JP4660793B2 - Adsorbing material carrying extraction reagent and method for producing the same - Google Patents

Adsorbing material carrying extraction reagent and method for producing the same Download PDF

Info

Publication number
JP4660793B2
JP4660793B2 JP2005123948A JP2005123948A JP4660793B2 JP 4660793 B2 JP4660793 B2 JP 4660793B2 JP 2005123948 A JP2005123948 A JP 2005123948A JP 2005123948 A JP2005123948 A JP 2005123948A JP 4660793 B2 JP4660793 B2 JP 4660793B2
Authority
JP
Japan
Prior art keywords
extraction reagent
group
carrying
membrane
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005123948A
Other languages
Japanese (ja)
Other versions
JP2005331510A (en
Inventor
恭一 斎藤
志保 浅井
高信 須郷
Original Assignee
国立大学法人 千葉大学
株式会社 環境浄化研究所
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学, 株式会社 環境浄化研究所, 独立行政法人 日本原子力研究開発機構 filed Critical 国立大学法人 千葉大学
Priority to JP2005123948A priority Critical patent/JP4660793B2/en
Priority to PCT/JP2005/007639 priority patent/WO2005102512A1/en
Publication of JP2005331510A publication Critical patent/JP2005331510A/en
Application granted granted Critical
Publication of JP4660793B2 publication Critical patent/JP4660793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/26Cation exchangers for chromatographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/20Anion exchangers for chromatographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/62In a cartridge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は,金属イオンを分離精製するために抽出試薬を担持した吸着材料,ならびにその製造方法に関するものである。 The present invention relates to an adsorption material carrying an extraction reagent for separating and purifying metal ions, and a method for producing the same.

環境試料や放射性廃棄物中に含まれる核分裂生成物,放射化生成物,およびアクチノイド元素の定量のためには,測定の前処理として,金属イオンの分離精製をおこなう必要がある。これまで,抽出試薬を用いる溶媒抽出法(例えば,非特許文献1参照)やイオン交換樹脂(例えば,非特許文献2参照)を用いるイオン交換法による分離精製がおこなわれてきた。しかしながら,溶媒抽出法では有害な有機廃液が多量に発生する,イオン交換法では特定の金属イオンに対する吸着選択性が低いという問題点がある。
赤岩英夫「抽出分離分析法」(第4版),講談社,1976年 三菱化学株式会社イオン交換樹脂部「イオン交換樹脂・合成吸着剤マニュアル 応用編」(第8版),三菱化学株式会社,1995年
In order to quantify fission products, activation products, and actinide elements contained in environmental samples and radioactive waste, it is necessary to separate and purify metal ions as a pretreatment for measurement. Until now, separation and purification by an ion exchange method using a solvent extraction method (for example, see Non-Patent Document 1) using an extraction reagent or an ion exchange resin (for example, see Non-Patent Document 2) has been performed. However, the solvent extraction method has a problem that a large amount of harmful organic waste liquid is generated, and the ion exchange method has a low adsorption selectivity for specific metal ions.
Hideo Akaiwa “Extraction Separation Analysis” (4th edition), Kodansha, 1976 Mitsubishi Chemical Corporation Ion Exchange Resin Department "Ion Exchange Resin / Synthetic Adsorbent Manual Application" (8th edition), Mitsubishi Chemical Corporation, 1995

抽出試薬を固体,主に高分子基材に担持した抽出クロマトグラフィーレジンと呼ばれる固相抽出材料が開発され,それを用いた金属イオンの分離精製法が溶媒抽出法やイオン交換法の代替方法として注目されている。抽出クロマトグラフィーレジンの形状はビーズであり,金属イオンを分離精製するときにはビーズをカラムに充填する。抽出試薬の例として,オクチル(フェニル)-N,N-ジイソブチルカルバモイルメチルホスフィンオキシド,ジアミルアミルホスフェイト,トリ-n-ブチルホスフェイト,ジメチルグリオキシム,ビス(2-エチルヘキシル)ホスフェイト,ビス(2, 4, 4-トリメチルペンチル)ホスフィン酸,トリ−n―オクチルホスフィンオキシドが挙げられる。 A solid-phase extraction material called extraction chromatography resin, in which the extraction reagent is supported on a solid, mainly polymer substrate, has been developed, and separation and purification of metal ions using it as an alternative to solvent extraction and ion exchange methods Attention has been paid. The shape of the extraction chromatography resin is beads, and the beads are packed into a column when separating and purifying metal ions. Examples of extraction reagents include octyl (phenyl) -N, N-diisobutylcarbamoylmethylphosphine oxide, diamylamyl phosphate, tri-n-butyl phosphate, dimethylglyoxime, bis (2-ethylhexyl) phosphate, bis (2 , 4, 4-trimethylpentyl) phosphinic acid, tri-n-octylphosphine oxide.

抽出クロマトグラフィーレジンの高分子基材が架橋構造をもつことから抽出試薬の担持量が少ない,あるいは担持した抽出試薬の一部しか金属イオンの吸着に寄与しないという欠点がある。さらに,レジン内部への金属イオンの拡散物質移動に時間がかかるという問題点がある。 Since the polymer substrate of the extraction chromatography resin has a cross-linked structure, there is a drawback that the amount of the extraction reagent supported is small or only a part of the supported extraction reagent contributes to the adsorption of metal ions. Furthermore, there is a problem that it takes time for the diffusion of metal ions into the resin.

上記の従来技術に鑑み,本発明は,多孔性中空糸膜,多孔性フィルム,繊維,不織布等の基材表面にグラフト(接ぎ木)高分子鎖を高密度に付与し,そこへ抽出試薬を担持することによって,金属イオンの分離精製を高容量かつ高速でおこなえる吸着材料を提供することを目的にする。グラフト高分子鎖に抽出試薬を担持することによって金属イオンの分離精製性能の向上を図った例は知られていない。 In view of the above prior art, the present invention imparts a graft (graft) polymer chain at a high density to the surface of a substrate such as a porous hollow fiber membrane, porous film, fiber, and nonwoven fabric, and carries an extraction reagent there. Thus, an object of the present invention is to provide an adsorbing material that can perform separation and purification of metal ions at a high capacity and at a high speed. There is no known example in which the extraction reagent is supported on the graft polymer chain to improve the separation and purification performance of metal ions.

本発明者らは,基材に付与したグラフト高分子鎖にプラスあるいはマイナスに解離しうる官能基を導入すると,グラフト高分子鎖が電荷の反発によって伸長することを報告した。また,その伸長によってグラフト高分子鎖間に生じた空間に,グラフト高分子鎖の電荷とは反対符号の電荷をもつタンパク質が多層で,例えば40層にも,積み重なって吸着することを見出した。言い換えると,基材に付与したグラフト高分子鎖が分子やイオンを担持するのに有用な構造を与えるという知見を得た。そこで,抽出試薬の担持にこの構造を適用することを思いついた。 The present inventors have reported that when a functional group capable of being dissociated positively or negatively is introduced into the graft polymer chain imparted to the base material, the graft polymer chain is extended by repulsion of electric charges. In addition, we found that proteins with charges opposite to those of graft polymer chains are stacked in multiple spaces, for example, 40 layers, in the space created between the graft polymer chains due to the elongation. In other words, the inventors have found that the graft polymer chain imparted to the substrate gives a useful structure for supporting molecules and ions. Therefore, I came up with the idea of applying this structure to support the extraction reagent.

本発明者らは鋭意研究を重ねた結果,基材に付与したグラフト高分子鎖に抽出試薬担持機能を有する官能基を導入し,そこへ抽出試薬を担持することにより,金属イオンを効率よく分離精製することが可能であることを見出し,本発明を完成させた。本発明による抽出試薬を担持した吸着材料は,グラフト高分子鎖が非架橋高分子構造であるため金属イオンを吸着する抽出試薬を高密度に担持することができる,および金属イオンの拡散物質移動抵抗を最小化できるという特徴を有する。 As a result of intensive research, the present inventors have introduced a functional group having an extraction reagent supporting function into the graft polymer chain imparted to the base material, and by supporting the extraction reagent therein, metal ions can be separated efficiently. The present invention was completed by finding that it can be purified. The adsorbing material carrying the extraction reagent according to the present invention can carry the extraction reagent adsorbing metal ions at a high density because the graft polymer chain has a non-crosslinked polymer structure, and the diffusion transfer resistance of metal ions It can be minimized.

すなわち,本発明は,基材に付与したグラフト高分子鎖に抽出試薬担持機能をもつ官能基を導入した材料であって,前記グラフト高分子鎖が重合性単量体をグラフト重合することにより形成された,抽出試薬を担持した吸着材料に関する。 That is, the present invention is a material in which a functional group having an extraction reagent supporting function is introduced into a graft polymer chain imparted to a substrate, and the graft polymer chain is formed by graft polymerization of a polymerizable monomer. The present invention relates to an adsorption material carrying an extraction reagent.

本明細書中で使用する「抽出試薬担持機能を有する官能基」とは,それ自身で抽出試薬を担持する機能を有する官能基と,適当な試薬との反応によってこうした官能基に変換しうる官能基をいう。本発明において利用できる抽出試薬担持機能を有する官能基としては,疎水性基,カチオン交換基,アニオン交換基,又はそれらを組み合わせた官能基を用いることができる。カチオン交換基として,例えば,スルホン基,リン酸基,カルボキシル基が挙げられる。一方,アニオン交換基として,例えば,1級アミノ基,2級アミノ基,3級アミノ基,4級アミノ基,4級アンモニウム塩基が挙げられる。 As used herein, “functional group having an extraction reagent carrying function” means a functional group having a function of carrying an extraction reagent by itself and a functional group that can be converted into such a functional group by reaction with an appropriate reagent. Refers to the group. As the functional group having an extraction reagent carrying function that can be used in the present invention, a hydrophobic group, a cation exchange group, an anion exchange group, or a functional group combining them can be used. Examples of the cation exchange group include a sulfone group, a phosphate group, and a carboxyl group. On the other hand, examples of the anion exchange group include a primary amino group, a secondary amino group, a tertiary amino group, a quaternary amino group, and a quaternary ammonium base.

抽出試薬のなかでも,その一部に疎水性基を含む抽出試薬を担持するには,グラフト高分子鎖が,アルキル基,アルキルアミノ基,エポキシ基,フェニル基,又はそれらを組み合わせた官能基を有することが有効である。アルキルアミノ基の例として,オクタデシルアミノ基,ドデシルアミノ基,オクチルアミノ基,ブチルアミノ基,オクタデカンチオール基が挙げられる。 In order to carry an extraction reagent containing a hydrophobic group as a part of the extraction reagent, the graft polymer chain has an alkyl group, an alkylamino group, an epoxy group, a phenyl group, or a functional group that combines them. It is effective to have. Examples of the alkylamino group include octadecylamino group, dodecylamino group, octylamino group, butylamino group, and octadecanethiol group.

抽出試薬担持機能を有する官能基に変換しうる官能基には,例えば,エポキシ基がある。エポキシ基は反応性が高いことから,適当な試薬との反応により抽出試薬担持機能を有する官能基に変換することができる。例えば,エポキシ基と,オクタデシルアミン,ドデシルアミン等の1種又はそれ以上とを反応させることにより,エポキシ基に抽出試薬担持機能を有する官能基をグラフト高分子鎖に導入することができる。 An example of a functional group that can be converted into a functional group having an extraction reagent carrying function is an epoxy group. Since the epoxy group has high reactivity, it can be converted into a functional group having an extraction reagent carrying function by reaction with an appropriate reagent. For example, by reacting an epoxy group with one or more of octadecylamine, dodecylamine, etc., a functional group having an extraction reagent supporting function can be introduced into the graft polymer chain.

本発明で用いる重合性単量体として,例えば,エポキシ基を有する重合性単量体を基材に重合することができる。エポキシ基を有する重合性単量体として特に有用なものには,グリシジルメタクリレートやグリシジルアクリレートがある。 As the polymerizable monomer used in the present invention, for example, a polymerizable monomer having an epoxy group can be polymerized on a substrate. Particularly useful as the polymerizable monomer having an epoxy group are glycidyl methacrylate and glycidyl acrylate.

また,担持する抽出試薬の種類に応じて,さまざまな重合性単量体を用いることができる。親水性基を有する重合性単量体として,例えば,2-ヒドロキシエチルメタクリレート,ビニルピロリドン,ジメチルアクリルアミド,エチレングリコールジメタクリレートがある。一方,疎水性基を有する重合性単量体として,例えば,アルキルメタクリレート,アルキルアクリレートがある。これらの重合性単量体は任意の割合で基材に共重合させることができる。本発明は,多種の重合性単量体を任意に組み合わせることが可能なグラフト重合を採用し,それにより機能を複合化できる点が特徴である。 Various polymerizable monomers can be used depending on the type of extraction reagent to be supported. Examples of the polymerizable monomer having a hydrophilic group include 2-hydroxyethyl methacrylate, vinyl pyrrolidone, dimethylacrylamide, and ethylene glycol dimethacrylate. On the other hand, examples of the polymerizable monomer having a hydrophobic group include alkyl methacrylate and alkyl acrylate. These polymerizable monomers can be copolymerized with the base material at an arbitrary ratio. The present invention is characterized in that it employs graft polymerization capable of arbitrarily combining various polymerizable monomers, thereby making it possible to combine functions.

本発明の抽出試薬を担持した吸着材料の基材には特に制限はなく,重合性単量体が結合し得るものであればいかなる材料をも使用することができる。本発明においては,例えば,ポリエチレン,ポリプロピレン等のポリオレフィン,ポリテトラフルオロエチレン,又はこれらの組み合わせ(混合体や共重合体)を使用することができる。 There is no restriction | limiting in particular in the base material of the adsorption material which carry | supported the extraction reagent of this invention, What kind of material can be used if a polymerizable monomer can couple | bond. In the present invention, for example, polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene, or a combination (mixture or copolymer) thereof can be used.

また,その形態についても特に制限はなく,例えば,既存の繊維,布帛,不織布,多孔性フィルム,多孔性中空糸膜,多孔性ロッド,又は多孔性フィルターを使用することができる。 Also, the form is not particularly limited, and for example, existing fibers, fabrics, nonwoven fabrics, porous films, porous hollow fiber membranes, porous rods, or porous filters can be used.

重合性単量体のグラフト重合法としては,例えば,反応開始剤重合法又は電離放射線重合法を用いることができる。いずれの場合であっても,反応条件を適宜制御することによって,目的の重合度を得ることができる。電離放射線を用いる場合には,紫外線,電子線,X線,α線,β線又はγ線等を使用することができる。 As the graft polymerization method of the polymerizable monomer, for example, a reaction initiator polymerization method or an ionizing radiation polymerization method can be used. In either case, the desired degree of polymerization can be obtained by appropriately controlling the reaction conditions. In the case of using ionizing radiation, ultraviolet rays, electron beams, X-rays, α rays, β rays, γ rays, or the like can be used.

抽出試薬とその担持機能を有する官能基の組み合わせとして,ビス(2-エチルヘキシル)ホスフェイトとオクタデシルアミノ基との組み合わせ,ビス(2-エチルヘキシル)ホスフェイトとドデシルアミノ基との組み合わせ,ビス(2, 4, 4-トリメチルペンチル)ホスフィン酸とオクタデシルアミノ基の組み合わせ,ビス(2, 4, 4-トリメチルペンチル)ホスフィン酸とドデシルアミノ基の組み合わせ,トリオクチルメチルアンモニウムクロライドと6-アミノヘキサン酸基の組み合わせ,トリオクチルメチルアンモニウムクロライドとオクタデシルアミノ基及び6-アミノヘキサン酸基の組み合わせ,トリ−n―オクチルホスフィンオキシドとオクタデカンチオール基との組み合わせ等が挙げられる。 The combination of the extraction reagent and the functional group having the supporting function includes a combination of bis (2-ethylhexyl) phosphate and octadecylamino group, a combination of bis (2-ethylhexyl) phosphate and dodecylamino group, bis (2, 4, 4-trimethylpentyl) phosphinic acid and octadecylamino group, bis (2, 4, 4-trimethylpentyl) phosphinic acid and dodecylamino group, trioctylmethylammonium chloride and 6-aminohexanoic acid group, A combination of octylmethylammonium chloride and octadecylamino group and 6-aminohexanoic acid group, a combination of tri-n-octylphosphine oxide and octadecanethiol group, and the like can be mentioned.

また,官能基としては,他にも,1分子のなかにアミノ基とカルボキシル基を併せ持つ物質,例えば,各種アミノ酸や6-アミノヘキサン酸等も挙げられる。 Other functional groups include substances having both an amino group and a carboxyl group in one molecule, such as various amino acids and 6-aminohexanoic acid.

また,本発明は,抽出試薬を担持した吸着材料の製造方法であって,抽出試薬担持機能を有する官能基を含む重合性単量体を基材表面にグラフト重合することを特徴とする。 The present invention is also a method for producing an adsorbing material carrying an extraction reagent, characterized in that a polymerizable monomer containing a functional group having an extraction reagent carrying function is graft-polymerized on the surface of a substrate.

これまで説明した抽出試薬を担持した吸着材料から構成される機能性材料が提供される。こうした機能性材料は,使用の目的や用途に応じて,その形態を適宜変更することができる。その例として,分析用キット又は分析用カートリッジが挙げられる。 A functional material composed of an adsorbing material carrying the extraction reagent described so far is provided. The form of such a functional material can be appropriately changed according to the purpose and application of use. Examples thereof include an analysis kit or an analysis cartridge.

本発明が提示する方法で抽出試薬を担持すると,抽出試薬が有効に,最大で100%,金属イオンの捕集に利用できる。基材に付与したグラフト高分子鎖に抽出試薬を担持するという本発明による作製法の長所が実証された。従来の材料ではこのように高い値は報告されていない。本発明の抽出試薬を担持した吸着材料は抽出試薬の利用効率が高い材料として有望である。さらに,本発明の抽出試薬を担持した吸着材料は,既存の多孔性中空糸膜や繊維を基材に,化学的・物理的に安定なグラフト高分子鎖を付与し,そこへ抽出試薬を担持することによって製造することができることから,材料として取扱い性に優れている。既存の材料を利用した抽出試薬を担持した吸着材料として用途の拡大が期待される。 When the extraction reagent is supported by the method proposed by the present invention, the extraction reagent can be effectively used for collecting metal ions up to 100%. The advantage of the production method according to the present invention that the extraction reagent is supported on the graft polymer chain imparted to the substrate has been demonstrated. Such high values have not been reported for conventional materials. The adsorption material carrying the extraction reagent of the present invention is promising as a material with high utilization efficiency of the extraction reagent. Furthermore, the adsorption material carrying the extraction reagent of the present invention is based on an existing porous hollow fiber membrane or fiber, and a chemically and physically stable graft polymer chain is imparted to the extraction reagent. This makes it easy to handle as a material. Expansion of application is expected as an adsorbing material carrying an extraction reagent using existing materials.

本発明に係わる抽出試薬を担持した吸着材料の実施例を,図面を参照しながら詳細に説明する。なお,本実施形態は本発明のいくつかの例を示したものであって,本発明は本実施例に限定されるものではない。以下の実施例においては,重合性単量体,基材等については,上述の種々のものを用いることができる。 Embodiments of an adsorbing material carrying an extraction reagent according to the present invention will be described in detail with reference to the drawings. This embodiment shows some examples of the present invention, and the present invention is not limited to this example. In the following examples, the above-mentioned various monomers can be used for the polymerizable monomer, the base material and the like.

多孔性中空糸膜を基材にした抽出試薬を担持した吸着材料の作製経路を図1に示した。また,抽出試薬を担持した吸着材料への金属イオンの吸着の仕組みを図2に示した。ここでは,抽出試薬としてビス(2-エチルヘキシル)ホスフェイト,金属イオンとしてイットリウムイオンの組み合わせを選んだ。ポリエチレン製多孔性中空糸膜(内径2mm,外径3mm,平均孔径0.4μm,空孔率70%)を基材膜に用いて,電子線を常温,窒素雰囲気下で200 kGy照射した。照射基材をグリシジルメタクリレートの10体積%メタノール溶液に40℃で15分間浸漬することによって,グリシジルメタクリレートをグラフト重合させた。このとき重量増加率で定義されるグラフト率は200%であった。得られた膜をGMAグラフト重合膜と呼ぶ。 The production route of the adsorbing material carrying the extraction reagent based on the porous hollow fiber membrane is shown in FIG. FIG. 2 shows the mechanism of adsorption of metal ions on the adsorbing material carrying the extraction reagent. Here, a combination of bis (2-ethylhexyl) phosphate as the extraction reagent and yttrium ion as the metal ion was selected. A polyethylene porous hollow fiber membrane (inner diameter 2 mm, outer diameter 3 mm, average pore diameter 0.4 μm, porosity 70%) was used as a substrate membrane, and an electron beam was irradiated at 200 kGy at room temperature in a nitrogen atmosphere. Glycidyl methacrylate was graft polymerized by immersing the irradiated substrate in a 10% by volume methanol solution of glycidyl methacrylate at 40 ° C for 15 minutes. At this time, the graft ratio defined by the weight increase rate was 200%. The obtained film is called a GMA graft polymerized film.

その後,GMAグラフト重合膜を,オクタデシルアミン(C18H37NH2)に80℃で所定時間,浸漬した。この反応によってグラフト高分子鎖中のエポキシ基の一部をオクタデシルアミノ(C18H37NH)基へ転化した。グラフト高分子鎖中のエポキシ基からオクタデシルアミノ基への転化率およびオクタデシルアミノ基密度を,反応に伴う膜の重量増加量から次式(1)及び(2)に従い算出した。得られた膜をオクタデシルアミノ膜と呼ぶ。
転化率 (%) = 100 [(W2 - W1)/270]/[(W1-W0)/142] (1)
オクタデシルアミノ基密度 (mol/kg) = 1000 (W2 - W1)/270/W1 (2)
ここで,W0,W1,およびW2は,それぞれ基材膜,GMAグラフト重合膜,およびオクタデシルアミノ膜の重量である。ここで,142および270はそれぞれグリシジルメタクリレートおよびオクタデシルアミンの分子量である。反応時間と転化率およびオクタデシルアミノ基密度との関係を図3に示す。反応時間の増加とともに転化率は増加し,3時間で一定値64%に達した。このときオクタデシルアミノ基密度は3.0 mol/kgと算出された。
Thereafter, the GMA graft polymerized film was immersed in octadecylamine (C 18 H 37 NH 2 ) at 80 ° C. for a predetermined time. By this reaction, a part of the epoxy group in the graft polymer chain was converted to an octadecylamino (C 18 H 37 NH) group. The conversion rate from the epoxy group to the octadecylamino group and the octadecylamino group density in the graft polymer chain were calculated according to the following formulas (1) and (2) from the weight increase of the film accompanying the reaction. The obtained film is called an octadecylamino film.
Conversion (%) = 100 [(W 2 -W 1 ) / 270] / [(W 1 -W 0 ) / 142] (1)
Octadecylamino group density (mol / kg) = 1000 (W 2 -W 1 ) / 270 / W 1 (2)
Here, W 0 , W 1 , and W 2 are the weights of the base film, GMA graft polymerized film, and octadecylamino film, respectively. Here, 142 and 270 are the molecular weights of glycidyl methacrylate and octadecylamine, respectively. FIG. 3 shows the relationship between the reaction time, the conversion rate, and the octadecylamino group density. The conversion increased with increasing reaction time, reaching a constant value of 64% in 3 hours. At this time, the octadecylamino group density was calculated to be 3.0 mol / kg.

抽出試薬にはビス(2-エチルヘキシル)ホスフェイト(以後,HDEHPと呼ぶ)を用いた。オクタデシルアミノ膜への抽出試薬の担持は,さまざまなオクタデシルアミノ基密度を有するオクタデシルアミノ膜を,HDEHPの5体積%エタノール溶液中に,室温で2時間浸漬することによりおこなった。浸漬後60℃で2時間乾燥した。抽出試薬担持量を次式(3)に従い算出した。得られた膜を抽出試薬担持膜とよぶ。
抽出試薬担持量 [mol/kg] = 1000 (W3 - W2)/322/W1 (3)
ここで,W3は抽出試薬担持膜の重量である。また,322はHDEHPの分子量である。さまざまなオクタデシルアミノ基密度を有するオクタデシルアミノ膜へのHDEHPの担持量を図4に示した。抽出試薬担持量は,オクタデシルアミノ基密度の増加に伴って増加し,オクタデシルアミノ基密度が2.8 mol/kgのときに2.1 mol/kgに達した。これは,オクタデシルアミノ基密度が増大すると,アミノ基同士の荷電反発によってグラフト高分子鎖が伸長したためである。
Bis (2-ethylhexyl) phosphate (hereinafter referred to as HDEHP) was used as an extraction reagent. The extraction reagent was loaded on the octadecylamino membrane by immersing the octadecylamino membrane having various octadecylamino group densities in a 5 vol% ethanol solution of HDEHP at room temperature for 2 hours. After soaking, it was dried at 60 ° C. for 2 hours. The amount of the extracted reagent carried was calculated according to the following formula (3). The obtained membrane is called an extraction reagent carrying membrane.
Extraction reagent loading [mol / kg] = 1000 (W 3 -W 2 ) / 322 / W 1 (3)
Here, W 3 is the weight of the extraction reagent carrying membrane. 322 is the molecular weight of HDEHP. FIG. 4 shows the amount of HDEHP supported on octadecylamino films having various octadecylamino group densities. The amount of extraction reagent supported increased as the octadecylamino group density increased, reaching 2.1 mol / kg when the octadecylamino group density was 2.8 mol / kg. This is because when the octadecylamino group density is increased, the graft polymer chain is extended due to charge repulsion between amino groups.

GMAグラフト重合膜,オクタデシルアミノ膜,および抽出試薬担持膜の膜厚方向断面の走査電子顕微鏡写真を図5に示した。オクタデシルアミノ基の導入およびHDEHPの担持後も,膜の多孔構造が維持されていることが観察された。 FIG. 5 shows scanning electron micrographs of the cross sections in the film thickness direction of the GMA graft polymerized film, octadecylamino film, and extraction reagent supporting film. It was observed that the porous structure of the membrane was maintained after the introduction of octadecylamino group and loading of HDEHP.

多孔構造をもつ材料に抽出試薬を担持した場合には,金属イオンを含む溶液を材料中に透過させることが金属イオンの吸着速度を高めるために有効である。そこで,図6に示したように,シリンジポンプに,抽出試薬担持膜を取り付けて,膜の内面から外面に金属イオンを含む溶液を透過させた。ここでは,抽出試薬HDEHPによって選択的に吸着される金属イオンとしてイットリムイオンを選び,本発明によって作製された抽出試薬を担持した吸着材料が金属イオンを効率よく捕捉することを実証した。 In the case where the extraction reagent is supported on a material having a porous structure, it is effective to increase the adsorption rate of metal ions by allowing a solution containing metal ions to pass through the material. Therefore, as shown in FIG. 6, an extraction reagent-supporting membrane was attached to a syringe pump, and a solution containing metal ions was permeated from the inner surface to the outer surface of the membrane. Here, yttrim ions were selected as the metal ions selectively adsorbed by the extraction reagent HDEHP, and it was demonstrated that the adsorption material carrying the extraction reagent prepared according to the present invention efficiently captures metal ions.

0.01M硝酸に溶かして調製した50 mg-Y/Lのイットリウム溶液を,HDEHP担持量1.4 mol/kgを有する抽出試薬担持膜の内面に供給し,一定流量で外面まで透過させた。流量は30から120 mL/hの範囲で変化させた。外面からの流出液を連続的に採取して,流出液中のイットリウムを定量した。供給液中のイットリウム濃度と流出液中のそれが一致するまで液の透過を続けた。この実験により得られた,流出液量と流出液中のイットリウム濃度との関係,すなわち破過曲線を図7に示した。破過曲線の横軸は流出液量を膜(中空部を除く)体積で割った値,縦軸は流出液中のイットリウム濃度を供給液中のそれで割った値である。破過曲線は,イットリウム溶液の流量に依らず重なった。これは,イットリウムイオンが,膜の孔中からグラフト高分子鎖に担持された抽出試薬まで瞬時に移動して吸着されるということを示している。このことは産業での分離精製操作において有利である。 A 50 mg-Y / L yttrium solution prepared by dissolving in 0.01M nitric acid was supplied to the inner surface of an extraction reagent-carrying membrane having a HDEHP loading of 1.4 mol / kg and permeated to the outer surface at a constant flow rate. The flow rate was varied in the range of 30 to 120 mL / h. The effluent from the outer surface was collected continuously to quantify yttrium in the effluent. Permeation of the liquid continued until the yttrium concentration in the feed liquid matched that in the effluent. FIG. 7 shows the relationship between the effluent volume and the yttrium concentration in the effluent, that is, the breakthrough curve, obtained by this experiment. The horizontal axis of the breakthrough curve is the value obtained by dividing the effluent volume by the volume of the membrane (excluding the hollow part), and the vertical axis is the value obtained by dividing the yttrium concentration in the effluent by that in the feed liquid. The breakthrough curves overlapped regardless of the yttrium solution flow rate. This indicates that yttrium ions are instantaneously moved and adsorbed from the pores of the membrane to the extraction reagent supported on the graft polymer chain. This is advantageous in industrial separation and purification operations.

破過曲線から,供給液中のイットリウム濃度に対する抽出試薬担持膜のイットリウム平衡吸着容量を算出した。平衡吸着容量Qは,次項の式(4)により算出した。ここで,C0, CおよびVはそれぞれ供給液の濃度,流出液の濃度および流出液体積である。イットリウム平衡吸着容量は0.38mol/kgであった。3価の陽イオンであるイットリウムイオンと抽出試薬HDEHPとが,理想的には1:3のモル比で結合する。したがって,HDEHP担持量が1.4 mol/kgに対してイットリウムの吸着量が0.38 mol/kgであったことから,担持されたHDEHPの82%がイットリウムの吸着に寄与していることがわかった。さらに,抽出試薬担持膜に吸着したイットリウムは,7M硝酸を膜に透過させることによってすべて溶出された。 From the breakthrough curve, the yttrium equilibrium adsorption capacity of the extraction reagent-supporting membrane with respect to the yttrium concentration in the feed solution was calculated. The equilibrium adsorption capacity Q was calculated by the following equation (4). Here, C 0 , C and V are the concentration of the feed liquid, the concentration of the effluent and the volume of the effluent, respectively. The yttrium equilibrium adsorption capacity was 0.38 mol / kg. Ideally, yttrium ions, which are trivalent cations, and the extraction reagent HDEHP bind at a molar ratio of 1: 3. Therefore, the amount of yttrium adsorbed was 0.38 mol / kg while the amount of HDEHP supported was 1.4 mol / kg, indicating that 82% of the supported HDEHP contributed to the adsorption of yttrium. Furthermore, all yttrium adsorbed on the extraction reagent-carrying membrane was eluted by permeating 7M nitric acid through the membrane.

抽出試薬担持機能を有する官能基の一つとしてアルキル鎖で代表される疎水性基がある。実施例1では,オクタデシルアミノ基を有するグラフト高分子鎖に抽出試薬を担持した。実施例2では,ドデシルアミノ基を有するグラフト高分子鎖に抽出試薬を担持して,より高い金属イオン吸着容量を示す材料が作製できたことを示す。 One of functional groups having an extraction reagent carrying function is a hydrophobic group represented by an alkyl chain. In Example 1, an extraction reagent was supported on a graft polymer chain having an octadecylamino group. Example 2 shows that a material exhibiting a higher metal ion adsorption capacity can be produced by supporting an extraction reagent on a graft polymer chain having a dodecylamino group.

GMAグラフト重合膜を,ドデシルアミンに80℃で5分間,浸漬した。この反応によってグラフト高分子鎖中のエポキシ基の30モル%をドデシルアミノ基へ転化した。このときドデシルアミノ基密度は1.3
mol/kgであった。得られた膜をドデシルアミノ膜と呼ぶ。
The GMA graft polymerized membrane was immersed in dodecylamine at 80 ° C. for 5 minutes. By this reaction, 30 mol% of the epoxy groups in the graft polymer chain were converted to dodecylamino groups. At this time, the dodecylamino group density is 1.3.
mol / kg. The obtained film is called a dodecylamino film.

抽出試薬にはHDEHPを用いた。ドデシルアミノ膜への抽出試薬の担持は,実施例1と同様にしておこなった。HDEHP担持量は1.6 mol/kgであった。得られた膜を抽出試薬担持膜と呼ぶ。この膜の内面から,実施例1と同一の50 mg-イットリウム/Lのイットリウム溶液を供給し,膜の外面まで透過させた。流量は120 mL/hとした。この実験により得られた破過曲線を図8に示した。破過曲線から,供給液中のイットリウム濃度に対する抽出試薬担持膜のイットリウム平衡吸着容量は0.57 mol/kgと算出された。3価の陽イオンであるイットリウムイオンと抽出試薬HDEHPとが,理想的には1:3のモル比で結合する。したがって,HDEHP担持量が1.6 mol/kgに対してイットリウムの吸着量が0.57 mol/kgであったことから,担持されたHDEHPがすべてイットリウムの吸着に寄与していることがわかった。 HDEHP was used as an extraction reagent. The extraction reagent was supported on the dodecylamino membrane in the same manner as in Example 1. The amount of HDEHP supported was 1.6 mol / kg. The obtained membrane is called an extraction reagent carrying membrane. From the inner surface of this membrane, the same 50 mg-yttrium / L yttrium solution as in Example 1 was supplied and allowed to permeate to the outer surface of the membrane. The flow rate was 120 mL / h. The breakthrough curve obtained by this experiment is shown in FIG. From the breakthrough curve, the yttrium equilibrium adsorption capacity of the extraction reagent-supporting membrane with respect to the yttrium concentration in the feed solution was calculated to be 0.57 mol / kg. Ideally, yttrium ions, which are trivalent cations, and the extraction reagent HDEHP bind at a molar ratio of 1: 3. Therefore, the amount of yttrium adsorbed was 0.57 mol / kg while the amount of HDEHP supported was 1.6 mol / kg, indicating that all of the supported HDEHP contributed to the adsorption of yttrium.

上述の実施例1においては,グリシジルメタクリレート(GMA)をグラフト重合により付与したポリエチレン製多孔性中空糸膜に,オクタデシルアミノ基を導入して疎水性膜を作製し,酸性の抽出試薬HDEHPを担持したが,本実施例3においては,オクタデシルアミノ基の代わりに6-アミノヘキサン酸(6AHA)基を官能基として導入し,塩基性の抽出試薬Aliquat 336(正式名:tri-n-octylmethylammoniumchloride)を担持した例について説明する。なお,本実施例では,Aliquat 336に選択的に吸着する白金族元素(白金,パラジウム,ルテニウム,ロジウムなど)のうち,吸着モデル金属イオンとして[PtCl6]2-を選び,作製したAliquat336担持膜の吸着性能を評価した。 In Example 1 described above, an octadecylamino group was introduced into a polyethylene porous hollow fiber membrane to which glycidyl methacrylate (GMA) was imparted by graft polymerization to produce a hydrophobic membrane, and an acidic extraction reagent HDEHP was supported. However, in this Example 3, 6-aminohexanoic acid (6AHA) group was introduced as a functional group instead of octadecylamino group, and the basic extraction reagent Aliquat 336 (official name: tri-n-octylmethylammonium chloride) was supported. An example will be described. In this example, the Aliquat 336-supported film was prepared by selecting [PtCl 6 ] 2- as the adsorption model metal ion among platinum group elements (platinum, palladium, ruthenium, rhodium, etc.) selectively adsorbed on the Aliquat 336 The adsorption performance of was evaluated.

(6AHA膜の作製)
6AHA基を官能基として導入したポリエチレン製多孔性中空糸膜作製経路を図9(a)に示す。NaOH溶液(16%)によってpH 13となるよう調整した0.8 Mの6-アミノヘキサン酸(6AHA)水溶液とジオキサンとを等量混合して80℃に保持し,重合溶媒としてメタノールを用いたGMAグラフト重合膜(グラフト率200%)を浸漬した。転化率および導入された6AHA基の密度は,次式(5)から算出した。得られた疎水性膜を6AHA膜とよぶ。
転化率 [%]=[(W2- W1) / 131 ] / [ (W1- W0)/142]×100 (5)
ここで,W0,W1およびW2は,それぞれ基材膜,GMAグラフト重合膜,および6AHA膜の重量である。
(Production of 6AHA film)
FIG. 9A shows a polyethylene porous hollow fiber membrane production route in which 6AHA groups are introduced as functional groups. GMA grafting using 0.8 M of 6-aminohexanoic acid (6AHA) solution adjusted to pH 13 with NaOH solution (16%) and dioxane, and maintaining at 80 ° C, using methanol as the polymerization solvent The polymer film (graft rate 200%) was immersed. The conversion rate and the density of the introduced 6AHA group were calculated from the following equation (5). The obtained hydrophobic membrane is called a 6AHA membrane.
Conversion [%] = [(W 2 -W 1 ) / 131] / [(W 1 -W 0 ) / 142] × 100 (5)
Here, W 0 , W 1 and W 2 are the weights of the base film, the GMA graft polymerized film, and the 6AHA film, respectively.

(Aliquat336の担持)
次に,エタノールに対する純水の体積割合をエタノール/水=2/1となるように調整した混合液に,図9(b)に構造が示されたAliquat 336を溶解し,Aliquat 336濃度を10 wt%とした担持溶液に,6AHA膜を常温で2時間浸漬させた。浸漬後40℃で乾燥し,重量を測定した。Aliquat 336担持量は,次式(6)によって算出される。
Aliquat336担持量[ mol/ kg ] = 1000 (W3 -W2)/Mr /W1 (6)
ここで,W3は,Aliquat 336担持膜の重量,MrはAliquat 336の分子量である。得られた膜をAliquat 336担持膜とよぶ。
(Supporting Aliquat336)
Next, Aliquat 336, whose structure is shown in FIG. 9B, is dissolved in a mixed solution in which the volume ratio of pure water to ethanol is adjusted to be ethanol / water = 2/1, and the Aliquat 336 concentration is 10%. The 6AHA film was immersed in the wt% support solution for 2 hours at room temperature. After immersion, it was dried at 40 ° C. and weighed. The carrying amount of Aliquat 336 is calculated by the following equation (6).
Aliquat336 loading [mol / kg] = 1000 (W 3 -W 2 ) / Mr / W 1 (6)
Here, W 3 is the weight of the Aliquat 336-supported membrane, and Mr is the molecular weight of Aliquat 336. The obtained membrane is called an Aliquat 336-supported membrane.

(白金の平衡吸着容量の算出)
塩酸でpH 4となるよう調整した100 mg-Pt/L溶液を,流量120 mL/minでAliquat 336担持膜に透過させ,一定時間ごとに透過液の濃度をICP-AESで測定した。平衡吸着容量Qは,上述の式(4)により算出した。
(Calculation of equilibrium adsorption capacity of platinum)
A 100 mg-Pt / L solution adjusted to pH 4 with hydrochloric acid was permeated through an Aliquat 336-supported membrane at a flow rate of 120 mL / min, and the concentration of the permeate was measured by ICP-AES at regular intervals. The equilibrium adsorption capacity Q was calculated by the above equation (4).

以下,得られた実験結果について詳細に説明する。 Hereinafter, the experimental results obtained will be described in detail.

(Aliquat 336担持膜による白金の吸着)
pH 4の[PtCl6]2-溶液(100 mg-Pt/L)をAliquat 336担持膜に透過させたときの破過曲線を図10に示す。白金の吸着量は,0.37mol-Pt/kgであり,吸着材料としては十分な性能であった。
(Platinum adsorption by Aliquat 336 supported film)
FIG. 10 shows a breakthrough curve when a pH 4 [PtCl 6 ] 2 -solution (100 mg-Pt / L) was passed through an Aliquat 336-supported membrane. The amount of platinum adsorbed was 0.37 mol-Pt / kg, which was sufficient as an adsorbing material.

以上説明したとおり,本実施例3における6-アミノヘキサン酸(6AHA)基を官能基として導入し,塩基性の抽出試薬Aliquat 336(正式名:tri-n-octylmethylammonium chloride)を担持した吸着材料は,良好な吸着特性を有する。 As described above, the adsorbing material in which the 6-aminohexanoic acid (6AHA) group in Example 3 is introduced as a functional group and the basic extraction reagent Aliquat 336 (official name: tri-n-octylmethylammonium chloride) is supported is , Has good adsorption characteristics.

本実施例4においては,実施例3において,6-アミノヘキサン酸(6AHA)基を官能基として導入した後に,残存したエポキシ基とオクタデシルアミン(C18H37NH2)を反応させ,抽出試薬Aliquat 336を担持させ,吸着モデル金属イオンとしてパラジウム(Pd)を選んだ例について説明する。 In this Example 4, after introducing a 6-aminohexanoic acid (6AHA) group as a functional group in Example 3, the remaining epoxy group and octadecylamine (C 18 H 37 NH 2 ) are reacted to obtain an extraction reagent. An example will be described in which Aliquat 336 is supported and palladium (Pd) is selected as the adsorption model metal ion.

本発明の本実施例に係る抽出試薬Aliquat 336を担持した吸着材料の作製のための反応条件を以下の表1に示す。 The reaction conditions for the preparation of the adsorbent material carrying the extraction reagent Aliquat 336 according to this example of the present invention are shown in Table 1 below.

(6AHA膜の作製)
6AHA基を官能基として導入したポリエチレン製多孔性中空糸膜作製経路を図11に示す。6AHA基を導入するステップについては,上述の実施例3で説明したステップと同様である。
(Production of 6AHA film)
FIG. 11 shows a polyethylene porous hollow fiber membrane production route in which 6AHA groups are introduced as functional groups. The step of introducing the 6AHA group is the same as that described in Example 3 above.

反応時間に対する転化率の変化を図12(a)に示す。反応時間とともに転化率は増加し,10時間で平衡に達した。このとき,転化率は50%であり,6AHA基密度は,2.3 mol/kgであった。 The change in the conversion rate with respect to the reaction time is shown in FIG. The conversion increased with the reaction time and reached equilibrium in 10 hours. At this time, the conversion was 50% and the 6AHA group density was 2.3 mol / kg.

(オクタデシルアミン基の導入)
次に,さまざまな転化率の6AHA膜を用いて,6AHA基との反応後に残されたエポキシ基とオクタデシルアミン(C18H37NH2)を反応させた(図11(4))。エポキシ基のC18H37NH基への転化率変化を図12(b)に示す。エポキシ基のC18H37NH基への転化率は,先に導入した6AHA基の転化率の増大にともない減少した。これは,6AHA基がエポキシ基とC18H37NH基との反応を妨害するためである。また,最終転化率は,導入された6AHA基とC18H37NH基を合わせると40-50%の範囲になった。ここでは,6AHA膜にC18H37NH基を導入した膜を6AHA-C18H37NH膜とよぶ。
(Introduction of octadecylamine group)
Next, using the 6AHA film with various conversion rates, the epoxy group remaining after the reaction with the 6AHA group was reacted with octadecylamine (C 18 H 37 NH 2 ) (FIG. 11 (4)). The change in the conversion rate of the epoxy group to the C 18 H 37 NH group is shown in FIG. The conversion rate of epoxy groups to C 18 H 37 NH groups decreased as the conversion rate of 6AHA groups introduced earlier increased. This is because the 6AHA group hinders the reaction between the epoxy group and the C 18 H 37 NH group. The final conversion rate was 40-50% when the introduced 6AHA group and C 18 H 37 NH group were combined. Here, a film obtained by introducing a C 18 H 37 NH group into a 6AHA film is called a 6AHA-C 18 H 37 NH film.

(6AHA-C18H37NH膜へのAliquat 336の担持)
エタノールおよびエタノール/水=2/1(体積比)を溶媒として,Aliquat 336の10%(v/v)溶液を調製し,6AHA-C18H37NH膜を浸漬させた(図11(5))。エポキシ基の6AHA基への転化率に対するAliquat 336の担持量を図13に示す。担持溶媒として,エタノール/水=2/1の混合溶媒を用いた場合は,エタノールを用いた場合よりも多量に担持され,最大1.2
mol/kgとなった。エタノール/水=2/1の混合溶媒中では,グラフト高分子鎖は荷電反発により伸張し,Aliquat 336が接近できる空間が確保できるためである。一方,エタノール中では,グラフト高分子鎖は伸張しないので,Aliquat 336は近づきにくく,担持量が少ない結果となった。したがって,エタノール/水=2/1とした担持溶媒が好ましいことが実証された。Aliquat 336を担持した膜をAliquat 336(x, y)膜と呼ぶ。ここで,xおよびyはそれぞれ,エポキシ基から6AHA基への転化率およびエポキシ基からオクタデシルアミノ基への転化率を示す。
(Support of Aliquat 336 on 6AHA-C 18 H 37 NH membrane)
A 10% (v / v) solution of Aliquat 336 was prepared using ethanol and ethanol / water = 2/1 (volume ratio) as a solvent, and 6AHA-C 18 H 37 NH membrane was immersed (FIG. 11 (5)). ). FIG. 13 shows the supported amount of Aliquat 336 with respect to the conversion ratio of epoxy groups to 6AHA groups. When a mixed solvent of ethanol / water = 2/1 is used as a supporting solvent, it is supported in a larger amount than when ethanol is used, and a maximum of 1.2
mol / kg. This is because, in a mixed solvent of ethanol / water = 2/1, the graft polymer chain is extended by charge repulsion, and a space where Aliquat 336 can approach can be secured. On the other hand, the graft polymer chain does not extend in ethanol, so Aliquat 336 is difficult to approach and results in less loading. Therefore, it was demonstrated that a supported solvent with ethanol / water = 2/1 was preferable. A membrane carrying Aliquat 336 is referred to as an Aliquat 336 (x, y) membrane. Here, x and y indicate the conversion rate from the epoxy group to the 6AHA group and the conversion rate from the epoxy group to the octadecylamino group, respectively.

(担持されたAliquat 336によるパラジウムの吸着性能)
100 mg-Pd/L (1M HCl) のパラジウム溶液をAliquat336 (14,26)膜に透過させた。このときの破過曲線を図14に示す。破過曲線から算出されるパラジウムの吸着容量は,0.30mol-Pd/kgであった。また,透過流量は,60 mL/hであり,透過流束は,1.5 m/hを保持し,Aliquat 336の漏出は確認されなかった。担持されたAliquat 336は,パラジウムの吸着性能を失うことなく,C18H37NH基に保持されていることが示された。
(Palladium adsorption performance by supported Aliquat 336)
A palladium solution of 100 mg-Pd / L (1M HCl) was passed through an Aliquat336 (14,26) membrane. The breakthrough curve at this time is shown in FIG. The palladium adsorption capacity calculated from the breakthrough curve was 0.30 mol-Pd / kg. The permeation flow rate was 60 mL / h, the permeation flux was maintained at 1.5 m / h, and no leakage of Aliquat 336 was confirmed. The supported Aliquat 336 was shown to be retained on the C 18 H 37 NH group without loss of palladium adsorption performance.

以上説明したとおり,本実施例に係る本発明の吸着材料は,抽出試薬Aliquat 336を担持させ,良好な吸着特性を有することがわかる。 As described above, it can be seen that the adsorption material of the present invention according to the present example supports the extraction reagent Aliquat 336 and has good adsorption characteristics.

本実施例5においては,グリシジルメタクリレート(GMA)をグラフト重合により付与したポリエチレン製多孔性中空糸膜に,C18H37S基を導入して疎水性膜を作製し,中性抽出試薬TOPO(Tri-n-octylphosphineoxide)を担持した例について説明する。なお,本実施例では吸着モデル金属イオンとしてBi(III)を選んだ。 In Example 5, a hydrophobic membrane was prepared by introducing a C 18 H 37 S group into a polyethylene porous hollow fiber membrane to which glycidyl methacrylate (GMA) was applied by graft polymerization, and the neutral extraction reagent TOPO ( An example of supporting Tri-n-octylphosphine oxide) will be described. In this example, Bi (III) was selected as the adsorption model metal ion.

(diol-C18H37S膜の作製)
本実施例におけるdiol-C18H37S膜の作製経路を図15(a)に示す。重合溶媒にメタノールを用いて作製したグラフト率180-200%のGMAグラフト重合膜を,0.5 M H2SO4に60℃で浸漬させ,diol基を導入後,C18H37SHに80℃で浸漬させ,diol-C18H37S膜を作製した。その後,60℃で一晩乾燥した。前後の膜重量の増加量を測定し,次式(7)によりエポキシ基から各官能基への転化率を算出した。
転化率[%]=[ (W2 - W1) / Mr ] / [ (W1 - W0) / 142 ]×100 (7)
ここで,W0,W1,W2,およびMrは,それぞれ基材膜の重量,GMAグラフト重合膜の重量,官能基導入後の膜重量,および官能基の分子量である。
(Preparation of diol-C 18 H 37 S membrane)
The preparation route of the diol-C 18 H 37 S film in this example is shown in FIG. GMA graft polymerized film with a graft ratio of 180-200% prepared using methanol as the polymerization solvent was immersed in 0.5 MH 2 SO 4 at 60 ° C, diol groups were introduced, and then immersed in C 18 H 37 SH at 80 ° C. A diol-C 18 H 37 S membrane was prepared. Then, it dried at 60 degreeC overnight. The increase in the weight of the membrane before and after was measured, and the conversion rate from the epoxy group to each functional group was calculated by the following formula (7).
Conversion [%] = [(W 2 - W 1) / Mr] / [(W 1 - W 0) / 142] × 100 (7)
Here, W 0 , W 1 , W 2 , and Mr are the weight of the base film, the weight of the GMA graft polymerized film, the weight of the functional group after introduction, and the molecular weight of the functional group, respectively.

(抽出試薬担持膜の作製)
diol-C18H37S膜をTOPO(100%)溶液に60℃で12時間浸漬した。TOPOの構造式を図15(b)に示す。浸漬後の膜を純水で20min×3回洗浄し,60℃で一晩乾燥した。前後の膜重量の増加量から,抽出試薬の担持量を算出した。得られた膜をTOPO担持膜とよぶ。
(Preparation of extraction reagent carrying membrane)
A diol-C 18 H 37 S membrane was immersed in a TOPO (100%) solution at 60 ° C. for 12 hours. The structural formula of TOPO is shown in FIG. The immersed film was washed with pure water for 20 min × 3 times and dried at 60 ° C. overnight. The amount of the extraction reagent supported was calculated from the increase in the membrane weight before and after. The obtained film is called a TOPO-supported film.

(モデル金属イオンBi(III)の吸着)
1M HClで溶解して1mmol-Bi/Lとなるように調整したBi(III)溶液を,一定流量(10 mL/h)でTOPO担持膜に膜の内面から外面に透過させた。また,ブランクとして,TOPOを担持していないdiol-C18H37S膜にも同様にBi(III)溶液を透過させた。そのときの,破過曲線を図16に示す。TOPO担持膜のBi(III)吸着容量は,0.52 mol/kgであった。これは,従来のビーズ状樹脂の吸着容量(0.33〜0.61 mol/kg-樹脂)と同程度の値である。また,TOPOを担持していないdiol-C18H37S膜にはBi(III)は吸着しなかったので,Bi(III)はdiol基及びC18H37S基にではなく,TOPOに吸着していることが示された。
(Adsorption of model metal ion Bi (III))
A Bi (III) solution dissolved in 1M HCl and adjusted to 1 mmol-Bi / L was permeated from the inner surface to the outer surface of the TOPO supported membrane at a constant flow rate (10 mL / h). Further, as a blank, a Bi (III) solution was similarly permeated through a diol-C 18 H 37 S membrane not supporting TOPO. FIG. 16 shows the breakthrough curve at that time. The Bi (III) adsorption capacity of the TOPO supported membrane was 0.52 mol / kg. This is the same value as the adsorption capacity of conventional bead-shaped resin (0.33 to 0.61 mol / kg-resin). In addition, Bi (III) was not adsorbed on the diol-C 18 H 37 S membrane not supporting TOPO, so Bi (III) was adsorbed on TOPO, not on diol and C 18 H 37 S groups. It was shown that

以上説明したとおり,本実施例に係る本発明の吸着材料は,抽出試薬TOPOを担持させ,良好な吸着特性を有することがわかる。 As described above, it can be seen that the adsorption material of the present invention according to the present example supports the extraction reagent TOPO and has good adsorption characteristics.

以上実施例1乃至5で説明したとおり,グラフト高分子鎖に抽出試薬担持機能を持つ種々の官能基を導入した疎水性膜である材料に,様々な抽出試薬を担持させることにより,多種・多様な核種(金属イオン)を吸着させることができる。つまり,担持される抽出試薬と,担持される抽出試薬に適当な官能基を有する疎水性膜とを組み合わせることによって,多種・多様な核種を吸着させることができる(図17)。 As described in Examples 1 to 5 above, various kinds of extraction reagents are supported on a material that is a hydrophobic membrane in which various functional groups having an extraction reagent supporting function are introduced into the graft polymer chain. Nuclides (metal ions) can be adsorbed. That is, by combining the supported extraction reagent with a hydrophobic membrane having a functional group appropriate for the supported extraction reagent, various and various nuclides can be adsorbed (FIG. 17).

担持される抽出試薬としては,上述の実施例1乃至5に記載したものの他,TBP(Tri-n-butylphosphate),オクチル(フェニル)-N,N-ジイソブチルカルバモイルメチルホスフィンオキシド,ジアミルアミルホスフェイト,ジメチルグリオキシム,ビス(2, 4, 4-トリメチルペンチル)ホスフィン酸を用いてもよい。 Supported extraction reagents include those described in Examples 1 to 5 above, TBP (Tri-n-butylphosphate), octyl (phenyl) -N, N-diisobutylcarbamoylmethylphosphine oxide, diamylamyl phosphate. , Dimethylglyoxime, bis (2,4,4-trimethylpentyl) phosphinic acid may be used.

以上のように,本発明によって作製された抽出試薬を担持した吸着材料は金属イオンを効率よく吸着することが示された。本発明の抽出試薬を担持した吸着材料は,さまざまな液体から高効率で金属イオンやその錯体を分離精製することが可能なので,分析や水処理技術で多用される吸着操作に広範に利用できる。 As described above, it has been shown that the adsorption material carrying the extraction reagent prepared according to the present invention can adsorb metal ions efficiently. Since the adsorption material carrying the extraction reagent of the present invention can separate and purify metal ions and their complexes from various liquids with high efficiency, it can be widely used for adsorption operations frequently used in analysis and water treatment techniques.

本発明の一実施例に係る抽出試薬を担持した吸着材料の作製経路の一例を示す図である。It is a figure which shows an example of the preparation path | routes of the adsorption material which carry | supported the extraction reagent which concerns on one Example of this invention. 本発明の一実施例に係る抽出試薬担持吸着材料による金属イオンの吸着の仕組みを示す図である。It is a figure which shows the mechanism of adsorption | suction of a metal ion by the extraction reagent carrying | support adsorption material which concerns on one Example of this invention. 本発明の一実施例における抽出試薬担持機能を有する官能基を導入する反応における,反応時間と官能基(ここでは,オクタデシルアミノ基)への転化率およびオクタデシルアミノ基密度との関係を示す図である。FIG. 5 is a diagram showing the relationship between the reaction time, the conversion rate to a functional group (here, octadecylamino group), and the octadecylamino group density in a reaction for introducing a functional group having an extraction reagent supporting function in one embodiment of the present invention. is there. 本発明の一実施例における材料中の官能基(ここでは,オクタデシルアミノ基)密度に対する抽出試薬(ここでは,ビス(2-エチルヘキシル)ホスフェイト,図中でHDEHPと略記)の担持量を示す図である。The figure which shows the load of the extraction reagent (here, bis (2-ethylhexyl) phosphate, abbreviated as HDEHP in the figure) with respect to the functional group (here, octadecylamino group) density in the material in one embodiment of the present invention. is there. 本発明の一実施例における多孔性膜を基材にして作製した抽出試薬を担持した吸着材料の断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the adsorption material which carry | supported the extraction reagent produced based on the porous membrane in one Example of this invention. 本発明の一実施例における多孔性膜を基材にして作製した抽出試薬を担持した吸着材料へ金属イオン溶液を透過させる装置を示す図である。It is a figure which shows the apparatus which permeate | transmits a metal ion solution to the adsorption material which carry | supported the extraction reagent produced using the porous membrane as a base material in one Example of this invention. 本発明の一実施例におけるオクタデシルアミノ基にHDEHPを担持した多孔性膜にイットリウム溶液を透過させて得られた破過曲線を示す図である。It is a figure which shows the breakthrough curve obtained by making an yttrium solution permeate | transmit the porous membrane which carry | supported HDEHP in the octadecylamino group in one Example of this invention. 本発明の一実施例におけるドデシルアミノ基にHDEHPを担持した多孔性膜にイットリウム溶液を透過させて得られた破過曲線を示す図である。It is a figure which shows the breakthrough curve obtained by making an yttrium solution permeate | transmit the porous membrane which carry | supported HDEHP in the dodecylamino group in one Example of this invention. (a)は,本発明の一実施例に係る抽出試薬を担持した吸着材料の作製経路の一例を示す図であり,(b)は,Aliquat 336の構造式を示す図である。(A) is a figure which shows an example of the preparation path | route of the adsorption material which carry | supported the extraction reagent based on one Example of this invention, (b) is a figure which shows the structural formula of Aliquat336. 本発明の一実施例における6AHA基にAliquat 336を担持した多孔性膜にPt溶液を透過させて得られた破過曲線を示す図である。It is a figure which shows the breakthrough curve obtained by making a Pt solution permeate | transmit the porous membrane which carry | supported Aliquat 336 to 6AHA group in one Example of this invention. 本発明の一実施例に係る抽出試薬を担持した吸着材料の作製経路の一例を示す図である。It is a figure which shows an example of the preparation path | routes of the adsorption material which carry | supported the extraction reagent which concerns on one Example of this invention. (a)は,本発明の一実施例における,反応時間に対するエポキシ基のC18H37NH基へ転化率の変化を示す図であり,(b)は,エポキシ基の6AHA基への転化率に対するエポキシ基のC18H37NH基への転化率を示す図である。(A) is a diagram showing in one embodiment, a change in the conversion rate to C 18 H 37 NH group of the epoxy groups on the reaction time of the present invention, (b), the conversion of 6AHA group of the epoxy groups is a diagram showing the conversion to C 18 H 37 NH group of the epoxy groups to. 本発明の一実施例における,エポキシ基の6AHA基への転化率に対するAliquat 336の担持量を示す図である。It is a figure which shows the load of Aliquat 336 with respect to the conversion ratio of the epoxy group to 6AHA group in one Example of this invention. 本発明の一実施例において,100 mg-Pd/L (1 M HCl) のパラジウム溶液をAliquat 336 (14,26)膜に透過させたときの破過曲線を示す図である。In one Example of this invention, it is a figure which shows a breakthrough curve when the palladium solution of 100 mg-Pd / L (1 M HCl) is permeate | transmitted to the Aliquat 336 (14,26) membrane. (a)は,本発明の一実施例に係る抽出試薬を担持した吸着材料の作製経路の一例を示す図であり,(b)は,TOPOの構造式を示す図である。(A) is a figure which shows an example of the preparation path | route of the adsorption material which carry | supported the extraction reagent based on one Example of this invention, (b) is a figure which shows the structural formula of TOPO. 本発明の一実施例における破過曲線を示す図である。It is a figure which shows the breakthrough curve in one Example of this invention. 本発明の吸着材料において,担持される抽出試薬と,担持される抽出試薬に適当な官能基を有する疎水性膜とを組み合わせることによって,多種・多様な核種を吸着させることができることを説明する図である。FIG. 6 is a diagram for explaining that various kinds of nuclides can be adsorbed by combining a supported extraction reagent and a hydrophobic membrane having a functional group suitable for the supported extraction reagent in the adsorption material of the present invention. It is.

Claims (14)

基材に付与したグラフト高分子鎖の官能基の少なくとも一部を、疎水性基及び親水性基の両方の官能基を有し且つ抽出試薬担持機能をもつ官能基に転化した材料であって,前記グラフト高分子鎖が重合性単量体をグラフト重合することにより形成された,抽出試薬を担持した吸着材料。 A material obtained by converting at least a part of the functional group of the graft polymer chain imparted to the base material into a functional group having both a hydrophobic group and a hydrophilic group and having an extraction reagent supporting function, An adsorbing material carrying an extraction reagent, wherein the graft polymer chain is formed by graft polymerization of a polymerizable monomer. 前記疎水性基及び親水性基が,カチオン交換基,アニオン交換基,アルキル基,アルキルアミノ基,エポキシ基,ジオール基より選択されたことを特徴とする請求項1に記載の抽出試薬を担持した吸着材料。 The extraction reagent according to claim 1, wherein the hydrophobic group and the hydrophilic group are selected from a cation exchange group , an anion exchange group, an alkyl group, an alkylamino group, an epoxy group, and a diol group . Adsorption material. 前記重合性単量体が,グリシジルメタクリレート又はグリシジルアクリレートである,請求項1又は2に記載の抽出試薬を担持した吸着材料。 The adsorbent material carrying the extraction reagent according to claim 1 or 2 , wherein the polymerizable monomer is glycidyl methacrylate or glycidyl acrylate. 前記重合性単量体が,ヒドロキシルメタクリレート,ビニルピロリドン,ジメチルアクリルアミド,エチレングリコールジメタクリレート,アルキルメタクリレート,又はアルキルアクリレートである,請求項1又は2に記載の抽出試薬を担持した吸着材料。 The adsorbing material carrying the extraction reagent according to claim 1 or 2 , wherein the polymerizable monomer is hydroxyl methacrylate, vinyl pyrrolidone, dimethylacrylamide, ethylene glycol dimethacrylate, alkyl methacrylate, or alkyl acrylate. 前記基材が,ポリオレフィン,ポリテトラフルオロエチレン,又はそれらの組み合わせから構成されたものである,請求項1乃至のいずれか一に記載の抽出試薬を担持した吸着材料。 The adsorbent material carrying the extraction reagent according to any one of claims 1 to 4 , wherein the substrate is composed of polyolefin, polytetrafluoroethylene, or a combination thereof. 前記基材が繊維,布帛,不織布,多孔性フィルム,多孔性中空糸膜,多孔性ロッド,又は
多孔性フィルターの形態である,請求項1乃至のいずれか一に記載の抽出試薬を担持した吸着材料。
6. The extraction reagent according to any one of claims 1 to 5 , wherein the substrate is in the form of a fiber, a fabric, a nonwoven fabric, a porous film, a porous hollow fiber membrane, a porous rod, or a porous filter. Adsorption material.
前記グラフト重合が反応開始剤重合法又は電離放射線重合法により行われる,請求項1乃至のいずれか一に記載の抽出試薬を担持した吸着材料。 The adsorbing material carrying the extraction reagent according to any one of claims 1 to 6 , wherein the graft polymerization is performed by a reaction polymerization method or an ionizing radiation polymerization method. 前記抽出試薬がビス(2-エチルヘキシル)ホスフェイト,前記抽出試薬担持機能を有する官能基がオクタデシルアミノ基又はドデシルアミノ基である,請求項1乃至のいずれか一に記載の抽出試薬を担持した吸着材料。 Adsorption carrying the extraction reagent according to any one of claims 1 to 7 , wherein the extraction reagent is bis (2-ethylhexyl) phosphate, and the functional group having the extraction reagent carrying function is an octadecylamino group or a dodecylamino group. material. 前記抽出試薬がビス(2,4,4-トリメチルペンチル)ホスフィン酸,前記抽出試薬担持機能を有する官能基がオクタデシルアミノ基又はドデシルアミノ基である,請求項1乃至のいずれか一に記載の抽出試薬を担持した吸着材料。 The extraction reagent is bis (2,4,4-trimethylpentyl) phosphinic acid, functional group having an extraction reagent bearing functionality is also octadecyl amino dodecyl amino group, according to any one of claims 1 to 7 An adsorbent material carrying an extraction reagent. 前記抽出試薬がトリオクチルメチルアンモニウムクロライド,前記抽出試薬担持機能を有する官能基が6-アミノヘキサン酸基である,請求項1乃至のいずれか一に記載の抽出試薬を担持した吸着材料。 The adsorbing material carrying the extraction reagent according to any one of claims 1 to 7 , wherein the extraction reagent is trioctylmethylammonium chloride, and the functional group having the extraction reagent carrying function is a 6-aminohexanoic acid group. 前記抽出試薬がトリオクチルメチルアンモニウムクロライド,前記抽出試薬担持機能を有する官能基がオクタデシルアミノ基及び6-アミノヘキサン酸基である,請求項1乃至のいずれか一に記載の抽出試薬を担持した吸着材料。 The extraction reagent according to any one of claims 1 to 7 , wherein the extraction reagent is trioctylmethylammonium chloride, and the functional group having the extraction reagent supporting function is an octadecylamino group and a 6-aminohexanoic acid group. Adsorption material. 前記抽出試薬がトリ−n―オクチルホスフィンオキシド,前記抽出試薬担持機能を有する官能基がオクタデカンチオール基である,請求項1乃至のいずれか一に記載の抽出試薬を担持した吸着材料。 The adsorbing material carrying the extraction reagent according to any one of claims 1 to 7 , wherein the extraction reagent is tri-n-octylphosphine oxide, and the functional group having the extraction reagent carrying function is an octadecanethiol group. 基材表面重合性単量体をグラフト重合してグラフト高分子鎖を付与し前記グラフト高分子鎖の官能基の少なくとも一部を、疎水性基及び親水性基の両方の官能基を有し且つ抽出試薬担持機能をもつ官能基に転化し、抽出試薬を担持させる吸着材料の製造方法。 A grafting polymer chain is imparted to the surface of the substrate by graft polymerization of a polymerizable monomer, and at least a part of the functional groups of the graft polymer chain has both a hydrophobic group and a hydrophilic group. And a method for producing an adsorbent material that is converted into a functional group having an extraction reagent carrying function and carries the extraction reagent. 請求項1乃至12のいずれか一に記載の抽出試薬を担持した吸着材料から構成される分析用キット又は分析用カートリッジ。 An analysis kit or an analysis cartridge composed of an adsorbent material carrying the extraction reagent according to any one of claims 1 to 12 .
JP2005123948A 2004-04-21 2005-04-21 Adsorbing material carrying extraction reagent and method for producing the same Active JP4660793B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005123948A JP4660793B2 (en) 2004-04-21 2005-04-21 Adsorbing material carrying extraction reagent and method for producing the same
PCT/JP2005/007639 WO2005102512A1 (en) 2004-04-21 2005-04-21 Adsorbents carrying extracting reagents and process for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004125917 2004-04-21
JP2005123948A JP4660793B2 (en) 2004-04-21 2005-04-21 Adsorbing material carrying extraction reagent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005331510A JP2005331510A (en) 2005-12-02
JP4660793B2 true JP4660793B2 (en) 2011-03-30

Family

ID=35196779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123948A Active JP4660793B2 (en) 2004-04-21 2005-04-21 Adsorbing material carrying extraction reagent and method for producing the same

Country Status (2)

Country Link
JP (1) JP4660793B2 (en)
WO (1) WO2005102512A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547327B2 (en) * 2005-12-05 2010-09-22 株式会社日立ハイテクノロジーズ Analysis method
FR2896792B1 (en) * 2006-01-27 2008-07-18 Millipore Corp SYSTEM AND METHOD FOR PURIFYING WATER
JP2008045906A (en) * 2006-08-11 2008-02-28 Chiba Univ Affinity beads and manufacturing method thereof
JP5045916B2 (en) * 2007-09-05 2012-10-10 株式会社イノアックコーポレーション Radionuclide capture material, radionuclide capture cartridge, manufacturing method and separation method
CN104755543B (en) 2012-10-30 2018-02-02 可乐丽股份有限公司 Porous graft copolymer particle, its manufacture method and use its sorbing material
JP6744538B2 (en) * 2014-11-10 2020-08-19 国立研究開発法人量子科学技術研究開発機構 Solid composition and method for producing solid composition
CN104941603A (en) * 2015-05-11 2015-09-30 史清元 High-efficiency oil-absorption ion exchange resin
CN113546610B (en) * 2021-07-07 2022-04-22 北京科技大学 Method for grafting dialkyl phosphinic acid functional group on surface of silicon-based material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837006A (en) * 1981-08-28 1983-03-04 Agency Of Ind Science & Technol Production of polymer containing aza-crown ether ring
JPH02119937A (en) * 1988-06-13 1990-05-08 Asahi Chem Ind Co Ltd Base membrane for affinity separation membrane and production thereof
JPH0435743A (en) * 1990-05-29 1992-02-06 Japan Atom Energy Res Inst Affinity adsorbent having amino acid and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837006A (en) * 1981-08-28 1983-03-04 Agency Of Ind Science & Technol Production of polymer containing aza-crown ether ring
JPH02119937A (en) * 1988-06-13 1990-05-08 Asahi Chem Ind Co Ltd Base membrane for affinity separation membrane and production thereof
JPH0435743A (en) * 1990-05-29 1992-02-06 Japan Atom Energy Res Inst Affinity adsorbent having amino acid and its production

Also Published As

Publication number Publication date
JP2005331510A (en) 2005-12-02
WO2005102512A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
JP4660793B2 (en) Adsorbing material carrying extraction reagent and method for producing the same
Tsuneda et al. High-throughput processing of proteins using a porous and tentacle anion-exchange membrane
Yamagishi et al. Introduction of a high-density chelating group into a porous membrane without lowering the flux
Iwata et al. Adsorption characteristics of an immobilized metal affinity membrane
Tsuneda et al. Metal collection using chelating hollow fiber membrane
JP5252653B2 (en) Method for manufacturing sintered body
AU2014245532B2 (en) Adsorbent for rare earth element and method for recovering rare earth element
JP5981133B2 (en) Temperature-responsive adsorbent having strong cation exchange group and method for producing the same
Kim et al. Radiation-induced graft polymerization and sulfonation of glycidyl methacrylate on to porous hollow-fiber membranes with different pore sizes
KR101161072B1 (en) Protein adsorbent and method for producing the same
Tsuneda et al. Protein adsorption characteristics of porous and tentacle anion-exchange membrane prepared by radiation-induced graft polymerization
Kim et al. Ring-opening reaction of poly-GMA chain grafted onto a porous membrane
Kubota et al. Comparison of protein adsorption by anion-exchange interaction onto porous hollow-fiber membrane and gel bead-packed bed
Saito et al. Radiation-induced graft polymerization is the key to develop high-performance functional materials for protein purification
Tsuneda et al. Hydrodynamic evaluation of three-dimensional adsorption of protein to a polymer chain grafted onto a porous substrate
Saito et al. Innovative polymeric adsorbents
JP4666377B2 (en) Capturing material, method for producing the same, and cartridge for solid phase extraction
Saito et al. Convection-aided collection of metal ions using chelating porous flat-sheet membranes
US20050218068A1 (en) Filter cartridge
Kawakita et al. Recovery of Sb (V) using a functional-ligand-containing porous hollow-fiber membrane prepared by radiation-induced graft polymerization
EP1179367B1 (en) Use of a chelate-forming porous hollow fiber membrane and method for the recovery of germanium oxide with the same
JP5030129B2 (en) High speed arsenic adsorbing material and method for producing the same
JP5045916B2 (en) Radionuclide capture material, radionuclide capture cartridge, manufacturing method and separation method
Grasselli et al. Designing protein adsorptive materials by simultaneous radiation-induced grafting polymerization: A review
JP5045920B2 (en) Protein capturing material, protein capturing cartridge and manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

R150 Certificate of patent or registration of utility model

Ref document number: 4660793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350