WO2005107939A1 - Equipment using piezoelectric device - Google Patents

Equipment using piezoelectric device Download PDF

Info

Publication number
WO2005107939A1
WO2005107939A1 PCT/JP2005/008487 JP2005008487W WO2005107939A1 WO 2005107939 A1 WO2005107939 A1 WO 2005107939A1 JP 2005008487 W JP2005008487 W JP 2005008487W WO 2005107939 A1 WO2005107939 A1 WO 2005107939A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
flow path
piezoelectric device
outlet
electrodes
Prior art date
Application number
PCT/JP2005/008487
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Katou
Ryo Miyake
Akira Koide
Yasuo Osone
Naoya Sasaki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2005107939A1 publication Critical patent/WO2005107939A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0073Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
    • B01D19/0084Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042 using an electric current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/87Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations transmitting the vibratory energy by means of a fluid, e.g. by means of air shock waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/3031Micromixers using electro-hydrodynamic [EHD] or electro-kinetic [EKI] phenomena to mix or move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00378Piezo-electric or ink jet dispensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00511Walls of reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00657One-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00853Employing electrode arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/00932Sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates

Definitions

  • the present invention relates to an apparatus using a piezoelectric device, and particularly to an apparatus suitable for processing, analyzing, and measuring biological components and the like.
  • Japanese Patent Application Laid-Open No. 2001-188070 describes an automatic analyzer equipped with a stirring mechanism for stirring a sample and a reagent using a piezoelectric device.
  • Japanese Patent Application Laid-Open No. 2001-242177 describes an automatic analyzer that generates ultrasonic waves by a piezoelectric device, generates a stirring swirling flow by acoustic radiation pressure by the ultrasonic waves, and thereby mixes and stirs a sample and a reagent.
  • Japanese Patent Application Laid-Open No. 2001-255317 describes a measuring apparatus that generates ultrasonic waves by a piezoelectric device and oscillates the phosphorus-containing compound in sample water into phosphate ions by vibration with the ultrasonic waves. I have.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-188070
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-242177
  • Patent Document 3 JP 2001-255317 A
  • the liquid can be agitated simply by generating ultrasonic waves using a piezoelectric device, but other complicated operations cannot be performed.
  • An object of the present invention is to provide an apparatus capable of performing various and complicated operations or processes using a piezoelectric device.
  • the device of the present invention includes a piezoelectric device having a piezoelectric element made of a piezoelectric material and a plurality of electrodes provided on both sides of the piezoelectric element and formed by a metal thin film pattern. Further, the piezoelectric element has a groove at a position outside the electrode.
  • the piezoelectric device since the electrodes are formed by the metal thin film pattern, the piezoelectric device It can be provided at any position. Therefore, various devices using the piezoelectric device can be formed.
  • vibrations, sound waves, surface waves, and the like are generated by generating vibrations of various frequencies in the piezoelectric element, and various operations using the vibrations are performed.
  • a desired operation can be performed in the micro area
  • FIG. 1A is a schematic diagram of a first example of a blood cell separation device according to the present invention
  • FIG. 1B is a diagram showing a main part thereof.
  • FIG. 2A is a diagram showing a main part of a second example of the blood cell separation device according to the present invention.
  • FIG. 2B is a diagram showing a main part of a third example of the blood cell separation device according to the present invention.
  • FIG. 3A is an exploded perspective view of a fourth example of the blood cell separation device according to the present invention
  • FIG. 3B is a cross-sectional view thereof.
  • FIG. 4A is a schematic diagram of a diaphragm of a first example of the mass detection device according to the present invention
  • FIG. 4B is a cross-sectional view of the diaphragm
  • FIG. FIG. 2 is a cross-sectional view of the example of FIG.
  • FIG. 4D is a cross-sectional view of a modification of the first example of the mass detection device according to the present invention.
  • FIG. 5 is an exploded perspective view of a second example of the mass detection device according to the present invention.
  • FIG. 6A is a cross-sectional view of a main part of a second example of the mass detection device according to the present invention
  • FIG. 6B is a cross-sectional view of the main part of a modification of the second example of the mass detection device according to the present invention.
  • FIG. 7A and 7B are diagrams showing a cross-sectional configuration of a passage portion of a second example of the mass detection device according to the present invention.
  • FIG. 8 is a diagram showing a relationship between frequency and time of vibration of an electrode of a piezoelectric device.
  • FIG. 9 is a diagram for explaining a detection circuit for detecting the mass of a substance.
  • FIG. 10A is a diagram showing a first example of a liquid sending device according to the present invention
  • FIG. 10B is a diagram showing a second example of the liquid sending device according to the present invention
  • FIG. 10C is a diagram showing a liquid sending device according to the present invention.
  • FIG. 9 is a diagram illustrating a third example.
  • FIG. 11A is a diagram schematically showing a sample analyzer according to the present invention
  • FIG. 11B is a diagram showing a configuration of a separator unit
  • FIG. 11C is a diagram showing a configuration of a sensor unit thereof
  • FIG. 11D is a diagram thereof. It is a figure showing composition of a pump part.
  • FIG. 12 is a diagram showing an overview of an immunoassay device according to the present invention.
  • FIG. 13 is a view for explaining the structure and operation of a reaction container of the immunological analyzer according to the present invention.
  • FIG. 14A is a diagram showing an overview of a microparticle membrane voltage measuring device according to the present invention
  • FIGS. 14B, 14C, 14D, 14E, and 14F are diagrams for explaining the operation thereof.
  • FIG. 15A is an exploded perspective view of a solution stirring device according to the present invention
  • FIG. 15B is a cross-sectional view of a main part thereof.
  • FIG. 16 is an explanatory diagram for explaining the operation of the solution stirring device according to the present invention.
  • FIG. 17A is a cross-sectional view of a main part of a solution scattering device according to the present invention
  • FIG. 17B is an explanatory diagram for explaining its operation.
  • FIG. 18A is a diagram showing an overview of a bubble prevention device according to the present invention
  • FIG. 18B is a diagram for explaining the operation thereof.
  • FIG. 19A is a diagram showing an overview of a piezoelectric valve according to the present invention
  • FIGS. 19B and 19C are diagrams for explaining the operation thereof.
  • the blood cell separation apparatus of this example includes a substrate 100, a pair of piezoelectric devices 110 and 120, populations 181, 182, 183 and exits 191, 192, 193, and a population and exit. And a flow path to be connected.
  • the channel has a central main channel 170, branches 174, 175, 176 on the inlet side and branches 171, 172, 173 on the outlet side.
  • Branches 174, 175, and 176 of population Tsukuda J are connected to populations 181, 182, and 183, respectively, and branches 171, 172, and 173 of exit Tsukuda J are connected to exits 191, 192, and 193, respectively.
  • the piezoelectric devices 110 and 120 are disposed on both sides of the central main channel 170.
  • the flow path 170 and the branches 171, 172, 173, 174, 175, and 176 are formed in a tunnel shape inside the substrate 100, and the populations 181, 182, and 183 are provided on the upper surface of the substrate 100, and the outlets 191, 1 Reference numerals 92 and 193 are provided on the lower surface of the substrate 100.
  • the piezoelectric devices 110 and 120 are provided so as to face each other on the inner wall of the main flow channel 170.
  • FIG. 1B shows a main part of the blood cell separation device of the present example.
  • the configuration and operation of the piezoelectric devices 110 and 120 will be described with reference to FIG. 1B.
  • the two piezoelectric devices 110 and 120 have the same structure.
  • the first piezoelectric device 110 includes a piezoelectric plate 111 and electrodes 112, 113, 114, and 115 formed on a surface of the piezoelectric plate 111 and formed of a metal thin film pattern.
  • the second piezoelectric device 120 includes a piezoelectric plate 121 and electrodes 122, 123, 124, and 125 provided on the surface of the piezoelectric plate 121 and having a metal thin film pattern force.
  • a vibration voltage is applied between the first and second electrodes 112 and 113 of the first piezoelectric device 110 and the fourth electrode 115, and the thickness of the piezoelectric plate 111 sandwiched therebetween is vibrated. Generates relatively weak sound waves.
  • the piezoelectric plate 121 of the second piezoelectric device 120 receives a relatively weak sound wave from the first piezoelectric device 110, the first and second electrodes 122, 123 and the fourth electrode 125 Voltage is generated. By detecting this voltage, a sound wave can be detected.
  • An oscillating voltage is applied between the third electrode 114 and the fourth electrode 115, and the thickness of the piezoelectric plate 111 interposed therebetween is oscillated to generate a relatively strong acoustic wave.
  • An oscillating voltage is applied between the first and second electrodes 122 and 123 of the second piezoelectric device 120 and the fourth electrode 125, and the thickness of the piezoelectric plate 121 sandwiched therebetween is oscillated. Generates relatively weak sound waves.
  • the piezoelectric plate 111 of the first piezoelectric device 110 receives a relatively weak sound wave from the second piezoelectric device 120, the first and second electrodes 112, 113 and the fourth electrode 115 Voltage is generated. By detecting this voltage, a sound wave can be detected.
  • An oscillating voltage is applied between the third electrode 124 and the fourth electrode 125, and the thickness of the piezoelectric plate 121 interposed therebetween is oscillated to generate a relatively strong sound wave.
  • the piezoelectric plate 111 is made of a piezoelectric material.
  • the piezoelectric material for example, titanium titanate is known.
  • blood cells are identified from the sample liquid (whole blood) by a blood cell separation device, and the blood cells are separated for each type.
  • the sample liquid 132 is introduced from the central inlet 182, and the sheath liquids 131 and 133 are introduced from the inlets 181 and 183 on both sides.
  • the three liquids are guided to the respective branches, and merge in the central main flow path 170.
  • sample The liquid 132 and the sheath liquids 131 and 133 are controlled so as not to disturb the flow, that is, to form a laminar flow. Therefore, in the main channel 170, a laminar flow of three layers is formed without mixing the three liquids 131, 132, and 133.
  • the three liquids are separated into three branches on the outlet side without mixing.
  • the sample liquid 132 is guided to the central outlet 192 via the central branch 172, and is guided to the outlets 191 and 193 via the branch liquids 171 and 173 of the sheath liquids 131 and 133. .
  • the piezoelectric device formed by the first and fourth electrodes 112 and 115 of the first piezoelectric device 110 and the piezoelectric plate 111 sandwiched therebetween is referred to as a first part, a first part.
  • the piezoelectric device formed by the second and fourth electrodes 113 and 115 and the piezoelectric plate 111 interposed therebetween is connected to the second portion, the third and fourth electrodes 114 and 115, and the piezoelectric plate interposed therebetween.
  • the piezoelectric device formed by 111 is the third part.
  • a relatively weak sound wave 141 is generated by the first portions 112, 115, 111 of the first piezoelectric device 110. It is received by the corresponding first part 122, 125, 121 of the second piezoelectric device 120. Similarly, the second portion 113, 115, 111 of the first piezoelectric device 110 generates a relatively weak sound wave 142. It is received by the corresponding second part 123, 125, 121 of the second piezoelectric device 120.
  • the first and second portions of the second piezoelectric device 120 can detect the presence of the blood cell 151 from the decrease in the intensity of the received sound wave.
  • the amount of decrease in the intensity of the received sound wave is proportional to the size of the blood cell, that is, the cross-sectional area.
  • the diameter of white blood cells is 10-15 m
  • the diameter of red blood cells is 8 ⁇ m
  • the diameter of platelets is 2-5 ⁇ m. Therefore, the amount of decrease in the received sound wave is the largest in the case of white blood cells, and the smallest in the case of platelets which are large for red blood cells. Therefore, the first and second portions of the second piezoelectric device 120 can identify the type of blood cell from the amount of decrease in the intensity of the received sound wave.
  • leukocytes are detected by the first portions of the first and second piezoelectric devices 110 and 120.
  • the third portion 114, 115, 111 of the first piezoelectric device 110 generates a relatively strong sound wave.
  • the white blood cells 151 move in a direction approaching the second piezoelectric device 120 and are guided to the laminar flow of the sheath liquid 133 on the second piezoelectric device 120 side. Thereafter, the white blood cells 151 are guided to the outlet 193 via the branch 173 on the second piezoelectric device 120 side together with the sheath liquid 133. Leukocytes 151 can be collected from the sheath liquid from the third outlet 193.
  • red blood cells are detected by first portions of the first and second piezoelectric devices 110 and 120.
  • the red blood cells move in the direction approaching the first piezoelectric device 110 and are guided to the laminar flow of the sheath liquid 131 on the first piezoelectric device 110 side.
  • the erythrocytes are thereafter guided together with the sheath liquid 131 to the outlet 191 via the branch 171 on the first piezoelectric device 110 side. Sheath fluid from the first outlet 191 can also collect red blood cells.
  • FIG. 2A shows a main part of the blood cell separation device of this example.
  • the blood cell separation device of this example has a flow channel and a pair of piezoelectric devices 210 and 220.
  • the flow path has a central main flow path 270 and outlet branches 271 and 272.
  • the flow path has two branches on the inlet side. It has an inlet connected to the two branches on the inlet side and an outlet connected to the branch on the outlet side.
  • the piezoelectric devices 210 and 220 are arranged on both sides of the central main channel 270.
  • the first piezoelectric device 210 has a piezoelectric plate 211 and electrodes 212, 213, and 214 provided on the surface of the piezoelectric plate 211 and having a metal thin film pattern force.
  • the second piezoelectric device 220 has a piezoelectric plate 221 and electrodes 222 and 223 provided on the surface of the piezoelectric plate 221 and having a metal thin film pattern force.
  • Sample liquid (whole blood) and sheath liquid are introduced from the two inlets, respectively.
  • the sample liquid 231 and the sheath liquid 232 flow in a separated state as a laminar flow.
  • a relatively weak sound wave 241 is generated by the first portions 212, 214, 211 of the first piezoelectric device 210.
  • the second piezoelectric device 220 receives it and detects the passage of blood cells.
  • a relatively strong sound wave 242 is generated by the second portions 213, 214, 211 of the first piezoelectric device 210.
  • Blood cells are led to the sheath liquid 232 and to the outlet from the second branch 272.
  • the sample liquid is led from the first branch 271 to the outlet.
  • blood cells can be separated from the sample solution.
  • FIG. 2B shows a main part of the blood cell separation device of the present example.
  • the blood cell separation device of this example has a flow path and a piezoelectric device 230.
  • the channel has a central main channel 270 and branches 271 and 272 on the outlet side.
  • the flow path has two branches on the inlet side. It also has an inlet connected to the two branches on the inlet side and an outlet connected to the branch on the outlet side.
  • the piezoelectric device 230 is arranged on one side of the central main channel 270.
  • the piezoelectric device 230 has a piezoelectric plate 231 and electrodes 232 and 233 provided on the surface of the piezoelectric plate 231 and having a metal thin film pattern force.
  • a sample liquid (whole blood) and a sheath liquid are introduced from each of the two inlet ports.
  • the sample liquid 231 and the sheath liquid 232 flow in a separated state as a laminar flow.
  • a relatively strong sound wave 243 is generated by the piezoelectric device 230.
  • Blood cells are led to the sheath liquid 232 and to the outlet from the second branch 272.
  • the sample liquid is led from the first branch 271 to the outlet.
  • blood cells can be separated from the sample solution.
  • the example shown in Fig. 2 is preferable when all blood cells are separated without discriminating the type of blood cells. Suitable. Therefore, it can be used as a serum separation filter. In this case, the serum at the outlet connected to the first branch 271 is also collected, and blood cells are obtained from the outlet connected to the second branch 272. Normal filter paper filter has clogging force The device of this example has the advantage of not causing clogging.
  • the example shown in FIG. 2A is suitable when the blood cell concentration is relatively low, and the example shown in FIG. 2B is suitable when the blood cell concentration is relatively high!
  • FIG. 3A is an exploded perspective view of the blood cell separation device of the present example
  • FIG. 3B is a cross-sectional view after assembly.
  • the blood cell separation device of the present example has an upper member 310 and a lower member 320, and a concave portion is formed on the inner surface of the upper member 310.
  • This recess has a large depth! /, A portion 311A and a small depth, a portion 312A.
  • the recess forms a closed space between the upper member 310 and the lower member 320.
  • the closed space includes a storage portion 311 having a large depth and a passage portion 312 having a small depth.
  • the upper member 310 has an inlet 313 and an outlet 314. The inlet 313 is connected to the housing 311, and the outlet 314 is connected to the passage 312.
  • the lower member 320 is formed of a piezoelectric material, and electrodes 331 and 332 are provided on both surfaces thereof, which also have a metal thin film pattern force. In this way, a piezoelectric device is formed from the electrodes 331 and 332 and the piezoelectric plate sandwiched therebetween.
  • a sample solution (whole blood) is introduced from the inlet 313.
  • the sample liquid is accommodated in the accommodation section 311, and further, is guided from the passage section 312 to the outlet 314.
  • An oscillating voltage is applied between the electrodes 331 and 332 to oscillate the thickness of the piezoelectric plate sandwiched therebetween, thereby generating a relatively strong sound wave. Due to the radiation pressure of the sound waves, the blood cells move away from the piezoelectric device and are stored in the storage unit 311.
  • the sample liquid excluding the blood cells is led from the passage 312 to the outlet 314. From the outlet 314, a sample liquid from which blood cells have been removed is obtained.
  • the mass detection device of this example has a disk-shaped diaphragm 400 formed of a piezoelectric material and electrodes 401 and 402 made of a metal thin film patterner mounted on both surfaces thereof.
  • the electrodes 401 and 402 have circular holes 401A and 402A and lead portions 401B and 402B connected thereto.
  • the leads 401B and 402B are connected to a circuit (not shown).
  • the periphery of diaphragm 400 is supported by holder 410.
  • the holder 410 has a concave portion, and a closed space 411 is formed by the concave portion and the vibration plate 400.
  • the diaphragm 400 sandwiched therebetween vibrates.
  • diaphragm 400 vibrates in the shearing direction. That is, the upper surface and the lower surface vibrate in opposite directions along the surface direction.
  • the force using the diaphragm 400 in FIG. 4A is the same as the example shown in FIG. 4D.
  • FIG. Is provided. By providing the grooves in this manner, the diaphragm easily vibrates.
  • the electrode 401 on the surface of the vibration plate 400 is coated with a substance that binds to a specific substance called a linker.
  • the diaphragm 400 is arranged so that the electrode 401 is immersed in the solution. For example, it may be mounted on the inner wall of the container in which it is stored.
  • a specific substance in the solution is bonded to the linker applied to the surface of diaphragm 400.
  • the natural frequency of diaphragm 400 changes. This change in the natural frequency is related to the mass of the substance bound to the linker.
  • the mass of the substance bound to the linker can be measured. Assuming that the mass of the substance bound to the linker is proportional to the concentration of the substance contained in the solution, the concentration of the substance in the solution can be detected.
  • FIG. 5 A second example of the mass detection device according to the present invention will be described with reference to FIG. 5, FIG. 6, and FIG.
  • the mass detection device of this example has an upper member 510 and a lower member 520, and a concave portion 511A is formed on the inner surface of the upper member 510.
  • the recess 511A forms a passage 511 (FIG. 6) which is a sealed space between the upper member 510 and the lower member 520.
  • the upper member 510 has an inlet 513 and an outlet 514, and the inlet 513 and the outlet 5 are provided. 14 is connected to the passage 511.
  • a recess 521 is formed in the lower member 520, and a circuit board 522 is disposed in the recess 521.
  • the lower member 520 is formed of a piezoelectric material, and is provided with electrodes 525, 526 (only the electrode 525 is shown in FIG. 5) which also has a metal thin film pattern force on both surfaces thereof.
  • a piezoelectric device is formed by the electrodes 525 and 526 and the piezoelectric plate sandwiched therebetween.
  • the electrodes 525, 526 are located below and along the passage 511. Electrodes 525, 526, Q the electrodes 525, 526 having the inner surface electrode 526 to the electrode disposed 525 and the outer surface (the upper surface) (the lower surface) disposed (see FIG. 6) of the lower member 520, lead It is connected to the circuit of the circuit board 522 via the lines 527 and 528.
  • FIG. 6 shows a cross-sectional configuration of the mass detection device of FIG.
  • a groove 531 is formed on the inner surface (upper surface) of the lower member 520 so as to surround the periphery of the electrode 525.
  • a groove 532 is formed on the inner surface (upper surface) of the lower member 520 so as to surround three sides of the electrode 525.
  • electrode 525 includes two electrodes 525 °, 525 °. The reason for providing the two electrodes 525 ° and 525 ° will be described later with reference to FIG.
  • FIG. 7 shows a cross-sectional configuration of the passage portion 511 of the mass detection device shown in FIGS.
  • a substance called a linker 541, 542 that binds to a specific substance is arranged on the surface of the electrode 525.
  • the electrodes 525, 526 oscillate in the shear direction, as shown in FIG. That is, the upper surface and the lower surface vibrate along the surface direction and in directions opposite to each other.
  • the linkers 541, 542 vibrate and bind to a particular substance.
  • FIG. 8 a method for measuring the amount of a substance bound to linkers 541 and 542 will be described.
  • Each curve in FIG. 8 shows the relationship between frequency and time of vibration of the electrodes of the piezoelectric device.
  • the frequency decreases with time, as shown in Figure 8 ⁇ . This is because the weight of the vibrating part increases because the substance is bonded to the linker.
  • noise or drift occurs due to various factors. Therefore, as shown in FIG. 8B, noise or drift is superimposed on the frequency fluctuation curve. Therefore, as shown in FIG. 6, two electrodes 525A and 525B are provided for each electrode. One electrode is not provided with a linker, and the other electrode is provided with a linker. As shown in FIG.
  • a curve 601 indicating a change in the vibration frequency of the electrode without the linker and a curve 602 indicating the change in the vibration frequency of the electrode with the linker are obtained.
  • Curve 601 represents noise or drift. Accordingly, by subtracting the curve 601 from the curve 602, a curve 603 from which noise and drift have been removed is obtained as shown in FIG. 8D. Using this curve 603, the amount of substance bound to the linker can be accurately detected.
  • curve 604 shows the change in frequency at an electrode with a linker that binds a first substance
  • curve 605 shows the change in frequency at an electrode with a linker that binds a second substance.
  • the detection circuit shown in FIG. 9A has electrodes 701A and 701B, a switch 702, a DC power supply 703, a transistor 704, and impedances 705, 706, and 707 mounted on both sides of the piezoelectric plate.
  • a resonant circuit force S is formed by the transistor 704 and the impedances 705, 706, 707.
  • the switch 702 When the switch 702 is turned on, the voltage from the DC power supply 703 is applied to the electrodes 701A, 701B via the resonance circuits 704, 705, 706, 707.
  • the resonance frequency that is, the natural frequency is measured by a frequency counter (not shown).
  • the resonance frequency is a function of the mass of the substance bound to the electrode linker. Therefore, the mass of the substance can be measured from the resonance frequency.
  • the detection circuit of this example has electrodes 711 A and 711 B, switches 712 and 713, a DC power supply 714, and a resistor 715 mounted on both sides of the piezoelectric plate.
  • the switch connected to the DC power supply 714 Switch 712 is turned on, and switch 713 connected to resistor 715 is turned off.
  • charges are accumulated between the electrodes 711A and 711B, and a potential V is generated.
  • FIG. 9B charges are accumulated between the electrodes 711A and 711B, and a potential V is generated.
  • the switch 712 connected to the DC power supply 714 is turned off, and the switch 713 connected to the resistor 715 is turned on.
  • the potential V between the electrodes 711A and 71IB oscillates.
  • the resonance frequency can be obtained by detecting the frequency of this vibration. From the resonance frequency obtained in this way, the mass of the substance can be measured.
  • the first example of the liquid sending device shown in FIG. 10A has an upper member 810 and a lower member 820, and the upper member 810 has a concave portion 811 on the inner surface.
  • the recess 811 forms a sealed space 830 between the side member 810 and the lower member 820.
  • the side member 810 is provided with an inlet 815 and an outlet 816, and the inlet 815 and the outlet 816 are connected to the closed space 830.
  • the concave portion 811 on the inner surface of the upper member 810 has an inclined portion 811A and a flat portion 811B.
  • an inclined portion 830A and a passage portion 830B are formed in the closed space 830.
  • the lower member 820 is formed of a piezoelectric material, and has electrodes 821 and 822 formed of a metal thin film pattern on both surfaces thereof.
  • a piezoelectric device is formed by the electrodes 821 and 822 and the piezoelectric plate sandwiched therebetween.
  • the electrodes 821 and 822 are arranged at positions corresponding to the inclined portions 830A.
  • the solution is introduced into the closed space 830 from the inlet 815.
  • an oscillating voltage is applied to the electrodes 821 and 822
  • the portion of the piezoelectric material sandwiched between the electrodes 821 and 822 vibrates to generate sound waves.
  • the sound wave reflects off the inclined portion 811A of the concave portion 811 on the inner surface of the upper member 810 as shown by the arrow A, and is guided toward the outlet 816.
  • the solution contained in the sealed space 830 is guided toward the outlet 816 as indicated by the arrow B by the radiation pressure of this sound wave.
  • the second example of the liquid transfer device shown in FIG. 10B differs from the first example of FIG. 10A in that the concave portion 811 on the inner surface of the upper member 810 does not have the inclined portion 811A, that is, It has only a flat part. Accordingly, a passage portion 830 having a constant height is formed in the closed space 830.
  • the lower member 820 is formed of a piezoelectric material, and has electrodes 821 and 822 formed of a metal thin film pattern on both surfaces thereof.
  • the electrodes 821 and 822 and the piezoelectric plate sandwiched between them thus, a piezoelectric device is formed.
  • the electrodes 821 and 822 are arranged along the closed space 830.
  • the solution is introduced into the closed space 830 from the inlet 815.
  • an oscillating voltage to the electrodes 821 and 822 at a frequency different from that in the example of Fig. 10A, the thickness of the piezoelectric material sandwiched between the electrodes 821 and 822 vibrates, and a surface wave is generated on the surface Is done.
  • the electrode 821 may be composed of a plurality of electrodes, and these electrodes may be sequentially applied with an oscillating voltage in a direction from the entrance 815 to the exit 816 to generate a surface wave.
  • the third example of the liquid sending device shown in Fig. 10C is different from the second example of Fig. 10B in that no piezoelectric device is provided. In this example, no sound wave generated by the piezoelectric device is used. Instead, use capillary action.
  • the solution is introduced into the closed space 830 from the inlet 815. The solution moves in the closed space 830 in the direction of the outlet by capillary action, as indicated by arrow D.
  • the sample analyzer of this example has an upper member 910 and a lower member 920, and a circuit board 913 is disposed between the upper member 910 and the lower member 920.
  • a groove 930 is provided on the upper surface of the lower member 920, that is, on the inner surface.
  • the groove 930 forms a sealed space between the upper member 910 and the lower member 920.
  • an inlet 911 and an outlet 912 are provided in the upper member 910.
  • One end of groove 930 is connected to inlet 911 and the other end of groove 930 is connected to outlet 912.
  • Groove 930 has first, second, and third portions.
  • the first portion of the groove 930 forms a sealed space separator portion 931 as shown in FIG. 11B
  • the second portion of the groove 930 forms a sensor portion of the sealed space as shown in FIG. 11C.
  • 932 is formed
  • the third part of the groove 930 forms a pump part 933 of the enclosed space as shown in FIG. 11D.
  • electrodes 921 and 922 which are also metal thin film patterns are provided on both surfaces of the lower member 920.
  • the lower member 920 is formed from a piezoelectric material.
  • a piezoelectric device is formed by the electrodes 921 and 922 and the piezoelectric plate sandwiched therebetween.
  • the operation of the separator section 931 of this example is the same as the operation of the fourth example of the blood cell separation device described with reference to FIG.
  • electrodes 921 and 922 made of a metal thin film pattern are provided on both surfaces of the lower member 920.
  • the lower member 920 is formed from a piezoelectric material.
  • a piezoelectric device is formed by the electrodes 921 and 922 and the piezoelectric plate sandwiched therebetween. Further, a groove 923 is provided around the electrode.
  • the operation of the sensor unit 932 of this example is the same as the operation of the example of the mass detection device described with reference to FIG.
  • electrodes 921 and 922 made of a metal thin film pattern are provided on both surfaces of the lower member 920.
  • the lower member 920 is formed from a piezoelectric material.
  • a piezoelectric device is formed by the electrodes 921 and 922 and the piezoelectric plate sandwiched therebetween.
  • the operation of the pump unit 933 of the present example is the same as the operation of the example of the liquid sending device described with reference to FIG. 10A, and the details are omitted.
  • the immunological analyzer has a circular holder plate 1201, and a number of reaction vessels 1202 are held in one holder plate 1201.
  • the reaction vessel 1202 is maintained at a predetermined temperature by a thermostat 1203.
  • the reaction vessel of the present example has a vessel section 1309 having a rectangular or rectangular cross section, and a piezoelectric device provided on the wall of the vessel section.
  • the container 1309 contains a liquid 1310 which is a mixture of an ampoule and a reagent necessary for an immune reaction.
  • the sample solution contains a plurality of types of antibody components to be measured. As shown in the figure, the antibody components are schematically indicated by circles, the shading of the circles indicates the type of the antibody component, and the number of circles indicates the concentration.
  • the piezoelectric device has a piezoelectric plate 1301, upper stirring electrodes 1302, 1303, and lower mass detection electrodes 1304, 1305, 1306, 1307, 1308, 1309. These electrodes are formed of a metal thin film pattern, and are provided on both sides of the side wall of the container, that is, on the inner wall and the outer wall, respectively, as shown in the figure.
  • the stirring electrode is arranged at a position near the liquid surface 1311, and the mass detection electrode is arranged at a position below the liquid surface 1311.
  • a linker 1305A, 1307A, 1309A is mounted on the surface of the mass detection electrodes 1305, 1307, 1309 mounted on the inner wall side of the solution.
  • the three electrodes are equipped with linkers that bind to different antibody components.
  • the piezoelectric plate 1301 sandwiched between the electrodes vibrates in the shear direction. . That is, the inner surface of the piezoelectric plate 1301 vibrates along the surface direction.
  • the antibody component substance binds to the linker.
  • the natural frequency of the piezoelectric plate vibrated by the mass detection electrode changes.
  • the change in the natural frequency is a function of the mass of the antibody component bound to the linker.
  • the mass of the antibody component bound to the linker indicates the concentration of the antibody component. Therefore, by measuring the amount of change in the natural frequency, the concentration of the antibody component is detected.
  • the liquid 1310 in the container is replaced with the cleaning liquid 1312, and an oscillating voltage is again applied between the stirring electrodes 1302 and 1303.
  • the cleaning liquid is agitated, and impurities adhering to the linker are cleaned. After cleaning the impurities in this way, measure the change in the natural frequency of the piezoelectric plate.
  • the microparticle membrane voltage measuring device of this example has an upper part 1410 and a lower part 1420, and a concave part 1411A is formed on the inner surface of the upper member 1410.
  • the recess 1411A forms a passage 1411 that is a sealed space between the upper member 1410 and the lower member 1420.
  • the upper member 1410 is provided with an inlet 1413 and an outlet 1414, and the inlet 1413 and the outlet 1414 are connected to a passage portion 1411.
  • a concave portion 1421 is formed in the lower member 1420, and a needle 1422 is arranged in the concave portion 1421.
  • the upper member 1410 is formed of a piezoelectric material, and electrodes 1415 and 1416 are provided on both surfaces thereof.
  • a piezoelectric device is formed by the electrodes 1415 and 1416 and the piezoelectric plate sandwiched therebetween.
  • the lower member 1420 is formed of a piezoelectric material, and has electrodes 1425 and 1426 formed of a metal thin film pattern on both surfaces thereof. Piezoelectric device is formed by electrodes 1425, 1426 and piezoelectric plate sandwiched between them . These piezoelectric devices are arranged at positions corresponding to the concave portions 1421.
  • the solution is introduced into the passage 1411 through the inlet 1413.
  • the solution passes through passage 1411 and exits through outlet 1414.
  • the fine particles 1430 are introduced from the inlet 1413 into the passage 1411.
  • the microparticles 1430 move in the passage due to the flow of the solution and reach the concave portions 1421.
  • an oscillating voltage is applied to the electrodes 1415 and 1416 constituting the upper piezoelectric device to generate sound waves. Due to the radiation pressure of the sound waves, the microparticles 1430 move and come into contact with the needle 1422 in the recess 1421. Measure the voltage between needle 1422 and the solution.
  • the application of the voltage to the electrodes 1415 and 1416 constituting the upper piezoelectric device is stopped.
  • An oscillating voltage is applied to the electrodes 1425 and 1426 constituting the lower piezoelectric device to generate sound waves.
  • the microparticles 1430 are ejected from the concave portions 1421 by the radiation pressure of the sound waves.
  • the microparticles 1430 are discharged to the outlet by the solution flowing in the passage 1411.
  • the solution stirring device has an upper member 1510, a sample plate 1520, and a lower member 1530.
  • a plurality of sample storage sections 1521 are formed on the upper surface of the sample plate, and the sample storage section 1521 stores a sample liquid 1522.
  • the sample container 1521 may be a concave portion formed on the upper surface of the sample plate 120.
  • the sample receiving section 1521 may be cylindrical or other shape.
  • the lower member 1530 is formed of a piezoelectric material, and electrodes 1531 and 1532 are provided on both surfaces thereof, which also have a metal thin film pattern force.
  • the electrodes 1531 and 1532 and the piezoelectric plate sandwiched therebetween form a piezoelectric device.
  • a vibration voltage is applied between the electrodes 1531 and 1532, the piezoelectric plate sandwiched between the electrodes 1531 and 1532 vibrates. This vibration is transmitted to the sample liquid 1522 stored in the sample storage section 1521, and the sample liquid 1522 is stirred.
  • the lower member 1530 is relatively movable with respect to the sample plate 1520, and can be arranged at any position.
  • the electrodes 1531 and 1532 are arranged below the center of the sample container 1521. Continuous application of oscillating voltage to electrodes 1531 and 1532 To generate relatively large sound waves. Due to the radiation pressure of the sound wave, the liquid surface of the sample liquid 1522 rises along the central axis of the sample storage section 1521 and collides with the upper member 1510. The colliding sample liquid 1522 falls along the inner wall. As a result, the sample liquid 1522 circulates through the sample container 1521 and is stirred, as indicated by the arrow in the drawing. In the example shown in FIG.
  • the electrodes 1531 and 1532 are arranged below the position away from the center of the sample storage unit 1521. Therefore, the sample liquid 1522 rises along the inner wall of the sample storage portion 1521 and collides with the upper member 1510 by the sound wave generated by applying the oscillating voltage to the electrodes 1531 and 1532. The colliding sample liquid 1522 falls along the opposite inner wall. As a result, the sample liquid 1522 circulates through the sample container 1521 and is stirred, as indicated by the arrow in the drawing.
  • electrodes 1531 and 1532 are arranged below the center of sample storage section 1521.
  • An oscillating voltage is intermittently applied to the electrodes 1531 and 1532 to generate relatively small sound waves intermittently.
  • the liquid level of the sample liquid 1522 rises along the central axis of the sample storage section 1521 and flows around. As a result, the sample liquid 1522 circulates through the sample container 1521 and is stirred, as indicated by the arrow in the drawing.
  • the solution scattering device has a piezoelectric plate 1720.
  • the piezoelectric plate 1720 is formed of a piezoelectric material, and has electrodes 1721 and 1722 formed of a metal thin film pattern on both surfaces thereof.
  • the electrodes 1721, 1722 and the piezoelectric plate sandwiched therebetween form a piezoelectric device.
  • An object on which the solution is scattered by the solution scattering device of the present example is a member 1710 having a plurality of recesses 1711 on the upper surface. Unnecessary liquid 1712 remains in recess 1711.
  • the unnecessary liquid 1712 includes a cleaning liquid, an etching liquid, and the like.
  • the bubble prevention device has an upper member 1810 and a lower member 1820.
  • a groove is formed on the inner surface of the upper member 1810, that is, on the lower surface. This groove allows the upper member 1810 and the lower A passage 1811 which is a closed space is formed between the members 1820.
  • the upper member 1810 has an inlet 1815 and an outlet 1816. These inlet 1815 and outlet 1816 are connected to passage 1811.
  • the passage 1811 includes narrow passages 1811A and 1811B at both ends and a thick passage 1811C between them.
  • the lower member 1820 also has a piezoelectric material force, and electrodes 1821 and 1822 made of a metal thin film pattern are provided on both surfaces thereof.
  • a piezoelectric device is formed by the electrodes 1821 and 1822 and the piezoelectric plate sandwiched therebetween. Liquid is introduced through inlet 1815. Liquid 1830 is directed to outlet 1816 via passage 1811. When the inside diameter of the passage suddenly increases, bubbles 1831 are easily generated there. For example, air bubbles are generated in a thick passage 1811C. These bubbles often adhere to the inner wall and do not disappear. In this example, the vibration is generated by the piezoelectric device. This vibration is transmitted to the inner wall where the air bubbles adhere, and the air bubbles move away from the inner wall and into the liquid. Thus, the generation of bubbles is prevented.
  • the piezoelectric valve has an upper member 1910 and a lower member 1920.
  • a groove 1911 is formed on the inner surface of the upper member 1910, that is, on the lower surface.
  • the groove 1911 forms a closed space between the upper member 1910 and the lower member 1920.
  • the lower member 1920 has two inlets 1915A, 1915B and an outlet 1916. Inlets 1915A and 1915B are connected to both ends of the passage.
  • the upper member 1910 is made of a piezoelectric material, and is provided with electrodes 1931 and 1932 formed of a metal thin film pattern so as to sandwich the piezoelectric member.
  • a piezoelectric device is formed by the electrodes 1931 and 1932 and the piezoelectric plate sandwiched therebetween.
  • the piezoelectric device is provided along the groove 1911 as shown, and has a function of blocking the flow of the liquid along the passage.
  • FIG. 19B shows the structure of the passage. As shown, this passage has a curved path in which a thin plate member 1912 is located. This plate member 1912 is elastically deformable. By applying an oscillating voltage between these two electrodes 1931 and 1932, a sound wave is generated. The radiation pressure of this sound wave is transmitted to the plate member 1912. As shown in FIG. 19C, the plate-shaped member 1912 is elastically deformed by the radiation pressure of the sound wave, and closes the passage. Thereby, the flow of the fluid through the passage is blocked. When the voltage between the two electrodes is released, The generation of the sound wave is stopped, and the plate member returns to the original position. Thereby, the flow of the fluid through the passage is resumed.

Abstract

A complicated operation or process is performed by generating acoustic waves or oscillation by a piezoelectric device. Equipment includes the piezoelectric device provided with a piezoelectric element composed of a piezoelectric material, and a plurality of electrodes, which are arranged on the both planes of the piezoelectric element and are formed by a metal thin film pattern. On the piezoelectric element, a groove is arranged at a position on the external side of the electrodes.

Description

明 細 書  Specification
圧電デバイスを用いた機器  Equipment using piezoelectric devices
技術分野  Technical field
[0001] 本発明は圧電デバイスを使用する機器に関し、特に、生体成分等の処理、分析、 計測に好適な機器に関する。  The present invention relates to an apparatus using a piezoelectric device, and particularly to an apparatus suitable for processing, analyzing, and measuring biological components and the like.
背景技術  Background art
[0002] 従来、圧電デバイスにより超音波を発生させ、超音波による振動又は音響放射圧を 利用して液体を撹拌する技術が知られている。例えば、特開 2001— 188070号公 報には、圧電デバイスを利用して検体及び試薬を撹拌する撹拌機構を備えた自動 分析装置が記載されている。特開 2001— 242177号公報には、圧電デバイスにより 超音波を発生させ、超音波による音響放射圧によって撹拌旋回流を発生させ、それ により検体及び試薬を混合及び撹拌させる自動分析装置が記載されて ヽる。特開 2 001— 255317号公報には、圧電デバイスにより超音波を発生させ、超音波による振 動によって試料水中のリンィ匕合物をリン酸イオンに酸ィ匕分解する測定装置が記載さ れている。  Conventionally, there is known a technique in which ultrasonic waves are generated by a piezoelectric device and the liquid is agitated by using vibrations or acoustic radiation pressure caused by the ultrasonic waves. For example, Japanese Patent Application Laid-Open No. 2001-188070 describes an automatic analyzer equipped with a stirring mechanism for stirring a sample and a reagent using a piezoelectric device. Japanese Patent Application Laid-Open No. 2001-242177 describes an automatic analyzer that generates ultrasonic waves by a piezoelectric device, generates a stirring swirling flow by acoustic radiation pressure by the ultrasonic waves, and thereby mixes and stirs a sample and a reagent. Puru. Japanese Patent Application Laid-Open No. 2001-255317 describes a measuring apparatus that generates ultrasonic waves by a piezoelectric device and oscillates the phosphorus-containing compound in sample water into phosphate ions by vibration with the ultrasonic waves. I have.
特許文献 1:特開 2001— 188070号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-188070
特許文献 2:特開 2001 - 242177号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2001-242177
特許文献 3 :特開 2001— 255317号公報  Patent Document 3: JP 2001-255317 A
発明の開示  Disclosure of the invention
[0003] し力しながら、従来の装置では、単に圧電デバイスにより超音波を発生させることに より液体を撹拌させることができるが、それ以外の複雑な作業はできない。  [0003] With the conventional apparatus, the liquid can be agitated simply by generating ultrasonic waves using a piezoelectric device, but other complicated operations cannot be performed.
[0004] 本発明の目的は、圧電デバイスを利用して様々な且つ複雑な操作又は処理を行う ことができる機器を提供することにある。  [0004] An object of the present invention is to provide an apparatus capable of performing various and complicated operations or processes using a piezoelectric device.
[0005] 本発明の機器は、圧電材料からなる圧電素子と該圧電素子の両面に設けられ金属 薄膜パターンによって形成された複数の電極とを有する圧電デバイスを含む。更に、 上記圧電素子には上記電極の外側の位置に溝が設けられている。  [0005] The device of the present invention includes a piezoelectric device having a piezoelectric element made of a piezoelectric material and a plurality of electrodes provided on both sides of the piezoelectric element and formed by a metal thin film pattern. Further, the piezoelectric element has a groove at a position outside the electrode.
[0006] 本発明によると、電極を金属薄膜パターンによって形成するから、圧電デバイスを 任意の位置に設けることができる。従って、圧電デバイスを使用した様々な機器を形 成することができる。本発明では圧電素子に様々な振動数の振動を生成することによ り、振動、音波、表面波等を生成し、それを利用した様々な操作を行う。 According to the present invention, since the electrodes are formed by the metal thin film pattern, the piezoelectric device It can be provided at any position. Therefore, various devices using the piezoelectric device can be formed. In the present invention, vibrations, sound waves, surface waves, and the like are generated by generating vibrations of various frequencies in the piezoelectric element, and various operations using the vibrations are performed.
本発明によると、圧電デバイスを利用して微小領域又は直接器具を挿入することが できない場所にて所望の操作を実行することができる。  ADVANTAGE OF THE INVENTION According to this invention, a desired operation can be performed in the micro area | region or the place which cannot insert a tool directly using a piezoelectric device.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1Aは本発明による血球分離装置の第 1の例の概略図であり、図 1Bはその主 要部を示す図である。 FIG. 1A is a schematic diagram of a first example of a blood cell separation device according to the present invention, and FIG. 1B is a diagram showing a main part thereof.
[図 2]図 2Aは本発明による血球分離装置の第 2の例の主要部を示す図である。図 2 Bは本発明による血球分離装置の第 3の例の主要部を示す図である。  FIG. 2A is a diagram showing a main part of a second example of the blood cell separation device according to the present invention. FIG. 2B is a diagram showing a main part of a third example of the blood cell separation device according to the present invention.
[図 3]図 3Aは本発明による血球分離装置の第 4の例の分解斜視図であり、図 3Bはそ の断面図である。 FIG. 3A is an exploded perspective view of a fourth example of the blood cell separation device according to the present invention, and FIG. 3B is a cross-sectional view thereof.
[図 4]図 4Aは本発明による質量検出装置の第 1の例の振動板の概略図であり、図 4 Bは振動板の断面図であり、図 4Cは本発明による質量検出装置の第 1の例の断面 図である。図 4Dは本発明による質量検出装置の第 1の例の変形例の断面図である。  FIG. 4A is a schematic diagram of a diaphragm of a first example of the mass detection device according to the present invention, FIG. 4B is a cross-sectional view of the diaphragm, and FIG. FIG. 2 is a cross-sectional view of the example of FIG. FIG. 4D is a cross-sectional view of a modification of the first example of the mass detection device according to the present invention.
[図 5]図 5は本発明による質量検出装置の第 2の例の分解斜視図である。 FIG. 5 is an exploded perspective view of a second example of the mass detection device according to the present invention.
[図 6]図 6Aは本発明による質量検出装置の第 2の例の主要部の断面図であり、図 6 Bは本発明による質量検出装置の第 2の例の変形例の主要部の断面図である。 FIG. 6A is a cross-sectional view of a main part of a second example of the mass detection device according to the present invention, and FIG. 6B is a cross-sectional view of the main part of a modification of the second example of the mass detection device according to the present invention. FIG.
[図 7]図 7A及び図 7Bは本発明による質量検出装置の第 2の例の通路部の断面構成 を示す図である。 7A and 7B are diagrams showing a cross-sectional configuration of a passage portion of a second example of the mass detection device according to the present invention.
[図 8]図 8は、圧電デバイスの電極の振動の周波数と時間の関係を示す図である。  FIG. 8 is a diagram showing a relationship between frequency and time of vibration of an electrode of a piezoelectric device.
[図 9]図 9は、物質の質量を検出するための検出回路を説明するための図である。 FIG. 9 is a diagram for explaining a detection circuit for detecting the mass of a substance.
[図 10]図 10Aは本発明による送液装置の第 1の例を示す図、図 10Bは本発明による 送液装置の第 2の例を示す図、図 10Cは本発明による送液装置の第 3の例を示す図 である。 FIG. 10A is a diagram showing a first example of a liquid sending device according to the present invention, FIG. 10B is a diagram showing a second example of the liquid sending device according to the present invention, and FIG. 10C is a diagram showing a liquid sending device according to the present invention. FIG. 9 is a diagram illustrating a third example.
[図 11]図 11 Aは本発明によるサンプル分析装置の概略を示す図、図 11Bはそのセ パレータ部の構成を示す図、図 11Cはそのセンサ部の構成を示す図、図 11Dはそ のポンプ部の構成を示す図である。 [図 12]図 12は本発明による免疫分析装置の概観を示す図である。 11A is a diagram schematically showing a sample analyzer according to the present invention, FIG. 11B is a diagram showing a configuration of a separator unit, FIG. 11C is a diagram showing a configuration of a sensor unit thereof, and FIG. 11D is a diagram thereof. It is a figure showing composition of a pump part. FIG. 12 is a diagram showing an overview of an immunoassay device according to the present invention.
[図 13]図 13は本発明による免疫分析装置の反応容器の構造及び動作を説明する図 である。  FIG. 13 is a view for explaining the structure and operation of a reaction container of the immunological analyzer according to the present invention.
[図 14]図 14Aは本発明による微小粒子膜電圧計測装置の概観を示す図、図 14B、 図 14C、図 14D、図 14E、図 14Fは、その動作を説明する図である。  FIG. 14A is a diagram showing an overview of a microparticle membrane voltage measuring device according to the present invention, and FIGS. 14B, 14C, 14D, 14E, and 14F are diagrams for explaining the operation thereof.
[図 15]図 15Aは本発明による溶液撹拌装置の分解斜視図であり、図 15Bは、その主 要部の断面図である。  FIG. 15A is an exploded perspective view of a solution stirring device according to the present invention, and FIG. 15B is a cross-sectional view of a main part thereof.
[図 16]図 16は本発明による溶液撹拌装置の動作を説明するための説明図である。  FIG. 16 is an explanatory diagram for explaining the operation of the solution stirring device according to the present invention.
[図 17]図 17Aは本発明による溶液飛散装置の主要部の断面図、図 17Bはその動作 を説明するための説明図である。  FIG. 17A is a cross-sectional view of a main part of a solution scattering device according to the present invention, and FIG. 17B is an explanatory diagram for explaining its operation.
[図 18]図 18Aは本発明による気泡防止装置の概観を示す図、図 18Bは、その動作 を説明する図である。  FIG. 18A is a diagram showing an overview of a bubble prevention device according to the present invention, and FIG. 18B is a diagram for explaining the operation thereof.
[図 19]図 19Aは本発明による圧電バルブの概観を示す図、図 19B及び図 19Cは、 その動作を説明する図である。  FIG. 19A is a diagram showing an overview of a piezoelectric valve according to the present invention, and FIGS. 19B and 19C are diagrams for explaining the operation thereof.
符号の説明  Explanation of symbols
[0008] 100· ··基板、 110、 120· ··圧電デバイス、 181、 182、 183· ··入口、 191、 192、 193 …出口、 170· ··主流路、 171、 172、 173、 174、 175、 176· ··分岐。  [0008] 100 ··· substrate, 110, 120 ··· piezoelectric device, 181, 182, 183 ··· inlet, 191, 192, 193 ··· outlet, 170 ··· main channel, 171, 172, 173, 174 , 175, 176 ... branch.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 図 1A及び図 1Bを参照して本発明による血球分離装置の第 1の例を説明する。図 1 Aに示すように、本例の血球分離装置は、基板 100と、 1対の圧電デバイス 110、 12 0と、人口 181、 182、 183と出口 191、 192、 193と、人口と出口を接続する流路とを 有する。流路は中央の主流路 170と、入口側の分岐 174、 175、 176と出口側の分 岐 171、 172、 173とを有する。人口佃 Jの分岐 174、 175、 176はそれぞれ人口 181 、 182、 183に接続され、出口佃 Jの分岐 171、 172、 173はそれぞれ出口 191、 192 、 193に接続されている。圧電デバイス 110、 120は中央の主流路 170の両側に配 置されている。 [0009] A first example of a blood cell separation device according to the present invention will be described with reference to FIGS. 1A and 1B. As shown in FIG. 1A, the blood cell separation apparatus of this example includes a substrate 100, a pair of piezoelectric devices 110 and 120, populations 181, 182, 183 and exits 191, 192, 193, and a population and exit. And a flow path to be connected. The channel has a central main channel 170, branches 174, 175, 176 on the inlet side and branches 171, 172, 173 on the outlet side. Branches 174, 175, and 176 of population Tsukuda J are connected to populations 181, 182, and 183, respectively, and branches 171, 172, and 173 of exit Tsukuda J are connected to exits 191, 192, and 193, respectively. The piezoelectric devices 110 and 120 are disposed on both sides of the central main channel 170.
[0010] 流路 170及び分岐 171、 172、 173、 174、 175、 176は基板 100の内部にトンネ ノレ状に形成され、人口 181、 182、 183は基板 100の上面に設けられ、出口 191、 1 92、 193は基板 100の下面に設けられている。圧電デバイス 110、 120は主流路 17 0の内壁に互!ヽに対面するように設けられて!/、る。 [0010] The flow path 170 and the branches 171, 172, 173, 174, 175, and 176 are formed in a tunnel shape inside the substrate 100, and the populations 181, 182, and 183 are provided on the upper surface of the substrate 100, and the outlets 191, 1 Reference numerals 92 and 193 are provided on the lower surface of the substrate 100. The piezoelectric devices 110 and 120 are provided so as to face each other on the inner wall of the main flow channel 170.
[0011] 図 1Bは、本例の血球分離装置の主要部を示す。図 1Bを参照して圧電デバイス 11 0、 120の構成と動作を説明する。本例では、 2つの圧電デバイス 110、 120の構造 は同一である。第 1の圧電デバイス 110は、圧電板 111と、圧電板 111の表面に設け られた金属薄膜パターンカゝらなる電極 112、 113、 114、 115を有する。同様に、第 2 の圧電デバイス 120は、圧電板 121と、圧電板 121の表面に設けられた金属薄膜パ ターン力もなる電極 122、 123、 124、 125を有する。  FIG. 1B shows a main part of the blood cell separation device of the present example. The configuration and operation of the piezoelectric devices 110 and 120 will be described with reference to FIG. 1B. In this example, the two piezoelectric devices 110 and 120 have the same structure. The first piezoelectric device 110 includes a piezoelectric plate 111 and electrodes 112, 113, 114, and 115 formed on a surface of the piezoelectric plate 111 and formed of a metal thin film pattern. Similarly, the second piezoelectric device 120 includes a piezoelectric plate 121 and electrodes 122, 123, 124, and 125 provided on the surface of the piezoelectric plate 121 and having a metal thin film pattern force.
[0012] 第 1の圧電デバイス 110の第 1及び第 2の電極 112、 113と第 4の電極 115の間に 振動電圧を印加し、その間に挟まれた圧電板 111の厚さを振動させて、比較的弱い 音波を発生させる。第 2の圧電デバイス 120の圧電板 121が、第 1の圧電デバイス 11 0からの比較的弱い音波を受信すると、第 1及び第 2の電極 122、 123と第 4の電極 1 25の間に、電圧が発生する。この電圧を検出することによって、音波を検出すること ができる。第 3の電極 114と第 4の電極 115の間に振動電圧を印加し、その間に挟ま れた圧電板 111の厚さを振動させ、比較的強!ヽ音波を発生させる。  A vibration voltage is applied between the first and second electrodes 112 and 113 of the first piezoelectric device 110 and the fourth electrode 115, and the thickness of the piezoelectric plate 111 sandwiched therebetween is vibrated. Generates relatively weak sound waves. When the piezoelectric plate 121 of the second piezoelectric device 120 receives a relatively weak sound wave from the first piezoelectric device 110, the first and second electrodes 122, 123 and the fourth electrode 125 Voltage is generated. By detecting this voltage, a sound wave can be detected. An oscillating voltage is applied between the third electrode 114 and the fourth electrode 115, and the thickness of the piezoelectric plate 111 interposed therebetween is oscillated to generate a relatively strong acoustic wave.
[0013] 第 2の圧電デバイス 120の第 1及び第 2の電極 122、 123と第 4の電極 125の間に 振動電圧を印加し、その間に挟まれた圧電板 121の厚さを振動させて、比較的弱い 音波を発生させる。第 1の圧電デバイス 110の圧電板 111が、第 2の圧電デバイス 12 0からの比較的弱い音波を受信すると、第 1及び第 2の電極 112、 113と第 4の電極 1 15の間に、電圧が発生する。この電圧を検出することによって、音波を検出すること ができる。第 3の電極 124と第 4の電極 125の間に振動電圧を印加し、その間に挟ま れた圧電板 121の厚さを振動させ、比較的強い音波を発生させる。  [0013] An oscillating voltage is applied between the first and second electrodes 122 and 123 of the second piezoelectric device 120 and the fourth electrode 125, and the thickness of the piezoelectric plate 121 sandwiched therebetween is oscillated. Generates relatively weak sound waves. When the piezoelectric plate 111 of the first piezoelectric device 110 receives a relatively weak sound wave from the second piezoelectric device 120, the first and second electrodes 112, 113 and the fourth electrode 115 Voltage is generated. By detecting this voltage, a sound wave can be detected. An oscillating voltage is applied between the third electrode 124 and the fourth electrode 125, and the thickness of the piezoelectric plate 121 interposed therebetween is oscillated to generate a relatively strong sound wave.
[0014] 圧電板 111は圧電材料カゝら構成されている。圧電材料として、例えばチタン酸バリ ゥム等が知られている。  [0014] The piezoelectric plate 111 is made of a piezoelectric material. As the piezoelectric material, for example, titanium titanate is known.
[0015] 次に、本例の血球分離装置の動作を説明する。ここでは、血球分離装置によって サンプル液 (全血)から血球を識別し、血球を種類ごとに分離する。サンプル液 132 を中央の入口 182から導入し、シース液 131、 133をその両側の入口 181、 183力ら 導入する。 3つの液は各分岐に導かれ、中央の主流路 170にて合流する。サンプル 液 132及びシース液 131、 133液は、流れの乱れが起きないように、即ち、層流とな るように、制御される。したがって、主流路 170にて、 3つの液 131、 132、 133は混合 することなぐ 3層からなる層流が形成される。 3つの液は、混合することなぐそのまま 、出口側の 3つの分岐に分離される。サンプル液 132は中央の分岐 172を経由して 中央の出口 192に導力れ、シース液 131、 133ίま、その両佃 Jの分岐 171、 173を経 由して出口 191、 193に導力れる。 Next, the operation of the blood cell separation device of the present embodiment will be described. Here, blood cells are identified from the sample liquid (whole blood) by a blood cell separation device, and the blood cells are separated for each type. The sample liquid 132 is introduced from the central inlet 182, and the sheath liquids 131 and 133 are introduced from the inlets 181 and 183 on both sides. The three liquids are guided to the respective branches, and merge in the central main flow path 170. sample The liquid 132 and the sheath liquids 131 and 133 are controlled so as not to disturb the flow, that is, to form a laminar flow. Therefore, in the main channel 170, a laminar flow of three layers is formed without mixing the three liquids 131, 132, and 133. The three liquids are separated into three branches on the outlet side without mixing. The sample liquid 132 is guided to the central outlet 192 via the central branch 172, and is guided to the outlets 191 and 193 via the branch liquids 171 and 173 of the sheath liquids 131 and 133. .
[0016] ここで説明の都合より、第 1の圧電デバイス 110の第 1及び第 4の電極 112、 115と 、その間に挟まれた圧電板 111によって形成される圧電デバイスを第 1の部分、第 2 及び第 4の電極 113、 115と、その間に挟まれた圧電板 111によって形成される圧電 デバイスを第 2の部分、第 3及び第 4の電極 114、 115と、その間に挟まれた圧電板 1 11によって形成される圧電デバイスを第 3の部分とする。  Here, for convenience of description, the piezoelectric device formed by the first and fourth electrodes 112 and 115 of the first piezoelectric device 110 and the piezoelectric plate 111 sandwiched therebetween is referred to as a first part, a first part. The piezoelectric device formed by the second and fourth electrodes 113 and 115 and the piezoelectric plate 111 interposed therebetween is connected to the second portion, the third and fourth electrodes 114 and 115, and the piezoelectric plate interposed therebetween. The piezoelectric device formed by 111 is the third part.
[0017] 先ず、第 1の圧電デバイス 110の第 1の部分 112、 115、 111によって、比較的弱い 音波 141を発生させる。第 2の圧電デバイス 120の対応する第 1の部分 122、 125、 1 21によって、それを受信する。同様に、第 1の圧電デバイス 110の第 2の部分 113、 1 15、 111によって、比較的弱い音波 142を発生させる。第 2の圧電デバイス 120の対 応する第 2の部分 123、 125、 121によって、それを受信する。  First, a relatively weak sound wave 141 is generated by the first portions 112, 115, 111 of the first piezoelectric device 110. It is received by the corresponding first part 122, 125, 121 of the second piezoelectric device 120. Similarly, the second portion 113, 115, 111 of the first piezoelectric device 110 generates a relatively weak sound wave 142. It is received by the corresponding second part 123, 125, 121 of the second piezoelectric device 120.
[0018] サンプル液中に浮遊する血球は音波を遮断する。従って、第 2の圧電デバイス 120 の第 1及び第 2の部分は、受信音波の強度の減少から、血球 151の存在を検出する ことができる。  [0018] Blood cells floating in the sample solution block sound waves. Therefore, the first and second portions of the second piezoelectric device 120 can detect the presence of the blood cell 151 from the decrease in the intensity of the received sound wave.
[0019] 受信音波の強度の減少量は、血球の大きさ、即ち、断面積に比例する。例えば、白 血球の径は 10〜15 mであり、赤血球の径は 8 μ mであり、血小板の径は 2〜5 μ mである。従って、受信音波の減少量は、白血球の場合が最も大きぐ次に、赤血球 の場合が大きぐ血小板の場合は最も小さい。従って、第 2の圧電デバイス 120の第 1及び第 2の部分は、受信音波の強度の減少量から、血球の種類を識別することが できる。  [0019] The amount of decrease in the intensity of the received sound wave is proportional to the size of the blood cell, that is, the cross-sectional area. For example, the diameter of white blood cells is 10-15 m, the diameter of red blood cells is 8 μm, and the diameter of platelets is 2-5 μm. Therefore, the amount of decrease in the received sound wave is the largest in the case of white blood cells, and the smallest in the case of platelets which are large for red blood cells. Therefore, the first and second portions of the second piezoelectric device 120 can identify the type of blood cell from the amount of decrease in the intensity of the received sound wave.
[0020] 第 2の圧電デバイス 120の第 1の部分 122、 125、 121によって血球 151を検出し た時亥 IJを tlとし、隣の第 2の咅分 123、 125、 121によって同一の血球 151を検出し た時刻を t2とする。また、第 1及び第 2の電極 112 (122)、 113 (123)の間の距離を xとする。血球 151の移動速度は v=xZ (t2—tl)となる。血球 151の移動速度が求 められると、血球 151が第 3の電極 114、 124の間を通過する時刻を予測することが できる。 When blood cells 151 are detected by the first portions 122, 125, 121 of the second piezoelectric device 120, let IJ be tl, and the same blood cells 151 are detected by the adjacent second components 123, 125, 121. Let t2 be the time when is detected. Further, the distance between the first and second electrodes 112 (122) and 113 (123) is x. The moving speed of the blood cell 151 is v = xZ (t2−tl). When the moving speed of the blood cell 151 is determined, the time at which the blood cell 151 passes between the third electrodes 114 and 124 can be predicted.
[0021] 例えば、白血球を分離する場合を説明する。先ず、第 1及び第 2の圧電デバイス 11 0、 120の第 1の部分によって白血球が検出される。白血球が第 3の電極 114、 124 の間を通過する予測時刻に、第 1の圧電デバイス 110の第 3の部分 114、 115、 111 によって、比較的強い音波を発生させる。白血球 151は第 2の圧電デバイス 120に近 づく方向に移動し、第 2の圧電デバイス 120側のシース液 133の層流に導かれる。白 血球 151はそれ以後、シース液 133と共に、第 2の圧電デバイス 120側の分岐 173 を経由して出口 193に導力れる。第 3の出口 193からのシース液から白血球 151を 採取することができる。  For example, a case where white blood cells are separated will be described. First, leukocytes are detected by the first portions of the first and second piezoelectric devices 110 and 120. At the predicted time when leukocytes pass between the third electrodes 114, 124, the third portion 114, 115, 111 of the first piezoelectric device 110 generates a relatively strong sound wave. The white blood cells 151 move in a direction approaching the second piezoelectric device 120 and are guided to the laminar flow of the sheath liquid 133 on the second piezoelectric device 120 side. Thereafter, the white blood cells 151 are guided to the outlet 193 via the branch 173 on the second piezoelectric device 120 side together with the sheath liquid 133. Leukocytes 151 can be collected from the sheath liquid from the third outlet 193.
[0022] 次に、赤血球を分離する場合を説明する。先ず、第 1及び第 2の圧電デバイス 110 、 120の第 1の部分によって赤血球が検出される。赤血球が第 3の電極 114、 124の 間を通過する予測時刻に、第 2の圧電デバイス 120の第 3の部分 124、 125、 121に よって、比較的強い音波を発生させる。赤血球は第 1の圧電デバイス 110に近づく方 向に移動し、第 1の圧電デバイス 110側のシース液 131の層流に導かれる。赤血球 はそれ以後、シース液 131と共に、第 1の圧電デバイス 110側の分岐 171を経由して 出口 191に導かれる。第 1の出口 191からのシース液力も赤血球を採取することがで きる。  Next, a case where red blood cells are separated will be described. First, red blood cells are detected by first portions of the first and second piezoelectric devices 110 and 120. At the predicted time when red blood cells pass between the third electrodes 114, 124, relatively strong sound waves are generated by the third portions 124, 125, 121 of the second piezoelectric device 120. The red blood cells move in the direction approaching the first piezoelectric device 110 and are guided to the laminar flow of the sheath liquid 131 on the first piezoelectric device 110 side. The erythrocytes are thereafter guided together with the sheath liquid 131 to the outlet 191 via the branch 171 on the first piezoelectric device 110 side. Sheath fluid from the first outlet 191 can also collect red blood cells.
[0023] 図 1の f列では、 3つの人口 181、 182、 183と 3つの出口 191、 192、 193を設け、サ ンプル液から赤血球及び白血球を分離した。本例の血球分離装置を n段連結するこ とにより 2の n乗の種類の血球を分離することができる。  [0023] In row f of Fig. 1, three populations 181, 182, 183 and three outlets 191, 192, 193 were provided, and erythrocytes and leukocytes were separated from the sample solution. By connecting the blood cell separation device of this example in n stages, it is possible to separate 2n powers of blood cells.
[0024] 図 2Aを参照して、本発明による血球分離装置の第 2の例を説明する。図 2Aは、本 例の血球分離装置の主要部を示す。本例の血球分離装置は、流路と、 1対の圧電デ ノ イス 210、 220を有する。流路は中央の主流路 270と出口側の分岐 271、 272とを 有する。尚、図示しないが、流路は入口側の 2つの分岐を有する。また、入口側の 2 つの分岐に接続された入口、出口側の分岐に接続された出口を有する。圧電デバイ ス 210、 220は中央の主流路 270の両側に配置されている。 [0025] 第 1の圧電デバイス 210は、圧電板 211と、圧電板 211の表面に設けられた金属薄 膜パターン力もなる電極 212、 213、 214を有する。第 2の圧電デバイス 220は、圧電 板 221と、圧電板 221の表面に設けられた金属薄膜パターン力もなる電極 222、 22 3を有する。 Referring to FIG. 2A, a second example of the blood cell separation device according to the present invention will be described. FIG. 2A shows a main part of the blood cell separation device of this example. The blood cell separation device of this example has a flow channel and a pair of piezoelectric devices 210 and 220. The flow path has a central main flow path 270 and outlet branches 271 and 272. Although not shown, the flow path has two branches on the inlet side. It has an inlet connected to the two branches on the inlet side and an outlet connected to the branch on the outlet side. The piezoelectric devices 210 and 220 are arranged on both sides of the central main channel 270. The first piezoelectric device 210 has a piezoelectric plate 211 and electrodes 212, 213, and 214 provided on the surface of the piezoelectric plate 211 and having a metal thin film pattern force. The second piezoelectric device 220 has a piezoelectric plate 221 and electrodes 222 and 223 provided on the surface of the piezoelectric plate 221 and having a metal thin film pattern force.
[0026] 次に、本例の血球分離装置の動作を説明する。 2つの入口からそれぞれサンプル 液(全血)とシース液を導入する。主流路 270では、サンプル液 231とシース液 232 が層流として分離した状態にて流れる。第 1の圧電デバイス 210の第 1の部分 212、 214、 211によって、比較的弱い音波 241を発生させる。第 2の圧電デバイス 220は 、それを受信し、血球の通過を検出する。血球が第 2の電極 213の前を通過する予 測時刻に、第 1の圧電デバイス 210の第 2の部分 213、 214、 211によって比較的強 い音波 242を発生させる。血球は、シース液 232に導かれ、第 2の分岐 272より出口 に導かれる。サンプル液は、第 1の分岐 271より出口に導かれる。こうして、サンプル 液より血球を分離することができる。  Next, the operation of the blood cell separation device of the present embodiment will be described. Sample liquid (whole blood) and sheath liquid are introduced from the two inlets, respectively. In the main flow path 270, the sample liquid 231 and the sheath liquid 232 flow in a separated state as a laminar flow. A relatively weak sound wave 241 is generated by the first portions 212, 214, 211 of the first piezoelectric device 210. The second piezoelectric device 220 receives it and detects the passage of blood cells. At a predicted time when the blood cells pass in front of the second electrode 213, a relatively strong sound wave 242 is generated by the second portions 213, 214, 211 of the first piezoelectric device 210. Blood cells are led to the sheath liquid 232 and to the outlet from the second branch 272. The sample liquid is led from the first branch 271 to the outlet. Thus, blood cells can be separated from the sample solution.
[0027] 図 2Bを参照して、本発明による血球分離装置の第 3の例を説明する。図 2Bは、本 例の血球分離装置の主要部を示す。本例の血球分離装置は、流路と圧電デバイス 2 30を有する。流路は中央の主流路 270と出口側の分岐 271、 272とを有する。尚、 図示しないが、流路は入口側の 2つの分岐を有する。また、入口側の 2つの分岐に接 続された入口、出口側の分岐に接続された出口を有する。圧電デバイス 230は中央 の主流路 270の一方の側に配置されている。  With reference to FIG. 2B, a third example of the blood cell separation device according to the present invention will be described. FIG. 2B shows a main part of the blood cell separation device of the present example. The blood cell separation device of this example has a flow path and a piezoelectric device 230. The channel has a central main channel 270 and branches 271 and 272 on the outlet side. Although not shown, the flow path has two branches on the inlet side. It also has an inlet connected to the two branches on the inlet side and an outlet connected to the branch on the outlet side. The piezoelectric device 230 is arranged on one side of the central main channel 270.
[0028] 圧電デバイス 230は、圧電板 231と、圧電板 231の表面に設けられた金属薄膜パ ターン力もなる電極 232、 233を有する。次に、本例の血球分離装置の動作を説明 する。 2つの入口カゝらそれぞれサンプル液 (全血)とシース液を導入する。主流路 270 では、サンプル液 231とシース液 232が層流として分離した状態にて流れる。流路に サンプル液 231が流れてくると、圧電デバイス 230によって、比較的強い音波 243を 発生させる。血球は、シース液 232に導かれ、第 2の分岐 272より出口に導かれる。 サンプル液は、第 1の分岐 271より出口に導かれる。こうして、サンプル液より血球を 分離することができる。  The piezoelectric device 230 has a piezoelectric plate 231 and electrodes 232 and 233 provided on the surface of the piezoelectric plate 231 and having a metal thin film pattern force. Next, the operation of the blood cell separation device of this example will be described. A sample liquid (whole blood) and a sheath liquid are introduced from each of the two inlet ports. In the main flow path 270, the sample liquid 231 and the sheath liquid 232 flow in a separated state as a laminar flow. When the sample liquid 231 flows into the flow channel, a relatively strong sound wave 243 is generated by the piezoelectric device 230. Blood cells are led to the sheath liquid 232 and to the outlet from the second branch 272. The sample liquid is led from the first branch 271 to the outlet. Thus, blood cells can be separated from the sample solution.
[0029] 図 2に示した例では、血球の種類を識別しないで全ての血球を分離する場合に好 適である。従って、血清分離フィルタとして利用することができる。この場合、第 1の分 岐 271に接続された出口力も血清が採取され、第 2の分岐 272に接続された出口か ら血球が得られる。通常のろ紙フィルタは目詰まりを起こす力 本例の装置は目詰ま りを起こすことがない利点がある。 [0029] The example shown in Fig. 2 is preferable when all blood cells are separated without discriminating the type of blood cells. Suitable. Therefore, it can be used as a serum separation filter. In this case, the serum at the outlet connected to the first branch 271 is also collected, and blood cells are obtained from the outlet connected to the second branch 272. Normal filter paper filter has clogging force The device of this example has the advantage of not causing clogging.
[0030] 図 2Aに示した例は、血球の濃度が比較的低い場合に好適であり、図 2Bに示した 例は、血球の濃度が比較的高!、場合に好適である。  The example shown in FIG. 2A is suitable when the blood cell concentration is relatively low, and the example shown in FIG. 2B is suitable when the blood cell concentration is relatively high!
[0031] 図 3を参照して本発明による血球分離装置の第 4の例を説明する。図 3Aは、本例 の血球分離装置の分解斜視図であり、図 3Bは組み立てた後の断面図である。本例 の血球分離装置は、上側部材 310と下側部材 320を有し、上側部材 310の内面に は凹部が形成されて 、る。この凹部は深さが大き!/、部分 311 Aと深さが小さ 、部分 3 12Aを有する。この凹部によって上側部材 310と下側部材 320の間に密閉空間が形 成される。  A fourth example of the blood cell separation device according to the present invention will be described with reference to FIG. FIG. 3A is an exploded perspective view of the blood cell separation device of the present example, and FIG. 3B is a cross-sectional view after assembly. The blood cell separation device of the present example has an upper member 310 and a lower member 320, and a concave portion is formed on the inner surface of the upper member 310. This recess has a large depth! /, A portion 311A and a small depth, a portion 312A. The recess forms a closed space between the upper member 310 and the lower member 320.
[0032] 図 3Bに示すように、この密閉空間は、深さが大きい収容部 311と深さが小さい通路 部 312からなる。上側部材 310には、入口 313と出口 314が設けられている。入口 3 13は、収容部 311に接続され、出口 314は通路部 312に接続されている。  [0032] As shown in FIG. 3B, the closed space includes a storage portion 311 having a large depth and a passage portion 312 having a small depth. The upper member 310 has an inlet 313 and an outlet 314. The inlet 313 is connected to the housing 311, and the outlet 314 is connected to the passage 312.
[0033] 下側部材 320は圧電材料より形成され、その両面には金属薄膜パターン力もなる 電極 331、 332力設けられている。こうして電極 331、 332とその間に挟まれた圧電 板より圧電デバイスが形成される。  [0033] The lower member 320 is formed of a piezoelectric material, and electrodes 331 and 332 are provided on both surfaces thereof, which also have a metal thin film pattern force. In this way, a piezoelectric device is formed from the electrodes 331 and 332 and the piezoelectric plate sandwiched therebetween.
[0034] 本例の血球分離装置の動作を説明する。入口 313からサンプル液 (全血)を導入 する。サンプル液は、収容部 311に収容され、更に、通路部 312から出口 314に導 かれる。電極 331、 332の間に振動電圧を印加し、その間に挟まれた圧電板の厚さ を振動させ、比較的強い音波を発生させる。音波の放射圧によって、血球は、圧電 デバイスより離れるように移動し、収容部 311に収容される。血球を除いたサンプル 液は、通路部 312から出口 314に導かれる。出口 314からは、血球が除去されたサ ンプル液が得られる。  [0034] The operation of the blood cell separation device of this example will be described. A sample solution (whole blood) is introduced from the inlet 313. The sample liquid is accommodated in the accommodation section 311, and further, is guided from the passage section 312 to the outlet 314. An oscillating voltage is applied between the electrodes 331 and 332 to oscillate the thickness of the piezoelectric plate sandwiched therebetween, thereby generating a relatively strong sound wave. Due to the radiation pressure of the sound waves, the blood cells move away from the piezoelectric device and are stored in the storage unit 311. The sample liquid excluding the blood cells is led from the passage 312 to the outlet 314. From the outlet 314, a sample liquid from which blood cells have been removed is obtained.
[0035] 図 4を参照して本発明による質量検出装置の第 1の例を説明する。上述の例では、 圧電デバイスによって音波を生成し、音波の放射圧によって血球を分離した。本例で は、圧電デバイスの固有振動数の変化により質量を検出する。このような方法は、マ イクロバランス (MB)法と呼ばれる。図 4Aに示すように、本例の質量検出装置は、圧 電材料より形成された円板状の振動板 400とその両面に装着された金属薄膜パター ンカらなる電極 401、 402を有する。電極 401、 402は円形咅401A、 402Aと、それ に接続されたリード部 401B、 402Bと、を有する。リード部 401B、 402Bは図示しな い回路に接続されている。 A first example of the mass detection device according to the present invention will be described with reference to FIG. In the above example, a sound wave was generated by the piezoelectric device, and blood cells were separated by the radiation pressure of the sound wave. In this example, the mass is detected by a change in the natural frequency of the piezoelectric device. Such a method is It is called the microbalance (MB) method. As shown in FIG. 4A, the mass detection device of this example has a disk-shaped diaphragm 400 formed of a piezoelectric material and electrodes 401 and 402 made of a metal thin film patterner mounted on both surfaces thereof. The electrodes 401 and 402 have circular holes 401A and 402A and lead portions 401B and 402B connected thereto. The leads 401B and 402B are connected to a circuit (not shown).
[0036] 図 4C及び図 4Dに示すように、振動板 400の周囲は、ホルダ 410によって支持され ている。ホルダ 410は凹部を有し、この凹部と振動板 400によって密閉空間 411が形 成される。 2つの電極 401、 402の間に振動電圧を印加することによって、その間に 挟まれた振動板 400が、振動する。本例では、図 4Bに示すように、振動板 400はせ ん断方向に振動する。即ち、上面と下面は、面方向に沿って、互いに反対方向に振 動する。図 4Cに示す例では、図 4Aの振動板 400を使用する力 図 4Dに示す例で ίま、振動板 400に、電極 401、 402の円形咅401Α、 402Αを囲むように、溝 400Α力 ^ 設けられている。こうして溝を設けることにより、振動板は容易に振動する。  As shown in FIG. 4C and FIG. 4D, the periphery of diaphragm 400 is supported by holder 410. The holder 410 has a concave portion, and a closed space 411 is formed by the concave portion and the vibration plate 400. When an oscillating voltage is applied between the two electrodes 401 and 402, the diaphragm 400 sandwiched therebetween vibrates. In this example, as shown in FIG. 4B, diaphragm 400 vibrates in the shearing direction. That is, the upper surface and the lower surface vibrate in opposite directions along the surface direction. In the example shown in FIG. 4C, the force using the diaphragm 400 in FIG. 4A is the same as the example shown in FIG. 4D. In the example shown in FIG. Is provided. By providing the grooves in this manner, the diaphragm easily vibrates.
[0037] 本例の質量検出装置によって質量を検出する方法を説明する。振動板 400の表面 の電極 401には、リンカ一と称する特定の物質と結合する物質が塗布されている。電 極 401が溶液に漬カるように振動板 400を配置する。例えば、収容した容器の内壁 に装着してよい。振動板 400を振動させることにより、振動板 400の表面に塗布され たリンカ一に溶液中の特定の物質が結合する。それにより、振動板 400の固有振動 数が変化する。この固有振動数の変化量は、リンカ一に結合した物質の質量に関係 する。従って、固有振動数の変化量を測定することにより、リンカ一に結合した物質の 質量を計測することができる。尚、リンカ一に結合した物質の質量は、溶液中に含ま れるその物質の濃度に比例すると仮定すれば、溶液中の物質の濃度を検出すること ができる。  [0037] A method for detecting mass by the mass detection device of the present example will be described. The electrode 401 on the surface of the vibration plate 400 is coated with a substance that binds to a specific substance called a linker. The diaphragm 400 is arranged so that the electrode 401 is immersed in the solution. For example, it may be mounted on the inner wall of the container in which it is stored. By vibrating diaphragm 400, a specific substance in the solution is bonded to the linker applied to the surface of diaphragm 400. Thereby, the natural frequency of diaphragm 400 changes. This change in the natural frequency is related to the mass of the substance bound to the linker. Therefore, by measuring the amount of change in the natural frequency, the mass of the substance bound to the linker can be measured. Assuming that the mass of the substance bound to the linker is proportional to the concentration of the substance contained in the solution, the concentration of the substance in the solution can be detected.
[0038] 図 5、図 6及び図 7を参照して、本発明による質量検出装置の第 2の例を説明する。  A second example of the mass detection device according to the present invention will be described with reference to FIG. 5, FIG. 6, and FIG.
図 5に示すように、本例の質量検出装置は、上側部材 510と下側部材 520を有し、上 側部材 510の内面には凹部 511Aが形成されている。この凹部 511Aによって、上側 部材 510と下側部材 520の間に密閉空間である通路 511 (図 6)が形成される。上側 部材 510には、入口 513と出口 514が設けられており、これらの入口 513及び出口 5 14は通路部 511に接続されている。下側部材 520には凹部 521が形成され、この凹 部 521には、回路基板 522が配置されている。 As shown in FIG. 5, the mass detection device of this example has an upper member 510 and a lower member 520, and a concave portion 511A is formed on the inner surface of the upper member 510. The recess 511A forms a passage 511 (FIG. 6) which is a sealed space between the upper member 510 and the lower member 520. The upper member 510 has an inlet 513 and an outlet 514, and the inlet 513 and the outlet 5 are provided. 14 is connected to the passage 511. A recess 521 is formed in the lower member 520, and a circuit board 522 is disposed in the recess 521.
[0039] 下側部材 520は圧電材料より形成され、その両面に金属薄膜パターン力もなる電 極 525、 526 (図 5には電極 525のみ図示)力設けられている。こうして、電極 525、 5 26とその間に挟まれた圧電板によって圧電デバイスが形成される。電極 525、 526 は、通路 511の下側に、且つ、通路 511に沿って配置されている。電極 525、 526は 、下側部材 520の内面(上面)に配置された電極 525と外面(下面)には配置された 電極 526 (図 6参照)を有する Qこれらの電極 525、 526は、リード線 527、 528を介し て、回路基板 522の回路に接続されている。 The lower member 520 is formed of a piezoelectric material, and is provided with electrodes 525, 526 (only the electrode 525 is shown in FIG. 5) which also has a metal thin film pattern force on both surfaces thereof. Thus, a piezoelectric device is formed by the electrodes 525 and 526 and the piezoelectric plate sandwiched therebetween. The electrodes 525, 526 are located below and along the passage 511. Electrodes 525, 526, Q the electrodes 525, 526 having the inner surface electrode 526 to the electrode disposed 525 and the outer surface (the upper surface) (the lower surface) disposed (see FIG. 6) of the lower member 520, lead It is connected to the circuit of the circuit board 522 via the lines 527 and 528.
[0040] 図 6は、図 5の質量検出装置の断面構成を示す。図 6Aに示す例では、下側部材 5 20の内面(上面)には、電極 525の周囲を囲むように溝 531が形成されている。図 6 Bに示す例では、下側部材 520の内面(上面)には、電極 525の 3辺を囲むように溝 5 32力形成されている。こうして、本 ί列では、溝を設けることにより、電極 525、 526の間 に挟まれた下側部材 520は、容易に振動することができる。図示の例では、電極 525 は 2つの電極 525Α、 525Βを含む。 2つの電極 525Α、 525Βを設けた理由は後に 図 8を参照して説明する。  FIG. 6 shows a cross-sectional configuration of the mass detection device of FIG. In the example shown in FIG. 6A, a groove 531 is formed on the inner surface (upper surface) of the lower member 520 so as to surround the periphery of the electrode 525. In the example shown in FIG. 6B, a groove 532 is formed on the inner surface (upper surface) of the lower member 520 so as to surround three sides of the electrode 525. Thus, in the present row, by providing the groove, the lower member 520 sandwiched between the electrodes 525 and 526 can easily vibrate. In the example shown, electrode 525 includes two electrodes 525 °, 525 °. The reason for providing the two electrodes 525 ° and 525 ° will be described later with reference to FIG.
[0041] 図 7を参照して、本例による質量検出装置の動作を説明する。図 7は、図 5及び図 6 に示した質量検出装置の通路部 511の断面構成を示す。ここでは、質量検出装置を 使用して、サンプル液に含まれる特定の物質を捕獲する場合を説明する。電極 525 の表面には、リンカ一 541、 542と呼ばれる特定の物質と結合する物質が配置されて いる。電極 525、 526の間に振動電圧を印カロすることによって、電極 525、 526は、 図 4Βに示したように、せん断方向に振動する。即ち、上面と下面は、面方向に沿って 且つ互いに反対方向に振動する。電極 525、 526と共に、リンカ一 541、 542は振動 し、特定の物質と結合する。  With reference to FIG. 7, the operation of the mass detection device according to the present example will be described. FIG. 7 shows a cross-sectional configuration of the passage portion 511 of the mass detection device shown in FIGS. Here, a case in which a specific substance contained in a sample liquid is captured using a mass detection device will be described. On the surface of the electrode 525, a substance called a linker 541, 542 that binds to a specific substance is arranged. By applying an oscillating voltage between the electrodes 525, 526, the electrodes 525, 526 oscillate in the shear direction, as shown in FIG. That is, the upper surface and the lower surface vibrate along the surface direction and in directions opposite to each other. Along with the electrodes 525, 526, the linkers 541, 542 vibrate and bind to a particular substance.
[0042] 図 8を参照して、リンカ一 541、 542に結合した物質の量を計測する方法を説明す る。図 8の各曲線は、圧電デバイスの電極の振動の周波数と時間の関係を示す。図 8 Αに示すように、理想的な状態では、時間と共に、周波数が減少する。これは、リンカ 一に物質が結合したため、振動する部分の重量が大きくなるためである。しかしなが ら、実際には、様々な要因によりノイズ又はドリフトが発生する。そのために、図 8Bに 示すように、周波数の変動曲線にはノイズ又はドリフトが重畳する。そこで、図 6に示 したように、各電極に 2つの電極 525A、 525Bを設ける。一方の電極にはリンカ一を 設けず、他方の電極にはリンカ一を設ける。図 8Cに示すように、リンカ一を設けない 電極の振動の周波数の変化を示す曲線 601と、リンカ一を設けた電極の振動の周波 数の変化を示す曲線 602が得られる。曲線 601は、ノイズ又はドリフトを表す。したが つて、曲線 602から曲線 601を減算することにより、図 8Dに示すように、ノイズ及びド リフトが除去された曲線 603が得られる。この曲線 603を使用して、リンカ一に結合し た物質の量を正確に検出することができる。 Referring to FIG. 8, a method for measuring the amount of a substance bound to linkers 541 and 542 will be described. Each curve in FIG. 8 shows the relationship between frequency and time of vibration of the electrodes of the piezoelectric device. In the ideal state, the frequency decreases with time, as shown in Figure 8Α. This is because the weight of the vibrating part increases because the substance is bonded to the linker. However, Actually, noise or drift occurs due to various factors. Therefore, as shown in FIG. 8B, noise or drift is superimposed on the frequency fluctuation curve. Therefore, as shown in FIG. 6, two electrodes 525A and 525B are provided for each electrode. One electrode is not provided with a linker, and the other electrode is provided with a linker. As shown in FIG. 8C, a curve 601 indicating a change in the vibration frequency of the electrode without the linker and a curve 602 indicating the change in the vibration frequency of the electrode with the linker are obtained. Curve 601 represents noise or drift. Accordingly, by subtracting the curve 601 from the curve 602, a curve 603 from which noise and drift have been removed is obtained as shown in FIG. 8D. Using this curve 603, the amount of substance bound to the linker can be accurately detected.
[0043] 図 8Eを参照して、物質の種類を特定する方法を説明する。リンカ一に結合する物 質が異なると、周波数の変化の状態も異なる。例えば、曲線 604は第 1の物質を結合 するリンカ一を備えた電極における周波数の変化を示し、曲線 605は第 2の物質を結 合するリンカ一を備えた電極における周波数の変化を示す。こうして、周波数の変化 曲線の形状を観察することにより、リンカ一によつて結合した物質の種類を特定する ことができる。 With reference to FIG. 8E, a method for specifying the type of the substance will be described. Different substances that bind to the linker have different states of frequency change. For example, curve 604 shows the change in frequency at an electrode with a linker that binds a first substance, and curve 605 shows the change in frequency at an electrode with a linker that binds a second substance. Thus, by observing the shape of the frequency change curve, it is possible to specify the type of the substance bound by the linker.
[0044] 図 9を参照して、リンカ一によつて結合した物質の量を検出するための検出回路を 説明する。図 9Aに示す検出回路は、圧電板の両面に装着された電極 701A、 701B 、スィッチ 702、直流電源 703、卜ランジスタ 704、及び、インピーダンス 705、 706、 7 07を有する。トランジスタ 704とインピーダンス 705、 706、 707によって共振回路力 S 形成される。スィッチ 702をオンにすると、直流電源 703からの電圧は、共振回路 70 4、 705、 706、 707を介して、電極 701A、 701Bに印カロされる。それにより、電極 70 1A、 701Bの電圧が共振する。共振周波数、即ち、固有周波数を図示しない周波数 カウンタによって計測する。上述のように、共振周波数は、電極のリンカ一に結合した 物質の質量の関数である。従って、共振周波数より物質の質量を計測することができ る。  With reference to FIG. 9, a description will be given of a detection circuit for detecting the amount of the substance bound by the linker. The detection circuit shown in FIG. 9A has electrodes 701A and 701B, a switch 702, a DC power supply 703, a transistor 704, and impedances 705, 706, and 707 mounted on both sides of the piezoelectric plate. A resonant circuit force S is formed by the transistor 704 and the impedances 705, 706, 707. When the switch 702 is turned on, the voltage from the DC power supply 703 is applied to the electrodes 701A, 701B via the resonance circuits 704, 705, 706, 707. As a result, the voltages of the electrodes 701A and 701B resonate. The resonance frequency, that is, the natural frequency is measured by a frequency counter (not shown). As mentioned above, the resonance frequency is a function of the mass of the substance bound to the electrode linker. Therefore, the mass of the substance can be measured from the resonance frequency.
[0045] 図 9B及び図 9Cを参照して検出回路の第 2の例を説明する。本例の検出回路は、 圧電板の両面に装着された電極 711 A、 711B、スィッチ 712、 713、直流電源 714 及び抵抗 715を有する。先ず、図 9Bに示すように、直流電源 714に接続されたスイツ チ 712をオンにし、抵抗 715に接続されたスィッチ 713をオフにする。図 9Bの右側の グラフに示すように、電極 711A、 711Bの間に電荷が蓄積され、電位 Vが生成される 。次に、図 9Cに示すように、直流電源 714に接続されたスィッチ 712をオフにし、抵 抗 715に接続されたスィッチ 713をオンにする。図 9Cの右側のグラフに示すように、 電極 711A、 71 IBの間の電位 Vは振動する。この振動の周波数を検出することによ り、共振周波数を求めることができる。こうして得られた共振周波数より物質の質量を 計柳』することができる。 A second example of the detection circuit will be described with reference to FIGS. 9B and 9C. The detection circuit of this example has electrodes 711 A and 711 B, switches 712 and 713, a DC power supply 714, and a resistor 715 mounted on both sides of the piezoelectric plate. First, as shown in FIG. 9B, the switch connected to the DC power supply 714 Switch 712 is turned on, and switch 713 connected to resistor 715 is turned off. As shown in the graph on the right side of FIG. 9B, charges are accumulated between the electrodes 711A and 711B, and a potential V is generated. Next, as shown in FIG. 9C, the switch 712 connected to the DC power supply 714 is turned off, and the switch 713 connected to the resistor 715 is turned on. As shown in the right graph of FIG. 9C, the potential V between the electrodes 711A and 71IB oscillates. The resonance frequency can be obtained by detecting the frequency of this vibration. From the resonance frequency obtained in this way, the mass of the substance can be measured.
[0046] 図 10を参照して本発明による送液装置の例を説明する。図 10Aに示す送液装置 の第 1の例は上側部材 810、下側部材 820を有し、上側部材 810は内面に凹部 811 を有する。この凹部 811によって、側部材 810と下側部材 820の間に密閉空間 830 が形成される。側部材 810には入口 815と出口 816が設けられ、これらの入口 815及 び出口 816は密閉空間 830に接続されている。  With reference to FIG. 10, an example of the liquid feeding device according to the present invention will be described. The first example of the liquid sending device shown in FIG. 10A has an upper member 810 and a lower member 820, and the upper member 810 has a concave portion 811 on the inner surface. The recess 811 forms a sealed space 830 between the side member 810 and the lower member 820. The side member 810 is provided with an inlet 815 and an outlet 816, and the inlet 815 and the outlet 816 are connected to the closed space 830.
[0047] 上側部材 810の内面の凹部 811は、傾斜部 811 Aと平坦部 811Bを有する。それ に対応して、密閉空間 830には、傾斜部 830Aと通路部 830Bが形成される。  [0047] The concave portion 811 on the inner surface of the upper member 810 has an inclined portion 811A and a flat portion 811B. Correspondingly, an inclined portion 830A and a passage portion 830B are formed in the closed space 830.
[0048] 下側部材 820は圧電材料によって形成され、その両面に金属薄膜パターンからな る電極 821、 822力設けられている。電極 821、 822とその間に挟まれた圧電板によ つて圧電デバイスが形成される。電極 821、 822は、傾斜部 830Aに対応した位置に 配置される。  [0048] The lower member 820 is formed of a piezoelectric material, and has electrodes 821 and 822 formed of a metal thin film pattern on both surfaces thereof. A piezoelectric device is formed by the electrodes 821 and 822 and the piezoelectric plate sandwiched therebetween. The electrodes 821 and 822 are arranged at positions corresponding to the inclined portions 830A.
[0049] 溶液を入口 815より密閉空間 830内に導入する。電極 821、 822に振動電圧を印 加することによって、電極 821、 822の間に挟まれた圧電材の部分が振動し、音波を 発生する。音波は、矢印 Aにて示すように、上側部材 810の内面の凹部 811の傾斜 部 811Aを反射し、出口 816方向に導かれる。この音波の放射圧によって、密閉空 間 830に収容された溶液は、矢印 Bにて示すように、出口 816方向に導かれる。  [0049] The solution is introduced into the closed space 830 from the inlet 815. When an oscillating voltage is applied to the electrodes 821 and 822, the portion of the piezoelectric material sandwiched between the electrodes 821 and 822 vibrates to generate sound waves. The sound wave reflects off the inclined portion 811A of the concave portion 811 on the inner surface of the upper member 810 as shown by the arrow A, and is guided toward the outlet 816. The solution contained in the sealed space 830 is guided toward the outlet 816 as indicated by the arrow B by the radiation pressure of this sound wave.
[0050] 図 10Bに示す送液装置の第 2の例は、図 10Aの第 1の例と比較して、上側部材 81 0の内面の凹部 811は、傾斜部 811Aを有さない、即ち、平坦部のみを有する。従つ て、密閉空間 830には、高さが一定の通路部 830が形成される。  [0050] The second example of the liquid transfer device shown in FIG. 10B differs from the first example of FIG. 10A in that the concave portion 811 on the inner surface of the upper member 810 does not have the inclined portion 811A, that is, It has only a flat part. Accordingly, a passage portion 830 having a constant height is formed in the closed space 830.
[0051] 下側部材 820は圧電材料によって形成され、その両面に金属薄膜パターンからな る電極 821、 822力設けられている。電極 821、 822とその間に挟まれた圧電板によ つて圧電デバイスが形成される。電極 821、 822は、密閉空間 830に沿って配置され る。溶液を入口 815より密閉空間 830内に導入する。電極 821、 822に図 10Aの例 の場合とは異なる周波数の振動電圧を印加することによって、電極 821、 822の間に 挟まれた圧電材料の厚さが振動し、その表面に表面波が生成される。この表面波に よって、溶液は、矢印 Cにて示すように、出口 816方向に導かれる。尚、電極 821を 複数の電極より構成し、これらの電極を順番に、入口 815から出口 816の方向に、振 動電圧を印加し、表面波を生成してもよい。 [0051] The lower member 820 is formed of a piezoelectric material, and has electrodes 821 and 822 formed of a metal thin film pattern on both surfaces thereof. The electrodes 821 and 822 and the piezoelectric plate sandwiched between them Thus, a piezoelectric device is formed. The electrodes 821 and 822 are arranged along the closed space 830. The solution is introduced into the closed space 830 from the inlet 815. By applying an oscillating voltage to the electrodes 821 and 822 at a frequency different from that in the example of Fig. 10A, the thickness of the piezoelectric material sandwiched between the electrodes 821 and 822 vibrates, and a surface wave is generated on the surface Is done. Due to this surface wave, the solution is guided in the direction of the outlet 816 as shown by arrow C. The electrode 821 may be composed of a plurality of electrodes, and these electrodes may be sequentially applied with an oscillating voltage in a direction from the entrance 815 to the exit 816 to generate a surface wave.
[0052] 図 10Cに示す送液装置の第 3の例は、図 10Bの第 2の例と比較して、圧電デバイス を設けない点が異なる。本例では、圧電デバイスによる音波を使用しない。その代わ りに、毛管現象を利用する。溶液を入口 815より密閉空間 830内に導入する。溶液は 、矢印 Dにて示すように、毛管現象によって、密閉空間 830内を出口方向に移動する [0052] The third example of the liquid sending device shown in Fig. 10C is different from the second example of Fig. 10B in that no piezoelectric device is provided. In this example, no sound wave generated by the piezoelectric device is used. Instead, use capillary action. The solution is introduced into the closed space 830 from the inlet 815. The solution moves in the closed space 830 in the direction of the outlet by capillary action, as indicated by arrow D.
[0053] 図 11を参照して本発明によるサンプル分析装置の例を示す。本例のサンプル分析 装置は、上側部材 910と下側部材 920とを有し、上側部材 910と下側部材 920の間 には回路基板 913が配置されている。下側部材 920の上面、即ち、内面には、溝 93 0が設けられている。この溝 930によって、上側部材 910と下側部材 920の間に密閉 空間が形成される。一方、上側部材 910には入口 911及び出口 912が設けられてい る。溝 930の一端は入口 911に接続され、溝 930の他端は出口 912に接続されてい る。 Referring to FIG. 11, an example of a sample analyzer according to the present invention is shown. The sample analyzer of this example has an upper member 910 and a lower member 920, and a circuit board 913 is disposed between the upper member 910 and the lower member 920. A groove 930 is provided on the upper surface of the lower member 920, that is, on the inner surface. The groove 930 forms a sealed space between the upper member 910 and the lower member 920. On the other hand, an inlet 911 and an outlet 912 are provided in the upper member 910. One end of groove 930 is connected to inlet 911 and the other end of groove 930 is connected to outlet 912.
[0054] 溝 930は第 1、第 2、及び第 3の部分を有する。溝 930の第 1の部分によって、図 11 Bに示すように、密閉空間のセパレータ部 931が形成され、溝 930の第 2の部分によ つて、図 11Cに示すように、密閉空間のセンサ部 932が形成され、溝 930の第 3の部 分によって、図 11Dに示すように、密閉空間のポンプ部 933が形成される。  [0054] Groove 930 has first, second, and third portions. The first portion of the groove 930 forms a sealed space separator portion 931 as shown in FIG. 11B, and the second portion of the groove 930 forms a sensor portion of the sealed space as shown in FIG. 11C. 932 is formed, and the third part of the groove 930 forms a pump part 933 of the enclosed space as shown in FIG. 11D.
[0055] 図 11Bに示すようにセパレータ部 931では、下側部材 920の両面に金属薄膜パタ ーンカもなる電極 921、 922が設けられている。下側部材 920は圧電材料より形成さ れる。電極 921、 922とその間に挟まれた圧電板によって圧電デバイスが形成される 。本例のセパレータ部 931の動作は、図 3を参照して説明した血球分離装置の第 4の 例の動作と同様であり、詳細は省略する。 [0056] 図 11Cに示すようにセンサ部 932では、下側部材 920の両面に金属薄膜パターン カゝらなる電極 921、 922が設けられている。下側部材 920は圧電材料より形成される 。電極 921、 922とその間に挟まれた圧電板によって圧電デバイスが形成される。更 に、電極の周りには溝 923が設けられている。本例のセンサ部 932の動作は、図 7を 参照して説明した質量検出装置の例の動作と同様であり、詳細は省略する。 As shown in FIG. 11B, in the separator section 931, electrodes 921 and 922 which are also metal thin film patterns are provided on both surfaces of the lower member 920. The lower member 920 is formed from a piezoelectric material. A piezoelectric device is formed by the electrodes 921 and 922 and the piezoelectric plate sandwiched therebetween. The operation of the separator section 931 of this example is the same as the operation of the fourth example of the blood cell separation device described with reference to FIG. As shown in FIG. 11C, in the sensor section 932, electrodes 921 and 922 made of a metal thin film pattern are provided on both surfaces of the lower member 920. The lower member 920 is formed from a piezoelectric material. A piezoelectric device is formed by the electrodes 921 and 922 and the piezoelectric plate sandwiched therebetween. Further, a groove 923 is provided around the electrode. The operation of the sensor unit 932 of this example is the same as the operation of the example of the mass detection device described with reference to FIG.
[0057] 図 11Dに示すようにポンプ部 933では、下側部材 920の両面に金属薄膜パターン カゝらなる電極 921、 922が設けられている。下側部材 920は圧電材料より形成される 。電極 921、 922とその間に挟まれた圧電板によって圧電デバイスが形成される。本 例のポンプ部 933の動作は、図 10Aを参照して説明した送液装置の例の動作と同 様であり、詳細は省略する。  As shown in FIG. 11D, in the pump section 933, electrodes 921 and 922 made of a metal thin film pattern are provided on both surfaces of the lower member 920. The lower member 920 is formed from a piezoelectric material. A piezoelectric device is formed by the electrodes 921 and 922 and the piezoelectric plate sandwiched therebetween. The operation of the pump unit 933 of the present example is the same as the operation of the example of the liquid sending device described with reference to FIG. 10A, and the details are omitted.
[0058] 図 12及び図 13を参照して、免疫分析装置の例を説明する。図 12は免疫分析装置 の概観を示す。免疫分析装置は、円形のホルダープレート 1201を有し、このホルダ 一プレート 1201には多数の反応容器 1202が保持されている。反応容器 1202は、 恒温槽 1203によって所定の温度に保持される。  An example of the immunological analyzer will be described with reference to FIG. 12 and FIG. Figure 12 shows an overview of the immunoanalyzer. The immunological analyzer has a circular holder plate 1201, and a number of reaction vessels 1202 are held in one holder plate 1201. The reaction vessel 1202 is maintained at a predetermined temperature by a thermostat 1203.
[0059] 図 13を参照して本発明による反応容器の例を説明する。図 13Aに示すように、本 例の反応容器は、角形又は矩形の断面を有する容器部 1309と容器部の壁部に設 けた圧電デバイスとを有する。容器 1309内には、アンプル液と免疫反応に必要な試 薬の混合物である液体 1310が収容されている。サンプル液は、測定対象である複 数の種類の抗体成分が含まれる。図示のように、抗体成分は模式的に丸印にて示し 、丸印の濃淡は抗体成分の種類を示し、丸印の数は濃度を示す。  An example of the reaction vessel according to the present invention will be described with reference to FIG. As shown in FIG. 13A, the reaction vessel of the present example has a vessel section 1309 having a rectangular or rectangular cross section, and a piezoelectric device provided on the wall of the vessel section. The container 1309 contains a liquid 1310 which is a mixture of an ampoule and a reagent necessary for an immune reaction. The sample solution contains a plurality of types of antibody components to be measured. As shown in the figure, the antibody components are schematically indicated by circles, the shading of the circles indicates the type of the antibody component, and the number of circles indicates the concentration.
[0060] 圧電デバイスは、圧電板 1301、上側の撹拌用の電極 1302、 1303、下側の質量 検出用の電極 1304、 1305, 1306, 1307, 1308, 1309を有する。これらの電極は 金属薄膜パターンより形成され、図示のように、容器の側壁の両側、即ち、内壁と外 壁にそれぞれ設けられている。撹拌用の電極は液面 1311付近の位置に配置され、 質量検出用の電極は液面 1311より下方の位置に配置されて 、る。  The piezoelectric device has a piezoelectric plate 1301, upper stirring electrodes 1302, 1303, and lower mass detection electrodes 1304, 1305, 1306, 1307, 1308, 1309. These electrodes are formed of a metal thin film pattern, and are provided on both sides of the side wall of the container, that is, on the inner wall and the outer wall, respectively, as shown in the figure. The stirring electrode is arranged at a position near the liquid surface 1311, and the mass detection electrode is arranged at a position below the liquid surface 1311.
[0061] 図 13Bに示すように、撹拌用の電極 1302、 1303の間に振動電圧を印加すること により、電極 1302、 1303に挟まれた圧電板 1301の厚さが振動し、液面 1311が振 動する。それにより、液 1310が撹拌される。 [0062] 溶液の内壁側に装着された質量検出用の電極 1305、 1307、 1309の表面には、 リンカ一 1305A、 1307A、 1309 Aが装着されている。 3つの電極には、互いに異な る抗体成分と結合するリンカ一が装着されている。質量検出用の電極 1304、 1305 の間、電極 1306、 1307の間、電極 1308、 1309の間に、振動電圧を印カロすること により、電極間に挟まれた圧電板 1301はせん断方向に振動する。即ち、圧電板 130 1の内面は面方向に沿って振動する。時間が経過すると、リンカ一には抗体成分物 質が結合する。それによつて、質量検出用の電極によって振動する圧電板の固有周 波数が変化する。この固有周波数の変化量は、リンカ一に結合した抗体成分の質量 の関数である。また、リンカ一に結合した抗体成分の質量は、その抗体成分の濃度を 表している。したがって、固有周波数の変化量を測定することにより、その抗体成分 の濃度が検出される。本例では、 3つの質量検出用電極を設け、これらの電極に互 いに異なるリンカ一を装着するから、 3種の抗体成分の濃度を検出することができる。 図 13Cに示すように、容器内の液 1310を洗浄液 1312に入れ替え、再び、撹拌用の 電極 1302、 1303の間に振動電圧を印加する。それにより、洗浄液が攪拌され、リン カーに付着した不純物が洗浄される。こうして、不純物を洗浄したから、圧電板の固 有周波数の変化を測定してょ 、。 As shown in FIG. 13B, when an oscillating voltage is applied between the stirring electrodes 1302 and 1303, the thickness of the piezoelectric plate 1301 sandwiched between the electrodes 1302 and 1303 oscillates, and the liquid level 1311 rises. Vibrate. Thereby, the liquid 1310 is stirred. [0062] A linker 1305A, 1307A, 1309A is mounted on the surface of the mass detection electrodes 1305, 1307, 1309 mounted on the inner wall side of the solution. The three electrodes are equipped with linkers that bind to different antibody components. By applying an oscillating voltage between the electrodes 1304 and 1305 for mass detection, between the electrodes 1306 and 1307, and between the electrodes 1308 and 1309, the piezoelectric plate 1301 sandwiched between the electrodes vibrates in the shear direction. . That is, the inner surface of the piezoelectric plate 1301 vibrates along the surface direction. As time passes, the antibody component substance binds to the linker. As a result, the natural frequency of the piezoelectric plate vibrated by the mass detection electrode changes. The change in the natural frequency is a function of the mass of the antibody component bound to the linker. The mass of the antibody component bound to the linker indicates the concentration of the antibody component. Therefore, by measuring the amount of change in the natural frequency, the concentration of the antibody component is detected. In this example, three mass detection electrodes are provided, and different linkers are attached to these electrodes, so that the concentrations of three types of antibody components can be detected. As shown in FIG. 13C, the liquid 1310 in the container is replaced with the cleaning liquid 1312, and an oscillating voltage is again applied between the stirring electrodes 1302 and 1303. As a result, the cleaning liquid is agitated, and impurities adhering to the linker are cleaned. After cleaning the impurities in this way, measure the change in the natural frequency of the piezoelectric plate.
[0063] 図 14を参照して本発明による微小粒子膜電圧計測装置の例を説明する。図 14A に示すように、本例の微小粒子膜電圧計測装置は、上側部 1410と下側部 1420とを 有し、上側部材 1410の内面には凹部 1411Aが形成されている。この凹部 1411A によって、上側部材 1410と下側部材 1420の間に密閉空間である通路 1411が形成 される。上側部材 1410には、入口 1413と出口 1414が設けられており、これらの入 口 1413及び出口 1414は通路部 1411に接続されている。  Referring to FIG. 14, an example of the fine particle membrane voltage measuring device according to the present invention will be described. As shown in FIG. 14A, the microparticle membrane voltage measuring device of this example has an upper part 1410 and a lower part 1420, and a concave part 1411A is formed on the inner surface of the upper member 1410. The recess 1411A forms a passage 1411 that is a sealed space between the upper member 1410 and the lower member 1420. The upper member 1410 is provided with an inlet 1413 and an outlet 1414, and the inlet 1413 and the outlet 1414 are connected to a passage portion 1411.
[0064] 図 14Bに示すように、下側部材 1420には凹部 1421が形成され、この凹部 1421 内に針 1422が配置されている。上側部材 1410は圧電材料より形成され、その両面 には電極 1415、 1416が設けられている。電極 1415、 1416とその間に挟まれた圧 電板によって圧電デバイスが形成される。同様に、下側部材 1420は圧電材料より形 成され、その両面には金属薄膜パターンからなる電極 1425、 1426力設けられてい る。電極 1425、 1426とその間に挟まれた圧電板によって圧電デバイスが形成される 。これらの圧電デバイスは、凹部 1421に対応した位置に配置されている。 As shown in FIG. 14B, a concave portion 1421 is formed in the lower member 1420, and a needle 1422 is arranged in the concave portion 1421. The upper member 1410 is formed of a piezoelectric material, and electrodes 1415 and 1416 are provided on both surfaces thereof. A piezoelectric device is formed by the electrodes 1415 and 1416 and the piezoelectric plate sandwiched therebetween. Similarly, the lower member 1420 is formed of a piezoelectric material, and has electrodes 1425 and 1426 formed of a metal thin film pattern on both surfaces thereof. Piezoelectric device is formed by electrodes 1425, 1426 and piezoelectric plate sandwiched between them . These piezoelectric devices are arranged at positions corresponding to the concave portions 1421.
[0065] 溶液を入口 1413より通路 1411内に導入する。溶液は、通路 1411を通り、出口 14 14より出る。溶液を供給しながら、微小粒子 1430を入口 1413より通路 1411内に導 入する。微小粒子 1430は溶液の流れにより通路を移動し、凹部 1421に到達する。 微小粒子 1430が凹部 1421の上に配置されたとき、上側の圧電デバイスを構成する 電極 1415、 1416に振動電圧を印加し、音波を発生させる。音波の放射圧によって 、微小粒子 1430は移動し、凹部 1421内の針 1422に接触する。針 1422と溶液の 間の電圧を計測する。計測が終了すると、上側の圧電デバイスを構成する電極 141 5、 1416に電圧の印加を停止する。下側の圧電デバイスを構成する電極 1425、 14 26に振動電圧を印加し、音波を発生させる。音波の放射圧によって、微小粒子 143 0は凹部 1421より排出される。微小粒子 1430は、通路 1411内を流れる溶液によつ て出口に排出される。 [0065] The solution is introduced into the passage 1411 through the inlet 1413. The solution passes through passage 1411 and exits through outlet 1414. While supplying the solution, the fine particles 1430 are introduced from the inlet 1413 into the passage 1411. The microparticles 1430 move in the passage due to the flow of the solution and reach the concave portions 1421. When the microparticles 1430 are arranged on the recesses 1421, an oscillating voltage is applied to the electrodes 1415 and 1416 constituting the upper piezoelectric device to generate sound waves. Due to the radiation pressure of the sound waves, the microparticles 1430 move and come into contact with the needle 1422 in the recess 1421. Measure the voltage between needle 1422 and the solution. When the measurement is completed, the application of the voltage to the electrodes 1415 and 1416 constituting the upper piezoelectric device is stopped. An oscillating voltage is applied to the electrodes 1425 and 1426 constituting the lower piezoelectric device to generate sound waves. The microparticles 1430 are ejected from the concave portions 1421 by the radiation pressure of the sound waves. The microparticles 1430 are discharged to the outlet by the solution flowing in the passage 1411.
[0066] 図 15を参照して本発明による溶液撹拌装置の例を説明する。溶液撹拌装置は上 側部材 1510、サンプルプレート 1520、及び、下側部材 1530を有する。サンプルプ レートの上面には複数のサンプル収容部 1521が形成され、このサンプル収容部 15 21にはサンプル液 1522が収容されている。サンプル収容部 1521は、サンプルプレ ート 120の上面に形成された凹部であってよい。本例では、サンプル収容部 1521は 円筒形である力 他の形状であってよい。  An example of the solution stirring device according to the present invention will be described with reference to FIG. The solution stirring device has an upper member 1510, a sample plate 1520, and a lower member 1530. A plurality of sample storage sections 1521 are formed on the upper surface of the sample plate, and the sample storage section 1521 stores a sample liquid 1522. The sample container 1521 may be a concave portion formed on the upper surface of the sample plate 120. In this example, the sample receiving section 1521 may be cylindrical or other shape.
[0067] 下側部材 1530は圧電材料より形成され、その両面には金属薄膜パターン力もなる 電極 1531、 1532力設けられている。電極 1531、 1532とその間に挟まれた圧電板 によって圧電デバイスが形成される。電極 1531、 1532の間に振動電圧を印加する ことにより、電極 1531、 1532の間に挟まれた圧電板が振動する。この振動は、サン プル収容部 1521に収容されたサンプル液 1522に伝達され、サンプル液 1522は攪 拌される。  [0067] The lower member 1530 is formed of a piezoelectric material, and electrodes 1531 and 1532 are provided on both surfaces thereof, which also have a metal thin film pattern force. The electrodes 1531 and 1532 and the piezoelectric plate sandwiched therebetween form a piezoelectric device. When a vibration voltage is applied between the electrodes 1531 and 1532, the piezoelectric plate sandwiched between the electrodes 1531 and 1532 vibrates. This vibration is transmitted to the sample liquid 1522 stored in the sample storage section 1521, and the sample liquid 1522 is stirred.
[0068] 図 16を参照して溶液撹拌装置の動作を説明する。下側部材 1530はサンプルプレ ート 1520に対して相対的に移動可能であり、任意の位置に配置可能である。図 16 Aに示す例では、電極 1531、 1532は、サンプル収容部 1521の中心の下側に配置 されている。電極 1531、 1532に振動電圧を継続的に印加することによって継続的 に比較的大きな音波を発生させる。音波の放射圧によって、サンプル液 1522の液 面は、サンプル収容部 1521の中心軸線に沿って上昇し、上側部材 1510に衝突す る。衝突したサンプル液 1522は、内壁に沿って落下する。それにより、サンプル液 1 522は、図示の矢印にて示すように、サンプル収容部 1521内を循環し、撹拌される 。図 16Bに示す例では、電極 1531、 1532は、サンプル収容部 1521の中心より離 れた位置の下側に配置されている。従って、電極 1531、 1532に振動電圧を印加す ることによって生成された音波によって、サンプル液 1522は、サンプル収容部 1521 の内壁に沿って上昇し、上側部材 1510に衝突する。衝突したサンプル液 1522は、 反対側の内壁に沿って落下する。それにより、サンプル液 1522は、図示の矢印にて 示すように、サンプル収容部 1521内を循環し、撹拌される。 The operation of the solution stirring device will be described with reference to FIG. The lower member 1530 is relatively movable with respect to the sample plate 1520, and can be arranged at any position. In the example shown in FIG. 16A, the electrodes 1531 and 1532 are arranged below the center of the sample container 1521. Continuous application of oscillating voltage to electrodes 1531 and 1532 To generate relatively large sound waves. Due to the radiation pressure of the sound wave, the liquid surface of the sample liquid 1522 rises along the central axis of the sample storage section 1521 and collides with the upper member 1510. The colliding sample liquid 1522 falls along the inner wall. As a result, the sample liquid 1522 circulates through the sample container 1521 and is stirred, as indicated by the arrow in the drawing. In the example shown in FIG. 16B, the electrodes 1531 and 1532 are arranged below the position away from the center of the sample storage unit 1521. Therefore, the sample liquid 1522 rises along the inner wall of the sample storage portion 1521 and collides with the upper member 1510 by the sound wave generated by applying the oscillating voltage to the electrodes 1531 and 1532. The colliding sample liquid 1522 falls along the opposite inner wall. As a result, the sample liquid 1522 circulates through the sample container 1521 and is stirred, as indicated by the arrow in the drawing.
[0069] 図 16Cに示す例では、電極 1531、 1532は、サンプル収容部 1521の中心の下側 に配置されている。電極 1531、 1532に振動電圧を断続的に印加し、比較的小さな 音波を断続的に生成する。サンプル液 1522の液面は、サンプル収容部 1521の中 心軸線に沿って上昇し、周囲に流れる。それにより、サンプル液 1522は、図示の矢 印にて示すように、サンプル収容部 1521内を循環し、撹拌される。  In the example shown in FIG. 16C, electrodes 1531 and 1532 are arranged below the center of sample storage section 1521. An oscillating voltage is intermittently applied to the electrodes 1531 and 1532 to generate relatively small sound waves intermittently. The liquid level of the sample liquid 1522 rises along the central axis of the sample storage section 1521 and flows around. As a result, the sample liquid 1522 circulates through the sample container 1521 and is stirred, as indicated by the arrow in the drawing.
[0070] 図 17を参照して本発明による溶液飛散装置の例を説明する。図 17Aに示すように 、溶液飛散装置は圧電板 1720を有する。圧電板 1720は圧電材料より形成され、そ の両面には金属薄膜パターンからなる電極 1721、 1722力設けられている。電極 17 21、 1722とその間に挟まれた圧電板により圧電デバイスが形成される。  An example of the solution scattering device according to the present invention will be described with reference to FIG. As shown in FIG. 17A, the solution scattering device has a piezoelectric plate 1720. The piezoelectric plate 1720 is formed of a piezoelectric material, and has electrodes 1721 and 1722 formed of a metal thin film pattern on both surfaces thereof. The electrodes 1721, 1722 and the piezoelectric plate sandwiched therebetween form a piezoelectric device.
[0071] 本例の溶液飛散装置によって溶液を飛散させる対象は、上面には複数の凹部 171 1を有する部材 1710である。凹部 1711には不要な液 1712が残留している。不要な 液 1712には、洗浄液、エッチング液等がある。電極 1721、 1722の間に振動電圧を 印加することにより、電極 1721、 1722の間に挟まれた圧電板 1720が振動する。こ の振動は、凹部 1711内の液 1712に伝達される。それにより、図 17Bに示すように、 液 1712は飛散し、凹部 1711より除去される。  An object on which the solution is scattered by the solution scattering device of the present example is a member 1710 having a plurality of recesses 1711 on the upper surface. Unnecessary liquid 1712 remains in recess 1711. The unnecessary liquid 1712 includes a cleaning liquid, an etching liquid, and the like. By applying an oscillating voltage between the electrodes 1721 and 1722, the piezoelectric plate 1720 sandwiched between the electrodes 1721 and 1722 vibrates. This vibration is transmitted to the liquid 1712 in the concave portion 1711. As a result, as shown in FIG. 17B, the liquid 1712 is scattered and removed from the concave portion 1711.
[0072] 図 18を参照して本発明による気泡防止装置の例を説明する。図 18Aに示すように 、気泡防止装置は上側部材 1810及び下側部材 1820を有する。上側部材 1810の 内面、即ち、下面には溝が形成されている。この溝によって、上側部材 1810と下側 部材 1820の間に密閉空間である通路 1811が形成される。上側部材 1810には入 口 1815と出口 1816が形成されている。これらの入口 1815及び出口 1816は通路 1 811に接続されている。通路 1811は、両端の細い通路 1811A、 1811Bとその間の 太い通路 1811Cを含む。 An example of the bubble prevention device according to the present invention will be described with reference to FIG. As shown in FIG. 18A, the bubble prevention device has an upper member 1810 and a lower member 1820. A groove is formed on the inner surface of the upper member 1810, that is, on the lower surface. This groove allows the upper member 1810 and the lower A passage 1811 which is a closed space is formed between the members 1820. The upper member 1810 has an inlet 1815 and an outlet 1816. These inlet 1815 and outlet 1816 are connected to passage 1811. The passage 1811 includes narrow passages 1811A and 1811B at both ends and a thick passage 1811C between them.
[0073] 図 18Bに示すように、下側部材 1820は圧電材料力もなり、その両面に金属薄膜パ ターンからなる電極 1821、 1822が設けられている。電極 1821、 1822とその間に挟 まれた圧電板によって圧電デバイスが形成される。入口 1815から液体を導入する。 液体 1830は、通路 1811を経由して出口 1816に導かれる。通路の内径が急に大き くなる場合、そこに気泡 1831が生じやすい。例えば、太い通路 1811C内にて気泡 が発生する。この気泡は、しばしば内壁に付着し、消滅しない。本例では、圧電デバ イスによって振動を発生させる。この振動は、気泡が付着した内壁に伝わり、気泡は 内壁より離れ、液中に移動する。こうして気泡の発生が阻止される。  As shown in FIG. 18B, the lower member 1820 also has a piezoelectric material force, and electrodes 1821 and 1822 made of a metal thin film pattern are provided on both surfaces thereof. A piezoelectric device is formed by the electrodes 1821 and 1822 and the piezoelectric plate sandwiched therebetween. Liquid is introduced through inlet 1815. Liquid 1830 is directed to outlet 1816 via passage 1811. When the inside diameter of the passage suddenly increases, bubbles 1831 are easily generated there. For example, air bubbles are generated in a thick passage 1811C. These bubbles often adhere to the inner wall and do not disappear. In this example, the vibration is generated by the piezoelectric device. This vibration is transmitted to the inner wall where the air bubbles adhere, and the air bubbles move away from the inner wall and into the liquid. Thus, the generation of bubbles is prevented.
[0074] 図 19を参照して本発明による圧電バルブの例を説明する。図 19Aに示すように、 圧電バルブは上側部材 1910及び下側部材 1920を有する。上側部材 1910の内面 、即ち、下面には溝 1911が形成されている。この溝 1911によって、上側部材 1910 と下側部材 1920の間に密閉空間である通路が形成される。下側部材 1920には 2つ の入口 1915A、 1915Bと出口 1916力形成されている。入口 1915A、 1915Bは通 路の両端に接続される。  An example of a piezoelectric valve according to the present invention will be described with reference to FIG. As shown in FIG. 19A, the piezoelectric valve has an upper member 1910 and a lower member 1920. A groove 1911 is formed on the inner surface of the upper member 1910, that is, on the lower surface. The groove 1911 forms a closed space between the upper member 1910 and the lower member 1920. The lower member 1920 has two inlets 1915A, 1915B and an outlet 1916. Inlets 1915A and 1915B are connected to both ends of the passage.
[0075] 上側部材 1910は圧電材料より形成され、それを挟むように金属薄膜パターンから なる電極 1931、 1932力設けられている。電極 1931、 1932とその間に挟まれた圧 電板によって圧電デバイスが形成される。圧電デバイスは、図示のように、溝 1911に 沿って設けられており、通路を沿った液体の流れを遮断する機能を有する。  The upper member 1910 is made of a piezoelectric material, and is provided with electrodes 1931 and 1932 formed of a metal thin film pattern so as to sandwich the piezoelectric member. A piezoelectric device is formed by the electrodes 1931 and 1932 and the piezoelectric plate sandwiched therebetween. The piezoelectric device is provided along the groove 1911 as shown, and has a function of blocking the flow of the liquid along the passage.
[0076] 図 19Bは通路の構造を示す。図示のように、この通路は湾曲した経路を有し、そこ に、薄い板状部材 1912が配置されている。この板状部材 1912は弾性変形可能で ある。この 2つの電極 1931、 1932の間に振動電圧を印加することにより、音波が生 成される。この音波の放射圧は、板状部材 1912に伝達される。図 19Cに示すように 、板状部材 1912は、音波の放射圧によって弾性変形し、通路を塞ぐ。それにより、通 路を通る流体の流れは阻止される。 2つの電極の間への電圧の印加を解除すると、 音波の生成が阻止され、板状部材は元の位置に戻る。それにより、通路を通る流体 の流れが再開される。 FIG. 19B shows the structure of the passage. As shown, this passage has a curved path in which a thin plate member 1912 is located. This plate member 1912 is elastically deformable. By applying an oscillating voltage between these two electrodes 1931 and 1932, a sound wave is generated. The radiation pressure of this sound wave is transmitted to the plate member 1912. As shown in FIG. 19C, the plate-shaped member 1912 is elastically deformed by the radiation pressure of the sound wave, and closes the passage. Thereby, the flow of the fluid through the passage is blocked. When the voltage between the two electrodes is released, The generation of the sound wave is stopped, and the plate member returns to the original position. Thereby, the flow of the fluid through the passage is resumed.
以上、本発明の例を説明したが、本発明は上述の例に限定されるものではなぐ特 許請求の範囲に記載された発明の範囲にて様々な変形が可能であることは当業者 に理解されよう。  Although the embodiments of the present invention have been described above, it is to be understood by those skilled in the art that the present invention is not limited to the above-described examples and that various modifications can be made within the scope of the invention described in the appended claims. Will be understood.

Claims

請求の範囲 The scope of the claims
[1] 圧電材料からなる圧電素子と、該圧電素子の両面に設けられ金属薄膜パターンに よって形成された複数の電極と、を有する圧電デバイスを含む機器。  [1] An apparatus including a piezoelectric device having a piezoelectric element made of a piezoelectric material, and a plurality of electrodes provided on both surfaces of the piezoelectric element and formed by a metal thin film pattern.
[2] 上記圧電素子には上記電極の外側の位置に溝が設けられて 、ることを特徴とする 請求項 1記載の機器。  2. The device according to claim 1, wherein the piezoelectric element is provided with a groove at a position outside the electrode.
[3] 第 1及び第 2の入口を含む少なくとも 2つの入口と、第 1及び第 2の出口を含む少な くとも 2つの出口と、上記入口の各々に接続された入口側の分岐と上記出口の各々 に接続された出口側の分岐と上記入口側の分岐と上記出口側の分岐とを接続する 主流路とを有する流路と、上記主流路に沿って配置された圧電デバイスと、を有する 血液分離装置。  [3] At least two inlets, including first and second inlets, at least two outlets, including first and second outlets, an inlet-side branch connected to each of the inlets, and the outlet A flow path having a main flow path connecting the branch on the outlet side, the branch on the inlet side, and the branch on the outlet side connected to each other, and a piezoelectric device arranged along the main flow path. Blood separation device.
[4] 上記第 1の入口力 導入した血球を含むサンプル液が上記第 1の出口より排出され 、上記第 2の入口力 導入したシース液が上記第 2の出口より排出されるように、上記 サンプル液と上記シース液の層流を上記主流路に生成するとき、上記圧電デバイス によって生成された音波の放射圧によって上記主流路を流れるサンプル液中の血球 を上記シース液に移動させ上記第 2の出口より取り出すことができるように構成されて V、ることを特徴とする請求項 3記載の血液分離装置。  [4] The above-mentioned first inlet force and the sample liquid containing blood cells introduced are discharged from the first outlet, and the second inlet force and the introduced sheath liquid are discharged from the second outlet. When a laminar flow of the sample liquid and the sheath liquid is generated in the main flow path, blood cells in the sample liquid flowing through the main flow path are moved to the sheath liquid by the radiation pressure of the sound wave generated by the piezoelectric device, and the second flow is generated. 4. The blood separation device according to claim 3, wherein the blood separation device is configured to be able to be taken out from an outlet of the blood separation device.
[5] 上記圧電デバイスは上記主流路の両側に設けられて!/、ることを特徴とする請求項 3 記載の血球分離装置。  5. The blood cell separation device according to claim 3, wherein the piezoelectric devices are provided on both sides of the main flow path.
[6] 上記圧電デバイスの各々は、圧電板とその両側に配置された電極を有し、該電極 は、血球を検出するために比較的弱い音波を生成又は受信する検出用電極と血球 を移動させるために比較的強い音波を生成する分離用電極とを含むことを特徴とす る請求項 5記載の血球分離装置。  [6] Each of the above-mentioned piezoelectric devices has a piezoelectric plate and electrodes arranged on both sides thereof, and the electrodes move a blood cell and a detection electrode for generating or receiving a relatively weak sound wave in order to detect the blood cell. 6. The blood cell separation device according to claim 5, further comprising a separation electrode for generating a relatively strong sound wave for causing the separation.
[7] 上記圧電デバイスの一方は、圧電板とその両側に配置された電極を有し、該電極 は、血球を検出するために比較的弱い音波を生成又は受信する検出用電極と血球 を移動させるために比較的強い音波を生成する分離用電極とを有し、上記圧電デバ イスの他方は血球を検出するために比較的弱い音波を生成又は受信する検出用電 極を有することを特徴とする請求項 5記載の血球分離装置。  [7] One of the piezoelectric devices has a piezoelectric plate and electrodes arranged on both sides thereof, and the electrodes move a blood cell and a detection electrode that generates or receives a relatively weak sound wave in order to detect the blood cell. A separating electrode for generating a relatively strong sound wave for causing the sound wave to be generated, and the other of the piezoelectric devices has a detecting electrode for generating or receiving a relatively weak sound wave for detecting blood cells. The blood cell separation device according to claim 5, wherein
[8] 上記電極は上記圧電板に装着された金属薄膜のパターンとして形成されて!ヽるこ とを特徴とする請求項 6又は 7記載の血球分離装置。 [8] The electrode is formed as a pattern of a metal thin film mounted on the piezoelectric plate! Puruko 8. The blood cell separation device according to claim 6, wherein:
[9] 上記圧電デバイスは、上記主流路の一方の側に設けられていることを特徴とする請 求項 3記載の血球分離装置。  [9] The blood cell separation device according to claim 3, wherein the piezoelectric device is provided on one side of the main flow path.
[10] 内径が大き!/ヽ収容部と内径が小さ!/ヽ通路部とを有し入口と出口を接続する流路と、 上記収容部と上記通路部の境界部に形成された段差に隣接して上記収容部に設け られた圧電デバイスと、を有する血液分離装置。  [10] The inside diameter is large! / ヽ The inside diameter is small! / ヽ The flow path that has the passage section and connects the inlet and the outlet, and the step formed at the boundary between the accommodation section and the passage section A blood separation device, comprising: a piezoelectric device provided adjacent to the storage section.
[11] 上記入口力 導入した血球を含むサンプル液を上記出口より排出させるとき、上記 圧電デバイスによって生成された音波の放射圧によって上記収容部を流れるサンプ ル液中の血球を上記収容部の一方側に移動させ上記通路部には血球が除去された 上記サンプル液が流れ、それを出口より取り出すことができるように構成されているこ とを特徴とする請求項 10記載の血液分離装置。  [11] The inlet force When the sample liquid containing the introduced blood cells is discharged from the outlet, the blood cells in the sample liquid flowing through the storage section by the radiation pressure of the sound waves generated by the piezoelectric device are moved to one side of the storage section. 11. The blood separation device according to claim 10, wherein the sample solution from which blood cells have been removed flows to the side, and the sample solution from which blood cells have been removed flows out from the outlet.
[12] 圧電材料からなる板状部材と該板状部材の両面に配置された電極とを有する振動 板と、該振動板を支持するホルダと、上記電極の表面に装着された特定の物質と結 合するリンカ一と、を有し、上記振動板の固有周波数の変化量を検出することにより、 上記リンカ一と結合した物質の質量を検出するように構成されている質量検出装置。  [12] A vibration plate having a plate-shaped member made of a piezoelectric material and electrodes arranged on both surfaces of the plate-shaped member, a holder supporting the vibration plate, and a specific substance mounted on the surface of the electrode A mass detector for detecting a mass of a substance bound to the linker by detecting an amount of change in a natural frequency of the diaphragm.
[13] 上記振動板は上記電極を囲むように溝が設けられて ヽることを特徴とする請求項 1 2記載の質量検出装置。  13. The mass detection device according to claim 12, wherein the diaphragm has a groove surrounding the electrode.
[14] 上記電極は上記圧電板に装着された金属薄膜のパターンとして形成されて ヽるこ とを特徴とする請求項 12記載の質量検出装置。  14. The mass detection device according to claim 12, wherein the electrode is formed as a pattern of a metal thin film mounted on the piezoelectric plate.
[15] 流路と、上記流路の一端に設けられた入口と、上記流路の他端に設けられた出口 と、上記流路に沿って設けられ圧電板とその両面に配置された電極とを有する圧電 デバイスと、上記電極の表面に装着され特定の物質と結合するリンカ一と、を有し、 上記圧電板の固有周波数の変化量を検出することにより、上記リンカ一と結合した物 質の質量を検出するように構成されている質量検出装置。  [15] A flow path, an inlet provided at one end of the flow path, an outlet provided at the other end of the flow path, a piezoelectric plate provided along the flow path, and electrodes disposed on both surfaces thereof And a linker attached to the surface of the electrode and binding to a specific substance, and detecting the amount of change in the natural frequency of the piezoelectric plate to couple with the linker. A mass detection device configured to detect a mass of quality.
[16] 上記圧電デバイスと同一の且つリンカ一を装着しない第 2の圧電デバイスを更に設 け、上記リンカ一を装着した第 1の圧電デバイスによって検出された出力より上記第 2 の圧電デバイスによって検出された出力を減算することにより、上記リンカ一と結合し た物質の質量を検出するように構成されている請求項 15記載の質量検出装置。 [16] A second piezoelectric device that is the same as the piezoelectric device and does not include a linker is further provided, and is detected by the second piezoelectric device based on an output detected by the first piezoelectric device having the linker mounted. 16. The mass detection device according to claim 15, wherein the mass detection device is configured to detect a mass of the substance bound to the linker by subtracting the output.
[17] 上記固有周波数の変化量を検出することにより、上記リンカ一と結合した物質の質 量を検出するための検出回路を設け、該検出回路は上記圧電デバイスに接続され た第 1及び第 2のスィッチと、上記第 1のスィッチに接続された直流電源と、上記第 2 のスィッチに接続された抵抗と、を有し、上記第 1及び第 2のスィッチを交互にオン〖こ することにより上記圧電デバイスに印加された電圧に自励振動を起こさせるように構 成されていることを特徴とする請求項 15記載の質量検出装置。 [17] A detection circuit for detecting the mass of the substance bound to the linker by detecting the amount of change in the natural frequency is provided, and the detection circuit includes a first and a second circuit connected to the piezoelectric device. 2, a DC power supply connected to the first switch, and a resistor connected to the second switch, and the first and second switches are turned on alternately. 16. The mass detection device according to claim 15, wherein the mass detection device is configured to cause self-excited vibration in a voltage applied to the piezoelectric device.
[18] 入口と出口を接続する流路と、該流路に沿って設けられた圧電デバイスと、を有し、 該圧電デバイスによって生成された音波の放射圧によって上記流路を流れる流体を 移動させるように構成されて ヽる送液装置。  [18] There is a flow path connecting the inlet and the outlet, and a piezoelectric device provided along the flow path, and the fluid flowing through the flow path is moved by a radiation pressure of a sound wave generated by the piezoelectric device. A liquid feeding device configured to cause the liquid to flow.
[19] 入口と出口を接続する流路と、該流路に沿って設けられた圧電デバイスと、を有し、 該圧電デバイスによって生成された振動によって上記流路を流れる流体を移動させ るように構成されて 、る送液装置。  [19] There is a flow path connecting the inlet and the outlet, and a piezoelectric device provided along the flow path, and the fluid generated in the flow path is moved by the vibration generated by the piezoelectric device. The liquid feeding device is configured as follows.
[20] 入口と出口を接続する流路を有し、毛管現象を利用して上記流路を流れる流体を 移動させるように構成されて ヽる送液装置。  [20] A liquid transfer device having a flow path connecting an inlet and an outlet, and configured to move a fluid flowing through the flow path by utilizing a capillary phenomenon.
[21] 流路と、上記流路の一端に設けられた入口と、上記流路の他端に設けられた出口 と、を有し、上記入口から導入された血球を含むサンプル液を処理して上記出口より 排出するサンプ分析装置において、上記流路は、圧電デバイスによって生成された 音波の放射圧によってサンプル液より血球を分離するセパレータ部と、圧電デバイス によって生成された振動の周波数の変化によってリンカ一に結合した物質の質量を 検出するための質量検出部と、圧電デバイスによって生成された振動又は音波の放 射圧によってサンプル液を移送する送液部と、を有することを特徴とするサンプル分 析装置。  [21] has a flow channel, an inlet provided at one end of the flow channel, and an outlet provided at the other end of the flow channel, and processes a sample liquid containing blood cells introduced from the inlet. In the sump analyzer, the flow path is formed by a separator for separating blood cells from a sample liquid by a radiation pressure of a sound wave generated by the piezoelectric device, and by a change in the frequency of vibration generated by the piezoelectric device. A sample comprising: a mass detection unit for detecting a mass of a substance bound to a linker; and a liquid sending unit for transferring a sample liquid by a radiation pressure of a vibration or a sound wave generated by a piezoelectric device. Analysis equipment.
[22] 抗体成分を含むサンプル液を収容する容器と、該容器に壁に沿って設けられ上記 サンプル液を撹拌するための撹拌用圧電デバイスと上記抗体成分の濃度を測定す るための検出用圧電デバイスと、を有する免疫分析装置。  [22] A container for accommodating a sample solution containing an antibody component, a stirring piezoelectric device provided along the wall for stirring the sample solution, and a detection device for measuring the concentration of the antibody component And a piezoelectric device.
[23] 上記検出用圧電デバイスは圧電材料からなる圧電板と該圧電板の両面に配置され た電極を有し、該電極の一方の電極は上記容器の内面に配置され且つその表面に は特定の抗体成分と結合するリンカ一が装着されていることを特徴とする請求項 22 記載の免疫分析装置。 [23] The detection piezoelectric device has a piezoelectric plate made of a piezoelectric material and electrodes disposed on both surfaces of the piezoelectric plate, and one of the electrodes is disposed on the inner surface of the container and has a specific surface. 23. A linker which binds to an antibody component of claim 22. The immunoassay device according to claim 1.
[24] 上記リンカ一は複数の種類の抗体成分をそれぞれ結合する複数の種類のリンカ一 を有することを特徴とする請求項 23記載の免疫分析装置。  24. The immunoassay apparatus according to claim 23, wherein the linker has a plurality of types of linkers that respectively bind a plurality of types of antibody components.
[25] 入口と出口を接続する流路と、該流路の内壁に設けられた凹部と、該凹部内に設 けられた端子と、上記凹部に沿って設けられた圧電デバイスと、を有し、上記流路を 流れる流体によって搬送された微小粒子が上記凹部上に到達したとき上記圧電デ バイスによって生成された音波による放射圧によって上記微小粒子を上記凹部内に 移動させ、それにより上記微小粒子を上記端子に接触させ、該端子と上記流体の間 の電圧を計測し、計測が終了すると上記圧電デバイスによって生成された音波による 放射圧によって上記微小粒子を上記凹部内より排出させ、上記流路を流れる流体に よって搬送するように構成された計測装置。  [25] A channel connecting the inlet and the outlet, a recess provided on the inner wall of the channel, a terminal provided in the recess, and a piezoelectric device provided along the recess. Then, when the fine particles conveyed by the fluid flowing through the flow path reach the concave portion, the fine particles are moved into the concave portion by the radiation pressure of the sound wave generated by the piezoelectric device, whereby the fine particle is moved. The particles are brought into contact with the terminal, the voltage between the terminal and the fluid is measured, and when the measurement is completed, the microparticles are discharged from the recess by the radiation pressure of the sound wave generated by the piezoelectric device, and the flow is measured. A measuring device configured to be conveyed by fluid flowing through a road.
[26] 複数の凹部を有するプレート状の部材と、上記凹部に沿って配置された圧電デバ イスと、を有し、上記圧電デバイスによって生成された振動によって上記凹部に収容 された溶液が撹拌されるように構成されて 、ることを特徴とする撹拌装置。  [26] A plate-shaped member having a plurality of recesses and a piezoelectric device arranged along the recesses, and the solution contained in the recesses is agitated by vibrations generated by the piezoelectric devices. A stirrer characterized by being constituted so as to be constituted.
[27] 上記圧電デバイスを上記凹部の中心軸線に沿った位置と上記凹部の中心軸線より ずれた位置の!/ヽずれかに変更可能に構成されて!ヽることを特徴とする請求項 26記 載の撹拌装置。  [27] The position of the piezoelectric device along the central axis of the concave portion and the position of the piezoelectric device shifted from the central axis of the concave portion! / It is configured to be changeable! The stirring device according to claim 26, wherein the stirring device is provided.
[28] 複数の圧電デバイスを備えたプレート部材を有し、上記圧電デバイスを振動させる ことにより、上記プレート部材に装着された部材に付着した液を飛散させるように構成 された液体飛散装置。  [28] A liquid scattering device, comprising a plate member provided with a plurality of piezoelectric devices, and configured to vibrate the piezoelectric device so as to scatter liquid adhering to a member attached to the plate member.
[29] 入口と出口を接続する流路と、該流路に沿って設けられた圧電デバイスと、を有し、 上記圧電デバイスによって上記流路を振動させることにより、上記流路を流れる流体 によって上記流路の内壁に気泡が付着することを防止するように構成されている気 泡防止装置。  [29] A flow path connecting an inlet and an outlet, and a piezoelectric device provided along the flow path, wherein the piezoelectric device vibrates the flow path, and the fluid flowing through the flow path An air bubble prevention device configured to prevent air bubbles from adhering to the inner wall of the flow path.
[30] 入口と出口を接続する流路と、該流路に沿って設けられた圧電デバイスと、上記流 路に設けられた弾性変形可能な部材と、を有し、上記圧電デバイスによって生成され た音波による放射圧によって上記流路に設けられた弾性変形可能な部材を弾性変 形させ、それにより上記流路を閉鎖するように構成されている圧電バルブ装置。  [30] A flow path that connects an inlet and an outlet, a piezoelectric device provided along the flow path, and an elastically deformable member provided in the flow path, and is formed by the piezoelectric device. A piezoelectric valve device configured to elastically deform an elastically deformable member provided in the flow channel by radiation pressure caused by a sound wave, thereby closing the flow channel.
PCT/JP2005/008487 2004-05-10 2005-05-10 Equipment using piezoelectric device WO2005107939A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004140214A JP2005319407A (en) 2004-05-10 2004-05-10 Instrument using piezoelectric device
JP2004-140214 2004-05-10

Publications (1)

Publication Number Publication Date
WO2005107939A1 true WO2005107939A1 (en) 2005-11-17

Family

ID=35320085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008487 WO2005107939A1 (en) 2004-05-10 2005-05-10 Equipment using piezoelectric device

Country Status (2)

Country Link
JP (1) JP2005319407A (en)
WO (1) WO2005107939A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057290A (en) * 2005-08-23 2007-03-08 Seiko Instruments Inc Demarcation microchip and demarcation device
WO2008024319A2 (en) * 2006-08-20 2008-02-28 Codon Devices, Inc. Microfluidic devices for nucleic acid assembly
JP2010538253A (en) * 2007-08-31 2010-12-09 ビバクタ、リミテッド Sensor
US8058004B2 (en) 2002-09-12 2011-11-15 Gen9, Inc. Microarray synthesis and assembly of gene-length polynucleotides
US8889071B2 (en) 2009-03-31 2014-11-18 Institute Of Microchemical Technology Co., Ltd. Apparatus and method for separating plasma
US9217144B2 (en) 2010-01-07 2015-12-22 Gen9, Inc. Assembly of high fidelity polynucleotides
US9216414B2 (en) 2009-11-25 2015-12-22 Gen9, Inc. Microfluidic devices and methods for gene synthesis
WO2017050977A1 (en) * 2015-09-23 2017-03-30 Aenitis Technologies Multi-use acoustic levitation trap
US10081807B2 (en) 2012-04-24 2018-09-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US10202608B2 (en) 2006-08-31 2019-02-12 Gen9, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
US10207240B2 (en) 2009-11-03 2019-02-19 Gen9, Inc. Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly
EP3489668A1 (en) * 2015-11-25 2019-05-29 C A Casyso GmbH System and method for mixing and testing a liquid
US10308931B2 (en) 2012-03-21 2019-06-04 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US10457935B2 (en) 2010-11-12 2019-10-29 Gen9, Inc. Protein arrays and methods of using and making the same
US11072789B2 (en) 2012-06-25 2021-07-27 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US11084014B2 (en) 2010-11-12 2021-08-10 Gen9, Inc. Methods and devices for nucleic acids synthesis
WO2022045892A1 (en) 2020-08-31 2022-03-03 Lumicks Ca Holding B.V. Method and system for studying objects, in particular biological cells
US11702662B2 (en) 2011-08-26 2023-07-18 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074906A1 (en) * 2005-12-28 2007-07-05 Kawamura Institute Of Chemical Research Microfluid device and method of separating substances
JP5018879B2 (en) * 2007-05-15 2012-09-05 パナソニック株式会社 Component separation device
JP5040534B2 (en) * 2007-09-03 2012-10-03 パナソニック株式会社 Dispensing device
US8387803B2 (en) * 2008-08-26 2013-03-05 Ge Healthcare Bio-Sciences Ab Particle sorting
NL2005474C2 (en) * 2010-10-07 2012-04-11 Stichting Wetsus Ct Excellence Sustainable Water Technology HYDROPHONE PUMP, HOLDER AND METHOD FOR THIS.
JP5617530B2 (en) * 2010-10-29 2014-11-05 ソニー株式会社 Cell sorting device and cell sorting method
JP2012145515A (en) * 2011-01-14 2012-08-02 Fujifilm Corp Measurement device
JP2012202789A (en) * 2011-03-25 2012-10-22 Fujifilm Corp Measuring apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146007A (en) * 1994-09-20 1996-06-07 Hitachi Ltd Chemical analyser
JP2000097948A (en) * 1998-09-18 2000-04-07 Hitachi Ltd Chemical analyzer
JP2003043052A (en) * 2001-08-02 2003-02-13 Mitsubishi Chemicals Corp Microchannel chip, microchannel system and circulation control method in microchannel chip
JP2003062797A (en) * 2001-08-23 2003-03-05 Tosoh Corp Micro flow path structure
JP2003254981A (en) * 2002-03-01 2003-09-10 Hitachi High-Technologies Corp Chemical analyzer and chemical analysis method
US20040028580A1 (en) * 2002-07-12 2004-02-12 Tosoh Corporation Fine channel device and a chemically operating method for fluid using the device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146007A (en) * 1994-09-20 1996-06-07 Hitachi Ltd Chemical analyser
JP2000097948A (en) * 1998-09-18 2000-04-07 Hitachi Ltd Chemical analyzer
JP2003043052A (en) * 2001-08-02 2003-02-13 Mitsubishi Chemicals Corp Microchannel chip, microchannel system and circulation control method in microchannel chip
JP2003062797A (en) * 2001-08-23 2003-03-05 Tosoh Corp Micro flow path structure
JP2003254981A (en) * 2002-03-01 2003-09-10 Hitachi High-Technologies Corp Chemical analyzer and chemical analysis method
US20040028580A1 (en) * 2002-07-12 2004-02-12 Tosoh Corporation Fine channel device and a chemically operating method for fluid using the device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450560B2 (en) 2002-09-12 2019-10-22 Gen9, Inc. Microarray synthesis and assembly of gene-length polynucleotides
US8058004B2 (en) 2002-09-12 2011-11-15 Gen9, Inc. Microarray synthesis and assembly of gene-length polynucleotides
US9023601B2 (en) 2002-09-12 2015-05-05 Gen9, Inc. Microarray synthesis and assembly of gene-length polynucleotides
US9051666B2 (en) 2002-09-12 2015-06-09 Gen9, Inc. Microarray synthesis and assembly of gene-length polynucleotides
US10774325B2 (en) 2002-09-12 2020-09-15 Gen9, Inc. Microarray synthesis and assembly of gene-length polynucleotides
US10640764B2 (en) 2002-09-12 2020-05-05 Gen9, Inc. Microarray synthesis and assembly of gene-length polynucleotides
JP4745755B2 (en) * 2005-08-23 2011-08-10 セイコーインスツル株式会社 Fractionation microchip and fractionation device
JP2007057290A (en) * 2005-08-23 2007-03-08 Seiko Instruments Inc Demarcation microchip and demarcation device
WO2008024319A2 (en) * 2006-08-20 2008-02-28 Codon Devices, Inc. Microfluidic devices for nucleic acid assembly
WO2008024319A3 (en) * 2006-08-20 2008-04-10 Codon Devices Inc Microfluidic devices for nucleic acid assembly
US10202608B2 (en) 2006-08-31 2019-02-12 Gen9, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
JP2010538253A (en) * 2007-08-31 2010-12-09 ビバクタ、リミテッド Sensor
US8889071B2 (en) 2009-03-31 2014-11-18 Institute Of Microchemical Technology Co., Ltd. Apparatus and method for separating plasma
US10207240B2 (en) 2009-11-03 2019-02-19 Gen9, Inc. Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly
US9968902B2 (en) 2009-11-25 2018-05-15 Gen9, Inc. Microfluidic devices and methods for gene synthesis
US9216414B2 (en) 2009-11-25 2015-12-22 Gen9, Inc. Microfluidic devices and methods for gene synthesis
US9925510B2 (en) 2010-01-07 2018-03-27 Gen9, Inc. Assembly of high fidelity polynucleotides
US11071963B2 (en) 2010-01-07 2021-07-27 Gen9, Inc. Assembly of high fidelity polynucleotides
US9217144B2 (en) 2010-01-07 2015-12-22 Gen9, Inc. Assembly of high fidelity polynucleotides
US10982208B2 (en) 2010-11-12 2021-04-20 Gen9, Inc. Protein arrays and methods of using and making the same
US11845054B2 (en) 2010-11-12 2023-12-19 Gen9, Inc. Methods and devices for nucleic acids synthesis
US11084014B2 (en) 2010-11-12 2021-08-10 Gen9, Inc. Methods and devices for nucleic acids synthesis
US10457935B2 (en) 2010-11-12 2019-10-29 Gen9, Inc. Protein arrays and methods of using and making the same
US11702662B2 (en) 2011-08-26 2023-07-18 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids
US10308931B2 (en) 2012-03-21 2019-06-04 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US10927369B2 (en) 2012-04-24 2021-02-23 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US10081807B2 (en) 2012-04-24 2018-09-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US11072789B2 (en) 2012-06-25 2021-07-27 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US10710012B2 (en) 2015-09-23 2020-07-14 Aenitis Technologies Multi-use acoustic levitation trap
WO2017050977A1 (en) * 2015-09-23 2017-03-30 Aenitis Technologies Multi-use acoustic levitation trap
EP3489668A1 (en) * 2015-11-25 2019-05-29 C A Casyso GmbH System and method for mixing and testing a liquid
WO2022045892A1 (en) 2020-08-31 2022-03-03 Lumicks Ca Holding B.V. Method and system for studying objects, in particular biological cells
NL2026383B1 (en) * 2020-08-31 2022-04-29 Lumicks Ca Holding B V Method and system for studying objects, in particular biological cells

Also Published As

Publication number Publication date
JP2005319407A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
WO2005107939A1 (en) Equipment using piezoelectric device
CN1751234B (en) Piezoelectric resonator
US8657121B2 (en) Microparticle sorting apparatus, microchip and microchip module
CN102612405B (en) For fluidics equipment and the fluidics substrate of the surface acoustic wave process of fluid sample
US6576459B2 (en) Sample preparation and detection device for infectious agents
US8425749B1 (en) Microfabricated particle focusing device
US8387803B2 (en) Particle sorting
US9180451B2 (en) Fluidic cartridge for detecting chemicals in samples, in particular for performing biochemical analyses
US8492167B2 (en) Methods and apparatus for assay measurements
US20100078384A1 (en) Apparatus and method for separation of particles suspended in a liquid from the liquid in which they are suspended
WO2007063544A2 (en) Method and apparatus for determination of the concentration of particles in multi-component fluid systems
US20060078473A1 (en) Ultrasonic platform type microchip and method of driving array-shaped ultrasonic transducers
EP1485713A1 (en) Microfluidic cell and method for sample handling
JP2005319407A5 (en)
JP6705739B2 (en) Optical analysis system and optical analysis method
JP6088857B2 (en) Sensing sensor
JP3427606B2 (en) Chemical analyzer
JP2019211235A (en) Analyzing cell and analyzing unit
JP2009174930A (en) Viscosity measuring device and viscosity measurement method
KR101857357B1 (en) Biosensor and target material detecting method using the same
JP6471084B2 (en) Sensing sensor
JP2013130563A (en) Sensing sensor
JP2007085972A (en) Qcm analyzer
US20210172852A1 (en) Integrated thermophoretic particulate matter sensors
JP2004340820A (en) Ultrasonic platform type microchip and method for driving array type ultrasonic transducer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase