JP2003062797A - Micro flow path structure - Google Patents

Micro flow path structure

Info

Publication number
JP2003062797A
JP2003062797A JP2001252707A JP2001252707A JP2003062797A JP 2003062797 A JP2003062797 A JP 2003062797A JP 2001252707 A JP2001252707 A JP 2001252707A JP 2001252707 A JP2001252707 A JP 2001252707A JP 2003062797 A JP2003062797 A JP 2003062797A
Authority
JP
Japan
Prior art keywords
microchannel
flow path
channel
substrate
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001252707A
Other languages
Japanese (ja)
Other versions
JP4192450B2 (en
Inventor
Koji Katayama
晃治 片山
Tatsu Futami
達 二見
Akira Kawai
明 川井
Katsuyuki Hara
克幸 原
Keiichiro Nishizawa
恵一郎 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2001252707A priority Critical patent/JP4192450B2/en
Publication of JP2003062797A publication Critical patent/JP2003062797A/en
Application granted granted Critical
Publication of JP4192450B2 publication Critical patent/JP4192450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a micro flow path structure in which the strength and chemical resistance of the flow path structure are improved, an electro-chemical phenomenon in the fluid of liquid or gas is made inducibly to occur by conducting wiring on the wall of the flow path, the measurement accuracy of electric field, magnetic field and temperature or the like and fluid heating accuracy is improved and a chemical reaction such as catalytic reaction or the like can be accelerated. SOLUTION: The micro flow path structure has a micro flow path for charging or moving fluid therein. The inside wall of the micro flow path has a layered structure comprising at least one material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微小流路内におい
て流体の送液、化学反応、分析、分離、抽出、検出など
の化学的物理的操作を行なうに好適な微小流路構造体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro flow channel structure suitable for performing chemical and physical operations such as fluid feeding, chemical reaction, analysis, separation, extraction and detection in a micro flow channel.

【0002】[0002]

【従来の技術】近年、数cm角のガラス基板上に長さが
数cm程度で、幅と深さがサブμmから数百μmの微小
流路をを有する微小流路構造体を用い、この微小流路内
で流体の送液、化学反応、分析、分離、抽出、検出など
の化学的物理的操作を行なう、いわゆる集積化化学実験
室が注目されている。このような集積化化学実験室は、
微小空間の短い分子拡散距離および大きな比界面積の効
果により効率のよい化学反応を行なう事ができ、また、
反応から分離、抽出、検出までを一貫して行なう事がで
き、各種研究開発の迅速化、省力化、省資源化、省エネ
ルギー化、省スペース化、さらには実験廃液や廃棄物の
削減、繰り返し実験の合理化等のメリットがある。図1
には導入口が1つ、排出口が2つの微小流路構造体の例
を、また、図2には導入口が2つ、排出口が2つの微小
流路構造体の例を示している。
2. Description of the Related Art Recently, a microchannel structure having a microchannel having a length of several cm and a width and depth of sub-μm to hundreds of μm on a glass substrate of several cm square is used. Attention has been paid to so-called integrated chemistry laboratories, which perform chemical and physical operations such as fluid feeding, chemical reaction, analysis, separation, extraction, and detection in a microchannel. Such an integrated chemistry laboratory
Efficient chemical reaction can be performed due to the effect of short molecular diffusion distance in minute space and large specific interfacial area.
Capable of consistently performing reactions, separations, extractions, and detections, accelerating various research and development, labor saving, resource saving, energy saving, space saving, further reduction of experimental waste liquid and waste, repeated experiments There are merits such as rationalization. Figure 1
Shows an example of a micro channel structure having one inlet and two outlets, and FIG. 2 shows an example of a micro channel structure having two inlets and two outlets. .

【0003】このような微小流路構造体は、例えば、入
力ポートが2つ、出力ポートが1つのY字型の微小流路
内では空間が狭いことによる分子の拡散距離を短くする
ことができ、また、2種の異なる液体の導入により形成
される界面を発生させた場合、容易に比界面積を大きく
することで、反応効率、反応時間を短くすることが可能
である。さらに、このような特徴を有する微小流路構造
体を組み合わせるあるいは入出力ポートを増減すること
により、様々な化学反応・分離を集積化することが可能
である。
Such a microchannel structure can shorten the diffusion distance of molecules due to a narrow space in a Y-shaped microchannel having two input ports and one output port, for example. Further, when an interface formed by introducing two different liquids is generated, the reaction efficiency and reaction time can be shortened by easily increasing the specific boundary area. Furthermore, various chemical reactions / separations can be integrated by combining the microchannel structures having such characteristics or increasing / decreasing the number of input / output ports.

【0004】これらを示す例として、「Microma
chining of Capillary Elec
trophoresis Injecters and
Separators on Glass Chip
s and Evaluation of Flow
at Capillary Intersection
s」(Anal. Chem. 177〜184頁,
1994年)には、微小流路形成手法としてホウケイ酸
ガラス基板に溝加工を施した後、カバー体であるホウケ
イ酸ガラス基板を加熱によって溶着して形成した流路に
ついて開示されている。しかしながら、この手法におい
ては、液試薬と接する流路内壁が凹凸基板材料及びカバ
ー体により決定されるため、基本的に流路構造形成材料
であるガラスの耐薬品性あるいは付着性により、送液試
薬が限定される。また、樹脂により形成される微小流路
構造体においては、カバー体の厚さ及び接着強度により
送液圧力上限が限定されるという課題があった。
As an example showing these, "Microma
chining of Capillary Elec
trophoresis Injecters and
Separators on Glass Chip
s and Evaluation of Flow
at Capillary Intersection
s "(Anal. Chem. pp. 177-184,
(1994) discloses a flow path formed by subjecting a borosilicate glass substrate to groove processing and then heating and welding a borosilicate glass substrate as a cover body as a method for forming a minute flow path. However, in this method, since the inner wall of the flow path in contact with the liquid reagent is determined by the concavo-convex substrate material and the cover body, the liquid transfer reagent is basically due to the chemical resistance or adhesiveness of the glass which is the flow path structure forming material. Is limited. Further, in the minute channel structure formed of resin, there is a problem that the upper limit of the liquid sending pressure is limited by the thickness and adhesive strength of the cover body.

【0005】また、従来、上記微小流路構造体の流路断
面構造は、流路パターンが作成された基板とそれを密閉
するためのカバー体材質及び封止手法によっては接着物
質によって構成され、流路の構造状の耐久性及び耐薬品
性に対して考慮されていなかった。
Further, conventionally, the flow channel cross-sectional structure of the above-mentioned fine flow channel structure is constituted by a substrate on which a flow channel pattern is formed, a cover body material for hermetically sealing the substrate, and an adhesive substance depending on a sealing method, No consideration was given to the structural durability and chemical resistance of the flow channel.

【0006】さらに、導電性物質あるいは半導体物質を
配線してセンサー、発熱素子等を複合化・機能化させる
場合、カバー体の表面あるいは凹凸基板上の流路近傍に
エッチング処理等により配線加工をして実現されている
が、この方式においては、センシングあるいは加熱する
流路内部から遠ざかるためデータ精度及び温度制御性に
問題が発生するという課題があった。
Further, when a conductive material or a semiconductor material is wired to make a sensor, a heating element and the like complex and functional, wiring is processed by etching or the like on the surface of the cover body or in the vicinity of the flow path on the uneven substrate. However, in this method, there is a problem in that data accuracy and temperature controllability are problematic because the method moves away from the inside of the flow path for sensing or heating.

【0007】また、ガラス材料あるいは樹脂で形成され
た微小流路構造体に、電気的・化学的・磁気的・物理的
な機能を持たせるためには流路内部あるいは外部に金属
・酸化物・半導体・高分子等をパターニングする必要が
ある。具体的には、例えばヒーター、冷却機能、温度セ
ンサー、磁界印可素子、電界印可素子、圧電素子、放電
管等が存在する。これら機能の一部には流路壁面内へ直
接配線を実施する必要があるが、現状では実現されてい
なかった。
In addition, in order to give a minute flow channel structure formed of a glass material or resin a function of electrical, chemical, magnetic and physical, metal, oxide, It is necessary to pattern semiconductors, polymers, etc. Specifically, there are, for example, a heater, a cooling function, a temperature sensor, a magnetic field applying element, an electric field applying element, a piezoelectric element, a discharge tube, and the like. Although some of these functions require direct wiring inside the wall of the flow channel, it has not been realized at present.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、かか
る従来の実状に鑑みて提案されたものであり、液体ある
いは気体といった流体を流すための流路壁面に薄膜層構
造が円筒状に形成されることにより、流路構造強度及び
耐薬品性の向上、流路壁面への配線による液体及び気体
の流体内での電気化学的現象の誘起、電界・磁界・温度
等の測定精度や流体加熱精度を向上させたり、触媒反応
等の化学反応を促進することが可能な微小流路構造体を
提供する事にある。
SUMMARY OF THE INVENTION The object of the present invention was proposed in view of the above conventional circumstances, and a thin film layer structure is formed in a cylindrical shape on a wall surface of a flow path for flowing a fluid such as a liquid or a gas. This improves the flow channel structure strength and chemical resistance, induces electrochemical phenomena in the fluid of liquid and gas by wiring to the wall of the flow channel, measurement accuracy of electric field, magnetic field, temperature, etc. and fluid heating. Another object of the present invention is to provide a fine channel structure capable of improving accuracy and promoting a chemical reaction such as a catalytic reaction.

【0009】[0009]

【課題を解決するための手段】本発明者等は上記問題点
を解決するために、基板の表面に微小流路を形成させ、
この基板に貫通孔を有するあるいは有しないカバー体と
重ねあわせて構造体を形成させしめた微小流路構造体に
おいて、微小流路の内壁面を1種以上の材質からなる層
構造とすることで、上記の従来技術による微小流路構造
体の課題を解決することができ、遂に本発明を完成させ
ることができた。
In order to solve the above-mentioned problems, the present inventors have formed minute flow paths on the surface of a substrate,
In a microchannel structure in which a structure is formed by superimposing a cover body having or not having a through hole on this substrate, the inner wall surface of the microchannel has a layered structure made of one or more materials. The problems of the minute channel structure according to the above-mentioned conventional technique can be solved, and the present invention can be finally completed.

【0010】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0011】本発明は、その内部にガスや液体などの流
体を充填又は移動させるための微小流路を有し、かつ、
該微小流路の内壁面が1種以上の材質からなる層構造と
なっている微小流路構造体である。
The present invention has a minute flow path for filling or moving a fluid such as gas or liquid therein, and
The micro channel structure has an inner wall surface of the micro channel having a layered structure made of one or more kinds of materials.

【0012】ここで、本発明の微小流路構造体自体の材
質としては、その目的に応じて適宜選択すればよいが、
例えば、ソーダガラス、石英ガラス等の無機材料、樹脂
等の高分子物質等が挙げられる。また、基板に微小流路
を形成させる方法としても実施例にも記載の方法などに
より目的に応じた形状を適宜形成させればよい。
Here, the material of the microchannel structure of the present invention itself may be appropriately selected according to its purpose.
Examples thereof include inorganic materials such as soda glass and quartz glass, and polymeric substances such as resins. Further, as a method of forming a minute flow path on the substrate, a shape according to the purpose may be appropriately formed by the method described in the examples.

【0013】本発明の微小流路構造体は、上記した微小
流路基板とカバー体を重ねあわせて貼り合わせ、積層一
体化して形成されるものであり、内壁面の全体あるいは
一部に基板材料及びカバー体材料と異なるあるいは同一
の1種以上の材質が層状に構成されている。
The microchannel structure of the present invention is formed by laminating and adhering the above-mentioned microchannel substrate and the cover body, and laminating and integrating them. Also, one or more kinds of materials different from or the same as the cover body material are formed in layers.

【0014】層を形成する手法としては、貼り合わせ前
に予め形成してから重ね合わせて接着する手法や、貼り
合わせを実施後に層形成される物質であるPC(ポリカ
ーボネート)等の高分子材料、Ni、Cr、Au等の金
属、合金などの金属類、金属酸化物等の金属化合物を導
入すればよい。さらに具体的には、UV硬化樹脂、熱硬
化樹脂、有機金属錯体、無電界メッキ液を導入して形成
することにより所望の薄膜を順次形成することにより形
成可能である。これらの内、金属類と金属化合物とは両
者を併存させて形成させることもできる。また、UV硬
化樹脂、熱硬化樹脂、有機金属錯体を用いた場合には、
流路長手方向の任意の場所に選択的に層構造を形成する
ことが可能である。
As a method of forming the layer, a method of previously forming before laminating and then laminating and adhering to each other, a polymer material such as PC (polycarbonate) which is a layer-formed substance after laminating, A metal such as Ni, Cr or Au, a metal such as an alloy, or a metal compound such as a metal oxide may be introduced. More specifically, it can be formed by sequentially forming desired thin films by introducing a UV curable resin, a thermosetting resin, an organometallic complex, and an electroless plating solution. Of these, the metals and the metal compound can be formed in the presence of both. When a UV curable resin, a thermosetting resin, or an organometallic complex is used,
It is possible to selectively form a layered structure at any position in the longitudinal direction of the flow channel.

【0015】また、本発明の微小流路構造体に、流体を
導入するための導入口及び流体を排出するための排出口
を備えしめる場合、貫通孔を有したカバー体と微小流路
を有した基板とを重ねあわせて貼り合わせ、積層一体化
させればよい。
When the microchannel structure of the present invention is provided with an inlet for introducing a fluid and an outlet for discharging the fluid, it has a cover body having a through hole and a microchannel. The above-mentioned substrate may be superposed on each other and bonded to each other so that they are laminated and integrated.

【0016】さらに、本発明の微小流路構造体は導入
口、排出口といった開放口を備えるような微小流路が外
界と通じている構造のみならず、微小流路が構造体の内
部に密閉されている構造も含まれる。このような密閉構
造を有した微小流路構造体は、開放構造となった微小流
路構造体の流体導入口より目的に応じた充填剤を導入さ
せ、その後、微小流路構造体の開放口よりUV硬化樹
脂、熱硬化樹脂などを導入し、これを熱融着あるいは硬
化させて封止させるといった方法で得られる。
Further, the microchannel structure of the present invention is not limited to a structure in which the microchannel having an opening such as an inlet and an outlet communicates with the outside, and the microchannel is hermetically sealed inside the structure. Structures that are included are also included. In the microchannel structure having such a sealed structure, a filler according to the purpose is introduced from the fluid inlet of the microchannel structure having the open structure, and then the opening of the microchannel structure is opened. Further, a UV curable resin, a thermosetting resin, etc. are introduced, and they are heat-sealed or cured to be sealed.

【0017】図3には上記に説明した微小流路構造体の
例として、各種流路構造断面図を示す。図3の内、
(a)〜(c)では、微小流路の内壁などに上記の所定
の材質を層状に塗布して流路内壁層7を形成させた基板
8にカバー体2を重ね合わせて貼り合わせたものであ
る。
FIG. 3 shows cross-sectional views of various flow channel structures as an example of the minute flow channel structure described above. In Figure 3,
In (a) to (c), the cover body 2 is laminated and bonded to the substrate 8 on which the inner wall layer 7 of the minute channel is coated with the above-mentioned predetermined material in a layered manner to form the channel inner wall layer 7. Is.

【0018】また、図3(d)は、例えば、微小流路の
流れ方向に対してその両脇に所定の材質を塗布して薄膜
を形成させた基板8にカバー体2を重ね合わせて貼り合
わせたものである。
Further, FIG. 3 (d) shows, for example, that the cover body 2 is laminated and adhered to the substrate 8 on which a predetermined material is applied on both sides in the flow direction of the minute channel to form a thin film. It is a combination.

【0019】このように、本発明の微小流路構造体にお
いては、複数の入力ポート流路から合流する流路内の一
部に選択的に薄膜形成が可能であるため、壁面内部を直
接電極にすることが可能であり、流路内に液体のみなら
ず気体を導入して、例えば発光物質を導入し、放電させ
ることで発光機能を実現することも可能である。
As described above, in the minute channel structure of the present invention, a thin film can be selectively formed in a part of the channel that joins the plurality of input port channels, so that the inside of the wall surface is directly electrode-formed. It is also possible to realize a light emitting function by introducing not only a liquid but also a gas into the flow path, for example, introducing a luminescent substance and causing discharge.

