WO2005106558A1 - レーザ集光光学系 - Google Patents

レーザ集光光学系 Download PDF

Info

Publication number
WO2005106558A1
WO2005106558A1 PCT/JP2005/007995 JP2005007995W WO2005106558A1 WO 2005106558 A1 WO2005106558 A1 WO 2005106558A1 JP 2005007995 W JP2005007995 W JP 2005007995W WO 2005106558 A1 WO2005106558 A1 WO 2005106558A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
condensing
laser
light
lens group
Prior art date
Application number
PCT/JP2005/007995
Other languages
English (en)
French (fr)
Inventor
Yukio Eda
Sadashi Adachi
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004132994A external-priority patent/JP4544904B2/ja
Priority claimed from JP2004132996A external-priority patent/JP4528023B2/ja
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP05736657A priority Critical patent/EP1717623A4/en
Publication of WO2005106558A1 publication Critical patent/WO2005106558A1/ja
Priority to US11/512,509 priority patent/US7439477B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/04Objectives involving mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens

Definitions

  • the present invention relates to a laser focusing optical system that focuses laser light on different portions in a medium.
  • the present invention relates to an optical system capable of changing a light source position while keeping a light amount and a light amount distribution incident on a pupil plane of the optical system.
  • the present invention relates to an optimal optical system capable of converging light to a portion having a different depth in a medium or an optical system suitable for changing a condensing position.
  • a microscope correction ring with a magnification of about 40 times and a numerical aperture NA (Numerical Aperture) of 0.93 is excellently corrected over an ultra-wide field of view, and there is little deterioration in performance due to variations in cover glass thickness.
  • NA numerical aperture
  • an optical system that corrects spherical aberration by moving a spherical aberration correction optical system having an infinite combined focal length (No Power Lens) in the optical axis direction is also known (for example, see Patent Document 2).
  • Patent Document 1 JP-A-5-119263 (Fig. 1 etc.)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-175497 (FIG. 1 etc.)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-83428 (FIG. 1 etc.)
  • the spherical aberration correction lens 252 can be moved in the optical axis direction to correct spherical aberration.
  • the diameter of the light beam incident on the objective lens 250 changes with the movement of the aberration correction lens 252. I will do it.
  • the spread of the light beam changes. Therefore, as shown in FIG. 33, the light amount changes, and the brightness on the sample surface changes.
  • the brightness of the image is detected, and the power of the light source is changed according to the brightness.
  • the brightness can be made constant by controlling the brightness on the image side, but there is a problem that the device configuration becomes complicated.
  • the light amount distribution may be changed. There has been a problem that the light-collecting performance changes due to such a change in the light amount distribution. Further, it takes a long time to move the spherical aberration correcting lens based on the electric signal from the image acquisition means.
  • the present invention has been made in view of the above circumstances, and provides a laser focusing optical system that can easily perform spherical aberration correction with a simple configuration without any trouble.
  • the present invention employs the following means.
  • the laser condensing optical system of the present invention comprises: a laser light source for emitting laser light; and a laser light source disposed between the laser light source and a medium, condensing the laser light in the medium and light from the condensing point.
  • a laser divergence point moving means movable along the optical axis of the laser light according to a refractive index of the medium for condensing the laser light and a distance from a surface of the medium to a position for condensing the laser light; Is provided.
  • the laser light emitted from the laser light source is condensed in the medium by the condensing optical system, and the condensing point force can be re-condensed. Enables the detection of the refocused light.
  • the laser light is incident on the focusing optical system in a divergent light state (non-parallel light flux state). That is, the light is emitted from the laser light source in a divergent light state, or emitted from the laser light source in a parallel light flux state, converted into a divergent light state by an optical system such as various lenses, and is incident on the condensing optical system.
  • the position (point) at which the laser light enters the diverging light state is defined as the diverging point.
  • the position of the laser divergence point and the photodetector are determined by the laser divergence point moving means according to the refractive index of the medium to be condensed and the distance from the surface of the medium to the position to be condensed.
  • Position is moved along the optical axis of the laser beam, so that even if the laser beam is focused at different depths in the medium, the amount of spherical aberration generated at each position is minimized. Can be suppressed. Therefore, the laser light can be efficiently condensed to a desired depth of the medium, and the light condensing performance can be improved.
  • Scanning means may be provided that can scan the laser light in a direction orthogonal to the optical axis of the condensing optical system.
  • the laser divergence point moving means may set the position of the laser divergence point based on the wavefront data of the condensing optical system measured in advance.
  • the laser divergence point moving means may measure the wavefront data of the converging optical system measured in advance, for example, the wavefront data of the objective lens which is a part of the converging optical system, Since the position of the laser divergence point is set in consideration of the wavefront data of the entire system, the focusing performance and observation performance of the laser beam can be further improved.
  • An observation optical system is provided in cooperation with the condensing optical system and maintains a predetermined distance from the lower surface of the condensing optical system to the surface of the medium. It may be provided with an occass detection means or an auto-focus mechanism.
  • the distance from the lower surface of the light collecting optical system (the lower surface of the objective lens) to the surface of the medium can be maintained at a predetermined distance by the observation optical system.
  • the depth from the medium surface can be accurately controlled to a desired depth.
  • the relative distance in the optical axis direction between the light-collecting optical system and the surface of the medium is constant.
  • the present invention employs the following means.
  • the first aspect of the optical system of the present invention comprises: an emission unit that emits a light beam in a parallel light beam state; a light-collecting optical system that emits the light beam; A first lens group, which is movably arranged along the optical axis direction of the light beam, and is constituted by one or more lenses; and a first lens group and the condensing optical system.
  • a second lens group fixedly disposed in the light beam between the second lens group and one or more lenses; and moving the first lens group according to a distance to a position where the light beam is emitted.
  • a moving means wherein a rear focal position of the second lens group is disposed at least near an entrance pupil position of the condensing optical system.
  • the light beam emitted in a parallel light beam state by the emission means is refracted by the first lens group and the second lens group, respectively, and then enters the light collecting optical system and is collected.
  • the light source position can be moved in the optical axis direction by moving the first lens group in the optical axis direction by the moving means. That is, by moving the first lens group, the light source position can be changed in view of the power of the second lens group, and further, the light source position can be substantially changed in view of the power of the condensing optical system.
  • the light beam incident on the first lens group is in a parallel light beam state, the light amount distribution in the pupil plane can be made constant. Therefore, a change in the light collecting performance can be suppressed.
  • the first lens (first lens group) is arranged in a parallel light beam, and even if this first lens moves along the optical axis, the first lens (first lens group) If the distance (s) of the incident light beam from the optical axis is constant, the angle (q) of the light beam after passing through the first lens does not change (is parallel). The rays whose angles do not change (parallel) converge (always pass) at one point on the rear focal plane of the second lens (second lens group).
  • the parallel luminous flux incident on the first lens is independent of the position of the first lens.
  • the beam diameter always becomes the same, and the light is converged without being shaken by the converging optical system.
  • the light condensing position of the light condensing optical system can be moved in the optical axis direction. Furthermore, the second lens group does not change the diameter of the light beam incident on the condensing optical system.
  • the rear focal position of the second lens (second lens group) is made to coincide with the entrance pupil position of the condensing optical system, so that the change in light amount at the condensing position and A force that can make the change in the light intensity distribution in the pupil plane substantially zero.
  • These two positions are positioned close to each other (that is, the rear focal position of the second lens is set to the position of the entrance pupil position of the condenser optical system) At least in the vicinity), an equivalent effect can be obtained. This will be described more specifically with reference to FIG.
  • the rear focal position of the second lens (second lens group) and the input of the focusing optical system The amount of deviation from the pupil position is dl, the focal length of the second lens is f2, and the rate of change of the diameter of the luminous flux incident on the converging optical system when the first lens (first lens group) moves (second (Based on the luminous flux diameter at the rear focal position of the lens) is x%,
  • the configuration can be simplified, and the spherical aberration can be easily corrected without any trouble.
  • the configuration can be simplified and the cost can be reduced.
  • the condensing optical system condenses the light flux in a medium, and the moving unit converges the light beam according to a refractive index of the medium to converge and a distance from a surface of the medium to a position to converge. You can move one lens group.
  • the moving means moves the first lens group in accordance with the refractive index of the medium to be condensed and the distance from the surface of the medium to the position where the light is condensed, so that the surface force of the medium can be more accurately determined.
  • the light flux can be condensed to a desired depth, and the amount of spherical aberration generated can be further reduced. Therefore, the light collection performance can be improved.
  • the emission unit may include a laser light source that emits a laser beam.
  • An optical tweezers optical system having the optical system may be employed. [0027] If the focusing distance between the first lens group and the second lens group is I f I, the moving means may move the first lens group to a position satisfying the following expression. Good.
  • the second lens group may satisfy the following expression.
  • the first lens group and the second lens group may satisfy the following equation! / ,.
  • the first lens group and the second lens group may satisfy the following equation! / ,.
  • a second aspect of the optical system of the present invention is a laser light source that emits laser light; and a parallel light beam unit that converts the light beam of the laser light emitted from the laser light source into a parallel light beam;
  • Scanning means capable of scanning in a direction perpendicular to the direction; a photodetector arranged at a position conjugate with the laser light source and detecting the light re-condensed by the condensing optical system; and A first lens group that is disposed in the parallel light beam between the light beam means and the light-collecting optical system so as to be movable along the optical axis direction of the parallel light beam, and is configured by one or more lenses; A lens arranged in a fixed state in the parallel light flux between the first lens group and the condensing optical system, A second lens group constituted by an upper lens; moving means for moving the first lens group in accordance with a refractive index of the medium for emitting the laser light and a distance from a surface of the medium to a position where light is condensed. And a rear focal position of the second lens group is disposed at least near an entrance pupil position of the light-collecting optical system.
  • the laser light emitted from the laser light source is also emitted by the parallel light beam means.
  • the light After being converted into a parallel light beam and incident on the first lens group, refracted by the first lens group and the second lens group, the light is condensed into the medium by the condensing optical system and re-condensed. It is detected by a light detector.
  • the light source position can be moved in the optical axis direction by moving the first lens group in the optical axis direction by the moving means. That is, by moving the first lens group, the position of the light source viewed from the second lens group can be changed, and further, the substantial light source position viewed from the condensing optical system can be changed. . This makes it possible to minimize spherical aberration according to the depth in the medium.
  • the light beam incident on the first lens group is in a parallel light beam state, even if the first lens group is moved in the optical axis direction to refract the light beam at each position, the light beam is emitted at the same refraction angle. .
  • the second lens group since the rear focal position is arranged at least near the entrance pupil position of the condensing optical system, the light incident on the second lens group is surely converged on the condensing optical system.
  • the light is collected by
  • the first lens group in accordance with the distance to the position where the light is focused, the position where the light is incident on the second lens group can be changed. Can be suppressed as much as possible.
  • the second lens group ensures that the light can enter the focusing optical system without changing the light flux, so that changes in the light amount and changes in the light amount distribution in the pupil plane as in the past can be suppressed. Can be.
  • the amount of light incident on the light-collecting optical system can be kept constant, and the light amount distribution in the pupil plane can be kept constant, so that changes in brightness and light-collecting performance can be suppressed. Therefore, a change in the light collecting performance can be suppressed.
  • the amount of generation of spherical aberration can be suppressed as much as possible, light with less aberration can be re-focused to obtain an accurate observation image. Therefore, observation in the medium can be performed with high accuracy. Further, since the converging point can be scanned by the scanning means, observation can be performed over the entire area of the medium.
  • the scanning means may be a galvanomirror.
  • a third aspect of the optical system of the present invention is a laser light source that emits laser light; parallel light beam means that converts the light beam of the laser light emitted from the laser light source into a parallel light beam;
  • a photodetector for detecting the condensed light arranged in the parallel light beam between the parallel light beam means and the condensing optical system, movably disposed along the optical axis direction of the parallel light beam;
  • a first lens group composed of one or more lenses; arranged in a state fixed in the parallel light flux between the first lens group and the condensing optical system, and composed of one or more lenses.
  • a second lens group ; a refractive index and a medium table of the medium for condensing the laser light.
  • the first lens group and the second lens group may be insertable and removable from an optical path.
  • the relative distance in the optical axis direction between the condensing optical system and the surface of the medium may be constant.
  • a first aspect of the aberration correction optical system of the present invention is an optical system for condensing a light beam from a light source, wherein a plurality of lenses satisfying the following expression can be exclusively inserted into and removed from the optical path. Placed.
  • NA numerical aperture of light source (numerical aperture viewed from condensing lens)
  • a plurality of lenses satisfying the following expression are arranged in the convergent-divergent optical system so as to be insertable into and removable from the optical path.
  • NA numerical aperture of light source (numerical aperture viewed from condensing lens)
  • the laser scanning microscope of the present invention may include the above laser scanning optical system.
  • a plurality of lenses satisfying the following expression are arranged in the convergent-divergent optical system so that they can be inserted into and removed from the optical path.
  • NA numerical aperture of light source (numerical aperture viewed from condensing lens)
  • a second aspect of the aberration correction optical system of the present invention is a condensing optical system including a light source that emits a parallel light beam and an optical system that condenses a parallel light beam.
  • a plurality of satisfying lenses are arranged in the optical path so that they can be inserted and removed exclusively.
  • a plurality of lenses satisfying the following equation are arranged in the parallel light beam so that they can be inserted into and removed from the optical path exclusively.
  • a; entrance pupil diameter of condensing optical system [0045] Further, in the optical tweezers of the present invention, a plurality of lenses satisfying the following expression are arranged exclusively in the optical path so as to be detachable in the optical path in the parallel light flux.
  • the laser divergence point moving means sets the laser divergence point in accordance with the refractive index of the medium to be condensed and the distance from the surface of the medium to the position where the light is condensed. Therefore, the amount of occurrence of spherical aberration can be minimized at different positions in the medium at different depths. Therefore, the laser light can be efficiently condensed to a desired depth of the medium, and the light condensing performance can be improved.
  • the spherical aberration is small and light can be re-focused to obtain an accurate observation image, observation in the medium can be performed with high accuracy.
  • spherical aberration correction can be easily performed without any trouble as in the related art, and there is no need to provide a special optical system. And cost saving can be achieved.
  • the position of the light beam incident on the second lens group is changed by moving the first lens group according to the distance to the position where light is condensed in the medium. Since the position of the light source can be substantially changed as viewed from the condensing optical system, the amount of spherical aberration generated at a desired converging point can be minimized.
  • the second lens group whose rear focal position matches the entrance pupil position of the condensing optical system does not change the diameter of the light beam incident on the entrance pupil of the condensing optical system. And the change in the light amount distribution in the pupil plane can be suppressed. Therefore, it is possible to suppress a change in the light collecting performance.
  • the position of the light source can be changed only by moving the first lens group, the configuration can be simplified, and the spherical aberration can be easily corrected without any trouble. Wear.
  • FIG. 1 is a configuration diagram showing a laser focusing optical system according to a first embodiment of the present invention.
  • FIG. 2 is an example of a flowchart in a case where observation is performed by irradiating a laser beam to a position having a different surface force of a sample using the same laser focusing optical system.
  • FIG. 3 is a view showing a state in which laser light is applied to positions at different sample surface force depths by the same laser focusing optical system, where (a) shows a position 50 m from the sample surface and (b) ) Shows the irradiation at 75 ⁇ m from the specimen surface, and (c) shows the irradiation at 100 ⁇ m from the specimen surface.
  • FIG. 4 is an example of a flowchart in a case where the laser light is irradiated by the laser condensing optical system in consideration of the wavefront data of the condensing optical system.
  • FIG. 5 is a configuration diagram showing a laser focusing optical system according to a second embodiment of the present invention.
  • FIG. 6 is a configuration diagram showing another example of the laser focusing optical system according to the present invention.
  • FIG. 7 is a configuration diagram showing a laser focusing optical system according to a third embodiment of the present invention.
  • FIG. 8 is an example of a flowchart in the case where laser light is applied to positions at different sample surface force depths by the same laser focusing optical system.
  • FIG. 9 is a view showing a laser focusing optical system according to a fourth embodiment of the present invention, and is an example of a flowchart in a case where laser light is applied to positions at different sample surface force depths.
  • FIG. 10 is a view showing a state in which laser light is applied to positions at different sample surface force depths according to the flowchart shown in FIG. 9, where (a) is a position 50 m from the sample surface and (b) is a diagram 7 from sample surface
  • the position at 5 ⁇ m, (c) is a view irradiating the position 100 ⁇ m from the sample surface.
  • FIG. 11 is a diagram illustrating the operation and effect of the optical system according to the present invention, and is a diagram illustrating the positional relationship among a first lens, a second lens, and a condensing optical system.
  • FIG. 12 is a diagram showing a relationship between an entrance pupil position of the light-collecting optical system and a rear focal position of a second lens.
  • FIG. 13 is a configuration diagram showing an optical system according to a fifth embodiment of the present invention.
  • FIG. 14 is an example of a flowchart in the case of condensing a light beam at a desired position by the optical system.
  • FIG. 15 shows the first lens and the second lens described in the optical system according to the fifth embodiment of the present invention.
  • FIG. 16 is a configuration diagram showing a sixth embodiment of the optical system according to the present invention.
  • FIG. 17 is a configuration diagram showing a seventh embodiment of the optical system according to the present invention.
  • FIG. 18 is a specific configuration diagram of the first lens and the second lens described in the seventh embodiment of the optical system according to the present invention.
  • FIG. 19 is a configuration diagram showing an eighth embodiment of the optical system according to the present invention.
  • FIG. 20 is a configuration diagram showing a ninth embodiment of the optical system according to the present invention.
  • FIG. 22 is a specific configuration diagram of the first lens and the second lens described in the ninth embodiment of the optical system according to the present invention.
  • FIG. 23 is a configuration diagram showing a tenth embodiment of the optical system according to the present invention.
  • Fig. 24 is a diagram showing a state in which the laser light is condensed at different depths of the surface force of the medium by the same optical system, where (a) is a position 50 m from the surface and (b) is a surface.
  • Fig. 7 (c) shows the light condensing at a position 75 m from the surface and at a position 100 ⁇ m from the surface.
  • FIG. 25 is a view showing a modification of the optical system, showing an example of an optical system employing a two-dimensional galvanomirror.
  • Fig. 26 is a diagram showing an example in which the optical system according to the present invention is employed in an optical tweezers optical system.
  • Fig. 27 is a diagram illustrating an optical system in which a plurality of convex lenses are removably arranged in a divergent light beam.
  • FIG. 28 is a diagram showing an optical system in which a plurality of convex lenses are arranged in a convergent light beam so that they can be removed.
  • FIG. 29 is a diagram illustrating an optical system in which a plurality of concave lenses are removably arranged in a parallel light beam.
  • FIG. 30 is a diagram showing an optical system in which a parallel light beam is converted into convergent light by a convex lens, and a plurality of concave lenses are removably arranged in the convergent light.
  • FIG. 24 is a diagram showing an optical system in which a plurality of concave lenses are detachably combined with the optical system shown in FIG.
  • FIG. 32 is a view for explaining conventional correction of spherical aberration, and is a view showing an example of an optical system capable of moving a spherical aberration correction lens in the optical axis direction.
  • the laser condensing optical system 1 of the present embodiment includes a laser light source 2 for emitting a laser beam L in a divergent light state (non-parallel light beam state), a laser light source 2 and a sample (medium) 3. And a focusing optical system 4 for focusing the laser light L into the sample and refocusing the light of the focusing point force, and a focusing optical system disposed at a position conjugate with the laser light source 2.
  • a photodetector (photodetector) 5 pinhole detector) for detecting the light re-condensed by the optical optical system 4 through the pinhole 5A, and the position of the laser divergence point 6 of the laser light L, that is, the laser light source 2 Is moved along the optical axis of the laser beam L according to the refractive index of the sample 3 for condensing the laser light L and the distance from the sample surface (specimen surface) 3a to the condensing position. Move the possible laser divergence point moving means, pinhole 5A and photodetector 5 to the moved laser divergence point 6.
  • the sample 3 is placed on a stage (not shown) that can move in the X and Y directions.
  • the laser divergence point moving means is connected to a control unit, and is capable of moving the laser divergence point 6 by moving the laser light source 2 in response to a signal from the control unit.
  • the pinhole detector moving means is connected to the control unit, and is moved to a position conjugate to the laser divergence point 6 by a signal of the control unit force.
  • the control unit includes an input unit capable of inputting predetermined information, and a calculation unit that calculates a movement amount of the laser light source 2 based on each input information (input data) input by the input unit. According to the calculation result, a signal is sent to the laser diverging point moving means to move the laser diverging point moving means.
  • control unit In addition to the control of the laser divergence point moving means, the control unit simultaneously controls the laser light source 2 so as to emit the laser light L after the movement of the laser divergence point 6 is completed.
  • the condensing optical system 4 includes a half mirror 10 that reflects the laser light L emitted from the laser light source 2 so as to change the direction of the optical axis by 90 degrees, and a laser beam reflected by the half mirror 10.
  • An imaging lens 11 for converting the light L into a substantially parallel light; a first galvanometer mirror 12 for reflecting the laser light L at different angles so as to scan the sample surface 3a in one direction (X direction).
  • the laser light L passing through the first pupil relay optical system 13 and the first pupil relay optical system 13 for relaying the laser light L reflected by the first galvanomirror 12 is transmitted to the sample surface 3a in the other direction (
  • the laser beam L passing through the pupil relay optical system 15 is condensed in the sample, and an objective lens 16 for recondensing light having a condensing point is provided.
  • the first galvano mirror 12 and the second galvanomirror 14 have rotating shafts 12a and 14a, respectively, arranged at central positions so as to face in directions orthogonal to each other. It is configured to vibrate around an axis of 14a within a predetermined angle range. Due to this vibration, the laser beam L can be reflected at different angles as described above.
  • the combination of the two galvanometer mirrors 12 and 14 allows the laser beam L to be scanned in a direction (XY direction) orthogonal to the optical axis direction of the focusing optical system 4. That is, these galvanometer mirrors 12 and 14 function as the scanning means 7.
  • the vibration (operation) of the galvanomirrors 12 and 14 is controlled by the control unit.
  • the pinhole 5A and the photodetector 5 are arranged on the rear side of the half mirror 10, and are moved in the optical axis direction in synchronization with the movement of the laser light source 2 by a pinhole detector moving means controlled by the control unit. Become! /
  • a case will be described in which the laser condensing optical system 1 configured as described above observes positions at different depths from the sample surface 3a.
  • a case will be described in which, for example, observation is performed at positions of 50 m, 75 m, and 100 m from the sample surface 3a.
  • the refractive index of the sample 3 and the distance from the sample surface 3a to the position where light is collected That is, input of 50 ⁇ m and the numerical aperture NA (Numerical Aperture) of the condensing optical system 4 is performed (step Sl).
  • the calculation unit calculates the movement amount of the laser divergence point 6, that is, the movement amount of the laser light source 2, and calculates the distance to the sample surface 3a under the objective lens 16, that is, the WD value, based on the input data. (Step S2). After the calculation is completed, the control unit controls the laser divergence point moving means to move in the optical axis direction of the laser light L based on the calculation result, thereby moving the position of the laser light source 2 to a predetermined position and , The distance between the objective lens 16 and the specimen surface 3a ( WD: Work Distance) (step S3).
  • the control unit sends a signal to the laser light source 2 to emit the laser light L (Step S4).
  • the emitted laser light L is reflected by the half mirror 10, is converted into substantially parallel light by the imaging lens 11, and enters the first galvano mirror 12. Then, the light is reflected by the first galvanometer mirror 12 at different angles in the X direction of the sample surface 3a.
  • the reflected laser light L is reflected by the second galvanomirror 14 via the first pupil relay optical system 13 at different angles toward the Y direction of the sample surface 3a.
  • the reflected laser light L enters the objective lens 16 via the second pupil relay optical system 15. Then, as shown in FIG. 3A, the light is condensed by the objective lens 16 at a position 50 m from the sample surface 3a.
  • the position of the laser light source 2 that is, the position of the laser divergence point 6 is adjusted according to the depth of 50 m, the generation amount of spherical aberration at the position of 50 m depth is minimized.
  • the laser beam can be efficiently emitted to this position.
  • the light having a light condensing point is re-condensed by the objective lens 16, passes through the opposite optical path described above, and is detected by the photodetector 5 via the pinhole 5 A. That is, the light recondensed by the objective lens 16 passes through the second pupil relay optical system 15, is reflected by the second galvanometer mirror 14, passes through the first pupil relay optical system 13, and passes through the first pupil relay optical system 13. After the reflection by the galvanometer mirror 12, the passage through the imaging lens 11 and the transmission through the half mirror 10 in this order, the light is detected by the photodetector 5 via the pinhole 5A. The light re-condensed by the objective lens 16 is reflected by both galvanomirrors so as to pass through the same optical path as the optical path through which the laser light L has passed.
  • the photodetector 5 reduces errors. Observed images can be obtained. Therefore, high-precision observation can be performed. In particular, since the pinhole 5A and the photodetector 5 move in the direction of the optical axis in synchronization with the movement of the laser light source 2, an observation image of a light-collecting point with good contrast can be obtained by the confocal effect.
  • the laser beam L is scanned in the horizontal direction (XY direction) of the sample surface 3a by the two galvanometer mirrors 12, 14, observation can be performed over the entire visual field range. On this occasion In addition, scanning can be performed over the entire visual field without moving the specimen 3 side (stage side).
  • the control unit controls the laser light source 2 to move in the optical axis direction of the laser light L based on the calculation result, and moves the position of the laser light source 2 to a predetermined position.
  • the laser beam L is emitted, and the laser beam L is focused by the focusing optical system 4 at a position 75 m or 100 m from the sample surface 3a, and the light from the focusing point is again focused, Detected by photodetector 5 through pinhole 5A.
  • the position of the laser divergence point 6 is adjusted by moving the laser light source 2 according to the depth of 75 / zm or 100 / zm.
  • the amount of generation can be minimized, and the laser beam L can be efficiently condensed at a position of 75 m or 100 m as shown in (b) and (c) of FIG. Therefore, a high-precision observation image with few errors can be obtained.
  • the laser beam L is focused at different depths (50 m, 75 ⁇ m, and 100 ⁇ m) from the sample surface 3a.
  • the laser light source 2, that is, the laser divergence point 6 is moved along the optical axis by the laser divergence point moving means according to the refractive index of the sample 3 and the distance from the sample surface 3a to the position where light is condensed. Therefore, the amount of spherical aberration generated can be minimized, and the laser beam L can be efficiently condensed in an optimum state at each depth.
  • the laser light source 2 is only moved, spherical aberration correction can be easily performed without any trouble as in the related art.
  • a special optical system such as a conventional correction ring objective lens is not required, the configuration can be simplified and the cost can be reduced. You can make a stoir.
  • the laser light source 2 is merely moved, it is easy to perform continuous change, and it is easy to respond to automation.
  • the laser light source 2 by inputting the refractive index of the sample 3, the distance from the sample surface 3a to the light collecting position, and the NA of the light collecting optical system 4, the laser light source 2
  • the input data is not limited to those described above.
  • the wavefront data measured in advance of the focusing optical system 4 is further input to calculate the position of the laser light source 2. It doesn't matter.
  • the refractive index of the sample 3 when inputting various data to the input section (step S1 described above), the refractive index of the sample 3, the distance from the sample surface 3a to the light-collecting position, and the NA of the light-collecting optical system 4 And the wavefront data of the focusing optics 4 are input.
  • spherical aberration correction can be performed with high accuracy, the light-gathering performance of the laser beam L can be further improved, and an observation image with less errors can be obtained.
  • the wavefront data of the condensing optical system 4 may be, for example, the wavefront data of the objective lens 16 which is a part of the condensing optical system 4, or the wavefront data of the entire condensing optical system 4. You may use.
  • the pinhole 5A and the photodetector 5 are configured to be movable by the pinhole detector moving means, and only the pinhole 5A is moved to a position conjugate to the laser divergence point 6. May be.
  • FIG. 5 the pinhole detector moving means, the laser diverging point moving means, and the control means shown in FIG. 1 are omitted for the sake of clarity.
  • the difference between the second embodiment and the first embodiment is that in the first embodiment, the position of the laser divergence point 6 is adjusted by moving the laser light source 2 by the laser divergence point moving means.
  • the laser focusing optical system 20 of the embodiment adjusts the position of the laser divergence point by integrally moving the laser light source 2, the half mirror 10, the pinhole 5A, and the photodetector 5 by the laser divergence point moving means. It is a point which is comprised as follows. With this configuration, the position of the laser divergence point can be easily moved, and it is not necessary to synchronize the pinhole 5A and the photodetector 5 with the movement of the laser light source 2. Therefore, a simpler configuration can be achieved, and lower cost can be achieved.
  • the method of moving the laser divergence point is not limited to the above-described first and second embodiments.
  • the laser divergence point 6 is moved as in the laser focusing optical system 25 shown in FIG. (In FIG. 6, illustration of the laser divergence point moving means and control means is omitted in FIG. 6 for clarity of the contents of the figure.) That is, the first mirror 26 and the second mirror 27 that reflect the laser light L transmitted through the half mirror 10 between the half mirror 10 and the imaging lens 11 so that the optical axis is changed by 90 degrees each. And the laser light emission direction is changed by 180 degrees by the mirrors 26 and 27, and the mirrors 26 and 27 can be integrally moved in the optical axis direction of the laser light L by the laser diverging point moving means. It may be configured as follows.
  • a trapezoidal prism whose reflecting surfaces are opposed to each other can be used. With this configuration, the position of the laser divergence point 6 can be easily moved without changing the positions of the laser light source 2, the pinhole 5A, and the photodetector 5, and a further simple configuration can be achieved. it can.
  • the laser focusing optical system 25 includes a two-dimensional galvanometer mirror 28.
  • the two-dimensional galvanometer mirror 28 has two rotation axes 28a and 28b oriented in the same direction as the rotation axes 12a and 14a of the first galvanometer mirror 12 and the second galvanometer mirror 14 of the first embodiment. Thus, it vibrates two-dimensionally within a predetermined angle range around the rotation shafts 28a and 28b. That is, the two-dimensional galvanometer mirror 28 functions as a scanning unit.
  • the difference between the third embodiment and the second embodiment is that in the second embodiment, the objective lens 16 is different from the third embodiment.
  • the scanning is performed irrespective of the distance to the sample surface 3a
  • the third embodiment is characterized in that the scanning is performed while the distance between the objective lens 16 and the sample surface 3a is kept constant.
  • the laser condensing optical system 30 of this embodiment is provided in cooperation with the condensing optical system 4, and the condensing optical system 4, that is, the lower surface of the objective lens 16 and the sample surface 3a
  • An observation optical system 31 for maintaining the distance to the predetermined distance is provided.
  • the observation optical system 31 has an autofocus mechanism.
  • the observation optical system 31 includes a light source 32 for irradiating linearly polarized semiconductor laser light L ′, a first lens 33 for converting the semiconductor laser light L emitted from the light source 32 into parallel light, A polarizing beam splitter 34 disposed adjacent to the first lens 33, a second lens 35 for converging and diverging the semiconductor laser light L transmitted through the polarizing beam splitter 34, and a semiconductor diverged by the second lens 35.
  • a third lens 36 that converts the laser light L ′ into parallel light having a size equal to the pupil diameter of the condensing optical system 16, and converts the semiconductor laser light L transmitted through the third lens 36 into circularly polarized light 1Z4 wavelength
  • the dichroic mirror 38 which reflects the semiconductor laser light L 'transmitted through the 1Z4 wavelength plate 37 so as to change the direction of the optical axis by 90 degrees and enters the condensing optical system 16, and the 1Z4 wavelength plate 37 again Transmitted and reflected by the polarizing beam splitter 34
  • a fourth lens 40 for allowing the return light from the objective lens 16 to enter the cylindrical lens 39 and a photodiode 41 disposed on the rear side of the cylindrical lens 39 are provided.
  • the dichroic mirror 38 is set so as to reflect the semiconductor laser light L ′ and transmit light of other wavelengths, for example, the laser light L emitted from the laser light source 2.
  • the polarization beam splitter 34 transmits, for example, a linearly polarized light of a P component, which is a vibration component parallel to the incident surface, of the linearly polarized light, and a vibration component S perpendicular to the incident surface. It has the function of reflecting component light.
  • the control section performs feedback control of the stage based on the detection signal received by the photodiode 41 to move the stage in the vertical direction (optical axis direction). In other words, autofocus is performed.
  • the semiconductor laser light L ' can always be focused on the sample surface 3a.
  • the input unit of the control unit When scanning is performed by the laser condensing optical system 30 configured as described above, the input unit of the control unit Then, the input of the refractive index of the sample 3, the distance from the sample surface 3a to the focusing position, and the numerical aperture NA of the focusing optical system 30 are performed (step Sl).
  • the calculation unit calculates the movement amount of the laser divergence point, that is, the movement amount of the laser light source 2 (step S2) and the offset amount of the autofocus (step S8) based on the input data.
  • irradiation of linearly polarized semiconductor laser light L ′ from the light source 32 is performed.
  • the irradiated semiconductor laser light L ′ is converted into parallel light by the first lens 33, and then enters the polarization beam splitter 34.
  • the light becomes linearly polarized light having a P component, which is a vibration component parallel to the incident surface, and is then converged by the second lens 35 to be in a diverging state.
  • the diverged light becomes parallel light again by the third lens 36 and enters the 1Z4 wavelength plate 37.
  • the parallel light has the width of the light beam corresponding to the objective lens 16.
  • the semiconductor laser light L ′ that has passed through the 1Z4 wavelength plate 37 and has become circularly polarized is reflected by the dichroic mirror 38 and is incident on the objective lens 16.
  • the light incident on the objective lens 16 illuminates the sample surface 3a.
  • the light reflected by the sample surface 3a is condensed by the objective lens 16, then reflected by the dichroic mirror 38, enters the 1Z4 wavelength plate 37, and has a vibration component perpendicular to the incident surface. S component polarization.
  • This light is transmitted through the third lens 36 and the second lens 35, then enters the polarization beam splitter 34 and is reflected toward the fourth lens 40.
  • the light After being converged by the fourth lens 40, the light passes through the cylindrical lens 39 and is imaged on the photodiode 41.
  • the imaged light is photoelectrically converted and sent to the control unit as a detection signal (step S5).
  • the control unit performs the calculation based on the offset amount detected by the calculation and the sent detection signal (step S6), and further moves the stage in the vertical direction (optical axis direction) (step S7). That is, the distance between the objective lens 16 and the sample surface 3a is controlled to an appropriate state in order to automatically perform autofocus and focus the laser beam to a desired depth.
  • step S8 scanning can be performed while the distance between the objective lens 16 and the sample surface 3a is always maintained at a constant distance. Therefore, even if the stage is slightly curved or the stage moves with some error, the laser beam can be accurately emitted to a desired depth. Therefore, scanning can be performed while controlling the focus position from the sample surface 3a more accurately, and observation of the sample 3 can be performed with higher accuracy.
  • the scanning is performed after the calculation of the amount of offset of the autofocus (step S8) is performed in advance.
  • the WD value should be changed to optimize the scanning, that is, Must be set to the optimal value.
  • the WD value it is necessary to offset the auto focus by a predetermined amount. In other words, the WD value can be corrected by calculating the autofocus offset amount. Then, after performing the offset, a run at a different depth is performed as described above.
  • the difference between the fourth embodiment and the third embodiment is that in the third embodiment, the relative distance in the optical axis direction between the objective lens 16 and the sample surface 3a, that is, the WD is not constant, In the fourth embodiment, the WD is fixed.
  • the settings are made so that the positions of the two are always maintained at the same position. That is, as shown in FIG. 9, when inputting various data to the input unit (step S1 described above), the data excluding the WD value, that is, the refractive index of the sample 3, the distance from the sample surface 3a to the position where light is condensed. Input the distance data and NA data of the focusing optics 4.
  • the laser light is focused on the sample, but the laser light is focused on the sample. It does not matter if the light is focused in the medium.
  • the surface force of the sample is set to 50 m, 75 ⁇ m, and 100 ⁇ m. The force is not limited to these distances, and may be set arbitrarily.
  • the relative distance between the objective lens and the sample surface in the optical axis direction is changed by moving the stage.
  • the present invention is not limited to this.
  • the objective lens is moved using a piezo element or the like. By doing so, you can change the relative distance! /.
  • the laser divergence point moving means is automatically controlled by the control unit.However, based on the calculation result by the control unit, the laser divergence point moving means is operated by the means to move the position of the laser divergence point. It doesn't matter.
  • observation optical system described in the third embodiment is an example, and if the distance from the lower surface of the objective lens to the specimen surface can be maintained at a predetermined distance, each optical system such as a lens is assembled. You can configure it together.
  • the optical system 101 is a condensing optical system including an emitting unit and an objective lens 102 for condensing the light beam L. 3, a first lens (first lens group) 104 movably arranged along the optical axis direction of the light beam L in the light beam between the exit means and the objective lens 102, and the first lens A second lens (second lens group) 105 fixed in the light beam between the 104 and the objective lens 102, and a first lens 104 according to the distance to the position where the light beam is emitted. And moving means 106 for moving the object.
  • the first lens 104 is a biconcave lens, and is fixed to a lens frame (not shown).
  • the moving means 106 is connected to a lens frame, and is capable of moving the first lens 104 via the lens frame.
  • the moving means 106 is connected to a control unit (not shown), and operates in response to a signal from the control unit.
  • the control unit includes an input unit capable of inputting predetermined information, and a calculation unit that calculates a movement amount of the first lens 104 based on each input information (input data) input by the input unit.
  • the moving means 106 is moved by a predetermined amount according to the calculation result. Further, in addition to the control of the moving means 106, the control unit controls the light after the movement of the first lens 104 is completed.
  • the control of the injection means is performed at the same time so that the bundle L is injected.
  • the second lens 105 is a convex lens, and the rear side focal position of the objective lens 102 is set such that the flat side faces the first lens 104 side, that is, the convex side faces the objective lens 102 side. It is arranged at a position at least near the entrance pupil position.
  • step S1A the amount of movement of the moving means 106 based on the input data
  • step S2A the control unit controls the moving means 106 to move in the optical axis direction of the light beam L based on the calculation result, and moves the first lens 104 to a predetermined position.
  • the control unit sends a signal to the emission unit to emit the light beam L.
  • the emitted light flux L is refracted by the first lens 104 in a parallel light flux state, enters a divergent light state, and enters the second lens 105. That is, the position of the divergence point of the light beam L in the optical axis direction is changed by moving the first lens 104.
  • the divergent light beam L is refracted again by the second lens 105, then enters the objective lens 102 and is collected at a desired position (step S4A).
  • the control unit operates the moving unit 106 to move the first lens 104 along the optical axis direction based on the calculation result by the calculation unit.
  • the light beam L emitted by the emitting means is refracted at a position different from the above-mentioned position, enters a divergent light state, and enters the second lens 105.
  • the light beam L is incident on the first lens 104 in a parallel light beam state, the light beam L is always refracted at the same angle regardless of the position of the first lens 104 and is incident on the second lens 105. Accordingly, the light beam L is condensed by the objective lens 102 in a state where the light amount and the light amount distribution in the pupil plane are the same.
  • the position of the divergence point of the light beam L can be changed by moving the first lens 104, that is, the position of the light source can be substantially changed.
  • the pupil plane The focal point (focus point) can be changed to a desired position while keeping the light amount and the light amount distribution within the camera constant, and the amount of spherical aberration generated at that position (each focus point) is minimized. be able to.
  • the structure can be easily configured to reduce the cost, and no trouble is required.
  • FIG. 15 shows a more specific configuration example of the first lens and the second lens described in the fifth embodiment. Also, set each lens as shown in Table 1.
  • R is the radius of curvature of the lens
  • d is the thickness of the lens or the air gap
  • n is the refractive index
  • the difference between the sixth embodiment and the fifth embodiment is that, in the fifth embodiment, the first lens 104 is a biconvex lens, whereas the optical system of the sixth embodiment is different from the first lens 104 in the fifth embodiment. Is a convex lens, and the plane side is disposed facing the second lens 105 side.
  • the present embodiment similarly to the first embodiment, the light beam L incident in the parallel light beam state regardless of the position of the first lens 104 is always refracted at the same angle and enters the second lens 105. . Therefore, the present embodiment has the same operation and effect as the fifth embodiment.
  • an optical system according to a seventh embodiment of the present invention will be described with reference to FIG.
  • the same components as those in the sixth embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference between the seventh embodiment and the sixth embodiment is that, in the sixth embodiment, the second lens group is constituted by one convex lens, that is, the second lens 105.
  • the second lens group 110 according to the embodiment is configured by two lenses 111 and 112.
  • the second lens group 110 includes a biconcave lens 111 disposed on the convex lens 104 side, which is the first lens group, and a biconcave lens 111 disposed adjacent to the biconcave lens 111. It is constituted by a convex lens 112. The rear focal position of the entire second lens group 110 is located near the entrance pupil position of the objective lens 102.
  • the optical system of the present embodiment can provide the same functions and effects as those of the second embodiment, and can further increase the distance (distance) between the second lens group 110 and the objective lens 102. However, it is possible to arrange another observation system or the like in the meantime, and the degree of freedom in design can be improved.
  • FIG. 18 shows a more specific configuration example of the first lens and the second lens group described in the third embodiment. Also, set each lens as shown in Table 2.
  • R is the radius of curvature of the lens
  • d is the thickness of the lens or the air gap
  • n is the refractive index
  • Second lens focal length f2 40 As shown in Table 2 and FIG. 18 above, by configuring the second lens group as a concave lens and a convex lens, the final surface force of the second lens group can be made larger than the focal length of 40 mm, which is the second lens group. The distance to the rear focal position of the lens group can be increased.
  • the first lens group is composed of one biconcave lens, that is, the first lens 104.
  • the first lens group 115 of the eighth embodiment is configured by two lenses 116 and 117. That is, as shown in FIG. 19, the first lens group 115 of the present embodiment includes a convex lens 116 arranged with the convex portion facing the emitting unit side and a biconcave lens 117 arranged adjacent to the convex lens 116. It is configured.
  • the second lens group of the present embodiment includes one biconvex lens 118.
  • the light beam L incident in a parallel light beam state regardless of the position of the first lens group 115 is always refracted at the same angle to the second lens 118. Upon incidence, the same operation and effect as in the first embodiment can be obtained.
  • the same operation and effect as in the fifth embodiment can be obtained in a state where the diameter of the light beam incident on the entrance pupil of the lens 102 and the diameter of the light beam incident on the first lens group 115 remain the same.
  • FIGS. 20 and 21 an optical system according to a ninth embodiment of the present invention will be described with reference to FIGS. 20 and 21.
  • the same components as those in the fifth embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference between the ninth embodiment and the fifth embodiment is that, in the fifth embodiment, the light beam L is simply condensed at a desired position, whereas the optical system of the ninth embodiment converts the light beam L Medium (specimen) Surface force of A This is the point where light is collected at different depths.
  • the objective lens 102 condenses the light flux L in the medium, and the moving unit 106 adjusts the refractive index of the medium A to be condensed and the position from the surface of the medium to the position where the light is condensed.
  • the first lens 104 (first lens group) is moved in accordance with the distance.
  • the refractive index of the medium A, the distance from the surface of the medium to the position where light is collected, for example, 50 m, and the NA of the light collecting optical system 103 are input to the input unit of the control unit (FIG. 21). Step S5A).
  • the calculation unit calculates the movement amount of the first lens 104 based on the input data (Step S6A). After the calculation is completed, the control unit controls the moving means 106 to move in the optical axis direction based on the calculation result, and moves the position of the first lens 104 to a predetermined position (Step S7A).
  • the control unit causes the emitting unit to emit a light beam L in a parallel light beam state.
  • the light beam L is condensed at a desired position from the surface of the medium A while minimizing the amount of spherical aberration generated (step S8A).
  • the first lens 104 is moved to collect the light beam L in accordance with the distance input to the input unit. Light can be collected in a more suppressed state, and the light collection performance can be improved.
  • FIG. 22 shows a more specific configuration example of the first lens group and the second lens described in the ninth embodiment. Also, set each lens as shown in Table 3.
  • R is the radius of curvature of the lens
  • d is the thickness of the lens or the air gap
  • n is the refractive index
  • the focal length of the second lens is f2 ⁇ 40.
  • the first lens group is composed of a convex lens and a concave lens.
  • the absolute value of the combined focal length of the lens, f 2 40, is made equal.
  • the difference between the tenth embodiment and the ninth embodiment is that, in the ninth embodiment, the light beam L is simply condensed from the surface of the medium A to a position having a different depth.
  • the system is that the laser light L 'is condensed to a different depth at the surface force of the medium A, and is recondensed for observation.
  • the laser optical system (optical system) 120 of the present embodiment converts the laser light source 121 that emits the laser light L ′ and the light beam of the laser light L ′ emitted from the laser light source 121 into a parallel light beam.
  • a scanning means 124 capable of scanning a light spot in a direction (horizontal direction, XY direction) perpendicular to the optical axis of the laser light L '; and a condensing optical system 123 arranged at a position conjugate with the laser light source 121.
  • Refocused by A photodetector (photodetector) 125 for detecting light is provided.
  • the medium A is mounted on a stage (not shown) movable in the X and Y directions. Further, in FIG. 23, the entire optical system is drawn in a two-dimensional plane. However, in actuality, the P portion (broken line portion shown in the drawing) is configured to be perpendicular to the paper surface.
  • the condensing optical system 123 reflects a laser beam L ′ emitted from the laser light source 121 so as to change the direction of the optical axis by 90 degrees, and is reflected by the half mirror 126.
  • the second pupil relay optics 130 With focusing the laser beam L 'which has passed through the relay optical system 130 into the medium, an objective lens 102 to re-condensing the light from the condensing point, Ru.
  • the first galvano mirror 127 and the second galvanomirror 129 have rotation shafts 127a and 129a arranged at the center positions so as to be orthogonal to each other. , 129a so as to vibrate within a range of a predetermined angle. Due to this vibration, the laser beam L ′ can be reflected at different angles as described above. Further, by combining the two galvanometer mirrors 127 and 129, the laser beam L 'can be scanned in a direction (XY direction) orthogonal to the optical axis direction of the focusing optical system 123. That is, these two galvanometer mirrors 127, 129 function as the scanning means 124. The vibration (operation) of the galvanomirrors 127 and 129 is controlled by the control unit. Further, the photodetector 125 is disposed on the rear side of the half mirror 126.
  • the first lens group includes a first lens 104 that is a single biconvex lens, and a first lens group between the imaging lens 122 and the first galvanometer mirror 127. , Are arranged so as to be movable along the optical axis direction in a parallel light beam.
  • the second lens group includes a second lens 105 which is a single biconvex lens, and includes a first lens 104 and a first galvano lens. In the parallel light beam between the mirror 127 and the rear focal point, the rear focal point is arranged near the entrance pupil position of the entire light-collecting optical system 123.
  • a case will be described in which the laser optical system 120 configured as described above observes positions of the medium A at different surface force depths.
  • a case will be described in which a position of, for example, 50 m, 75 m, and 100 m is observed from the surface of the medium A.
  • the refractive index of the medium A and the surface force of the medium A are input to the input part of the control unit.
  • the distance to the light emitting position that is, 50 / ⁇
  • the distance between ⁇ ⁇ of the focusing optical system 123 and the distance between the objective lens 102 and the surface of the medium ⁇ that is, the WD value are input.
  • the calculation unit calculates the amount of movement of the first lens 104 based on the input data.
  • the control unit controls the moving means 106 to move in the optical axis direction based on the calculation result, and moves the position of the first lens 104 to a predetermined position.
  • the control unit sends a signal to the laser light source 121 to emit the laser light L '.
  • the emitted laser light L ' is reflected by the half mirror 126, becomes a parallel light beam state by the imaging lens 122, and enters the first lens 104 disposed at a predetermined position.
  • the first lens 104 After being refracted by the first lens 104 to be in a convergent light state, it is refracted again by the second lens 105 and enters the first galvano mirror 127. Then, the light is reflected by the first galvano mirror 127 at different angles toward the X direction of the surface of the medium A.
  • the reflected laser beam L is reflected by the second galvanometer mirror 129 via the first pupil relay optical system 128 at a different angle toward the Y direction of the surface of the medium A.
  • the reflected laser light L 1 enters the objective lens 102 via the second pupil relay optical system 130.
  • the light is condensed at a position 50 m from the surface of the medium by the objective lens 102.
  • the first lens Since the position of 104, that is, the position of the actual light source (the position of the convergence point) is changed, the generation amount of spherical aberration at the position of 50 ⁇ m in depth can be suppressed as much as possible, and this position can be efficiently Laser light L 'can be focused.
  • the light having the light condensing point is re-condensed by the objective lens 102, and is detected by the photodetector 125 through the reverse optical path described above. That is, the light refocused by the objective lens 102 passes through the second pupil relay optical system 130, is reflected by the second galvanomirror 129, passes through the first pupil relay optical system 128, and passes through the first galvanomirror. After the reflection by 127, the passage through the second lens 105 and the first lens 104, the passage through the imaging lens 122, and the transmission through the half mirror 126 in this order, the light is detected by the photodetector 125 via the pinhole. The light re-condensed by the objective lens 102 is reflected by the two galvanometer mirrors 127 and 129 so as to pass through the same optical path as the optical path through which the laser light L 'has passed.
  • the photodetector 125 Observed images with few errors can be obtained. Therefore, high-precision observation can be performed.
  • the laser beam L ′ is scanned in the horizontal direction (XY direction) of the surface of the medium A by the two galvanometer mirrors 127 and 129, a wide range observation can be easily performed over the entire surface area of the medium A. be able to. At this time, scanning can be performed over the entire medium A without moving the medium side (stage side).
  • the control unit controls the moving unit 106 to move in the optical axis direction based on the calculation result, and moves the position of the first lens 104 to a predetermined position.
  • the laser beam L ' is emitted, the laser beam L' is focused by the focusing optical system 123 at a position of 75 ⁇ m or 100 ⁇ m from the surface of the medium A, and the light from the focusing point is re-collected. The light is condensed and detected by the photodetector 125.
  • the position of the divergence point is adjusted by moving the first lens 104 in accordance with the depth of 75 ⁇ m or 100 ⁇ m.
  • the amount of generation can be suppressed as much as possible, and as shown in FIGS. 24 (b) and (c), the laser beam L ′ can be efficiently focused at a position of 75 m or 100 m. Therefore, a highly accurate observation image with few errors can be obtained.
  • the control unit adjusts the WD by controlling, for example, the stage to move in the optical axis direction.
  • the laser light L, ⁇ is emitted from the surface of the medium A to different depths (50 m, 75 m, 100 m).
  • the first lens 104 that is, the divergence point, is moved along the optical axis by the moving means 106 according to the distance to the position where the refractive index of the medium A and the surface force of the medium A are also collected.
  • the generation amount of spherical aberration can be suppressed as much as possible, and the laser beam L 'can be efficiently condensed in an optimum state at each depth. Therefore, even if the depth of the surface force of the medium A is changed, an observation image with few errors can be obtained at each position, and the observation of the medium A can be performed with high accuracy.
  • the first galvanomirror 127 and the second galvanomirror 129 are used as the scanning means 124.
  • the force is not limited to this.
  • the two-dimensional galvanometer mirror 135 has two rotation axes 135a and 135b in the same direction as the rotation axes 127a and 129a of the first galvanometer mirror 127 and the second galvanometer mirror 129. Then, it vibrates two-dimensionally around the axes of the rotating shafts 135a and 135b within a predetermined angle range. This eliminates the need to provide two galvanomirrors and two pupil relay optical systems, respectively, as in the tenth embodiment, so that the configuration can be further simplified and the cost can be reduced.
  • the technical scope of the present invention is not limited to the fifth to tenth embodiments, and various changes can be made without departing from the spirit of the present invention.
  • the first lens group and the second lens group may be constituted by one lens as in the fifth embodiment, or may be constituted by one lens as in the seventh and eighth embodiments.
  • the above lens may be used.
  • each lens is not limited to its type, for example, a convex lens, a concave lens, or a biconvex lens, and may be designed in any combination.
  • the moving unit is set so as to move the first lens group so as to satisfy the following expression.
  • I f I is a composite focal length of the first lens group and the second lens group.
  • the second lens group may be set so as to satisfy the following expression.
  • f2 is the focal length of the second lens group.
  • the entrance pupil position of the condensing optical system is often located within the condensing optical system, but by setting the second lens group to a positive power (convex lens), the entrance pupil position of the condensing optical system can be located within the optical system. Even if it exists, the rear focal position of the second lens group can be made to coincide with the entrance pupil position of the condenser optical system.
  • the first lens group and the second lens group may be set so as to satisfy the following formula.
  • fl is the focal length of the first lens group
  • f2 is the focal length of the second lens group.
  • the first lens group has negative power (concave lens) and the second lens group has positive power (convex lens).
  • the configuration can be made compact.
  • l ⁇ f2 / fl the first lens group can be easily configured. For this reason, it is possible to suppress the performance degradation that can be achieved by the power if possible at low cost. Since I f2 / fl I ⁇ 5, the optical system can be made compact.
  • the settings of the first lens group and the second lens group are not limited to fl ⁇ 0, 1 ⁇ If2 / flI ⁇ 5. In the embodiment, it may be set so as to satisfy the following expression.
  • the focal lengths of both lens groups can be set to a positive focal length, and relaying can be performed with a simple configuration near the same magnification.
  • control unit automatically controls the moving means.
  • the position of the first lens group may be moved by operating the moving means based on the calculation result by the control unit.
  • the optical system of the present invention may be employed in an optical tweezers optical system as shown in FIG.
  • the amount of occurrence of spherical aberration can be suppressed, for example, a minute object or the like in water can be supplemented with higher accuracy.
  • the aberration correction optical system 140 is an optical system for condensing the light beam L from a light source (not shown), and a plurality of lenses 141, 142, and 143 satisfying the following expression are exclusively disposed in the optical path so as to be able to be removed. I have.
  • d is the distance from the entrance pupil position of the condenser optical system 144 including the objective lens to the plurality of lenses 141, 142, and 143
  • 1 is the distance from the entrance pupil position of the condenser optical system 144.
  • F is the focal position of the plurality of lenses 141, 142, 143
  • NA is the NA of the light source (NA as viewed from the condenser lens)
  • a is This is the entrance pupil diameter of the condenser optical system 144.
  • the light beam L is in a divergent light state, and the plurality of lenses 141, 142, and 143 function as convex lenses.
  • the aberration correction optical system 140 configured as described above, even when observing (condensing) a portion having a different depth in the medium in the case of a divergent light source, the light amount is constant, and the light amount distribution in the pupil plane is constant. Enables observation (light collection) with a reduced amount of spherical aberration. Further, it is not necessary to combine an expensive objective lens such as a correction ring objective lens or replace a glass having a different thickness as in the related art.
  • a plurality of lenses 141, 142, and 143 which are convex lenses, are arranged in the divergent light beam.
  • a plurality of lenses 141, 142, 143 may be arranged.
  • the plurality of lenses 141, 142, and 143 may be concave lenses.
  • a plurality of lenses 141, 142, and 143 which are concave lenses, may be arranged in a parallel light beam.
  • a plurality of lenses 141, 142, 143 may be provided.
  • the aberration correction optical system 140 may be used in combination with the laser optical system of the tenth embodiment.
  • the plurality of lenses 141, 142, and 143 are configured to be inserted and removed by the lens insertion and removal mechanism 146! Puru.
  • the present invention includes the following.
  • a first lens group that is movably disposed along the optical axis direction of the light beam in the light beam between the emission unit and the condensing optical system, and includes one or more lenses;
  • a second lens group arranged in a fixed state in the light beam between the first lens group and the condensing optical system, and configured by one or more lenses;
  • the condensing optical system condenses the light flux in a medium
  • the moving means moves the first lens group according to the refractive index of the medium to be condensed and the distance from the surface of the medium to the position for condensing.
  • optical system according to claim 1 or 2
  • the emission unit includes a laser light source that emits a laser beam.
  • a laser light source for emitting laser light
  • a parallel light beam means for converting the light beam of the laser light emitted from the laser light source into a parallel light beam
  • a condensing optical system that condenses the laser light in the parallel light flux state into a medium and re-condenses light from a condensing point
  • a photodetector arranged at a position conjugate with the laser light source and detecting the light re-collected by the focusing optical system
  • a first lens group which is arranged in the parallel light beam between the parallel light beam means and the condensing optical system so as to be movable along the optical axis direction of the parallel light beam, and is constituted by one or more lenses.
  • a second lens group fixedly arranged in the parallel light flux between the first lens group and the condensing optical system, and configured by one or more lenses;
  • Parallel light beam means for converting the light beam L of the laser light emitted from the laser light source into a parallel light beam
  • a condensing optical system that condenses the laser light in the parallel light flux state into a medium and re-condenses light from a condensing point
  • Scanning means capable of scanning a focal point in the medium in a direction perpendicular to the optical axis direction of the laser light
  • a photodetector arranged at a position conjugate with the laser light source and detecting the light re-collected by the focusing optical system
  • a first lens which is arranged in the parallel light beam between the parallel light beam means and the condensing optical system so as to be movable along the optical axis direction of the parallel light beam, and is constituted by one or more lenses.
  • a second lens group fixedly arranged in the parallel light flux between the first lens group and the condensing optical system, and configured by one or more lenses;
  • the scanning means is a galvanomirror.
  • the first lens group and the second lens group can be inserted and removed from an optical path.
  • the relative distance in the optical axis direction between the condensing optical system and the surface of the medium is constant.
  • An optical tweezers optical system having the optical system according to any one of Additional Items 1 to 3.
  • the moving means moves the first lens group to a position that satisfies the following equation.
  • the second lens group satisfies the following equation. f2> 0
  • the first lens group and the second lens group satisfy the following equation.
  • the first lens group and the second lens group satisfy the following equation.
  • An aberration correcting optical system for condensing a light beam from a light source wherein a plurality of lenses satisfying the following formula are exclusively disposed so as to be insertable into and removable from an optical path.
  • NA numerical aperture of light source (numerical aperture viewed from condensing lens)
  • a laser scanning optical system in which a plurality of lenses satisfying the following equation are arranged in a converging / diverging optical system so as to be able to move in and out of the optical path.
  • NA numerical aperture of light source (numerical aperture viewed from condensing lens)
  • An optical tweezers optical system in which a plurality of lenses satisfying the following equation are arranged in the optical path so as to be able to be removed in a convergent-divergent optical system.
  • NA numerical aperture of light source (numerical aperture viewed from condensing lens)
  • a condensing optical system including a light source for emitting a parallel light beam and an optical system for condensing the parallel light beam,
  • An aberration-correcting optics system in which a plurality of lenses that satisfy the following formula are exclusively placed so that they can be inserted into and removed from the optical path.
  • a laser scanning optical system in which a plurality of lenses satisfying the following equation are exclusively arranged in the optical path so as to be detachable in the optical path.
  • An optical tweezer in which a plurality of lenses satisfying the following formula are exclusively placed in the optical path and detachably arranged in the optical path in a parallel light beam.
  • the laser divergence point moving means sets the laser divergence point by the laser divergence point moving means according to the refractive index of the medium to be condensed and the distance from the surface of the medium to the position to be condensed. Since it is moved upward, it is possible to minimize the amount of spherical aberration generated at each position in the medium having a different depth. Therefore, the laser light can be efficiently condensed to a desired depth of the medium, and the light condensing performance can be improved. In addition, since the spherical aberration is small and light can be re-focused to obtain an accurate observation image, observation in the medium can be performed with high accuracy. In particular, since only the laser divergence point is moved, spherical aberration correction can be easily performed without any trouble as in the related art, and there is no need to provide a special optical system. And cost saving can be achieved.
  • the position of the light beam incident on the second lens group is changed by moving the first lens group according to the distance to the position where light is condensed in the medium. Since the position of the light source can be substantially changed as viewed from the condensing optical system, the amount of spherical aberration generated at a desired converging point can be minimized.
  • the configuration can be simplified, and spherical aberration can be easily corrected without any trouble.

Abstract

 本発明のレーザ集光光学系は、レーザ光を出射するレーザ光源と;このレーザ光源と媒質との間に配され、前記レーザ光を媒質中に集光させると共に集光点からの光を再集光する集光光学系と;この集光光学系により再集光された前記光を検出する光検出器と;前記レーザ光のレーザ発散点の位置及び前記光検出器の位置を、前記レーザ光を集光させる前記媒質の屈折率及び前記媒質の表面から集光させる位置までの距離に応じて、前記レーザ光の光軸上に沿って移動可能なレーザ発散点移動手段と;を備える。     

Description

レーザ集光光学系
技術分野
[0001] 本発明は、レーザ光を媒質中の異なった部分に集光させるレーザ集光光学系に関 する。
また、本発明は、光学系の瞳面内に入射する光量、光量分布を一定にしたままで 光源位置を変えることができる光学系に関する。特に、媒質中の深さが異なる部分に 集光させることができる最適な光学系、若しくは、集光位置を変えるのに適した光学 系に関する。
本出願は、特願 2004— 132996号と、特願 2004— 132994号とを基礎出願とし、 その内容を取り込むものとする。
背景技術
[0002] 従来より、媒質中の異なる深さ部分に集光させたいという要求があるが、その場合、 球面収差の発生を招いてしまう。例えば、生物分野において、顕微鏡標本を作製す る場合には、ほとんどの場合、スライドガラスの上に試料を置き、その上にカバーガラ スを載せて封入するカバーガラス付きの標本が一般的であるが、カバーガラスの厚 みの異なる標本を顕微鏡で観察するような場合に上述した球面収差が発生してしま う。また、 LCD用のガラスには厚みの異なるものがあり、基板越しに観察する場合に も球面収差が発生してしまう。また、異なる厚み (深さ)間で球面収差量が異なると、 集光性能が変化 (劣化)すると!/、う問題があった。
[0003] そこで、従来より、球面収差の補正を行って集光性能の変化を抑えながら上述した ような厚みの異なる部分に集光させるために、様々な技術が採用されている。
そのうちの 1つとして、例えば、厚みの異なる平行平板ガラスを対物レンズ等の集光 光学系の先端に着脱可能に配置するものが知られている。
また、例えば、倍率が 40倍程度、開口数 NA (Numerical Aperture)が 0. 93の超広 視野の範囲にわたって諸収差が良好に補正され、カバーガラス厚の変動による性能 劣化も少ない顕微鏡用補正環付き対物レンズが知られている(例えば、特許文献 1 参照)。
更に、合成焦点距離無限大 (No Power Lens)の球面収差補正光学系を光軸方向 に移動させて球面収差を補正する光学系も知られている(例えば、特許文献 2参照) 更には、図 32に示すように、対物レンズ 250と光源 251との間に球面収差補正レン ズ 252を配置し、この球面収差補正レンズ 252を光軸に沿って移動させることにより 球面収差を補正する顕微鏡装置が知られて ヽる (例えば、特許文献 3参照)。
特許文献 1 :特開平 5— 119263号公報(図 1等)
特許文献 2 :特開 2003— 175497号公報(図 1等)
特許文献 3:特開 2001— 83428号公報(図 1等)
発明の開示
発明が解決しょうとする課題
[0004] ところで、上述した球面収差補正のうち、平行平板ガラスを利用したものは、平行平 板ガラスの傾き等による性能劣化が大きい。そのため、平行平板を保持する枠に高 精度が要求され、また、平行平板の枠への固定も精度が必要になることから高価に なる。また、小さい WD (Work Distance)の中で、手動により交換を行う必要があり、こ れが非常に手間の力かる作業であった。更に、連続可変を行うことが難し力つた。 また、上記特許文献 1に記載の補正環対物レンズでは、高精度であるため価格が 高ぐ低コストィ匕を図ることができない。また、集光位置に応じて自動で球面収差量を 調整することが難しく自動化への対応が困難なものである。
また、上記特許文献 2に記載の光学系では、合成焦点距離が、無限大のレンズで 補正を行うため、球面収差を補正した場合でも集光位置は変化しない。媒質中の異 なった部分に集光しょうとすると必ず WDが変わり、 WD—定の下での収差補正を行 うこができな力つた。また、ビームエキスパンダ以外に球面収差補正光学系が必要と なるので、構成が複雑で部品点数が多くなり、低コストィ匕を図ることが困難であった。
[0005] また、上記特許文献 3に記載の顕微鏡装置では、図 32に示すように、球面収差補 正レンズ 252を光軸方向に移動させることにより、球面収差の補正を行うことができる 力 球面収差補正レンズ 252の移動に伴い、対物レンズ 250に入射する光束径が変 ィ匕してしまう。
即ち、光束の広がりが変化してしまう。そのため、図 33に示すように、光量が変化し てしまい、標本面上での明るさが変化してしまう。ここで、画像取得手段がある場合に は、画像の明るさを検出し、明るさによって光源のパワーを変化させる。画像側で明 るさをコントロールする等により、明るさを一定にできるが、装置構成が複雑になる等 の問題がある。
また、瞳面内での光量分布がある場合には、光量分布も変化する恐れがあった。こ のような光量分布の変化により、集光性能が変化するという問題があった。更に、画 像取得手段からの電気信号に基づ 、て球面収差補正レンズを移動するため、時間 のかかるものであった。
一方、観察を行う際、ピント位置を変更させる場合には、標本等を載置したステージ を光軸方向に移動させたり、光学系自体を光軸方向に移動させたりする構成が一般 的に採用されている。
し力しながら、ステージに載せる標本には、 12インチウェハ等の大きいものがあり、 高精度に位置を移動させるには装置が大型化せざるを得な力つた。また、光学系自 体を移動させる場合には、精度良く移動させることが困難であった。
[0006] 本発明は、上記事情に鑑みてなされたものであって、シンプルな構成で、手間をか けることなく容易に球面収差補正を行うことができるレーザ集光光学系の提供を第 1 の目的とする。
また、本発明は、シンプルな構成で、手間をかけることなく光量分布を一定にしたま ま容易に球面収差補正を行うことができる光学系を提供することを第 2の目的とする。 更には、この第 2の目的に加え、簡単な構成で集光位置を変化させることを可能にす る光学系を提供することも目的とする。
課題を解決するための手段
[0007] 上記第 1の目的を達成するために、本発明は、以下の手段を採用した。
すなわち、本発明のレーザ集光光学系は、レーザ光を出射するレーザ光源と;この レーザ光源と媒質との間に配され、前記レーザ光を媒質中に集光させると共に集光 点からの光を再集光する集光光学系と;前記レーザ光のレーザ発散点の位置を、前 記レーザ光を集光させる前記媒質の屈折率及び前記媒質の表面から集光させる位 置までの距離に応じて、前記レーザ光の光軸上に沿って移動可能なレーザ発散点 移動手段と;を備える。
[0008] このレーザ集光光学系によれば、集光光学系によりレーザ光源から出射されたレー ザ光を媒質中に集光させると共に集光点力も光の再集光が行え、光検出器により再 集光した光の検出が行える。この際、レーザ光は、集光光学系に発散光状態 (非平 行光束状態)で入射される。つまり、レーザ光源から発散光状態で出射、又はレーザ 光源から平行光束状態で出射された後に各種レンズ等の光学系により発散光状態 に変換されて集光光学系に入射する。このように、レーザ光が発散光状態になった 位置 (点)を発散点としている。また、レーザ光を集光させる際に、集光させる媒質の 屈折率及び媒質の表面から集光させる位置までの距離に応じて、レーザ発散点移 動手段によりレーザ発散点の位置及び光検出器の位置をレーザ光の光軸上に沿つ て移動させるので、媒質中の深さが異なる箇所にレーザ光を集光させたとしても、そ れぞれの位置において球面収差の発生量を極力抑えることができる。従って、レー ザ光を所望する媒質の深さに効率良く集光させることができ、集光性能の向上を図る ことができる。
また、球面収差の発生量を極力抑えることができるので、収差が少ない光を再集光 して正確な観察像を得ることができる。従って、高精度に媒質中の観察を行うことがで きる。
[0009] 特に、レーザ発散点を移動させるだけであるので、従来のように手間をかけることな ぐ容易に球面収差補正を行うことができる。また、従来の補正環対物レンズ等のよう に特別な光学系を備える必要がないので、構成のシンプルィ匕を図ることができると共 に的コストィ匕を図ることができる。更に、レーザ発散点を移動させるだけであるので、 連続可変を行い易ぐ自動化に対応し易い。
[0010] 前記レーザ光を前記集光光学系の光軸に対して直交する方向に向けて走査可能 な走査手段を備えてもよい。
[0011] この場合、走査手段によりレーザ光も走査が行えるので、媒質側を移動させることな く媒質の全体領域に亘つて観察を行うことができる。 [0012] 前記レーザ発散点移動手段が、予め測定された前記集光光学系の波面データに 基づ 、てレーザ発散点の位置を設定してもよ 、。
[0013] この場合、レーザ発散点移動手段が、予め測定された集光光学系の波面データ、 例えば、集光光学系を構成している一部である対物レンズの波面データや、集光光 学系全体の波面データを考慮してレーザ発散点の位置を設定するので、レーザ光の 集光性能及び観察性能をさらに向上させることができる。
[0014] 前記集光光学系に連携して設けられ、集光光学系の下面から前記媒質の表面ま での距離を所定の距離に維持する観察光学系を備え、この観察光学系が、オートフ オーカス検出手段又はオートフォーカス機構を備えてもょ 、。
[0015] この場合、観察光学系により集光光学系の下面 (対物レンズの下面)から媒質の表 面までの距離を所定の距離に維持できるので、例えば、集光光学系と媒質との水平 方向の相対的な移動、即ち、走査を行う際に、媒質表面からの深さを所望する深さに 正確に制御することができる。
[0016] 前記集光光学系と前記媒質の表面との光軸方向の相対的な距離が一定であって ちょい。
[0017] この場合、レーザ光^^光させる媒質深さが変化した場合でも、集光光学系を構成 している一部である対物レンズと媒質の表面との光軸方向の相対的な距離、即ち、 WD (Work Distance)が一定になるように設定されているので、装置構成を簡単にす ることができると共に観察速度を上げることができる。
[0018] また、上記第 2の目的を達成するために、本発明は、以下の手段を採用した。
すなわち、本発明の光学系の第 1の態様は、平行光束状態で光束を射出する射出 手段と;前記光束^^光する集光光学系と;前記射出手段と前記集光光学系との間 の前記光束中に、この光束の光軸方向に沿って移動可能に配され、 1枚以上のレン ズにより構成された第 1レンズ群と;この第 1レンズ群と前記集光光学系との間の前記 光束中に固定された状態で配され、 1枚以上のレンズにより構成された第 2レンズ群 と;前記光束^^光させる位置までの距離に応じて、前記第 1レンズ群を移動させる 移動手段と;を備え、前記第 2レンズ群の後側焦点位置が、前記集光光学系の入射 瞳位置の少なくとも近傍に配されて 、る。 [0019] この光学系によれば、射出手段により平行光束状態で射出された光束が、第 1レン ズ群及び第 2レンズ群でそれぞれ屈折した後、集光光学系に入射して集光される。こ の際、移動手段により、第 1レンズ群を光軸方向に移動させることで、光源位置を光 軸方向に移動させることができる。即ち、第 1レンズ群を移動させることで、第 2レンズ 群力も見た光源位置を変えることができ、更には前記集光光学系力も見た実質的な 光源位置の変更が行える。
また、第 1レンズ群に入射する光束は、平行光束状態であるので、瞳面内の光量分 布を一定にすることができる。従って、集光性能の変化を抑えることができる。
[0020] ここで、図 11を参照してより具体的に説明する。図 11に示すように、第 1のレンズ( 第 1レンズ群)は、平行光束中に配置されており、この第 1のレンズが光軸に沿って移 動した場合でも、第 1のレンズに入射する光線の光軸からの距離 (s)が一定であれば 、第 1のレンズを通過した後の光線の角度 (q)は変化しない(平行である)。それら角 度が変化しない(平行な)光線は、第 2のレンズ (第 2レンズ群)の後側焦面上の 1点 に集光する(必ず通る)。第 2のレンズの後側焦点位置と集光光学系の入射瞳位置と 力 一致するように配置されているので、第 1のレンズに入射した平行光束は、第 1の レンズの位置によらず、集光光学系の入射瞳位置で常に同じ光束径となり、集光光 学系でけられることなく集光する。
即ち、集光させる位置までの距離に応じて、第 1レンズ群を移動させることで、集光 光学系による集光位置を光軸方向に移動することができる。更に、第 2レンズ群により 、集光光学系に入射する光束径を変化することがないので、従来のような集光位置 での光量の変化や瞳面内での光量分布の変化を略 0にすることができる。
[0021] また、図 11においては、第 2のレンズ (第 2レンズ群)の後側焦点位置を、集光光学 系の入射瞳位置に一致させることにより、集光位置での光量の変化や瞳面内の光量 分布の変化を略 0にすることができる力 これら 2つの位置を互いに近傍に位置させ る(つまり、第 2のレンズの後側焦点位置を集光光学系の入射瞳位置の少なくとも近 傍に配置させる)ことで、同等の効果を得ることができる。より具体的に図 12を参照し て説明する。
図 12に示すように、第 2のレンズ (第 2レンズ群)の後側焦点位置と集光光学系の入 射瞳位置とのズレ量を dl、第 2のレンズの焦点距離を f2、第 1のレンズ (第 1レンズ群 )が移動した時の集光光学系に入射する光束径の変動率 (第 2のレンズの後側焦点 位置での光束径を基準)を x%とすると、
x= 100 X (dl X d) Z (f22)で表される。
即ち、この式を書き換えると、 dl = (f22) /d X (x/100)となる。
ここで、第 2のレンズの後側焦点位置と集光光学系の入射瞳位置とがー致した場合 には、 dl = 0となる。即ち、第 1のレンズが移動しても集光光学系に入射する光束径 は変化しない (x=0)。
この状態に配置するのが最も良いが、 dl≤0. 2 X f22Zdとすることで、光束径の変 動率 x≤ 20 ( ± 10%以下)を確保できる。
更には、 dl≤0. l X f22Zdとすることで、光束径の変動率 x≤ 10 ( ± 5%以下)とす ることがでさる。
更に好ましくは、 dl≤0. 06 X f22Zdとすることで、光束径の変動率 x≤ 6 (± 3% 以下)を確保することができる。
[0022] 更に、第 1レンズ群を移動させるだけで、光源位置の変更が行えるので、従来のよう に集光光学系やステージ等を光軸方向に動かす必要がない。従って、構成のシンプ ルイ匕を図ることができ、手間をかけることなく容易に球面収差補正を行うことができる。 また、従来の補正環対物レンズ等のように、特別な光学系を備える必要がないことか らも、構成のシンプルィ匕が図れ、低コストィ匕を図ることができる。
[0023] 前記集光光学系が、前記光束を媒質中に集光させ、前記移動手段が、集光させる 前記媒質の屈折率及び媒質表面から集光させる位置までの距離に応じて、前記第 1 レンズ群を移動させてもょ 、。
[0024] この場合、移動手段が、集光させる媒質の屈折率及び媒質表面から集光させる位 置までの距離に応じて第 1レンズ群を移動させるので、より正確に媒質の表面力 所 望する深さに光束を集光させることができると共に、球面収差の発生量をより抑えるこ とができる。従って、集光性能の向上を図ることできる。
[0025] 前記射出手段が、レーザ光を射出するレーザ光源を備えてもよい。
[0026] 前記光学系を有する光ピンセット光学系を採用してもよい。 [0027] 前記第 1レンズ群と前記第 2レンズ群との合焦距離を I f Iとした場合、前記移動手 段が、前記第 1レンズ群を、下記式を満たす位置に移動させてもよい。
1/ I f I < o. 01
[0028] 前記第 2レンズ群の焦点距離を f2とした場合、前記第 2レンズ群が、下記式を満た してちよい。
f2 >0
[0029] 前記第 1レンズ群の焦点距離を fl、前記第 2レンズ群の焦点距離を f2とした場合、 前記第 1レンズ群及び前記第 2レンズ群が、下記式を満たしてもよ!/、。
fl < 0
かつ、 1≤ I Ϊ2/Ϊ1 I ≤5
[0030] 前記第 1レンズ群の焦点距離を fl、前記第 2レンズ群の焦点距離を f2とした場合、 前記第 1レンズ群及び前記第 2レンズ群が、下記式を満たしてもよ!/、。
fl >0
かつ、 0. 5≤ I fl/f2 I ≤2
[0031] また、本発明の光学系の第 2の態様は、レーザ光を射出するレーザ光源と;このレ 一ザ光源から射出された前記レーザ光の光束を平行光束にする平行光束手段と;前 記平行光束状態の前記レーザ光を媒質中に集光させると共に集光点からの光を再 集光する集光光学系と;前記媒質中での集光点を、前記レーザ光の光軸方向に対し て垂直な方向に走査可能な走査手段と;前記レーザ光源と共役な位置に配されて、 前記集光光学系により再集光された前記光を検出する光検出器と;前記平行光束手 段と前記集光光学系との間の前記平行光束中に、この平行光束の光軸方向に沿つ て移動可能に配され、 1枚以上のレンズにより構成された第 1レンズ群と;この第 1レン ズ群と前記集光光学系との間の前記平行光束中に固定された状態で配され、 1枚以 上のレンズにより構成された第 2レンズ群と;前記レーザ光^^光させる前記媒質の 屈折率及び媒質表面から集光させる位置までの距離に応じて、前記第 1レンズ群を 移動させる移動手段と;を備え、前記第 2レンズ群の後側焦点位置が、前記集光光学 系の入射瞳位置の少なくとも近傍に配されて 、る。
[0032] この光学系によれば、レーザ光源力も射出されたレーザ光が、平行光束手段により 平行光束に変換されて第 1のレンズ群に入射し、この第 1レンズ群及び第 2レンズ群 でそれぞれ屈折した後、集光光学系により媒質中に集光されると共に、再集光されて 光検出器により検出される。この際、移動手段により、第 1レンズ群を光軸方向に移 動させることで、光源位置を光軸方向に移動させることができる。即ち、第 1レンズ群 を移動させることで、第 2レンズ群カゝら見た光源位置を変えることができ、更には、前 記集光光学系から見た実質的な光源位置の変更が行える。これにより、媒質中の深 さに応じて球面収差を極力抑えることができる。
また、第 1レンズ群に入射する光束は、平行光束状態であるので、第 1レンズ群を光 軸方向に移動させて各位置で光束を屈折させたとしても、光束を同じ屈折角で射出 する。
[0033] また、第 2レンズ群は、後側焦点位置が集光光学系の入射瞳位置の少なくとも近傍 に配されているので、第 2レンズ群に入射した光は、確実に集光光学系により集光さ れる。ここで、集光させる位置までの距離に応じて、第 1レンズ群を移動させることで、 第 2レンズ群に入射する位置を変更できるので、所望する集光点での球面収差の発 生量を極力抑えることができる。また、第 2レンズ群により、光束を変化させることなく 確実に集光光学系に入射可能であるので、従来のように光量の変化や、瞳面内の光 量分布が変化することを抑えることができる。つまり、集光光学系への入射光量を一 定にすることができると共に、瞳面内の光量分布を一定にすることができ、明るさ、集 光性能の変化を抑えることができる。従って、集光性能の変化を抑えることができる。 このように、球面収差の発生量を極力抑えることができるので、収差が少ない光を 再集光して正確な観察像を得ることができる。従って、高精度に媒質中の観察を行う ことができる。また、走査手段により、集光点の走査が行えるので、媒質の全体領域 に亘つて観察を行うことができる。
[0034] 更に、第 1レンズ群を移動させるだけで、光源位置の変更が行えるので、従来のよう に集光光学系やステージ等を動かす必要がない。従って、構成のシンプルィ匕を図る ことができ、手間をかけることなく容易に球面収差補正を行いながら媒質中の観察を 行うことができる。また、従来の補正環対物レンズ等のように、特別な光学系を備える 必要がないことからも、構成のシンプルィ匕が図れ、低コストィ匕を図ることができる。 [0035] 前記走査手段が、ガルバノミラーであってもよい。
[0036] 本発明の光学系の第 3の態様は、レーザ光を射出するレーザ光源と;このレーザ光 源から射出された前記レーザ光の光束を平行光束にする平行光束手段と;前記平行 光束状態の前記レーザ光を媒質中に集光させると共に集光点からの光を再集光す る集光光学系と;前記レーザ光源と共役な位置に配されて、前記集光光学系により 再集光された前記光を検出する光検出器と;前記平行光束手段と前記集光光学系と の間の前記平行光束中に、この平行光束の光軸方向に沿って移動可能に配され、 1 枚以上のレンズにより構成された第 1レンズ群と;この第 1レンズ群と前記集光光学系 との間の前記平行光束中に固定された状態で配され、 1枚以上のレンズにより構成さ れた第 2レンズ群と;前記レーザ光を集光させる前記媒質の屈折率及び媒質表面か ら集光させる位置までの距離に応じて、前記第 1レンズ群を移動させる移動手段と; を備え、前記第 2レンズ群の後側焦点位置が、前記集光光学系の入射瞳位置の少 なくとも近傍に配されている。
[0037] 前記第 1レンズ群及び前記第 2レンズ群が、光路中から挿脱可能であってもよい。
[0038] 前記集光光学系と前記媒質表面との光軸方向の相対的な距離が一定であってもよ い。
[0039] また、本発明の収差補正光学系の第 1の態様は、光源からの光束を集光する光学 系であって、下記式を満たす複数のレンズを排他で光路中に挿脱可能に配置した。
2 (d2+l X f-l X d) NA=f X a
ただし、 d;集光光学系の入射瞳位置力 複数のレンズまでの距離
1;集光光学系の入射瞳位置から光源位置までの距離
f;複数のレンズの焦点位置
NA;光源の開口数 (集光レンズから見た開口数)
a ;集光光学系の入射瞳径
[0040] また、本発明のレーザ走査光学系の第 1の態様は、収束'発散光学系中に、下記 式を満たす複数のレンズを光路中に挿脱可能に配置した。
2 (d2+l X f-l X d) NA=f X a
ただし、 d;集光光学系の入射瞳位置力 複数のレンズまでの距離 1;集光光学系の入射瞳位置から光源位置までの距離
f;複数のレンズの焦点位置
NA;光源の開口数 (集光レンズから見た開口数)
a;集光光学系の入射瞳径
[0041] また、本発明のレーザ走査顕微鏡は、上記レーザ走査光学系を備えてもよい。
[0042] また、本発明の光ピンセットの第 1の態様は、収束'発散光学系中に、下記式を満 たす複数のレンズを光路中に挿脱可能に配置した。
2(d2+lXf-lXd)NA=fXa
ただし、 d;集光光学系の入射瞳位置力 複数のレンズまでの距離
1;集光光学系の入射瞳位置から光源位置までの距離
f;複数のレンズの焦点位置
NA;光源の開口数 (集光レンズから見た開口数)
a;集光光学系の入射瞳径
[0043] また、本発明の収差補正光学系の第 2の態様は、平行光束を射出する光源と、平 行光束を集光する光学系とを含む集光光学系であって、下記式を満たす複数のレン ズを排他で光路中に挿脱可能に配置した。
b(f-d)/f = a
ただし、 b;光源力 の平行光束径
d;集光光学系の入射瞳位置カゝら複数のレンズまでの距離 f;複数のレンズの焦点位置
a;集光光学系の入射瞳径
[0044] また、本発明のレーザ走査光学系の第 2の態様は、平行光束中に、下記式を満た す複数のレンズを光路中に排他で光路中に挿脱可能に配置した。
b(f-d)/f = a
ただし、 b;光源力 の平行光束径
d;集光光学系の入射瞳位置カゝら複数のレンズまでの距離 f;複数のレンズの焦点位置
a;集光光学系の入射瞳径 [0045] また、本発明の光ピンセットは、平行光束中に、下記式を満たす複数のレンズを光 路中に排他で光路中に揷脱可能に配置した。
b (f -d) /f = a
ただし、 b ;光源力 の平行光束径
d ;集光光学系の入射瞳位置カゝら複数のレンズまでの距離
f;複数のレンズの焦点位置
a ;集光光学系の入射瞳径
発明の効果
[0046] 本発明に係る集光光学系によれば、集光させる媒質の屈折率及び媒質の表面から 集光させる位置までの距離に応じて、レーザ発散点移動手段によりレーザ発散点を レーザ光の光軸上に沿って移動させるので、媒質中の深さが異なるそれぞれの位置 で、球面収差の発生量を極力抑えることができる。従って、レーザ光を所望する媒質 の深さに効率良く集光させることができ、集光性能の向上を図ることができる。また、 球面収差が少な 、光を再集光して正確な観察像を得ることができるので、高精度に 媒質中の観察を行うことができる。特に、レーザ発散点を移動させるだけであるので、 従来のように手間をかけることなぐ容易に球面収差補正を行うことができると共に特 別な光学系を備える必要がないので、構成のシンプノレイ匕を図ることができると共にコ ストィ匕を図ることができる。
また、本発明に係る光学系によれば、媒質中の集光させる位置までの距離に応じ て、第 1レンズ群を移動させることで、第 2レンズ群に入射する光束の位置を変える、 即ち、集光光学系から見た実質的な光源位置の変更が行えるので、所望する集光 点での球面収差の発生量を極力抑えることができる。また、後側焦点位置が集光光 学系の入射瞳位置に一致した第 2レンズ群により、集光光学系の入射瞳に入射する 光束径を変化させることがないので、従来のように光量の変化や、瞳面内での光量 分布が変化することを抑えることができる。従って、集光性能の変化を抑えることがで きる。
更に、第 1レンズ群を移動させるだけで、光源位置の変更が行えるので、構成のシ ンプルイ匕を図ることができ、手間をかけることなく容易に球面収差補正を行うことがで きる。
図面の簡単な説明
[図 1]本発明の第 1実施形態に係るレーザ集光光学系を示す構成図である。
[図 2]同レーザ集光光学系により、レーザ光を標本面力 深さの異なる位置に照射し て観察を行う場合のフローチャートの一例である。
[図 3]同レーザ集光光学系により、レーザ光を標本面力 深さの異なる位置に照射し ている状態を示す図であって、(a)は標本面から 50 mの位置、(b)は標本面から 7 5 μ mの位置、(c)は標本面から 100 μ mの位置に照射している図である。
[図 4]集光光学系の波面データを考慮に入れて、同レーザ集光光学系によりレーザ 光を照射する場合のフローチャートの一例である。
[図 5]本発明の第 2実施形態に係るレーザ集光光学系を示す構成図である。
[図 6]本発明に係るレーザ集光光学系の他の例を示す構成図である。
[図 7]本発明の第 3実施形態に係るレーザ集光光学系を示す構成図である。
[図 8]同レーザ集光光学系により、レーザ光を標本面力 深さの異なる位置に照射す る場合のフローチャートの一例である。
[図 9]本発明の第 4実施形態に係るレーザ集光光学系を示す図であって、レーザ光 を標本面力 深さの異なる位置に照射する場合のフローチャートの一例である。
[図 10]図 9に示すフローチャートにより、レーザ光を標本面力 深さの異なる位置に照 射した状態を示す図であって、(a)は標本面から 50 mの位置、(b)は標本面から 7
5 μ mの位置、(c)は標本面から 100 μ mの位置に照射している図である。
[図 11]本発明に係る光学系の作用効果を説明する図であって、第 1のレンズ、第 2の レンズ及び集光光学系の位置関係を示す図である。
[図 12]同集光光学系の入射瞳位置と第 2のレンズの後側焦点位置との関係を示す図 である。
[図 13]本発明の第 5実施形態に係る光学系を示す構成図である。
[図 14]同光学系により、光束を所望する位置に集光させる場合のフローチャートの一 例である。
[図 15]本発明の第 5実施形態に係る光学系で説明した第 1のレンズ及び第 2のレンズ の具体的構成図である。
圆 16]本発明に係る光学系の第 6実施形態を示す構成図である。
圆 17]本発明に係る光学系の第 7実施形態を示す構成図である。
圆 18]本発明に係る光学系の第 7実施形態で説明した第 1のレンズ及び第 2のレンズ の具体的構成図である。
圆 19]本発明に係る光学系の第 8実施形態を示す構成図である。
圆 20]本発明に係る光学系の第 9実施形態を示す構成図である。
圆 21]同光学系により、光束を所望する位置に集光させる場合のフローチャートの一 例である。
圆 22]本発明に係る光学系の第 9実施形態で説明した第 1のレンズ及び第 2のレンズ の具体的構成図である。
圆 23]本発明に係る光学系の第 10実施形態を示す構成図である。
圆 24]同光学系により、レーザ光を媒質の表面力も深さの異なる位置に集光させて いる状態を示す図であって、(a)は表面から 50 mの位置、(b)は表面から 75 m の位置、(c)は表面から 100 μ mの位置に集光させている図である。
[図 25]同光学系の変形例であって、 2次元ガルバノミラーを採用した光学系の一例を 示す図である。
圆 26]本発明に係る光学系を光ピンセット光学系に採用した一例を示す図である。 圆 27]発散光束中に複数の凸レンズを揷脱可能に配した光学系を示す図である。
[図 28]収束光束中に複数の凸レンズを揷脱可能に配した光学系を示す図である。 圆 29]平行光束中に複数の凹レンズを揷脱可能に配した光学系を示す図である。
[図 30]平行光束を凸レンズで収束光に変換し、この収束光中に複数の凹レンズを揷 脱可能に配した光学系を示す図である。
圆 31]図 23に示す光学系に、複数の凹レンズを揷脱可能に組み合わせた光学系を 示す図である。
圆 32]従来の球面収差の補正を説明する図であって、球面収差補正レンズを光軸方 向に移動可能な光学系の一例を示す図である。
圆 33]図 32に示す光学系により、入射瞳位置での光量が変化する状態を示した図 である。
符号の説明
A 媒質
L, L ' レーザ光、光束
1、 25、 30 レーザ集光光学系
2 レーザ光源
3 標本 (媒質)
4 集光光学系
5 フォトディテクタ (光検出器)
5A ピンホーノレ
6 レーザ発散点
7 走査手段
31 観察光学系
101 光学系
103 集光光学系
104 第 1のレンズ(第 1レンズ群)
105 第 2のレンズ(第 2レンズ群)
106 移動手段
110 第 2レンズ群
115 第 1レンズ群
120 レーザ光学系 (光学系)
122 結像レンズ (平行光束手段)
123 集光光学系
124 走査手段
125 フォトディテクタ (光検出器)
135 2次元ガルバノミラー(走査手段)
発明を実施するための最良の形態
以下、本発明の第 1実施形態に係るレーザ集光光学系を、図 1から図 3を参照して 説明する。
本実施形態のレーザ集光光学系 1は、図 1に示すように、レーザ光 Lを発散光状態 (非平行光束状態)で出射するレーザ光源 2と、このレーザ光源 2と標本 (媒質) 3との 間に配されて、レーザ光 Lを標本中に集光させると共に集光点力 の光を再集光す る集光光学系 4と、レーザ光源 2と共役な位置に配されて集光光学系 4により再集光 された光をピンホール 5Aを介して検出するフォトディテクタ (光検出器) 5 (ピンホール ディテクタ)と、レーザ光 Lのレーザ発散点 6の位置、即ち、レーザ光源 2の位置を、レ 一ザ光 Lを集光させる標本 3の屈折率及び標本面 (標本の表面) 3aから集光させる 位置までの距離に応じて、レーザ光 Lの光軸上に沿って移動可能なレーザ発散点移 動手段と、ピンホール 5Aとフォトディテクタ 5を、移動したレーザ発散点 6に対して共 役な位置に移動させるためのピンホールディテクタ移動手段と、レーザ光 Lを集光光 学系 4の光軸に対して直交する方向(水平方向、 XY方向)に向けて走査可能な走査 手段 7とを備えている。
なお、標本 3は、 XY方向に移動可能な図示しないステージ上に載置されている。
[0050] 上記レーザ発散点移動手段は、制御部に接続されており、この制御部からの信号 を受けてレーザ光源 2を移動することで、レーザ発散点 6を移動可能とされている。ま た、ピンホールディテクタ移動手段は制御部に接続され、この制御部力 の信号によ り、レーザ発散点 6に対して共役な位置に移動される。また、制御部は、所定の情報 を入力可能な入力部と、この入力部により入力された各入力情報 (入力データ)に基 づいてレーザ光源 2の移動量を計算する計算部とを備えており、計算結果に応じて レーザ発散点移動手段に信号を送って移動させるようになって 、る。
また、制御部は、レーザ発散点移動手段の制御に加え、レーザ発散点 6の移動終 了後にレーザ光 Lを出射させるようにレーザ光源 2の制御も同時に行うようになってい る。
[0051] 上記集光光学系 4は、レーザ光源 2から出射されたレーザ光 Lを、光軸の向きを 90 度変更するように反射させるハーフミラー 10、このハーフミラー 10により反射されたレ 一ザ光 Lを概略平行光にする結像レンズ 11、レーザ光 Lを標本面 3aに水平な一方 向(X方向)に走査できるように異なる角度で反射させる第 1のガルバノミラー 12、この 第 1のガルバノミラー 12で反射されたレーザ光 Lをリレーする第 1の瞳リレー光学系 1 3、第 1の瞳リレー光学系 13を通過したレーザ光 Lを標本面 3aに水平な他方向(Y方 向)に走査できるように異なる角度で反射させる第 2のガルバノミラー 14、この第 2の ガルバノミラー 14で反射されたレーザ光 Lをリレーする第 2の瞳リレー光学系 15、この 第 2の瞳リレー光学系 15を通過したレーザ光 Lを標本内に集光させると共に、集光点 力もの光を再集光する対物レンズ 16を備えて 、る。
[0052] 上記第 1のガルバノミラー 12及び第 2のガルバノミラー 14は、それぞれ中心位置に 、互いに直交する方向に向くように配された回転軸 12a、 14aを有しており、この回転 軸 12a、 14aの軸回りに所定の角度の範囲内で振動するように構成されている。この 振動により、上述したようにレーザ光 Lを異なる角度で反射可能とされている。また、 両ガルバノミラー 12、 14の組み合わせにより、レーザ光 Lを集光光学系 4の光軸方向 に直交する方向(XY方向)に走査可能とされている。即ち、これら両ガルバノミラー 1 2、 14は、上記走査手段 7として機能するようになっている。なお、両ガルバノミラー 1 2、 14は、制御部によって振動 (作動)が制御されている。
上記ピンホール 5A及びフォトディテクタ 5は、ハーフミラー 10の後側に配されており 、制御部により制御されるピンホールディテクタ移動手段により、レーザ光源 2の移動 に同期して光軸方向に移動するようになって!/、る。
[0053] このように構成されたレーザ集光光学系 1により、標本面 3aから深さの異なる位置 の観察を行う場合について説明する。なお、本実施形態においては、標本面 3aから 、例えば、 50 ^ m, 75 ^ m, 100 mの位置の観察を行う場合について説明する。 まず、標本面 3aから深さ 50 mの位置の観察を行う場合には、図 2に示すように、 制御部の入力部に標本 3の屈折率、標本面 3aから集光させる位置までの距離、即ち 50 μ m、及び集光光学系 4の開口数 NA (Numerical Aperture)の入力を行う(ステツ プ Sl)。計算部は、この入力データに基づいてレーザ発散点 6の移動量、即ち、レー ザ光源 2の移動量の計算及び対物レンズ 16下面力 標本面 3aまでの距離、即ち、 WD値の計算を行う (ステップ S2)。計算終了後、制御部は、計算結果に基づいてレ 一ザ発散点移動手段をレーザ光 Lの光軸方向に移動させるよう制御して、レーザ光 源 2の位置を所定の位置に移動させると共に、対物レンズ 16と標本面 3aとの距離( WD : Work Distance)を変化させる(ステップ S3)。
[0054] レーザ光源 2の移動及び WDの変化の終了後、制御部は、レーザ光源 2に信号を 送りレーザ光 Lを出射させる (ステップ S4)。出射されたレーザ光 Lは、ハーフミラー 1 0で反射された後、結像レンズ 11で概略平行光にされて第 1のガルバノミラー 12に入 射する。そして、第 1のガルバノミラー 12により、標本面 3aの X方向に向けて異なる角 度で反射される。反射されたレーザ光 Lは、第 1の瞳リレー光学系 13を介して第 2の ガルバノミラー 14により標本面 3aの Y方向に向けて異なる角度で反射される。反射さ れたレーザ光 Lは、第 2の瞳リレー光学系 15を介して対物レンズ 16に入射する。そし て、図 3の(a)に示すように、対物レンズ 16により標本面 3aから 50 mの位置に集光 される。
この際、上述したように、 50 mの深さに応じてレーザ光源 2の位置、即ち、レーザ 発散点 6の位置を調整するので、深さ 50 mの位置における球面収差の発生量を 極力抑えることができ、この位置に効率良くレーザ光 魏光させることができる。
[0055] また、この集光点力もの光は、対物レンズ 16により再集光されて、上述した逆の光 路を通りピンホール 5Aを介してフォトディテクタ 5にて検出される。即ち、対物レンズ 1 6で再集光された光は、第 2の瞳リレー光学系 15の通過、第 2のガルバノミラー 14〖こ よる反射、第 1の瞳リレー光学系 13の通過、第 1のガルバノミラー 12による反射、結 像レンズ 11の通過及びハーフミラー 10の透過を順に行った後、ピンホール 5Aを介 してフォトディテクタ 5により検出される。なお、対物レンズ 16により再集光された光は 、レーザ光 Lが通った光路と同一光路を通るように両ガルバノミラーで反射される。
[0056] 上述したように、球面収差の発生量を極力抑えた状態で集光点 (標本面から深さ 5 0 mの位置)にレーザ光 光させているので、フォトディテクタ 5により誤差の少 ない観察像を得ることができる。従って、高精度の観察を行うことができる。特に、ピン ホール 5A及びフォトディテクタ 5は、レーザ光源 2の移動に同期して光軸方向に移動 しているので、共焦点効果によりコントラストの良い集光点の観察像を得ることができ る。
また、両ガルバノミラー 12、 14により、レーザ光 Lを標本面 3aの水平方向(XY方向 )に向けて走査させるので、視野範囲の全体に亘つて観察を行うことができる。この際 、標本 3側 (ステージ側)を動かすことなぐ視野の全体に亘つて走査を行うことができ る。
[0057] 次に、標本面 3aから深さ 75 μ m又は 100 μ mの位置の観察を行う場合には、上述 した場合と同様に、入力部に標本面 3aの屈折率、標本面 3aから集光させる位置まで の距離(75 m又は 100 m)及び集光光学系 4の NAの入力を行う。計算部による 計算終了後、制御部は、計算結果に基づいてレーザ光源 2をレーザ光 Lの光軸方向 に移動させるよう制御して、レーザ光源 2の位置を所定の位置に移動させる。その後 、レーザ光 Lを出射させて、集光光学系 4によりレーザ光 Lを標本面 3aから 75 m又 は 100 mの位置に集光させると共に、集光点からの光を再集光し、ピンホール 5A を介してフォトディテクタ 5により検出する。
この際、上述したと同様に、 75 /z m又は 100 /z mの深さに応じてレーザ光源 2を移 動させてレーザ発散点 6の位置を調整しているので、各位置毎に球面収差の発生量 を極力抑えることができ、図 3の(b)、 (c)に示すように、レーザ光 Lを 75 m又は 100 mの位置に効率良く集光させることができる。従って、誤差の少ない高精度の観察 像を得ることができる。
[0058] 上述したように、本実施形態のレーザ集光光学系 1によれば、標本面 3aから異なる 深さ(50 ^ m, 75 μ m、 100 μ m)にレーザ光 Lを集光させる際に、標本 3の屈折率 及び標本面 3aから集光させる位置までの距離に応じて、レーザ発散点移動手段によ りレーザ光源 2、即ち、レーザ発散点 6を光軸上に沿って移動させるので、球面収差 の発生量を極力抑えることができ、それぞれの各深さにおいて最適な状態で効率良 くレーザ光 Lを集光させることができる。従って、標本面 3aからの深さを変えたとしても 、各位置で誤差の少ない観察像を得ることができ、標本 3の観察を高精度に行うこと ができる。また、ピンホール 5A及びフォトディテクタ 5は、レーザ光源 2の移動に同期 して光軸方向に移動するので、共焦点効果によりコントラストの良い観察像を得ること ができる。
[0059] また、レーザ光源 2を移動させるだけの構成であるので、従来のように手間をかける ことなく容易に球面収差補正を行うことができる。また、従来の補正環対物レンズ等の 特別な光学系を必要としないので、構成のシンプルィ匕を図ることができると共に低コ ストィ匕を図ることができる。更に、レーザ光源 2を移動させるだけであるので、連続可 変を行い易ぐまた自動化への対応がし易い。
[0060] なお、上記第 1実施形態においては、入力部に標本 3の屈折率、標本面 3aから集 光させる位置までの距離及び集光光学系 4の NAを入力することで、レーザ光源 2の 位置を計算した力 入力データは上述したものに限らず、例えば、これら入力データ に加え、集光光学系 4の予め測定された波面データをさらに入力して、レーザ光源 2 の位置を計算しても構わな 、。
即ち、図 4に示すように、入力部への各種データ入力(上述したステップ S1)の際、 標本 3の屈折率、標本面 3aから集光させる位置までの距離、集光光学系 4の NA及 び集光光学系 4の波面データを入力する。
こうすることで、高精度に球面収差補正を行うことができ、レーザ光 Lの集光性能を より向上させることができ、より誤差の少ない観察像を得ることができる。
なお、集光光学系 4の波面データとしては、例えば、集光光学系 4を構成している 一部である対物レンズ 16の波面データでも構わないし、集光光学系 4全体の波面デ ータを利用しても構わない。
また、上記第 1実施形態においては、ピンホール 5A及びフォトディテクタ 5をピンホ 一ルディテクタ移動手段によって移動可能とした力 ピンホール 5Aのみをレーザ発 散点 6に対して共役な位置に移動させる構成にしてもよい。
[0061] 次に、本発明の第 2実施形態に係るレーザ集光光学系を、図 5を参照して説明する 。なお、この第 2実施形態においては、第 1実施形態における構成要素と同一の部分 については、同一の符号を付し、その説明を省略する。また、この図 5では、図の内 容を明瞭にするために、図 1で示した前記ピンホールディテクタ移動手段、レーザ発 散点移動手段、制御手段の図示を省略している。
第 2実施形態と第 1実施形態との異なる点は、第 1実施形態では、レーザ発散点移 動手段により、レーザ光源 2を移動させることでレーザ発散点 6の位置を調整したが、 第 2実施形態のレーザ集光光学系 20は、レーザ発散点移動手段により、レーザ光源 2、ハーフミラー 10とピンホール 5A及びフォトディテクタ 5を一体的に移動させて、レ 一ザ発散点の位置を調整するよう構成する点である。 このように構成することで、レーザ発散点の位置を容易に移動することができること にカロえ、ピンホール 5A及びフォトディテクタ 5をレーザ光源 2の移動に同期させる必 要がない。従って、よりシンプルに構成することができ、低コストィ匕を図ることができる
[0062] なお、レーザ発散点の移動方法は、上記第 1実施形態及び第 2実施形態に限らず 、例えば、図 6に示すレーザ集光光学系 25のように、レーザ発散点 6を移動させても 構わない (この図 6では、図の内容を明瞭にするために、レーザ発散点移動手段、制 御手段の図示を省略している)。即ち、ハーフミラー 10と結像レンズ 11との間にハー フミラー 10を透過したレーザ光 Lを、それぞれ光軸を 90度ずつ変更するように反射さ せる第 1のミラー 26及び第 2のミラー 27を配して、両ミラー 26、 27によりレーザ光 の 出射方向を 180度変更させると共に、レーザ発散点移動手段により両ミラー 26、 27 を一体的にレーザ光 Lの光軸方向に向けて移動できるように構成しても良 、。また、 両ミラー 26, 27に代えて、反射面が対向する台形プリズムを用いることもできる。 このように構成することで、レーザ光源 2とピンホール 5A及びフォトディテクタ 5の位 置を変更することなぐ容易にレーザ発散点 6の位置を移動することができ、さらなる 構成のシンプルィ匕を図ることができる。
[0063] また、上記レーザ集光光学系 25は、 2次元ガルバノミラー 28を備えている。この 2次 元ガルバノミラー 28は、上記第 1実施形態の第 1のガルバノミラー 12及び第 2のガル バノミラー 14の回転軸 12a、 14aと同一方向に向いた 2つの回転軸 28a、 28bを有し ており、この回転軸 28a、 28bの軸回りに所定の角度の範囲で 2次元的に振動するよ うになつている。即ち、 2次元ガルバノミラー 28は、走査手段として機能する。
これにより、上記第 1実施形態のようにガルバノミラー及び瞳リレー光学系をそれぞ れ 2つ備える必要がなくなることからも、さらなる構成の容易化が図れ、低コスト化を図 ることがでさる。
[0064] 次に、本発明の第 3実施形態に係るレーザ集光光学系を、図 7及び図 8を参照して 説明する。なお、この第 3実施形態においては、第 2実施形態における構成要素と同 一の部分については、同一の符号を付し、その説明を省略する。
第 3実施形態と第 2実施形態との異なる点は、第 2実施形態では、対物レンズ 16と 標本面 3aとの距離に関係なく走査を行ったが、第 3実施形態では、対物レンズ 16と 標本面 3aとの距離を一定に維持した状態で走査を行う点である。
即ち、本実施形態のレーザ集光光学系 30は、図 7に示すように、集光光学系 4に 連携して設けられ、集光光学系 4、即ち、対物レンズ 16の下面から標本面 3aまでの 距離を所定の距離に維持する観察光学系 31を備えている。また、この観察光学系 3 1は、オートフォーカス機構を有している。
[0065] 上記観察光学系 31は、直線偏光の半導体レーザ光 L'を照射する光源 32、この光 源 32から照射された半導体レーザ光 L,を平行光にする第 1のレンズ 33、この第 1の レンズ 33に隣接配置された偏光ビームスプリッタ 34、この偏光ビームスプリッタ 34を 透過した半導体レーザ光 L,を収束及び発散させる第 2のレンズ 35、この第 2のレン ズ 35により発散された半導体レーザ光 L'を集光光学系 16の瞳径の大きさの平行光 にする第 3のレンズ 36、この第 3のレンズ 36を透過した半導体レーザ光 L,の偏光を 円偏光にする 1Z4波長板 37、この 1Z4波長板 37を透過した半導体レーザ光 L'を 、光軸の向きを 90度変えるように反射させて集光光学系 16に入射させるダイクロイツ クミラー 38、再度 1Z4波長板 37を透過し上記偏光ビームスプリッタ 34で反射された 対物レンズ 16からの戻り光を、シリンドリカルレンズ 39に入射させる第 4のレンズ 40及 びシリンドリカルレンズ 39の後側に配されたフォトダイオード 41を備えている。
なお、ダイクロイツクミラー 38は、半導体レーザ光 L'を反射すると共に、それ以外の 波長の光、例えば、レーザ光源 2で出射されたレーザ光 Lを透過するよう設定されて いる。
[0066] 上記偏光ビームスプリッタ 34は、直線偏光のうち、例えば、入射面に平行な振動成 分である P成分の直線偏光の光を透過させると共に、入射面に垂直な振動成分であ る S成分の光を反射させる機能を有している。また、制御部は、上記フォトダイオード 41により受光された検出信号に基づいてステージをフィードバック制御して、ステー ジを鉛直方向(光軸方向)に移動させるようになつている。即ち、オートフォーカスする ようになつている。これにより、半導体レーザ光 L'は、常に標本面 3aに焦点を合わせ ることが可能となる。
[0067] このように構成されたレーザ集光光学系 30により走査を行う場合、制御部の入力部 に標本 3の屈折率、標本面 3aから集光させる位置までの距離、集光光学系 30の開 口数 NAの入力を行う(ステップ Sl)。計算部は、この入力データに基づいてレーザ 発散点の移動量、即ちレーザ光源 2の移動量の計算 (ステップ S2)及びオートフォー カスのオフセット量の計算(ステップ S8)を行う。
次に、光源 32から直線偏光の半導体レーザ光 L'の照射を行う。照射された半導体 レーザ光 L'は、第 1のレンズ 33により平行光となった後、偏光ビームスプリッタ 34に 入射する。そして、入射面に平行な振動成分である P成分の直線偏光の光となった 後、第 2のレンズ 35により収束された後、発散状態となる。そして、発散された光は、 第 3のレンズ 36により再度平行光となって 1Z4波長板 37に入射する。なお、この際 、平行光は、対物レンズ 16に応じた光束の幅となっている。 1Z4波長板 37を透過し て円偏光となった半導体レーザ光 L'は、ダイクロイツクミラー 38で反射されて対物レ ンズ 16に入射する。対物レンズ 16に入射した光は、標本面 3aに照明される。
[0068] 次 、で、標本面 3aで反射した光は、対物レンズ 16で集光された後、ダイクロイツクミ ラー 38で反射されて 1Z4波長板 37に入射し、入射面に垂直な振動成分である S成 分偏光となる。この光は、第 3のレンズ 36及び第 2のレンズ 35を透過した後、偏光ビ 一ムスプリッタ 34に入射して第 4のレンズ 40に向けて反射される。そして、第 4のレン ズ 40により収束された後、シリンドリカルレンズ 39を透過してフォトダイオード 41上に 結像される。この結像された光は、光電変換され、検出信号として制御部に送られる( ステップ S5)。この制御部は、計算により検出したオフセット量と、送られてきた検出 信号に基づいて計算を行い (ステップ S6)、さらにステージを鉛直方向(光軸方向)に 移動させる (ステップ S7)。即ち、自動的にオートフォーカスを行って、所望の深さに レーザ光を集光させるため、対物レンズ 16と標本面 3aとの距離を適切な状態に制御 する。
[0069] これにより、対物レンズ 16と標本面 3aとの距離を、常に一定の距離に維持しながら 走査を行うことができる。従って、仮にステージが若干湾曲していたり、ステージの移 動に多少の誤差等が生じていたとしても、正確に所望の深さにレーザ光 光させ ることができる。よって、標本面 3aからの集光位置をより正確に制御しながら走査を行 うことができ、標本 3の観察をより高精度に行うことができる。 [0070] なお、上述した走査を行う際に、レーザ光 Lの集光させる位置を変更する場合、ォ 一トフォーカスのオフセット量計算 (ステップ S8)を事前に行った後、走査を行う。例え ば、 100 mの深さに集光させた状態で走査を行った後に、 50 mの深さに集光さ せて走査を行う場合には、 WD値を変更して最適な状態、即ち、最適値に設定する 必要がある。この WD値の変更に伴って、オートフォーカスを所定量だけオフセットす る必要が生じる。つまり、オートフォーカスのオフセット量を計算することで、 WD値の 補正が行える。そして、オフセットを行った後に、上述したと同様に異なる深さでの走 查を行う。
[0071] 次に、本発明の第 4実施形態に係るレーザ集光光学系を、図 9及び図 10を参照し て説明する。なお、この第 4実施形態においては、第 3実施形態における構成要素と 同一の部分については、同一の符号を付し、その説明を省略する。
第 4実施形態と第 3実施形態との異なる点は、第 3実施形態では、対物レンズ 16と 標本面 3aとの光軸方向の相対的な距離、即ち、 WDが一定でな力つたのに対し、第 4実施形態では、 WDが一定とされて 、る点である。
即ち、ステージ及び対物レンズ 16の光軸方向における位置を、予め事前に設定し た後、両者の位置を常に同じ位置に維持するように設定を行うようになっている。つま り、図 9に示すように、入力部への各種データ入力(上述したステップ S1)の際、 WD 値を除いたデータ、即ち、標本 3の屈折率、標本面 3aから集光させる位置までの距 離及び集光光学系 4の NAのデータの入力を行う。
[0072] こうすることで、図 10に示すように、 WDを一定にした状態で、レーザ発散点移動手 段によりレーザ発散点のみを光軸方向に沿って移動させるので、オートフォーカスの オフセット量を初期に設定した後に、再度オフセット量を計算する必要がない。従つ て、オフセットに要する時間を短縮でき、スループットの向上を図ることができる。また 、オフセットを行うことにより生じるオートフォーカスの精度の劣化を小さくすることがで きる。
[0073] なお、本発明の技術範囲は、上記実施形態に限定されるものではなぐ本発明の 趣旨を逸脱しない範囲において、種々の変更をカ卩えることが可能である。
例えば、上記各実施形態において、標本内にレーザ光を集光させたが、標本に限 らず媒質中に集光させれば構わない。また、集光させる距離として、標本面力も 50 m、 75 μ m、 100 μ mの距離とした力 これらの距離に限らず、任意に設定して構わ ない。また、ステージを移動させて、対物レンズと標本面との光軸方向の相対的な距 離を変化させたが、これに限らず、例えば、対物レンズを、ピエゾ素子等を利用して 移動させることで、相対的な距離を変化させても構わな!/、。
また、制御部によりレーザ発散点移動手段を自動的に制御するように構成したが、 制御部による計算結果に基づいて、手段によりレーザ発散点移動手段を作動させて レーザ発散点の位置を移動させても構わな 、。
[0074] また、上記第 3実施形態で説明した観察光学系は一例であり、対物レンズの下面か ら標本面までの距離を所定距離に維持可能であれば、レンズ等の各光学系を組み 合わせて構成して構わな 、。
[0075] 以下、本発明の第 5実施形態に係る光学系を、図 13及び図 14を参照して説明す る。
本実施形態の光学系 101は、図 13に示すように、平行光束状態で光束 Lを射出す る図示しな 、射出手段と、光束 Lを集光する対物レンズ 102を有する集光光学系 10 3と、射出手段と対物レンズ 102との間の光束中に、光束 Lの光軸方向に沿って移動 可能に配された第 1のレンズ(第 1レンズ群) 104と、この第 1のレンズ 104と対物レン ズ 102との間に光束中に固定された状態で配された第 2のレンズ (第 2レンズ群) 105 と、光束 光させる位置までの距離に応じて、第 1のレンズ 104を移動させる移動 手段 106とを備えている。
[0076] 上記第 1のレンズ 104は、両凹レンズであり、図示しないレンズ枠に固定されている 。上記移動手段 106は、レンズ枠に接続されており、レンズ枠を介して第 1のレンズ 1 04を移動可能とされている。また、移動手段 106は、図示しない制御部に接続されて おり、この制御部力 の信号を受けて作動するようになって!/、る。
この制御部は、所定の情報を入力可能な入力部と、この入力部により入力された各 入力情報 (入力データ)に基づいて第 1のレンズ 104の移動量を計算する計算部とを 備えており、計算結果に応じて移動手段 106を所定量移動させるようになつている。 また、制御部は、移動手段 106の制御に加え、第 1のレンズ 104の移動終了後に光 束 Lを射出させるように射出手段の制御も同時に行うようになっている。 また、上記第 2のレンズ 105は、凸レンズであり、平面側を第 1のレンズ 104側に向 けて、即ち、凸面側を対物レンズ 102側に向けて、後側焦点位置が対物レンズ 102 の入射瞳位置の少なくとも近傍になる位置に配されて 、る。
[0077] このように構成された光学系 101により、光束 光させる場合について説明する まず、図 14に示すように、制御部の入力部に、基準位置力も光束 Lを集光させる集 光点までの移動量を入力する (ステップ S1A)。計算部は、この入力データに基づい て移動手段 106の移動量の計算を行う (ステップ S2A)。計算終了後、制御部は、計 算結果に基づ 、て移動手段 106を光束 Lの光軸方向に移動させるよう制御して、第 1のレンズ 104を所定の位置に移動させる(ステップ S3A)。
[0078] 第 1のレンズ 104の移動終了後、制御部は、射出手段に信号を送り、光束 Lを射出 させる。射出された光束 Lは、平行光束状態で第 1のレンズ 104で屈折して、発散光 状態となり、第 2のレンズ 105に入射する。つまり、第 1のレンズ 104を移動させること で、光軸方向における光束 Lの発散点位置を変更している。発散光となった光束 Lは 、第 2のレンズ 105により再度屈折した後、対物レンズ 102に入射して所望する位置 に集光される (ステップ S4A)。
[0079] 次に、上述した集光点とは異なる位置に光束 Lを集光させる場合には、上述したと 同様に基準位置力 新たな集光点までの移動量を入力部に入力する。制御部は、 計算部による計算結果に基づいて、移動手段 106を作動させて第 1のレンズ 104を 光軸方向に沿って移動させる。これにより、射出手段により射出された光束 Lは、上 述した位置とは異なる位置で屈折して発散光状態となって第 2のレンズ 105に入射 する。この際、光束 Lは、第 1のレンズ 104に平行光束状態で入射するので、第 1のレ ンズ 104の位置に関係なく常に同じ角度で屈折して第 2のレンズ 105に入射する。従 つて、光束 Lは、瞳面内での光量及び光量分布が同じ状態で対物レンズ 102により 集光される。
[0080] このように、本実施形態の光学系 101によれば、第 1のレンズ 104を移動させること で、光束 Lの発散点位置を変更でき、即ち、実質的な光源位置の変更が行え、瞳面 内での光量及び光量分布を一定にしたまま集光ポイント (集光点)を所望の位置に変 更することができ、その位置 (各集光点)での球面収差の発生量を極力抑えることが できる。
また、第 1のレンズ 104を移動させるだけの構成であるので、容易に構成して低コス ト化を図ることができると共に、手間がかかることはない。
[0081] ここで、上記第 5実施形態で説明した第 1のレンズ及び第 2のレンズのより具体的な 構成例を図 15に示す。また、各レンズを、表 1に示すよう設定する。
なお、表 1において、 Rはレンズの曲率半径であり、 dはレンズの肉厚若しくは空気 間隔、 nは屈折率である。
[0082] [表 1] 面数 R d π
1 - 10 1 1.5061
2 oo 間隔 d 1
3 oo 2 1.5051
4 -30
物点位置 ∞ (平行光束を入射)
レンズ最終面から入射瞳位置までの距離 =59.3
間隔 d 1 27.519 37.519 47.519 集光光学系の入射瞳位置から見 E光源位置 -351.25 oo 351.25 第 1レンズの焦点距離 f 1 19.8
第 2レンズの焦点距離 f2 59.3
[0083] 次に、本発明の第 6実施形態に係る光学系を、図 16を参照して説明する。なお、こ の第 6実施形態においては、第 5実施形態における構成要素と同一の部分について は、同一の符号を付し、その説明を省略する。
第 6実施形態と第 5実施形態との異なる点は、第 5実施形態では、第 1のレンズ 104 が両凸レンズであつたのに対し、第 6実施形態の光学系は、第 1のレンズ 104が凸レ ンズであり、平面側が第 2のレンズ 105側に向いて配されている点である。
本実施形態の場合も第 1実施形態と同様に、第 1のレンズ 104の位置に関係なぐ 平行光束状態で入射した光束 Lは、常に同じ角度で屈折して第 2のレンズ 105に入 射する。よって、本実施形態は、第 5実施形態と同様の作用効果を奏する。 [0084] 次に、本発明の第 7実施形態に係る光学系を、図 17を参照して説明する。なお、こ の第 7実施形態においては、第 6実施形態における構成要素と同一の部分について は、同一の符号を付し、その説明を省略する。
第 7実施形態と第 6実施形態との異なる点は、第 6実施形態では、第 2レンズ群が、 1枚の凸レンズ、即ち、第 2のレンズ 105から構成されていたのに対し、第 7実施形態 の第 2レンズ群 110は、 2枚のレンズ 111、 112により構成されている点である。
即ち、本実施形態の第 2レンズ群 110は、図 17に示すように、第 1レンズ群である凸 レンズ 104側に配された両凹レンズ 111及びこの両凹レンズ 111に隣接して配された 両凸レンズ 112により構成されている。なお、第 2レンズ群 110全体の後側焦点位置 力 対物レンズ 102の入射瞳位置の近傍に位置するようになっている。
[0085] 本実施形態の光学系は、第 2実施形態と同様の作用効果を奏することができ、更に 、第 2レンズ群 110と対物レンズ 102との間隔 (距離)を大きくすることができるので、 その間に他の観察系等を配置することが可能となり、設計の自由度を向上することが できる。
[0086] ここで、上記第 3実施形態で説明した第 1のレンズ及び第 2のレンズ群のより具体的 な構成例を図 18に示す。また、各レンズを、表 2に示すよう設定する。
なお、表 2において、 Rはレンズの曲率半径であり、 dはレンズの肉厚若しくは空気 間隔、 nは屈折率である。
[0087] [表 2] 面数 R d n
1 20.2477 2 1.50619
2 oo 間隔 d2
3 - 1 1.9178 1 1.50619
4 oo 12.983
5 oo 2 1.5061 9
6 - 12.2735
物点位置 oo(平行光束を入射)
レンズ最終面から入射瞳位置までの距離 = 65.44
間隔 d2 43.97 53.97 63.97 集光光学系の入射瞳位置から見/≡光源位置 - 160 oo 1 60 第 1レンズの焦点距離 f1 40
第 2レンスの焦点距離 f2 40 上記表 2及び図 18に示すように、第 2のレンズ群を凹レンズ、凸レンズに構成するこ とで、第 2のレンズ群の焦点距離である 40mmよりも第 2のレンズ群最終面力 第 2の レンズ群の後側焦点位置までの距離を大きくすることができる。
[0088] 次に、本発明の第 8実施形態に係る光学系を、図 19を参照して説明する。なお、こ の第 8実施形態においては、第 5実施形態における構成要素と同一の部分について は、同一の符号を付し、その説明を省略する。
第 8実施形態と第 5実施形態との異なる点は、第 5実施形態では、第 1レンズ群が、 1枚の両凹レンズ、即ち、第 1のレンズ 104から構成されていたのに対し、第 8実施形 態の第 1レンズ群 115は、 2枚のレンズ 116、 117により構成されている点である。 即ち、本実施形態の第 1レンズ群 115は、図 19に示すように、凸部を射出手段側に 向けて配された凸レンズ 116及びこの凸レンズ 116に隣接して配された両凹レンズ 1 17により構成されている。また、本実施形態の第 2レンズ群は、 1枚の両凸レンズ 118 から構成されている。
[0089] 本実施形態の場合も第 5実施形態と同様に、第 1レンズ群 115の位置に関係なぐ 平行光束状態で入射した光束 Lは、常に同じ角度で屈折して第 2のレンズ 118に入 射して、第 1実施形態と同様の作用効果を奏する。
更に、 2枚のレンズ 116、 117による第 1レンズ群 115の合成焦点距離を fl、 1枚の 両凸レンズ 118の焦点距離を f 2とすると、 I fl I = I f2 Iとすることで、対物レンズ 1 02の入射瞳に入射する光束径と、第 1レンズ群 115に入射する光束径とを等しくした ままの状態で、第 5実施形態と同様の作用効果を奏することができる。
[0090] 次に、本発明の第 9実施形態に係る光学系を、図 20及び図 21を参照して説明する 。なお、この第 9実施形態においては、第 5実施形態における構成要素と同一の部分 については、同一の符号を付し、その説明を省略する。
第 9実施形態と第 5実施形態との異なる点は、第 5実施形態では、光束 Lを単に所 望する位置に集光させたのに対し、第 9実施形態の光学系は、光束 Lを媒質 (標本) Aの表面力 異なる深さに集光させる点である。
即ち、本実施形態の光学系は、対物レンズ 102が光束 Lを媒質中に集光させ、移 動手段 106が、集光させる媒質 Aの屈折率及び媒質の表面から集光させる位置まで の距離に応じて、第 1のレンズ 104 (第 1のレンズ群)を移動させるようになつている。
[0091] このように構成された光学系により、媒質 Aの表面力 深さの異なる位置に光束 Lを 集光させる場合にっ 、て説明する。
まず、図 21に示すように、制御部の入力部に媒質 Aの屈折率、媒質の表面から集 光させる位置までの距離、例えば、 50 m及び集光光学系 103の NAの入力を行う (ステップ S5A)。
計算部は、この入力データに基づいて第 1のレンズ 104の移動量の計算を行う(ステ ップ S6A)。計算終了後、制御部は、計算結果に基づいて移動手段 106を光軸方向 に移動させるよう制御して、第 1のレンズ 104の位置を所定の位置に移動させる(ステ ップ S7A)。
第 1のレンズ 104の移動終了後、制御部は、射出手段から平行光束状態の光束 L を射出させる。これにより、光束 Lは、媒質 Aの表面から所望する位置に、球面収差 の発生量を極力抑えた状態で集光される (ステップ S8A)。
[0092] 上述したように、入力部に入力した距離に応じて、第 1のレンズ 104を移動させて光 束 Lを集光させるので、光束 Lを所望する深さに球面収差の発生量をより抑えた状態 で集光させることができ、集光性能の向上を図ることができる。
[0093] ここで、上記第 9実施形態で説明した第 1のレンズ群及び第 2のレンズのより具体的 な構成例を図 22に示す。また、各レンズを、表 3に示すよう設定する。
なお、表 3において、 Rはレンズの曲率半径であり、 dはレンズの肉厚若しくは空気 間隔、 nは屈折率である。
[0094] [表 3]
面数 R d π
1 20.2477 2 1.50619
2 oo 間隔 cJ2
3 - 1 1.9178 1 1.50619
4 oo 12.983
5 ∞ 2 1.50619
6 - 12.2735
物点位置 ∞(平行光束を入射)
レンズ最終面から人射瞳位置までの距離 = 65.44
間隔 d2 43.97 53.97 63.97 集光光学系の入射瞳位置から見 £光源位置 - 1 60 oo 1 60 第 1レンズの焦点距離 f l - 40
第 2レンズの焦点距離 f2 40 上記表 3及び図 22に示すように、第 1のレンズ群を凸レンズ、凹レンズの構成として 、第 1のレンズ群の合成焦点距離 fl =—40と、第 2のレンズの合成焦点距離 f 2 =40 との絶対値が等しくなるようにしている。このように構成することで、第 1のレンズ群及 び第 2のレンズの近辺で光束を集光させることなぐ第 1のレンズ群への入射光束径と 第 2のレンズの後側焦点位置での光束径とを略同程度とすることができる。
[0095] 次に、本発明の第 10実施形態に係る光学系を、図 23を参照して説明する。なお、 この第 10実施形態においては、第 9実施形態における構成要素と同一の部分につ いては、同一の符号を付し、その説明を省略する。
第 10実施形態と第 9実施形態との異なる点は、第 9実施形態では、光束 Lを媒質 A の表面から深さの異なる位置に単に集光させたのに対し、第 10実施形態の光学系 は、レーザ光 L 'を媒質 Aの表面力 異なる深さに集光させると共に再集光して観察 を行う点である。
[0096] 即ち、本実施形態のレーザ光学系(光学系) 120は、レーザ光 L'を射出するレーザ 光源 121と、このレーザ光源 121から射出されたレーザ光 L 'の光束を平行光束にす る結像レンズ (平行光束手段) 122と、平行光束状態のレーザ光 L'を媒質中に集光 させると共に集光点からの光を再集光する集光光学系 123と、媒質中の集光点をレ 一ザ光 L 'の光軸に対して垂直な方向(水平方向、 XY方向)に走査可能な走査手段 124と、レーザ光源 121と共役な位置に配されて集光光学系 123により再集光された 光を検出するフォトディテクタ (光検出器) 125とを備えている。
なお、媒質 Aは、 XY方向に移動可能な図示しないステージ上に載置されている。 また、図 23では、光学系全体を 2次元平面内で描いているが、実際には P部(図中に 示す破線部分)は紙面に対して垂直になる様に構成されて 、る。
[0097] 上記集光光学系 123は、レーザ光源 121から射出されたレーザ光 L'を、光軸の向 きを 90度変更するように反射させるハーフミラー 126、このハーフミラー 126により反 射されたレーザ光 L'を平行光束状態にして結像させる上記結像レンズ 122、レーザ 光 L'を媒質 Aの表面に水平な一方向(X方向)に向けて走査できるように異なる角度 で反射させる第 1のガルバノミラー 127、この第 1のガルバノミラー 127で反射された レーザ光 L,をリレーする第 1の瞳リレー光学系 128、第 1の瞳リレー光学系 128を通 過したレーザ光 L'を媒質 Aの表面に水平な他方向(Y方向)に向けて走査できるよう に異なる角度で反射させる第 2のガルバノミラー 129、この第 2のガルバノミラー 129 で反射されたレーザ光 L,をリレーする第 2の瞳リレー光学系 130、この第 2の瞳リレー 光学系 130を通過したレーザ光 L'を媒質中に集光させると共に、集光点からの光を 再集光する対物レンズ 102を備えて 、る。
[0098] 上記第 1のガルバノミラー 127及び第 2のガルバノミラー 129は、それぞれ中心位置 に、互いに直交する方向に向くように配された回転軸 127a、 129aを有しており、この 回転軸 127a、 129aの軸回りに所定の角度の範囲内で振動するように構成されてい る。この振動により、上述したようにレーザ光 L'を異なる角度で反射可能とされている 。また、両ガルバノミラー 127, 129の組み合わせにより、レーザ光 L'を集光光学系 1 23の光軸方向に直交する方向(XY方向)に走査可能とされている。即ち、これら両 ガルバノミラー 127, 129は、上記走査手段 124として機能するようになっている。な お、両ガルバノミラー 127, 129は、制御部によって振動 (作動)が制御されている。 また、上記フォトディテクタ 125は、ハーフミラー 126の後側に配されている。
[0099] 更に、本実施形態の第 1のレンズ群は、 1枚の両凸レンズである第 1のレンズ 104か ら構成されており、結像レンズ 122と第 1のガルバノミラー 127との間で、平行光束中 に光軸方向に沿って移動可能に配されている。また、第 2のレンズ群は、 1枚の両凸 レンズである第 2のレンズ 105から構成されており、第 1のレンズ 104と第 1のガルバノ ミラー 127との間の平行光束中であって、後側焦点位置が集光光学系 123全体の入 射瞳位置の近傍に位置するように配されて 、る。
[0100] このように構成されたレーザ光学系 120により、媒質 Aの表面力 深さの異なる位置 の観察を行う場合について説明する。なお、本実施形態においては、図 24に示すよ うに、媒質 Aの表面から、例えば、 50 ^ m, 75 ^ m, 100 mの位置の観察を行う場 合について説明する。
まず、図 24の(a)に示すように、媒質 Aの表面力も深さ 50 mの位置の観察を行う 場合には、制御部の入力部に媒質 Aの屈折率、媒質 Aの表面力 集光させる位置ま での距離、即ち、 50 /ζ πι、集光光学系 123の ΝΑ及び対物レンズ 102と媒質 Αの表 面との距離、即ち、 WD値の入力を行う。計算部は、この入力データに基づいて第 1 のレンズ 104の移動量の計算を行う。計算終了後、制御部は、計算結果に基づいて 移動手段 106を光軸方向に移動させるよう制御して、第 1のレンズ 104の位置を所定 の位置に移動させる。
[0101] 第 1のレンズ 104の移動終了後、制御部は、レーザ光源 121に信号を送りレーザ光 L'を射出させる。射出されたレーザ光 L'は、ハーフミラー 126で反射された後、結像 レンズ 122で平行光束状態となって、所定位置に配された第 1のレンズ 104に入射 する。そして、第 1のレンズ 104により屈折して収束光状態となった後、第 2のレンズ 1 05により再度屈折して第 1のガルバノミラー 127に入射する。そして、第 1のガルバノ ミラー 127により、媒質 Aの表面の X方向に向けて異なる角度で反射される。反射さ れたレーザ光 L,は、第 1の瞳リレー光学系 128を介して第 2のガルバノミラー 129に より媒質 Aの表面の Y方向に向けて異なる角度で反射される。反射されたレーザ光 L ,は、第 2の瞳リレー光学系 130を介して対物レンズ 102に入射する。そして、図 24の (a)に示すように、対物レンズ 102により媒質の表面から 50 mの位置に集光される この際、上述したように、 50 mの深さに応じて第 1のレンズ 104の位置、即ち、実 質的な光源の位置 (収束点の位置)を変更するので、深さ 50 μ mの位置における球 面収差の発生量を極力抑えることができ、この位置に効率良くレーザ光 L'を集光さ せることができる。 [0102] また、この集光点力もの光は、対物レンズ 102により再集光されて、上述した逆の光 路を通りフォトディテクタ 125にて検出される。即ち、対物レンズ 102で再集光された 光は、第 2の瞳リレー光学系 130の通過、第 2のガルバノミラー 129による反射、第 1 の瞳リレー光学系 128の通過、第 1のガルバノミラー 127による反射、第 2のレンズ 10 5及び第 1のレンズ 104の通過、結像レンズ 122の通過及びハーフミラー 126の透過 を順に行った後、ピンホールを介してフォトディテクタ 125により検出される。なお、対 物レンズ 102により再集光された光は、レーザ光 L'が通った光路と同一光路を通るよ うに両ガルバノミラー 127, 129で反射される。
[0103] 上述したように、球面収差の発生量を極力抑えた状態で集光点 (媒質の表面から 深さ 50 mの位置)にレーザ光 L,を集光させているので、フォトディテクタ 125により 誤差の少ない観察像を得ることができる。従って、高精度の観察を行うことができる。 また、両ガルバノミラー 127, 129により、レーザ光 L'を媒質 Aの表面の水平方向( XY方向)に向けて走査させるので、媒質 Aの表面領域全体に亘つて、容易に広範囲 の観察を行うことができる。この際、媒質側 (ステージ側)を動かすことなぐ媒質 Aの 全体に亘つて走査を行うことができる。
[0104] 次に、媒質 Aの表面力も深さ 75 m又は 100 mの位置の観察を行う場合には、 上述した場合と同様に、入力部に媒質 Aの屈折率、媒質 Aの表面から集光させる位 置までの距離(75 μ m又は 100 μ m)、集光光学系 123の NA及び WD値の入力を 行う。計算部による計算終了後、制御部は、計算結果に基づいて移動手段 106を光 軸方向に移動させるよう制御して、第 1のレンズ 104の位置を所定の位置に移動させ る。その後、レーザ光 L'を射出させて、集光光学系 123によりレーザ光 L'を媒質 Aの 表面から 75 μ m又は 100 μ mの位置に集光させると共に、集光点からの光を再集光 してフォトディテクタ 125で検出する。
この際、上述したと同様に、 75 μ m又は 100 μ mの深さに応じて第 1のレンズ 104 を移動させて発散点の位置を調整して 、るので、各位置毎に球面収差の発生量を 極力抑えることができ、図 24の(b)及び (c)に示すように、レーザ光 L'を 75 m又は 100 mの位置に効率良く集光させることができる。従って、誤差の少ない高精度の 観察像を得ることができる。 なお、 WD値を変化させた場合には、制御部は、例えば、ステージを光軸方向に向 けて移動するよう制御して WDの調整を行う。
[0105] 上述したように、本実施形態のレーザ光学系 120によれば、媒質 Aの表面から異な る深さ(50 m、 75 ^ m, 100 ^ m)にレーザ光 L,^^光させる際に、媒質 Aの屈折 率及び媒質 Aの表面力も集光させる位置までの距離に応じて、移動手段 106により 第 1のレンズ 104、即ち、発散点を光軸上に沿って移動させるので、球面収差の発生 量を極力抑えることができ、それぞれの各深さにおいて最適な状態で効率良くレー ザ光 L'を集光させることができる。従って、媒質 Aの表面力もの深さを変えたとしても 、各位置で誤差の少ない観察像を得ることができ、媒質 Aの観察を高精度に行うこと ができる。
[0106] なお、上記第 10実施形態では、走査手段 124として第 1のガルバノミラー 127及び 第 2のガルバノミラー 129を採用した力 これに限らず、例えば、図 25に示すように、 走査手段 124として 2次元ガルバノミラー 135を採用しても構わな 、。この 2次元ガル ノ ノミラー 135は、第 1のガルバノミラー 127及び第 2のガルバノミラー 129の回転軸 1 27a, 129aと同一方向に向!/、た 2つの回転軸 135a、 135bを有しており、この回転軸 135a, 135bの軸回りに所定の角度の範囲で 2次元的に振動するようになっている。 これにより、上記第 10実施形態のようにガルバノミラー及び瞳リレー光学系をそれ ぞれ 2つ備える必要がなくなることからもさらなる構成の容易化が図れ、低コスト化を 図ることができる。
[0107] なお、本発明の技術範囲は、上記第 5〜第 10実施形態に限定されるものではなく 、本発明の趣旨を逸脱しない範囲において、種々の変更をカ卩えることが可能である。 例えば、第 1レンズ群及び第 2レンズ群は、上記第 5実施形態のように、 1枚のレン ズにより構成しても構わないし、第 7実施形態や第 8実施形態のように、 1枚以上のレ ンズにより構成しても構わない。また、各レンズはその種類、例えば、凸レンズ、凹レ ンズゃ両凸レンズに限定されず、自由に組み合わせて設計して良い。
[0108] 特に、上記第 5〜第 10実施形態において、移動手段が、第 1レンズ群を、下記式を 満たすように移動させるように設定すると良 、。
1/ I f I <o. 01 なお、 I f Iは、第 1レンズ群と第 2レンズ群との合成焦点距離である。こうすることで
、ァフォーカルな部分を持たせることができる。
[0109] また、上記第 5〜第 10実施形態において、下記式を満たすように第 2レンズ群を設 定すると良い。
f2 >0
なお、 f2は、第 2レンズ群の焦点距離である。
集光光学系の入射瞳位置は、集光光学系内にあることも多いが、第 2レンズ群を正 パワー(凸レンズ)にすることで、集光光学系の入射瞳位置が光学系内に存在したと しても、第 2レンズ群の後側焦点位置を集光光学系の入射瞳位置に一致させること ができる。
[0110] また、上記第 5〜第 10実施形態において、下記式を満たすように第 1レンズ群及び 第 2レンズ群を設定すると良い。
fl < 0
かつ、 1≤ I Ϊ2/Ϊ1 I ≤5
なお、 flは、第 1レンズ群の焦点距離であり、 f2は、第 2レンズ群の焦点距離である 第 1レンズ群を負パワー(凹レンズ)、第 2レンズ群を正パワー(凸レンズ)にすること で、構成のコンパクトィ匕を図ることができる。また、 l≤f2/flであるので、第 1レンズ 群を簡単に構成できる。そのため、安価にできるば力りでなぐ性能劣化を抑えること ができる。また、 I f2/fl I ≤ 5であるので、光学系をコンパクトに構成できる。
[0111] また、第 1レンズ群及び第 2レンズ群の設定は、上述したように、 fl < 0、 1≤ I f2/ fl I ≤ 5だけに限らず、例えば、上記第 5〜第 10実施形態において、下記式を満た すように設定しても良い。
fl >0
かつ、 0. 5≤ I fl/f2 I ≤2
こうすることで、両レンズ群の焦点距離を正の焦点距離にでき、単純な構成で、等 倍率近くでリレーさせることができる。
[0112] また、上記第 5〜第 10実施形態では、制御部により移動手段を自動的に制御する ように構成したが、制御部による計算結果に基づいて、移動手段を作動させて第 1の レンズ群の位置を移動させても構わな 、。
また、本発明の光学系を、図 26に示すように、光ピンセット光学系に採用しても構 わない。この場合には、球面収差の発生量を抑えることができるので、より高精度に、 例えば、水中の微小物体等を補足することができる。
[0113] 更に、図 27に示すような収差補正光学系により、球面収差補正を行っても構わな い。即ち、収差補正光学系 140は、図示しない光源からの光束 Lを集光する光学系 であり、下記式を満たす複数のレンズ 141、 142、 143を排他で光路中に揷脱可能 に配している。
2 (d2+l X f-l X d) NA=f X a
なお、上記 dは、対物レンズを含む集光光学系 144の入射瞳位置カゝら複数のレンズ 141、 142、 143までの距離であり、上記 1は、集光光学系 144の入射瞳位置から光 源位置までの距離であり、上記 fは、複数のレンズ 141、 142、 143の焦点位置であり 、上記 NAは、光源の NA (集光レンズから見た NA)であり、上記 aは、集光光学系 14 4の入射瞳径である。また、光束 Lは、発散光状態であり、上記複数のレンズ 141、 1 42、 143は、凸レンズとして ヽる。
このように構成した収差補正光学系 140においては、発散光源の場合に、媒質中 の深さが異なる部位を観察 (集光)しょうとした場合でも、光量一定、瞳面内での光量 分布一定で球面収差の発生量を抑えた観察 (集光)を行うことができる。また、従来の ように、補正環対物レンズ等の高価な対物レンズを組み合わせたり、厚みの異なるガ ラス等を交換したりする必要がな 、。
[0114] また、上述した図 27に示す収差補正光学系 140では、発散光束中に凸レンズであ る複数のレンズ 141、 142、 143を配したが、図 28に示すように、収束光束中に複数 のレンズ 141、 142、 143を配しても構わない。この場合には、複数のレンズ 141、 14 2、 143は凹レンズにすれば良い。
更に、図 29に示すように、凹レンズである複数のレンズ 141、 142、 143を、平行光 束中に配しても構わない。
更には、図 30に示すように、平行光束をー且凸レンズ 145で収束光に変換した後 、複数のレンズ 141、 142、 143を配しても構わない。
[0115] 更には、上記収差補正光学系 140を、図 31に示すように、第 10実施形態のレーザ 光学系と組み合わせて使用しても構わない。なお、複数のレンズ 141、 142、 143は 、レンズ挿脱機構 146によって挿脱されるように構成されて!ヽる。
このように構成した場合でも、第 10実施形態と同様の作用効果を奏する。
[0116] また、本発明には、以下のものが含まれる。
[付記項 1]
平行光束状態で光束を射出する射出手段と;
前記光束^^光する集光光学系と;
前記射出手段と前記集光光学系との間の前記光束中に、この光束の光軸方向に 沿って移動可能に配されて、 1枚以上のレンズにより構成された第 1レンズ群と; この第 1レンズ群と前記集光光学系との間の前記光束中に固定された状態で配さ れて、 1枚以上のレンズにより構成された第 2レンズ群と;
前記光束^^光させる位置までの距離に応じて、前記第 1レンズ群を移動させる移 動手段と;
を備え、
前記第 2レンズ群が、後側焦点位置が前記集光光学系の入射瞳位置の少なくとも 近傍に配されている光学系。
[付記項 2]
付記項 1記載の光学系であって、
前記集光光学系が、前記光束を媒質中に集光させ、
前記移動手段が、集光させる前記媒質の屈折率及び媒質表面から集光させる位 置までの距離に応じて、前記第 1レンズ群を移動させる。
[付記項 3]
付記項 1又は 2記載の光学系であって、
前記射出手段が、レーザ光を射出するレーザ光源を備える。
[付記項 4]
レーザ光を射出するレーザ光源と; このレーザ光源から射出された前記レーザ光の光束を平行光束にする平行光束手 段と;
前記平行光束状態の前記レーザ光を媒質中に集光させると共に集光点からの光を 再集光する集光光学系と;
前記レーザ光源と共役な位置に配されて、前記集光光学系により再集光された前 記光を検出する光検出器と;
前記平行光束手段と前記集光光学系との間の前記平行光束中に、この平行光束 の光軸方向に沿って移動可能に配され、 1枚以上のレンズにより構成された第 1レン ズ群と;
この第 1レンズ群と前記集光光学系との間の前記平行光束中に固定された状態で 配され、 1枚以上のレンズにより構成された第 2レンズ群と;
前記レーザ光を集光させる前記媒質の屈折率及び媒質表面から集光させる位置ま での距離に応じて、前記第 1レンズ群を移動させる移動手段と;
を備え、
前記第 2レンズ群が、後側焦点位置が前記集光光学系の入射瞳位置の少なくとも 近傍に配されている光学系。
[付記項 5]
レーザ光を射出するレーザ光源と;
このレーザ光源から射出された前記レーザ光の光束 Lを平行光束にする平行光束 手段と;
前記平行光束状態の前記レーザ光を媒質中に集光させると共に集光点からの光を 再集光する集光光学系と;
前記媒質中での集光点を、前記レーザ光の光軸方向に対して垂直な方向に走査 可能な走査手段と;
前記レーザ光源と共役な位置に配されて、前記集光光学系により再集光された前 記光を検出する光検出器と;
前記平行光束手段と前記集光光学系との間の前記平行光束中に、この平行光束 の光軸方向に沿って移動可能に配され、 1枚以上のレンズにより構成された第 1レン ズ群と;
この第 1レンズ群と前記集光光学系との間の前記平行光束中に固定された状態で 配され、 1枚以上のレンズにより構成された第 2レンズ群と;
前記レーザ光を集光させる前記媒質の屈折率及び媒質表面から集光させる位置ま での距離に応じて、前記第 1レンズ群を移動させる移動手段と;
を備え、
前記第 2レンズ群が、後側焦点位置が前記集光光学系の入射瞳位置の少なくとも 近傍に配されている光学系。
[付記項 6]
付記項 5記載の光学系であって、
前記走査手段が、ガルバノミラーである。
[付記項 7]
付記項 4から 6のいずれ力 1項に記載の光学系であって、
前記第 1レンズ群及び前記第 2レンズ群が、光路中から挿脱可能である。
[付記項 8]
付記項 4から 7のいずれ力 1項に記載の光学系であって、
前記集光光学系と前記媒質表面との光軸方向の相対的な距離が一定である。
[付記項 9]
付記項 1から 3のいずれ力 1項に記載の光学系を有する光ピンセット光学系。
[付記項 10]
付記項 1から 8のいずれ力 1項に記載の光学系であって、
前記第 1レンズ群と前記第 2レンズ群との合焦距離を I f Iとした場合、前記移動手 段が、前記第 1レンズ群を、下記式を満たす位置に移動させる。
1/ I f I < o. 01
[付記項 11]
付記項 1から 8のいずれ力 1項に記載の光学系であって、
前記第 2レンズ群の焦点距離を f2とした場合、前記第 2レンズ群が、下記式を満た す。 f2>0
[付記項 12]
付記項 1から 8のいずれ力 1項に記載の光学系であって、
前記第 1レンズ群の焦点距離を fl、前記第 2レンズ群の焦点距離を f2とした場合、 前記第 1レンズ群及び前記第 2レンズ群が、下記式を満たす。
fl<0
かつ、 1≤ I Ϊ2/Ϊ1 I≤5
[付記項 13]
付記項 1から 8のいずれ力 1項に記載の光学系であって、
前記第 1レンズ群の焦点距離を fl、前記第 2レンズ群の焦点距離を f2とした場合、 前記第 1レンズ群及び前記第 2レンズ群が、下記式を満たす。
fl>0
かつ、 0. 5≤ I fl/f2 I≤2
[付記項 14]
光源からの光束を集光する光学系であって、下記式を満たす複数のレンズを排他 で光路中に挿脱可能に配置した収差補正光学系。
2(d2+lXf-lXd)NA=fXa
ただし、 d;集光光学系の入射瞳位置力 複数のレンズまでの距離
1;集光光学系の入射瞳位置から光源位置までの距離
f;複数のレンズの焦点位置
NA;光源の開口数 (集光レンズから見た開口数)
a;集光光学系の入射瞳径
[付記項 15]
収束'発散光学系中に、下記式を満たす複数のレンズを光路中に揷脱可能に配置 したレーザ走査光学系。
2(d2+lXf-lXd)NA=fXa
ただし、 d;集光光学系の入射瞳位置力 複数のレンズまでの距離
1;集光光学系の入射瞳位置から光源位置までの距離 f;複数のレンズの焦点位置
NA;光源の開口数 (集光レンズから見た開口数)
a;集光光学系の入射瞳径
[付記項 16]
付記項 15に記載のレーザ走査光学系を有するレーザ走査顕微鏡。
[付記項 17]
収束'発散光学系中に、下記式を満たす複数のレンズを光路中に揷脱可能に配置 した光ピンセット光学系。
2(d2+lXf-lXd)NA=fXa
ただし、 d;集光光学系の入射瞳位置力 複数のレンズまでの距離
1;集光光学系の入射瞳位置から光源位置までの距離
f;複数のレンズの焦点位置
NA;光源の開口数 (集光レンズから見た開口数)
a;集光光学系の入射瞳径
[付記項 18]
平行光束を射出する光源と、平行光束を集光する光学系とを含む集光光学系であ つて、
下記式を満たす複数のレンズを排他で光路中に挿脱可能に配置した収差補正光 学系。
b(f-d)/f = a
ただし、 b;光源力 の平行光束径
d;集光光学系の入射瞳位置カゝら複数のレンズまでの距離
f;複数のレンズの焦点位置
a;集光光学系の入射瞳径
[付記項 19]
平行光束中に、下記式を満たす複数のレンズを光路中に排他で光路中に揷脱可 能に配置したレーザ走査光学系。
b(f-d)/f = a ただし、 b ;光源力 の平行光束径
d ;集光光学系の入射瞳位置カゝら複数のレンズまでの距離
f;複数のレンズの焦点位置
a ;集光光学系の入射瞳径
[付記項 20]
平行光束中に、下記式を満たす複数のレンズを光路中に排他で光路中に揷脱可 能に配置した光ピンセット。
b (f -d) /f = a
ただし、 b ;光源力 の平行光束径
d ;集光光学系の入射瞳位置カゝら複数のレンズまでの距離
f;複数のレンズの焦点位置
a ;集光光学系の入射瞳径
産業上の利用可能性
本発明に係る集光光学系によれば、集光させる媒質の屈折率及び媒質の表面から 集光させる位置までの距離に応じて、レーザ発散点移動手段によりレーザ発散点を レーザ光の光軸上に沿って移動させるので、媒質中の深さが異なるそれぞれの位置 で、球面収差の発生量を極力抑えることができる。従って、レーザ光を所望する媒質 の深さに効率良く集光させることができ、集光性能の向上を図ることができる。また、 球面収差が少な 、光を再集光して正確な観察像を得ることができるので、高精度に 媒質中の観察を行うことができる。特に、レーザ発散点を移動させるだけであるので、 従来のように手間をかけることなぐ容易に球面収差補正を行うことができると共に特 別な光学系を備える必要がないので、構成のシンプノレイ匕を図ることができると共にコ ストィ匕を図ることができる。
また、本発明に係る光学系によれば、媒質中の集光させる位置までの距離に応じ て、第 1レンズ群を移動させることで、第 2レンズ群に入射する光束の位置を変える、 即ち、集光光学系から見た実質的な光源位置の変更が行えるので、所望する集光 点での球面収差の発生量を極力抑えることができる。また、後側焦点位置が集光光 学系の入射瞳位置に一致した第 2レンズ群により、集光光学系の入射瞳に入射する 光束径を変化させることがないので、従来のように光量の変化や、瞳面内での光量 分布が変化することを抑えることができる。従って、集光性能の変化を抑えることがで きる。
更に、第 1レンズ群を移動させるだけで、光源位置の変更が行えるので、構成のシ ンプルイ匕を図ることができ、手間をかけることなく容易に球面収差補正を行うことがで きる。

Claims

請求の範囲
[1] レーザ光を出射するレーザ光源と;
このレーザ光源と媒質との間に配され、前記レーザ光を媒質中に集光させると共に 集光点からの光を再集光する集光光学系と;
前記レーザ光のレーザ発散点の位置を、前記レーザ光を集光させる前記媒質の屈 折率及び前記媒質の表面から集光させる位置までの距離に応じて、前記レーザ光の 光軸上に沿って移動可能なレーザ発散点移動手段と;
を備えたレーザ集光光学系。
[2] 請求項 1に記載のレーザ集光光学系であって、
前記レーザ光を前記集光光学系の光軸に対して直交する方向に向けて走査可能 な走査手段を備える。
[3] 請求項 1に記載のレーザ集光光学系であって、
前記レーザ発散点移動手段が、予め測定された前記集光光学系の波面データに 基づ 、てレーザ発散点の位置を設定する。
[4] 請求項 1に記載のレーザ集光光学系であって、
前記集光光学系に連携して設けられ、集光光学系の下面から前記媒質の表面ま での距離を所定の距離に維持する観察光学系を備え、
この観察光学系が、オートフォーカス検出手段又はオートフォーカス機構を備える。
[5] 請求項 1に記載のレーザ集光光学系であって、
前記集光光学系と前記媒質の表面との光軸方向の相対的な距離が一定である。
[6] 平行光束状態で光束を射出する射出手段と;
前記光束^^光する集光光学系と;
前記射出手段と前記集光光学系との間の前記光束中に、この光束の光軸方向に 沿って移動可能に配され、 1枚以上のレンズにより構成された第 1レンズ群と; この第 1レンズ群と前記集光光学系との間の前記光束中に固定された状態で配さ れ、 1枚以上のレンズにより構成された第 2レンズ群と;
前記光束^^光させる位置までの距離に応じて、前記第 1レンズ群を移動させる移 動手段と; を備え、
前記第 2レンズ群の後側焦点位置が、前記集光光学系の入射瞳位置の少なくとも 近傍に配されている光学系。
[7] 請求項 6記載の光学系であって、
前記集光光学系が、前記光束を媒質中に集光させ、
前記移動手段が、集光させる前記媒質の屈折率及び媒質表面から集光させる位 置までの距離に応じて、前記第 1レンズ群を移動させる。
[8] 請求項 6記載の光学系であって、
前記射出手段が、レーザ光を射出するレーザ光源を備える。
[9] 請求項 6記載の光学系を有する光ピンセット光学系。
[10] 請求項 6記載の光学系であって、
前記第 1レンズ群と前記第 2レンズ群との合焦距離を I f Iとした場合、前記移動手 段が、前記第 1レンズ群を、下記式を満たす位置に移動させる。
1/ I f I < o. 01
[11] 請求項 6記載の光学系であって、
前記第 2レンズ群の焦点距離を f2とした場合、前記第 2レンズ群が、下記式を満た す。
f2 >0
[12] 請求項 6記載の光学系であって、
前記第 1レンズ群の焦点距離を fl、前記第 2レンズ群の焦点距離を f2とした場合、 前記第 1レンズ群及び前記第 2レンズ群が、下記式を満たす。
fl < 0
かつ 1≤ I Ϊ2/Ϊ1 I ≤5
[13] 請求項 6記載の光学系であって、
前記第 1レンズ群の焦点距離を fl、前記第 2レンズ群の焦点距離を f2とした場合、 前記第 1レンズ群及び前記第 2レンズ群が、下記式を満たす。
fl >0
かつ 0. 5≤ I fl/f2 I ≤2
[14] レーザ光を射出するレーザ光源と;
このレーザ光源から射出された前記レーザ光の光束を平行光束にする平行光束手 段と;
前記平行光束状態の前記レーザ光を媒質中に集光させると共に集光点からの光を 再集光する集光光学系と;
前記媒質中での集光点を、前記レーザ光の光軸方向に対して垂直な方向に走査 可能な走査手段と;
前記レーザ光源と共役な位置に配されて、前記集光光学系により再集光された前 記光を検出する光検出器と;
前記平行光束手段と前記集光光学系との間の前記平行光束中に、この平行光束 の光軸方向に沿って移動可能に配され、 1枚以上のレンズにより構成された第 1レン ズ群と;
この第 1レンズ群と前記集光光学系との間の前記平行光束中に固定された状態で 配され、 1枚以上のレンズにより構成された第 2レンズ群と;
前記レーザ光を集光させる前記媒質の屈折率及び媒質表面から集光させる位置ま での距離に応じて、前記第 1レンズ群を移動させる移動手段と;
を備え、
前記第 2レンズ群の後側焦点位置が、前記集光光学系の入射瞳位置の少なくとも 近傍に配されている光学系。
[15] 請求項 14記載の光学系であって、
前記走査手段が、ガルバノミラーである。
[16] レーザ光を射出するレーザ光源と;
このレーザ光源から射出された前記レーザ光の光束を平行光束にする平行光束手 段と;
前記平行光束状態の前記レーザ光を媒質中に集光させると共に集光点からの光を 再集光する集光光学系と;
前記レーザ光源と共役な位置に配されて、前記集光光学系により再集光された前 記光を検出する光検出器と; 前記平行光束手段と前記集光光学系との間の前記平行光束中に、この平行光束 の光軸方向に沿って移動可能に配され、 1枚以上のレンズにより構成された第 1レン ズ群と;
この第 1レンズ群と前記集光光学系との間の前記平行光束中に固定された状態で 配され、 1枚以上のレンズにより構成された第 2レンズ群と;
前記レーザ光を集光させる前記媒質の屈折率及び媒質表面から集光させる位置ま での距離に応じて、前記第 1レンズ群を移動させる移動手段と;
を備え、
前記第 2レンズ群の後側焦点位置が、前記集光光学系の入射瞳位置の少なくとも 近傍に配されている光学系。
[17] 請求項 16記載の光学系であって、
前記第 1レンズ群及び前記第 2レンズ群が、光路中から挿脱可能である。
[18] 請求項 16記載の光学系であって、
前記集光光学系と前記媒質表面との光軸方向の相対的な距離が一定である。
[19] 光源からの光束を集光する光学系であって、下記式を満たす複数のレンズを排他 で光路中に挿脱可能に配置した収差補正光学系。
2 (d2+l X f-l X d) NA=f X a
ただし、 d;集光光学系の入射瞳位置力 複数のレンズまでの距離
1;集光光学系の入射瞳位置から光源位置までの距離
f;複数のレンズの焦点位置
NA;光源の開口数 (集光レンズから見た開口数)
a ;集光光学系の入射瞳径
[20] 収束'発散光学系中に、下記式を満たす複数のレンズを光路中に揷脱可能に配置 したレーザ走査光学系。
2 (d2+l X f-l X d) NA=f X a
ただし、 d;集光光学系の入射瞳位置力 複数のレンズまでの距離
1;集光光学系の入射瞳位置から光源位置までの距離
f;複数のレンズの焦点位置 NA;光源の開口数 (集光レンズから見た開口数)
a;集光光学系の入射瞳径
[21] 請求項 20に記載のレーザ走査光学系を有するレーザ走査顕微鏡。
[22] 収束'発散光学系中に、下記式を満たす複数のレンズを光路中に揷脱可能に配置 した光ピンセット光学系。
2(d2+lXf-lXd)NA=fXa
ただし、 d;集光光学系の入射瞳位置力 複数のレンズまでの距離
1;集光光学系の入射瞳位置から光源位置までの距離
f;複数のレンズの焦点位置
NA;光源の開口数 (集光レンズから見た開口数)
a;集光光学系の入射瞳径
[23] 平行光束を射出する光源と、平行光束を集光する光学系とを含む集光光学系であ つて、
下記式を満たす複数のレンズを排他で光路中に挿脱可能に配置した収差補正光 学系。
b(f-d)/f = a
ただし、 b;光源力 の平行光束径
d;集光光学系の入射瞳位置カゝら複数のレンズまでの距離 f;複数のレンズの焦点位置
a;集光光学系の入射瞳径
[24] 平行光束中に、下記式を満たす複数のレンズを光路中に排他で光路中に揷脱可 能に配置したレーザ走査光学系。
b(f-d)/f = a
ただし、 b;光源力 の平行光束径
d;集光光学系の入射瞳位置カゝら複数のレンズまでの距離 f;複数のレンズの焦点位置
a;集光光学系の入射瞳径
[25] 平行光束中に、下記式を満たす複数のレンズを光路中に排他で光路中に揷脱可 能に配置した光ピンセット。
b(f-d)/f=a
ただし、 b;光源からの平行光束径
d;集光光学系の入射瞳位置カゝら複数のレンズまでの距離 f;複数のレンズの焦点位置
a;集光光学系の入射瞳径
PCT/JP2005/007995 2004-04-28 2005-04-27 レーザ集光光学系 WO2005106558A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05736657A EP1717623A4 (en) 2004-04-28 2005-04-27 OPTICAL LASER FOCUSING SYSTEM
US11/512,509 US7439477B2 (en) 2004-04-28 2006-08-30 Laser condensing optical system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004132994A JP4544904B2 (ja) 2004-04-28 2004-04-28 光学系
JP2004132996A JP4528023B2 (ja) 2004-04-28 2004-04-28 レーザ集光光学系
JP2004-132994 2004-04-28
JP2004-132996 2004-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/512,509 Continuation US7439477B2 (en) 2004-04-28 2006-08-30 Laser condensing optical system

Publications (1)

Publication Number Publication Date
WO2005106558A1 true WO2005106558A1 (ja) 2005-11-10

Family

ID=35241814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007995 WO2005106558A1 (ja) 2004-04-28 2005-04-27 レーザ集光光学系

Country Status (5)

Country Link
US (1) US7439477B2 (ja)
EP (1) EP1717623A4 (ja)
KR (1) KR100854175B1 (ja)
TW (1) TW200538758A (ja)
WO (1) WO2005106558A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI348408B (en) * 2004-04-28 2011-09-11 Olympus Corp Laser processing device
JP5287252B2 (ja) 2006-12-22 2013-09-11 株式会社ニコン レーザ走査共焦点顕微鏡
JP5621259B2 (ja) * 2007-09-03 2014-11-12 株式会社ニコン 顕微鏡装置
JP2009288321A (ja) * 2008-05-27 2009-12-10 Olympus Corp 顕微鏡
US8077386B2 (en) * 2008-10-22 2011-12-13 Microbrightfield, Inc. Movable objective lens assembly for an optical microscope and optical microscopes having such an assembly
US8634131B2 (en) * 2009-12-14 2014-01-21 Intelligent Imaging Innovations, Inc. Spherical aberration correction for non-descanned applications
US8913314B2 (en) * 2009-12-14 2014-12-16 Nec Corporation Scanning device, image display device, and method for controlling image display device
US8233511B2 (en) * 2010-05-18 2012-07-31 Lawrence Livermore National Security, Llc Method and system for modulation of gain suppression in high average power laser systems
KR101341001B1 (ko) * 2011-11-17 2013-12-13 주식회사 아이엠티 레이저를 이용한 대면적 마스크 세정 장치 및 이를 포함하는 대면적 마스크 세정 시스템
CN102589846B (zh) * 2011-12-14 2013-08-14 长春理工大学 一种远场激光命中率动态测试系统
DE102012010208A1 (de) * 2012-05-15 2013-11-21 Carl Zeiss Microscopy Gmbh Mikroskop
JP6116142B2 (ja) * 2012-06-21 2017-04-19 オリンパス株式会社 走査型共焦点レーザ顕微鏡
DE102014110208B4 (de) 2014-07-21 2022-05-25 Leica Microsystems Cms Gmbh Abtastmikroskop
TWI563288B (en) 2015-03-03 2016-12-21 Southport Corp Optical image scanning component and microscope device
CN112074767B (zh) * 2018-05-03 2022-04-01 统雷有限公司 用于三种光学扫描镜的激光扫描头设计
DE102018208752A1 (de) * 2018-06-04 2019-12-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Laserbearbeitung schwer zugänglicher Werkstücke
EP3816611B1 (en) * 2019-10-29 2023-01-25 Leica Microsystems CMS GmbH Microscope and method for determining an aberration in a microscope
KR102563955B1 (ko) * 2020-11-04 2023-08-04 경희대학교 산학협력단 광학 핀셋 장치 및 그를 이용한 포획 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134186A (ja) * 1991-11-13 1993-05-28 Olympus Optical Co Ltd 共焦点光学系
JP2001051200A (ja) * 1999-08-06 2001-02-23 Yokogawa Electric Corp 共焦点顕微鏡装置
JP2001513191A (ja) * 1997-01-28 2001-08-28 ゼテティック・インスティチュート 共焦干渉顕微鏡のための背景補償
JP2002303800A (ja) * 2001-04-09 2002-10-18 Nikon Corp 光による微粒子操作装置
JP2003195182A (ja) * 2001-12-27 2003-07-09 Nikon Corp 集光光学系及び微粒子操作装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2096880A1 (en) * 1970-06-11 1972-03-03 Mitsubishi Electric Corp Laser beam machining appts - automatically adjusted using control beam passing through semi-transparent mirrors
US3689159A (en) * 1970-06-11 1972-09-05 Mitsubishi Electric Corp Laser processing apparatus
JPS5857108A (ja) * 1981-09-30 1983-04-05 Fujitsu Ltd 光走査方式
JPH04327394A (ja) * 1991-04-30 1992-11-16 Amada Co Ltd 光移動型レーザ加工機
JP3280402B2 (ja) 1991-10-28 2002-05-13 オリンパス光学工業株式会社 顕微鏡対物レンズ
DE9407288U1 (de) * 1994-05-02 1994-08-04 Trumpf Gmbh & Co Laserschneidmaschine mit Fokuslageneinstellung
JP3670745B2 (ja) * 1996-02-20 2005-07-13 オリンパス株式会社 共焦点顕微鏡
US6087617A (en) * 1996-05-07 2000-07-11 Troitski; Igor Nikolaevich Computer graphics system for generating an image reproducible inside optically transparent material
JPH10227977A (ja) * 1997-02-14 1998-08-25 Nikon Corp 球面収差補正光学系
JP2000071088A (ja) * 1998-08-27 2000-03-07 Nisshinbo Ind Inc レ−ザ加工機
JP4441831B2 (ja) 1999-09-16 2010-03-31 株式会社ニコン 顕微鏡装置
US6603607B2 (en) 2000-04-07 2003-08-05 Nikon Corporation Minute particle optical manipulation method and apparatus
JP3587805B2 (ja) * 2001-07-30 2004-11-10 松下電器産業株式会社 レーザ加工装置
JP2003175497A (ja) * 2001-12-13 2003-06-24 Japan Science & Technology Corp 光ピンセット捕捉力強化光学系
TWI348408B (en) * 2004-04-28 2011-09-11 Olympus Corp Laser processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134186A (ja) * 1991-11-13 1993-05-28 Olympus Optical Co Ltd 共焦点光学系
JP2001513191A (ja) * 1997-01-28 2001-08-28 ゼテティック・インスティチュート 共焦干渉顕微鏡のための背景補償
JP2001051200A (ja) * 1999-08-06 2001-02-23 Yokogawa Electric Corp 共焦点顕微鏡装置
JP2002303800A (ja) * 2001-04-09 2002-10-18 Nikon Corp 光による微粒子操作装置
JP2003195182A (ja) * 2001-12-27 2003-07-09 Nikon Corp 集光光学系及び微粒子操作装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1717623A4 *

Also Published As

Publication number Publication date
TW200538758A (en) 2005-12-01
US7439477B2 (en) 2008-10-21
KR20070005608A (ko) 2007-01-10
US20060291039A1 (en) 2006-12-28
EP1717623A1 (en) 2006-11-02
EP1717623A4 (en) 2007-06-13
KR100854175B1 (ko) 2008-08-26

Similar Documents

Publication Publication Date Title
WO2005106558A1 (ja) レーザ集光光学系
JP4544904B2 (ja) 光学系
KR100789538B1 (ko) 레이저 가공 장치
US11067783B2 (en) Light sheet microscope and method for imaging a sample by light sheet microscopy
US7903329B2 (en) Laser scan confocal microscope
JP4762593B2 (ja) 外部レーザ導入装置
US20170023409A1 (en) Microspectroscopy device
JP2008225095A (ja) 光走査型観察装置
JP6203022B2 (ja) 走査型顕微鏡
JP4370404B2 (ja) Dlp式エバネッセンス顕微鏡
JPWO2009142312A1 (ja) 顕微鏡装置
US8040596B2 (en) Epi-illumination optical system for microscopes
JP4686135B2 (ja) レーザ加工装置
CN113272631A (zh) 用于光束扫描显微光谱的设备和方法
JP4681821B2 (ja) レーザ集光光学系及びレーザ加工装置
JP4528023B2 (ja) レーザ集光光学系
JP4812443B2 (ja) 走査型共焦点レーザ顕微鏡
JP2014056078A (ja) 画像取得装置、画像取得システム及び顕微鏡装置
JP2011242702A (ja) 結像光学系及び形状測定装置
JP2015094802A (ja) 対物光学系および画像取得装置
JPH04157413A (ja) 走査型顕微鏡
JP2006243273A (ja) 自動焦点顕微鏡

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005736657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11512509

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067017592

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580006672.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005736657

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11512509

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067017592

Country of ref document: KR