be configured to perform the approval in consideration of the power supply information obtained through the means for transmitting the power supply information.
  • the second communication device considers IC operation information transmitted from the first communication device in consideration of second information included in the second communication device. It is characterized by adjusting the supply voltage and Z or the operating frequency of the processing IC. Further, the second communication device can be configured to adjust the supply voltage and the Z or the operating frequency of the second information processing IC in consideration of the power information. Further, the second communication device may be configured to approve all or a part of the IC operation information in consideration of the supply voltage and the Z or the operation frequency of the adjusted second information processing IC. .
  • the IC operation information is transmitted from the first communication device to the second communication device when the first communication device and the second communication device perform communication setting. Alternatively, even after the first communication device and the second communication device have started communication, the first communication device can transmit to the second communication device from the first communication device. It may be configured as follows.
  • the first direction IC operation information transmitting unit and the second direction IC operation information transmitting unit may be configured to be incorporated in a layer 2 protocol of the protocol group.
  • the communication may be communication based on the IEEE802.lie standard.
  • the quality information may be a symbol indicating a type of the communication.
  • An example of this symbol is a symbol representing a service such as VoIP or VOD.
  • the first communication device and Z or the second communication device be configured to know the time limit for processing the unit data corresponding to the symbol.
  • At least one of the first communication device and the second communication device is any one of a terminal, an access point, a router, and a gateway connected to a LAN. There can be. In one embodiment of the present invention, at least one of the first communication device and the second communication device can be a terminal connected to a PTSN network. In one embodiment of the present invention, the first communication device and the second communication device At least one of the communication devices can be any of a terminal connected to a mobile phone network, a base station, and another device connected to the mobile phone network. Further, in one embodiment of the present invention, at least one of the first communication device and the second communication device can be a portable terminal.
  • the invention of the present application is a communication device that communicates with another communication device, and the communication device creates IC operation information relating to the operation of the processing device of the communication device. Requesting the other communication device to approve all or a part of the IC operation information, and adjusting the operating frequency and Z or the supply voltage of the processing device according to the approved ic operation information. It is characterized.
  • the invention of the present application is a communication device for communicating with another communication device, and the communication device is an IC operation related to an operation of a processing device of the other communication device.
  • the invention of the present application relates to a method of adjusting power consumption of a network system including a first communication device and a second communication device communicating with the first communication device. Transmitting said IC operation information to said second communication device while said first communication device creates IC operation information relating to the operation of a first information processing IC of said first communication device.
  • the second communication device approving all or part of the transmitted IC operation information and transmitting the approved IC operation information to the first communication device; and Adjusts the operating frequency and Z or the supply voltage of the first information processing IC according to the approved IC operation information.
  • the network system according to the present invention can reduce power consumption while maintaining required communication quality. Furthermore, in one aspect of the present invention, the power consumption of both the transmitting station and the receiving station can be reduced by cooperatively controlling the information processing ICs of the transmitting station and the receiving station as well as one of the communicating parties. Can be. Brief Description of Drawings
  • FIG. 1 is an external view of a network system according to the present invention.
  • FIG. 2 is an explanatory diagram showing an outline of a communication device used in a network system according to the present invention.
  • FIG. 3 is an explanatory diagram showing an outline of a communication device used in a network system according to the present invention.
  • FIG. 4 is an explanatory diagram illustrating the operation of the network system according to the present invention (Example 1).
  • FIG. 5 is a diagram illustrating an example of a protocol used in the network system according to the present invention.
  • FIG. 6 is an explanatory diagram explaining the operation of the network system according to the present invention (Example 2). Explanation of symbols
  • FIG. 1 is a diagram illustrating an appearance of a network system according to the present embodiment.
  • the network system 1 includes a wireless communication station (STA) 2 and a wireless LAN access point (AP) 4, and the STA 2 and the AP 4 communicate with each other via a wireless LAN.
  • STA2 can be a mobile communication terminal such as a mobile phone, PDA, or laptop computer equipped with a wireless LAN network adapter.
  • the STA2 includes a display 10, an operation unit 12, a wireless LAN antenna 14, and the like.
  • the AP 4 is connected to the ST A 2 by a radio wave medium 6 and to the Internet 8 by a wired LAN cable 16.
  • FIG. 2 is a diagram schematically showing a hardware configuration of STA2.
  • the radio communication station (STA) 2 includes a PHYJC22 which is an IC responsible for information processing of the physical layer, a MACJC24 which is an IC responsible for information processing of a lower sublayer of the MAC layer, and a layer above the MAC upper sublayer. It has an MCU 26 which is in charge of information processing. PHYJC22 and MACJC24 are ASICs.
  • the MCU 26 is equipped with a CPU, a storage device, software, and the like, and is responsible for network processing at a layer above the MAC layer. MCU26. It is also responsible for controlling the STA2's mobile phone and PDA functions.
  • STA2 further includes a frequency 'voltage controller 30 and a voltage converter 32.
  • the frequency 'voltage controller 30 sets the operating frequency of the CPU of the PHYJC22, MACJC24, and MCU26 to an appropriate value.
  • the voltage converter 32 converts the power supply voltage V0 into an appropriate voltage and supplies the converted voltage to the PHYJC22, MACJC24, and MCU26.
  • the frequency / voltage controller 30 can dynamically change the operating frequencies of the MACJC 24 and the CPU of the MCU 26 during the operation of the STA2.
  • the voltage converter 32 can dynamically change the voltage supplied to the MACJC 24 or the MCU 26 under the control of the frequency / voltage controller 30 during the operation of the STA2.
  • FIG. 3 is a diagram schematically showing a hardware configuration of AP4.
  • the access point KAP according to the present invention also incorporates hardware corresponding to the PHYJC22, MACJC24, MCU26, frequency'voltage controller 30, and voltage converter 32 in FIG. 2, and the PHYJC34, MACJC36, MCU38, The frequency 'voltage controller 40 and voltage converter 42 are represented in FIG.
  • AP4 is provided with PHY_MACJC44, which is responsible for information processing of the physical layer and the MAC layer for the wired LAN.
  • the network system 1 reduces the power consumption of the network system by lowering the supply voltage and operating frequency of the information processing IC such as the CPU and ASIC included in the STA2 and AP4 while ensuring the required communication quality. It has a function to do.
  • FIG. 4 is a flowchart showing the operation of the network system 1 regarding such a function.
  • step S2 is the start of operation.
  • STA2 sends MACJC24 or
  • This IC operation information relates to the supply voltage and operating frequency that can be taken by the CPU of the MACJC24 and MCU26, and the maximum processing speed. Information can be included.
  • the quality required for communication for example, the processing time required for processing one frame may be used. In this case, it corresponds to the processing time
  • the MCU 26 It is desirable for the MCU 26 to know the operating frequency of the MACJC24 and the CPU of the MCU 26, etc.! / ⁇ . Further, in some embodiments, the IC operation information is a symbol such as “VoIP” and “VOD”. In such a case, it is desirable for the MCU 26 to know the limitation of the operating frequency of the information processing IC such as the MACJC24 required for VoIP and VOD! .
  • the IC operation information is information on the maximum processing speed of MACJC24.
  • WCET Worst Case Execute Time
  • the supply voltage can be reduced to half or one-third of the maximum operating voltage, and power consumption is proportional to the square of the supply voltage. Therefore, lowering the supply voltage can reduce power consumption.
  • step S4 if the MCU 26 knows the communication quality and throughput required for the communication between the STA2 and the AP4, it is configured to transmit the possible OpMode value to the AP4 in consideration of the fact in advance. You can.
  • step S6 the IC operation information created in step S4 is transmitted from STA2 to AP4. In order for such communication to be possible, it is necessary to determine an appropriate protocol in advance.
  • step S8 the MCU 38 of AP4 analyzes the IC operation information of the STA received from STA2 and selects appropriate IC operation information.
  • the selected IC operation information is used in step S14 to adjust the operation frequency of the MACJC24. Therefore, in the simplest case, if the MCU 38 transmits the largest ⁇ value in OpMode as optimal IC operation information to STA2,
  • the MACJC24 will operate at the lowest operating frequency and supply voltage, reducing power consumption. The reduction effect is the largest. However, simply speaking, if the operating frequency is halved, the time required to process the data is doubled. In other words, the processing time for the largest frame is twice as long as WCET.
  • the communication between STA2 and AP4 has a limitation that the processing time of one frame must be within a predetermined time depending on the throughput required for communication and the quality required for communication! / !. Often,.
  • AP4 is an access point, the communication time with STA2 must be limited in consideration of the communication quality and Z or throughput required for communication with other wireless communication stations other than STA2. There is also.
  • step S12 the IC operation information approved by the MCU 38 of AP4 is transmitted from AP4 to STA2.
  • the approved information needs to be transmitted, and it is not necessary to transmit the WCET or the value of the approved OpMode. In order for such communication to be possible, it is necessary to determine an appropriate protocol in advance.
  • step S14 the operating frequency and the supply voltage of the MACJC 24 are adjusted according to the approved IC operation information.
  • MCU26 instructs frequency controller 30 to set the operating frequency of MACJC24 to 1/2 of the maximum operating frequency.
  • the frequency controller 30 stores the supply voltage of the MAC JC24 suitable for the operating frequency of the MAC JC24, and issues an instruction to the voltage converter 32 to reduce the operating frequency of the MACJC24 to half of the maximum operating frequency.
  • Set to the required supply voltage Since the power consumption of the IC increases in proportion to the operating frequency and increases in proportion to the square of the supply voltage, if the operating frequency and the supply voltage of the IC can be reduced, the power consumption can be greatly reduced. .
  • the operating frequency and supply voltage of the information processing IC of the AP 4 can be adjusted instead of the information processing IC of the STA 2 such as the MACJC 24 or the MCU 26 alone.
  • step S8 when the MCU 38 of AP4 analyzes the IC operation information of STA2, Then, the operation information of the AP4 IC is also checked, and if possible, the operating frequency Z supply voltage of the MACJC 36 may be reduced (step S16).
  • T is the processing time limit of one frame determined by the throughput required for communication and the quality required for communication
  • T is the processing time of the STA2 physical layer and MAC layer required for the frame
  • T is the AP4. Thing bound STA
  • T If the processing time of the physical layer and the MAC layer is T, then T is
  • TsTA + must be satisfied.
  • C is the time required for channel access and medium propagation.
  • T If T is slowed, T increases. There are various situations in which to prioritize
  • STA2 also transmits to AP4 power supply information such as the type of power supply (battery power, AC power supply, and remaining battery power if the power supply is a battery), and MCU38 of AP4 transmits power information of STA2 and AP4
  • the configuration is such that the optimum STA2 IC operation information is approved by taking into account the power supply information of the STA2, for example, if the STA2 is battery-operated, the STA2 IC operates at the lowest frequency. If AP4 is battery-operated, set the operating frequency of AP4's IC to a lower priority, and if both are battery-operated, change the priority according to the remaining battery level. Step S18 is the end of the operation.
  • steps S8 and S10 since the communication quality and throughput requirements could not be satisfied, even if a certain OpMode value was rejected, the communication with STA2 is not necessary.
  • Changes in communication quality and changes in throughput required for communication with STA2 changes in communication quality required for communication between AP2 and other communication devices, necessary for communication between AP2 and communication devices other than other communication devices Due to such factors as a change in throughput and the termination of communication between the AP4 and another wireless communication station, it may be possible to satisfy the required communication quality, etc., even with the previously rejected OpMode value.
  • the AP2 or network system must approve the OpMode value that has met the new requirement and communicate the newly approved OpMode value to STA2.
  • System 1 can be configured. In that case, STA2 can adjust the operating frequency and Z or the supply voltage of the information processing IC according to the newly approved OpMode value.
  • FIG. 5 shows an example of a protocol relating to the adjustment of the operating frequency of the information processing IC and the supply voltage. Adjustment of the IC's operating frequency 'supply voltage is initiated by the MCU 26 of STA2. A message is needed to communicate this initiative to the MAC layer.
  • a message called HM_PS.request is defined (reference numeral 50).
  • a message that incorporates this proposal into the MAC layer protocol and transmits it to AP4 is needed.
  • PS.request is defined (reference numeral 52).
  • an interface from the MAC layer of AP4 to the higher layers is required.
  • the message HM_PS. Indication was defined (reference numeral 54).
  • HM_PS.request has WCET and one or more OpMode values as parameters.
  • the STA2 IC operation information is transmitted to the AP4 MCU38.
  • the IC operation information approved by the MCU 38 is transmitted to the STA2 MCU 26 by HM_PS.reply (reference numeral 56), PS.reply (reference numeral 58), and HM_PS.confirm (reference numeral 60).
  • HM_PS.reply, PS.reply, and HM.PS.confirm all have OpMode as a parameter.
  • This OpMode value is the OpMode value approved by the MCU38.
  • These messages may be exchanged at the time of association between STA2 and AP4, or may be exchanged after communication is started !.
  • TSPEC a group of parameters called TSPEC indicating the nature of data and required transmission conditions are exchanged between a transmitting station and a receiving station.
  • TSPEC includes parameters related to communication quality.These parameters can also calculate the operating frequency that can be taken by the CPU or ASIC of the communication device. it can. The following describes how to find the optimum operating frequency of MACJC, which is an ASIC that performs information processing of the lower sublayer of the MAC layer.
  • T is as follows: expressed.
  • the indications of r and s on the shoulder indicate that the communication devices are the receiving side and the transmitting side, respectively.
  • the term surplus X T excludes the propagation time of the medium and the time required for channel access.
  • T has two constraints. One occurs to process one frame e2e
  • Delay time which is the delay in the TSPEC parameter group.
  • T must be less than or equal to these two values e2e
  • the operating frequency of the transmitting side MACJC can be obtained as follows.
  • WCET (worst case processing time) is obtained by the following equation.
  • the minimum operating frequency f obtained from the condition of the allowable delay time is as follows.
  • Equation 4 Where f is the maximum operating frequency of the transmitting MACJC.
  • the denominator Katsuko is a decimal max.
  • T is the value of the Minimum Service Interval parameter and is related to the system throughput.
  • the term (surplus-1) T indicates a channel access delay.
  • V is the maximum supply voltage.
  • the TSPEC parameter group power can also calculate the operating frequency that the information processing IC of the transmitting station can take
  • the TSPEC parameter group can be used as operation information of the information processing IC.
  • the operating frequency is adjusted to an operating frequency larger than f and closest to f.
  • the communication station shall estimate and maintain the processing delay time of the physical layer and update the value of the Timestamp field before transmitting a frame.
  • the optimum operating frequency 'optimum supply voltage of the transmitting side MAC JC (more specifically, the ASIC in charge of information processing of the MAC lower sublayer) was obtained.
  • Optimum operating frequency of MACJC ⁇ Optimum supply voltage can be obtained in the same way. Also, as described in detail in the description of FIG. 6 below, the MACJC of the transmitting station and the MACJC of the receiving station are compared. Both operating frequencies' supply voltage can be adjusted optimally.
  • the information is transmitted to the receiving station together with the WCET of the transmitting station as IC operation information.
  • the receiving station determines the optimum operating frequency and supply voltage under the following conditions.
  • T e2e surplus ⁇ T exchange + WCET r ⁇ OpMode r + WCET vigorousx OpMode ⁇ ⁇ delay bound
  • WCET is the operating frequency of the receiving station MACJC
  • OpMode is the operating frequency of the transmitting station MACJC
  • OpMode is a quantity corresponding to OpMode at the receiving station.
  • the optimum operating frequency of the receiving station can be obtained.
  • the receiving station can determine which of the supply voltages of the transmitting station and the receiving station should be reduced preferentially based on information on the power supply of the transmitting station and the receiving station (type of power supply, remaining battery level), etc. preferable. As a result of the determination, the receiving station sends an OpMode regarding the operating frequency to be taken by the MACJC of the transmitting station to the transmitting station.
  • the transmitting station sets the operating frequency and supply voltage of the MACJC according to the received OpMode.
  • FIG. 6 is a flowchart for summarizing the contents described above.
  • FIG. 6 is a flowchart illustrating an operation of adjusting an operating frequency and a supply voltage of a MACJC (ASIC in charge of information processing of a MAC lower sublayer) provided in a communication station and an access point in the network system according to the second embodiment. .
  • ASIC ASIC in charge of information processing of a MAC lower sublayer
  • Step S24 is the start of the operation.
  • the access point requests the access point for TSPEC approval (ADDTS Request).
  • the access point checks whether there is a resource that satisfies the requested TSPEC. The requested TSPEC is approved, and if there are no resources, another TSPEC is proposed (step S32).
  • the access point Request is returned to the communication station.
  • step S34 the communication station obtains the optimum operating frequency and supply voltage of the MAC JC using the TSPEC parameters and Equations 2-6. If the operating frequency of the MAC JC of the access point is not adjusted, the MAC JC of the transmitting station is set to the 'optimum operating frequency' optimum supply voltage determined in step S36, and the operation is terminated (step Step S50).
  • step S40 of the operating frequencies that can be taken by the MACJC of the communication station, information on the operating frequency that is larger than f obtained by Equation 6 is shared with WCET.
  • step S40 it is preferable that information regarding the power supply of the communication station (type of power supply, remaining battery power, etc.) is also transmitted to the access point.
  • step S42 the access point preferably calculates the operating frequency of the information processing IC of the access point in consideration of communication quality and throughput, power supply information of the communication station and the access point, and the like. Use Equation 4, Equation 5, and Equation 7 as described above.
  • step S44 the MACJC of the access point is set to the calculated operating frequency and the supply voltage optimal for the operating frequency.
  • the transmitting station power is the slowest among the information on the transmitted operating frequency candidates.
  • step S48 the approved candidate is transmitted to the communication station, and the communication station sets the MACJC of the communication station to the approved operating frequency (step S36).
  • Step S50 is the end of the operation.
  • the description of the embodiments of the present invention ends above, but the embodiments of the present invention are not limited to these embodiments, and various embodiments can be made without departing from the scope of the present invention.
  • the device that approves the IC operation information is a router or a gateway on a network, a base station of a mobile phone network, an RNC, or the like can be considered.
  • the device that approves the IC operation information in the first embodiment may be a wireless terminal connected to another network or a PTSN network and communicating with the STA2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本願発明は、第1の通信機と前記第1の通信機と通信を行なう第2の通信機とを備えるネットワークシステムの消費電力調節方法であって、前記第1の通信機が前記第1の通信機が有する第1情報処理ICの動作に関するIC動作情報を作成すると共に前記IC動作情報を前記第2の通信機に送信するステップと、前記第2の通信機が前記送信されたIC動作情報の全部又は一部を承認すると共に前記承認したIC動作情報を前記第1の通信機に送信するステップと、前記第1の通信機が前記承認されたIC動作情報に従って前記第1情報処理ICの動作周波数及び/又は供給電圧を調節することを特徴とする。

Description

明 細 書
ネットワークシステム
技術分野
[0001] 本発明は、ネットワークシステム関し、より具体的にはネットワークシステムの消費電 力の削減と通信品質に関するものである。
背景技術
[0002] ネットワーク技術は、近年、価格の低下や通信速度の向上が著しぐ非常に一般的 なものになった。ほとんどのオフィスでは複数のコンピュータを有し、互いにネットヮー クで接続することが当たり前になってきている。またワイヤレス LAN技術は、オフィスや 家庭のみならず、図書館や喫茶店など公共の場所からインターネットへのアクセスを 可能とするサービスの出現をもたらした。現在では、多数のユーザーが、ホットスポッ トと呼ばれるワイヤレス LANのアクセスポイントが設置されて!、る場所から、インターネ ットを閲覧したり、メールを送受信したりしている。
[0003] ワイヤレス LAN技術はラップトップコンピュータや PDAには広く用いられている力 携 帯電話に組み込まれて用いられることは、今のところ非常に少ない。これは主に、ワイ ャレス LANは消費電力が大きいためである。消費電力を節約するために、ワイヤレス LANの標準規格である IEEE802.il仕様では、節電プロトコル (PSP)と呼ばれる方法を 規定している。この方法では、アクセスポイントではない通信局は、 N個のビーコン間 隔の間に 1度だけネットワークの監視を行なえばよいことになつている。ネットワークの 監視を行なっていない間、通信局はスリープモードに移行するため、消費電力を節 約できる。スリープモードの間にアクセスポイントに到着したデータは、アクセスポイン トが一時的に保管しておき、通信が再開したときに該通信局へ渡すことになつている 。また現在策定中の IEEE802.11eにおいては、 Automatic
Power Save Delivery (APSD)と呼ばれる新しい方法を規定している。 APSDも基本的 なアイディアは PSPと同様であり、ワイヤレス LAN機器がネットワークを監視する時間を できるだけ減らし、ネットワークを監視していない時間は、ワイヤレス LAN機器をスリー プモードにしておくことによって、消費電力を節約しょうというものである。 [0004] 一方、ワイヤレス LAN技術とはあまり関係がな!、低電力 LSI設計と 、う技術分野では 、情報処理回路の消費電力を節約するために、全く別のアプローチ力 研究が進め られている。この技術は電圧ホッピングと呼ばれ、負荷に応じて情報処理用 ICの動 作周波数と供給電圧を変化させるというものである。 ICの消費電力は、動作周波数 に比例すると共に供給電圧の二乗にも比例するため、これらを動的に制御することで 、効果的に消費電力を節減することができる。
[0005] 次世代のワイヤレス LANでは、 VoIP(Voice over IP)技術や VOD(Video On Demand) 技術などの、リアルタイムアプリケーションが広く利用されると考えられている。リアル タイムアプリケーションでは、通信のサービス品質 (QoS)を確保することが重要である 。従って次世代のワイヤレス LAN技術においては、通信品質を確保しつつシステムの 消費電力を削減するという、困難な課題を解決することが求められている。
[0006] 非特許文献 1 : IEEE802.11eドラフト
非特許文献 2 :川口博他著「低電力実時間組込システムのための OS,アプリケーショ ン,ハードウェア協調による CVS(Cooperative VoltageScaling)と電圧ホッピング」信学 技報 2001年 5月
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、ネットワークシステムにおいて、要求される通信品質を満たしつつ消費 電力を節減しょうとするものである。
課題を解決するための手段
[0008] 本願発明を 1つの側面力 見ると、本願発明は、第 1の通信機と前記第 1の通信機 と通信を行なう第 2の通信機と前記通信に用いるプロトコル群とを備えるネットワーク システムであって、前記プロトコル群は、前記第 1の通信機が有する第 1情報処理 IC の動作に関する IC動作情報を前記第 1の通信機力 前記第 2の通信機に伝える第 1 方向 IC動作情報伝達手段と、前記 IC動作情報を前記第 2の通信機から前記第 1の 通信機に伝える第 2方向 IC動作情報伝達手段とを備え、前記第 1の通信機は、前記 IC動作情報を作成すると共に前記第 1方向 IC動作情報伝達手段を用いて前記 IC 動作情報を前記第 2の通信機に送信し、前記第 2の通信機は、前記送信された IC動 作情報の全部又は一部を承認すると共に前記第 2方向 IC動作情報伝達手段を用い て前記承認した IC動作情報を前記第 1の通信機に送信し、前記第 1の通信機は、前 記承認された IC動作情報に従って前記第 1情報処理 ICの動作周波数及び Z又は 供給電圧を調節することを特徴とする、ネットワークシステムである。もし前記第 2の通 信機が前記送信された IC動作情報の全部を承認しな ヽときは、新 Uヽ IC動作情報 を作成して前記第 1の通信機に送信するように構成してもよい。また前記第 2の通信 機力 前記送信された IC動作情報の全部又は一部を承認するにあたっては、前記 第 1の通信機との通信及び Z又は前記第 1の通信機以外の通信機との通信に要求 される通信品質、前記通信に要求されるスループット、前記通信におけるチャネルァ クセス遅延のうち、少なくとも 1つ以上を考慮するように構成することが望ましい。また 前記 IC動作情報は、前記第 1情報処理 ICの最大処理速度に関する情報を含むこと ができ、前記第 2の通信機は、前記最大処理速度を考慮して、前記送信された IC動 作情報の全部又は一部を承認するように構成することができる。
[0009] 本願発明のある実施態様においては、前記 IC動作情報は、前記第 1情報処理 IC が取り得る動作周波数及び Z又は供給電圧に関することを特徴とする。この場合に おいて前記第 1の通信機は、前記通信に要求される通信品質、前記通信に要求され るスループット、前記通信におけるチャネルアクセス遅延のうち、少なくとも 1つ以上を 考慮して、前記 IC動作情報を作成することが好ましい。前記 IC動作情報が前記第 1 情報処理 ICの動作周波数を含む場合に、前記第 1の通信機は、前記第 2の通信機 に承認された前記動作周波数に従って前記第 1情報処理 ICの動作周波数を調節す ると共に、その動作周波数に適した前記第 1情報処理 ICの供給電圧を計算し、前記 第 1情報処理 ICの供給電圧を前記計算した供給電圧に設定するように構成すること ができる。
[0010] 本願発明のある実施態様においては、前記 IC動作情報は、前記通信に要求される 通信品質に関する品質情報であることを特徴とすることができる。前記品質情報は例 えば、 1つの PDU (Protocol Data Unit)などの単位データを処理するための制限時 間に関するものである。特に本願発明を IEEE802.11e規格の通信に適用した場合に おいては、前記 IC動作情報として、 TSPECパラメータ群を用いるように構成すること ができる。前記第 1の通信機は、前記第 1情報処理 icが取り得る動作周波数及び Z 又は供給電圧の中で、前記第 2の通信機に承認された品質情報に関する前記制限 時間内に要求される処理を遂行可能な最低の動作周波数及び Z又は供給電圧に、 前記第 1情報処理 ICを調節するように構成することができる。さらに、前記第 1の通信 機は前記第 1情報処理 icが取り得る動作周波数及び Z又は供給電圧の中で前記第
2の通信機に承認された品質情報に関する前記制限時間内に要求される処理を遂 行可能な動作周波数及び Z又は供給電圧を計算すると共に該計算した動作周波数 及び Z又は供給電圧の情報を含む第 2の IC動作情報を前記第 2の通信機に送信し 、前記第 2の通信機は前記送信された第 2の IC動作情報の全部又は一部を承認す ると共に前記第 2方向 IC動作情報伝達手段を用いて前記承認した第 2の IC動作情 報を前記第 1の通信機に送信し、前記第 1の通信機はさらに前記承認された第 2の I C動作情報に従って前記第 1情報処理 ICの動作周波数及び Z又は供給電圧を調節 するように、本願発明によるネットワークシステムを構成することができる。なお本願発 明を IEEE802.11e規格の通信に適用した場合に、前記第 1の通信機が前記第 1情報 処理 ICの供給電圧を変化させることによって、前記第 1の通信機の物理層の処理遅 延時間が変わる場合は、 IEEE802.11e規格に準拠するために、前記物理層の処理遅 延時間を推定して保持すると共に、 MACフレームを送信する前に MACフレームの Timestampフィールドの値を前記推定した処理遅延時間に更新するように構成する 必要がある。
[0011] 本願発明によるネットワークシステムにおいて、前記第 2の通信機は、前記第 1の通 信機との通信に必要な通信品質の変化、前記第 1の通信機との通信に必要なスル 一プットの変化、前記第 1の通信機以外の通信機との通信に必要な通信品質の変化 、前記第 1の通信機以外の通信機との通信に必要なスループットの変化、のいずれ 力 1つ以上の変化に応じて、一度承認しな力つた前記 IC動作情報を新たに承認する と共に前記新たに承認した IC動作情報を前記第 1の通信機に送信し、前記第 1の通 信機は前記新たに承認した IC動作情報に従って前記第 1情報処理 IC動作周波数及 び Z又は供給電圧を調節するように構成することができる。
[0012] 本願発明のある実施態様においては、前記第 1の通信機は前記第 1の通信機が用 いる電源に関する電源情報を作成する手段を有し、前記プロトコル群は、前記第 1の 通信機力 前記第 2の通信機へ前記電源情報を伝える手段を有することを特徴とす る。この場合において前記第 2の通信機は、前記電源情報を伝える手段を通じて得 た前記電源情報も考慮して、前記承認を行なうように構成することができる。
[0013] 本願発明のある実施態様においては、前記第 2の通信機は、前記第 1の通信機か ら送信された IC動作情報を考慮して、前記第 2の通信機が有する第 2情報処理 ICの 供給電圧及び Z又は動作周波数を調節することを特徴とする。また前記第 2の通信 機は、前記電源情報を考慮して、前記第 2情報処理 ICの供給電圧及び Z又は動作 周波数を調節するように構成することができる。また前記第 2の通信機は、前記調節 された第 2情報処理 ICの供給電圧及び Z又は動作周波数も考慮して、前記 IC動作 情報の全部又は一部を承認するように構成することができる。
[0014] 前記 IC動作情報は、前記第 1の通信機と前記第 2の通信機とが通信設定を行なう 際に、前記第 1の通信機から前記第 2の通信機へと送信されるように構成してもよい し、前記第 1の通信機と前記第 2の通信機とが通信を開始した後でも、前記第 1の通 信機カゝら前記第 2の通信機へと送信できるように構成してもよい。前記第 1方向 IC動 作情報伝達手段と、前記第 2方向 IC動作情報伝達手段は、前記プロトコル群のうち 、レイヤ 2のプロトコルに組み込むように構成することができる。また前記通信は、 IEEE802. lie規格の通信であることができる。
[0015] 本願発明のある実施態様においては、前記品質情報は、前記通信の種類を示す シンボルであってもよい。このシンボルの例は、 VoIPや VODなどのサービスを表すシ ンボルである。この場合、前記第 1の通信機及び Z又は前記第 2の通信機は、前記 シンボルに対応した、単位データを処理するための制限時間を知って 、るように構成 することが望ましい。
[0016] 本願発明のある実施態様においては、前記第 1の通信機と前記第 2の通信機の少 なくとも一方は、 LANに接続された端末、アクセスポイント、ルータ、ゲートウェイのい ずれかであることができる。また本願発明のある実施態様においては、前記第 1の通 信機と前記第 2の通信機の少なくとも一方は、 PTSN網に接続された端末であること ができる。また本願発明のある実施態様においては、前記第 1の通信機と前記第 2の 通信機の少なくとも一方は、携帯電話ネットワークに接続された端末、基地局、その 他前記携帯電話ネットワークに接続される機器のいずれかであることができる。さらに 本願発明のある実施態様においては、前記第 1の通信機と前記第 2の通信機の少な くとも一方は、携帯端末であることができる。
[0017] 本願発明を別の側面から見ると、本願発明は他の通信機と通信を行なう通信機で あって、前記通信機は、前記通信機が有する処理装置の動作に関する IC動作情報 を作成すると共に、前記 IC動作情報の全部又は一部の承認を前記他の通信機に求 め、前記承認を受けた ic動作情報に従って、前記処理装置の動作周波数及び Z又 は供給電圧を調節することを特徴とする。
[0018] 本願発明をさらに別の側面から見ると、本願発明は他の通信機と通信を行なう通信 機であって、前記通信機は、前記他の通信機が有する処理装置の動作に関する IC 動作情報を受け取ると共に、前記通信に要求される通信品質,前記通信に要求され るスループット,前記通信におけるチャネルアクセス遅延のうち、少なくとも 1つ以上 考慮して前記受け取った IC動作情報の全部又は一部を承認し、前記承認した IC動 作情報を前記他の通信機に送信することを特徴とする。
[0019] 本願発明をさらに別の側面から見ると、本願発明は、第 1の通信機と前記第 1の通 信機と通信を行なう第 2の通信機とを備えるネットワークシステムの消費電力調節方 法であって、前記第 1の通信機が前記第 1の通信機が有する第 1情報処理 ICの動作 に関する IC動作情報を作成すると共に前記 IC動作情報を前記第 2の通信機に送信 するステップと、前記第 2の通信機が前記送信された IC動作情報の全部又は一部を 承認すると共に前記承認した IC動作情報を前記第 1の通信機に送信するステップと 、前記第 1の通信機が前記承認された IC動作情報に従って前記第 1情報処理 ICの 動作周波数及び Z又は供給電圧を調節することを特徴とする。
発明の効果
[0020] 本願発明によるネットワークシステムは、要求される通信品質を保ちながら消費電 力を節減することができる。さらに本願発明の一態様においては、通信相手の一方 のみならず、送信局と受信局の情報処理 ICを協調して制御することで、送信局と受 信局の両方の消費電力を節減することができる。 図面の簡単な説明
[0021] [図 1]本発明によるネットワークシステムの外観図である。
[図 2]本発明によるネットワークシステムに用いられる通信機の概要を示した説明図で ある。
[図 3]本発明によるネットワークシステムに用いられる通信機の概要を示した説明図で ある。
[図 4]本発明によるネットワークシステムの動作を説明する説明図である(実施例 1)。
[図 5]本発明によるネットワークシステムに用いられるプロトコルの例を説明する図であ る。
[図 6]本発明によるネットワークシステムの動作を説明する説明図である(実施例 2)。 符号の説明
[0022] 1 ネットワークシステム
22 PHYJC
24 MACJC
26 MCU
30 周波数'電圧コントローラ
32 電圧コンバータ
発明を実施するための最良の形態
[0023] 以下、 2つの実施例を用いて本願発明の好適な実施の形態を説明する。
実施例 1
[0024] 図 1は、本実施例におけるネットワークシステムの外観を示す図である。ネットワーク システム 1は、無線通信局(STA) 2と、無線 LANアクセスポイント (AP)4とを備え、 STA2 と AP4は無線 LANで通信している。 STA2は、無線 LANネットワークアダプタを装備し た携帯電話、 PDA,ラップトップコンピュータなどの携帯通信端末であることができる。 STA2はディスプレイ 10、操作部 12、無線 LANアンテナ 14等を備えている。 AP4は、 ST A2と電波媒体 6によって接続されていると共に、有線の LANケーブル 16でインターネ ット 8と接続されている。 [0025] 図 2は、 STA2のハードウェア構成の概略を示す図である。本発明による無線通信 局 (STA)2は、物理層の情報処理を担当する ICである PHYJC22、 MAC層の下位副層 の情報処理を担当する ICである MACJC24、 MAC上位副層より上の階層の情報処理 を担当する MCU26を有する。 PHYJC22と MACJC24は ASICである。 MCU26は、 CPU 、記憶装置、ソフトウェア等を搭載し、 MAC層より上の階層のネットワーク処理を担当 する。 MCU26は。 STA2の携帯電話機能や PDA機能などの制御も担当する。
[0026] STA2はさらに、周波数'電圧コントローラ 30と電圧コンバータ 32を備える。周波数'電 圧コントローラ 30は、 PHYJC22, MACJC24, MCU26が有する CPUの動作周波数を 適切な値に設定する。電圧コンバータ 32は、電源電圧 V0を適切な電圧に変換して、 PHYJC22, MACJC24, MCU26に供給する。さらに周波数 ·電圧コントローラ 30は、 MCU26の制御を受けて、 MACJC24と、 MCU26の CPUの動作周波数を、 STA2の動 作中に動的に変更することができる。また電圧コンバータ 32は、周波数'電圧コント口 ーラ 30の制御を受けて、 MACJC24や MCU26に供給される電圧を、 STA2の動作中に 動的に変更することができる。
[0027] 図 3は、 AP4のハードウェア構成の概略を示す図である。本発明によるアクセスポィ ン KAP にも、図 2における、 PHYJC22, MACJC24, MCU26,周波数'電圧コント口 ーラ 30,電圧コンバータ 32に相当するハードウェアが組み込まれており、それぞれ PHYJC34, MACJC36, MCU38,周波数'電圧コントローラ 40,電圧コンバータ 42で 図 3に表されている。この他 AP4は、有線 LAN用の物理層及び MAC層の情報処理を 担当する、 PHY_MACJC44を備えている。
[0028] ついで図 4を用いてネットワークシステム 1の動作を説明する。本発明によるネットヮ ークシステム 1は、要求される通信品質を確保しつつ STA2や AP4が備える CPUや ASICなどの情報処理 ICの供給電圧や動作周波数を低下させることにより、ネットヮー クシステムの消費電力を節減する機能を有する。図 4はこのような機能に関するネット ワークシステム 1の動作を示すフローチャートである。
[0029] まず、ステップ S2は動作の開始である。ステップ S4では、 STA2が、 MACJC24や
MCU26の動作に関する IC動作情報を作成する。この IC動作情報は、 MACJC24や、 MCU26の CPUが取り得る供給電圧や動作周波数、及び、最大処理速度などに関す る情報を含むことができる。また、通信に要求される品質、例えば、 1フレームの処理 に要する処理時間のようなものでもよい。この場合は、処理時間に対応する
MACJC24や MCU26の CPUの動作周波数等を、 MCU26が知って!/、ることが望まし!/ヽ 。さらに IC動作情報は、「VoIP」「VOD」のようなシンボルである実施例も存在し得る。 このような場合は、「VoIP」 「VOD」に対応して要求される、 MACJC24などの情報処 理用 ICの動作周波数の制限を、 MCU26が知って!/、ることが望まし!/、。
[0030] 本実施例では、前記 IC動作情報は、 MACJC24の最大処理速度に関する情報
WCETと、 MACJC24が取り得る動作周波数に関する情報 OpModeとを含むものとす る。 WCETは、 MACJC24が、特定のアプリケーションの下で、 MAC層で用いられる最 も大きなフレームを最大の動作周波数で処理した場合の処理時間として定義される。 いわゆる WCET(Worst Case Execute Time,最悪時処理時間)である。 OpModeは 1ま たは 2以上の整数であって、それぞれ MACJC24が最大動作周波数の 1/OpModeで 動作できることを示す。例えば OpMode=(l,2,3)ならば、 MACJC24が、最大動作周波 数の 1/2及び 1/3で動作できることを示す。その場合、最大フレームの処理時間はそ れぞれ 2倍、 3倍になる。しかし、供給電圧も最大動作電圧の 1/2、 1/3で済ませること ができ、消費電力が供給電圧の二乗に比例することから、供給電圧を下げれば消費 電力を削減することができる。
[0031] なおステップ S4において、 MCU26が STA2と AP4との通信に要求される通信品質や スループットを知っている場合は、あらかじめそのことを考慮して、可能な OpMode値 を AP4に伝えるように構成してもよ 、。
[0032] ステップ S6では、ステップ S4で作成された IC動作情報を、 STA2から AP4へと伝達す る。このような伝達が可能であるためには、予め適切なプロトコルを定めておく必要が ある。
[0033] ステップ S8では、 AP4の MCU38が、 STA2から受け取った STAの IC動作情報を解析 して、適切な IC動作情報を選ぶ。選ばれた IC動作情報は、ステップ S14で MACJC24 の動作周波数を調節するために用いられる。従って最も単純には、 MCU38は、 OpModeの中で最も大き ヽ値を最適 IC動作情報として STA2に送信すれば、
MACJC24は最も低 、動作周波数及び供給電圧で動作することになり、消費電力の 削減効果が最も大きくなる。しかし、単純に言うと、動作周波数が半分になれば、デ ータを処理する時間は倍になってしまう。すなわち最大サイズのフレームの処理時間 が WCETの倍になる。一方、 STA2と AP4の通信には、通信に要求されるスループット や、通信に要求される品質によって、 1フレームの処理時間が所定時間以内に収まら なければならな!/ヽと 、う制限がある場合が多 、。さらに AP4はアクセスポイントである から、 STA2以外の他の無線通信局との通信に要求される通信品質及び Z又はスル 一プットをも考慮して、 STA2との通信時間に制限を設けねばならない場合もある。 MCU38は、このような制限の中で、可能な最も遅い動作周波数すなわち最も大きい OpMode値を求め、求めた値を承認する(ステップ S 10)。本実施例では、 OpMode=2 が承認されたものとして、後の説明を続ける。なお、 STA2から受け取った OpMode値 力 つしかない場合は、その 1つを承認するか、さもなければ却下する。なお、図 4で はステップ 8の後にステップ S 16が示されている力 これは後で説明する。
[0034] ステップ S12では、 AP4の MCU38が承認した IC動作情報を、 AP4から STA2へと伝達 する。この伝達においては、承認された情報のみを伝達すればよぐ WCETや承認さ れな力つた OpModeの値を伝達する必要はな 、。このような伝達が可能であるために は、予め適切なプロトコルを定めておく必要がある。
[0035] ステップ S14では、承認された IC動作情報に従って、 MACJC24の動作周波数及び 供給電圧が調節される。承認された IC動作情報である" OpMode=2"を MCU26が認 識すると、 MCU26は、 MACJC24の動作周波数を、最大動作周波数の 1/2に設定す るように、周波数'電圧コントローラ 30に指示を出す。また周波数'電圧コントローラ 30 は、 MAC JC24の動作周波数に適した MAC JC24の供給電圧を記憶しており、電圧コ ンバータ 32に指示を出して、 MACJC24の動作周波数が最大動作周波数の 1/2に必 要な供給電圧に設定する。 ICの消費電力は動作周波数に比例して大きくなると共に 、供給電圧の二乗に比例して大きくなるため、 ICの動作周波数と供給電圧を低下さ せることができれば消費電力を大きく削減することができる。
[0036] 一つの実施態様では、 MACJC24や MCU26など STA2に備わる情報処理用 ICだけ ではなぐ AP4の情報処理用 ICの動作周波数や供給電圧をも調節するように構成す ることができる。ステップ S8で、 AP4の MCU38が、 STA2の IC動作情報を解析する際に 、 AP4の ICの動作情報も合わせて調査し、可能であれば MACJC36の動作周波数 Z 供給電圧を低下させてもよい (ステップ S16)。 MAC層において、通信に要求されるス ループットや通信に要求される品質によって定められる 1フレームの処理時間制限を T 、当該フレームに必要な STA2の物理層と MAC層の処理時間を T 、 AP4の物 bound STA
理層と MAC層の処理時間を T 、とすれば、 T と は、
AP STA TAP
[0037] [数 1]
TsTA + 、 の関係を満たさなくてはならない。なお、 Cはチャネルアクセスや媒体の伝搬に力かる 時間である。
[0038] MAC IC24の動作周波数を遅くすれば T が大きくなり、 MAC IC36の動作周波数
STA
を遅くすれば T が大きくなる。どちらを優先すべきかについては様々な状況があるだ
AP
ろうが、通常は、電池で駆動している通信機の情報処理 icを優先して遅くすることが 好ましい。そこで STA2は、電源の種類(電池力 AC電源力 や、電源が電池である場 合は電池の残量などの電源情報も AP4に伝達し、 AP4の MCU38は、 STA2の電源情 報と、 AP4の電源情報を考慮に入れて、最適な STA2の IC動作情報を承認するよう〖こ 構成することが好ましい。例えば、もし STA2が電池駆動であれば、 STA2の ICの動作 周波数が最低になるような IC動作情報を承認する。もし AP4が電池駆動であれば、 AP4の ICの動作周波数を優先的に低く設定する。両者ともに電池駆動であれば、電 池残量によって優先度を変化させる。ステップ S18は、動作の終了である。
[0039] なお、ステップ S8と S 10において、ー且は通信品質やスループットの要求を満たす ことができなかったため、ある OpMode値を却下した場合であっても、その後、 STA2と の通信に必要な通信品質の変化や STA2との通信に必要なスループットの変ィ匕、 AP2 と他の通信機との通信に必要な通信品質の変化、 AP2と他の通信機以外の通信機と の通信に必要なスループットの変化、 AP4と他の無線通信局との通信が終了等の理 由で、以前に却下した OpMode値でも、要求される通信品質等を満たすことができる ようになる場合がある。そのような場合は、新たに要求を満たすことになつた OpMode 値を承認し、新たに承認した OpMode値を STA2に伝えるように AP2やネットワークシス テム 1を構成することができる。その場合 STA2は、新たに承認された OpMode値に従 つて、情報処理 ICの動作周波数及び Z又は供給電圧を調節することができる。
[0040] 次に、図 5に情報処理用 ICの動作周波数'供給電圧の調節に係るプロトコルの例 を示す。 ICの動作周波数'供給電圧の調節は、 STA2の MCU26によって発議される。 この発議を MAC層へ伝えるためのメッセージが必要である。本実施例では、 HM_PS.requestというメッセージを定義した(引用符号 50)。次に、この発議を MAC層 のプロトコルに組み込んで AP4へ伝達するメッセージが必要である。本例では PS.requestというメッセージを定義した(引用符号 52)。ついで AP4の MAC層から高次 層へのインタフェースが必要である。本例では、 HM_PS. indicationというメッセージを 定義した(引用符号 54)。 HM_PS.request, PS.request, HM_PS.indicationのいずれも 、パラメータとして WCETと 1又は複数の OpMode値を有する。これらのメッセージによ り、 STA2の IC動作情報が AP4の MCU38へと伝えられる。 MCU38が承認した IC動作 情報は、 HM_PS.reply (引用符号 56) , PS.reply (引用符号 58) , HM_PS.confirm (引用 符号 60)により、 STA2の MCU26へと伝えられる。 HM_PS.reply, PS.reply, HM.PS.c onfirmは、いずれもパラメータとして、 OpModeを有する。この OpMode値は、 MCU38 が承認した OpMode値である。
[0041] これらのメッセージは、 STA2と AP4のアソシエーション時に交換されてもよいし、通信 が開始された後に交換されてもよ!、。
実施例 2
[0042] 実施例の 2では、本発明を IEEE802.11e規格の通信に適用する例を示す。
IEEE802.11eでは、データの性質や要求される伝送条件を表す TSPECというパラメ一 タ群が、送信局と受信局の間に交換される。 TSPECは通信品質に関するパラメータを 含んでいる力 このパラメータ力も通信機の CPUや ASICが取り得る動作周波数を計 算することができるので、 TSPECパラメータ群を情報処理用 ICの動作情報として用い ることができる。以下、 MAC層の下位副層の情報処理を行なう ASICである MACJCの 最適な動作周波数を求める方法を説明する。
[0043] まず、あるフレームの最初のビットが送信局の MAC層に届いてから、同じフレームの 最後のビットが受信局の MAC層を離れるまでの時間を T とすると、 T は次のように 表される。
[0044] [数 2] ele = MAC+PHY + ^UAC+PHY + SUrP US X ^exchange ここで T は、 MAC層と物理層で 1つのフレームを処理するために必要な時間で AC+PHY
ある。肩の rと sの表示は、それぞれ受信側と送信側の通信機であることを示している。 また、 surplus X T の項は、媒体の伝搬時間やチャネルアクセスに必要な時間を excnange
表す。 T には 2つの拘束条件がある。 1つは 1つのフレームを処理するために発生 e2e
する遅延時間の許容量であり、これは TSPECパラメータ群の Delay
Bound (遅延許容時間)パラメータに記述される。もう一つは通信システムのスループ ットであり、これはこれは TSPECパラメータ群の Minimum
Service Interv パラメータに関係する。 T は、これら 2つの値以下でなくてはならな e2e
いことから、送信側 MACJCの動作周波数を以下のように求めることができる。
[0045] まず、 WCET (最悪時処理時間)を次の式で求める。
[0046] [数 3] し L " ― Smax^msdu ffram e ここで、 S は最大フレームサイズであり、 TSPECのパラメータ Maximum MSDN
AX. SDN
Sizeに記述されて ヽる。また f は、送信側 MACJCが 1バイトを処理するために必要 frame
な時間である。
[0047] 受信局の MACJCの動作周波数が変わらな 、とすれば、遅延許容時間の条件から 求められる最低の動作周波数 fは、以下のようになる。
1
[0048] [数 4]
Figure imgf000015_0001
ここで f は送信側 MACJCの最大の動作周波数である。また、分母のカツコは小数 max
点以下を切り捨てるという意味のカツコである。
[0049] スループットの条件力 求められる最低の動作周波数 fは、以下のようになる。 [0050] [数 5]
Figure imgf000016_0001
T は Minimum Service Intervalパラメータの値であり、システムのスループットに関係 する。また、(surplus-1) T の項はチャネルアクセス遅延を示す。この 2つの条 件より、送信側 MACJCの最適動作周波数 f と最適供給電圧 V は、以下のよう に求められる。
[0051] 園
Figure imgf000016_0002
V は最大の供給電圧である。
[0052] 以上説明したように、 TSPECパラメータ群力も送信局の情報処理用 ICが取り得る動 作周波数を計算することができるので、 TSPECパラメータ群を情報処理用 ICの動作 情報として用いることができる。実際には、送信局の情報処理用 ICは連続的な値をと ることはできないので、 f より大きく且つ最も f に近い動作周波数に調節される
[0053] CPUや ASICなど ICの消費電力は、動作周波数に比例して大きくなると共に供給電 圧の二乗に比例して大きくなるため、これらの ICの動作周波数と供給電圧を低下させ ることができれば消費電力を大きく削減することができる。
[0054] なお、物理層の処理を担当する ASICの動作周波数や供給電圧も調節する場合、 その調節によって、物理層の処理遅延時間が変わる恐れがある場合は、 802.11規格 の条項 11.1.2の要請により、通信局は物理層の処理遅延時間を推定して保持してお き、フレームを送信する前に、 Timestampフィールドの値を更新しなければならない。
[0055] 上記で説明した例では、送信側 MAC JC (より具体的には MAC下位副層の情報処 理を担当する ASIC)の最適動作周波数'最適供給電圧を求めたが、受信局の
MACJCの最適動作周波数 ·最適供給電圧も同様に求めることができる。また、以下 の図 6の説明の中で詳しく説明するように、送信局の MACJCと受信局の MACJCとの 両方の動作周波数'供給電圧を最適に調節することができる。
[0056] 受信局の MAC JCの動作周波数'供給電圧も調節する場合は、送信局の MACJC が取り得る動作周波数のうち、数式 6で求める f より大きな動作周波数に関する情
optimal
報を送信局の WCETである WCETと共に IC動作情報として受信局へ送信する。受信 局は、以下の条件の下、最適な動作周波数及び供給電圧を決定する。
[0057] [数 7]
Te2e = surplus χ Texchange + WCET r ^ OpModer + WCET„ x OpMode^ < delay bound ここで WCETは受信局 MACJCの WCET、 OpModeは送信局 MACJCの動作周波数
r s
が最大動作周波数の何分の 1で動作するかを示す値で、送信局から受信局へ送信さ れる。 OpMode =2ならば、送信局 MACJCは、最大動作周波数の 2分の 1で動作する
s
ことを示す。 OpModeは受信局において OpModeに対応する量である。数式 7の条件
r s
と、数式 4及び数式 5における送信局 MACJCを受信局 MACJCに置き換えて用いるこ とで、受信局の最適な動作周波数を求めることができる。受信局は、送信局及び受 信局の電源に関する情報 (電源の種類、電池残量)などを基に、送信局と受信局の どちらの供給電圧を優先的に下げればよいか判断することが好ましい。受信局は、判 断の結果、送信局の MACJCが取るべき動作周波数に関する OpModeを送信局に送
s
信する。送信局は受け取つたに OpMode従って、 MACJCの動作周波数及び供給電 圧を設定する。
[0058] 図 6は、上記説明した内容をまとめて説明するためのフローチャートである。図 6は、 実施例 2に係るネットワークシステムにおいて、通信局及びアクセスポイントが備える MACJC (MAC下位副層の情報処理を担当する ASIC)の、動作周波数及び供給電 圧を調節する動作に関するフローチャートである。
[0059] ステップ S24は動作の開始である。ステップ S26では通信局力TSPECの承認をァクセ スポイントに要求する(ADDTS Request) oステップ S28では、アクセスポイントが要求さ れた TSPECを満たすリソースがあるかな 、かを調べ、リソースがある場合には要求さ れた TSPECを承認し、リソースがない場合には別の TSPECを提案する(ステップ S32) 。ステップ S32では、アクセスポイントが ADDTS Requestを通信局に返す。
[0060] ステップ S34では上に説明したように、通信局が TSPECのパラメータと数式 2— 6を 用いて、 MAC JCの最適な動作周波数と供給電圧を求める。もしアクセスポイントの MAC JCの動作周波数'供給電圧の調節を行なわな 、場合は、ステップ S36で求めた 最適動作周波数'最適供給電圧に送信局の MAC JCを設定し、動作は終了となる (ス テツプ S50)。
[0061] アクセスポイントの MACJCの動作周波数'供給電圧の調節も行なう場合は、ステツ プ S34からステップ S40へと進む。ステップ S40では、通信局の MACJCが取り得る動作 周波数のうち、数式 6で求める f より大きな動作周波数に関する情報を WCETと共
optimal
に IC動作情報としてアクセスポイントへ送信する。さらにステップ S40では、通信局の 電源に関する情報 (電源の種類、電池残量など)も、アクセスポイントに送信すること が好ましい。ステップ S42では、アクセスポイントが通信品質やスループット、通信局及 びアクセスポイントの電源情報などを考慮して、望まし 、アクセスポイントの情報処理 用 ICの動作周波数を計算する。上記に説明したように、数式 4,数式 5,数式 7を用
V、ることができる。ステップ S44では計算した動作周波数及びその動作周波数に最適 な供給電圧に、アクセスポイントの MACJCを設定する。ステップ S46では、数式 7の 条件の下、送信局力 送られてきた動作周波数の候補に関する情報のうち、最も遅
V、動作周波数に関する候補を承認する。ステップ S48では承認された候補が通信局 に送信され、通信局は承認された動作周波数に通信局の MACJCを設定する (ステツ プ S36)。ステップ S50は動作の終了である。
[0062] 以上で本発明の実施例の説明を終わるが、本発明の実施形態はこれらの実施例に とどまらず、本発明の範囲を逸脱しない範囲で様々な実施形態が可能である。例え ば、実施例 1において、 IC動作情報に承認を与える機器は、ネットワーク上のルータ やゲートウェイ、携帯電話網の基地局や RNC等である実施形態が考えられる。さらに 実施例 1にお 、て IC動作情報に承認を与える機器は、別のネットワークや PTSN網に 接続され、 STA2と通信を行なっている無線端末でもよい。特に携帯端末で VoIPがー 般ィ匕する時代には、通信品質の確保と電池の節約が非常に重要になると考えられ、 本発明のように通信を行なう通信機間で消費電力すなわち情報処理 ICの動作周波 数や動作電圧を交渉しながら適切な値に設定する技術は、大きな有用性を持つこと が予想できる。

Claims

請求の範囲
[1] 第 1の通信機と、前記第 1の通信機と通信を行なう第 2の通信機と、前記通信に用 いるプロトコル群とを備えるネットワークシステムであって、
前記プロトコル群は、前記第 1の通信機が有する第 1情報処理 ICの動作に関する I C動作情報を、前記第 1の通信機から前記第 2の通信機に伝える第 1方向 IC動作情 報伝達手段と、前記 IC動作情報を、前記第 2の通信機から前記第 1の通信機に伝え る第 2方向 IC動作情報伝達手段とを備え、
前記第 1の通信機は、前記 IC動作情報を作成すると共に、前記第 1方向 IC動作情 報伝達手段を用いて前記 IC動作情報を前記第 2の通信機に送信し、
前記第 2の通信機は、前記送信された IC動作情報の全部又は一部を承認すると共 に、前記第 2方向 IC動作情報伝達手段を用いて前記承認した IC動作情報を前記第 1の通信機に送信し、
前記第 1の通信機は、前記承認された IC動作情報に従って、前記第 1情報処理 IC の動作周波数及び Z又は供給電圧を調節することを特徴とする、ネットワークシステ ム。
[2] 前記第 2の通信機は、前記送信された IC動作情報の全部を承認しな 、ときは、新 しい IC動作情報を作成して前記第 1の通信機に送信することを特徴とする、請求項 1 に記載のネットワークシステム。
[3] 前記第 2の通信機は、前記通信に要求される通信品質、前記通信に要求されるス ループット、前記通信におけるチャネルアクセス遅延のうち、少なくとも 1つ以上を考 慮して、前記送信された IC動作情報の全部又は一部を承認することを特徴とする、 請求項 1又は 2に記載のネットワークシステム。
[4] 前記第 2の通信機は、前記第 1の通信機以外の通信機との通信に要求される通信 品質及び Z又は前記通信に要求されるスループットを考慮して、前記送信された IC 動作情報の全部又は一部を承認することを特徴とする、請求項 1から 3のいずれかに 記載のネットワークシステム。
[5] 前記 IC動作情報は、前記第 1情報処理 ICの最大処理速度に関する情報を含むこ とを特徴とする、請求項 4に記載のネットワークシステム。
[6] 前記第 2の通信機は、前記最大処理速度を考慮して、前記送信された IC動作情報 の全部又は一部を承認することを特徴とする、請求項 5に記載のネットワークシステム
[7] 前記 IC動作情報は、前記第 1情報処理 ICが取り得る動作周波数及び Z又は供給 電圧に関することを特徴とする、請求項 1から 6のいずれかに記載のネットワークシス テム。
[8] 前記第 1の通信機は、前記通信に要求される通信品質、前記通信に要求されるス ループット、前記通信におけるチャネルアクセス遅延のうち、少なくとも 1つ以上を考 慮して、前記 IC動作情報を作成することを特徴とする、請求項 7に記載のネットワーク システム。
[9] 前記 IC動作情報が前記動作周波数の場合に、前記第 1の通信機は、前記承認さ れた IC動作情報に従って前記第 1情報処理 ICの動作周波数を調節すると共に、前 記第 1情報処理 ICの供給電圧を前記調節された動作周波数に適した供給電圧に調 節することを特徴とする、請求項 7又は 8に記載のネットワークシステム。
[10] 前記 IC動作情報は、前記通信に要求される通信品質に関する品質情報であること を特徴とする、請求項 1から 6のいずれかに記載のネットワークシステム。
[11] 前記品質情報は、単位データを処理するための制限時間に関する、請求項 10に 記載のネットワークシステム。 [12] 前記第 1の通信機は、前記第 1情報処理 ICが取り得る動作周波数及び Z又は供給 電圧の中で、前記承認された品質情報に関する前記制限時間内に要求される処理 を遂行可能な最低の動作周波数及び Z又は供給電圧に、前記第 1情報処理 icを調 節することを特徴とする、請求項 11に記載のネットワークシステム。
[13] 前記第 1の通信機は、前記第 1情報処理 ICが取り得る動作周波数及び Z又は供給 電圧の中で、前記承認された品質情報に関する前記制限時間内に要求される処理 を遂行可能な動作周波数及び Z又は供給電圧を計算すると共に、該計算した動作 周波数及び Z又は供給電圧の情報を含む第 2の IC動作情報を、前記第 2の通信機 に送信し、
前記第 2の通信機は、前記送信された第 2の IC動作情報の全部又は一部を承認 すると共に、前記第 2方向 IC動作情報伝達手段を用いて前記承認した第 2の IC動作 情報を前記第 1の通信機に送信し、
前記第 1の通信機は、前記承認された第 2の IC動作情報に従って、前記第 1情報 処理 ICの動作周波数及び Z又は供給電圧を調節することを特徴とする、請求項 10 力も 12のいずれかにネットワークシステム。
[14] 前記第 2の通信機は、前記第 1の通信機との通信に必要な通信品質の変化、前記 第 1の通信機との通信に必要なスループットの変化、前記第 1の通信機以外の通信 機との通信に必要な通信品質の変化、前記第 1の通信機以外の通信機との通信に 必要なスループットの変化、のいずれ力 1つ以上の変化に応じて、一度承認しなかつ た前記 IC動作情報を新たに承認すると共に前記新たに承認した IC動作情報を前記 第 1の通信機に送信し、前記第 1の通信機は前記新たに承認した IC動作情報に従つ て前記第 1情報処理 ic動作周波数及び Z又は供給電圧を調節することを特徴とする
、請求項 1から 13のいずれかに記載のネットワークシステム。 [15] 前記第 1の通信機は前記第 1の通信機が用いる電源に関する電源情報を作成する 手段を有し、前記プロトコル群は、前記第 1の通信機から前記第 2の通信機へ前記電 源情報を伝える手段を有することを特徴とする、請求項 1から 14のいずれかに記載 のネットワークシステム。 前記第 2の通信機は、前記電源情報を伝える手段を通じて得た前記電源情報も考 慮して、前記承認を行なうことを特徴とする、請求項 16に記載のネットワークシステム
[17] 前記第 2の通信機は、前記送信された IC動作情報を考慮して、前記第 2の通信機 が有する第 2情報処理 ICの供給電圧及び Z又は動作周波数を調節することを特徴 とする、請求項 1から 16のいずれかに記載のネットワークシステム。
[18] 前記第 2の通信機は、前記送信された電源情報を考慮して、前記第 2情報処理 IC の供給電圧及び Z又は動作周波数を調節することを特徴とする、請求項 15から 17 の!、ずれかに記載のネットワークシステム。
[19] 前記第 2の通信機は、前記調節された第 2情報処理 ICの供給電圧及び Z又は動 作周波数も考慮して、前記承認を行なうことを特徴とする、請求項 17又は 18に記載 のネットワークシステム。
[20] 前記 IC動作情報は、前記第 1の通信機と前記第 2の通信機とが通信設定を行なう 際に、前記第 1の通信機力も前記第 2の通信機へと送信されることを特徴とする、請 求項 1から 19のいずれかに記載のネットワークシステム。
[21] 前記 IC動作情報は、前記第 1の通信機と前記第 2の通信機とが通信を開始した後 でも、前記第 1の通信機から前記第 2の通信機へと送信されることを特徴とする、請求 項 1から 20のいずれかに記載のネットワークシステム。 [22] 前記第 1方向 IC動作情報伝達手段と、前記第 2方向 IC動作情報伝達手段は、前 記プロトコル群のうち、レイヤ 2のプロトコルに組み込まれることを特徴とする、請求項 1から 21のいずれかに記載のネットワークシステム。
[23] 前記通信は、 IEEE801. 22e規格の通信であることを特徴とする、請求項 1から 22 の!、ずれかに記載のネットワークシステム。
[24] 前記 IC動作情報として、 TSPECパラメータ群を用いる事を特徴とする、請求項 23 の!、ずれかに記載のネットワークシステム。
[25] 前記第 1の通信機は、前記第 1情報処理 ICの供給電圧を変化させることによって、 前記第 1の通信機の物理層の処理遅延時間が変わる場合は、前記物理層の処理遅 延時間を推定して保持すると共に、 MACフレームを送信する前に MACフレームの Timestampフィールドの値を前記推定した処理遅延時間に更新することを特徴とする 、請求項 23又は 24に記載のネットワークシステム。
[26] 前記品質情報は、前記通信の種類を示すシンボルであることを特徴とする、請求項 10から 13のいずれかに記載のネットワークシステム。
[27] 前記第 1の通信機及び Z又は前記第 2の通信機は、前記シンボルに対応した、単 位データを処理するための制限時間を知っていることを特徴とする、請求項 26に記 載のネットワークシステム。
[28] 前記第 1の通信機と前記第 2の通信機の少なくとも一方は、 LANに接続された端 末、アクセスポイント、ルータ、ゲートウェイのいずれかであることを特徴とする、請求 項 1から 27のいずれかに記載のネットワークシステム。
[29] 前記第 1の通信機と前記第 2の通信機の少なくとも一方は、 PTSN網に接続された 端末であることを特徴とする、請求項 1から 27のいずれかに記載のネットワークシステ ム。
[30] 前記第 1の通信機と前記第 2の通信機の少なくとも一方は、携帯電話ネットワークに 接続された端末、基地局、その他前記携帯電話ネットワークに接続される機器のい ずれかであることを特徴とする、請求項 1から 27のいずれかに記載のネットワークシス テム。
[31] 前記第 1の通信機と前記第 2の通信機の少なくとも一方は、携帯端末であることを 特徴とする、請求項 1から 27のいずれかに記載のネットワークシステム。
[32] 他の通信機と通信を行なう通信機であって、前記通信機は、前記通信機が有する 処理装置の動作に関する IC動作情報を作成すると共に、前記 IC動作情報の全部又 は一部の承認を前記他の通信機に求め、前記承認を受けた IC動作情報に従って、 前記処理装置の動作周波数及び Z又は供給電圧を調節することを特徴とする通信 機。
[33] 他の通信機と通信を行なう通信機であって、前記通信機は、前記他の通信機が有 する処理装置の動作に関する IC動作情報を受け取ると共に、前記通信に要求される 通信品質,前記通信に要求されるスループット,前記通信におけるチャネルアクセス 遅延のうち、少なくとも 1つ以上考慮して前記受け取った IC動作情報の全部又は一 部を承認し、前記承認した IC動作情報を前記他の通信機に送信することを特徴とす る通信機。
[34] 第 1の通信機と、前記第 1の通信機と通信を行なう第 2の通信機とを備えるネットヮ ークシステムの消費電力調節方法であって、
前記第 1の通信機が、前記第 1の通信機が有する第 1情報処理 ICの動作に関する I C動作情報を作成すると共に、前記 IC動作情報を前記第 2の通信機に送信するステ ップと、
前記第 2の通信機が、前記送信された IC動作情報の全部又は一部を承認すると共 に、前記承認した IC動作情報を前記第 1の通信機に送信するステップと、 前記第 1の通信機が、前記承認された IC動作情報に従って、前記第 1情報処理 IC の動作周波数及び Z又は供給電圧を調節することを特徴とする、ネットワークシステ ムの消費電力調節方法。
PCT/JP2004/007386 2004-05-28 2004-05-28 ネットワークシステム WO2005117352A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CNA2004800430502A CN1954552A (zh) 2004-05-28 2004-05-28 网络系统
US11/596,099 US7903622B2 (en) 2004-05-28 2004-05-28 Network system
JP2006513783A JP3915007B2 (ja) 2004-05-28 2004-05-28 ネットワークシステム
EP04745422A EP1758302A4 (en) 2004-05-28 2004-05-28 NETWORK SYSTEM
PCT/JP2004/007386 WO2005117352A1 (ja) 2004-05-28 2004-05-28 ネットワークシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/007386 WO2005117352A1 (ja) 2004-05-28 2004-05-28 ネットワークシステム

Publications (1)

Publication Number Publication Date
WO2005117352A1 true WO2005117352A1 (ja) 2005-12-08

Family

ID=35451240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007386 WO2005117352A1 (ja) 2004-05-28 2004-05-28 ネットワークシステム

Country Status (5)

Country Link
US (1) US7903622B2 (ja)
EP (1) EP1758302A4 (ja)
JP (1) JP3915007B2 (ja)
CN (1) CN1954552A (ja)
WO (1) WO2005117352A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088106A (ja) * 2008-07-15 2010-04-15 Intel Corp プロトコルスタックのタイミングの管理
JP2015500601A (ja) * 2011-12-06 2015-01-05 クゥアルコム・インコーポレイテッドQualcomm Incorporated プロセッサのパフォーマンスレベルを管理するための無線広域ネットワークプロトコル情報の使用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620235B2 (en) 2008-05-23 2013-12-31 Qualcomm Incorporated Thermal management for data modules
TWI392315B (zh) * 2009-02-20 2013-04-01 Realtek Semiconductor Corp 網路介面裝置及相關省電方法
US8498328B2 (en) 2009-10-13 2013-07-30 Qualcomm Incorporated Energy management for wireless devices
US8370665B2 (en) * 2010-01-11 2013-02-05 Qualcomm Incorporated System and method of sampling data within a central processing unit
US8891422B2 (en) * 2010-04-19 2014-11-18 Lenovo Innovations Limited (Hong Kong) Communication system, communication terminal, communication device, communication control method, and communication control program
CN106502361A (zh) * 2016-10-19 2017-03-15 盛科网络(苏州)有限公司 芯片的功耗调节方法、装置及系统
KR20230023159A (ko) * 2021-08-10 2023-02-17 삼성전자주식회사 패킷 전송 제어 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321874A (ja) * 1994-05-26 1995-12-08 Murata Mfg Co Ltd データ通信装置
JPH09231194A (ja) * 1996-02-21 1997-09-05 Mitsubishi Electric Corp 携帯端末
JP2000209649A (ja) * 1999-01-13 2000-07-28 Ricoh Co Ltd モデム装置およびこれを使用する携帯端末装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2182751T3 (es) * 1994-07-21 2003-03-16 Interdigital Tech Corp Regulacion de la temperatura interna de un terminal de abonado.
JPH08223624A (ja) * 1995-02-15 1996-08-30 Nec Corp 無線選択呼出受信機及び無線データ伝送方式
JP3463555B2 (ja) * 1998-03-17 2003-11-05 ソニー株式会社 無線通信方法、無線通信システム、通信局、及び制御局
DE19943779A1 (de) * 1999-09-13 2001-03-22 Siemens Ag Anordnung zum Synchronisieren von über ein Kommunikationsnetz gekoppelten Kommunikationssystemkomponenten
US7013406B2 (en) * 2002-10-14 2006-03-14 Intel Corporation Method and apparatus to dynamically change an operating frequency and operating voltage of an electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321874A (ja) * 1994-05-26 1995-12-08 Murata Mfg Co Ltd データ通信装置
JPH09231194A (ja) * 1996-02-21 1997-09-05 Mitsubishi Electric Corp 携帯端末
JP2000209649A (ja) * 1999-01-13 2000-07-28 Ricoh Co Ltd モデム装置およびこれを使用する携帯端末装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1758302A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088106A (ja) * 2008-07-15 2010-04-15 Intel Corp プロトコルスタックのタイミングの管理
JP2012105344A (ja) * 2008-07-15 2012-05-31 Intel Corp プロトコルスタックのタイミングの管理
US8218580B2 (en) 2008-07-15 2012-07-10 Intel Corporation Managing timing of a protocol stack
JP2015500601A (ja) * 2011-12-06 2015-01-05 クゥアルコム・インコーポレイテッドQualcomm Incorporated プロセッサのパフォーマンスレベルを管理するための無線広域ネットワークプロトコル情報の使用

Also Published As

Publication number Publication date
CN1954552A (zh) 2007-04-25
EP1758302A4 (en) 2010-07-28
JP3915007B2 (ja) 2007-05-16
US20070242788A1 (en) 2007-10-18
JPWO2005117352A1 (ja) 2008-04-03
EP1758302A1 (en) 2007-02-28
US7903622B2 (en) 2011-03-08

Similar Documents

Publication Publication Date Title
US9942851B2 (en) Dynamic power management in a wireless device
US8605637B2 (en) Throttling access points
US8588831B2 (en) Method and base station for sending information
US20050249227A1 (en) Method for indicating buffer status in a WLAN access point
US20070230418A1 (en) Triggering rule for energy efficient data delivery
EP1749379A1 (en) Method and system for adapting wireless network service level
KR20170057285A (ko) 무선 전력 및 성능을 최적화하기 위한 협업 요구 기반 듀얼 모드 Wi-Fi 네트워크 제어
US20130028156A1 (en) Access category-based power-save for wi-fi direct group owner
CN102549523A (zh) 用于优化无线设备的功耗的装置和方法
Zeng et al. SOFA: A sleep-optimal fair-attention scheduler for the power-saving mode of WLANs
CN110278603B (zh) 一种移动终端动态功耗调整的方法
JP3915007B2 (ja) ネットワークシステム
TW202131726A (zh) 自適應功率控制機制之無線通訊方法以及相關電子裝置
WO2012149737A1 (zh) 一种移动终端及其实现功耗控制的方法
JP4161988B2 (ja) ネットワーク内の通信局のエネルギー消費を最適化する方法および通信局
WO2008065562A2 (en) Adaptive trigger frame generation in wireless networks
Csernai et al. Wireless adapter sleep scheduling based on video QoE: How to improve battery life when watching streaming video?
WO2015035927A1 (zh) 一种信道配置方法及系统、接入控制器
CN111542102A (zh) 一种ZigBee-WiFi协同无线局域网终端设备节能系统及其使用方法
CN110572851A (zh) 一种数据上传方法、系统、装置及计算机可读存储介质
CN116208979A (zh) 在多模设备中的自适应无线连接
JP3875955B2 (ja) 携帯用端末機のdspの使用量を調整する方法及びその装置
Chen et al. Achieving energy saving with QoS guarantee for WLAN using SDN
Lim et al. An adaptive power management scheme for wlans using reinforcement learning
JP2000115240A (ja) 通信サービス品質制御方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043050.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513783

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11596099

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004745422

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 7487/DELNP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2004745422

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11596099

Country of ref document: US