【0020】さらにその具体的な形成方法を例示すれ
ば、図4に示されるように、微小突起23を有した微小
流路に無電界メッキ液21と純水22を導入すると、微
小突起23を境として無電界メッキ液21と純水22の
3液で層流が発生し、これらの液は互いに混ざることは
ない。この層流の発生により各突起を境として流路両脇
のみに無電界メッキの金属薄膜が形成される。金属薄膜
が形成された微小流路構造体の無電界銅メッキ導入口2
4、2つの無電界銅メッキ排出口26及び純水排出口2
7を封止し、純水導入口25から真空ポンプで真空とす
る。その後、ネオン、アルゴン、炭酸ガス等の発光ガス
や発光に必要な水銀等の添加物を微量導入し、純水導入
口25を封止する。そして銅メッキ部(図3(d)の流
路内壁層7)を放電電極として使用することにより、い
わゆるネオン管ができる。
As a specific example of the forming method, as shown in FIG. 4, when the electroless plating solution 21 and the pure water 22 are introduced into the minute flow path having the minute protrusions 23, the minute protrusions 23 are formed. As a boundary, a laminar flow is generated by the three liquids of the electroless plating liquid 21 and pure water 22, and these liquids do not mix with each other. Due to the generation of the laminar flow, electroless plated metal thin films are formed only on both sides of the flow path with each projection as a boundary. Electroless copper plating inlet 2 for microchannel structure with metal thin film formed
4, two electroless copper plating outlets 26 and pure water outlets 2
7 is sealed, and the pure water inlet 25 is evacuated by a vacuum pump. After that, a small amount of luminescent gas such as neon, argon, carbon dioxide gas, or an additive such as mercury necessary for light emission is introduced, and the pure water inlet 25 is sealed. Then, a so-called neon tube can be formed by using the copper-plated portion (the flow passage inner wall layer 7 in FIG. 3D) as a discharge electrode.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明するが、本発明はこれらの実施例のみに限
定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to these examples.

【0022】実施例1 微小流路樹脂成形体の作成は、図5に示すように厚さ8
mm直径200mmソーダガラス基板上にCr 20n
m、Au 100nmをDCスパッタ法により形成した
後、東京応化製8900Dレジスト8μmをスピンコー
ト法により塗布し、ガラス原盤を作成した。本ガラス原
盤上に、図6に示す幅50μm長さ50mmの直線パタ
ーンが形成されたフォトマスクを設置しUV露光装置に
より一括露光を行い、現像処理してパターニング処理を
行った。
Example 1 As shown in FIG. 5, a microchannel resin molded body was formed to a thickness of 8 mm.
mm diameter 200mm Cr 20n on soda glass substrate
m and Au 100 nm were formed by the DC sputtering method, and then 8 μm 8900D resist manufactured by Tokyo Ohka Co., Ltd. was applied by the spin coating method to prepare a glass master. A photomask on which a linear pattern having a width of 50 μm and a length of 50 mm shown in FIG. 6 was formed was placed on the glass master plate, batch exposure was performed by a UV exposure device, and development processing was performed for patterning processing.

【0023】次に、パターニング処理して金薄膜面が露
出した部分をヨウ素・ヨウ化アンモニウム混合液により
エッチングしCr面を露出させる。Cr薄膜は硝酸セリ
ウム硝酸2アンモニウムセリウム Ce(NH42(N
36溶液によりエッチング処理しガラス面を露出させ
た。該ガラス原盤を50%フッ酸水溶液に10分浸漬さ
せ、図7に示すような幅250μm 深さ100μmの
流路を形成した後、エッチングマスク膜である8900
D、Au、Crを除去しガラス面のみ露出したガラス原
盤を作成した。該ガラス原盤にNi薄膜をDCスパッタ
により800nm形成した後、スルファミン酸Ni電鋳
液に浸漬し電気鋳造法により300μmのNiスタンパ
を作成した。該Niスタンパを用い射出成形法によりP
C樹脂成形体を作成した。
Next, the portion where the gold thin film surface is exposed by patterning is etched with a mixed solution of iodine / ammonium iodide to expose the Cr surface. The Cr thin film is cerium nitrate diammonium cerium Ce (NH 4 ) 2 (N
The glass surface was exposed by etching with an O 3 ) 6 solution. The glass master was dipped in a 50% hydrofluoric acid aqueous solution for 10 minutes to form a channel having a width of 250 μm and a depth of 100 μm as shown in FIG.
D, Au, and Cr were removed to prepare a glass master plate in which only the glass surface was exposed. A Ni thin film having a thickness of 800 nm was formed on the glass master by DC sputtering, and then immersed in a Ni sulfamate electroforming solution to prepare a 300 μm Ni stamper by an electroforming method. P using an injection molding method using the Ni stamper
A C resin molded body was prepared.

【0024】パターニング処理された樹脂成形基板に、
予め所定の位置に0.5mm径の貫通穴を作成した厚さ
100μmのPC樹脂製カバー体を145℃雰囲気下に
おいて加圧溶着した。中空構造となった樹脂成形体の送
入出ポート とキャピラリーチューブ をO−リングを
介したアダプターにより接続し、シリンジポンプにより
UV硬化樹脂である三菱レーヨン製SD−318を注入
した。SD−318が微小流路内全体に行き渡るのを確
認した後、シリンジ内のSD−318の代わりに窒素ガ
スを充填して微小流路内を窒素パージした。流路内を窒
素パージした状態でUV光を10分間露光して流路壁面
に付着したSD−318を光硬化させた。図8に流路断
面構造の拡大図を示す。
On the patterned resin-molded substrate,
A PC resin cover body having a thickness of 100 μm and having a through hole with a diameter of 0.5 mm formed in advance at a predetermined position was pressure-welded in a 145 ° C. atmosphere. An inlet / outlet port of the resin molded body having a hollow structure and a capillary tube were connected by an adapter via an O-ring, and a UV-curing resin SD-318 manufactured by Mitsubishi Rayon was injected by a syringe pump. After confirming that SD-318 spreads throughout the microchannel, nitrogen gas was filled instead of SD-318 in the syringe to purge the microchannel with nitrogen. With the interior of the channel purged with nitrogen, UV light was exposed for 10 minutes to photo-cure SD-318 adhering to the channel wall surface. FIG. 8 shows an enlarged view of the channel cross-sectional structure.

【0025】作成した微小流路に酢酸エチルを流速10
0μl/min、送液圧力1MPaで1時間連続送液を
実施したが微小流路に化学的変化及びカバー層の破損は
発生しなかった。
A flow rate of ethyl acetate of 10 was applied to the created microchannel.
Continuous liquid feeding was carried out for 1 hour at 0 μl / min and a liquid feeding pressure of 1 MPa, but no chemical change in the minute channel and damage to the cover layer occurred.

【0026】比較例1 実施例1で作成したパターニング処理された樹脂成形基
板に、予め所定の位置に0.5mm径の貫通穴を作成し
た厚さ100μmのPC樹脂製カバー体を145℃雰囲
気下において加圧溶着した。本微小流路成形体にUV硬
化樹脂による流路壁面コートを実施しない状態におい
て、酢酸エチルを流速50μl/minにて送液したと
ころ、瞬時に微小流路が白濁し、最終的に熱溶着したシ
ートが溶解し、液洩れが発生した。また、純水を流速1
00μl/min、送液圧力1MPaで送液したところ
流路部分でのカバーが剥離した。
Comparative Example 1 A 100 μm-thick PC resin cover body having a 0.5 mm diameter through hole formed in a predetermined position in advance on the patterned resin-molded substrate prepared in Example 1 was placed under an atmosphere of 145 ° C. Was pressure welded. When ethyl acetate was fed at a flow rate of 50 μl / min in a state where the channel wall surface coating with the UV curable resin was not performed on this minute channel molded body, the minute channels instantly became cloudy and finally heat-welded. The sheet melted and liquid leakage occurred. In addition, pure water flow rate 1
When the liquid was sent at 00 μl / min and the sending pressure was 1 MPa, the cover in the flow path portion was peeled off.

【0027】実施例2 実施例1で作成したパターニング処理された樹脂成形基
板に、予め所定の位置に0.5mm径の貫通穴を作成し
た厚さ100μmのPC樹脂製カバー体を145℃雰囲
気下・加圧状態において2時間45分放置して溶着し
た。本微小流路構造体にAu無電界メッキ溶液を流速1
00μl/minにて5分間送液した後、基板断面を破
断し、SEM(2次電子顕微鏡)にて断面観察を実施し
た結果、流路壁面にAu薄膜が形成されていることを確
認した。本微小流路成形体に酢酸エチルを流速100μ
l/minで送液したが微小流路に化学的変化は現れな
かった。
Example 2 A 100 μm thick PC resin cover body having through holes of 0.5 mm diameter formed in advance at predetermined positions was formed on the patterned resin-molded substrate prepared in Example 1 under an atmosphere of 145 ° C. -It was left standing for 2 hours and 45 minutes under pressure to be welded. A flow rate of Au electroless plating solution was applied to the microchannel structure 1
After sending the solution at 00 μl / min for 5 minutes, the substrate cross section was broken, and the cross section was observed by SEM (secondary electron microscope). As a result, it was confirmed that an Au thin film was formed on the wall surface of the channel. Ethyl acetate flow rate 100μ to this microchannel molding
The solution was fed at 1 / min, but no chemical change appeared in the microchannel.

【0028】実施例3 実施例1で作成した射出成形体基板及び予め所定の位置
に0.5mm径の貫通穴を作成した厚さ100μmのP
C樹脂製カバー体の双方の接着面側に三菱レーヨン製S
D−318UV硬化樹脂をスピンコート法により塗布し
た。塗布面を貼り合わせた後UVランプにより10分間
露光して硬化させた。本微小流路成形体に酢酸エチルを
流速100μl/minで送液したが微小流路に化学的
変化は現れなかった。
Example 3 An injection-molded body substrate prepared in Example 1 and a P layer having a thickness of 100 μm in which a through hole having a diameter of 0.5 mm was previously formed at a predetermined position.
Mitsubishi Rayon S on both sides of the C resin cover
D-318 UV curable resin was applied by spin coating. After the coated surfaces were stuck together, they were exposed to a UV lamp for 10 minutes to be cured. Ethyl acetate was fed to the microchannel molded body at a flow rate of 100 μl / min, but no chemical change appeared in the microchannel.

【0029】実施例4 実施例1で作成した微小流路構造体にAu無電界メッキ
溶液を流速100μl/minにて5分間送液した後、
基板断面を破断し、SEM(2次電子顕微鏡)にて断面
観察を実施した結果、流路壁面にSD−318/Au薄
膜の多層構造が円筒状に形成されていることを確認し
た。本微小流路内に酢酸エチル溶液を流速100μl/
minで送液したが微小流路に化学的変化は現れなかっ
た。
Example 4 After the Au electroless plating solution was fed to the microchannel structure prepared in Example 1 at a flow rate of 100 μl / min for 5 minutes,
As a result of rupturing the cross section of the substrate and observing the cross section with an SEM (secondary electron microscope), it was confirmed that a multilayer structure of the SD-318 / Au thin film was formed in a cylindrical shape on the wall surface of the flow channel. A flow rate of 100 μl of ethyl acetate solution in the microchannel /
Although the solution was sent at a min, no chemical change appeared in the microchannel.

【0030】実施例5 実施例1で作成したパターニング処理された樹脂成形基
板上に図9に示すような成膜マスクを設置した。本手法
を用いて流路部分から0.5mmの幅内にSiO2薄膜
をRFスパッタ方法により200nm成膜した。同様に
カバー体にも同一マスクを設置し、SiO2薄膜を20
0nm形成した。上記手法により作成した樹脂成形基板
とカバー体のSiO2薄膜パターンを一致するように挟
み込み、145℃雰囲気下・加圧状態で2時間45分放
置して溶着を実施した。本微小流路内に酢酸エチル溶液
を流速100μl/minで送液したが微小流路に化学
的変化は生じなかった。
Example 5 A film forming mask as shown in FIG. 9 was set on the patterned resin-molded substrate prepared in Example 1. Using this method, a SiO 2 thin film was formed to a thickness of 200 nm within a width of 0.5 mm from the flow path by the RF sputtering method. Similarly, the same mask is placed on the cover body, and the SiO 2 thin film
It was formed to 0 nm. The resin-molded substrate prepared by the above method and the SiO 2 thin film pattern of the cover body were sandwiched so as to coincide with each other, and left standing for 2 hours and 45 minutes in a pressurized state at 145 ° C. to perform welding. An ethyl acetate solution was fed into the microchannel at a flow rate of 100 μl / min, but no chemical change occurred in the microchannel.

【0031】実施例6 実施例1で作成したパターニング処理された樹脂成形基
板上に図9に示すような成膜マスクを設置した。本手法
を用いて流路部分から0.5mmの幅内にNiCr薄膜
をDCスパッタ方法により500nm成膜した。同様に
カバー体にも同一マスクを設置し、NiCr薄膜を50
0nm形成した。上記手法により作成した樹脂成形基板
とカバー体のNiCr薄膜パターンを一致するように挟
み込み、145℃雰囲気下・加圧状態で2時間45分放
置して溶着を実施した。流路の入出力ポート部に露出し
たNiCr薄膜上に配線を施し、電圧を印可して純水が
80℃になることを確認した。
Example 6 A film forming mask as shown in FIG. 9 was placed on the patterned resin-molded substrate prepared in Example 1. Using this method, a NiCr thin film was formed in a width of 0.5 mm from the flow path portion to a thickness of 500 nm by the DC sputtering method. Similarly, the same mask is placed on the cover body, and the NiCr thin film
It was formed to 0 nm. The resin-molded substrate prepared by the above method and the NiCr thin film pattern of the cover body were sandwiched so as to coincide with each other, and left standing for 2 hours and 45 minutes in a pressured state at 145 ° C. for welding. Wiring was applied on the NiCr thin film exposed at the input / output port of the flow channel, and voltage was applied to confirm that pure water reached 80 ° C.

【0032】実施例7 図10に示すような流路底部に凸部を有するパターンを
樹脂成形基板上に作成し、入出力流路の幅100μm深
さ100μm長さ15mmを3つ、幅300μm深さ1
00μm長さ40mmの合流流路を得た。この3つの流
路の両脇流路にCu無電界液を100μl/min、中
央流路に純水を100μl/min 5min間同時送
液することにより中央流路の両脇部分にのみCu薄膜層
の形成を確認した。本微小流路構造体の図10中、1、
3のポートに電圧を印可できるように電気配線を施し、
水酸化ナトリウム水溶液を100μl/minで送液
し、電圧を印可した。ポート1'、2'、3'に水素及び
酸素の混合気体の発生を確認した。
Example 7 A pattern having a convex portion at the bottom of the flow channel as shown in FIG. 10 was formed on a resin molded substrate, and the width of the input / output flow channel was 100 μm, the depth was 100 μm, the length was 15 mm, and the width was 300 μm. 1
A confluent channel having a length of 00 μm and a length of 40 mm was obtained. A Cu thin film layer was formed on both sides of the central channel by simultaneously sending Cu electroless liquid to both sides of the three channels at 100 μl / min and pure water to the central channel at 100 μl / min for 5 minutes. Formation was confirmed. In FIG. 10 of the present microchannel structure, 1,
Make electrical wiring so that voltage can be applied to the 3rd port,
A sodium hydroxide aqueous solution was sent at 100 μl / min to apply a voltage. Generation of a mixed gas of hydrogen and oxygen was confirmed at ports 1 ', 2', and 3 '.

【0033】[0033]

【発明の効果】本発明の微小流路構造体は、微小流路が
形成された基板とカバー体の貼り合わせて得られる微小
流路内壁面の表面の全体あるいは一部に基板材料及びカ
バー体材料と異なるあるいは同一の少なくとも一種類以
上の材質が層状に構成されており、液体あるいは気体ガ
ス等の流体による流路壁面の腐蝕防止、液圧・ガス圧に
よる流路強度の向上、さらには触媒反応等の化学反応の
促進が可能となる。また、微小流体を構造体内部に密閉
した構造をとる場合にはいわゆるネオン管等への適用も
可能となり、産業上有用である。
The microchannel structure of the present invention has a substrate material and a cover body on the whole or part of the surface of the inner wall surface of the microchannel obtained by bonding the substrate on which the microchannel is formed and the cover body. At least one type of material that is different from or the same as the material is formed into a layered structure, which prevents corrosion of the flow channel wall surface by a fluid such as a liquid or gas gas, improves the flow channel strength by liquid pressure / gas pressure, and further catalyses. It is possible to promote a chemical reaction such as a reaction. In addition, when a structure in which a microfluid is sealed inside a structure is adopted, it can be applied to so-called neon tubes and the like, which is industrially useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】微小流路構造の一例を示す図である。FIG. 1 is a diagram showing an example of a microchannel structure.

【図2】導入口及び排出口を2つ有する微小構造体を示
す図である。
FIG. 2 is a diagram showing a microstructure having two inlets and two outlets.

【図3】微小流路の各種断面構造を示す図である。FIG. 3 is a diagram showing various sectional structures of a minute channel.

【図4】図3(d)の微小流路を形成するための説明図
である。
FIG. 4 is an explanatory diagram for forming the minute channel of FIG. 3 (d).

【図5】微小流路構造体の作成手法を示す図である。FIG. 5 is a diagram showing a method for producing a micro channel structure.

【図6】一括露光時に使用するマスクを示す図である。FIG. 6 is a diagram showing a mask used for collective exposure.

【図7】微小流路構造体を示す図である。FIG. 7 is a diagram showing a minute channel structure.

【図8】微小流路の断面構造を示す図である。FIG. 8 is a diagram showing a cross-sectional structure of a minute channel.

【図9】成膜時に使用するスパッタマスクを示す図であ
る。
FIG. 9 is a diagram showing a sputter mask used during film formation.

【図10】実施例7における微小流路構造体を示す図で
ある。
FIG. 10 is a diagram showing a minute channel structure in Example 7.

【符号の説明】[Explanation of symbols]

1:微小流路 2:カバー体 3:微小流路基板 4:導入口 5:排出口 6:貫通孔 7:流路内壁層 8:基板 9:ソーダガラス 10:フォトレジスト 11:金属薄膜層Cr/Au 12:表面用フォトマスク 13:Ni 14:表面用スタンパ 15:金型 16:樹脂 17:凹凸パターンが形成された基板 18:カバー体(PC樹脂製) 19:PC樹脂 20:UV硬化樹脂層 21:無電界銅メッキ液 22:純水 23:微小突起 24:無電界銅メッキ液導入口 25:純水導入口 26:無電界銅メッキ液排出口 27:純水排出口 1: Micro flow path 2: Cover body 3: Microchannel substrate 4: Inlet 5: outlet 6: Through hole 7: Channel inner wall layer 8: Substrate 9: Soda glass 10: Photoresist 11: Metal thin film layer Cr / Au 12: Photomask for surface 13: Ni 14: Surface stamper 15: Mold 16: Resin 17: Substrate on which uneven pattern is formed 18: Cover body (made of PC resin) 19: PC resin 20: UV curable resin layer 21: Electroless copper plating solution 22: Pure water 23: Small protrusion 24: Electroless copper plating solution inlet 25: Pure water inlet 26: Electroless copper plating solution discharge port 27: Pure water outlet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 31/20 G01N 31/20 // G01N 37/00 101 37/00 101 (72)発明者 西澤 恵一郎 神奈川県横浜市保土ヶ谷区東川島町34−17 Fターム(参考) 2G042 HA02 HA10 4F100 AA17B AB01B AB16 AG00 AK01B AK45 AS00B AT00A BA02 BA07 DA11 EC03 EH66 EJ17 GB90 JB02 JK01 4G075 AA39 BA10 BB03 BB05 BB10 EE12 EE23 EE31 FA01 FB02 FB04 FB06 FB12 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 31/20 G01N 31/20 // G01N 37/00 101 37/00 101 (72) Inventor Keiichiro Nishizawa 2F042 HA02 HA10 4F100 AA17B AB01B AB16 AG00 AK01B AK45 AS00B AT00A BA02 BA07 DA11 EC03 EH66 EJ17 GB90 JB02 EE03 FA10 BB23EE01 FA12 BB23EE10 FA03BB01EE01 FA02 BB23EE05 FABBBBBEEEE FB12

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】内部に流体を充填又は移動させるための微
小流路を有し、かつ、該微小流路の内壁面が1種以上の
材質からなる層構造となっていることを特徴とする微小
流路構造体。
1. A micro-channel for filling or moving a fluid therein, and an inner wall surface of the micro-channel has a layered structure made of one or more kinds of materials. Micro channel structure.
【請求項2】微小流路構造体が、微小流路を有する基板
とカバー体を重ねあわせて形成されてなることを特徴と
する請求項1記載の微小流路構造体。
2. The minute channel structure according to claim 1, wherein the minute channel structure is formed by stacking a substrate having minute channels and a cover body.
【請求項3】層構造が、微小流路を有する基板及びカバ
ー体の表面の全体あるいは一部に形成されていることを
特徴とする請求項2記載の微小流路構造体。
3. The microchannel structure according to claim 2, wherein the layered structure is formed on all or part of the surfaces of the substrate and the cover body having the microchannel.
【請求項4】層構造の全体あるいは一部が、高分子材料
により形成されていることを特徴とする請求項1〜3の
いずれかに記載の微小流路構造体。
4. The microchannel structure according to claim 1, wherein all or part of the layer structure is made of a polymer material.
【請求項5】層構造の全体あるいは一部が、1種以上の
金属類及び/又は金属化合物で形成されていることを特
徴とする請求項1〜3のいずれかに記載の微小流路構造
体。
5. The microchannel structure according to claim 1, wherein all or part of the layer structure is formed of one or more kinds of metals and / or metal compounds. body.
【請求項6】流体を導入するための導入口及び流体を排
出するための排出口を備えることを特徴とする請求項1
〜5のいずれかに記載の微小流路構造体。
6. An inlet for introducing a fluid and an outlet for discharging the fluid are provided.
6. The microchannel structure according to any one of 5 to 5.
【請求項7】微小流路の端を封止してなることを特徴と
する請求項1〜5のいずれかに記載の微小流路構造体。
7. The fine channel structure according to claim 1, wherein the end of the fine channel is sealed.
JP2001252707A 2001-08-23 2001-08-23 Manufacturing method of microchannel structure Expired - Fee Related JP4192450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252707A JP4192450B2 (en) 2001-08-23 2001-08-23 Manufacturing method of microchannel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252707A JP4192450B2 (en) 2001-08-23 2001-08-23 Manufacturing method of microchannel structure

Publications (2)

Publication Number Publication Date
JP2003062797A true JP2003062797A (en) 2003-03-05
JP4192450B2 JP4192450B2 (en) 2008-12-10

Family

ID=19081139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252707A Expired - Fee Related JP4192450B2 (en) 2001-08-23 2001-08-23 Manufacturing method of microchannel structure

Country Status (1)

Country Link
JP (1) JP4192450B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211857A (en) * 2004-02-02 2005-08-11 National Food Research Institute Resin-made microchannel substrate and its manufacturing method
JP2005270925A (en) * 2004-03-26 2005-10-06 Chisso Corp Microchannel system
WO2005107939A1 (en) * 2004-05-10 2005-11-17 Hitachi, Ltd. Equipment using piezoelectric device
JP2006181525A (en) * 2004-12-28 2006-07-13 Dainippon Ink & Chem Inc Micro device and method for treating inside surface thereof
JP2008044376A (en) * 2003-03-07 2008-02-28 Tosoh Corp Member and manufacturing process for manufacturing minute flow channel structure
WO2008087799A1 (en) * 2007-01-18 2008-07-24 Konica Minolta Opto, Inc. Microchip and method for manufacturing the microchip
WO2010021306A1 (en) * 2008-08-20 2010-02-25 コニカミノルタオプト株式会社 Method for manufacturing micro-channel chip, die for molding micro-channel chip, and micro-channel chip
JP2010216445A (en) * 2009-03-19 2010-09-30 Sekisui Chem Co Ltd Micro-pump device
JPWO2009101850A1 (en) * 2008-02-15 2011-06-09 コニカミノルタオプト株式会社 Microchip manufacturing method and microchip
KR20110079222A (en) * 2009-12-31 2011-07-07 삼성전자주식회사 Microelectromechanical system device for terahertz oscillator and manufacturing method of the same
JP2018505038A (en) * 2014-11-11 2018-02-22 エイチ.シー. スターク インコーポレイテッド Microreactor system and microreactor method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552984B2 (en) * 2003-03-07 2010-09-29 東ソー株式会社 Member and manufacturing method for manufacturing microchannel structure
JP2008044376A (en) * 2003-03-07 2008-02-28 Tosoh Corp Member and manufacturing process for manufacturing minute flow channel structure
JP4520166B2 (en) * 2004-02-02 2010-08-04 独立行政法人農業・食品産業技術総合研究機構 Resin microchannel substrate and manufacturing method thereof
JP2005211857A (en) * 2004-02-02 2005-08-11 National Food Research Institute Resin-made microchannel substrate and its manufacturing method
JP4645053B2 (en) * 2004-03-26 2011-03-09 チッソ株式会社 Micro channel system
JP2005270925A (en) * 2004-03-26 2005-10-06 Chisso Corp Microchannel system
WO2005107939A1 (en) * 2004-05-10 2005-11-17 Hitachi, Ltd. Equipment using piezoelectric device
JP2006181525A (en) * 2004-12-28 2006-07-13 Dainippon Ink & Chem Inc Micro device and method for treating inside surface thereof
WO2008087799A1 (en) * 2007-01-18 2008-07-24 Konica Minolta Opto, Inc. Microchip and method for manufacturing the microchip
JP5239871B2 (en) * 2007-01-18 2013-07-17 コニカミノルタアドバンストレイヤー株式会社 Microchip and manufacturing method of microchip
JPWO2009101850A1 (en) * 2008-02-15 2011-06-09 コニカミノルタオプト株式会社 Microchip manufacturing method and microchip
WO2010021306A1 (en) * 2008-08-20 2010-02-25 コニカミノルタオプト株式会社 Method for manufacturing micro-channel chip, die for molding micro-channel chip, and micro-channel chip
US8377362B2 (en) 2008-08-20 2013-02-19 Konica Minolta Opto, Inc. Method for manufacturing micro-channel, die for molding micro-channel chip, and micro-channel chip
JP2010216445A (en) * 2009-03-19 2010-09-30 Sekisui Chem Co Ltd Micro-pump device
JP2011139433A (en) * 2009-12-31 2011-07-14 Samsung Electronics Co Ltd Mems element for terahertz oscillator, and method of manufacturing the same
KR20110079222A (en) * 2009-12-31 2011-07-07 삼성전자주식회사 Microelectromechanical system device for terahertz oscillator and manufacturing method of the same
KR101710714B1 (en) * 2009-12-31 2017-02-27 삼성전자주식회사 Microelectromechanical System Device for Terahertz Oscillator and Manufacturing Method of the Same
JP2018505038A (en) * 2014-11-11 2018-02-22 エイチ.シー. スターク インコーポレイテッド Microreactor system and microreactor method
JP2020073276A (en) * 2014-11-11 2020-05-14 エイチ.シー. スターク インコーポレイテッド Microreactor system and microreactor method

Also Published As

Publication number Publication date
JP4192450B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
AU2001284700B2 (en) Methods and devices for high throughput fluid delivery
JP2003062797A (en) Micro flow path structure
US7282705B2 (en) Microdevice having an annular lining for producing an electrospray emitter
US6623613B1 (en) Microfabricated liquid sample loading system
JP4013671B2 (en) Polymerase chain reaction vessel and method for producing the same
US20070086898A1 (en) Microfluidic device utilizing magnetohydrodynamics and method for fabrication thereof
JP4317340B2 (en) Small analysis system
US20040206399A1 (en) Microfluidic devices and methods
AU2001284700A1 (en) Methods and devices for high throughput fluid delivery
CN110496657B (en) Microfluidic chip capable of forming liquid metal droplets and preparation method thereof
JP2005257283A (en) Microchip
US20060027458A1 (en) Capillary electrophoresis devices and processes for manufacturing same
WO2009105036A1 (en) Method of making a multilayer substrate with embedded metallization
US7147441B2 (en) Microfluidics and small volume mixing based on redox magnetohydrodynamics methods
JP2008132410A (en) Device for fractionizing trace of liquid
JP2009047438A (en) Micro flow-path chip
JP4410040B2 (en) Microfluidic control mechanism and microchip
US20070240773A1 (en) Methods and devices for high throughput fluid delivery
JP5598432B2 (en) Microchannel device manufacturing method and microchannel chip
JP2004202476A (en) Particle production method and microchannel structure therefor
JP2006122736A (en) Channel structure and its manufacturing method
JP2008039624A (en) Cell electrophysiologic sensor and its manufacturing method
US20030232450A1 (en) Microfluidic device and method for producing the same
CN112816535B (en) Patterned electrode, and preparation method and application thereof
JP4462241B2 (en) Cell electrophysiological sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees