WO2005104450A1 - Procede de regulation du flux separe de signalisation et de media dans un reseau telephonique ip - Google Patents

Procede de regulation du flux separe de signalisation et de media dans un reseau telephonique ip Download PDF

Info

Publication number
WO2005104450A1
WO2005104450A1 PCT/CN2005/000373 CN2005000373W WO2005104450A1 WO 2005104450 A1 WO2005104450 A1 WO 2005104450A1 CN 2005000373 W CN2005000373 W CN 2005000373W WO 2005104450 A1 WO2005104450 A1 WO 2005104450A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
value
call
gatekeeper
metropolitan area
Prior art date
Application number
PCT/CN2005/000373
Other languages
English (en)
French (fr)
Inventor
Yongdong Pan
Aidong Zhou
Tao Ruan
Weihong Chai
Shilin Chen
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to EP05730399A priority Critical patent/EP1755287A1/en
Publication of WO2005104450A1 publication Critical patent/WO2005104450A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1043Gateway controllers, e.g. media gateway control protocol [MGCP] controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2408Traffic characterised by specific attributes, e.g. priority or QoS for supporting different services, e.g. a differentiated services [DiffServ] type of service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2491Mapping quality of service [QoS] requirements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1106Call signalling protocols; H.323 and related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/006Networks other than PSTN/ISDN providing telephone service, e.g. Voice over Internet Protocol (VoIP), including next generation networks with a packet-switched transport layer

Definitions

  • the present invention relates to a method for signaling and media offload transmission in the field of data communications, and in particular, to a method for offloading signaling and media in an IP telephone network based on the H.323 standard and including IP telephone, fax, and video services. Transmission method. Background technique
  • H.323 signaling packets and media packets transmitted on the IP network with different TOS tag values on the IP header, and then using the TOS policy routing function on the border router, you can achieve all existing network conditions.
  • H. 323 signaling and offload control of media packets.
  • the T0S tag value still faces the following difficulties:
  • the H.323 protocol stack uses the calling function provided by the operating system to complete the change of the T0S label, and for most mainstream operating systems today, the source code of these underlying calling functions is unfair, that is, The operation of adding a specific T0S label to an IP packet must conform to the operating system's processing rules for TCP / IP protocol packets, rather than when you want to label the T0S label when you want, you can put the T0S label at any time;
  • the technical problem to be solved by the present invention is to provide a control based on the H.323 standard in an IP telephone network. Quasi-signaling and media offloading methods allow customers to conveniently and flexibly customize policies for gatekeepers and gatekeepers, border gateways and border gateways, between gatekeepers and border gateways, and between metropolitan areas within metropolitan area networks.
  • H. 323 standard signaling and media packets transmitted between gatekeepers and border gateways outside the network are marked with TOS tags, so that customers can implement H. 323 standard signaling and media packets inside the metropolitan area network through routers. Implement policy routing based on TOS tag value.
  • Another object of the present invention is to provide a method for controlling signaling and media distribution based on the H. 323 standard in an IP telephone network. It is pointed out that in the case of maintaining the status quo of the underlying call of the existing operating system, different methods for calling, Specific implementation methods for H. 323 standard-compliant signaling and media packets with TOS tag values.
  • the present invention provides a method for controlling signaling and media offloading in an IP telephone network, which is applied to an IP telephone network based on the H.323 protocol.
  • the method is characterized by using data on signaling messages and media messages. Discriminate according to the call flow rules of the H. 323 protocol, and set different TOS values for the signaling packets and media packets transmitted between the metropolitan area network of the IP telephone network and the IP phone network. Cooperating with the router, according to the different TOS values, policy routing is performed on signaling packets and media packets inside and outside the metropolitan area network, so as to realize the offloading of signaling and media in the IP telephone network.
  • Step 1 Negotiate the T0S value of the local office and the outbound office of the metropolitan area network between the border gateway and the gatekeeper of the metropolitan area network; and configure the T0S policy routing on the router in the IP telephone network;
  • Step 2 Establish a mapping table based on the TOS value on the gatekeeper, including the mapping table A between the TOS value and the calling and called number analysis field of the call, the mapping table B between the TOS value and the IP address of the gatekeeper outside the metropolitan area network. , And the mapping table C between the T0S value and the port monitored by the TCP link proxy process;
  • Step 3 According to the mapping relationship in the mapping table C, start multiple TCP proxy processes, listen for external TCP link requests on multiple ports, and specify a mapping table C for each TCP proxy process during the port initialization stage. Corresponding T0S value;
  • Step 4 By discriminating the data of the signaling message and the media message, according to the call flow rules of the H. 323 protocol, by looking up the corresponding mapping table, B and C are the internal and external locations of the metropolitan area network of the IP telephone network.
  • the corresponding T0S values on the signaling packets and media packet tags in different transmission modes are transmitted; and through the cooperation of the gatekeeper and the router, the policy routing based on the TOS value is implemented to realize the offloading of signaling and media.
  • the above method for controlling signaling and media distribution in an IP telephone network is characterized in that in step 1, the step of configuring a TOS policy routing on a router includes configuring a TOS on a metropolitan area network border router of the IP telephone network.
  • the policy routing and TOS-first policy routing are configured on the backbone router.
  • the method for controlling signaling and media distribution in the IP telephone network described above is characterized in that the TOS priority policy routing on the backbone network router is a strategy that uses calling number first analysis, and is first queried based on the calling number. No more query based on the called number, get and set the corresponding TOS value for routing.
  • the above method for controlling signaling and media distribution in the IP telephone network is characterized in that, in step 4, for the LRQ message sent from the gatekeeper to the gatekeeper outside the metropolitan area network, according to the mapping in the mapping table A Relationship, the corresponding TOS value is obtained through the calling and called numbers in the message, and the corresponding TOS value is set on the IP header of the LRQ message.
  • step 4 the gatekeeper receives an LRQ message from a gatekeeper outside the metropolitan area network according to the mapping in the mapping table B. Relationship, the corresponding T0S value is obtained through the IP address of the neighbor gatekeeper in the backbone network in the IP telephone network in the LRQ message, and the corresponding TOS tag value is set on the IP header of the reply LCF or LRJ message.
  • the above method for controlling signaling and media offloading in the IP telephone network is characterized in that if the response is an LCF message, the mapping table G needs to be queried to find the port that the corresponding TCP link proxy process listens to according to the corresponding TOS tag value Fill in the LCF message and reply to the remote gatekeeper in the IP telephone network, indicating that the subsequent setup message of the remote end must be sent to the end monitored by the corresponding TCP link proxy process
  • the above-mentioned method for controlling signaling and media distribution in the IP telephone network is characterized in that, in step 4, the Q. 931 message sent from the gatekeeper to the outside of the metropolitan area network is mapped according to the mapping relationship in the mapping table A through The called number in the first setup message in the Q. 931 message gets the corresponding T0S ⁇ The corresponding T0S value is set on the IP headers of all subsequent Q. 931 messages.
  • step 4 the TOS value contained in the non-standard field in the ACF message returned by the gatekeeper to the border gateway is determined according to the following criteria:
  • the TOS value contained in the non-standard field in the ACF message is the default value;
  • the TOS value contained in the non-standard field in the ACF message is determined by querying the mapping table A according to the called number in the calling ARQ message;
  • the TOS contained in the non-standard field in the ACF message will still be determined by querying the mapping table A according to the called number in the called ARQ message.
  • the caller number in the ARQ message is analyzed, the TOS value corresponding to the caller number is determined by querying the mapping table A, and the priority flag corresponding to the TOS value is detected. If the TOS value is set as the priority selection, the priority will be given priority. Use this TOS value to fill non-standard fields of the ACF message.
  • step 4 the border gateway sends a calling ARQ message to request address resolution, and then receives an ACF message returned by the gatekeeper, and the border gateway receives the ACF message from the gatekeeper.
  • the TOS value is taken from the non-standard field of the message and stored, and it is checked whether the call signaling address contained in the ACF message is the IP address of the home gatekeeper. If so, it indicates that the call is a route call, and all subsequent Q.
  • the TOS value in the IP header of the 931 message will use the default TOS value; if the call signaling address contained in the ACF message is not the IP address of the home gatekeeper, it indicates that the call is a direct call, and all subsequent calls.
  • the TOS value on the IP header of the Q.931 message will use the TOS value in the non-standard field returned in the ACF message.
  • the method for controlling signaling and media distribution in the IP telephone network described above is characterized in that in step 4, the border gateway sends a calling or called ARQ message to request address resolution, and then receives an ACF message returned by the gatekeeper.
  • the gateway takes the TOS value from the non-standard field of the ACF message and saves it.
  • the border gateway will use the saved T0S ⁇ in The corresponding T0S value is set on the IP header of all H.245 messages.
  • the border gateway will use the default T0S.
  • the corresponding TOS value is set on the IP headers of all H.245 messages sent to the upper-level gatekeeper.
  • the gatekeeper receives the H.245 message from the border gateway, and queries the T0S value stored in the corresponding call.
  • the corresponding T0S value is set on the IP packet header of the H.245 message and the H.245 message is forwarded to the remote end.
  • the method for controlling signaling and media distribution in the IP telephone network described above is characterized in that, for a call occurring in the first metropolitan area network and the second metropolitan area network connected through the backbone network communication, the call route based on the TOS value is as follows:
  • the border gateway of the second metropolitan area network sends an ARQ message to its home gatekeeper.
  • the IP header of the ARQ message is set with the domain default value, and requests access authentication and address resolution.
  • the gatekeeper of the second metropolitan area network determines whether the call is an area call or an area call according to the analysis of the called address, and queries the mapping table A according to the called number to obtain the corresponding TOS value. For an intra-area call, the ACF message is returned to the border gateway of the second metropolitan area network through access authentication. If the call is an inter-area call, an LRQ message is sent to the first metropolitan area network corresponding to the called address.
  • the gatekeeper of the second metropolitan area network sends an LRQ message to the gatekeeper of the first metropolitan area network, requesting to provide an address translation, and according to the mapping relationship of the mapping table A, the corresponding TOS value is obtained through the calling and called numbers in the message.
  • the corresponding TOS value is set for the IP header of the LRQ message, and is routed to the router of the backbone network corresponding to the corresponding TOS value through the TOS policy route, and then transmitted to the gatekeeper of the first metropolitan area network; the first city
  • the gatekeeper of the local area network receives the LRQ message, queries the mapping table B according to the source IP field of the LRQ message, obtains the corresponding T0S value, and sets the corresponding T0S value for the IP header of the reply LCF or LRJ message; and if the reply It is an LCF message.
  • mapping table C It is also necessary to query the mapping table C, find the port monitored by the corresponding TCP link proxy process according to the corresponding T0S value, fill it in the LCF message and reply to the gatekeeper of the second metropolitan area network, indicating that Subsequent setup messages of the second metropolitan area network must be sent to the port monitored by the corresponding TCP link proxy process;
  • the gatekeeper of the second metropolitan area network After receiving the LCF message, the gatekeeper of the second metropolitan area network sends an ACF message to the border gateway of the second metropolitan area network, where the IP header T0S of the ACF message is the domain default value and the non-standard field T0S The value is a TOS value determined according to the criteria;
  • the border gateway of the second metropolitan area network extracts the T0S value from the non-standard field of the ACF message returned, and checks whether the call signaling address contained in the ACF message is the IP address of the home gatekeeper. If so, it indicates that the A route call is a route call.
  • the T0S value in the IP packet header of all subsequent Q. 931 messages will use the default T0S tag strip. If the call signaling address contained in the ACF message is not the IP address of the home gatekeeper, it indicates that This call is a direct call.
  • the border gateway of the second metropolitan area network will use the saved T0S value to set the corresponding T0S value for the IP headers of all subsequent 245 messages.
  • a metropolitan area network interacts with H.245 messages using a gatekeeper routing method.
  • the border gateway of the second metropolitan area network will use the default T0S value for the IP header settings of all subsequent H.245 messages.
  • the corresponding TOS value is determined by the superior of the border gateway Before forwarding the H.245 message, the gatekeeper queries the T0S value stored in the corresponding call and sets the corresponding T0S on all H.245 message IP headers. Value and forward the H.245 message to the far end;
  • the border gateway of the second metropolitan area network sends a setup message to the call signaling address contained in the ACF message to initiate a call.
  • the present invention introduces a complete set of rules on H.323 gatekeepers and border gateways, it is an H.323 signaling packet by discriminating data such as the calling IP address, calling number, and called number in the call signaling message.
  • the media packets are labeled with different TOS values, and cooperate with routers in the IP telephone network to implement strategic routing for H. 323-based signaling packets and media packets within and outside the metropolitan area network based on different TOS values.
  • Signaling and media offloading based on the H. 323 standard in the IP telephone network greatly enhances the security and maintainability of the IP telephone network, improves network execution efficiency, and offloads processing of signaling packets and media packets, audio packets, and video packets. It also provides the basis and control means for customers to optimize the allocation of network resources.
  • FIG. 1 is a network system diagram according to an embodiment of the present invention
  • FIG. 2 is a flowchart of the method of the present invention. Best way to implement the invention
  • the present invention is applied to an IP telephone network system based on the H. 323 standard, in which the H. 323 protocol describes a system definition and a general control process for implementing multimedia communication on a packet network. It requires the support of a set of protocols, including call control protocols, media control protocols, and audio and video coding protocols. They combined with H. 323 constitute the technical standard of H. 323 system.
  • the voice coding uses the ITU-T G series protocol, of which G. 711 is a mandatory coding method, and other commonly used coding methods are G. 723.1, G. 729A, and so on.
  • Video coding uses H. 260 series protocols, such as H. 261, H. 263, etc. Audio and video encoded information are encapsulated in RTP and transmitted via UDP. The data communication adopts T. 120 protocol and is transmitted through reliable TCP.
  • H. 225.0 and H. 245 are the two core protocols of the H. 323 system.
  • H. 225.0 is mainly used for call control, while H. 245 is used to control the establishment, maintenance, and release of media channels.
  • H. 225.0 is one of the core protocols of the H. 323 system. It consists of three parts: call control, RAS, and how to use RTP to encapsulate audio and video signals.
  • H. 225.0's call control signaling originates from Q. . 931, its function is on H.323 endpoint (Including the terminal and the gateway) to establish a call connection, including the process of setting up and tearing down the call;
  • RAS is an agreement between the endpoint and the gatekeeper, and mainly performs registration, positioning, and call admission management functions. It mainly includes the following protocol processes.
  • Gatekeeper search Used for endpoints to automatically search for their home gatekeeper. Message used are GRQ (G a tek eeper Request, gatekeeper request), GRJ (Gateke printing er Reject, gatekeeper rejection), GCF (Gatekeeper Confirm, confirm gatekeeper). The endpoint uses the multicast address to send GRQ to find its own home gatekeeper, and the available home gatekeeper responds with GCF. After receiving the confirmation, the endpoint selects its own gatekeeper to obtain and record the RAS address of the gatekeeper for subsequent RAS messages.
  • GRQ G a tek eeper Request, gatekeeper request
  • GRJ Gateke printing er Reject, gatekeeper rejection
  • GCF Gatekeeper Confirm, confirm gatekeeper
  • Endpoint registration Used for the endpoint to register / deregister its own information with the home gatekeeper, including the alias address (E. 16 address or H. 323 identification) and call signaling transport layer address.
  • the endpoint must register before it can initiate and accept calls.
  • the registration indicates that the endpoint has joined a management area.
  • the messages used for registration include RRQ (Registration Request), RCF (Registration Confirm), and RRJ (Registration Reject).
  • the messages used for deregistration include URQ (Unregistration Request, registration request), UCF (Unregistration Confirm, registration confirmation), and URJ (Unregistration Reject, registration rejection).
  • the endpoint registers with the searched home gatekeeper using RRQ. If the registration is successful, the gatekeeper responds with RCF.
  • the endpoint registers with its own registered gatekeeper through URQ. After successful registration, the gatekeeper responds with UCF.
  • Call admission Used for call access of gatekeeper control endpoints, including user access authentication and address resolution.
  • the messages used are ARQ (Admission Request), ACF (Admission Confirm), and ARJ (Admission Reject X)
  • ARQ Admission Request
  • ACF Access Confirm
  • ARJ Admission Reject X
  • an endpoint When an endpoint initiates a call, it first sends an ARQ message to the home gatekeeper, which contains authentication information, the destination address, and the required bandwidth.
  • the gatekeeper authenticates the user and resolves the destination address. If the gatekeeper agrees to initiate the call, it will return an ACF to the endpoint, including the allowed bandwidth and the translated call signaling transport layer address or the gatekeeper's Call signaling transport layer address (depending on whether direct routing or gatekeeper routing is used).
  • H. 225.0 The call control protocol uses this call signaling transport layer address to initiate a call.
  • the endpoint receives an incoming call request It also needs to send an ARQ message to its gatekeeper for authentication
  • Positioning function It refers to requesting the gatekeeper to provide the address translation function.
  • the messages used are LRQ (Location Request) and LCF (Location Confirm) LRJ (Location Reject).
  • LRQ Location Request
  • LCF Location Confirm
  • LRJ Location Reject
  • LRQ messages can be sent unicast or multicast.
  • the gatekeeper of the target endpoint receives the LRQ message, the call signaling transport layer address of the endpoint or the call signaling transport layer address of the gatekeeper is returned to the requester through the LCF. Which address is sent back depends on whether the call signaling uses direct routing or gatekeeper routing.
  • Bandwidth management It is used for the bandwidth determined by the endpoint or gatekeeper when the call admission is changed in the middle of the call.
  • the messages used include BRQ (Bandwidth Request), BCF (Bandwidth Confirm), and BRJ (Bandwidth Reject).
  • Status function It is used by the gatekeeper to query the endpoint or endpoint status information.
  • the endpoint can also periodically report status information to the gatekeeper according to the settings.
  • the messages used include IRQ (Info Request), IRR (Info Request Response), IACK (Info Request Ack)> INAK (Info Request Nak) 0 '
  • Resource function Used by the gateway to report to the gatekeeper about its current available resources, including available capacity, supported protocols, and data rates.
  • the messages used include RAI (Resource Available Indicatior, RAC (Resource Available Confirm)).
  • a call can contain multiple media information (audio, video, etc.) at the same time, and each media information is transmitted on a logical channel.
  • a H. 225.0 call control protocol is first used to establish a call connection between the caller and the callee, and at the same time an H. 245 control channel is established. Then use the H.245 control channel to establish different media channels (ie logical channels) according to the characteristics of the call, so that the multimedia information is transmitted on different media channels.
  • the method includes the following steps:
  • Step 10 Negotiate the local and outbound T0S values of the metropolitan area network between the border gateway and the gatekeeper within the metropolitan area network. For example, negotiate the interior of the metropolitan area network between the border gateway and the gatekeeper within the metropolitan area network.
  • the default T0S value of H. 323 signaling packets and media packets is a; and T0S policy routing is configured on the border routers of the metropolitan area network and the routers of the backbone network.
  • H. 323 signaling packets with a T0S tag value of a and Media packets are sent outside the metropolitan area network, and only H.323 signaling packets with a tag value of b0, c, d, etc. are allowed, and the corresponding backbone routers on the metropolitan area network outside the metropolitan area network.
  • the router in the backbone network uses The TOS priority routing strategy performs routing, and directly finds the next hop address according to the T0S value.
  • Step 20 A mapping table based on three T0S values is established on the gatekeeper. One is a mapping table between the T0S value and the calling and called number analysis fields of the call. A sheet is the T0S value and the neighbor gatekeeper outside the metropolitan area network. IP address mapping table B, a mapping table C between the T0S value and the port monitored by the TCP link proxy process.
  • Step 30 According to the mapping relationship in the mapping table C, start multiple TCP proxy processes, listen to external TCP link requests on multiple ports, and specify a mapping table C for each TCP proxy process during the listening port initialization stage. The corresponding T0S value in. These TCP proxy processes are responsible for forwarding external TCP packets to the call signaling port actually used by the machine, and forwarding TCP packets returned by the machine to the external remote. In this way, the IP packet headers of the TCP response messages to which different remote TCP link requests are replied are marked with corresponding T0S tag values.
  • Step 40 By discriminating the data of the signaling message and the media message, according to the call flow rules of the H.323 protocol, by searching the corresponding mapping table, B and C are the internal and external locations of the metropolitan area network of the IP telephone network. The corresponding T0S values on the signaling packets and media packet tags in different transmission modes are transmitted; and through the cooperation of the gatekeeper and the router, policy routing based on the TOS value is implemented to realize the offloading of signaling and media. .
  • step 40 the following processes are mainly included:
  • the border gateway of the second metropolitan area network sends an ARQ message to its home gatekeeper.
  • the IP header of the ARQ message is set with the domain default value, and requests access authentication and address resolution.
  • the gatekeeper of the second metropolitan area network receives the ARQ message, determines whether the call is an area call or an area call according to the analysis of the called address, and queries the mapping table A according to the called number to obtain the corresponding T0S value, and If the call is an intra-area call and passes access authentication, an ACF message is returned to the border gateway of the second metropolitan area network. If the call is an inter-area call, an LRQ message is sent to the first city corresponding to the called address. Gatekeeper of the domain network.
  • the gatekeeper of the second metropolitan area network sends an LRQ message to the gatekeeper of the first metropolitan area network, requesting to provide address translation, and according to the mapping relationship of mapping table A, the corresponding callee and called numbers in the message are used to obtain the corresponding
  • the T0S value is set to the corresponding T0S value for the IP header of the LRQ message, and is routed to the router of the backbone network corresponding to the corresponding T0S value through the T0S policy route, and then transmitted to the gatekeeper of the first metropolitan area network.
  • the gatekeeper of the first metropolitan area network receives the LRQ message, queries the mapping table B according to the source IP field of the LRQ message, obtains the corresponding TOS value, and sets the IP packet header of the reply LCF or LRJ message.
  • the gatekeeper of the metropolitan area network instructs that the subsequent setup message of the second metropolitan area network must be sent to the listening port of the corresponding TCP link proxy process.
  • the gatekeeper of the second metropolitan area network After receiving the LCF message, the gatekeeper of the second metropolitan area network sends an ACF message to the border gateway of the second metropolitan area network, where the IP header T0S value of the ACF message is the domain default value, which is non-standard
  • the TOS value of the field is the TOS value determined according to the criteria.
  • the border gateway of the second metropolitan area network extracts the T0S value from the non-standard field of the returned ACF message, and checks whether the call signaling address contained in the ACF message is the IP address of the home gatekeeper. If yes, It indicates that the call is a routing call.
  • the T0S value on the IP header of all subsequent Q. 931 messages will use the default T0S tag ⁇ If the call signaling address contained in the ACF message is not the IP of the home gatekeeper The address indicates that the call is a direct call.
  • the T0S value on the IP header of all subsequent Q. 931 messages will use the T0S value in the non-standard field returned in the ACF message.
  • the border gateway of the second metropolitan area network When the first metropolitan area network interacts with H.245 messages, the border gateway of the second metropolitan area network will use the saved T0S value to set the corresponding T0S value for the IP headers of all subsequent H.245 messages; when the The way in which H.245 messages are exchanged between the road call and the first metropolitan area network adopts the gatekeeper routing method.
  • the border gateway of the second metropolitan area network will use the default T0S value for all subsequent H.245 messages. IP header settings
  • the corresponding T0S value should be queried by the upper gatekeeper of the border gateway before forwarding the H.245 message, and the corresponding T0S value stored in the corresponding call should be queried.
  • the corresponding T0S value should be set on all H.245 message IP headers and sent to The far end forwards the H.245 message.
  • the border gateway of the second metropolitan area network sends a setup message to the call signaling address included in the ACF message to initiate a call.
  • H. 323GK Gatekeeper in H. 323 protocol
  • GW border gateway device
  • POP POP router
  • IAD Integrated Access Equipment
  • the H.323GK in the first metropolitan area network is hereinafter referred to as GK1, and the H.323Gk in the second metropolitan area network is hereinafter referred to as the GK1.
  • This embodiment involves the following rules:
  • Tel 1 1011 beginning at a first metropolitan area network, a voice call: (0-5) XX 1011; Video phone number: 1011 (6-9) XX; video conferencing, the number: 011 ⁇ ⁇ .
  • the IP address of the gateway GW1 (in the first metropolitan area network): 210.51.195.11, assuming a voice terminal, number: 1011111, and a video terminal: 1011999 respectively.
  • the next hop address at T0S 2-5 is R2
  • the router in the backbone network uses the T0S priority routing policy to route according to the IP address and TOS, and finds the peer address, which greatly improves the communication quality.
  • H.323GK enables three ports 1722, 1724 and 1726 (optional non-special ports can be used) to listen to external TCP requests.
  • T0S 5
  • 1726 corresponds to TOS 2 7. Therefore, when the process initializes, the T0S values bound to the three ports 1722, 1724, and 1726 are 5, 6, and 7, respectively.
  • a phone in the second metropolitan area network 1022999 dials the phone in the first metropolitan area network 1011999 (a cross-domain video call), and its T0S route is as follows:
  • GW2 sends an ARQ message to GK2, and sets the domain default T0S value to 0.
  • GK2 receives the ARQ message and knows that the called number is a cross-domain call. Is 6.
  • GK2 sends an LRQ message, and finds that the TOS value is 6 according to the address of the neighbor gatekeeper GK1.
  • the IP header of LRQ is marked with T0S equal to 6, and sent to router 6 in backbone network 2.
  • GK1 receives the LRQ message and checks the B table according to the source IP field of LRQ:
  • GK2 After receiving the LCF, GK2 sends ACF to GW2.
  • the ACF header T0S is 0, and the non-standard field T0S value is the TOS value 6 found in step (2).
  • the IP headers of H.245 messages sent by GW2 are marked with T0S value 6.
  • GW2 sends a setup message with a T0S value of 0 in the IP header.
  • GK2 forwards the setu message, and finds that the T0S value is 6 according to the called number, and sends it to router 6 in backbone network 2.
  • Router 6 forwards it to GK1 according to the IP address and T0S value policy, and GK1 forwards it to GW1.
  • GW1 sends an ARQ message to GK1.
  • the IP packet header T0S value is 0. It looks up the calling number list (terminal number in the non-metropolitan area network), there is no matching entry, and then according to the called number in the message, the T0S value is equal to 6. .
  • GK1 returns ACF to GW1, the TOS value of the IP header is 0, and the T0S value of the non-standard field is 6 found in step (7). Thereafter, the IP headers of the H.245 messages sent by GW1 are marked with a T0S value of 6 and pass through the backbone network two routes.
  • the video terminal 1200222 in the second backbone network dials the voice terminal 1011111 in the first metropolitan area network.
  • the T0S value is 5 according to the called number, and subsequent H.245 messages will be marked with a T0S value of 5 through a route of the backbone network, and the call may not be connected. Therefore, it is necessary to use the calling number first analysis strategy, that is, first check the calling number table (terminal numbers in non-metropolitan area networks). If it cannot be found, route based on the T0S value of the called number.
  • the present invention introduces a complete set of rules on H.323 gatekeepers and border gateways, it is an H.323 signaling packet by discriminating data such as the calling IP address, calling number, and called number in the call signaling message.
  • the media packets are labeled with different TOS values to implement H.323 standard signaling and media offloading in the IP telephone network, which greatly enhances the security and maintainability of the IP telephone network, improves network execution efficiency, and signaling packets.
  • Streaming processing with media packets, audio packets, and video packets also provides the basis and control means for customers to optimize network resource allocation.
  • the method of the present invention is suitable for the offload transmission of signaling and media in an IP telephone network including services such as IP telephone, fax, and video based on the H.323 standard.
  • the method of the present invention is also suitable for other related fields with similar functional requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Telephonic Communication Services (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种控制 IP电话网中信令、 媒体分流的方法 技术领域
本发明涉及一种数据通讯领域中的信令、 媒体分流传输的方法, 特别是涉 及一种基于 H. 323标准的包括 IP电话、传真以及视频等业务的 IP电话网中的 信令、 媒体分流传输方法。 背景技术
近年来, 随着各大运营商大力拓展互联网业务, 基于 H. 323标准的 IP电 话、 传真以及视频网的建设如火如荼, 而互联网开放性所带来的安全问题、 信 令与媒体包的 Q0S无法保证等问题, 始终是困扰业界人士的一个难题。
而为 IP网上传送的所有的 H. 323信令包和媒体包的 IP包头上打上不同的 TOS标签值, 然后在边界路由器上利用 T0S策略路由功能, 就可以在现有网络 状况下实现对所有 H. 323信令和媒体包的分流控制。
但是, 如想实现对所有的 H. 323信令包和媒体包的 IP包头上打上不同的
T0S标签值, 仍会面临着以下的困难:
其一, 需要制订一套符合 H. 323呼叫流程的规则依据, 网络上设备才可以 知道在什么时机, 需要对哪些 IP包打上什么样的 TOS标签;
其二, 由于 H. 323协议栈是利用操作系统提供的调用函数来完成 T0S标签 的变更, 而对当今大部分主流操作系统而言, 这些底层调用函数的源代码是不 公幵的, 也就是说, 对 IP包打上特定的 T0S标签这一操作, 必须符合操作系 统对 TCP/IP协议包的处理规则, 而不是随心所欲的想在什么时候打上 T0S标 签, 就可以在什么时候打上 T0S标签;
其三, 需要制订一套符合 H. 323呼叫流程的规则依据, 使得网络中运行的 H. 323设备间能够方便的交互 T0S标签信息;
其四, 所制订的规则方案必须是调整起来灵活方便的, 这样才能满足不同 客户所提出的多种实际需要。 发明公开
本发明所要解决的技术问题在于提供一种控制 IP电话网中基于 H. 323标 准的信令、 媒体分流的方法, 使使用客户能方便灵活地通过定制策略, 为城域 网内部的网守与网守、边界网关与边界网关、 网守与边界网关之间以及与城域 网外部的网守、 边界网关之间传送的符合 H. 323标准的信令、 媒体包打上 TOS 标签值, 以方便客户通过路由器实现对城域网内部的 H. 323标准的信令、媒体 包实现基于 TOS标签值的策略路由。
本发明的目的之二是提供一种控制 IP电话网中基于 H. 323标准的信令、 媒体分流的方法, 指出了在现有操作系统的底层调用维持现状的情况下, 为呼 叫不同方式、 不同阶段的符合 H. 323标准的信令、媒体包打上 TOS标签值的具 体实现方法。
为了实现上述目的, 本发明提供了一种控制 IP电话网中信令和媒体分流 的方法, 应用于基于 H. 323协议的 IP电话网, 其特点在于, 通过对信令消息、 媒体消息的数据进行判别, 依据 H. 323协议的呼叫流程规则, 为该 IP电话网 的城域网内外部之间传送的信令包和媒体包设置上不同的 T0S值, 并与 IP电 话-网中的网守和路由器配合,依据 T0S值不同对城域网内外部的信令包和媒体 包进行策略路由, 从而实现 IP电话网中信令和媒体的分流。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 该方法包 括如下步骤:
步骤一, 在城域网内部的边界网关、 网守之间协商好该城域网的本局、 出 局的 T0S值; 并在该 IP电话网中的路由器上配置 T0S策略路由;
步骤二, 在网守上建立基于 T0S值的映射表, 包括 T0S值与呼叫的主被叫 号码分析字段映射表 A、 TOS值与该城域网外部的邻域网守 IP地址的映射表 B、 以及 T0S值与 TCP链接代理进程所侦听端口的映射表 C;
步骤三, 按照映射表 C中的映射关系, 启动多个 TCP代理进程, 在多个端 口侦听外部的 TCP链接请求, 在每个 TCP代理进程侦听端口初始化阶段, 为其 捆绑指定映射表 C中对应的 T0S值;
步骤四, 通过对信令消息、 媒体消息的数据进行判别, 依据 H. 323协议的 呼叫流程规则, 通过查找相应的映射表 、 B、 C为该 IP电话网的城域网内外 部之间所传送的不同呼叫方式、 不同阶段的信令包和媒体包标签上相应的 T0S 值; 并通过网守和路由器的配合实现基于 T0S值的策略路由, 从而实现信令和 媒体的分流。 上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 在步骤一 中, 该在路由器上配置好 TOS策略路由步骤包括在该 IP电话网的城域网边界 路由器上配置好 TOS策略路由和骨干网路由器上配置好 TOS优先策略路由。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 所述骨干 网路由器上的 TOS优先策略路由是采用主叫号码优先分析的策略,先根据主叫 号码査询, 若査不到再根据被叫号码查询, 获取并设置相应的 TOS值以进行路 由。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 在步骤四 中, 对于从网守发往该城域网外部邻域网守的 LRQ消息, 按照映射表 A中的映 射关系, 通过消息里的主被叫号码取得对应的 T0S值, 并在该 LRQ消息的 IP 包头上设置该对应的 T0S值。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 在步骤四 中, 对于网守收到来自于城域网外部邻域网守的 LRQ消息, 按照映射表 B中的 映射关系,通过该 LRQ消息里该 IP电话网中骨干网内邻域网守 IP地址取得对 应的 T0S值, 并在回复的 LCF或 LRJ消息的 IP包头上设置该对应的 T0S标签 值。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 如果回复 的是 LCF消息还需要查询映射表 G根据该对应的 T0S标签值找到对应的 TCP 链接代理进程所侦听的端口, 填在 LCF消息中回复给该 IP电话网中的远端网 守,指示远端后续的 setup消息必须发往对应的 TCP链接代理进程所侦听的端
P。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 在步骤四 中,对于从网守发往该城域网外部的 Q. 931消息按照映射表 A中的映射关系, 通过 Q. 931消息中第一个 setup消息中的被叫号码取得对应的 T0S \ 在其后 所有的 Q. 931消息的 IP包头上设置该对应的 T0S值。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 在步骤四 中, 对于网守回复给边界网关的 ACF消息中非标准字段所包含的 T0S值, 依据 以下准则判别赋值:
对于本城域网内部的呼叫, ACF消息中非标准字段所包含的 T0S值为缺省 值; 对于出城域网的呼叫, 将根据主叫 ARQ消息中的被叫号码, 通过查询映射 表 A确定 ACF消息中非标准字段所包含的 TOS值;
对于入城域网的呼叫, 缺省情况下仍将根据被叫 ARQ消息中的被叫号码, 通过查询映射表 A确定 ACF消息中非标准字段所包含的 TOS ί 但在该查询之 前, 允许优先对 ARQ消息中的主叫号码进行分析, 通过查询映射表 Α确定该主 叫号码所对应的 TOS值, 并检测该 TOS值所对应的优先标志, 如果该 TOS值被 置为优先选择, 则将优先使用该 TOS值填入 ACF消息非标准字段。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 在步骤四 中, 对于边界网关发送主叫 ARQ消息请求地址解析, 之后收到网守回复的 ACF 消息, 边界网关从 ACF消息的非标准字段中取出 TOS值保存, 并检查 ACF消息 中包含的呼叫信令地址是否是归属网守的 IP地址, 如果是, 则表明该路呼叫 是路由呼叫,在其后所有的 Q. 931消息的 IP包头上的 TOS值将釆用缺省的 TOS 值; 如果 ACF消息中包含的呼叫信令地址不是归属网守的 IP地址, 则表明该 路呼叫是直接呼叫,在其后所有的 Q. 931消息的 IP包头上的 TOS值将采用 ACF 消息中返回的非标准字段中的 TOS值。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 在步骤四 中, 对于边界网关发送主叫或被叫 ARQ消息请求地址解析, 之后收到网守回复 的 ACF消息, 边界网关从 ACF消息的非标准字段中取出 TOS值保存, 当该路呼 叫需要与远端进行 H. 245消息交互并且该 H. 245消息不经过网守路由时,边界 网关将使用保存的 T0S \ 在所有的 H. 245消息 IP包头上设置相应的 T0S值; 当该路呼叫需要与远端进行 H. 245消息交互并且该 H. 245消息要经过网守路由 时, 边界网关将使用缺省的 T0S值, 在发往上级网守的所有的 H. 245消息 IP 包头上设置相应的 TOS值, 网守收到边界网关发来的 H. 245消息, 查询到对应 呼叫所保存的 T0S值, 在所有的 H. 245消息 IP包头上设置相应的 T0S值并向 远端转发 H. 245消息。
上述的控制 IP电话网中信令和媒体分流的方法, 其特点在于, 对于通过 骨干网通信连接的第一城域网和第二城域网发生的呼叫,其基于 T0S值的呼叫 路由如下:
第二城域网的边界网关向其归属网守发送 ARQ消息, 该 ARQ消息的 IP包 头设置有域缺省值, 请求接入认证和地址解析; 第二城域网的网守收到该 ARQ消息根据被叫地址的分析判断该呼叫为区 内呼叫还是区间呼叫, 并根据被叫号码査询映射表 A得到相应的 TOS值, 并且 如果该呼叫为区内呼叫且通过接入认 i 则回复 ACF消息给该第二城域网的边 界网关, 如果该呼叫为区间呼叫, 则发送 LRQ消息与给该被叫地址相应的第一 城域网的网守;
该第二城域网的网守发出 LRQ消息给该第一城域网的网守,请求提供地址 翻译, 按照映射表 A 的映射关系, 通过消息里的主被叫号码取得对应的 TOS 值, 并为 LRQ消息的 IP包头设置上相应的 TOS值, 通过 TOS策略路由发往与 该相应的 TOS值对应的骨干网的路由器, 进而传送至该第一城域网的网守; 该第一城域网的网守收到 LRQ消息, 根据 LRQ消息的源 IP字段查询映射 表 B, 获得对应的 T0S值, 并为回复的 LCF或 LRJ消息的 IP包头设置该对应 的 T0S值; 并且, 如果回复的是 LCF消息, 还需要查询映射表 C, 根据该对应 的 T0S值找到对应的 TCP链接代理进程所侦听的端口,填在 LCF消息中回复给 该第二城域网的网守, 指示该第二城域网后续的 setup 消息必须发往对应的 TCP链接代理进程所侦听得端口;
该第二城域网的网守收到该 LCF消息后, 向该第二城域网的边界网关发送 ACF消息, 其中该 ACF消息的 IP包头 T0S值为域缺省值, 非标准字段的 T0S 值为依据所述准则确定的 T0S值;
该第二城域网的边界网关从回送的 ACF消息的非标准字段中取出 T0S值保 存, 并检查 ACF消息中包含的呼叫信令地址是否是归属网守的 IP地址, 如果 是, 则表明该路呼叫是路由呼叫,在其后所有的 Q. 931消息的 IP包头上的 T0S 值将釆用缺省 T0S标签條如果 ACF消息中包含的呼叫信令地址不是归属网守 的 IP地址, 则表明该路呼叫是直接呼叫, 在其后所有的 Q. 931消息的 IP包头 上的 T0S值将釆用 ACF消息中返回的非标准字段中的 T0S ί 并当该路呼叫需 要与该第一城域网进行 Η. 245消息交互时,该第二城域网的边界网关将使用该 保存的 T0S值, 为其后所有的 Η. 245消息的 IP包头设置相应的 T0S值; 当该 路呼叫与第一城域网进行 H. 245消息交互的方式釆用了网守路由方式 则该第 二城域网的边界网关将使用缺省的 T0S值, 为其后所有的 H. 245消息的 IP包 头设置相应的 TOS值, 由该边界网关的上级网守在转发该 H. 245消息时前, 查 询到对应呼叫所保存的 T0S值在所有的 H. 245消息 IP包头上设置相应的 T0S 值并向远端转发 H. 245消息;
该第二城域网的边界网关向 ACF消息中包含的呼叫信令地址发出 setup消 息来发起呼叫。
本发明的优点在于:
由于本发明在 H. 323网守、 边界网关上引入了一整套规则, 通过对呼叫信 令消息中主叫 IP地址、主叫号码、被叫号码等数据的判别, 为 H. 323信令包、 媒体包打上了不同的 TOS值标签, 并与 IP电话网中的路由器配合, 依据 TOS 值不同对城域网内外部的基于 H. 323标准的信令包和媒体包进行策略路由,实 现了 IP电话网中基于 H. 323标准的信令、媒体分流, 大大增强了 IP电话网络 安全性和可维护性, 提高了网络执行效率, 信令包与媒体包、 音频包与视频包 的分流处理, 也为客户优化网络资源配置提供了依据和控制手段。 附图简要说明
图 1是本发明实施例的网络系统图;
图 2是本发明的方法流程图。 实现本发明的最佳方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明应用在基于 H. 323标准的 IP电话网络系统, 其中 H. 323协议描述 了在分组网上实现多媒体通信的系统定义和一般的控制过程。它需要一组协议 的支持,包括呼叫控制协议、媒体控制协议和音视频编码协议等。它们和 H. 323 组合起来构成了 H. 323系统的技术标准。
在 H. 323 IP电话系统中, 话音编码使用 ITU- T G系列协议, 其中 G. 711 为必备编码方式, 其他的常用编码方式有 G. 723. 1、 G. 729A等。 视频编码釆用 H. 260系列协议, 比如 H. 261、 H. 263等。 音频和视频编码后的信息都封装在 RTP中通过 UDP来传送。 数据通信采用 T. 120协议, 通过可靠的 TCP来传送。
H. 225. 0和 H. 245是 H. 323系统的两个核心协议。 H. 225. 0主要用于呼叫 控制, 而 H. 245用于控制媒体信道的建立、 维护和释放。 H. 225. 0是 H. 323系 统的核心协议之一, 它由三部分组成: 呼叫控制、 RAS和如何用 RTP对音视频 信号进行封装; H. 225. 0的呼叫控制信令源自 Q. 931 , 其功能是在 H. 323端点 (包括终端和网关) 之间建立呼叫联系, 包括呼叫的建立和拆除等流程; RAS 是端点和网守之间的协议, 主要完成登记、 定位、 呼叫接纳等管理功能。 它主 要包含以下协议过程。
网守搜索: 用于端点自动搜索其归属网守。使用的消息有 GRQ (Gatekeeper Request, 网守请求)、 GRJ (Gateke印 er Reject, 网守拒绝)、 GCF (Gatekeeper Confirm, 网守确认)。 端点采用多播地址发送 GRQ寻找自己的归属网守, 可用 的归属网守以 GCF回应。 端点收到确认后, 选择自己的网守, 获得并记录网守 的 RAS地址供后续 RAS消息使用。
端点登记: 用于端点向归属网守登记 /去登记其自身的信息, 包括别名地 址 (E. 16 地址或 H. 323标识) 和呼叫信令运输层地址。 端点必须在登记后才 能发起和接受呼叫, 登记表明端点加入了某管理区。 用于登记的消息有 RRQ ( Registration Request, 登记请求)、 RCF (Registration Confirm, 登记确 认)、 RRJ ( Registration Reject , 登记拒绝)。 用于去登记的消息有 URQ (Unregistration Request, 去登记请求)、 UCF (Unregistration Confirm, 去登记确认)、 URJ (Unregistration Reject , 去登记拒绝)。 端点使用 RRQ 向搜索到的归属网守登记, 登记成功则网守以 RCF回应。 端点通过 URQ向自己 登记的归属网守去登记, 去登记成功后网守以 UCF响应。
呼叫接纳: 用于网守控制端点的呼叫接入, 包括用户接入认证、地址解析。 使用的消息有 ARQ (Admission Request ) , ACF (Admission Confirm) , ARJ (Admission Reject X 当端点发起呼叫时, 它首先向归属网守发送 ARQ消息, 包含认证信息、 目的地地址和所要求的带宽等。 网守对用户进行认证, 对目的 地址进行解析。 如果网守同意发起此呼叫, 就向端点回送 ACF, 包含允许分配 的带宽和翻译后所得的被叫呼叫信令运输层地址或网守的呼叫信令运输层地 址 (取决于采用直选路由方式还是网守选路方式)。 H. 225. 0 呼叫控制协议就 使用此呼叫信令运输层地址来发起呼叫。 当端点收到入呼请求时, 也要向其网 守发送 ARQ消息进行认证。 如果网守同意端点接收该呼叫, 就回送 ACF, 端点 才可继续处理入呼流程。
定位功能: 指请求网守提供地址翻译功能。 使用的消息有 LRQ (Location Request )、 LCF (Location Confirm) LRJ (Location Reject )。 当端点或网 守知道某一端点的别名地址, 需要知道其呼叫信令运输层地址时, 可向相应的 网守发送 LRQ消息。 LRQ消息可以以单播或多播方式发送。 当目标端点的网守 收到 LRQ消息后, 通过 LCF将该端点的呼叫信令运输层地址或该网守的呼叫信 令运输层地址回送给请求者。 回送哪个地址取决于呼叫信令是采用直接选路方 式还是网守选路方式。
呼叫退出: 用于端点或网守切断当前呼叫。 使用的消息有 DRQ (Disengage
Request )、 DCF (Disengage Confirm) DRJ (Disengage Reject )。
带宽管理: 用于端点或网守在呼叫中途改变呼叫接纳时确定的带宽。 使用 的消息包括 BRQ ( Bandwidth Request )、 BCF ( Bandwidth Confirm )、 BRJ (Bandwidth Reject )。
状态功能: 用于网守向端点查询呼叫或端点状态信息, 端点也可以按照设 置周期性地向网守报告状态信息。 使用的消息包括 IRQ ( Info Request ), IRR ( Info Request Response)、 IACK ( Info Request Ack)> INAK ( Info Request Nak) 0 '
资源功能: 用于网关向网守报告其当前可用资源的情况, 包括可用的容 量、支持的协议及数据速率等信息。使用的消息包括 RAI (Resource Available Indicatior 、 RAC (Resource Available Confirm)。
在 H. 323系统中, 一个呼叫可以同时包含多种媒体信息(音频、 视频等), 每种媒体信息在一个逻辑信道上传送。 在发起呼叫时, 首先使用 H. 225. 0呼叫 控制协议在主被叫之间建立呼叫联系, 同时建立 H. 245 控制信道。 然后使用 H. 245 控制信道根据呼叫的特征建立不同的媒体信道 (即逻辑信道), 使得多 媒体信息在不同的媒体信道上传送。
下面请结合图 1的网络系统图, 并参阅图 2的方法流程图, 将详细说明本 发明的应用。
如图 2所示, 该方法包括如下步骤:
步骤 10, 在城域网内部的边界网关、 网守之间协商好该城域网的本局、 出局的 T0S值, 例如, 在城域网内部的边界网关、 网守之间协商好该城域网内 部 H. 323信令包和媒体包的缺省 T0S值为 a; 并在城域网的边界路由器和骨干 网的路由器上配置 T0S策略路由, 禁止 T0S标签值为 a的 H. 323信令包和媒体 包发往城域网外部, 而只允许 T0S标签值为 b、 c、 d等标签值的 H. 323信令包 和媒体包法网城域网外部相应的骨干网路由器。其中该骨干网内的路由器采用 TOS优先路由的策略进行路由, 根据 T0S值直接找到下一跳地址。
步骤 20, 在网守上建立基于三张 T0S值的映射表, 一张是 T0S值与呼叫 的主被叫号码分析字段映射表 A —张是 T0S值与该城域网外部的邻域网守 IP 地址的映射表 B, 一张是 T0S值与 TCP链接代理进程所侦听端口的映射表 C。
步骤 30, 按照映射表 C中的映射关系, 启动多个 TCP代理进程, 在多个 端口侦听外部的 TCP链接请求, 在每个 TCP代理进程侦听端口初始化阶段, 为 其捆绑指定映射表 C中对应的 T0S值。 这些 TCP代理进程负责将外部的 TCP 包转发至本机的实际使用的呼叫信令端口, 并将本机回复的 TCP包转发给外部 远端。 从而完成对不同远端 TCP链接请求所回复的 TCP应答消息的 IP包头上 都打上相应的 T0S标签值。
步骤 40, 通过对信令消息、 媒体消息的数据进行判别, 依据 H. 323协议 的呼叫流程规则, 通过査找相应的映射表 、 B、 C为该 IP电话网的城域网内 外部之间所传送的不同呼叫方式、 不同阶段的信令包和媒体包标签上相应的 T0S值; 并通过网守和路由器的配合实现基于 T0S值的策略路由, 从而实现信 令和媒体的分流。 .
其中在步骤 40中, 主要包括如下进程:
( 1 ) 第二城域网的边界网关向其归属网守发送 ARQ消息, 该 ARQ消息的 IP包头设置有域缺省值, 请求接入认证和地址解析。
( 2 ) 第二城域网的网守收到该 ARQ消息, 根据被叫地址的分析判断该呼 叫为区内呼叫还是区间呼叫, 并根据被叫号码查询映射表 A 得到相应的 T0S 值, 并且如果该呼叫为区内呼叫且通过接入认证, 则回复 ACF消息给该第二城 域网的边界网关, 如果该呼叫为区间呼叫, 则发送 LRQ消息与给该被叫地址相 应的第一城域网的网守。
( 3 ) 该第二城域网的网守发出 LRQ消息给该第一城域网的网守, 请求提 供地址翻译, 按照映射表 A的映射关系, 通过消息里的主被叫号码取得对应的
T0S值, 并为 LRQ消息的 IP包头设置上相应的 T0S值, 通过 T0S策略路由发 往与该相应的 T0S 值对应的骨干网的路由器, 进而传送至该第一城域网的网 守。
(4)该第一城域网的网守收到 LRQ消息, 根据 LRQ消息的源 IP字段查询 映射表 B, 获得对应的 T0S值, 并为回复的 LCF或 LRJ消息的 IP包头设置该 对应的 TOS值; 并且, 如果回复的是 LCF消息, 还需要查询映射表 C, 根据该 对应的 T0S值找到对应的 TCP链接代理进程所侦听的端口,填在 LCF消息中回 复给该第二城域网的网守,指示该第二城域网后续的 setup消息必须发往对应 的 TCP链接代理进程所侦听得端口。
( 5 ) 该第二城域网的网守收到该 LCF消息后, 向该第二城域网的边界网 关发送 ACF消息, 其中该 ACF消息的 IP包头 T0S值为域缺省值, 非标准字段 的 T0S值为依据所述准则确定的 T0S值。
(6 )该第二城域网的边界网关从回送的 ACF消息的非标准字段中取出 T0S 值保存, 并检查 ACF消息中包含的呼叫信令地址是否是归属网守的 IP地址, 如果是, 则表明该路呼叫是路由呼叫, 在其后所有的 Q. 931消息的 IP包头上 的 T0S值将釆用缺省 T0S标签 { ·如果 ACF消息中包含的呼叫信令地址不是归 属网守的 IP地址, 则表明该路呼叫是直接呼叫, 在其后所有的 Q. 931消息的 IP包头上的 T0S值将采用 ACF消息中返回的非标准字段中的 T0S值; 并当该 路呼叫需要与该第一城域网进行 H. 245消息交互时,该第二城域网的边界网关 将使用该保存的 T0S值, 为其后所有的 H. 245消息的 IP包头设置相应的 T0S 值; 当该路呼叫与第一城域网进行 H. 245 消息交互的方式采用了网守路由方 式, 则该第二城域网的边界网关将使用缺省的 T0S 值, 为其后所有的 H. 245 消息的 IP包头设置相应的 T0S值, 由该边界网关的上级网守在转发该 H. 245 消息时前, 查询到对应呼叫所保存的 T0S值, 在所有的 H. 245消息 IP包头上 设置相应的 T0S值并向远端转发 H. 245消息。
( 7 ) 该第二城域网的边界网关向 ACF消息中包含的呼叫信令地址发出 setup消息来发起呼叫。
以下将以图 1所示的三个骨干网, 两个城域网的 T0S路由为例, 说明本发 明的应用, 可以此类推到多个骨干网和城域网的情形, 并不做为对本发明的限 制。
图 1中各缩略语含义如下:
H. 323GK: H. 323协议中的网守设备;
GW: 边界网关设备;
POP: POP路由器;
IPT: IP终端话机 VT: 可视终端
IAD: 综合接入设备
PC: 个人电脑
GK1的 IP地址: 210.51.195.10
GK2的 IP地址: 210.51.196.10
第一城域网内 H.323GK, 以下简称为 GK1, 第二城域网内 H.323Gk简称为 本实施例涉及以下规则:
一、 电话号码分配规则:
1) 第一城域网内的电话以 1011打头, 语音电话: 1011 (0-5) XX; 视频电话号码: 1011 (6-9) XX; 视频会议采用号码: 011χχΧΧ
2) 第二城域网内的电话以 1022打头, 语音电话号码: 1022 (0-5) χ¾ 视频电话号码: 1022(6-9)χχ;视频会议采用号码: 022χχχχο
3) 骨干网一内的电话以 1100打头骨干网二内的电话以 1200打头; 骨干网三内的电话以 1300打头。
4) 网关 GW1 (第一城域网内) 的 IP地址: 210.51.195.11, 假设分 别挂有一语音终端, 号码: 1011111, 和一视频终端: 1011999。
5) 网关 GW2 (第二城域网内) 的 IP地址: 210.51.196.11, 假设分 别挂有一语音终端, 号码: 1022111, 和一视频终端: 1022999。 二、 T0S标签值说明:
1) 网内缺省 T0S值等于 0。
2) 根据表 A: 跨域呼叫时, 被叫号码是 1011 (0-5) xx、 1022 (0-5) XX时, TOS = 5; 被叫号码是 1011 (6-9) xx、 1022 (6-9) xx时, T0S = 6; 被叫是 Ollxxxx, 022xxxx 时, T0S二 7。 主叫号码是 ΙΙΟΟχχχ , T0S二 5; 主叫号码是 1200xxx, T0S = 6。 故拨打语音终 端对应的 T0S = 5, 经过骨干网一路由; 拨打视频终端的 T0S = 6, 经 过骨干网二路由; 视频会议的包 T0S = 7, 经过骨干网三路由 (即主 口 、 被叫号码格式为 Ollxxxx或 022xxxx的包, 打上 T0S = 7)。 三、 POP路由策略简要说明:
1) 第一城域网内 TP0P与三个骨干网内的 4、 8、 12号路由器物理相 连, TOS = 5时的下一跳地址为 R4, TOS = 6时的下一跳地址为 R8, TOS = 7时的下一跳地址为 R12;第二城域网内 TP0P与三个骨干网 内的 2、 6、 10号路由器物理相连, T0S二 5时的下一跳地址为 R2, TOS -6时的下一跳地址为 R6, T0S-7时的下一跳地址为 R10。 2) 骨干网内的路由器再根据 IP地址和 TOS 采用 T0S优先路由的 策略进行路由, 找到对端地址, 这样就大大提高了通讯质量。 四、 TCP侦听端口说明:
H.323GK启用 1722、 1724、 1726三个端口 (可以任选非特殊用途的端口) 侦听外部 TCP请求。 根据表(:, 1722对应 T0S = 5, 1724对应 T0S = 6, 1726 对应 TOS二 7, 故进程初始化时绑定 1722、 1724、 1726三个端口的 T0S值分别 为 5、 6、 7。
五、 呼叫分类:
lOllxxx呼叫 1022 (0-5) xx T0S二 5;
lOllxx 呼叫 1022 (6-9) xx T0S=6;
1022xxx呼叫 1011 (0— 5) xx T0S = 5;
1022xxx呼叫 1011 (6—9) xx T0S = 6;
llOOxxx呼叫 lOllxxx; llOOxxx呼叫 1022xxx T0S = 5;
1200xx 呼叫 lOllxxx; 1200xxx呼叫 1022xxx TOS二 6;
lOllxxx呼叫 llOOxxx; 1022xxx呼叫 llOOxxx; Ollxxxx呼叫 llOOxxx; 022xxxx呼叫 llOOxxx T0S = 5;
lOllxxx呼叫 1200xxx; 1022xxx呼叫 1200xxx; Ollxxx 呼叫 1200xxx; 022xxxx呼叫 1200xxx T0S = 6;
lOllxxx呼叫 1300xxx; 1022xxx呼叫 1300xxx; Ollxxxx呼叫 1300xxx; ◦22xxxx呼叫 1300xxx T0S = 7;
Ollxxxx呼叫 1200xxx; 022xxxx呼叫 llOOxxx; 1200xxx呼叫 Ollxxxx;
11 OOxxx 呼叫 022xxxx TOS = 7 ;
下面以一具体实施例进行说明,例如第二城域网内 1022999电话拨打第一 城域网内电话 1011999 (跨域视频呼叫), 其 T0S路由如下:
(1) GW2向 GK2发出 ARQ消息, 打上域缺省 T0S值 0。
(2) GK2收到 ARQ消息, 根据被叫号码知为跨域呼叫, 查表 A出 T0S值 为 6。
( 3 ) GK2发出 LRQ消息, 根据邻域网守 GK1的地址査出 TOS值为 6。 LRQ 的 IP包头打上 T0S等于 6, 发送往骨干网二内的路由器 6。
(4) GK1收到 LRQ消息, 根据 LRQ的源 IP字段查 B表: 骨干网一里顶级 网守 IP地址对应 T0S = 5; 骨干网二里顶级网守 IP地址对应 T0S = 6 ; 骨干网 三里顶级网守 IP地址对应 T0S=7。 查出 T0S=6, 对应的 TCP端口 1726, 将 LCF消息的 IP包头打上 6, 同时将 1726端口返回给 GK2。
( 5) GK2收到 LCF后, 向 GW2发送 ACF, ACF包头 T0S为 0, 非标准字段 T0S值为第 (2) 步中査出的 TOS值 6。 其后 GW2发出的 H. 245的消息 IP包头 都打上 T0S值 6。
( 6) GW2发出 setup消息, IP包头 T0S值为 0。 GK2转发 setu 消息, 根 据被叫号码查得 T0S值为 6, 发给骨干网二内的路由器 6, 路由器 6根据 IP 地址和 T0S值策略转发给 GK1, GK1转发给 GW1。
( 7) GW1回 Call Proceeding消息, 打上 T0S=6, 随后的 Alerting消息、 Connect消息也打上 T0S = 6。
( 8) GW1发 ARQ消息给 GK1, IP包头 T0S值为 0, 查找主叫号码表(非城 域网中终端号码), 没有匹配的项, 然后根据消息中被叫号码査得 T0S值等于 6。
( 9) GK1给 GW1回 ACF, IP包头 TOS值为 0, 非标准字段 T0S值为第(7) 步中査得的 6。其后 GW1发出的 H. 245的消息 IP包头都打上 T0S值 6, 经过骨 干网二路由。
对于主叫号码优先分析的情况, 例如 1200111呼叫 1011111 :
假设骨干网二中视频终端 1200222拨打第一城域网中语音终端 1011111。 当 GW1发出 ARQ消息时, 根据被叫号码查得 T0S值为 5, 后续 H. 245消息都将 打上 T0S值 5经过骨干网一路由, 则可能出现电话不能接通的情况。 因此须釆 用主叫号码优先分析的策略, 即先查主叫号码表 (非城域网中终端号码), 若 查不到则根据被叫号码打 T0S值进行路由。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情 况下, 熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形, 但 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 工业应用性
由于本发明在 H. 323网守、 边界网关上引入了一整套规则, 通过对呼叫信 令消息中主叫 IP地址、主叫号码、被叫号码等数据的判别, 为 H. 323信令包、 媒体包打上了不同的 TOS值标签实现了 IP电话网中基于 H. 323标准的信令、 媒体分流, 大大增强了 IP电话网络安全性和可维护性, 提高了网络执行效率, 信令包与媒体包、音频包与视频包的分流处理, 也为客户优化网络资源配置提 供了依据和控制手段。 本发明方法可适合基于 H. 323标准的包括 IP电话、 传 真以及视频等业务的 IP电话网中的信令、 媒体的分流传输, 本发明方法同样 适合具有类似功能需求的其他相关领域。

Claims

权利要求书
1、 一种控制 IP电话网中信令和媒体分流的方法, 应用于基于 H. 323协议 的 IP电话网, 其特征在于, 通过对信令消息、 媒体消息的数据进行判别, 依 据 H. 323协议的呼叫流程规则, 为该 IP电话网的城域网内外部之间传送的信 令包和媒体包设置上不同的 TOS值, 并与 IP电话网中的网守和路由器配合, 依据 TQS值不同对城域网内外部的信令包和媒体包进行策略路由, 从而实现 IP电话网中信令和媒体的分流。
2、 根据权利要求 1所述的控制 IP电话网中信令和媒体分流的方法, 其特 征在于, 该方法包括如下步骤:
步骤一, 在城域网内部的边界网关、 网守之间协商好该城域网的本局、 出 局的 T0S值; 并在路由器上配置好 T0S策略路由;
步骤二, 在网守上建立基于 T0S值的映射表, 包括 T0S值与呼叫的主被叫 号码分析字段映射表 A、 TOS值与该城域网外部的邻域网守 IP地址的映射表 B、 以及 TOS值与 TCP链接代理进程所侦听端口的映射表 C;
步骤三, 按照映射表 C中的映射关系, 启动多个 TCP代理进程, 在多个端 口侦听外部的 TCP链接请求, 在每个 TCP代理进程侦听端口初始化阶段, 为其 捆绑指定映射表 C中对应的 T0S值;
步骤四, 通过对信令消息、 媒体消息的数据进行判别, 依据 H. 323协议的 呼叫流程规则, 通过査找相应的映射表4、 B、 C为该 IP电话网的城域网内外 部之间所传送的不同呼叫方式、 不同阶段的信令包和媒体包标签上相应的 T0S 值; 并通过网守和路由器的配合实现基于 T0S值的策略路由, 从而实现信令和 媒体的分流。
3、 根据权利要求 2所述的控制 IP电话网中信令和媒体分流的方法, 其特 征在于, 在步骤一中, 该在路由器上配置好 T0S策略路由步骤包括在该 IP电 话网的城域网边界路由器上配置好 T0S策略路由和骨干网路由器上配置好 T0S 优先策略路由。
4、 根据权利要求 3所述的控制 IP电话网中信令和媒体分流的方法, 其特 征在于,所述骨干网路由器上的 T0S优先策略路由是釆用主叫号码优先分析的 策略, 先根据主叫号码查询, 若查不到再根据被叫号码查询, 获取并设置相应 的 TOS值以进行路由。
5、 根据权利要求 2所述的控制 IP电话网中信令和媒体分流的方法, 其特 征在于, 在步骤四中, 对于从网守发往该城域网外部邻域网守的 LRQ消息, 按 照映射表 A中的映射关系, 通过消息里的主被叫号码取得对应的 T0S值, 并在 该 LRQ消息的 IP包头上设置该对应的 T0S值。
6、 根据权利要求 2所述的控制 IP电话网中信令和媒体分流的方法, 其特 征在于, 在步骤四中, 对于网守收到来自于城域网外部邻域网守的 LRQ消息, 按照映射表 B中的映射关系, 通过该 LRQ消息里该 IP电话网中骨干网内邻域 网守 IP地址取得对应的 T0S修并在回复的 LCF或 LRJ消息的 IP包头上设置 该对应的 T0S标签值。
7、 根据权利要求 6所述的控制 IP电话网中信令和媒体分流的方法, 其特 征在于, 如果回复的是 LCF消息, 还需要查询映射表 C, 根据该对应的 T0S标 签值找到对应的 TCP链接代理进程所侦听的端口, 填在 LCF消息中回复给该 IP电话网中的远端网守, 指示远端后续的 setup消息必须发往对应的 TCP链 接代理进程所侦听的端口。
8、 根据权利要求 2所述的控制 IP电话网中信令和媒体分流的方法, 其特 征在于, 在步骤四中, 对于从网守发往该城域网外部的 Q. 931消息, 按照映射 表 A中的映射关系,通过 Q. 931消息中第一个 setup消息中的被叫号码取得对 应的 T0S值, 在其后所有的 Q. 931消息的 IP包头上设置该对应的 T0S值。
9、 根据权利要求 2所述的控制 IP电话网中信令和媒体分流的方法, 其特 征在于, 在步骤四中, 对于网守回复给边界网关的 ACF消息中非标准字段所包 含的 T0S值, 依据以下准则判别赋值:
对于本城域网内部的呼叫, ACF消息中非标准字段所包含的 T0S值为缺省 值;
对于出城域网的呼叫, 将根据主叫 ARQ消息中的被叫号码, 通过查询映射 表 A确定 ACF消息中非标准字段所包含的 T0S值;
对于入城域网的呼叫, 缺省情况下仍将根据被叫 ARQ消息中的被叫号码, 通过查询映射表 A确定 ACF消息中非标准字段所包含的 T0S 但在该查询之 前, 允许优先对 ARQ消息中的主叫号码进行分析, 通过查询映射表 Α确定该主 叫号码所对应的 T0S值, 并检测该 TOS值所对应的优先标志, 如果该 T0S值被 置为优先选择, 则将优先使用该 TOS值填入 ACF消息非标准字段。
10、 根据权利要求 9所述的控制 IP电话网中信令和媒体分流的方法, 其 特征在于, 在步骤四中, 对于边界网关发送主叫 ARQ消息请求地址解析, 之后 收到网守回复的 ACF消息, 边界网关从 ACF消息的非标准字段中取出 TOS值保 存, 并检查 ACF消息中包含的呼叫信令地址是否是归属网守的 IP地址, 如果 是, 则表明该路呼叫是路由呼叫, 在其后所有的 Q. 931消息的 IP包头上的 TOS 值将采用缺省的 TOS ί 如果 ACF消息中包含的呼叫信令地址不是归属网守的 工 Ρ地址, 则表明该路呼叫是直接呼叫, 在其后所有的 Q. 931消息的 IP包头上 的 TOS值将釆用 ACF消息中返回的非标准字段中的 TOS值。
11、 根据权利要求 9所述的控制 IP电话网中信令和媒体分流的方法, 其 特征在于, 在步骤四中, 对于边界网关发送主叫或被叫 ARQ消息请求地址解 析, 之后收到网守回复的 ACF消息, 边界网关从 ACF消息的非标准字段中取出 T0S值保存, 当该路呼叫需要与远端进行 H. 245消息交互并且该 H. 245消息不 经过网守路由时, 边界网关将使用保存的 T0S值, 在所有的 H. 245消息 IP包 头上设置相应的 T0S值; 当该路呼叫需要与远端进行 H. 245消息交互并且该 H. 245消息要经过网守路由时, 边界网关将使用缺省的 T0S值, 在发往上级网 守的所有的 H. 245消息 IP包头上设置相应的 T0S值, 网守收到边界网关发来 的 H. 245消息, 查询到对应呼叫所保存的 T0S值, 在所有的 H. 245消息 IP包 头上设置相应的 TOS值并向远端转发 H. 245消息。
12、 根据权利要求 9所述的控制 IP电话网中信令和媒体分流的方法, 其 特征在于, 对于通过骨干网通信连接的第一城域网和第二城域网发生的呼叫, 其基于 T0S值的呼叫路由如下:
第二城域网的边界网关向其归属网守发送 ARQ消息, 该 ARQ消息的 IP包 头设置有域缺省值, 请求接入认证和地址解析;
第二城域网的网守收到该 ARQ消息, 根据被叫地址的分析判断该呼叫为区 内呼叫还是区间呼叫, 并根据被叫号码查询映射表 A得到相应的 TOS值, 并且 如果该呼叫为区内呼叫且通过接入认 则回复 ACF消息给该第二城域网的边 界网关, 如果该呼叫为区间呼叫, 则发送 LRQ消息与给该被叫地址相应的第一 城域网的网守;
该第二城域网的网守发出 LRQ消息给该第一城域网的网守, 请求提供地址 翻译, 按照映射表 A的映射关系, 通过消息里的主被叫号码取得对应的 TOS 值, 并为 LRQ消息的 IP包头设置上相应的 TOS值, 通过 TOS策略路由发往与 该相应的 TOS值对应的骨干网的路由器, 进而传送至该第一城域网的网守; 该第一城域网的网守收到 LRQ消息, 根据 LRQ消息的源 IP字段査询映射 表^ 获得对应的 TOS值, 并为回复的 LCF或 LRJ消息的 IP包头设置该对应 的 TOS值; 并且, 如果回复的是 LCF消息, 还需要查询映射表 (:, 根据该对应 的 TOS值找到对应的 TCP链接代理进程所侦听的端口, 填在 LCF消息中回复给 该第二城域网的网守, 指示该第二城域网后续的 setup消息必须发往对应的 TCP链接代理进程所侦听得端口;
该第二城域网的网守收到该 LCF消息后, 向该第二城域网的边界网关发送
ACF消息, 其中该 ACF消息的 IP包头 T0S值为域缺省值, 非标准字段的 T0S 值为依据所述准则确定的 T0S值; .
该第二城域网的边界网关从回送的 ACF消息的非标准字段中取出 T0S值保 存, 并检查 ACF消息中包含的呼叫信令地址是否是归属网守的 IP地址, 如果 是, 则表明该路呼叫是路由呼叫, 在其后所有的 Q. 931消息的 IP包头上的 T0S 值将釆用缺省 T0S标签值 如果 ACF消息中包含的呼叫信令地址不是归属网守 的 IP地址, 则表明该路呼叫是直接呼叫, 在其后所有的 Q. 931消息的 IP包头 上的 T0S值将采用 ACF消息中返回的非标准字段中的 T0S { 并当该路呼叫需 要与该第一城域网进行 Η. 245消息交互时, 该第二城域网的边界网关将使用该 保存的 T0S值, 为其后所有的 Η. 245消息的 IP包头设置相应的 T0S值; 当该 路呼叫与第一城域网进行 H. 245消息交互的方式采用了网守路由方式 则该第 二城域网的边界网关将使用缺省的 TOS值, 为其后所有的 H. 245消息的 IP包 头设置相应的 T0S值, 由该边界网关的上级网守在转发该 H. 245消息时前, 查 询到对应呼叫所保存的 TOS值在所有的 H. 245消息 IP包头上设置相应的 T0S 值并向远端转发 H. 245消息;
该第二城域网的边界网关向 ACF消息中包含的呼叫信令地址发出 setup消 息来发起呼叫。
PCT/CN2005/000373 2004-04-21 2005-03-24 Procede de regulation du flux separe de signalisation et de media dans un reseau telephonique ip WO2005104450A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05730399A EP1755287A1 (en) 2004-04-21 2005-03-24 A method for controlling the separated flow of signaling and media in ip telephone network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410009033.9A CN1564562B (zh) 2004-04-21 2004-04-21 一种控制ip电话网中信令、媒体分流的方法
CN200410009033.9 2004-04-21

Publications (1)

Publication Number Publication Date
WO2005104450A1 true WO2005104450A1 (fr) 2005-11-03

Family

ID=34477777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000373 WO2005104450A1 (fr) 2004-04-21 2005-03-24 Procede de regulation du flux separe de signalisation et de media dans un reseau telephonique ip

Country Status (3)

Country Link
EP (1) EP1755287A1 (zh)
CN (1) CN1564562B (zh)
WO (1) WO2005104450A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043441A (zh) * 2006-03-24 2007-09-26 华为技术有限公司 服务类型值确定方法及其装置、以及分组网络
CN101883393B (zh) * 2009-05-07 2013-01-09 华为技术有限公司 分组业务数据的传输方法、装置和系统
CN101854663A (zh) * 2010-04-30 2010-10-06 华为技术有限公司 数据传输设备、方法以及通信系统
CN102984402B (zh) * 2011-09-06 2015-08-12 中兴通讯股份有限公司 一种VoIP数据包的处理方法及系统
EP2780327A1 (en) 2011-11-14 2014-09-24 Cadila Healthcare Limited Polymorphic forms of ivabradine hydrochloride
CN115242760B (zh) * 2022-07-20 2023-12-26 深圳市灵镜技术有限公司 一种基于WebRTC的SFU系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189754A (ja) * 1999-12-28 2001-07-10 Toshiba Corp QoS提供方式、ルータ装置、QoSサーバ、ユーザ端末及びQoS提供方法
US6650644B1 (en) * 1998-05-20 2003-11-18 Nortel Networks Limited Method and apparatus for quality of service translation
KR20040027175A (ko) * 2002-09-27 2004-04-01 주식회사 케이티 전송제어프로토콜/인터넷프로토콜 네트워크에서 에지라우터의 트래픽 처리 방법 및 기록매체

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024662A (ja) * 1999-07-09 2001-01-26 Nec Commun Syst Ltd 通信制御方式
JP3639556B2 (ja) * 2001-12-12 2005-04-20 富士通株式会社 VoIPネットワークの輻輳制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650644B1 (en) * 1998-05-20 2003-11-18 Nortel Networks Limited Method and apparatus for quality of service translation
JP2001189754A (ja) * 1999-12-28 2001-07-10 Toshiba Corp QoS提供方式、ルータ装置、QoSサーバ、ユーザ端末及びQoS提供方法
KR20040027175A (ko) * 2002-09-27 2004-04-01 주식회사 케이티 전송제어프로토콜/인터넷프로토콜 네트워크에서 에지라우터의 트래픽 처리 방법 및 기록매체

Also Published As

Publication number Publication date
EP1755287A1 (en) 2007-02-21
CN1564562A (zh) 2005-01-12
CN1564562B (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
US7920690B2 (en) Interworking of multimedia and telephony equipment
US9185142B2 (en) System and method for providing alternate routing in a network
US7957517B2 (en) Method and apparatus for providing internet protocol call transfer in communication networks
US7460548B2 (en) Optimally interworking SIP and QSIG call diversion and transfer
WO2006026901A1 (fr) Systeme de traitement de signal de service de domaine de paquet et procede utilisant ce systeme
US20070058787A1 (en) Centralized Feature Platform In A Packetized Network
WO2003030463A1 (fr) Procede et systeme pour la prestation d'un service vocal ip sur un reseau prive
WO2005104450A1 (fr) Procede de regulation du flux separe de signalisation et de media dans un reseau telephonique ip
KR100727069B1 (ko) Sip 기반의 무선 패킷 교환망 시스템에서의 타망 연동방법 및 그 시스템
US6901080B1 (en) System and method for providing an intermediary layer for VoIP call pipe establishment
US6961332B1 (en) Multiple appearance directory number support across packet- and circuit-switched networks
KR101606142B1 (ko) 음성패킷망에서 네트워크 주소 번역 통과를 지원하기 위한 장치 및 방법
US8711707B2 (en) Integrating multimedia capabilities with circuit-switched calls
US20170318062A1 (en) Method for setting up a communication link
EP1436963B1 (en) Method, apparatus and computer program for selecting a media gateway control function based on the monitoring of resources of media gateway functions
US20070041357A1 (en) Interworking of hybrid protocol multimedia networks
Cisco H.323 Applications
Cisco Enhancements to the Session Initiation Protocol for VoIP on Cisco Access Platforms
US8705518B1 (en) Apparatus and method for controlling services and operations in converged communications networks
Cisco Session Initiation Protocol (SIP) for VoIP
US7899032B1 (en) Third party service support with a voice over internet protocol (VoIP) network
Jones h. 323 protocol overview
JP2006229550A (ja) VoIP−GW装置
KR100809398B1 (ko) 멀티프로토콜을 지원하는 VoIP에서의 SMS 전송방법 및 그 시스템
KR20070047593A (ko) 이기종 망간 연동하는 화상통화 시스템 및 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005730399

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005730399

Country of ref document: EP