明 細 書 Specification
抽出試薬を担持した吸着材料およびその製造方法 Adsorption material supporting extraction reagent and method for producing the same
技術分野 Technical field
[0001] 本発明は,金属イオンを分離精製するために抽出試薬を担持した吸着材料,ならび にその製造方法に関するものである。 The present invention relates to an adsorbent material supporting an extraction reagent for separating and purifying metal ions, and a method for producing the same.
背景技術 Background art
[0002] 環境試料や放射性廃棄物中に含まれる核分裂生成物,放射化生成物,およびァク チノイド元素の定量のためには,測定の前処理として,金属イオンの分離精製をおこ なう必要がある。これまで,抽出試薬を用いる溶媒抽出法 (例えば,非特許文献 1参 照)やイオン交換樹脂 (例えば,非特許文献 2参照)を用いるイオン交換法による分 離精製がおこなわれてきた。しかしながら,溶媒抽出法では有害な有機廃液が多量 に発生する,イオン交換法では特定の金属イオンに対する吸着選択性が低いとレ、う 問題点がある。 [0002] In order to quantify fission products, activation products, and actinoid elements contained in environmental samples and radioactive waste, it is necessary to separate and purify metal ions as a pretreatment for measurement. There is. So far, separation and purification have been performed by a solvent extraction method using an extraction reagent (for example, see Non-Patent Document 1) or an ion-exchange method using an ion-exchange resin (for example, see Non-Patent Document 2). However, the solvent extraction method generates a large amount of harmful organic effluents, and the ion exchange method has a problem in that the adsorption selectivity for specific metal ions is low.
非特許文献 1 :赤岩英夫「抽出分離分析法」(第 4版),講談社, 1976年 Non-Patent Document 1: Hideo Akaiwa, "Extraction Separation Analysis Method" (4th edition), Kodansha, 1976
非特許文献 2:三菱化学株式会社イオン交換樹脂部「イオン交換樹脂'合成吸着剤 マニュアル 応用編」(第 8版),三菱化学株式会社, 1995年 Non-Patent Document 2: Ion Exchange Resin Department, Mitsubishi Chemical Corporation “Ion Exchange Resin 'Synthetic Adsorbent Manual Application Edition” (8th edition), Mitsubishi Chemical Corporation, 1995
[0003] 抽出試薬を固体,主に高分子基材に担持した抽出クロマトグラフィーレジンと呼ばれ る固相抽出材料が開発され,それを用いた金属イオンの分離精製法が溶媒抽出法 やイオン交換法の代替方法として注目されている。抽出クロマトグラフィーレジンの形 状はビーズであり,金属イオンを分離精製するときにはビーズをカラムに充填する。 抽出試薬の例として,ォクチル(フエニル) -N, N -ジイソブチルカルバモイルメチルホ スフインォキシド,ジァミルアミルホスフヱイト, トリ _n-ブチルホスフェイト,ジメチルグリ ォキシム,ビス(2 -ェチルへキシル)ホスフヱイト,ビス(2, 4, 4-トリメチルペンチル)ホ スフイン酸,トリー n—ォクチルホスフィンォキシドが挙げられる。 [0003] A solid-phase extraction material called an extraction chromatography resin, in which an extraction reagent is supported on a solid, mainly a polymer substrate, has been developed, and a method for separating and purifying metal ions using it has been developed by solvent extraction or ion exchange. It is attracting attention as an alternative to the law. The extraction chromatography resin is in the form of beads, and the beads are packed into a column when separating and purifying metal ions. Examples of extraction reagents include octyl (phenyl) -N, N-diisobutylcarbamoylmethylphosphonoxide, diamylamylphosphite, tri_n-butylphosphate, dimethylglycoxime, bis (2-ethylhexyl) phosphite, and bis (2-ethylhexyl) phosphite. (2,4,4-trimethylpentyl) phosphinic acid and tri-n-octylphosphinoxide.
[0004] 抽出クロマトグラフィーレジンの高分子基材が架橋構造をもつことから抽出試薬の担 持量が少ない,あるいは担持した抽出試薬の一部しか金属イオンの吸着に寄与しな いという欠点がある。さらに,レジン内部への金属イオンの拡散物質移動に時間がか
力るという問題点がある。 [0004] Since the polymer base material of the extraction chromatography resin has a crosslinked structure, there is a drawback that the amount of the extraction reagent carried is small, or that only a part of the supported extraction reagent contributes to the adsorption of metal ions. . Furthermore, it takes time for the diffusion of metal ions into the resin. There is a problem of power.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 上記の従来技術に鑑み,本発明は,多孔性中空糸膜,多孔性フィルム,繊維,不織 布等の基材表面にグラフト (接ぎ木)高分子鎖を高密度に付与し,そこへ抽出試薬を 担持することによって,金属イオンの分離精製を高容量かつ高速でおこなえる吸着 材料を提供することを目的にする。グラフト高分子鎖に抽出試薬を担持することによ つて金属イオンの分離精製性能の向上を図った例は知られていない。 [0005] In view of the above prior art, the present invention provides a high density graft (grafted) polymer chain on the surface of a substrate such as a porous hollow fiber membrane, a porous film, a fiber, or a nonwoven fabric. An object of the present invention is to provide an adsorbent material capable of separating and refining metal ions at a high capacity and at a high speed by supporting an extraction reagent on the substrate. There is no known example of improving the performance of separating and purifying metal ions by supporting an extraction reagent on a graft polymer chain.
課題を解決するための手段 Means for solving the problem
[0006] 本発明者らは,基材に付与したグラフト高分子鎖にプラスあるいはマイナスに解離し うる官能基を導入すると,グラフト高分子鎖が電荷の反発によって伸長することを報 告した。また,その伸長によってグラフト高分子鎖間に生じた空間に,グラフト高分子 鎖の電荷とは反対符号の電荷をもつタンパク質が多層で,例えば 40層にも,積み重 なって吸着することを見出した。言い換えると,基材に付与したグラフト高分子鎖が分 子やイオンを担持するのに有用な構造を与えるという知見を得た。そこで,抽出試薬 の担持にこの構造を適用することを思レ、っレ、た。 [0006] The present inventors have reported that when a functional group capable of dissociating positively or negatively is introduced into a graft polymer chain provided to a substrate, the graft polymer chain is elongated by repulsion of electric charge. They also found that proteins with charges opposite to the charge of the graft polymer chains were adsorbed in multiple layers, for example, 40 layers, in the space created between the graft polymer chains due to their elongation. Was. In other words, we have found that the grafted polymer chains provided to the substrate provide a structure useful for supporting molecules and ions. Therefore, I thought about applying this structure to support extraction reagents.
[0007] 本発明者らは鋭意研究を重ねた結果,基材に付与したグラフト高分子鎖に抽出試薬 担持機能を有する官能基を導入し,そこへ抽出試薬を担持することにより,金属ィォ ンを効率よく分離精製することが可能であることを見出し,本発明を完成させた。本発 明による抽出試薬を担持した吸着材料は,グラフト高分子鎖が非架橋高分子構造で あるため金属イオンを吸着する抽出試薬を高密度に担持することができる,および金 属イオンの拡散物質移動抵抗を最小化できるという特徴を有する。 [0007] The inventors of the present invention have conducted intensive studies, and as a result, introduced a functional group having an extract-reagent carrying function into a graft polymer chain attached to a substrate, and carried the extract-reagent on the functional group. The present inventors have found that it is possible to efficiently separate and purify proteins, and have completed the present invention. The adsorbent material supporting the extraction reagent according to the present invention can support an extraction reagent that adsorbs metal ions at a high density because the graft polymer chain has a non-crosslinked polymer structure. It has the feature of minimizing the movement resistance.
[0008] すなわち,本発明は,基材に付与したグラフト高分子鎖に抽出試薬担持機能をもつ 官能基を導入した材料であって,前記グラフト高分子鎖が重合性単量体をグラフト重 合することにより形成された,抽出試薬を担持した吸着材料に関する。 [0008] That is, the present invention relates to a material in which a functional group having an extracting reagent-carrying function is introduced into a graft polymer chain provided to a base material, wherein the graft polymer chain grafts a polymerizable monomer. The present invention relates to an adsorbent material carrying an extraction reagent formed by the above method.
[0009] 本明細書中で使用する「抽出試薬担持機能を有する官能基」とは,それ自身で抽出 試薬を担持する機能を有する官能基と,適当な試薬との反応によってこうした官能基 に変換しうる官能基をいう。本発明において利用できる抽出試薬担持機能を有する
官能基としては,疎水性基,カチオン交換基,ァニオン交換基,又はそれらを組み合 わせた官能基を用いることができる。カチオン交換基として,例えば,スルホン基,リ ン酸基,カルボキシル基が挙げられる。一方,ァニオン交換基として,例えば, 1級ァ ミノ基, 2級ァミノ基, 3級ァミノ基, 4級ァミノ基, 4級アンモニゥム塩基が挙げられる。 [0009] As used herein, the term "functional group having the function of supporting the extraction reagent" refers to a functional group capable of supporting the extraction reagent by itself and converted to such a functional group by reaction with an appropriate reagent. A functional group that can be used. Has an extraction reagent carrying function that can be used in the present invention As the functional group, a hydrophobic group, a cation exchange group, an anion exchange group, or a functional group obtained by combining them can be used. Examples of the cation exchange group include a sulfone group, a phosphoric acid group, and a carboxyl group. On the other hand, examples of the anion exchange group include a primary amino group, a secondary amino group, a tertiary amino group, a quaternary amino group, and a quaternary ammonium base.
[0010] 抽出試薬のなかでも,その一部に疎水性基を含む抽出試薬を担持するには,グラフ ト高分子鎖が,アルキル基,ァノレキノレアミノ基,エポキシ基,フヱニル基,又はそれら を組み合わせた官能基を有することが有効である。アルキルアミノ基の例として,オタ タデシノレアミノ基,ドデシノレアミノ基,ォクチルァミノ基,プチルァミノ基,ォクタデカン チオール基が挙げられる。 [0010] Among the extraction reagents, in order to carry an extraction reagent containing a hydrophobic group in a part thereof, the graft polymer chain must have an alkyl group, an anolequinoleamino group, an epoxy group, a phenyl group, or It is effective to have a functional group combining them. Examples of the alkylamino group include an otadecinoleamino group, a dodecinoleamino group, an octylamino group, a butylamino group, and an octadecanethiol group.
[0011] 抽出試薬担持機能を有する官能基に変換しうる官能基には,例えば,エポキシ基が ある。エポキシ基は反応性が高いことから,適当な試薬との反応により抽出試薬担持 機能を有する官能基に変換することができる。例えば,エポキシ基と,ォクタデシルァ ミン,ドデシノレアミン等の 1種又はそれ以上とを反応させることにより,エポキシ基に抽 出試薬担持機能を有する官能基をグラフト高分子鎖に導入することができる。 [0011] A functional group that can be converted into a functional group having a function of supporting an extraction reagent is, for example, an epoxy group. Since the epoxy group has high reactivity, it can be converted into a functional group having a function of carrying an extraction reagent by reacting with an appropriate reagent. For example, by reacting an epoxy group with one or more of octadecylamine, dodecinoleamine and the like, a functional group having an extraction reagent-supporting function in the epoxy group can be introduced into the graft polymer chain.
[0012] 本発明で用いる重合性単量体として,例えば,エポキシ基を有する重合性単量体を 基材に重合することができる。エポキシ基を有する重合性単量体として特に有用なも のには,グリシジルメタクリレートゃグリシジルアタリレートがある。 As the polymerizable monomer used in the present invention, for example, a polymerizable monomer having an epoxy group can be polymerized on a substrate. Glycidyl methacrylate / glycidyl atalylate is particularly useful as a polymerizable monomer having an epoxy group.
[0013] また,担持する抽出試薬の種類に応じて,さまざまな重合性単量体を用いることがで きる。親水性基を有する重合性単量体として,例えば, 2-ヒドロキシェチルメタクリレ ート,ビニルピロリドン,ジメチルアクリルアミド,エチレングリコールジメタタリレートがあ る。一方,疎水性基を有する重合性単量体として,例えば,アルキルメタタリレート,ァ ルキルアタリレートがある。これらの重合性単量体は任意の割合で基材に共重合させ ること力 Sできる。本発明は,多種の重合性単量体を任意に組み合わせることが可能な グラフト重合を採用し,それにより機能を複合化できる点が特徴である。 [0013] Various polymerizable monomers can be used depending on the type of extraction reagent to be supported. Examples of the polymerizable monomer having a hydrophilic group include 2-hydroxyethyl methacrylate, vinyl pyrrolidone, dimethyl acrylamide, and ethylene glycol dimethacrylate. On the other hand, examples of polymerizable monomers having a hydrophobic group include alkyl methacrylate and alkyl acrylate. These polymerizable monomers are capable of copolymerizing the base material at an arbitrary ratio. The present invention is characterized by adopting a graft polymerization in which various kinds of polymerizable monomers can be arbitrarily combined, whereby the functions can be compounded.
[0014] 本発明の抽出試薬を担持した吸着材料の基材には特に制限はなぐ重合性単量体 が結合し得るものであればレ、かなる材料をも使用することができる。本発明において は,例えば,ポリエチレン,ポリプロピレン等のポリオレフイン,ポリテトラフルォロェチ レン,又はこれらの組み合わせ (混合体や共重合体)を使用することができる。
[0015] また,その形態についても特に制限はなぐ例えば,既存の繊維,布帛,不織布,多 孔性フィルム,多孔性中空糸膜,多孔性ロッド,又は多孔性フィルターを使用すること ができる。 [0014] The substrate of the adsorption material supporting the extraction reagent of the present invention is not particularly limited, and any material can be used as long as the polymerizable monomer can be bound thereto. In the present invention, for example, polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene, or a combination thereof (mixture or copolymer) can be used. [0015] The form is not particularly limited. For example, existing fibers, fabrics, nonwoven fabrics, porous films, porous hollow fiber membranes, porous rods, or porous filters can be used.
[0016] 重合性単量体のグラフト重合法としては,例えば,反応開始剤重合法又は電離放射 線重合法を用いることができる。いずれの場合であっても,反応条件を適宜制御する ことによって, 目的の重合度を得ることができる。電離放射線を用いる場合には,紫 外線,電子線, X線, ひ線, /3線又は γ線等を使用することができる。 [0016] As the graft polymerization method for the polymerizable monomer, for example, a reaction initiator polymerization method or an ionizing radiation polymerization method can be used. In any case, the desired degree of polymerization can be obtained by appropriately controlling the reaction conditions. When ionizing radiation is used, ultraviolet rays, electron beams, X-rays, braided rays, / 3 rays or gamma rays can be used.
[0017] 抽出試薬とその担持機能を有する官能基の組み合わせとして,ビス(2-ェチルへキ シル)ホスフェイトとォクタデシルァミノ基との組み合わせ,ビス(2 -ェチルへキシル)ホ スフヱイトとドデシルァミノ基との組み合わせ,ビス(2, 4, 4-トリメチルペンチル)ホスフ イン酸とォクタデシルァミノ基の組み合わせ,ビス(2, 4, 4_トリメチルペンチル)ホスフ イン酸とドデシルァミノ基の組み合わせ,トリオクチルメチルアンモニゥムクロライドと 6- ァミノへキサン酸基の組み合わせ,トリオクチルメチルアンモニゥムクロライドとォクタ デシルァミノ基及び 6-ァミノへキサン酸基の組み合わせ,トリー η—ォクチルホスフィ ンォキシドとォクタデカンチオール基との組み合わせ等が挙げられる。 [0017] As a combination of an extraction reagent and a functional group having a supporting function thereof, a combination of a bis (2-ethylhexyl) phosphate and an octadecylamino group, a combination of a bis (2-ethylhexyl) phosphite and a dodecylamino Combination of bis (2,4,4-trimethylpentyl) phosphinic acid and octadecylamino group, combination of bis (2,4,4-trimethylpentyl) phosphinic acid and dodecylamino group, Combination of octylmethylammonium chloride and 6-aminohexanoic acid group, combination of trioctylmethylammonium chloride and octadecylamino group and 6-aminoaminohexanoic acid group, tree η-octylphosphonoxide and octadecanethiol group And the like.
[0018] また,官能基としては,他にも, 1分子のなかにァミノ基とカルボキシル基を併せ持つ 物質,例えば,各種アミノ酸や 6-ァミノへキサン酸等も挙げられる。 [0018] Other examples of the functional group include substances having both an amino group and a carboxyl group in one molecule, such as various amino acids and 6-aminohexanoic acid.
[0019] また,本発明は,抽出試薬を担持した吸着材料の製造方法であって,抽出試薬担持 機能を有する官能基を含む重合性単量体を基材表面にグラフト重合することを特徴 とする。 [0019] The present invention also relates to a method for producing an adsorbent material carrying an extraction reagent, wherein a polymerizable monomer containing a functional group having an extraction reagent-supporting function is graft-polymerized on the surface of the substrate. I do.
[0020] これまで説明した抽出試薬を担持した吸着材料力 構成される機能性材料が提供さ れる。こうした機能性材料は,使用の目的や用途に応じて,その形態を適宜変更する こと力 sできる。その例として,分析用キット又は分析用カートリッジが挙げられる。 [0020] A functional material constituted by an adsorbent material supporting the extraction reagent described above is provided. The form of these functional materials can be changed as appropriate according to the purpose and application of use. Examples include an analysis kit or an analysis cartridge.
発明の効果 The invention's effect
[0021] 本発明が提示する方法で抽出試薬を担持すると,抽出試薬が有効に,最大で 100% ,金属イオンの捕集に利用できる。基材に付与したグラフト高分子鎖に抽出試薬を担 持するという本発明による作製法の長所が実証された。従来の材料ではこのように高 い値は報告されていない。本発明の抽出試薬を担持した吸着材料は抽出試薬の利
用効率が高い材料として有望である。さらに,本発明の抽出試薬を担持した吸着材 料は,既存の多孔性中空糸膜や繊維を基材に,化学的'物理的に安定なグラフト高 分子鎖を付与し,そこへ抽出試薬を担持することによって製造することができることか ら,材料として取扱い性に優れている。既存の材料を利用した抽出試薬を担持した 吸着材料として用途の拡大が期待される。 When the extraction reagent is supported by the method proposed by the present invention, the extraction reagent can be effectively used for collecting metal ions up to 100%. The advantage of the production method according to the present invention that an extraction reagent is carried on a graft polymer chain attached to a substrate has been demonstrated. No such high values have been reported for conventional materials. The adsorption material supporting the extraction reagent of the present invention is useful for the extraction reagent. It is promising as a material with high use efficiency. Furthermore, the adsorbent material supporting the extraction reagent of the present invention provides a chemically and physically stable grafted high molecular chain to an existing porous hollow fiber membrane or fiber as a base material, to which the extraction reagent is applied. Since it can be manufactured by supporting it, it has excellent handleability as a material. Its use is expected to expand as an adsorbent material that supports extraction reagents using existing materials.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の一実施例に係る抽出試薬を担持した吸着材料の作製経路の一例を 示す図である。 FIG. 1 is a diagram showing an example of a production route of an adsorption material supporting an extraction reagent according to one embodiment of the present invention.
[図 2]本発明の一実施例に係る抽出試薬担持吸着材料による金属イオンの吸着の仕 組みを示す図である。 FIG. 2 is a view showing a mechanism of metal ion adsorption by an extraction reagent-carrying adsorption material according to one embodiment of the present invention.
[図 3]本発明の一実施例における抽出試薬担持機能を有する官能基を導入する反 応における,反応時間と官能基(ここでは,ォクタデシルァミノ基)への転化率および ォクタデシルァミノ基密度との関係を示す図である。 [Fig. 3] Reaction time, conversion to a functional group (here, octadecylamino group), and octadecyl in the reaction of introducing a functional group having a function of supporting an extraction reagent in one embodiment of the present invention. It is a figure which shows the relationship with an amino group density.
[図 4]本発明の一実施例における材料中の官能基 (ここでは,ォクタデシルァミノ基) 密度に対する抽出試薬(ここでは,ビス(2-ェチルへキシル)ホスフェイト, 図中で HDEHPと略記)の担持量を示す図である。 [FIG. 4] In one embodiment of the present invention, an extraction reagent (here, bis (2-ethylhexyl) phosphate) versus a functional group (here, octadecylamino group) density in a material, and HDEHP and FIG. FIG. 4 is a diagram showing the amount of support (abbreviation).
[図 5]本発明の一実施例における多孔性膜を基材にして作製した抽出試薬を担持し た吸着材料の断面の走査電子顕微鏡写真である。 FIG. 5 is a scanning electron micrograph of a cross section of an adsorbent material carrying an extraction reagent prepared using a porous membrane as a substrate in one example of the present invention.
[図 6]本発明の一実施例における多孔性膜を基材にして作製した抽出試薬を担持し た吸着材料へ金属イオン溶液を透過させる装置を示す図である。 FIG. 6 is a view showing an apparatus for permeating a metal ion solution to an adsorbent material carrying an extraction reagent prepared using a porous membrane as a substrate according to one embodiment of the present invention.
[図 7]本発明の一実施例におけるォクタデシノレアミノ基に HDEHPを担持した多孔性 膜にイットリウム溶液を透過させて得られた破過曲線を示す図である。 FIG. 7 is a graph showing breakthrough curves obtained by permeating an yttrium solution through a porous membrane having HDEHP supported on octadecinoleamino groups in one example of the present invention.
[図 8]本発明の一実施例におけるドデシルァミノ基に HDEHPを担持した多孔性膜に イットリウム溶液を透過させて得られた破過曲線を示す図である。 FIG. 8 is a view showing a breakthrough curve obtained by permeating an yttrium solution through a porous membrane having HDEHP supported on dodecylamino groups in one example of the present invention.
[図 9] (a)は,本発明の一実施例に係る抽出試薬を担持した吸着材料の作製経路の 一例を示す図であり, (b)は, Aliquat 336の構造式を示す図である。 [FIG. 9] (a) is a diagram showing an example of a production route of an adsorbent material supporting an extraction reagent according to one embodiment of the present invention, and (b) is a diagram showing a structural formula of Aliquat 336 .
[図 10]本発明の一実施例における 6AHA基に Aliquat336を担持した多孔性膜に Pt溶 液を透過させて得られた破過曲線を示す図である。
[図 11]本発明の一実施例に係る抽出試薬を担持した吸着材料の作製経路の一例を 示す図である。 FIG. 10 is a view showing a breakthrough curve obtained by permeating a Pt solution through a porous membrane carrying Aliquat 336 on 6AHA groups in one example of the present invention. FIG. 11 is a diagram showing an example of a production route of an adsorbent material supporting an extraction reagent according to one embodiment of the present invention.
[図 12] (a)は,本発明の一実施例における,反応時間に対するエポキシ基の C H [FIG. 12] (a) shows C H of an epoxy group versus reaction time in one example of the present invention.
18 37 18 37
NH基へ転化率の変化を示す図であり, (b)は,エポキシ基の 6AHA基への転化率に 対するエポキシ基の C H NH基への転化率を示す図である。 It is a figure which shows the change of the conversion rate to an NH group, and (b) is a figure which shows the conversion rate of an epoxy group to a CHNH group with respect to the conversion rate of an epoxy group to 6AHA group.
18 37 18 37
[図 13]本発明の一実施例における,エポキシ基の 6AHA基への転化率に対する Aliquat 336の担持量を示す図である。 FIG. 13 is a graph showing the amount of Aliquat 336 carried with respect to the conversion ratio of epoxy groups to 6AHA groups in one example of the present invention.
[図 14]本発明の一実施例において, 100 mg-Pd/L (1 M HC1)のパラジウム溶液を [FIG. 14] In one embodiment of the present invention, a 100 mg-Pd / L (1 M HC1) palladium solution was used.
Aliquat 336(14, 26)膜に透過させたときの破過曲線を示す図である。 It is a figure which shows the breakthrough curve at the time of making it permeate an Aliquat 336 (14, 26) membrane.
[図 15] (a)は,本発明の一実施例に係る抽出試薬を担持した吸着材料の作製経路の 一例を示す図であり, (b)は, TOPOの構造式を示す図である。 [FIG. 15] (a) is a diagram showing an example of a production route of an adsorbent material supporting an extraction reagent according to one embodiment of the present invention, and (b) is a diagram showing a structural formula of TOPO.
[図 16]本発明の一実施例における破過曲線を示す図である。 FIG. 16 is a view showing a breakthrough curve in one example of the present invention.
[図 17]本発明の吸着材料において,担持される抽出試薬と,担持される抽出試薬に 適当な官能基を有する疎水性膜とを組み合わせることによって,多種'多様な核種を 吸着させることができることを説明する図である。 [FIG. 17] In the adsorbent material of the present invention, by combining a supported extraction reagent with a hydrophobic membrane having an appropriate functional group for the supported extraction reagent, it is possible to adsorb a wide variety of nuclides. FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明に係わる抽出試薬を担持した吸着材料の実施例を,図面を参照しながら詳細 に説明する。なお,本実施形態は本発明のいくつかの例を示したものであって,本発 明は本実施例に限定されるものではなレ、。以下の実施例においては,重合性単量 体,基材等については,上述の種々のものを用いることができる。 Examples of the adsorption material supporting the extraction reagent according to the present invention will be described in detail with reference to the drawings. The present embodiment shows some examples of the present invention, and the present invention is not limited to the present embodiment. In the following examples, the above-mentioned various ones can be used as the polymerizable monomer and the base material.
実施例 1 Example 1
[0024] 多孔性中空糸膜を基材にした抽出試薬を担持した吸着材料の作製経路を図 1に示 した。また,抽出試薬を担持した吸着材料への金属イオンの吸着の仕組みを図 2に 示した。ここでは,抽出試薬としてビス(2-ェチルへキシル)ホスフェイト,金属イオンと してイットリウムイオンの組み合わせを選んだ。ポリエチレン製多孔性中空糸膜(内径 2mm,外径 3mm,平均孔径 0.4 / m,空孔率 70%)を基材膜に用いて,電子線を常温 ,窒素雰囲気下で 200 kGy照射した。照射基材をグリシジルメタタリレートの 10体積 %メ タノール溶液に 40°Cで 15分間浸漬することによって,グリシジルメタタリレートをグラフ
ト重合させた。このとき重量増加率で定義されるグラフト率は 200%であった。得られ た膜を GMAグラフト重合膜と呼ぶ。 [0024] Fig. 1 shows a production route of an adsorbent material supporting an extraction reagent using a porous hollow fiber membrane as a substrate. Figure 2 shows the mechanism of metal ion adsorption on the adsorption material supporting the extraction reagent. Here, a combination of bis (2-ethylhexyl) phosphate as the extraction reagent and yttrium ion as the metal ion was selected. Using a polyethylene porous hollow fiber membrane (inner diameter 2 mm, outer diameter 3 mm, average pore diameter 0.4 / m, porosity 70%) as a substrate film, electron beams were irradiated at 200 kGy in a nitrogen atmosphere at room temperature. By immersing the irradiated substrate in a 10% by volume glycidyl methacrylate solution in methanol at 40 ° C for 15 minutes, the glycidyl methacrylate can be graphed. Polymerized. At this time, the graft ratio defined by the weight gain was 200%. The obtained film is called GMA graft polymerized film.
[0025] その後, GMAグラフト重合膜を,ォクタデシノレアミン(C H NH )に 80°Cで所定時間, [0025] Thereafter, the GMA graft polymerized film was applied to octadecinoleamine (CHNH) at 80 ° C for a predetermined time.
18 37 2 18 37 2
浸漬した。この反応によってグラフト高分子鎖中のエポキシ基の一部をォクタデシル ァミノ(C H NH)基へ転化した。グラフト高分子鎖中のエポキシ基からォクタデシノレ Dipped. By this reaction, a part of the epoxy group in the graft polymer chain was converted to an octadecylamino (CHNH) group. Octadecinole from epoxy groups in grafted polymer chains
18 37 18 37
ァミノ基への転化率およびォクタデシルァミノ基密度を,反応に伴う膜の重量増加量 力 次式(1)及び(2)に従い算出した。得られた膜をォクタデシノレアミノ膜と呼ぶ。 転化率(%) = 100 [(W - W )/270]/[(W - W )/142] (1) The conversion to amino groups and the density of octadecylamino groups were calculated according to the following equations (1) and (2). The obtained film is called an octadecinole amino film. Conversion (%) = 100 [(W-W) / 270] / [(W-W) / 142] (1)
2 1 1 0 2 1 1 0
ォクタデシルァミノ基密度(mol/kg) = 1000 (W - W )/270/W (2) Octadecylamino group density (mol / kg) = 1000 (W-W) / 270 / W (2)
2 1 1 2 1 1
ここで, W, W ,および Wは,それぞれ基材膜, GMAグラフト重合膜,およびォクタ Here, W, W, and W are the base film, GMA graft polymerized film, and octa, respectively.
0 1 2 0 1 2
デシルァミノ膜の重量である。ここで, 142および 270はそれぞれグリシジルメタクリレー トおよびォクタデシルァミンの分子量である。反応時間と転化率およびォクタデシノレ アミノ基密度との関係を図 3に示す。反応時間の増加とともに転化率は増加し, 3時 間で一定値 64%に達した。このときォクタデシノレアミノ基密度は 3.0 mol/kgと算出され た。 This is the weight of the decylamino film. Where 142 and 270 are the molecular weights of glycidyl methacrylate and octadecylamine, respectively. Fig. 3 shows the relationship between the reaction time, the conversion, and the density of amino groups. The conversion increased with increasing reaction time, reaching a constant value of 64% in 3 hours. At this time, the density of octadecinole amino groups was calculated to be 3.0 mol / kg.
[0026] 抽出試薬にはビス(2-ェチルへキシル)ホスフェイト(以後, HDEHPと呼ぶ)を用いた 。ォクタデシノレアミノ膜への抽出試薬の担持は,さまざまなォクタデシノレアミノ基密度 を有するォクタデシルァミノ膜を, HDEHPの 5体積%エタノール溶液中に,室温で 2時 間浸漬することによりおこなった。浸漬後 60°Cで 2時間乾燥した。抽出試薬担持量を 次式 (3)に従い算出した。得られた膜を抽出試薬担持膜とよぶ。 [0026] As an extraction reagent, bis (2-ethylhexyl) phosphate (hereinafter referred to as HDEHP) was used. To support the extraction reagent on the octadecinoleamino membrane, immerse the octadecylamino film with various octadecinoleamino group densities in a 5% by volume ethanol solution of HDEHP at room temperature for 2 hours. It was done by doing. After immersion, it was dried at 60 ° C for 2 hours. The amount of the extraction reagent carried was calculated according to the following equation (3). The obtained membrane is called an extraction reagent-carrying membrane.
抽出試薬担持量 [mol/kg] = 1000 (W - W )/322/W (3) Extraction reagent loading [mol / kg] = 1000 (W-W) / 322 / W (3)
3 2 1 3 2 1
ここで, Wは抽出試薬担持膜の重量である。また, 322は HDEHPの分子量である。さ Here, W is the weight of the extraction reagent-carrying membrane. 322 is the molecular weight of HDEHP. Sa
3 Three
まざまなォクタデシノレアミノ基密度を有するォクタデシノレアミノ膜への HDEHPの担持 量を図 4に示した。抽出試薬担持量は,ォクタデシルァミノ基密度の増加に伴って増 加し,ォクタデシルァミノ基密度力 ¾.8 mol/kgのときに 2.1 mol/kgに達した。これは, ォクタデシルァミノ基密度が増大すると,アミノ基同士の荷電反発によってグラフト高 分子鎖が伸長したためである。 Figure 4 shows the amount of HDEHP supported on octadecinoleamino membranes with various octadecinoleamino group densities. The amount of the extraction reagent carried increased with an increase in the density of the octadecylamino group, and reached 2.1 mol / kg when the density of the octadecylamino group was ¾0.8 mol / kg. This is because when the density of octadecylamino groups increases, the grafted high molecular chain elongates due to charge repulsion between amino groups.
[0027] GMAグラフト重合膜,ォクタデシルァミノ膜,および抽出試薬担持膜の膜厚方向断面
の走査電子顕微鏡写真を図 5に示した。ォクタデシルァミノ基の導入および HDEHP の担持後も,膜の多孔構造が維持されていることが観察された。 [0027] Cross-section in the thickness direction of GMA graft polymerized membrane, octadecylamino membrane, and membrane supporting extraction reagent The scanning electron micrograph of the sample is shown in FIG. It was observed that the porous structure of the membrane was maintained after the introduction of the octadecylamino group and the loading of HDEHP.
[0028] 多孔構造をもつ材料に抽出試薬を担持した場合には,金属イオンを含む溶液を材 料中に透過させることが金属イオンの吸着速度を高めるために有効である。そこで, 図 6に示したように,シリンジポンプに,抽出試薬担持膜を取り付けて,膜の内面から 外面に金属イオンを含む溶液を透過させた。ここでは,抽出試薬 HDEHPによって選 択的に吸着される金属イオンとしてイットリムイオンを選び,本発明によって作製され た抽出試薬を担持した吸着材料が金属イオンを効率よく捕捉することを実証した。 [0028] When an extraction reagent is carried on a material having a porous structure, it is effective to allow a solution containing metal ions to pass through the material in order to increase the metal ion adsorption rate. Therefore, as shown in Fig. 6, an extraction reagent-carrying membrane was attached to the syringe pump, and a solution containing metal ions was permeated from the inner surface to the outer surface of the membrane. Here, we selected yttrium ions as the metal ions selectively adsorbed by the extraction reagent HDEHP, and demonstrated that the adsorbent material supporting the extraction reagent produced by the present invention efficiently captures metal ions.
[0029] 0.01M硝酸に溶かして調製した 50 mg-Y/Lのイットリウム溶液を, HDEHP担持量 1.4 mol/kgを有する抽出試薬担持膜の内面に供給し,一定流量で外面まで透過させた。 流量は 30から 120 mL/hの範囲で変化させた。外面からの流出液を連続的に採取し て,流出液中のイットリウムを定量した。供給液中のイットリウム濃度と流出液中のそ れが一致するまで液の透過を続けた。この実験により得られた,流出液量と流出液中 のイットリウム濃度との関係,すなわち破過曲線を図 7に示した。破過曲線の横軸は 流出液量を膜(中空部を除く)体積で割った値,縦軸は流出液中のイットリウム濃度を 供給液中のそれで割った値である。破過曲線は,イットリウム溶液の流量に依らず重 なった。これは,イットリウムイオンが,膜の孔中からグラフト高分子鎖に担持された抽 出試薬まで瞬時に移動して吸着されるということを示している。このことは産業での分 離精製操作にぉレ、て有利である。 [0029] A 50 mg-Y / L yttrium solution prepared by dissolving in 0.01 M nitric acid was supplied to the inner surface of an extraction reagent-supporting membrane having a HDEHP-supporting amount of 1.4 mol / kg, and permeated to the outer surface at a constant flow rate. The flow rates varied from 30 to 120 mL / h. The effluent from the outer surface was continuously sampled and the amount of yttrium in the effluent was determined. The permeation of the liquid was continued until the yttrium concentration in the feed and the effluent corresponded. Figure 7 shows the relationship between the amount of effluent and the yttrium concentration in the effluent, that is, the breakthrough curve obtained from this experiment. The horizontal axis of the breakthrough curve is the value obtained by dividing the effluent volume by the volume of the membrane (excluding the hollow part), and the vertical axis is the value obtained by dividing the yttrium concentration in the effluent by that in the feed solution. The breakthrough curves overlapped regardless of the flow rate of the yttrium solution. This indicates that yttrium ions move instantaneously from the pores of the membrane to the extraction reagent supported on the graft polymer chain and are adsorbed. This is very advantageous for industrial separation and purification operations.
[0030] 破過曲線から,供給液中のイットリウム濃度に対する抽出試薬担持膜のイットリウム平 衡吸着容量を算出した。平衡吸着容量 Qは,次項の式 (4)により算出した。ここで, C , Cおよび Vはそれぞれ供給液の濃度,流出液の濃度および流出液体積である。ィ [0030] From the breakthrough curve, the yttrium equilibrium adsorption capacity of the extraction reagent-carrying membrane with respect to the yttrium concentration in the feed solution was calculated. The equilibrium adsorption capacity Q was calculated by the following equation (4). Where C, C, and V are the concentration of the feed, the concentration of the effluent, and the volume of the effluent, respectively. I
0 0
ットリウム平衡吸着容量は 0.38mol/kgであった。 3価の陽イオンであるイットリウムィォ ンと抽出試薬 HDEHPと力 理想的には 1 :3のモル比で結合する。したがって, The thorium equilibrium adsorption capacity was 0.38 mol / kg. Yttrium ion, a trivalent cation, and an extraction reagent, HDEHP, combine with a force ideally in a molar ratio of 1: 3. Therefore,
HDEHP担持量が 1.4 mol/kgに対してイットリウムの吸着量が 0.38 mol/kgであったこと から,担持された HDEHPの 82%がイットリウムの吸着に寄与していることがわかった。さ らに,抽出試薬担持膜に吸着したイットリウムは, 7M硝酸を膜に透過させることによつ てすベて溶出された。
[0031] [数 1]
実施例 2 The amount of adsorbed yttrium was 0.38 mol / kg against the amount of HDEHP supported of 1.4 mol / kg, indicating that 82% of the supported HDEHP contributed to the adsorption of yttrium. Furthermore, yttrium adsorbed on the extraction reagent-carrying membrane was completely eluted by permeating 7M nitric acid through the membrane. [0031] [Number 1] Example 2
[0032] 抽出試薬担持機能を有する官能基の一つとしてアルキル鎖で代表される疎水性基 力 Sある。実施例 1では,ォクタデシルァミノ基を有するグラフト高分子鎖に抽出試薬を 担持した。実施例 2では,ドデシルァミノ基を有するグラフト高分子鎖に抽出試薬を担 持して,より高い金属イオン吸着容量を示す材料が作製できたことを示す。 [0032] One of the functional groups having the function of supporting the extraction reagent is a hydrophobic group S represented by an alkyl chain. In Example 1, an extraction reagent was supported on a graft polymer chain having an octadecylamino group. Example 2 shows that a material exhibiting a higher metal ion adsorption capacity was produced by supporting an extraction reagent on a graft polymer chain having a dodecylamino group.
[0033] GMAグラフト重合膜を,ドデシノレアミンに 80°Cで 5分間,浸漬した。この反応によって グラフト高分子鎖中のエポキシ基の 30モル%をドデシルァミノ基へ転化した。このとき ドデシルァミノ基密度は 1.3mol/kgであった。得られた膜をドデシルァミノ膜と呼ぶ。 [0033] The GMA graft polymer film was immersed in dodecinoleamine at 80 ° C for 5 minutes. By this reaction, 30 mol% of the epoxy groups in the graft polymer chain were converted to dodecylamino groups. At this time, the dodecylamino group density was 1.3 mol / kg. The obtained film is called a dodecylamino film.
[0034] 抽出試薬には HDEHPを用いた。ドデシルァミノ膜への抽出試薬の担持は,実施例 1 と同様にしておこなった。 HDEHP担持量は 1.6 mol/kgであった。得られた膜を抽出試 薬担持膜と呼ぶ。この膜の内面から,実施例 1と同一の 50 mg-イットリウム/ Lのイツトリ ゥム溶液を供給し,膜の外面まで透過させた。流量は 120 mL/hとした。この実験によ り得られた破過曲線を図 8に示した。破過曲線から,供給液中のイットリウム濃度に対 する抽出試薬担持膜のイットリウム平衡吸着容量は 0.57 mol/kgと算出された。 3価の 陽イオンであるイットリウムイオンと抽出試薬 HDEHPとが,理想的には 1:3のモル比で 結合する。したがって, HDEHP担持量力 Sl.6 mol/kgに対してイットリウムの吸着量が 0.57 mol/kgであったことから,担持された HDEHPがすべてイットリウムの吸着に寄与 していることがわかった。 [0034] HDEHP was used as an extraction reagent. The loading of the extraction reagent on the dodecylamino membrane was carried out in the same manner as in Example 1. The HDEHP loading was 1.6 mol / kg. The obtained membrane is called an extraction reagent-carrying membrane. The same 50 mg-yttrium / L yttrium solution as in Example 1 was supplied from the inner surface of this film and allowed to permeate to the outer surface of the film. The flow rate was 120 mL / h. Figure 8 shows the breakthrough curve obtained from this experiment. From the breakthrough curve, the equilibrium adsorption capacity of the extraction reagent-carrying membrane with respect to the yttrium concentration in the feed solution was calculated to be 0.57 mol / kg. The yttrium ion, which is a trivalent cation, and the extraction reagent HDEHP bind ideally in a molar ratio of 1: 3. Therefore, the amount of adsorbed yttrium was 0.57 mol / kg with respect to the HDEHP carrying capacity Sl.6 mol / kg, indicating that all the supported HDEHP contributed to the adsorption of yttrium.
実施例 3 Example 3
[0035] 上述の実施例 1においては,グリシジルメタタリレート(GMA)をグラフト重合により付 与したポリエチレン製多孔性中空糸膜に,ォクタデシノレアミノ基を導入して疎水性膜 を作製し,酸性の抽出試薬 HDEHPを担持したが,本実施例 3においては,オタタデ シノレアミノ基の代わりに 6-ァミノへキサン酸 (6AHA)基を官能基として導入し,塩基性 の抽出試薬 Aliquat 336 (正式名: tri-n-octylmethylammonium chloride)を担持した例
について説明する。なお,本実施例では, Aliquat 336に選択的に吸着する白金族元 素(白金,パラジウム,ルテニウム,ロジウムなど)のうち,吸着モデル金属イオンとして [PtCl广を選び,作製した Aliquat336担持膜の吸着性能を評価した。 [0035] In Example 1 described above, an octadecinoleamino group was introduced into a polyethylene porous hollow fiber membrane to which glycidyl methacrylate (GMA) was applied by graft polymerization to form a hydrophobic membrane. In this Example 3, a 6-aminohexanoic acid (6AHA) group was introduced as a functional group instead of the otatacinoleamino group, and the basic extraction reagent Aliquat 336 (formally Name: An example carrying tri-n-octylmethylammonium chloride) Will be described. In this example, among the platinum group elements (platinum, palladium, ruthenium, rhodium, etc.) that selectively adsorb to Aliquat 336, [PtCl broad was selected as the adsorption model metal ion, and the adsorption of the produced Aliquat 336-supported membrane was performed. The performance was evaluated.
6 6
[0036] (6AHA膜の作製) (Preparation of 6AHA film)
6AHA基を官能基として導入したポリエチレン製多孔性中空糸膜作製経路を図 9 (a) に示す。 NaOH溶液 (16%)によって pH 13となるよう調整した 0.8 Mの 6_ァミノへキサン 酸 (6AHA)水溶液とジォキサンとを等量混合して 80°Cに保持し,重合溶媒としてメタノ ールを用いた GMAグラフト重合膜 (グラフト率 200%)を浸漬した。転化率および導入さ れた 6AHA基の密度は,次式(5)から算出した。得られた疎水性膜を 6AHA膜とよぶ。 FIG. 9 (a) shows a route for preparing a polyethylene porous hollow fiber membrane into which a 6AHA group has been introduced as a functional group. An equal volume of a 0.8 M aqueous solution of 6-aminohexanoic acid (6AHA) adjusted to pH 13 with a NaOH solution (16%) and dioxane are mixed and maintained at 80 ° C, and methanol is used as the polymerization solvent. The used GMA graft polymer film (graft ratio 200%) was immersed. The conversion and the density of the introduced 6AHA groups were calculated from the following equation (5). The obtained hydrophobic membrane is called a 6AHA membrane.
転化率 [%]= [ (W - W ) / 131 ] / [ (W _ W )/ 142 ] X 100 (5) Conversion [%] = [(W-W) / 131] / [(W _ W) / 142] X 100 (5)
2 1 1 0 2 1 1 0
ここで, W, Wおよび Wは,それぞれ基材膜, GMAグラフト重合膜,および 6AHA膜 Where W, W and W are the base film, GMA graft polymerized film, and 6AHA film, respectively.
0 1 2 0 1 2
の重量である。 Is the weight.
[0037] (Aliquat336の担持) [0037] (Loading of Aliquat 336)
次に,エタノールに対する純水の体積割合をエタノール/水 =2/1となるように調整した 混合液に,図 9 (b)に構造が示された Aliquat 336を溶解し, Aliquat 336濃度を 10 wt% とした担持溶液に, 6AHA膜を常温で 2時間浸漬させた。浸漬後 40°Cで乾燥し,重量 を測定した。 Aliquat 336担持量は,次式(6)によって算出される。 Next, Aliquat 336 having the structure shown in Fig. 9 (b) was dissolved in a mixed solution in which the volume ratio of pure water to ethanol was adjusted to ethanol / water = 2/1. The 6AHA membrane was immersed in a supporting solution of wt% at room temperature for 2 hours. After immersion, it was dried at 40 ° C and weighed. The amount of Aliquat 336 carried is calculated by the following equation (6).
Aliquat336担持量 [ mol/ kg ] = 1000 (W _W )/ Mr /W (6) Aliquat 336 carrying amount [mol / kg] = 1000 (W _W) / Mr / W (6)
3 2 1 3 2 1
ここで, Wは, Aliquat 336担持膜の重量, Mrは Aliquat 336の分子量である。得られ Here, W is the weight of the Aliquat 336 supported membrane, and Mr is the molecular weight of Aliquat 336. Obtained
3 Three
た膜を Aliquat 336担持膜とよぶ。 The resulting membrane is called Aliquat 336-supported membrane.
[0038] (白金の平衡吸着容量の算出) (Calculation of equilibrium adsorption capacity of platinum)
塩酸で pH 4となるよう調整した 100 mg-Pt/L溶液を,流量 120 mL/minで Aliquat 336 担持膜に透過させ,一定時間ごとに透過液の濃度を ICP-AESで測定した。平衡吸着 容量 Qは,上述の式 (4)により算出した。 A 100 mg-Pt / L solution adjusted to pH 4 with hydrochloric acid was permeated through the Aliquat 336-supported membrane at a flow rate of 120 mL / min, and the concentration of the permeate was measured at regular intervals by ICP-AES. The equilibrium adsorption capacity Q was calculated by the above equation (4).
[0039] 以下,得られた実験結果について詳細に説明する。 Hereinafter, the obtained experimental results will be described in detail.
[0040] (Aliquat336担持膜による白金の吸着) [0040] (Platinum adsorption by Aliquat 336-supported membrane)
pH 4の [PtCl ] 溶液 (100 mg_Pt/L)を Aliquat 336担持膜に透過させたときの破過曲 Breakthrough when pH 4 [PtCl] solution (100 mg_Pt / L) is permeated through Aliquat 336 supported membrane
6 6
線を図 10に示す。 白金の吸着量は, 0.37 mo卜 Pt/kgであり,吸着材料としては十分
な十生肯であった。 The lines are shown in FIG. The adsorption amount of platinum is 0.37 mol Pt / kg, which is sufficient as an adsorption material. It was a good life.
[0041] 以上説明したとおり,本実施例 3における 6-ァミノへキサン酸 (6AHA)基を官能基とし て導入し,塩基性の抽出試薬 Aliquat 336 (正式名: tri-n-octylmethylammonium chloride)を担持した吸着材料は,良好な吸着特性を有する。 As described above, the 6-aminohexanoic acid (6AHA) group in Example 3 was introduced as a functional group, and the basic extraction reagent Aliquat 336 (official name: tri-n-octylmethylammonium chloride) was used. The supported adsorption material has good adsorption characteristics.
実施例 4 Example 4
[0042] 本実施例 4においては,実施例 3において, 6-ァミノへキサン酸 (6AHA)基を官能基 として導入した後に,残存したエポキシ基とォクタデシノレアミン(C H NH )を反応さ [0042] In Example 4, after the 6-aminohexanoic acid (6AHA) group was introduced as a functional group in Example 3, the remaining epoxy group was reacted with octadecinoleamine (CHNH).
18 37 2 せ,抽出試薬 Aliquat 336を担持させ,吸着モデル金属イオンとしてパラジウム(Pd)を 選んだ例について説明する。 The following describes an example in which extraction reagent Aliquat 336 is supported and palladium (Pd) is selected as the model metal ion for adsorption.
[0043] 本発明の本実施例に係る抽出試薬 Aliquat 336を担持した吸着材料の作製のための 反応条件を以下の表 1に示す。 [0043] Table 1 below shows reaction conditions for producing an adsorbent material supporting the extraction reagent Aliquat 336 according to this example of the present invention.
[0044] [表 1] 表 1 本実施例 4に係る Aliquat 336担持材料の作製のための反応条件 グラフト重合 [Table 1] Table 1 Reaction conditions for production of Aliquat 336 support material according to Example 4 Graft polymerization
GMA濃度(vol%) 10 GMA concentration (vol%) 10
溶媒 メタノール Solvent Methanol
反応温度 353 K Reaction temperature 353 K
6-ァミノへキサン酸基の導入 Introduction of 6-aminohexanoic acid group
6-ァミノへキサン酸濃度 6AHA/水/ジォキサン 6-Aminohexanoic acid concentration 6AHA / water / dioxane
= 5/45/50 (w/w/w) = 5/45/50 (w / w / w)
PH 13 (0.4 Mの NaOHで調整 反応温度 353 K ォクタデシルアミノ堇の導入 PH 13 (adjusted with 0.4 M NaOH) Reaction temperature 353 K Introduction of octadecylamino 堇
C18H37NH2濃度 100% C 18 H 37 NH 2 concentration 100%
反応温度 353 K Reaction temperature 353 K
Aliquat 336の担持 Aliquat 336 loading
Aliquat 336濃度(vol%) 10 Aliquat 336 concentration (vol%) 10
溶媒 エタノール/水 =2/1 (v/v)
[0045] (6AHA膜の作製) Solvent Ethanol / water = 2/1 (v / v) (Preparation of 6AHA film)
6AHA基を官能基として導入したポリエチレン製多孔性中空糸膜作製経路を図 11に 示す。 6AHA基を導入するステップについては,上述の実施例 3で説明したステップ と同様である。 FIG. 11 shows a route for preparing a porous hollow fiber membrane made of polyethylene into which 6AHA group was introduced as a functional group. The step of introducing the 6AHA group is the same as the step described in Example 3 above.
[0046] 反応時間に対する転化率の変化を図 12 (a)に示す。反応時間とともに転化率は増 加し, 10時間で平衡に達した。このとき,転化率は 50%であり, 6AHA基密度は, 2.3 mol/kgであつ 7こ。 FIG. 12 (a) shows a change in the conversion with respect to the reaction time. The conversion increased with the reaction time and reached equilibrium in 10 hours. At this time, the conversion is 50% and the density of 6AHA groups is 2.3 mol / kg.
[0047] (ォクタデシルァミン基の導入) (Introduction of octadecylamine group)
次に,さまざまな転化率の 6AHA膜を用いて, 6AHA基との反応後に残されたェポキ シ基とォクタデシルァミン(C H NH )を反応させた(図 11 (4) )。エポキシ基の C H Next, using the 6AHA membranes with various conversion rates, the epoxy group remaining after the reaction with the 6AHA group was reacted with octadecylamine (CHNH) (Fig. 11 (4)). Epoxy C H
18 37 2 18 37 18 37 2 18 37
NH基への転化率変化を図 12 (b)に示す。エポキシ基の C H NH基への転化率は, FIG. 12 (b) shows the change in the conversion to the NH group. The conversion of epoxy groups to C H NH groups is
18 37 18 37
先に導入した 6AHA基の転化率の増大にともない減少した。これは, 6AHA基がェポ キシ基と C H NH基との反応を妨害するためである。また,最終転化率は,導入され It decreased with an increase in the conversion of the 6AHA group introduced earlier. This is because the 6AHA group interferes with the reaction between the epoxy group and the CHNH group. The final conversion rate is
18 37 18 37
た 6AHA基と C H NH基を合わせると 40-50%の範囲になった。ここでは, 6AHA膜に C The combined 6AHA and C H NH groups resulted in a range of 40-50%. Here, 6AHA film has C
18 37 18 37
H NH基を導入した膜を 6AHA-C H NH膜とよぶ。 The membrane into which the HNH group has been introduced is called a 6AHA-CHNH membrane.
18 37 18 37 18 37 18 37
[0048] (6AHA-C H NH膜への Aliquat 336の担持) [0048] (Loading of Aliquat 336 on 6AHA-CH NH membrane)
18 37 18 37
エタノールおよびエタノール/水 =2/1 (体積比)を溶媒として, Aliquat336の 10%(v/v)溶 液を調製し, 6AHA-C H NH膜を浸漬させた(図 11 (5) )。エポキシ基の 6AHA基へ Using ethanol and ethanol / water = 2/1 (volume ratio) as a solvent, a 10% (v / v) solution of Aliquat 336 was prepared, and the 6AHA-CHNH film was immersed (Fig. 11 (5)). Epoxy group to 6AHA group
18 37 18 37
の転化率に対する Aliquat 336の担持量を図 13に示す。担持溶媒として,エタノール /水 =2/1の混合溶媒を用いた場合は,エタノールを用いた場合よりも多量に担持され ,最大 1.2 mol/kgとなった。エタノール/水 =2/1の混合溶媒中では,グラフト高分子鎖 は荷電反発により伸張し, Aliquat 336が接近できる空間が確保できるためである。一 方,エタノール中では,グラフト高分子鎖は伸張しないので, Aliquat 336は近づきに くぐ担持量が少ない結果となった。したがって,エタノール/水 =2/1とした担持溶媒 が好ましいことが実証された。 Aliquat 336を担持した膜を Aliquat 336(x, y)膜と呼ぶ。 ここで, Xおよび yはそれぞれ,エポキシ基から 6AHA基への転化率およびエポキシ基 からォクタデシルァミノ基への転化率を示す。 FIG. 13 shows the supported amount of Aliquat 336 with respect to the conversion of. When a mixed solvent of ethanol / water = 2/1 was used as the supported solvent, the supported amount was larger than that when ethanol was used, and the maximum was 1.2 mol / kg. This is because in a mixed solvent of ethanol / water = 2/1, the grafted polymer chains are stretched due to charge repulsion, and a space accessible to Aliquat 336 can be secured. On the other hand, in ethanol, the grafted polymer chains did not elongate, so that the amount of Aliquat 336 carried was small, and the result was a small result. Therefore, it was demonstrated that a supported solvent with ethanol / water = 2/1 is preferable. The membrane supporting Aliquat 336 is called Aliquat 336 (x, y) membrane. Here, X and y indicate the conversion from the epoxy group to the 6AHA group and the conversion from the epoxy group to the octadecylamino group, respectively.
[0049] (担持された Aliquat336によるパラジウムの吸着性能)
100 mg-Pd/L (1M HC1)のパラジウム溶液を Aliquat336 (14, 26)膜に透過させた。こ のときの破過曲線を図 14に示す。破過曲線から算出されるパラジウムの吸着容量は , 0.30 mo卜 Pd/kgであった。また,透過流量は, 60 mL/hであり,透過流束は, 1.5 m/hを保持し, Aliquat 336の漏出は確認されなかった。担持された Aliquat 336は,パ ラジウムの吸着性能を失うことなぐ C H NH基に保持されていることが示された。 (Adsorption performance of palladium by supported Aliquat 336) A 100 mg-Pd / L (1M HC1) palladium solution was permeated through Aliquat 336 (14, 26) membrane. Figure 14 shows the breakthrough curve at this time. The adsorption capacity of palladium calculated from the breakthrough curve was 0.30 mo Pd / kg. The permeation flow rate was 60 mL / h, the permeation flux was maintained at 1.5 m / h, and no leakage of Aliquat 336 was confirmed. It was shown that the supported Aliquat 336 was retained on the CHNH group without loss of palladium adsorption performance.
18 37 18 37
[0050] 以上説明したとおり,本実施例に係る本発明の吸着材料は,抽出試薬 Aliquat 336を 担持させ,良好な吸着特性を有することがわかる。 [0050] As described above, it can be seen that the adsorption material of the present invention according to the present example supports the extraction reagent Aliquat 336 and has good adsorption characteristics.
実施例 5 Example 5
[0051] 本実施例 5においては,グリシジルメタタリレート(GMA)をグラフト重合により付与した ポリエチレン製多孔性中空糸膜に, C H S基を導入して疎水性膜を作製し, 中性抽 In Example 5, a hydrophobic membrane was produced by introducing a CHS group into a polyethylene hollow hollow fiber membrane to which glycidyl methacrylate (GMA) was applied by graft polymerization, and a neutral extraction was performed.
18 37 18 37
出試薬 TOPO (Tri-n-octylphosphine oxide)を担持した例について説明する。なお, 本実施例では吸着モデル金属イオンとして Bi(m)を選んだ。 An example in which the reagent TOPO (Tri-n-octylphosphine oxide) is carried will be described. In this example, Bi (m) was selected as the adsorption model metal ion.
[0052] (diol-C H S膜の作製) [0052] (Preparation of diol-CHS film)
18 37 18 37
本実施例における did-C H S膜の作製経路を図 15 (a)に示す。重合溶媒にメタノ FIG. 15A shows a manufacturing route of the did-CHS film in this example. Methano in polymerization solvent
18 37 18 37
ールを用いて作製したグラフト率 180-200%の GMAグラフト重合膜を, 0.5 M H SOに Of GMA graft polymer film with a graft ratio of 180-200%
2 4 twenty four
60°Cで浸漬させ, diol基を導入後, C H SHに 80°Cで浸漬させ, diol-C H S膜を作 After immersion at 60 ° C and introduction of diol groups, immersion in CHSH at 80 ° C to form a diol-CHS film.
18 37 18 37 製した。その後, 60°Cで一晩乾燥した。前後の膜重量の増加量を測定し,次式(7)に よりエポキシ基から各官能基への転化率を算出した。 18 37 18 37 Then, it was dried at 60 ° C overnight. The amount of increase in the membrane weight before and after was measured, and the conversion from the epoxy group to each functional group was calculated by the following equation (7).
転化率 [%] = [ (W - W ) / Mr ] / [ (W - W )/ 142 ] X 100 (7) Conversion [%] = [(W-W) / Mr] / [(W-W) / 142] X 100 (7)
2 1 1 0 2 1 1 0
ここで, W, W , W ,および Mrは,それぞれ基材膜の重量, GMAグラフト重合膜の重 Here, W, W, W, and Mr are the weight of the base film and the weight of the GMA graft polymerized film, respectively.
0 1 2 0 1 2
量,官能基導入後の膜重量,および官能基の分子量である。 Amount, film weight after functional group introduction, and molecular weight of functional group.
[0053] (抽出試薬担持膜の作製) (Preparation of membrane supporting extraction reagent)
diol-C H S膜を TOPO(100%)溶液に 60°Cで 12時間浸漬した。 TOPOの構造式を図 1 The diol-CHS film was immersed in a TOPO (100%) solution at 60 ° C for 12 hours. Figure 1 shows the structural formula of TOPO
18 37 18 37
5 (b)に示す。浸漬後の膜を純水で 20min X 3回洗浄し, 60°Cで一晩乾燥した。前後 の膜重量の増加量から,抽出試薬の担持量を算出した。得られた膜を TOPO担持膜 とよぶ。 This is shown in Fig. 5 (b). The membrane after immersion was washed with pure water three times for 20 min and dried at 60 ° C overnight. Based on the increase in membrane weight before and after, the amount of extraction reagent carried was calculated. The obtained film is called TOPO-supported film.
[0054] (モデル金属イオン Bi(m)の吸着) (Adsorption of Model Metal Ion Bi (m))
1M HC1で溶解して lmmoト Bi/Lとなるように調整した Bi(m)溶液を,一定流量 (10
mL/h)で TOPO担持膜に膜の内面から外面に透過させた。また,ブランクとして, ΤΟΡΟを担持していなレ、 dioK: H S膜にも同様に Bi(m)溶液を透過させた。そのとき The Bi (m) solution, which was dissolved in 1M HC1 and adjusted to lmmo Bi / L, was supplied at a constant flow rate (10 (mL / h) through the TOPO-supported membrane from the inner surface to the outer surface of the membrane. As a blank, the Bi (m) solution was also permeated through the dioK: HS membrane, which did not support ΤΟΡΟ. then
18 37 18 37
の,破過曲線を図 16に示す。 TOPO担持膜の Bi(m)吸着容量は, 0.52 mol/kgであつ た。これは,従来のビーズ状樹脂の吸着容量 (0.33〜0.61 mol/kg-樹脂)と同程度の 値である。また, T〇P〇を担持していなレ、 dioト C H S膜には Bi(m)は吸着しなかった Figure 16 shows the breakthrough curve. The Bi (m) adsorption capacity of the TOPO-supported membrane was 0.52 mol / kg. This value is about the same as the adsorption capacity of conventional bead-shaped resin (0.33 to 0.61 mol / kg-resin). Bi (m) was not adsorbed on the dio-C H S membrane without T〇P〇.
18 37 18 37
ので, Bi(m)は diol基及び C H S基にではなぐ T〇POに吸着していることが示された Therefore, it was shown that Bi (m) was adsorbed on T〇PO, not on the diol and CHS groups.
18 37 18 37
[0055] 以上説明したとおり,本実施例に係る本発明の吸着材料は,抽出試薬 ΤΟΡ〇を担持 させ,良好な吸着特性を有することがわかる。 [0055] As described above, it can be seen that the adsorption material of the present invention according to the present example supports the extraction reagent , and has good adsorption characteristics.
実施例 6 Example 6
[0056] 以上実施例 1乃至 5で説明したとおり,グラフト高分子鎖に抽出試薬担持機能を持つ 種々の官能基を導入した疎水性膜である材料に,様々な抽出試薬を担持させること により,多種 ·多様な核種 (金属イオン)を吸着させることができる。つまり,担持される 抽出試薬と,担持される抽出試薬に適当な官能基を有する疎水性膜とを組み合わせ ることによって,多種 ·多様な核種を吸着させることができる(図 17)。 [0056] As described in Examples 1 to 5 above, by supporting various extraction reagents on a material that is a hydrophobic membrane in which various functional groups having an extraction reagent support function are introduced into the graft polymer chain, Various · Various nuclides (metal ions) can be adsorbed. In other words, by combining a supported extraction reagent with a hydrophobic membrane having a functional group suitable for the supported extraction reagent, it is possible to adsorb a wide variety of nuclides (Fig. 17).
[0057] 担持される抽出試薬としては,上述の実施例 1乃至 5に記載したものの他, ΤΒΡ ( Tri-n-butylphosphate) ,ォクチル(フヱニル) _Ν, Ν-ジイソプチルカルバモイルメチ ルホスフィンォキシド,ジアミルァミルホスフェイト,ジメチルダリオキシム,ビス(2, 4, 4-トリメチルペンチル)ホスフィン酸を用いてもょレ、。 [0057] As the extraction reagent to be supported, in addition to those described in Examples 1 to 5 described above, ΤΒΡ (Tri-n-butylphosphate), octyl (phenyl) _Ν, Ν-diisobutylcarbamoylmethylphosphinoxide , Diamylamyl phosphate, dimethyldalioxime, bis (2,4,4-trimethylpentyl) phosphinic acid.
産業上の利用可能性 Industrial applicability
[0058] 以上のように,本発明によって作製された抽出試薬を担持した吸着材料は金属ィォ ンを効率よく吸着することが示された。本発明の抽出試薬を担持した吸着材料は,さ まざまな液体力 高効率で金属イオンやその錯体を分離精製することが可能なので ,分析や水処理技術で多用される吸着操作に広範に利用できる。
[0058] As described above, it was shown that the adsorption material supporting the extraction reagent produced by the present invention adsorbs metal ions efficiently. Since the adsorption material supporting the extraction reagent of the present invention can separate and purify metal ions and their complexes with various liquid forces and high efficiency, they can be widely used in adsorption operations frequently used in analysis and water treatment technology. it can.