WO2005117039A1 - トランス - Google Patents

トランス Download PDF

Info

Publication number
WO2005117039A1
WO2005117039A1 PCT/JP2005/009694 JP2005009694W WO2005117039A1 WO 2005117039 A1 WO2005117039 A1 WO 2005117039A1 JP 2005009694 W JP2005009694 W JP 2005009694W WO 2005117039 A1 WO2005117039 A1 WO 2005117039A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
flange portion
coil
insulating member
lead wire
Prior art date
Application number
PCT/JP2005/009694
Other languages
English (en)
French (fr)
Inventor
Kanenori Tsunoda
Original Assignee
Hanwa Alpha Denshi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwa Alpha Denshi Co., Ltd. filed Critical Hanwa Alpha Denshi Co., Ltd.
Publication of WO2005117039A1 publication Critical patent/WO2005117039A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • H01F27/325Coil bobbins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F2027/297Terminals; Tapping arrangements for signal inductances with pin-like terminal to be inserted in hole of printed path

Definitions

  • the present invention relates to a transformer in which a primary coil and a secondary coil are electrically insulated.
  • FIG. 6 is a cross-sectional view showing an example of a conventional transformer.
  • directions orthogonal to each other are indicated by arrows X, Y, and Z.
  • the direction of arrow X is the front side
  • the direction opposite to arrow X is the back side
  • the direction of arrow Y is the side
  • the direction of arrow Z is up
  • the direction opposite to arrow Z is down.
  • bobbin 10 has flange portions 102 and 103 at both ends of winding portion 101.
  • a primary coil C1 is wound around the winding portion 101, and a lead wire CP1 of the primary coil is pulled out from the vicinity of the flange portion 102, is connected to a pin terminal 104 through a groove provided in the flange portion 102, and The connection between the lead wire CP1 and the pin terminal 104 is soldered.
  • the secondary coil C2 is further wound on the primary coil C1, and the lead wire CP2 of the secondary coil C2 is pulled out from the vicinity of the flange portion 103 and connected to the pin terminal 105 provided on the flange portion 102. Then, the connection between the lead wire CP2 and the pin terminal 105 is soldered.
  • E-shaped cores El and E2 are attached to the bobbin 10 as a magnetic core, and a predetermined magnetic circuit is formed.
  • the insulation distance between the primary coil C1 and the secondary coil C2 depends on the end force of the primary coil C1 on the flange portion 102 side and on the top surface and the front side of the flange portion 102 on the pin terminal 105 side.
  • the distance A reaches the pin terminal 105 on the lower surface through the surface.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-76942
  • An object of the present invention is to provide a transformer capable of further miniaturizing while sufficiently securing an insulation distance between a secondary coil and a primary coil or a magnetic core.
  • a transformer according to one aspect of the present invention can be mounted on a predetermined mounting surface, and has a winding portion disposed substantially parallel to the mounting surface and first and second winding portions formed at both ends of the winding portion.
  • a bobbin having a second flange portion, first and second coils wound around the winding portion, and a plurality of coils provided on a lower surface of the first flange portion and connected to a lead wire of the first coil.
  • the second flange portion has an insulating recess on the lower side of the side opposite to the winding portion, and the insulating member fits into the insulating recess.
  • the insulating member has an insulating protrusion that fits into the insulating concave portion.
  • the second coil is attached to the second flange portion, and the lead wire of the second coil is drawn out from the second flange portion side, passes through the surface of the insulating member opposite to the second flange portion, and the second pin It is connected to the terminal.
  • the second flange portion has an insulating concave portion on the lower side on the side opposite to the winding portion, and the insulating convex portion of the insulating member is fitted into the insulating concave portion.
  • the insulation distance between the magnetic core and the second pin terminal is increased by the inner surface of the insulating recess. can do. Thereby, it is possible to sufficiently secure the insulation distance between the magnetic core and the second pin terminal without increasing the height of the second flange portion. As a result, it is possible to reduce the dimension of the transformer in the height direction while ensuring a sufficient insulation distance between the second coil and the magnetic core.
  • Insulating ridges extending along the direction in which the second pin terminals are aligned may be provided between the winding portion and the second pin terminals on the lower surface of the second flange portion.
  • the insulation distance between the first coil and the second pin terminal can be increased by the side surface on the winding portion side of the insulating ridge. Thereby, the insulation distance between the first coil and the second pin terminal can be sufficiently ensured without increasing the horizontal dimension of the second flange portion. as a result. It is possible to reduce the horizontal dimension while ensuring a sufficient insulation distance between the first coil and the second coil.
  • an insulating groove portion extending along the direction in which the second pin terminals are aligned and into which the insulating projection portion can be fitted is provided. It may be provided.
  • the insulating distance between the first coil and the second pin terminal can be increased by the inner surface of the insulating groove.
  • the insulating member is formed so as to extend to the upper side of the second flange portion, and the lead wire of the second coil passes through the surface of the insulating member from above the second flange portion through the surface of the insulating member. It may be led to pin 2 terminal.
  • the insulating member may have a heat-radiating convex portion, and may be locked so that a lead wire of the second coil is along a side surface of the heat-radiating convex portion.
  • the lead wire of the second coil is soldered to the second pin terminal, the heat transmitted from the second pin terminal force to the bow I of the second coil is dissipated. It can be moved to the convex part. This allows the second coil to be pulled out The wire is radiated heat, and it becomes possible to stop the melting of the coating at the position of the radiating convex portion.
  • the heat radiation convex portion may have a curved side surface.
  • the lead wire of the second coil is guided along the curved side surface of the heat-radiating convex portion, the lead wire of the second coil is applied to the heat-radiating convex portion with relatively large tension. Even when locked, high stress concentration is prevented from occurring on the contact surface of the lead wire of the second coil with the heat-radiating convex portion.
  • the lead wire of the second coil can be brought into close contact with the side surface of the heat-radiating projection while preventing the break of the lead wire of the second coil, and the contact surface can be enlarged. . As a result, a higher heat radiation effect can be obtained.
  • the insulating member may have a protection ridge extending vertically. In this case, a machine or the like is prevented from coming into contact with the lead wire of the second coil during an assembly operation or the like. This makes it possible to prevent the lead wire of the second coil from being broken.
  • a transformer according to another aspect of the present invention can be mounted on a predetermined mounting surface, and has a winding portion disposed substantially perpendicular to the mounting surface and first and second ends formed at both ends of the winding portion.
  • a bobbin having a first flange portion and a second flange portion; first and second coils wound around the winding portion; and a lower surface on one side of the first flange portion.
  • first flange portion having an insulating member mounted on the other side of the first flange portion.
  • the first flange portion has an insulating concave portion on the other side surface, and the insulating member has an insulating member. It has an insulating protrusion that fits into the recess, and the insulating protrusion fits into the insulating recess.
  • the second coil is attached to the other side of the first flange part, and the lead wire of the second coil is drawn out from the second flange part side and passes on the surface of the insulating member opposite to the first flange part. Is connected to the second pin terminal.
  • the first flange portion has an insulating concave portion on the side surface on the other side, and the insulating convex portion of the insulating member is fitted into the insulating concave portion.
  • the insulation distance between the first coil and the second pin terminal can be increased by the inner surface of the insulating recess. This makes it possible to secure a sufficient insulation distance between the first coil and the second pin terminal without increasing the height of the other side of the first flange portion. The As a result, it is possible to reduce the height of the transformer while ensuring a sufficient insulation distance between the first coil and the second coil.
  • the insulation distance between the magnetic core and the second pin terminal can be increased by the side surface of the insulating ridge on the first pin terminal side.
  • Insulation that extends along the direction in which the second pin terminals are aligned between the winding portion and the second pin terminals on the lower surface on the other side of the first flange portion, and to which the insulating projections can fit. Groove may be provided.
  • the insulating distance between the magnetic core and the second pin terminal can be increased by the inner surface of the insulating groove.
  • the insulating member is formed so as to extend to the second flange portion, and the lead wire of the second coil passes through the other side of the second flange portion over the surface of the insulating member. It may be led to the pin terminal of No. 2.
  • the insulating member may have a heat-radiating convex portion, and may be locked so that a lead wire of the second coil is along a side surface of the heat-radiating convex portion.
  • the lead wire of the second coil is soldered to the second pin terminal, the heat transmitted from the second pin terminal force to the bow I of the second coil is dissipated. It can be moved to the convex part. As a result, the lead wire of the second coil is dissipated, and the melting of the coating can be stopped at the position of the projecting portion for heat dissipation.
  • the heat radiation convex portion may have a curved side surface.
  • pull out the second coil Since the wire is guided along the curved side surface of the heat-radiating projection, the second coil is connected even if the lead wire of the second coil is locked to the heat-radiation projection by relatively large tension. High stress concentration is prevented from occurring on the contact surface of the lead wire with the heat-radiating projection.
  • the lead wire of the second coil can be brought into close contact with the side surface of the heat-radiating projection while preventing the break of the lead wire of the second coil, and the contact surface can be enlarged. . As a result, a higher heat radiation effect can be obtained.
  • the insulating member may have a protection ridge extending vertically. In this case, a machine or the like is prevented from coming into contact with the lead wire of the second coil during an assembly operation or the like. This makes it possible to prevent the lead wire of the second coil from being broken.
  • the insulation distance can be lengthened by the inner surface of the insulating recess, so that further miniaturization can be achieved while sufficiently securing the insulation distance between the secondary coil and the primary coil or the magnetic core.
  • Possible transformers can be provided.
  • FIG. 1 is a perspective view showing an example of a transformer according to the present embodiment.
  • Figure 2 is a front view of the transformer shown in Figure 1
  • FIG. 3 is a cross-sectional view of the transformer shown in FIG.
  • FIG. 4 is a sectional view showing another example of the transformer according to the present embodiment.
  • FIG. 5 is a sectional view showing an example of a transformer according to a second embodiment.
  • FIG. 6 is a cross-sectional view showing an example of a conventional transformer.
  • FIG. 1 is a perspective view of a transformer according to one embodiment of the present invention.
  • FIG. 2 is a front view of the transformer shown in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line AA of the transformer shown in FIG. 1 to 3, directions orthogonal to each other are indicated by arrows X, Y, and Z.
  • the direction of arrow X is the front side
  • the direction opposite to arrow X is the rear side
  • the direction of arrow Y is the side
  • the direction of arrow Z is up
  • the direction opposite to arrow Z is down.
  • the transformers shown in Figs. 1 to 3 are a bobbin Bl, a primary coil Cl, a secondary coil C2, and an E-type core EC. 1, EC2, pin terminals P11 to P15, P21, P22 and insulating member S.
  • the bobbin B1 includes a winding part B2 around which the primary coil C1 and the secondary coil C2 are wound, a flange part FL1 formed at the rear end of the winding part B2, and a winding part B2. And a flange part FL2 formed at the front end of the front end.
  • the bobbin B1 is integrally formed of an insulating material such as plastic.
  • a protruding portion T1 protruding toward the rear side is formed.
  • a guide groove (not shown) for guiding the lead wire CP1 of the primary coil C1 is formed in the protrusion T1.
  • Pin terminals P11 to P15 are implanted on the lower surface of the protruding portion T1 by press-fitting or integral molding.
  • An insulating protruding portion T2 protruding toward the front side is formed below the flange portion FL2.
  • Two pin terminals P21 and P22 are implanted on the lower surface of the insulating protrusion T2 by press-fitting or integral molding.
  • a rectangular insulating recess T3 is formed in the front of the insulating protrusion T2 so as to extend in the direction of arrow Y.
  • a U-shaped insulating ridge T4 is formed on the lower surface of the insulating protrusion T2 so as to surround the rear and side surfaces of the pin terminals P21 and P22.
  • Guide grooves Rl and R2 for guiding the lead wire CP2 of the secondary coil C2 are formed in the upper part of the flange portion FL2.
  • E-shaped cores EC1 and EC2 serving as rear and front force cores are mounted on the bobbin B1, respectively, to form a predetermined magnetic circuit.
  • the shape of the core is not particularly limited to this example, and a core having another shape such as a combination of an E-type core and an I-type core may be used.
  • a rectangular insulating protrusion T5 is formed at the lower portion on the back side of the insulating member S so as to extend in the direction of arrow Y.
  • the insulating member S is mounted on the front side of the insulating protrusion T1 and the E-shaped core EC1 so that the insulating protrusion T5 fits into the insulating recess T2.
  • a long heat-radiating convex portion T6 is formed so as to extend in the direction of arrow Y. Both side surfaces of the heat-radiating convex portion T6 are formed as arc-shaped curved surfaces.
  • substantially triangular heat-radiating convex portions T7 and T8 are formed.
  • the corners on the inner side surfaces of the heat-radiating convex portions T7 and T8 are formed in an arc shape, and are arranged so as to be located inside the side surfaces on both sides of the heat-radiating convex portions T6.
  • protection ridges T9, T10 are formed near the both sides of the insulating member S, respectively. It is formed so as to extend.
  • the insulating member S is integrally formed of an insulating material such as plastic.
  • the primary coil C1 for example, an electric wire such as an enameled wire is used.
  • the primary coil C1 is wound around the winding portion B2, and the lead wires CP1 at both ends are pulled out from the vicinity of the flange portion FL1, pass through the guide grooves, and are connected by soldering to the pin terminals P12 and P14.
  • the secondary coil C2 for example, a three-layer insulated wire is used.
  • the secondary coil C2 is further wound on the primary coil C1.
  • One of the lead wires CP2 of the secondary coil C2 is drawn out through the force guide groove R1 near the flange portion FL2, and on the surface of the insulating member S, one of the side surfaces of the heat radiation convex portion T6 and the heat radiation convex portion T7. It is locked by the heat-radiating projections T6 and T7 along the inner side surface, and soldered to the pin terminal P21.
  • the other lead wire CP2 is drawn out through the guide groove R2 near the flange portion FL2, and is formed on one side surface of the heat dissipation convex portion T6 and the inside of the heat dissipation convex portion T8 on the surface of the insulating member S. It is locked by the heat-radiating projections T6 and T8 along the side surface and soldered to the pin terminal P22.
  • the temperature near the pin terminals P21 and P22 of the lead wire CP2 becomes high due to the soldering, and the coating of the lead wire CP2 melts.
  • the heat transmitted from the pin terminals P21 and P22 to the lead wire CP2 is transferred to the heat radiation protrusions T6, T7 and T8 through the contact surface with the heat radiation protrusions T6, T7 and T8. That is, the lead line CP2 is dissipated by the heat radiation convex portions T6, T7, T8. Thereby, the melting of the coating due to the soldering of the lead wire CP2 can be stopped at the position of the heat-radiating convex portions T7, T8 or the heat-radiating convex portion T6.
  • the shortest distance L between the heat-radiating convex portion T6 and the E-shaped core EC2 shown in Fig. 1 is set so as to ensure a predetermined insulating distance. This ensures a sufficient insulation distance between the E-shaped core EC2 and the secondary coil C2 even when the coating of the lead wire CP2 is melted to the position of the heat-radiating convex portion T6.
  • the heat-radiating convex portions T6, T7, T8 have curved side surfaces.
  • a high stress concentration occurs on the contact surface between the lead wire CP2 and the heat radiation convex portions T6, T7, T8. Is prevented from occurring.
  • the lead wire CP2 can be brought into close contact with the side surfaces of the heat-radiating projections T6, T7, T8 while preventing the lead wire CP2 from being broken, and the contact surface is increased. can do. As a result, a higher heat radiation effect can be obtained.
  • protection protrusions T9, T10 extending vertically are provided on both sides of the lead wire CP2. This prevents a machine or the like from coming into contact with the lead wire CP2 during an assembly operation or the like. As a result, disconnection of the lead line CP2 can be prevented.
  • the bobbin B1 is attached to the circuit board W as shown in FIG.
  • the circuit board W is provided with a hole having a shape corresponding to the insulating ridge T4.
  • the insulating ridge T4 is inserted into the hole of the circuit board W.
  • the shortest insulation distance between the E-shaped cores EC1 and EC2 and the secondary coil C2 is the front side of the E-shaped core EC2.
  • the distance from the lower surface to the lower end of the insulating protrusion T2 is L2.
  • the insulation distance can be increased by the inner surface of the insulating concave portion T3, so that a predetermined insulation distance can be secured while reducing the vertical dimension of the bobbin B1.
  • the shortest insulation distance between the primary coil C1 and the secondary coil C2 is determined from the front end of the primary coil C1 to the rear surface of the insulating protruding portion T2, the insulating ridge.
  • the distance L3 from the rear surface and lower surface of T4 to the pin terminal P12 is obtained.
  • the insulation distance can be increased by the rear surface of the insulating ridge T4, so that a predetermined insulation distance can be secured while reducing the size of the bobbin B1 in the front direction.
  • the insulating distance can be lengthened by forming insulating concave portion T3 and insulating convex ridge portion T4 on insulating projecting portion T2.
  • the size of the bobbin B1 in the up-down direction and the front-back direction can be reduced.
  • a force provided with an insulating protrusion T2, an insulating concave portion # 3, an insulating convex portion # 4, and an insulating member S below the flange portion FL2 is a three-layer primary coil.
  • An insulated protrusion, an insulated recess, an insulated ridge, and an insulated member may be provided on the lower side of the flange portion FL1 using an insulated wire.
  • the insulating ridges # 4 are provided on the lower surface of the insulating protrusion # 2.
  • Pin terminal P21 , 22 may be formed to have a U-shaped insulating groove portion Tl1 surrounding the rear and side surfaces.
  • an insulating protrusion T12 is formed on a housing of a power supply device or the like in which the transformer is arranged, and the transformer is mounted on the circuit board W such that the insulating protrusion T12 fits into the insulating groove T11.
  • the insulation distance between the primary coil C1 and the secondary coil C2 is changed from the front end of the primary coil C1 to the surface on the back side of the insulating protrusion T2 and the insulating groove T11 on the lower surface.
  • the distance L4 from the rear surface, the vertical surface on the rear surface in the insulating groove T11, the vertical surface on the horizontal plane and the front surface, and the front surface of the insulating groove T11 on the lower surface to the pin terminal P22 is L4. .
  • the insulation distance can be lengthened by the inner surface of the insulating groove T11, so that the predetermined insulation distance can be maintained while reducing the longitudinal dimension of the bobbin B1.
  • the shape and size of the insulating concave portion T3, the insulating ridge portion # 4, and the insulating convex portion # 5 are not limited to the shapes and sizes shown in the drawings as long as an insulating distance satisfying the safety standards can be secured. .
  • the insulating concave portion # 3 and the insulating convex portion # 5 may have a circular, elliptical, trapezoidal, or other shape in front, or may have a curved cross-section such as an arc.
  • the insulating ridge portion 4 is not limited to the U-shape, and may be a linear shape, a curved shape, or another shape.
  • the shape and size of the heat-radiating convex portions # 6, # 7, and # 8 are not limited to the shapes and sizes shown in the drawings, but may be circular, elliptical, substantially rectangular, etc. as long as the respective effects can be exhibited. Other shapes and sizes may be used.
  • the number of pin terminals is not particularly limited to the above example. Also, from the viewpoint of assemblability and the like, an insulating tape or the like may be added between the primary coil and the secondary coil and on the surface of the secondary coil and the like. Also, the number of primary coils and secondary coils is not particularly limited to the above example, and a plurality of primary coils and secondary coils may be used.
  • the flange portion FL1 corresponds to the first flange portion
  • the flange portion FL2 corresponds to the second flange portion
  • the primary coil C1 corresponds to the first coil
  • the next coil C2 corresponds to the second coil
  • the pin terminals ⁇ 11 to ⁇ 15 correspond to the first pin terminal
  • the pin terminals P21 and P22 correspond to the second pin terminal
  • insulating member S corresponds to the insulating member
  • insulating concave portion # 3 corresponds to the insulating concave portion
  • the protrusion T5 corresponds to the protrusion for insulation
  • the protrusion for insulation ⁇ 4 corresponds to the protrusion for insulation
  • the groove for insulation Tl 1 corresponds to the groove for insulation
  • the protrusion for insulation T12 corresponds to the protrusion for insulation.
  • the heat-radiating convex portions # 6, # 7, # 8 correspond to the heat-radiating convex portions
  • FIG. 5 is a sectional view of a transformer according to the second embodiment.
  • directions orthogonal to each other are indicated by arrows X, ⁇ , and ⁇ .
  • the direction of arrow X is the front side
  • the direction opposite to arrow X is the rear side
  • the direction of arrow ⁇ is the side
  • the direction of arrow ⁇ ⁇ is up
  • the direction opposite to arrow ⁇ is down.
  • the transformer shown in Fig. 5 has a bobbin Bl l, a primary coil Cl, a secondary coil C2, an E-shaped core El, E2
  • the bobbin B11 includes a winding portion B12 around which the primary coil C1 and the secondary coil C2 are wound, a flange portion FL11 formed at a lower end of the winding portion B12, and an upper portion of the winding portion B2. Flange part FL12.
  • the bobbin B11 is integrally formed of an insulating material such as plastic.
  • a protruding portion T21 that protrudes toward the back side beyond the winding thickness of the primary coil C1 and the secondary coil C2 is formed.
  • a plurality of pin terminals P31 are implanted on the lower surface of the protrusion T21 by press-fitting or integral molding.
  • an insulating protruding portion T22 that protrudes toward the front side beyond the winding thickness of the primary coil C1 and the secondary coil C2 is formed.
  • a plurality of pin terminals P32 are implanted on the lower surface of the insulating protrusion T22 by press-fitting or integral molding.
  • a rectangular insulating recess T23 is formed so as to extend in the direction of arrow Y.
  • a U-shaped insulating ridge T24 is formed so as to surround the rear surface and the side surface of the pin terminal P32.
  • a plurality of guide grooves (not shown) for guiding the lead wire CP2 of the secondary coil C2 are formed on the front side of the flange portion FL12. Furthermore, at the end of the upper surface on the front side of the flange portion FL12, there are a plurality of cylindrical shapes for locking the lead wire CP2 of the secondary coil C2. Is formed.
  • the bobbin B11 is equipped with E-shaped cores El and E2 serving as vertical force magnetic cores, respectively, and forms a predetermined magnetic circuit.
  • the shape and the like of the core are not particularly limited to this example, and a core having another shape such as a combination of an E-shaped core and an I-shaped core may be used.
  • a rectangular insulating protrusion T25 is formed at the lower portion on the back side of the insulating member S1 so as to extend in the direction of arrow Y.
  • the insulating member S is mounted on the front side of the bobbin B11 so as to fit into the insulating recess T22. Near the center on the front side of the insulating member S1, the same heat radiation convex portion T6 as in FIG. 1 is formed. Further, at the lower portion on the front side of the insulating member S1, the same heat-radiating convex portions T7 and T8 as those in FIG. 1 are formed.
  • insulating member S1 is integrally formed of an insulating material such as plastic.
  • the primary coil C1 for example, an electric wire such as an enameled wire is used.
  • the primary coil C1 is wound around the winding portion B12, and the lead wires CP1 at both ends are drawn out from the vicinity of the flange portion FL11, pass through the guide groove, and are connected by soldering to the pin terminal P31.
  • the secondary coil C2 for example, a three-layer insulated wire is used.
  • the secondary coil C2 is further wound on the primary coil C1.
  • One lead wire CP2 of the secondary coil C2 is bowed out through the guide groove near the flange portion FL12 and locked by the convex portion G1 for guide, and then radiates heat on the surface of the insulating member S.
  • the protrusions T6 and T7 are locked along the one side surface of the projection T6 and the inner side surface of the projection T7, and are soldered to the pin terminal P32.
  • the other lead wire CP2 is also pulled out through the guide groove in the vicinity of the flange portion FL12 and locked by the guide convex portion G1, and then on one side of the heat radiation convex portion T6 and the heat radiation on the surface of the insulating member S.
  • the projections T6, T8 are locked along the inner side surface of the projection T8, and are soldered to the pin terminal P32.
  • the temperature near the pin terminal P32 of the lead wire CP2 becomes high due to the soldering, and the coating of the lead wire CP2 melts.
  • the heat transmitted from the pin terminal P32 to the lead wire CP2 moves to the heat dissipation convex portions T6, T7, T8 through the contact surface with the heat dissipation convex portions T6, T7, T8. That is, the lead wire CP2 is dissipated by the heat radiation convex portions T6, T7, T8. to this Accordingly, the melting of the coating due to the soldering of the lead wire CP2 can be stopped at the position of the heat-radiating convex portions T7, T8 or the heat-radiating convex portion T6.
  • the distance L10 from the heat-radiating convex portion T6 shown in FIG. 5 to the end of the primary coil C1 on the flange portion FL12 side through the surface of the insulating member S1 and the upper surface of the flange portion FL12 is predetermined. Is set so that the insulation distance of Thereby, even when the coating of the lead wire CP2 is melted to the position of the heat radiation convex part T6, a sufficient insulation distance between the primary coil C1 and the secondary coil C2 is ensured.
  • the bobbin B11 is mounted on the circuit board W as shown in FIG.
  • the substrate W is provided with a hole having a shape corresponding to the insulating ridge T24.
  • the insulating ridge T24 is inserted into the hole of the circuit board W.
  • the shortest insulation distance between the primary coil C1 and the secondary coil C2 is as follows. From the end on the side of the insulating protrusion T22 to the upper surface of the insulating protrusion T22, the upper surface of the insulating recess T23 on the front side, the upper horizontal plane, the vertical plane and the lower horizontal plane, the front inside the insulating recess T23 Is the distance L12 from the lower surface of the insulating recess T23 to the lower end of the insulating protrusion T22 through the lower surface of the insulating recess T23. As described above, the insulating distance can be increased by the inner surface of the insulating concave portion T23, so that the vertical dimension of the bobbin B11 can be reduced.
  • the shortest insulation distance between the E-shaped cores El and E2 and the secondary coil C2 is determined from the lower end of the E-shaped core E2 to the surface on the back side of the insulating projection T22 and the back side of the insulating ridge T24.
  • the distance L3 from the upper and lower surfaces to the pin terminal P31 is obtained.
  • the insulation distance can be increased by the surface on the back side of the insulating ridge T24, so that the dimension in the front-rear direction of the bobbin Bl1 can be reduced by / J.
  • the insulating recess T23 and the insulating ridge T24 are formed on the insulating protrusion T22 to increase the insulation distance, and therefore the bobbin B11 Can be reduced in the vertical and longitudinal directions.
  • a force primary coil provided with an insulating protruding portion T22, an insulating protruding portion # 23, an insulating protruding portion # 24, and an insulating member SI is provided on the front side of the flange portion FL11.
  • the protrusions for insulation, protrusions for insulation, An edge ridge and an insulating member may be provided.
  • an insulating groove such as the insulating groove T11 of FIG. 4 may be formed.
  • an insulating protrusion such as the insulating protrusion T11 in FIG. 4 is formed on the housing of the power supply device or the like in which the transformer is disposed, and the insulating protrusion is fitted into the insulating groove. Attach the transformer to the circuit board W. As a result, the insulation distance can be increased by the inner surface of the insulating groove, and a predetermined insulation distance can be secured while reducing the longitudinal dimension of the bobbin B11.
  • the shape and size of the insulating recess T23, the insulating ridge # 24, and the insulating ridge # 25 are limited to the shapes and sizes shown as long as an insulation distance satisfying safety standards can be secured. Not done.
  • the insulating concave portion # 23 and the insulating convex portion # 25 may have a circular, elliptical, trapezoidal or other front shape, or may have a curved cross-sectional shape such as an arc shape.
  • the insulating ridge portion 24 is not limited to the U-shape, and may be a linear shape, a curved shape, or any other shape!
  • the shape and size of the heat-radiating convex portions # 6, # 7, and # 8 are not limited to the shapes and sizes shown in the drawings, but may be circular, elliptical, substantially rectangular, and the like as long as the respective effects can be exhibited. Other shapes and sizes may be used.
  • the number of pin terminals is not particularly limited to the above example. Also, from the viewpoint of assemblability and the like, an insulating tape or the like may be added between the primary coil and the secondary coil and on the surface of the secondary coil and the like. Also, the number of primary coils and secondary coils is not particularly limited to the above example, and a plurality of primary coils and secondary coils may be used.
  • flange portion FL11 corresponds to a first flange portion
  • flange FL12 corresponds to a second flange portion
  • primary coil C1 corresponds to a first coil
  • secondary coil C1 corresponds to a secondary coil
  • Coil C2 corresponds to the second coil
  • pin terminal P31 corresponds to the first pin terminal
  • pin terminal ⁇ 32 corresponds to the second pin terminal
  • ⁇ -shaped core El ⁇ 2 corresponds to the magnetic core.
  • the insulating member S1 corresponds to the insulating member
  • the insulating concave portion # 23 corresponds to the insulating concave portion
  • the insulating convex portion # 25 corresponds to the insulating convex portion
  • the insulating convex portion # 24 corresponds to the insulating convex streak portion.
  • the radiating protrusions # 6, # 7, # 8 correspond to the heat dissipation protrusions
  • the protection ridges # 9, 10 correspond to the protection protrusions.
  • the transformer according to the present invention can be used for power supply equipment and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Insulating Of Coils (AREA)

Abstract

 トランスは、ボビン、1次コイル、2次コイル、E型コア、複数のピン端子および絶縁用部材を備える。ボビンは、1次コイルおよび2次コイルが巻回される巻線部と、巻線部の背面側の端部に形成されるフランジ部と、巻線部の正面側の端部に形成されるフランジ部とからなる。巻線部の正面側の端部に形成されるフランジ部の下部側に絶縁用凹部を有する絶縁用突出部を設ける。絶縁用凸部が絶縁用凹部に嵌合するように絶縁用部材を放熱用突出部およびE型コアに装着する。2次コイルの引き出し線は絶縁用部材の表面上を通ってピン端子に接続する。

Description

トランス
技術分野
[0001] 本発明は 1次コイルと 2次コイルとを電気的に絶縁したトランスに関するものである。
背景技術
[0002] 1次コイルと 2次コイルとの間の絶縁距離を確保するために、ボビンの一方のフラン ジ部に絶縁用突出部を設けたトランスが提案されている (特許文献 1参照)。
[0003] 図 6は従来のトランスの例を示す断面図である。なお、図 6において、互いに直交す る方向を矢印 X、 Yおよび Zで表す。矢印 Xの方向を正面側、矢印 Xと反対方向を背 面側、矢印 Yの方向を側面側、矢印 Zの方向を上側、矢印 Zと反対方向を下側とする
[0004] 図 6に示すように、ボビン 10は、卷線部 101の両端にフランジ部 102, 103を有する 。卷線部 101には 1次コイル C1が卷回され、 1次コイルの引き出し線 CP1がフランジ 部 102付近から引き出され、フランジ部 102に設けられた溝を通ってピン端子 104に 接続され、さらに引き出し線 CP1とピン端子 104の接続部に半田付けが施される。ま た、 1次コイル C1の上に 2次コイル C2がさらに卷回され、 2次コイル C2の引き出し線 CP2がフランジ部 103付近から引き出され、フランジ部 102に設けられたピン端子 10 5に接続され、さらに引き出し線 CP2とピン端子 105の接続部に半田付けが施される 。ボビン 10には磁心として上下力も E型コア El, E2が装着され、所定の磁気回路が 形成される。
[0005] 一般に、トランスは、用途および構造等に応じて種々の安全規格が定められて!/、る 。このため、上記のようなトランスにおいては、 1次コイル C1と 2次コイル C2との間の 絶縁距離および E型コア El, E2と 2次コイル C2との間の絶縁距離を確保して安全規 格を満たさなければならな 、。
[0006] ここで、 1次コイル C1と 2次コイル C2との間の絶縁距離は、 1次コイル C1のフランジ 部 102側の端部力もフランジ部 102のピン端子 105側の上面および正面側の表面を 通って下面のピン端子 105にいたる距離 Aとなる。 [0007] 図 6のトランスでは、フランジ部 102のピン端子 105側を矢印 Bの方向に突出させる ことにより、半田付けの際に引き出し線 CP2の被覆の一部が溶融した場合でも、所定 の絶縁距離 Aを確保することができる。これにより、絶縁距離 Aを十分に確保しつつ 高さの低 、トランスの製造が可能となった。
特許文献 1:特開 2001 - 76942号公報
発明の開示
発明が解決しょうとする課題
[0008] 近年、電子機器の小型化に伴い、トランスのさらなる小型化が要望されている。しか しながら、上記のトランスにおいては、高さ寸法を小さくすることは可能であった力 前 後方向の寸法を小さくすることが困難であった。
[0009] 本発明の目的は、 2次コイルと 1次コイルまたは磁心との間の絶縁距離を十分に確 保しつつさらなる小型化が可能なトランスを提供することである。
課題を解決するための手段
[0010] 本発明の一局面に従うトランスは、所定の取り付け面に取り付け可能であって、取り 付け面に略平行に配置される卷線部および卷線部の両端に形成される第 1および第 2のフランジ部を有するボビンと、卷線部に卷回された第 1および第 2のコイルと、第 1 のフランジ部の下面に設けられ、第 1のコイルの引き出し線が接続される複数の第 1 のピン端子と、第 2のフランジ部の下面に設けられ、第 2のコイルの引き出し線が接続 される複数の第 2のピン端子と、ボビンに装着された磁心と、第 2のフランジ部に装着 される絶縁用部材とを備え、第 2のフランジ部は、卷線部と反対側の側面における下 部側に絶縁用凹部を有し、絶縁用部材は、絶縁用凹部に嵌合する絶縁用凸部を有 し、絶縁用部材は、絶縁用凸部が絶縁用凹部に嵌合するように第 2のフランジ部に 装着され、第 2のコイルの引き出し線は、第 2のフランジ部側から引き出され、絶縁用 部材の第 2のフランジ部と反対側の表面上を通って第 2のピン端子に接続されるもの である。
[0011] このトランスにおいては、第 2のフランジ部は、卷線部と反対側の側面における下部 側に絶縁用凹部を有し、絶縁用部材の絶縁用凸部が絶縁用凹部に嵌合される。
[0012] この場合、絶縁用凹部の内面により磁心と第 2のピン端子との間の絶縁距離を長く することができる。それにより、第 2のフランジ部の高さを高くすることなぐ磁心と第 2 のピン端子との間の絶縁距離を十分に確保することができる。その結果、第 2のコィ ルと磁心との間の絶縁距離を十分に確保しつつトランスの高さ方向の寸法を小さくす ることが可能となる。
[0013] 第 2のフランジ部の下面における卷線部と第 2のピン端子との間に第 2のピン端子 の整列方向に沿って延びる絶縁用凸条部が設けられてもよ 、。
[0014] この場合、絶縁用凸条部の卷線部側の側面により第 1のコイルと第 2のピン端子と の間の絶縁距離を長くすることができる。それにより、第 2のフランジ部の水平方向の 寸法を大きくすることなぐ第 1のコイルと第 2のピン端子との間の絶縁距離を十分に 確保することができる。その結果。第 1のコイルと第 2のコイルとの間の絶縁距離を十 分に確保しつつ水平方向の寸法を小さくすることが可能となる。
[0015] 第 2のフランジ部の下面における卷線部と第 2のピン端子との間に第 2のピン端子 の整列方向に沿って延びかつ絶縁用突起部が嵌合可能な絶縁用溝部が設けられ てもよい。
[0016] この場合、絶縁用溝部の内面により第 1のコイルと第 2のピン端子との間の絶縁距 離を長くすることができる。それにより、第 2のフランジ部の水平方向の寸法を大きくす ることなぐ第 1のコイルと第 2のピン端子との間の絶縁距離を十分に確保することが できる。その結果。第 1のコイルと第 2のコイルとの間の絶縁距離を十分に確保しつつ トランスの水平方向の寸法を小さくすることが可能となる。
[0017] 絶縁用部材は、第 2のフランジ部の上部側に延びるように形成され、第 2のコイルの 引き出し線は、第 2のフランジ部の上側から絶縁用部材の表面上を通って第 2のピン 端子に導かれてもよい。
[0018] この場合、第 2のコイルの引き出し線の第 2のピン端子付近の被覆が溶融しても、絶 縁距離を十分確保することが可能となる。
[0019] 絶縁用部材は、放熱用凸状部を有し、第 2のコイルの引き出し線が放熱用凸状部 の側面に沿うように係止されてもよい。この場合、第 2のピン端子に第 2のコイルの引 き出し線が半田付けされる際に第 2のピン端子力ゝら第 2のコイルの弓 Iき出し線を伝わ る熱を放熱用凸状部に移動させることができる。これにより、第 2のコイルの引き出し 線が放熱され、放熱用凸状部の位置で被覆の溶融を止めることが可能となる。
[0020] 放熱用凸状部は、曲面状の側面を有してもよい。この場合、第 2のコイルの引き出し 線が放熱用凸状部の曲面状の側面に沿うように案内されるので、第 2のコイルの引き 出し線を比較的大きな張力で放熱用凸状部に係止した場合でも第 2のコイルの引き 出し線の放熱用凸状部との接触面に高い応力集中が発生することが防止される。こ れにより、第 2のコイルの引き出し線の破断を防止しつつ第 2のコイルの引き出し線を 放熱用凸状部の側面に密に接触させることができるとともに、接触面を大きくすること ができる。その結果、より高い放熱効果が得られる。
[0021] 絶縁用部材は、上下方向に延びる保護用突条部を有してもよい。この場合、組立 作業時等に、機械等が第 2のコイルの引き出し線に接触することが防止される。これ により、第 2のコイルの引き出し線の破断を防ぐことが可能となる。
[0022] 本発明の他の局面に従うトランスは、所定の取り付け面に取り付け可能であって、 取り付け面に略垂直に配置される卷線部および卷線部の両端に形成される第 1およ び第 2のフランジ部を有するボビンと、卷線部に卷回された第 1および第 2のコイルと 、第 1のフランジ部の一方側における下面に設けられ、第 1のコイルの引き出し線が 接続される複数の第 1のピン端子と、第 1のフランジ部の他方側における下面に設け られ、第 2のコイルの引き出し線が接続される複数の第 2のピン端子と、ボビンに装着 された磁心と、第 1のフランジ部の他方側に装着される絶縁用部材とを備え、第 1のフ ランジ部は、他方側の側面に絶縁用凹部を有し、絶縁用部材は、絶縁用凹部に嵌合 する絶縁用凸部を有し、絶縁用凸部が絶縁用凹部に嵌合するように第 1のフランジ 部の他方側に装着され、第 2のコイルの引き出し線は、第 2のフランジ部側から引き 出され、絶縁用部材の第 1のフランジ部と反対側の表面上を通って第 2のピン端子に 接続されるものである。
[0023] このトランスにおいては、第 1のフランジ部は、他方側における側面に絶縁用凹部を 有し、絶縁用部材の絶縁用凸部が絶縁用凹部に嵌合される。
[0024] この場合、絶縁用凹部の内面により第 1のコイルと第 2のピン端子との間の絶縁距 離を長くすることができる。それにより、第 1のフランジ部の他方側の高さを高くするこ となぐ第 1のコイルと第 2のピン端子との間の絶縁距離を十分に確保することができ る。その結果、第 1のコイルと第 2のコイルとの間の絶縁距離を十分に確保しつつトラ ンスの高さを小さくすることが可能となる。
[0025] 第 1のフランジ部の他方側の下面における卷線部と第 2のピン端子との間に第 2の ピン端子の整列方向に沿って延びる絶縁用凸条部が設けられても ヽ。
[0026] この場合、絶縁用凸条部の第 1のピン端子側の側面により磁心と第 2のピン端子と の間の絶縁距離を長くすることができる。それにより、第 1のフランジ部の他方側の水 平方向の寸法を大きくすることなぐ磁心と第 2のピン端子との間の絶縁距離を十分 に確保することができる。その結果、第 2のコイルと磁心との間の絶縁距離を十分に 確保しつつトランスの水平方向の寸法を小さくすることが可能となる。
[0027] 第 1のフランジ部の他方側の下面における卷線部と第 2のピン端子との間に第 2の ピン端子の整列方向に沿って延びかつ絶縁用突起部が嵌合可能な絶縁用溝部が 設けられてもよい。
[0028] この場合、絶縁用溝部の内面により磁心と第 2のピン端子との間の絶縁距離を長く することができる。それにより、第 1のフランジ部の他方側の水平方向の寸法を大きく することなぐ磁心と第 2のピン端子との間の絶縁距離を十分に確保することができる 。その結果、第 2のコイルと磁心との間の絶縁距離を十分に確保しつつトランスの水 平方向の寸法を小さくすることが可能となる。
[0029] 絶縁用部材は、第 2のフランジ部まで延びるように形成され、第 2のコイルの引き出 し線は、第 2のフランジ部の他方側力 絶縁用部材の表面上を通って第 2のピン端子 に導かれてもよい。
[0030] この場合、第 2のコイルの引き出し線の第 2のピン端子付近の被覆が溶融しても、絶 縁距離を十分確保することが可能となる。
[0031] 絶縁用部材は、放熱用凸状部を有し、第 2のコイルの引き出し線が放熱用凸状部 の側面に沿うように係止されてもよい。この場合、第 2のピン端子に第 2のコイルの引 き出し線が半田付けされる際に第 2のピン端子力ゝら第 2のコイルの弓 Iき出し線を伝わ る熱を放熱用凸状部に移動させることができる。これにより、第 2のコイルの引き出し 線が放熱され、放熱用凸状部の位置で被覆の溶融を止めることが可能となる。
[0032] 放熱用凸状部は、曲面状の側面を有してもよい。この場合、第 2のコイルの引き出し 線が放熱用凸状部の曲面状の側面に沿うように案内されるので、第 2のコイルの引き 出し線を比較的大きな張力で放熱用凸状部に係止した場合でも第 2のコイルの引き 出し線の放熱用凸状部との接触面に高い応力集中が発生することが防止される。こ れにより、第 2のコイルの引き出し線の破断を防止しつつ第 2のコイルの引き出し線を 放熱用凸状部の側面に密に接触させることができるとともに、接触面を大きくすること ができる。その結果、より高い放熱効果が得られる。
[0033] 絶縁用部材は、上下方向に延びる保護用突条部を有してもよい。この場合、組立 作業時等に、機械等が第 2のコイルの引き出し線に接触することが防止される。これ により、第 2のコイルの引き出し線の破断を防ぐことが可能となる。
発明の効果
[0034] 本発明においては、絶縁用凹部の内面により絶縁距離を長くすることができるので 、 2次コイルと 1次コイルまたは磁心との間の絶縁距離を十分に確保しつつさらなる小 型化が可能なトランスを提供することができる。
図面の簡単な説明
[0035] [図 1]図 1は本実施の形態に係るトランスの一例を示す斜視図
[図 2]図 2は図 1に示すトランスの正面図
[図 3]図 3は図 2に示すトランスの A— A線断面図
[図 4]図 4は本実施の形態に係るトランスの他の例を示す断面図
[図 5]図 5は第 2の実施の形態に係るトランスの例を示す断面図
[図 6]図 6は従来のトランスの例を示す断面図
発明を実施するための最良の形態
[0036] 以下、本発明の実施の形態を図面を参照しながら説明する。
[0037] 図 1は、本発明の一実施の形態に係るトランスの斜視図である。図 2は、図 1に示す トランスの正面図であり、図 3は図 2に示すトランスの A— A線断面図である。なお、図 1〜図 3において、互いに直交する方向を矢印 X、 Yおよび Zで表す。矢印 Xの方向 を正面側、矢印 Xと反対方向を背面側、矢印 Yの方向を側面側、矢印 Zの方向を上 側、矢印 Zと反対方向を下側とする。
[0038] 図 1〜図 3に示すトランスは、ボビン Bl、 1次コイル Cl、 2次コイル C2、 E型コア EC 1、 EC2、ピン端子 P11〜P15, P21, P22および絶縁用部材 Sを備える。
[0039] ボビン B1は、 1次コイル C1および 2次コイル C2が卷回される卷線部 B2と、卷線部 B2の背面側の端部に形成されるフランジ部 FL1と、卷線部 B2の正面側の端部に形 成されるフランジ部 FL2とからなる。なお、ボビン B1はプラスチック等の絶縁材料によ り一体的に形成される。
[0040] フランジ部 FL1の下部には、背面側に向力つて突出する突出部 T1が形成される。
突出部 T1には、 1次コイル C1の引き出し線 CP1を案内するためのガイド溝(図示せ ず)が形成される。突出部 T1の下面には、ピン端子 P11〜P15が圧入または一体成 形等により植設される。
[0041] フランジ部 FL2の下部には、正面側に向力つて突出する絶縁用突出部 T2が形成 される。絶縁用突出部 T2の下面には、 2本のピン端子 P21, P22が圧入または一体 成形等により植設される。絶縁用突出部 T2の正面には、矢印 Yの方向に延びるよう に矩形状の絶縁用凹部 T3が形成される。絶縁用突出部 T2の下面には、ピン端子 P 21, P22の背面側および側面側を囲むようにコ字状の絶縁用凸条部 T4が形成され る。フランジ部 FL2の上部には 2次コイル C2の引き出し線 CP2を案内するためのガ イド溝 Rl, R2が形成される。
[0042] ボビン B1には、背面側および正面側力 磁心となる E型コア EC1, EC2がそれぞ れ装着され、所定の磁気回路が構成される。なお、コアの形状等は、この例に特に限 定されず、 E型コアと I型コアとの組み合わせ等の他の形状のコアを用いてもょ 、。
[0043] 絶縁用部材 Sの背面側の下部には矢印 Yの方向に延びるように矩形状の絶縁用凸 部 T5が形成される。絶縁用凸部 T5が絶縁用凹部 T2に嵌合するように絶縁用部材 S が絶縁用突出部 T1および E型コア EC1の正面側に装着される。絶縁用部材 Sの正 面側の中央付近には、矢印 Yの方向に延びるように長尺状の放熱用凸状部 T6が形 成される。放熱用凸状部 T6の両方の側面は円弧状の曲面に形成されている。また、 絶縁用部材 Sの正面側の下部には、略三角形状の放熱用凸状部 T7, T8が形成さ れる。放熱用凸状部 T7, T8の内側の側面の角部は円弧状に形成され、放熱用凸状 部 T6の両側の側面よりも内側に位置するように配置されている。
[0044] さらに、絶縁用部材 Sの両側面付近には、保護用突条部 T9, T10がそれぞれ上下 に延びるように形成される。なお、絶縁用部材 Sはプラスチック等の絶縁材料により一 体的に形成される。
[0045] 1次コイル C1としては、例えば、エナメル線等の電線が用いられる。 1次コイル C1は 、卷線部 B2に卷回され、両端の引き出し線 CP1がフランジ部 FL1付近から引き出さ れて、ガイド溝を通り、ピン端子 P12, P14に半田付けされて接続される。
[0046] 2次コイル C2としては、例えば三層絶縁電線が用いられる。 2次コイル C2は、 1次コ ィル C1の上にさらに卷回される。 2次コイル C2の一方の引き出し線 CP2は、フランジ 部 FL2付近力 ガイド溝 R1を通して引き出され、絶縁用部材 Sの表面上で放熱用凸 状部 T6の一方の側面および放熱用凸状部 T7の内側の側面に沿うように放熱用凸 状部 T6, T7により係止され、ピン端子 P21に半田付けされる。他方の引き出し線 CP 2は、フランジ部 FL2付近カゝらガイド溝 R2を通して引き出され、絶縁用部材 Sの表面 上で放熱用凸状部 T6の一方の側面および放熱用凸状部 T8の内側の側面に沿うよ うに放熱用凸状部 T6, T8により係止され、ピン端子 P22に半田付けされる。
[0047] このとき、半田付けにより引き出し線 CP2のピン端子 P21, P22付近が高温になり、 引き出し線 CP2の被覆が溶融する。ピン端子 P21, P22から引き出し線 CP2を伝わ る熱は、放熱用凸状部 T6, T7, T8との接触面を通して放熱用凸状部 T6, T7, T8 に移動する。すなわち、引き出し線 CP2は、放熱用凸状部 T6, T7, T8により放熱さ れる。これにより、引き出し線 CP2の半田付けによる被覆の溶融を、放熱用凸状部 T 7, T8または放熱用凸状部 T6の位置で止めることができる。
[0048] なお、図 1に示す放熱用凸状部 T6と E型コア EC2との間の最短距離 Lは所定の絶 縁距離が確保されるように設定されている。これにより、引き出し線 CP2の被覆が放 熱用凸状部 T6の位置まで溶融した場合にぉ 、ても、 E型コア EC2と 2次コイル C2と の間の絶縁距離が十分に確保される。
[0049] また、放熱用凸状部 T6, T7, T8は曲面状の側面を有する。この場合、引き出し線 CP2を比較的大きな張力で放熱用凸状部 T6, T7, T8に係止した場合でも引き出し 線 CP2の放熱用凸状部 T6, T7, T8との接触面に高い応力集中が発生することが 防止される。それにより、引き出し線 CP2の破断を防止しつつ引き出し線 CP2を放熱 用凸状部 T6, T7, T8の側面に密に接触させることができるとともに、接触面を大きく することができる。その結果、より高い放熱効果が得られる。
[0050] さらに、引き出し線 CP2の両側に上下に延びる保護用突条部 T9, T10が設けられ ている。それにより、組立作業時等に、機械等が引き出し線 CP2に接触することが防 止される。その結果、引き出し線 CP2の断線を防ぐことができる。
[0051] ボビン B1は、図 3に示すように回路基板 Wに取り付けられる。この場合、回路基板 Wには絶縁用凸条部 T4に対応する形状の孔部が設けられて ヽる。絶縁用凸条部 T 4は回路基板 Wの孔部に挿入される。
[0052] 半田付けにより引き出し線 CP2の被覆が図 3に示す距離 L1だけ溶融した場合、 E 型コア EC1, EC2と 2次コイル C2との間の最短絶縁距離は、 E型コア EC2の正面側 の端部から絶縁用突出部 T2の上面、正面側における絶縁用凹部 T3の上側の表面 、絶縁用凹部 T3内の上側の水平面、垂直面および下側の水平面、正面側における 絶縁用凹部 T3の下側の表面を経由して絶縁用突出部 T2の下端に至る距離 L2とな る。このように、絶縁用凹部 T3の内面により絶縁距離を長くすることができるので、ボ ビン B1の上下方向の寸法を小さくしつつ所定の絶縁距離を確保することができる。
[0053] また、 1次コイル C1と 2次コイル C2との間の最短絶縁距離は、 1次コイル C1の正面 側の端部から絶縁用突出部 T2の背面側の表面、絶縁用凸条部 T4の背面側の表面 および下面を通ってピン端子 P12に至る距離 L3となる。このように、絶縁用凸条部 T 4の背面側の表面により絶縁距離を長くすることができるので、ボビン B1の正面方向 の寸法を小さくしつつ所定の絶縁距離を確保することができる。
[0054] 以上のように、本実施の形態に係るトランスにおいては、絶縁用突出部 T2に絶縁 用凹部 T3および絶縁用凸条部 T4を形成することにより絶縁距離を長くすることがで きるため、ボビン B1の上下方向および前後方向の寸法を小さくすることができる。
[0055] なお、本実施の形態では、フランジ部 FL2の下部側に絶縁用突出部 T2、絶縁用 凹部 Τ3、絶縁用凸条部 Τ4および絶縁用部材 Sを設けた力 1次コイルに三層絶縁 電線を用いてフランジ部 FL1の下部側にも絶縁用突出部、絶縁用凹部、絶縁用凸 条部および絶縁用部材を設けてもょ ヽ。
[0056] また、本実施の形態に係るトランスにおいては、絶縁用突出部 Τ2の下面に絶縁用 凸条部 Τ4を設けたが、図 4に示すように、絶縁用突出部 Τ2の下面に、ピン端子 P21 , 22の背面側および側面側を囲むようにコ字状の絶縁用溝部 Tl 1を形成してもよ ヽ 。この場合、トランスが配置される電源機器等の筐体に絶縁用突起部 T12を形成し、 その絶縁用突起部 T12が絶縁用溝部 T11に嵌合するようにトランスを回路基板 Wに 取り付ける。これにより、 1次コイル C1と 2次コイル C2との間の絶縁距離は、 1次コィ ル C1の正面側の端部から絶縁用突出部 T2の背面側の表面、下面における絶縁用 溝部 T11の背面側の表面、絶縁用溝部 T11内の背面側の垂直面、水平面および正 面側の垂直面、下面における絶縁用溝部 T11の正面側の表面を通ってピン端子 P2 2に至る距離 L4となる。このように、絶縁用溝部 T11の内面により絶縁距離を長くす ることができるので、ボビン B1の前後方向の寸法を小さくしつつ所定の絶縁距離を ½保することができる。
[0057] なお、絶縁用凹部 T3、絶縁用凸条部 Τ4および絶縁用凸部 Τ5の形状および大き さは安全規格を満たす絶縁距離を確保できるものであれば図示の形状および大きさ に限定されない。絶縁用凹部 Τ3および絶縁用凸部 Τ5は、正面形状が円形、楕円形 、台形その他の形状であってもよぐまた断面形状が円弧状等の湾曲状の形状であ つてもよい。また、絶縁用凸条部 Τ4は、コ字状に限られず、直線状、湾曲状その他の 形状であってもよい。
[0058] 放熱用凸状部 Τ6, Τ7, Τ8の形状および大きさについても図示の形状および大き さに限定されず、それぞれの効果を発揮できるものであれば、円形、楕円形、略矩形 等の他の形状および大きさであってもよ 、。
[0059] ピン端子の数も上記の例に特に限定されない。また、組立性等の観点から、 1次コ ィルと 2次コイルとの間および 2次コイルの表面等に絶縁テープ等を付加してもよい。 また、 1次コイルおよび 2次コイルの数も、上記の例に特に限定されず、複数の 1次コ ィルおよび 2次コイルを用いてもょ ヽ。
[0060] 本実施の形態においては、フランジ部 FL1が第 1のフランジ部に相当し、フランジ 部 FL2が第 2のフランジ部に相当し、 1次コイル C1が第 1のコイルに相当し、 2次コィ ル C2が第 2のコイルに相当し、ピン端子 Ρ11〜Ρ15が第 1のピン端子に相当し、ピン 端子 P21, 22が第 2のピン端子に相当し、 Ε型コア EC1, EC2が磁心に相当し、絶 縁用部材 Sが絶縁用部材に相当し、絶縁用凹部 Τ3が絶縁用凹部に相当し、絶縁用 凸部 T5が絶縁用凸部に相当し、絶縁用凸条部 Τ4が絶縁用凸条部に相当し、絶縁 用溝部 Tl 1が絶縁用溝部に相当し、絶縁用突起部 T12が絶縁用突起部に相当し、 放熱用凸状部 Τ6, Τ7, Τ8が放熱用凸状部に相当し、保護用突条部 Τ9, T10が保 護用突条部に相当する。
[0061] (第 2の実施の形態)
図 5は第 2の実施の形態に係るトランスの断面図である。
[0062] なお、図 5において、互いに直交する方向を矢印 X、 Υおよび Ζで表す。矢印 Xの方 向を正面側、矢印 Xと反対方向を背面側、矢印 Υの方向を側面側、矢印 Ζの方向を 上側、矢印 Ζと反対方向を下側とする。
[0063] 図 5に示すトランスは、ボビン Bl l、 1次コイル Cl、 2次コイル C2、 E型コア El, E2
、ピン端子 P31, P32および絶縁用部材 S1を備える。
[0064] ボビン B11は、 1次コイル C1および 2次コイル C2が卷回される卷線部 B12と、卷線 部 B12の下端に形成されるフランジ部 FL11と、卷線部 B2の上部に形成されるフラン ジ部 FL12とからなる。なお、ボビン B11はプラスチック等の絶縁材料により一体的に 形成される。
[0065] フランジ部 FL11の背面側には、 1次コイル C1および 2次コイル C2の卷厚を超えて 背面側に向力つて突出する突出部 T21が形成される。突出部 T21には 1次コイル C 1の引き出し線 CP1を案内するためのガイド溝(図示せず)が形成される。突出部 T2 1の下面には、複数のピン端子 P31が圧入または一体成形等により植設される。
[0066] フランジ部 FL11の正面側には、 1次コイル C1および 2次コイル C2の卷厚を超えて 正面側に向力つて突出する絶縁用突出部 T22が形成される。絶縁用突出部 T22の 下面には、複数のピン端子 P32が圧入または一体成形等により植設される。絶縁用 突出部 T22の正面には、矢印 Yの方向に延びるように矩形状の絶縁用凹部 T23が 形成される。絶縁用突出部 T22の下面には、ピン端子 P32の背面側および側面側を 囲むようにコ字状の絶縁用凸条部 T24が形成される。
[0067] フランジ部 FL12の正面側には、 2次コイル C2の引き出し線 CP2を案内するための 複数のガイド溝(図示せず)が形成される。さらにフランジ部 FL12の正面側における 上面の端部には、 2次コイル C2の引き出し線 CP2を係止するための複数の円柱状 のガイド用凸部 Glが形成される。
[0068] ボビン B11には、上下力 磁心となる E型コア El, E2がそれぞれ装着され、所定の 磁気回路が構成される。なお、コアの形状等は、この例に特に限定されず、 E型コア と I型コアとの組み合わせ等の他の形状のコアを用いてもょ 、。
[0069] 絶縁用部材 S1の背面側の下部には矢印 Yの方向に延びるように矩形状の絶縁用 凸部 T25が形成される。絶縁用凹部 T22に嵌合するように絶縁用部材 Sがボビン B1 1の正面側に装着される。絶縁用部材 S1の正面側の中央付近には、図 1と同じ放熱 用凸状部 T6が形成される。また、絶縁用部材 S1の正面側の下部には、図 1と同じ放 熱用凸状部 T7, T8が形成される。
[0070] さらに、絶縁用部材 S1の両側面付近には、図 1と同じ保護用突条部 T9, T10がそ れぞれ上下に延びるように形成される。なお、絶縁用部材 S1はプラスチック等の絶 縁材料により一体的に形成される。
[0071] 1次コイル C1としては、例えば、エナメル線等の電線が用いられる。 1次コイル C1は 、卷線部 B12に卷回され、両端の引き出し線 CP1がフランジ部 FL11付近から引き 出されて、ガイド溝を通り、ピン端子 P31に半田付けされて接続される。
[0072] 2次コイル C2としては、例えば三層絶縁電線が用いられる。 2次コイル C2は、 1次コ ィル C1の上にさらに卷回される。 2次コイル C2の一方の引き出し線 CP2は、フランジ 部 FL 12付近カゝらガイド溝を通して弓 Iき出されガイド用凸部 G 1に係止された後、絶縁 用部材 Sの表面上で放熱用凸状部 T6の一方の側面および放熱用凸状部 T7の内側 の側面に沿うように放熱用凸状部 T6, T7により係止され、ピン端子 P32に半田付け される。他方の引き出し線 CP2は、フランジ部 FL12付近力もガイド溝を通して引き出 されガイド用凸部 G1に係止された後、絶縁用部材 Sの表面上で放熱用凸状部 T6の 一方の側面および放熱用凸状部 T8の内側の側面に沿うように放熱用凸状部 T6, T 8により係止され、ピン端子 P32に半田付けされる。
[0073] このとき、半田付けにより引き出し線 CP2のピン端子 P32付近が高温になり、引き出 し線 CP2の被覆が溶融する。ピン端子 P32から引き出し線 CP2を伝わる熱は、放熱 用凸状部 T6, T7, T8との接触面を通して放熱用凸状部 T6, T7, T8に移動する。 すなわち、引き出し線 CP2は、放熱用凸状部 T6, T7, T8により放熱される。これに より、引き出し線 CP2の半田付けによる被覆の溶融を、放熱用凸状部 T7, T8または 放熱用凸状部 T6の位置で止めることができる。
[0074] なお、図 5に示す放熱用凸状部 T6から絶縁用部材 S1の表面およびフランジ部 FL 12の上面を通って 1次コイル C1のフランジ部 FL12側の端部に至る距離 L10は所定 の絶縁距離が確保されるように設定されている。これにより、引き出し線 CP2の被覆 が放熱用凸状部 T6の位置まで溶融した場合にぉ 、ても、 1次コイル C1と 2次コイル C2との間の絶縁距離が十分に確保される。
[0075] ボビン B11は図 5に示すように回路基板 Wに取り付けられる。この場合、基板 Wに は絶縁用凸条部 T24に対応する形状の孔部が設けられて 、る。絶縁用凸条部 T24 は回路基板 Wの孔部に挿入される。
[0076] 半田付けにより 2次コイル C2の引き出し線 CP2の被覆が図 5に示す距離 L11だけ 溶融した場合、 1次コイル C1と 2次コイル C2との間の最短絶縁距離は、 1次コイル C1 の絶縁用突出部 T22側の端部から絶縁用突出部 T22の上面、正面側における絶縁 用凹部 T23の上側の表面、絶縁用凹部 T23内の上側の水平面、垂直面および下側 の水平面、正面側における絶縁用凹部 T23の下側の表面を通って絶縁用突出部 T 22の下端に至る距離 L12となる。このように、絶縁用凹部 T23の内面により絶縁距離 を長くすることができるので、ボビン B11の上下方向の寸法を小さくすることができる。
[0077] また、 E型コア El, E2と 2次コイル C2との最短絶縁距離は、 E型コア E2の下端から 絶縁用突出部 T22の背面側の表面、絶縁用凸条部 T24の背面側の表面および下 面を通ってピン端子 P31に至る距離 L3となる。このように、絶縁用凸条部 T24の背 面側の表面により絶縁距離を長くすることができるので、ボビン Bl 1の前後方向の寸 法を/ J、さくすることができる。
[0078] 以上のように、本実施の形態に係るトランスにおいては、絶縁用突出部 T22に絶縁 用凹部 T23および絶縁用凸条部 T24を形成し絶縁距離を長くして ヽるので、ボビン B11の上下方向および前後方向の寸法を小さくすることができる。
[0079] なお、本実施の形態では、フランジ部 FL11の正面側に絶縁用突出部 T22、絶縁 用凸部 Τ23、絶縁用凸条部 Τ24および絶縁用部材 SIを設けた力 1次コイルに三 層絶縁電線を用いてフランジ部 FL11の背面側にも絶縁用突出部、絶縁用凸部、絶 縁用凸条部および絶縁用部材を設けてもょ ヽ。
[0080] また、図 5のトランスにおいて絶縁用凸条部 T24を設ける代わりに図 4の絶縁用溝 部 T11のような絶縁用溝部を形成してもよい。この場合、トランスが配置される電源機 器等の筐体に図 4の絶縁用突起部 T11のような絶縁用突起部を形成し、その絶縁用 突起部が絶縁用溝部に嵌合するようにトランスを回路基板 Wに取り付ける。その結果 、絶縁用溝部の内面により絶縁距離を長くすることができるので、ボビン B11の前後 方向の寸法を小さくしつつ所定の絶縁距離を確保することができる。
[0081] なお、絶縁用凹部 T23、絶縁用凸条部 Τ24および絶縁用凸部 Τ25の形状および 大きさは安全規格を満たす絶縁距離を確保できるものであれば図示の形状および大 きさに限定されない。絶縁用凹部 Τ23および絶縁用凸部 Τ25は、正面形状が円形、 楕円形、台形その他の形状であってもよぐまた断面形状が円弧状等の湾曲状の形 状であってもよい。また、絶縁用凸条部 Τ24は、コ字状に限られず、直線状、湾曲状 その他の形状であってもよ!/、。
[0082] 放熱用凸状部 Τ6, Τ7, Τ8の形状および大きさについても図示の形状および大き さに限定されず、それぞれの効果を発揮できるものであれば、円形、楕円形、略矩形 等の他の形状および大きさであってもよ 、。
[0083] ピン端子の数も上記の例に特に限定されない。また、組立性等の観点から、 1次コ ィルと 2次コイルとの間および 2次コイルの表面等に絶縁テープ等を付加してもよい。 また、 1次コイルおよび 2次コイルの数も、上記の例に特に限定されず、複数の 1次コ ィルおよび 2次コイルを用いてもょ ヽ。
[0084] 本実施の形態においては、フランジ部 FL11が第 1のフランジ部に相当し、フランジ FL12が第 2のフランジ部に相当し、 1次コイル C1が第 1のコイルに相当し、 2次コィ ル C2が第 2のコイルに相当し、ピン端子 P31が第 1のピン端子に相当し、ピン端子 Ρ 32が第 2のピン端子に相当し、 Ε型コア El, Ε2が磁心に相当し、絶縁用部材 S1が 絶縁用部材に相当し、絶縁用凹部 Τ23が絶縁用凹部に相当し、絶縁用凸部 Τ25が 絶縁用凸部に相当し、絶縁用凸部 Τ24が絶縁用凸条部に相当し、放熱用凸状部 Τ 6, Τ7, Τ8が放熱用凸状部に相当し、保護用突条部 Τ9, 10が保護用凸条部に相 当する。 産業上の利用可能性
本発明に係るトランスは、電源機器等に使用することができる。

Claims

請求の範囲
[1] 所定の取り付け面に取り付け可能なトランスであって、
前記取り付け面に略平行に配置される卷線部および前記卷線部の両端に形成さ れる第 1および第 2のフランジ部を有するボビンと、
前記卷線部に卷回された第 1および第 2のコイルと、
前記第 1のフランジ部の下面に設けられ、前記第 1のコイルの引き出し線が接続さ れる複数の第 1のピン端子と、
前記第 2のフランジ部の下面に設けられ、前記第 2のコイルの弓 Iき出し線が接続さ れる複数の第 2のピン端子と、
前記ボビンに装着された磁心と、
前記第 2のフランジ部に装着される絶縁用部材とを備え、
前記第 2のフランジ部は、前記卷線部と反対側の側面における下部側に絶縁用凹 部を有し、
前記絶縁用部材は、前記絶縁用凹部に嵌合する絶縁用凸部を有し、 前記絶縁用部材は、前記絶縁用凸部が前記絶縁用凹部に嵌合するように第 2のフ ランジ部に装着され、
前記第 2のコイルの引き出し線は、前記第 2のフランジ部側から引き出され、前記絶 縁用部材の前記第 2のフランジ部と反対側の表面上を通って前記第 2のピン端子に 接続される、トランス。
[2] 前記第 2のフランジ部の下面における前記卷線部と前記第 2のピン端子との間に前 記第 2のピン端子の整列方向に沿って延びる絶縁用凸条部が設けられる、請求項 1 記載のトランス。
[3] 前記第 2のフランジ部の下面における前記卷線部と前記第 2のピン端子との間に前 記第 2のピン端子の整列方向に沿って延びかつ絶縁用突起部が嵌合可能な絶縁用 溝部が設けられる、請求項 1記載のトランス。
[4] 前記絶縁用部材は、前記第 2のフランジ部の上部側に延びるように形成され、前記 第 2のコイルの引き出し線は、前記第 2のフランジ部の上側力 前記絶縁用部材の表 面上を通って前記第 2のピン端子に導かれる、請求項 1記載のトランス。
[5] 前記絶縁用部材は、放熱用凸状部を有し、前記第 2のコイルの引き出し線が前記放 熱用凸状部の側面に沿うように係止される、請求項 1記載のトランス。
[6] 前記放熱用凸状部は、曲面状の側面を有することを特徴とする、請求項 5記載のトラ ンス。
[7] 前記絶縁用部材は、上下方向に延びる保護用突条部を有する、請求項 1記載のトラ ンス。
[8] 所定の取り付け面に取り付け可能なトランスであって、
前記取り付け面に略垂直に配置される卷線部および前記卷線部の両端に形成さ れる第 1および第 2のフランジ部を有するボビンと、
前記卷線部に卷回された第 1および第 2のコイルと、
前記第 1のフランジ部の一方側における下面に設けられ、前記第 1のコイルの引き 出し線が接続される複数の第 1のピン端子と、
前記第 1のフランジ部の他方側における下面に設けられ、前記第 2のコイルの弓 Iき 出し線が接続される複数の第 2のピン端子と、
前記ボビンに装着された磁心と、
前記第 1のフランジ部の他方側に装着される絶縁用部材とを備え、
前記第 1のフランジ部は、前記他方側における側面に絶縁用凹部を有し、 前記絶縁用部材は、前記絶縁用凹部に嵌合する絶縁用凸部を有し、
前記絶縁用凸部が前記絶縁用凹部に嵌合するように第 1のフランジ部の他方側に 装着され、
前記第 2のコイルの引き出し線は、前記第 2のフランジ部側から引き出され、前記絶 縁用部材の前記第 1のフランジ部と反対側の表面上を通って前記第 2のピン端子に 接続される、トランス。
[9] 前記第 1のフランジ部の他方側の下面における前記卷線部と前記第 2のピン端子と の間に前記第 2のピン端子の整列方向に沿って延びる絶縁用凸条部が設けられる、 請求項 8記載のトランス。
[10] 前記第 1のフランジ部の他方側の下面における前記卷線部と前記第 2のピン端子と の間に前記第 2のピン端子の整列方向に沿って延びかつ絶縁用突起部が嵌合可能 な絶縁用溝部が設けられる、請求項 8記載のトランス。
[11] 前記絶縁用部材は、前記第 2のフランジ部まで延びるように形成され、前記第 2のコ ィルの引き出し線は、前記第 2のフランジ部の前記他方側力 前記絶縁用部材の表 面上を通って前記第 2のピン端子に導かれる、請求項 8記載のトランス。
[12] 前記絶縁用部材は、放熱用凸状部を有し、前記第 2のコイルの引き出し線が前記放 熱用凸状部の側面に沿うように係止される、請求項 8記載のトランス。
[13] 前記放熱用凸状部は、曲面状の側面を有する、請求項 12記載のトランス。
[14] 前記絶縁用部材は、上下方向に延びる保護用突条部を有する、請求項 8記載のトラ ンス。
PCT/JP2005/009694 2004-05-31 2005-05-26 トランス WO2005117039A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004160402A JP4022529B2 (ja) 2004-05-31 2004-05-31 トランス
JP2004-160402 2004-05-31

Publications (1)

Publication Number Publication Date
WO2005117039A1 true WO2005117039A1 (ja) 2005-12-08

Family

ID=35451115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009694 WO2005117039A1 (ja) 2004-05-31 2005-05-26 トランス

Country Status (3)

Country Link
JP (1) JP4022529B2 (ja)
CN (1) CN1965380A (ja)
WO (1) WO2005117039A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024584A1 (fr) * 2014-07-31 2016-02-05 Noemau Composant magnetique comportant un moyen de conduction de la chaleur
WO2017211559A1 (de) * 2016-06-08 2017-12-14 Epcos Ag Induktives bauteil
CN114078625A (zh) * 2020-08-19 2022-02-22 株式会社Mst科技 变压器
WO2024171296A1 (ja) * 2023-02-14 2024-08-22 スミダコーポレーション株式会社 コイル部品

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632364B2 (ja) * 2006-02-28 2011-02-16 Necトーキン株式会社 巻線部品
JP2008258250A (ja) * 2007-04-02 2008-10-23 Hitachi Ferrite Electronics Ltd ケース付きトランス
JP2009016581A (ja) * 2007-07-04 2009-01-22 Tamura Seisakusho Co Ltd トランス
JP2007266639A (ja) * 2007-07-11 2007-10-11 Kanenori Tsunoda トランス
JP4831775B2 (ja) * 2007-11-20 2011-12-07 Necトーキン株式会社 巻線部品
JP5151432B2 (ja) * 2007-12-06 2013-02-27 Fdk株式会社 巻線部品のボビン
JP5147062B2 (ja) * 2008-07-17 2013-02-20 Necトーキン株式会社 巻線部品
US20140091891A1 (en) * 2012-10-01 2014-04-03 Hamilton Sundstrand Corporation Transformer termination and interconnection assembly
JP6163120B2 (ja) * 2013-02-28 2017-07-12 株式会社アルファトランス トランス
JP6569351B2 (ja) * 2015-07-17 2019-09-04 Tdk株式会社 絶縁トランス実装基板および電源装置
JP6541542B2 (ja) * 2015-10-08 2019-07-10 Fdk株式会社 巻線部品
EP3182424A1 (de) * 2015-12-14 2017-06-21 Huf Hülsbeck & Fürst GmbH & Co. KG Zugangsberechtigungsvorrichtung
DE102016101286A1 (de) * 2015-12-14 2017-06-14 Huf Hülsbeck & Fürst Gmbh & Co. Kg Zugangsberechtigungsvorrichtung
JP7062925B2 (ja) * 2017-11-24 2022-05-09 Tdk株式会社 巻線部品
JP6984346B2 (ja) * 2017-11-24 2021-12-17 Tdk株式会社 電子機器および電子機器の製造方法
JP7302236B2 (ja) * 2019-03-29 2023-07-04 Tdk株式会社 トランス
DE102019208884A1 (de) * 2019-06-19 2020-12-24 SUMIDA Components & Modules GmbH Induktives Bauelement
KR102221510B1 (ko) * 2019-11-15 2021-03-02 동양이엔피 주식회사 방열 효율이 개선된 트랜스포머
JP7420092B2 (ja) 2021-01-28 2024-01-23 株式会社プロテリアル 絶縁トランス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434717U (ja) * 1990-07-16 1992-03-23
JPH04359411A (ja) * 1991-06-04 1992-12-11 Murata Mfg Co Ltd 変成器用ボビン
JPH0669051A (ja) * 1992-08-21 1994-03-11 Matsushita Electric Ind Co Ltd トランス
JPH07302721A (ja) * 1994-05-10 1995-11-14 Yoshimura Denki Kk 電源トランス
JPH09306759A (ja) * 1996-05-14 1997-11-28 Toudai Musen Kk コイルボビン
JPH10241960A (ja) * 1997-02-25 1998-09-11 Fuji Elelctrochem Co Ltd 巻線部品
JP2001076942A (ja) * 1999-09-01 2001-03-23 Hanwa Alpha Business Co Ltd トランス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434717U (ja) * 1990-07-16 1992-03-23
JPH04359411A (ja) * 1991-06-04 1992-12-11 Murata Mfg Co Ltd 変成器用ボビン
JPH0669051A (ja) * 1992-08-21 1994-03-11 Matsushita Electric Ind Co Ltd トランス
JPH07302721A (ja) * 1994-05-10 1995-11-14 Yoshimura Denki Kk 電源トランス
JPH09306759A (ja) * 1996-05-14 1997-11-28 Toudai Musen Kk コイルボビン
JPH10241960A (ja) * 1997-02-25 1998-09-11 Fuji Elelctrochem Co Ltd 巻線部品
JP2001076942A (ja) * 1999-09-01 2001-03-23 Hanwa Alpha Business Co Ltd トランス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024584A1 (fr) * 2014-07-31 2016-02-05 Noemau Composant magnetique comportant un moyen de conduction de la chaleur
WO2017211559A1 (de) * 2016-06-08 2017-12-14 Epcos Ag Induktives bauteil
US10629354B2 (en) 2016-06-08 2020-04-21 Tdk Electronics Ag Inductive component
CN114078625A (zh) * 2020-08-19 2022-02-22 株式会社Mst科技 变压器
WO2024171296A1 (ja) * 2023-02-14 2024-08-22 スミダコーポレーション株式会社 コイル部品

Also Published As

Publication number Publication date
JP4022529B2 (ja) 2007-12-19
JP2005340680A (ja) 2005-12-08
CN1965380A (zh) 2007-05-16

Similar Documents

Publication Publication Date Title
WO2005117039A1 (ja) トランス
EP2402966B1 (en) Transformer and flat display device including the same
US8736411B2 (en) Transformer structure
KR101153580B1 (ko) 라인 필터 및 이를 구비하는 평판 디스플레이 장치
US7218199B1 (en) Structure of transformer
US9299491B2 (en) Transformer coil
US8269593B2 (en) Magnetic element and bobbin thereof
US20110187485A1 (en) Transformer having sectioned bobbin
US8759673B2 (en) Receptacle for transformer
JP6163120B2 (ja) トランス
JP5916673B2 (ja) 電源用回路モジュール及び電源用回路モジュール組立体
JP2007266639A (ja) トランス
JP6130048B2 (ja) トランスおよび電源装置
JP2006032659A (ja) ラインフィルタ
KR102709246B1 (ko) 인덕터 및 인덕터 제조 방법
KR101153515B1 (ko) 트랜스포머와 이를 구비하는 파워 모듈 및 평판 디스플레이 장치
JP2000182848A (ja) トランス
JP2004207371A (ja) 表面実装チョークコイル
CN111788644B (zh) 铁氧体磁芯、使用它的线圈部件以及电子部件
US8907759B2 (en) Magnetic core and induction device
JP2004273996A (ja) トランス
JP5321336B2 (ja) 磁性素子
JP2007103974A (ja) トランス
JP2020047918A (ja) コイル装置
US20220319768A1 (en) Coil device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580017596.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase