JP2007057290A - Demarcation microchip and demarcation device - Google Patents

Demarcation microchip and demarcation device Download PDF

Info

Publication number
JP2007057290A
JP2007057290A JP2005240727A JP2005240727A JP2007057290A JP 2007057290 A JP2007057290 A JP 2007057290A JP 2005240727 A JP2005240727 A JP 2005240727A JP 2005240727 A JP2005240727 A JP 2005240727A JP 2007057290 A JP2007057290 A JP 2007057290A
Authority
JP
Japan
Prior art keywords
flow path
microchip
fractionation
fine particles
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005240727A
Other languages
Japanese (ja)
Other versions
JP4745755B2 (en
Inventor
Jun Tsuneyoshi
潤 恒吉
Masataka Araogi
正隆 新荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005240727A priority Critical patent/JP4745755B2/en
Publication of JP2007057290A publication Critical patent/JP2007057290A/en
Application granted granted Critical
Publication of JP4745755B2 publication Critical patent/JP4745755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disposable inexpensive, safe and compact demarcation microchip constituted by mounting a fine particle demarcation processing means in a microchip and enabling stable demarcation processing without requiring skill, and a demarcation device. <P>SOLUTION: A pressure chamber also used as a flow channel is provided to the electromechanical transducer overlying the microchip and developed as the function of a pump or a valve to realize miniaturization. The volume of the chamber is increased and decreased by bending a wall surface in a shearing mode to change a flow. The pressure chamber is provided to a flow channel symmetrically after branching and the chamber is driven by push-pull operation so as to aim a moment when fine particles arrive at a branch point to precisely control a flow direction. Further, a piezoelectric body of a lamination structure (chevron structure) is used to realize high-speed operation as the microchip. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体中に浮遊する微生物,細胞ないし微粒子を、分光学的解析或いは画像解析等の手段により識別し、その識別データに従って高速かつ精密に微粒子を単離する分画マイクロチップ及び分画装置に係わる。   The present invention relates to a fractional microchip and a fraction which identify microorganisms, cells or fine particles floating in a liquid by means such as spectroscopic analysis or image analysis, and isolate the fine particles at high speed and precisely according to the identification data. Related to the device.

バイオテクノロジーの進歩により、マトリックス組織をトリプシンやコラゲナーゼなどのタンパク分解酵素で消化し、さらに細胞間の結合をEDTAなどのCaイオンのキレート剤を用いて破壊することで細胞組織からも容易に細胞を単離することが可能となり、生細胞を利用した実験が広く行われる様になった。   Due to advances in biotechnology, cells can be easily removed from cell tissues by digesting matrix tissues with proteolytic enzymes such as trypsin and collagenase, and further breaking the binding between cells using a chelating agent of Ca ions such as EDTA. It became possible to isolate, and experiments using live cells were widely conducted.

現在では蛍光プローブをターゲットに応じて選択し、蛍光ラベルプライマー(DNA,RNA),蛍光ラベルペプチド,蛍光ラベル糖鎖や蛍光ラベル抗体等で細胞構成物質を標識することにより抽出すべき細胞を識別したり、細胞内で生成したタンパク質の検出などが行われており、蛍光標識された細胞を分画および選択的に分取するというプロセスが益々重要となっている。   Currently, the fluorescent probe is selected according to the target, and the cells to be extracted are identified by labeling the cell constituents with fluorescent label primers (DNA, RNA), fluorescent label peptides, fluorescent labeled sugar chains, fluorescent labeled antibodies, etc. In addition, detection of proteins produced in cells is performed, and the process of fractionating and selectively sorting fluorescently labeled cells is becoming increasingly important.

標識された浮遊細胞の代表的な分画手法としては、フローサイトメーターによる細胞集団の解析と、分取機能をもたせたセルソーターによる細胞の抽出が挙げられ、研究開発段階から創薬での細胞実験まで広く行われている(例えば、非特許文献1参照。)。   Typical fractionation techniques for labeled floating cells include analysis of cell populations using a flow cytometer and extraction of cells using a cell sorter with a sorting function. (See, for example, Non-Patent Document 1).

特に、後者のセルソーターは大量のサンプル細胞を自動的に高速分離する手法として地位を確立している。市販されているシステムは、コンティニアスヘッドで液滴を連続形成している(例えば、特許文献1参照。)。ヘッドから吐出された液滴がノズルから尾を引く状態のうちに細胞の有無を発光強度により検出して、尾を切り離す直前に液滴に電荷(+/0/−)を与える。   In particular, the latter cell sorter has established itself as a method for automatically separating a large amount of sample cells at high speed. A commercially available system continuously forms droplets with a continuous head (see, for example, Patent Document 1). The presence or absence of cells is detected by the light emission intensity while the droplet ejected from the head pulls the tail from the nozzle, and an electric charge (+ / 0 / −) is given to the droplet immediately before the tail is cut off.

荷電されなかった液滴は直進してアポート溶液として回収される。吐出された液滴のうち正負にチャージされた液滴は、偏向用電極(数kVの電圧が印加され対向している)で進行方向を曲げられて+チャージ液滴回収容器と−チャージ液回収容器に分取される(例えば、特許文献2参照。)。   Uncharged droplets go straight and are collected as an aport solution. Among the discharged droplets, the positively and negatively charged droplets are bent in the advancing direction by a deflection electrode (a voltage of several kV is applied and opposed), + charge droplet recovery container and -charge liquid recovery The sample is dispensed into a container (for example, see Patent Document 2).

したがって、この装置は大掛かりなシステム構成で高価となる上に、発振周波数の調整や駆動電圧の制御,シース溶液流量の調整で液滴形成状態を安定化・維持するなど、その操作に熟練を要するほか、長時間の無人運転を行うことが困難であった。   Therefore, this apparatus is expensive due to its large-scale system configuration, and requires skill in its operation, such as adjusting the oscillation frequency, controlling the drive voltage, and stabilizing and maintaining the droplet formation state by adjusting the sheath solution flow rate. In addition, it was difficult to perform unattended operation for a long time.

また、原理的にミスト発生を完全に抑えることは不可能であるため、危険なサンプルを扱う場合には環境の汚染等に充分注意する必要があり、ましてや装置内部の偏向電極,吐出ヘッドや流路の汚染は著しく使用後のメンテナンスが煩雑であった。   In principle, it is impossible to completely suppress mist generation. Therefore, when handling dangerous samples, it is necessary to pay sufficient attention to environmental contamination. The road was extremely contaminated and maintenance after use was complicated.

その他、液滴へのチャージ・ディスチャージや回収容器への衝突等で細胞がダメージを受けるなどの課題が指摘されている。   In addition, problems have been pointed out such as damage to cells due to charging / discharging of droplets and collision with collection containers.

一方、最近では特許文献2にあるように、光マニュピュレーション技術を応用した分画装置(例えば、特許文献3参照。)も報告されているが、分画速度という点で大量の細胞分取を行なう手法としては課題を有している。   On the other hand, recently, as described in Patent Document 2, a fractionation apparatus (for example, refer to Patent Document 3) applying optical manipulation technology has also been reported, but a large amount of cell sorting is required in terms of fractionation speed. There is a problem as a technique for performing the above.

他方、まだ研究開発段階でるがマイクロチップを使用して外付けポンプにより溶液の流動方向を制御する分画方法なども報告されているが、応答速度の課題と、バルブ操作やポンプ切換え操作の煩雑さより、実用化は困難と予想されている(例えば、非特許文献2参照。)。
米国特許第4515274号明細書 米国特許第6281018号明細書 特開2004−167479号公報 「フローサイトメトリー自由自在」中内啓光 監修 秀潤社2004年12月発行 ISBN4−87962−281−8 Anne Y. Fu, et al., "An Integrated Microfablicated Cell Sorter", Anal. Chem. Vol.74(11),pp2451-2457
On the other hand, although it is still in the research and development stage, a fractionation method in which the flow direction of the solution is controlled by an external pump using a microchip has also been reported, but there are problems in response speed and complicated valve operation and pump switching operation. Therefore, practical application is expected to be difficult (for example, see Non-Patent Document 2).
U.S. Pat. No. 4,515,274 US Pat. No. 6,281,018 JP 2004-167479 A "Flow cytometry freedom" Supervision by Hiromitsu Nakauchi Published by Shujunsha in December 2004 ISBN 4-87962-281-8 Anne Y. Fu, et al., "An Integrated Microfablicated Cell Sorter", Anal. Chem. Vol.74 (11), pp2451-2457

前記の荷電方式によるセルソーターの課題は、液滴にして分画するという手法自体に起因するといっても過言ではない。液滴の安定吐出に要する負荷低減やミスト発生抑制,コンタミ防止,作業の安全性確保,メンテナンスの簡素化を考えた場合、閉鎖系での分画処理を実現することが好ましいことは言うまでもない。   It is no exaggeration to say that the problem of the cell sorter using the charging method is caused by the technique of fractionating into droplets. Needless to say, it is preferable to implement a fractionation process in a closed system in consideration of reducing the load required for stable discharge of droplets, suppressing mist generation, preventing contamination, ensuring work safety, and simplifying maintenance.

このような観点より、分画機能を有する流路をディスポーサブルなマイクロチップに集積することが望ましいが、背景技術で言及した様に分画処理速度の向上手段を講じなければ実用性化は難しい。さらに、ポンプやバルブを多数外部に設けることはシステムを大型化・複雑化し、装置のコストアップやメンテナンス等で作業者の負荷増大をもたらし好ましくない。   From this point of view, it is desirable to integrate flow paths having a fractionation function on a disposable microchip. However, as mentioned in the background art, it is difficult to put it into practical use unless measures for improving the fractionation processing speed are taken. Furthermore, providing a large number of pumps and valves outside is not preferable because it increases the size and complexity of the system, increases the cost of the apparatus, and increases the load on the operator.

即ち本発明の目的は、制御因子を簡素化し熟練を要さずに安定した分画処理が行える手法を創出するとともに、ポンプやバルブ機能をマイクロチップに搭載することで高速動作を可能とし、ディスポーサブルで安全かつメンテナンスフリーな分画マイクロチップ及び分画装置を提供することにある。   That is, an object of the present invention is to create a technique that can simplify control factors and perform stable fractionation processing without requiring skill, and enables high-speed operation by installing a pump and a valve function on a microchip. Another object of the present invention is to provide a fractionation microchip and fractionation apparatus that are safe and maintenance-free.

本発明は、上記課題を解決するために送液機構と識別手段を除いた分画機能をマイクロチップ内に集積させるとともに、サンプル溶液の採取から分画処理後の回収液排出に至るまでの流路を連続した水柱で移動可能なシステムとした。以下具体的な手段を説明する。   In order to solve the above problems, the present invention integrates a fractionation function excluding a liquid feeding mechanism and an identification means in a microchip, and performs a flow from collection of a sample solution to discharge of a collected liquid after fractionation processing. The system can be moved by a continuous water column. Specific means will be described below.

(1)安全性、メンテナンス性の改善
上述の様に、閉鎖系で分画処理を行なうことで解決される。本発明では分画処理をマイクロチップ内で実施することで、作業環境や装置を汚染する危険性を回避した。また、マイクロチップはディスポーサブル可能であるためコンタミの心配がないうえ、装置本体の配管は交換可能なのでチューブコネクター類の洗浄も簡素化することが可能である。
(1) Improvement of safety and maintainability As described above, the problem is solved by performing fractionation processing in a closed system. In the present invention, the risk of contaminating the work environment and the apparatus is avoided by performing the fractionation process in the microchip. In addition, since the microchip can be disposable, there is no risk of contamination, and the piping of the apparatus main body can be exchanged, so that cleaning of tube connectors can be simplified.

(2)制御因子、装置の簡素化
サンプル溶液の採取および送液にはシュリンジポンプを採用し、温度変化やサンプル溶液の残量にかかわらず、系内の総合流量を常に一定化できる様にした。したがって、分画マイクロチップ内にある識別エリアの固定観測点から実際に分画を行なう分岐点に至るまでの所要時間は常に一定となり、かつ送液量により一義的に決めることができる。
したがって、観測点で識別データを取得してから一定時間(遅延時間td)後に分岐点での分画操作を実施すればよく、制御を簡素化することができる。
本発明では、液滴を形成したり帯電・偏向をさせる機能が不要であるうえ、光圧を利用した分画装置のように、検出系以外の光学系を必要としないので装置の調整行為が少なくしかも小型化することができる。
(2) Simplification of control factors and equipment A sampling pump is used to collect and deliver the sample solution so that the total flow rate in the system can be kept constant regardless of temperature changes and the remaining amount of sample solution. did. Therefore, the time required from the fixed observation point of the identification area in the fractionation microchip to the branch point where the fractionation is actually performed is always constant, and can be uniquely determined by the amount of liquid fed.
Therefore, the fractionation operation at the branch point may be performed after a certain time (delay time td) after the identification data is acquired at the observation point, and the control can be simplified.
In the present invention, the function of forming a droplet or charging / deflecting is unnecessary, and an optical system other than a detection system is not required unlike a fractionation apparatus using light pressure, so that the act of adjusting the apparatus is not necessary. In addition, the size can be reduced.

(3)マイクロチップでの分画処理速度
本発明では分岐点での液体の流れを制御して微粒子の分画を行なうものであるが、(4)で言及するポンプ機能を実現するチャンバーを分岐点の近傍に設けたことで音響距離を短縮させ、外部ポンプの切換え動作では実現不可能なスイッチング速度(流れ方向の変換)を実現した。
(3) Fractionation speed in microchip In the present invention, the flow of liquid at the branching point is controlled to fractionate the fine particles. The chamber for realizing the pump function referred to in (4) is branched. By providing it in the vicinity of the point, the acoustic distance was shortened and a switching speed (conversion of the flow direction) that could not be realized by the switching operation of the external pump was realized.

また、荷電方式のセルソーターではデッドボリウムが多く、少量サンプルの分画を行なう場合には分散液の希釈が必要となりオペレーションタイムが犠牲となってしまうが、マイクロチップ化することで数μl単位からの分画化処理を短時間で行うことができる。   In addition, in the charge type cell sorter, there are many dead volumes, and when fractionating a small amount of sample, it is necessary to dilute the dispersion liquid and the operation time is sacrificed. The fractionation process can be performed in a short time.

(4)ポンプ・バルブ機能のマイクロチップ集積
本発明では、ポンプやバルブとして機能し、かつ、流路も兼ねるチャンバーを電気機械変換素子で形成したことで、チップサイズの小型化を実現した。具体的には流路を溝深さ方向に拡張してチャンバーを構成し、かつ分岐点側口と排出側口の流路断面積が絞られる構造をとることで、チャンバーが圧力室として機能する様にした。
(4) Microchip integration of pump / valve function In the present invention, the chamber that functions as a pump and a valve and also serves as a flow path is formed of an electromechanical conversion element, thereby realizing a reduction in chip size. Specifically, the chamber functions as a pressure chamber by expanding the flow channel in the groove depth direction to form a chamber and reducing the flow channel cross-sectional area of the branch point side outlet and the discharge side port. I did it.

即ち、壁面を屈曲させチャンバー容積を増大させる様に電気機械変換素子へ電力供給を行うと、チャンバー内部の圧力低下を補償するために分岐点側および排出口側より液体が流入することとなる。反対に、壁面の屈曲をチャンバー体積を減少させる様に電気機械変換素子に電力供給を行なうと、チャンバー内部の圧力上昇を緩和するために分岐点側および排出口側へ液体が流出することとなる。   That is, when electric power is supplied to the electromechanical transducer so as to increase the chamber volume by bending the wall surface, the liquid flows from the branch point side and the discharge port side to compensate for the pressure drop inside the chamber. On the other hand, if power is supplied to the electromechanical conversion element so that the chamber volume is reduced by bending the wall surface, the liquid will flow out to the branch point side and the discharge port side in order to alleviate the pressure increase inside the chamber. .

従って、上記の圧力変化を利用して流れを制御し、微粒子が分岐点に流れ着いた瞬間に選択流路または放流流路に誘導することができる。分画用にバルブや外付けポンプを設置することなしに、マイクロチップ内でこれらの操作を実現した。   Therefore, the flow can be controlled by utilizing the above pressure change, and the fine particles can be guided to the selection flow path or the discharge flow path at the moment when they reach the branch point. These operations were realized in the microchip without installing valves or external pumps for fractionation.

因みに、電気機械変換素子として圧電体材料を使った場合、自発分極方向Psに垂直に電界を加えると、分極方向と平行かつ電界方向に垂直な面で厚みすべり歪を生じる。このd15モードの剪断変形を利用して壁を屈曲させることができる。(詳細は実施例で説明する。)
なお、選択流路と放流流路の構造を同一とし、かつ対称的に配置することで、両者の特性を揃えることが出来るため、ポンプ駆動シーケンスを簡素化することができる。
Incidentally, when a piezoelectric material is used as the electromechanical conversion element, when an electric field is applied perpendicularly to the spontaneous polarization direction Ps, a thickness-slip distortion occurs on a plane parallel to the polarization direction and perpendicular to the electric field direction. The wall can be bent using the shear deformation of the d15 mode. (Details will be described in Examples.)
In addition, since the structure of both a selection flow path and a discharge flow path is made the same, and it arrange | positions symmetrically, since both characteristics can be equalized, a pump drive sequence can be simplified.

本発明の分画装置によると、サンプル溶液の導入から識別,分画処理後の選別溶液の回収までが閉鎖系の流路内で実施されるため、大気中にサンプル溶液が飛散する危険性がなく、装置の汚染や環境汚染をもたらすこと無く分画作業を実施することができる。   According to the fractionation apparatus of the present invention, since the introduction of the sample solution, the identification, and the collection of the sorted solution after the fractionation process are performed in the closed system flow path, there is a risk of the sample solution being scattered in the atmosphere. In addition, the fractionation operation can be performed without causing contamination of the apparatus or environmental pollution.

また、微粒子が充分に離散的にマイクロ流路を流れる濃度に希釈されていれば、従来のセルソーターと異なり制御因子としてサンプル溶液の流速のみを一定化するだけで安定的な分画処理を行なうことが可能となり、作業者の習熟を必要としない使いやすい分画装置を提供できる。   Also, if the microparticles are sufficiently discretely diluted to flow through the microchannels, unlike conventional cell sorters, stable fractionation can be performed simply by fixing only the flow rate of the sample solution as a control factor. Therefore, it is possible to provide an easy-to-use fractionation apparatus that does not require the skill of the operator.

さらに、送受液で使用するチューブとディスポーサブル分画マイクロチップを実験毎に交換することで、メンテナンス不要のコンタミレス分画処理が可能となる他、装置自体も簡素化・小型化することが可能となる。   Furthermore, by exchanging tubes and disposable fractional microchips used for sending and receiving liquids for each experiment, maintenance-free contamination-free fractionation is possible, and the device itself can be simplified and miniaturized. Become.

無論、従来のセルソーターと異なり液滴へのチャージ,ディスチャージ工程や回収容器への衝突が無いため、細胞へのダメージを与える危険性が無いなどの効果も期待される。   Of course, unlike conventional cell sorters, there is no charge to the droplets, no discharge process, and no collision with the collection container.

以下、本発明について図面を参照しながら詳細に説明する。また、以下の実施の形態により本発明が限定されるものではない。
(システム構成)
図1に本発明の分画マイクロチップを評価した装置構成を示す。分散液の送液には流量の調節機能を有している市販のマイクロシリンジポンプ200を用いた。通常の装置は各種のシリンジ210が脱着可能であり、サンプル容量や送液速度に応じて選択可能である。シリンジポンプから送液された分散液は送液用キャピラリー220を経由して、分画マイクロチップ100の導入口131からチップ内に導入される。
識別手段として蛍光発光による検出システムを用いた。水銀ランプ300で励起され発光したビーズの蛍光像を、顕微鏡310で拡大して高速度ビデオカメラ320で撮像し、映像出力信号を中央制御ユニット330に動画として取り込み画像処理を行なう。また、画像処理された映像信号はモニター340に出力され、再生することができる他、ライブ映像をモニターすることもできる。
Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
(System configuration)
FIG. 1 shows an apparatus configuration for evaluating the fractionation microchip of the present invention. A commercially available microsyringe pump 200 having a flow rate adjusting function was used for feeding the dispersion. In the normal apparatus, various types of syringes 210 can be attached and detached, and can be selected according to the sample volume and the liquid feeding speed. The dispersion liquid fed from the syringe pump is introduced into the chip from the inlet 131 of the fractionation microchip 100 via the liquid feeding capillary 220.
A detection system using fluorescence was used as the identification means. The fluorescence image of the beads excited and emitted by the mercury lamp 300 is magnified by the microscope 310 and captured by the high-speed video camera 320, and the video output signal is captured as a moving image in the central control unit 330 and image processing is performed. In addition, the image-processed video signal is output to the monitor 340 and can be played back, or a live video can be monitored.

離散的に流路チップ120の中を流れてくるオレンジ色または黄緑色に発光するビーズを、固定観測点となる識別エリア122で認識すると、中央制御ユニット330は分散液の流量から設定される遅延時間td(人為的にも調整可能)経過後に選択または放流(非選択)の信号をドライバーユニット350に送信する。ドライバーユニット350の出力はケーブル360を介して分画マイクロチップの電極端子116A、116Bおよび117に接続される。なお、ポンプの駆動電圧(Vdd2)やパルス幅(ton)等のパラメータはドライバーユニット350で任意に設定できるものとした。   When the orange or yellow-green beads flowing discretely in the flow channel chip 120 are recognized in the identification area 122 serving as a fixed observation point, the central control unit 330 delays from the flow rate of the dispersion liquid. After elapse of time td (adjustable artificially), a selection or discharge (non-selection) signal is transmitted to the driver unit 350. The output of the driver unit 350 is connected to the electrode terminals 116A, 116B and 117 of the fractionation microchip via the cable 360. Parameters such as the pump drive voltage (Vdd2) and pulse width (ton) can be arbitrarily set by the driver unit 350.

実施例において選択流路と放流流路は同一の構造で対称的な配置としたため、選択流路と放流流路は等価で交換可能である。そこで、以下、A,Bの識別記号を使って区別するものとする。なお、両者の構造や配置が異なる場合は、駆動電圧やパルス幅のパラメータを調整することで容易に対応することが可能である。
分画されたビーズは、分画マイクロチップ100の排出口A132Aおよび排出口B132Bに接続された回収チューブ400を通して回収容器410に分画される。
In the embodiment, the selection flow path and the discharge flow path have the same structure and are symmetrically arranged, so that the selection flow path and the discharge flow path are equivalent and interchangeable. Therefore, hereinafter, the identification symbols A and B are used for distinction. If the structure and arrangement of the two are different, it can be easily handled by adjusting parameters of the drive voltage and pulse width.
The fractionated beads are fractionated into a collection container 410 through a collection tube 400 connected to the discharge port A132A and the discharge port B132B of the fractionation microchip 100.

(評価方法)
微粒子として市販のフローサイトメーター校正用蛍光ビーズ(直径約6μm)を用い、UV光源でオレンジ色を発光するビーズ(Fluoresbrite Polychromatic (PC Red))と、黄緑に発光するビーズ(Fluoresbrite Yellow Green(YG))を等量混合し、0.0025vol%濃度の分散液に調製して分画試験を行なった。
(Evaluation methods)
Using commercially available fluorescent beads for calibration of flow cytometer (diameter of about 6 μm) as fine particles, beads that emit orange with a UV light source (Fluoresbrite Polychromatic (PC Red)) and beads that emit yellowish green (Fluoresbrite Yellow Green (YG) )) Were mixed in equal amounts to prepare a dispersion with a concentration of 0.0025 vol%, and a fractionation test was conducted.

分画はオレンジ色に発光するビーズを排出口A側に、黄緑色に発光するビーズを排出口B側に選別させ、モニター画面で確認した成功率で評価することとした。
なお、駆動電圧(Vdd2)と駆動パルス幅(ton)の値は流路構造等に依存するが、今回の評価ではVdd2=±26V,ton=24μsで良好な結果が得られており、この値に統一して評価を行なった。
In the fractionation, the beads emitting orange light were sorted on the outlet A side, and the beads emitting yellow-green light were sorted on the outlet B side, and evaluation was made based on the success rate confirmed on the monitor screen.
Note that the values of the drive voltage (Vdd2) and the drive pulse width (ton) depend on the flow path structure and the like, but in this evaluation, good results were obtained with Vdd2 = ± 26 V and ton = 24 μs. Evaluation was conducted in a unified manner.

(実施の形態1)
電気機械結合素子としてPZTの単極板(貼り合せ構造でない)を用いた場合の実施例を示す。
(Embodiment 1)
An embodiment in which a PZT monopolar plate (not a bonded structure) is used as the electromechanical coupling element will be described.

(1)アクチュエータチップの作製
図2にアクチュエータチップ110の作製方法を示した。PZTには市販のHIP処理品で、d15=950pm/V程度の圧電定数を有する材料を選択した。厚み方向に分極された厚さ0.8mmのPZT板111の分極+面にドライフィルム113をラミネートし、図2(a)の様なパターンを形成する。次に、直径51.4mm、刃厚78μmのブレードを装着したダイシングソーにより深さ約360μm、溝幅約80μm、溝底の直線部分18mmとなる溝114を形成すると、図2(b)のようになる。なお、圧力チャンバーを形成する流路壁の厚みは約60μmとした。
(1) Production of Actuator Chip FIG. 2 shows a production method of the actuator chip 110. For PZT, a commercially available HIP-treated material having a piezoelectric constant of about d15 = 950 pm / V was selected. A dry film 113 is laminated on the polarization + surface of a 0.8 mm thick PZT plate 111 polarized in the thickness direction to form a pattern as shown in FIG. Next, when a groove 114 having a depth of about 360 μm, a groove width of about 80 μm, and a linear portion of the groove bottom of 18 mm is formed by a dicing saw equipped with a blade having a diameter of 51.4 mm and a blade thickness of 78 μm, as shown in FIG. become. The flow path wall forming the pressure chamber had a thickness of about 60 μm.

引き続き公知の斜め蒸着法を2回繰り返し、溝の壁面両側の開口部表面より約180μmの深さまでTi,Auを積層蒸着し、リフトオフ法によりドライフィルムを除去すると、図2(c)のアクチュエータチップが完成する。
アクチュエータチップには溝が6本形成されており、図2(b)の溝114Aおよび114Bが分散液が流れる流路である。なお、溝114A内に形成された壁面電極(図示せず)と溝114B内に形成された壁面電極(図示せず)はGND電極端子117と導通する構造となっており、分散液の電気分解等が発生しない様にしてある。
Subsequently, the known oblique vapor deposition method is repeated twice, Ti and Au are laminated and deposited to a depth of about 180 μm from the opening surface on both sides of the groove wall, and the dry film is removed by the lift-off method. Is completed.
Six grooves are formed in the actuator chip, and the grooves 114A and 114B in FIG. 2B are flow paths through which the dispersion liquid flows. Note that a wall electrode (not shown) formed in the groove 114A and a wall electrode (not shown) formed in the groove 114B are electrically connected to the GND electrode terminal 117, and the dispersion is electrolyzed. Etc. are not generated.

また、溝114Aおよび溝114Bに隣接するそれぞれ2本(計4本)の溝114は電極形成のためのダミー溝であり、流路となる溝114Aと114Bの両壁面に形成された壁面電極(図示せず)に対向する壁面電極115は、ジャンパーパターン118で導通され、それぞれ電極端子A116Aと電極端子B116Bに接続されている。
従って、溝114Aを構成する壁と、溝114Bを構成する壁とを独立に屈曲させることが可能となる接続にしている。
In addition, two (four in total) grooves 114 adjacent to the groove 114A and the groove 114B are dummy grooves for electrode formation, and wall surface electrodes (formed on both wall surfaces of the grooves 114A and 114B serving as flow paths ( Wall electrodes 115 facing each other (not shown) are made conductive by a jumper pattern 118 and connected to electrode terminals A116A and B116B, respectively.
Therefore, the connection is made such that the wall forming the groove 114A and the wall forming the groove 114B can be bent independently.

なお、図2(c)の状態から必要に応じてパリレンなどの保護膜を被覆しても良い。その場合、電極端子の表面の皮膜は別工程で除去しなければならない。   In addition, you may coat | cover protective films, such as parylene, as needed from the state of FIG.2 (c). In that case, the film on the surface of the electrode terminal must be removed in a separate process.

(2)ベース基板の作製
図3に分画マイクロチップのベース基板130を示す。紫外線による励起を行なう場合が多いので実施例では素材として厚み約0.52mmの鏡面研磨された石英板を選択したが、これに限定するものではない。ドライフィルムで所定の位置に開口部を形成後、サンドブラスト法により電極端子用切り欠き134と5箇所の穴を加工した。さらに、2次加工により導入口131を直径約100μmの丸穴に仕上げ,分岐後の分散液が流れ込む分岐後導入口133A,133Bおよび排出口132A,132Bをそれぞれ直径約70μmの丸穴に仕上げた。
(2) Production of Base Substrate FIG. 3 shows a base substrate 130 of a fractional microchip. Since there are many cases where excitation is performed by ultraviolet rays, in the embodiment, a mirror-polished quartz plate having a thickness of about 0.52 mm is selected as a material. However, the present invention is not limited to this. After forming an opening at a predetermined position with a dry film, the electrode terminal notch 134 and five holes were processed by sandblasting. Further, the inlet 131 is finished into a round hole with a diameter of about 100 μm by secondary processing, and the after-branch inlets 133A and 133B and the outlets 132A and 132B into which the dispersion after branching flows are each finished into a round hole with a diameter of about 70 μm. .

(3)流路チップの作製
図4に流路チップ120を示した。本実施例ではマイクロ流路の作製で公知の技術であるSU−8(ストラクチャー形成用)レジストを用いて型を作り、ポリジメチルシロキサン(PDMS)での型取りを行って厚み0.5mm,高さ25μm,幅50μmのT字型流路121を有する流路チップを作製した。無論、識別手段で許容される特性(例えば、透光性,平滑性など)を有する材料ならばいずれでも良い。
(3) Manufacture of channel chip The channel chip 120 is shown in FIG. In this example, a mold is made using SU-8 (for structure formation) resist, which is a well-known technique in the production of microchannels, and the mold is taken with polydimethylsiloxane (PDMS) to obtain a thickness of 0.5 mm, high A channel chip having a T-shaped channel 121 having a thickness of 25 μm and a width of 50 μm was produced. Of course, any material may be used as long as it has characteristics (for example, translucency, smoothness, etc.) allowed by the identification means.

(4)分画チップの組み立て
図5に本発明の分画マイクロチップの組み図を示す。ベース基板の片側にエポキシ系接着剤を薄く塗布し、アクチュエータチップの溝114Aと114Bの溝底が表面と交差する部分と、ベース基板の分岐後導入口133A,133Bおよび排出口132A,132Bが一致するように接着し硬化させる。
次に、ベース基板の非接着面とPDMS製の流路チップの流路形成面を酸素プラズマで短時間活性化後、T字型流路の3箇所の末端が、ベース基板に形成された分岐後導入口133A,133Bおよび導入口131に一致するよう正確に圧着しパーマネントボンディングさせる。以上の工程により分画マイクロチップ100を完成させた。
(4) Assembly of fractionation chip FIG. 5 shows an assembly diagram of the fractionation microchip of the present invention. The epoxy adhesive is thinly applied to one side of the base substrate, and the portions where the groove bottoms of the grooves 114A and 114B of the actuator chip intersect the surface coincide with the after-branch introduction ports 133A and 133B and the discharge ports 132A and 132B of the base substrate. Adhere and cure.
Next, the non-adhesive surface of the base substrate and the flow channel forming surface of the PDMS flow channel chip are activated with oxygen plasma for a short time, and then the three ends of the T-shaped flow channel are formed on the base substrate. Crimping is performed accurately so as to coincide with the rear inlets 133A and 133B and the inlet 131, and permanent bonding is performed. The fractionated microchip 100 was completed through the above steps.

(5)動作原理
図6に分画用マイクロチップのプッシュプル動作原理を示した。図6(a)の見取り図で一点鎖線で切断して矢印の方向から見た模式図を図6(b)〜図6(e)に示してある。また、選択流路と放流流路は等価となっているためA,Bで識別し、図6(a)での端子Aと端子Bと共通のGNDに印加する駆動電圧のパターンを右側の表に、そのときの壁の動きを中央に、流路チップ内での液体の流れ方を矢印で表示したものを左に示してある。
(5) Operation Principle FIG. 6 shows the push-pull operation principle of the fractionation microchip. 6B is a schematic diagram viewed from the direction of the arrow by cutting along the alternate long and short dash line in the sketch of FIG. 6A. Further, since the selected flow path and the discharge flow path are equivalent, they are identified by A and B, and the pattern of the drive voltage applied to GND common to the terminals A and B in FIG. Further, the movement of the wall at that time is shown in the center, and the flow of the liquid in the flow path chip is indicated by the arrow on the left.

ここでは、オレンジ色の蛍光を発するビーズが流れてきた時にA側に回収する場合を説明する。図6(b)はビーズが分岐点に流れつかない状態(<td)を示しており、端子A,端子Bともに電圧が印加されておらず、壁は変形していない状態(ノーマル状態)になっている。この状態では、A側の流路もB側の流路も送液量の半分の流量を分担している。   Here, a description will be given of a case where beads that emit orange fluorescence flow to the A side when they flow. FIG. 6B shows a state in which the beads do not flow to the branch point (<td), and no voltage is applied to both the terminals A and B, and the wall is not deformed (normal state). It has become. In this state, the flow path on the A side and the flow path on the B side share a flow rate that is half of the liquid feeding amount.

次の図6(c)はビーズが分岐点に到着した状態(≒td)を示しており、吸い込み側のA側チャンバー容積が増大するように端子Aに−の電圧を印加され、同時に押し出し側のB側チャンバー容積が減少するように端子Bに+の電圧印加される。駆動電圧を適切に選ぶと壁が変位し続けている時間(チャンバー形状に依存するが通常数10μs程度)、分散液が全てA側に流入する状態を作り出すことが出来き、微粒子はA側流路に誘導される。すなわち、バルブ無しに瞬間的にB側流路を閉鎖した状態を作り出している。   Next, FIG. 6C shows a state where the beads have arrived at the branch point (≈td). A negative voltage is applied to the terminal A so that the A-side chamber volume on the suction side increases, and at the same time the extrusion side. A positive voltage is applied to the terminal B so as to reduce the B-side chamber volume. When the drive voltage is properly selected, the wall can continue to be displaced (usually several tens of microseconds depending on the chamber shape), but it is possible to create a state where all the dispersion flows into the A side. Guided to the road. That is, a state in which the B-side flow path is instantaneously closed without a valve is created.

図6(d)はビーズが分岐点を過ぎてA側流路に取り込まれたあとの復帰段階を示したもので、A側チャンバーをノーマル状態に戻すためにGNDレベル(0V)にし、同時にB側チャンバーもノーマル状態にもどすためにGNDレベル(0V)にする。この場合はA側流路が閉鎖された状態となり、分散液が全てB側流路に流入する状態になる。
図6(e)は再び定常状態に戻った状態を示している。このような動作を繰り返し行なって、分岐点に到達したビーズの進行方向を制御することができる。
なお、以上の動作サイクルはビーズの流動速度と比較して充分に早いものであるが、ビーズの取り込み中に後続ビーズが分岐点に到達する様なことが無い様に、濃度調整を適切に行なわなければならない。
FIG. 6 (d) shows a return stage after the beads are taken into the A-side flow path after passing through the branch point. In order to return the A-side chamber to the normal state, it is set to the GND level (0V) and at the same time B The side chamber is also set to the GND level (0 V) in order to return to the normal state. In this case, the A-side flow path is closed, and all of the dispersion liquid flows into the B-side flow path.
FIG. 6E shows a state where the steady state is restored. By repeating such an operation, the traveling direction of the beads that have reached the branch point can be controlled.
The above operation cycle is sufficiently faster than the flow rate of the beads, but the concentration should be adjusted appropriately so that the subsequent beads do not reach the branch point during bead loading. There must be.

本実施例で示したプッシュプル動作の場合の選別評価結果(実施例1)を表1に示す。   Table 1 shows the selection evaluation results (Example 1) in the case of the push-pull operation shown in this example.

Figure 2007057290
(実施の形態2)
実施の形態1の場合で、端子Bに電圧を印加せずにプッシュ動作(押し出し動作)を省略し、プル動作(吸い込み動作)のみを行なった場合の選別評価結果(実施例2)を同じく表1に示す。
Figure 2007057290
(Embodiment 2)
In the case of the first embodiment, the selection evaluation result (Example 2) when the push operation (push-out operation) is omitted without applying the voltage to the terminal B and only the pull operation (suction operation) is performed is also shown in Table 1. It is shown in 1.

(実施の形態3)
実施の形態1の場合で、端子Aに電圧を印加せずにプル動作(吸い込み動作)を省略し、プッシュ動作(押し出し動作)のみを行なった場合の選別評価結果(実施例3)を同じく表1に示す。
(Embodiment 3)
In the case of Embodiment 1, the pulling operation (suctioning operation) is omitted without applying a voltage to the terminal A, and the selection evaluation result (Example 3) when only the pushing operation (extruding operation) is performed is also shown in Table 1. It is shown in 1.

(実施の形態4)
図7(a)〜図7(c)に、アクチュエータチップの分極方向を反平行とし直列に積層(シェブロン構造)させた場合の実施形態を示す。ただし、チップ構造は実施形態1と同一とした。素材のPZTは表面側PZT112Aの厚み180μm,裏面側PZT112Bの厚み620μmからなる積層PZT112を用いた。実施例1(1)との相違は、壁面全部に電極形成を行なっている点であり、付きまわり性の良いスパッタ法などでTi,Auを成膜することで実施できる。その後の作製手順は同一である。
(Embodiment 4)
FIG. 7A to FIG. 7C show an embodiment in which the polarization direction of the actuator chip is antiparallel and stacked in series (chevron structure). However, the chip structure is the same as that of the first embodiment. As the material PZT, a laminated PZT 112 having a thickness of 180 μm on the front side PZT 112A and a thickness of 620 μm on the back side PZT 112B was used. The difference from Example 1 (1) is that electrodes are formed on the entire wall surface, and can be implemented by depositing Ti and Au by a sputtering method with good throwing power. The subsequent manufacturing procedure is the same.

本実施例で構成された分画チップは実施形態1と比較して駆動電圧を低く設定することが可能であり、より大きなチャンバー体積変化を必要とする場合に有効であった。本形態の選別評価結果(実施例4)を表1に示す。
以上の実施例をまとめると、プル動作(吸い込み動作)またはプッシュ動作(押し出し動作)単独でも分画処理は可能であるが、分画速度を上げるためにはプッシュプル動作が好ましいことが判明した。さらに分画速度を上げるためには貼り合せ構造(シェブロン構造)の圧電体を採用すれば良いことが明らかと成った。
The fractionation chip configured in this example can set the driving voltage lower than that in the first embodiment, and is effective when a larger chamber volume change is required. Table 1 shows the results of sorting evaluation according to this embodiment (Example 4).
Summarizing the above examples, it has been found that although the pulling operation (suction operation) or the push operation (push-out operation) can be performed separately, the push-pull operation is preferable in order to increase the fractionation speed. It has become clear that a piezoelectric material having a bonded structure (chevron structure) may be employed to further increase the fractionation speed.

ところで、前記の実施例においては蛍光ビーズを使った評価を行なったが、浮遊細胞、細菌や微生物,ミセル,コロイド,無機物の微粒子などが浮遊している分散液(混相液)であっても同様に扱えることは言うまでもない。また、本実施例では蛍光による分画を代表例として採り上げたが、例えば画像により微粒子の形や大きさによる分画を行うことやや、微生物の運動量の違いによる分画を行なうことなども可能であり、分画パラメータを限定するものではない。   By the way, although evaluation using fluorescent beads was performed in the above-described embodiment, the same applies to a dispersion liquid (mixed phase liquid) in which suspended cells, bacteria, microorganisms, micelles, colloids, inorganic fine particles, etc. are suspended. Needless to say, it can be handled. In this embodiment, fluorescence fractionation is taken as a representative example. However, for example, fractionation based on the shape and size of microparticles based on an image, or fractionation based on differences in the amount of movement of microorganisms is possible. Yes, it does not limit the fractionation parameters.

本発明の分画装置の構成図を説明する図である。It is a figure explaining the block diagram of the fractionation apparatus of this invention. 本発明のアクチュエータチップの作製方法を示す図である。It is a figure which shows the preparation methods of the actuator chip | tip of this invention. 本発明のベース基板を示す図である。It is a figure which shows the base substrate of this invention. 本発明の流路チップを示す図である。It is a figure which shows the flow-path chip | tip of this invention. 本発明の分画マイクロチップの組図である。It is a set figure of the fractionation microchip of the present invention. 本発明の分画マイクロチップの動作原理を示す図である。It is a figure which shows the principle of operation of the fractionation microchip of this invention. 本発明の貼り合せ材を用いた場合のアクチュエータチップの作製方法を示す図である。It is a figure which shows the preparation methods of an actuator chip at the time of using the bonding material of this invention.

符号の説明Explanation of symbols

100 分画マイクロチップ
110 アクチュエータチップ
111 PZT板
112 積層PZT板
112A 表面側PZT板
112B 裏面側PZT板
113 ドライフィルム
114 溝
114A 溝A
114B 溝B
115 壁面電極
116 電極端子
116A 電極端子A
116B 電極端子B
117 GND電極
118 ジャンパーパターン
120 流路チップ
121 T字型流路
122 識別エリア
123 分岐点
124 分岐後流路
124A 分岐後流路A
124B 分岐後流路B
130 ベース基板
131 導入口
132 排出口
132A 排出口A
132B 排出口B
133 分岐後導入口
133A 分岐後導入口A
133B 分岐後導入口B
134 電極端子用切り欠き
200 マイクロシリンジポンプ
210 マイクロシリンジ
220 送液キャピラリー
300 水銀ランプ
310 顕微鏡
320 高速度ビデオカメラ
330 中央制御ユニット
340 モニター
350 ドライバーユニット
360 ケーブル
400 回収チューブ
410 回収容器
100 Fraction microchip 110 Actuator chip 111 PZT plate 112 Laminated PZT plate 112A Front side PZT plate 112B Back side PZT plate 113 Dry film 114 Groove 114A Groove A
114B Groove B
115 Wall electrode 116 Electrode terminal 116 A Electrode terminal A
116B Electrode terminal B
117 GND electrode 118 Jumper pattern 120 Channel chip 121 T-shaped channel 122 Identification area 123 Branch point 124 Branched channel 124A Branched channel A
124B Flow path B after branching
130 Base board 131 Inlet port 132 Outlet port 132A Outlet port A
132B outlet B
133 After-branch inlet 133A After-branch inlet A
133B Post-branch inlet B
134 Notch for electrode terminal 200 Micro syringe pump 210 Micro syringe 220 Liquid feeding capillary 300 Mercury lamp 310 Microscope 320 High-speed video camera 330 Central control unit 340 Monitor 350 Driver unit 360 Cable 400 Collection tube 410 Collection container

Claims (7)

分画処理を行う微粒子が液体中を浮遊している分散液が流入側から流出側へ向かって分岐点で分流され流動する流路であって、外部から光学的に前記微粒子を識別する識別エリアと、該識別エリアの下流に位置する前記分岐点と、前記分岐点と連通し識別データに基づき選択された微粒子を取り込む採取流路と、非選択の微粒子を逃す放流流路とを有する流路を備え、
前記採取流路と前記放流流路のうちの少なくともいずれかの流路構成部材が変形し、流路容積を変化させることにより前記分岐点での前記分散液の流れ方向を制御し、前記微粒子の選別を行なうことを特徴とする分画マイクロチップ。
An identification area for optically identifying the fine particles from the outside, which is a flow path in which the dispersion liquid in which the fine particles to be fractionated are suspended in the liquid is diverted from the inflow side to the outflow side and flows. A flow path that includes the branch point located downstream of the identification area, a collection flow path that communicates with the branch point and takes in the fine particles selected based on the identification data, and a discharge flow path that releases the non-selected fine particles. With
A flow path component of at least one of the sampling flow path and the discharge flow path is deformed, and the flow direction of the dispersion liquid at the branch point is controlled by changing the flow path volume. A fractionation microchip characterized by sorting.
前記流路構成部材の一部が電気機械変換素子により構成され、通電により前記流路容積が可変することを特徴とする請求項1に記載の分画マイクロチップ。   2. The fractionated microchip according to claim 1, wherein a part of the flow path constituting member is constituted by an electromechanical conversion element, and the flow path volume is changed by energization. 前記電気機械変換素子が圧電体であり、かつ剪断モードで駆動されることを特徴とする請求項2に記載の分画マイクロチップ。   The fractional microchip according to claim 2, wherein the electromechanical transducer is a piezoelectric body and is driven in a shear mode. 前記圧電体が分極方向を反平行とし直列に積層されたシェブロン構造を有し、かつ剪断モードで駆動されることを特徴とする請求項1に記載の分画マイクロチップ。   2. The fractionated microchip according to claim 1, wherein the piezoelectric body has a chevron structure in which polarization directions are antiparallel and are stacked in series, and is driven in a shear mode. 前記採取流路および前記放流流路の流路壁を相反する前記容積変化を生じせしめる様に変形してプッシュプル動作により前記微粒子の分画を行なうことを特徴とする請求項1〜4のいずれかに記載の分画マイクロチップ。   5. The fine particles are fractionated by a push-pull operation by deforming the flow passage walls of the sampling flow passage and the discharge flow passage so as to cause opposite volume changes. A fractional microchip according to claim 1. 前記分岐点より下流側の流路構造が等価かつ対称な構造となっていることを特徴とする請求項1〜5のいずれかに記載の分画マイクロチップ。   The fractional microchip according to any one of claims 1 to 5, wherein a flow path structure downstream of the branch point has an equivalent and symmetric structure. 請求項1〜6のいずれかに記載の分画マイクロチップと、該分画マイクロチップに前記分散液を送液するポンプと、送液された前記分散液中の前記微粒子を識別する識別手段と、該識別手段により得られた前記識別データに基づき前記流路容積及び前記分散液の前記流れ方向を制御する中央制御ユニットとを備えることを特徴とする分画装置。   The fractionation microchip according to any one of claims 1 to 6, a pump for feeding the dispersion to the fractionation microchip, and an identification unit for identifying the fine particles in the delivered dispersion. And a central control unit that controls the flow path volume and the flow direction of the dispersion based on the identification data obtained by the identification means.
JP2005240727A 2005-08-23 2005-08-23 Fractionation microchip and fractionation device Expired - Fee Related JP4745755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240727A JP4745755B2 (en) 2005-08-23 2005-08-23 Fractionation microchip and fractionation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240727A JP4745755B2 (en) 2005-08-23 2005-08-23 Fractionation microchip and fractionation device

Publications (2)

Publication Number Publication Date
JP2007057290A true JP2007057290A (en) 2007-03-08
JP4745755B2 JP4745755B2 (en) 2011-08-10

Family

ID=37920923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240727A Expired - Fee Related JP4745755B2 (en) 2005-08-23 2005-08-23 Fractionation microchip and fractionation device

Country Status (1)

Country Link
JP (1) JP4745755B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057309A (en) * 2010-01-15 2016-04-21 株式会社オンチップ・バイオテクノロジーズ Disposable chip flow cell and cell sorter using same
WO2020175458A1 (en) * 2019-02-27 2020-09-03 京セラ株式会社 Particle separating and measuring device, and particle separating and measuring apparatus
CN113985337A (en) * 2021-12-30 2022-01-28 宁波均胜新能源研究院有限公司 Calibration method, device and system of resistance type current sensor and calibration method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137062A (en) * 1984-09-11 1986-06-24 パルテツク ア−ゲ− Method and device for classifying fine particle
JP2002503334A (en) * 1996-09-04 2002-01-29 テクニカル ユニバーシティ オブ デンマーク Microflow system for particle separation and analysis
JP2002079665A (en) * 2000-09-08 2002-03-19 Seiko Instruments Inc Apparatus and method for ink-jet recording
JP2003139660A (en) * 2001-11-02 2003-05-14 Kawamura Inst Of Chem Res Microfluid device and method of manufacturing the same
JP2005083510A (en) * 2003-09-09 2005-03-31 Toshiba Corp Valve device, chemical analysis device and chemical analysis system
JP2005176836A (en) * 2003-11-28 2005-07-07 Toshiba Tec Corp Nucleic acid detecting cassette, apparatus for detecting nucleic acid and nucleic acid detecting system
JP2005201682A (en) * 2004-01-13 2005-07-28 Nikon Corp Element for micro-analysis
JP2005524831A (en) * 2002-04-17 2005-08-18 サイトノーム インコーポレーテッド Method and apparatus for sorting particles
JP2005265672A (en) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd Device for measuring substance to be detected
WO2005107939A1 (en) * 2004-05-10 2005-11-17 Hitachi, Ltd. Equipment using piezoelectric device
JP2005345463A (en) * 2004-05-06 2005-12-15 Seiko Instruments Inc Analytical microchip, analysis system including it and analytical method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137062A (en) * 1984-09-11 1986-06-24 パルテツク ア−ゲ− Method and device for classifying fine particle
JP2002503334A (en) * 1996-09-04 2002-01-29 テクニカル ユニバーシティ オブ デンマーク Microflow system for particle separation and analysis
JP2002079665A (en) * 2000-09-08 2002-03-19 Seiko Instruments Inc Apparatus and method for ink-jet recording
JP2003139660A (en) * 2001-11-02 2003-05-14 Kawamura Inst Of Chem Res Microfluid device and method of manufacturing the same
JP2005524831A (en) * 2002-04-17 2005-08-18 サイトノーム インコーポレーテッド Method and apparatus for sorting particles
JP2005083510A (en) * 2003-09-09 2005-03-31 Toshiba Corp Valve device, chemical analysis device and chemical analysis system
JP2005176836A (en) * 2003-11-28 2005-07-07 Toshiba Tec Corp Nucleic acid detecting cassette, apparatus for detecting nucleic acid and nucleic acid detecting system
JP2005201682A (en) * 2004-01-13 2005-07-28 Nikon Corp Element for micro-analysis
JP2005265672A (en) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd Device for measuring substance to be detected
JP2005345463A (en) * 2004-05-06 2005-12-15 Seiko Instruments Inc Analytical microchip, analysis system including it and analytical method
WO2005107939A1 (en) * 2004-05-10 2005-11-17 Hitachi, Ltd. Equipment using piezoelectric device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057309A (en) * 2010-01-15 2016-04-21 株式会社オンチップ・バイオテクノロジーズ Disposable chip flow cell and cell sorter using same
WO2020175458A1 (en) * 2019-02-27 2020-09-03 京セラ株式会社 Particle separating and measuring device, and particle separating and measuring apparatus
JPWO2020175458A1 (en) * 2019-02-27 2021-12-16 京セラ株式会社 Particle separation measurement device and particle separation measurement device
JP7098044B2 (en) 2019-02-27 2022-07-08 京セラ株式会社 Particle separation measurement device and particle separation measurement device
CN113985337A (en) * 2021-12-30 2022-01-28 宁波均胜新能源研究院有限公司 Calibration method, device and system of resistance type current sensor and calibration method
CN113985337B (en) * 2021-12-30 2022-05-13 宁波均胜新能源研究院有限公司 Calibration method, device and system of resistance type current sensor and calibration method

Also Published As

Publication number Publication date
JP4745755B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
KR101683066B1 (en) Device and microchip for sorting particles
US10226768B2 (en) Pulsed laser triggered high speed microfluidic switch and applications in fluorescent activated cell sorting
US8834793B2 (en) Apparatus and method for dispensing cells or particles confined in a free flying droplet
US8487273B2 (en) Microchip and particulate fractional collection apparatus
US6540895B1 (en) Microfabricated cell sorter for chemical and biological materials
AU2004269406B2 (en) Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network
CN104830664B (en) A kind of Microfluidic cell separation system based on external Piezoelectric Ceramic
US20110229872A1 (en) Microfabricated Cell Sorter
US11686665B2 (en) Microfluidic system with combined electrical and optical detection for high accuracy particle sorting and methods thereof
JP2011237201A (en) Particulate dispensing device, microchip, and microchip module
WO1999061888A9 (en) Microfabricated cell sorter
CN110793905A (en) Microfluid chip and microfluid cell sorting system
JP4745755B2 (en) Fractionation microchip and fractionation device
CN112646701B (en) Single-step single-cell separation and distribution system
Sugino et al. Integration in a multilayer microfluidic chip of 8 parallel cell sorters with flow control by sol–gel transition of thermoreversible gelation polymer
US11225639B2 (en) Cell sorting device
JP7477378B2 (en) PARTICLE SORTER, PARTICLE SORTION METHOD, AND MICROFLUID CHANNEL CARTRIDGE
CN114752479A (en) Method and apparatus for generating liquid droplet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees