WO2005100565A1 - 新規な蛍光性タンパク質とそれをコードする遺伝子 - Google Patents

新規な蛍光性タンパク質とそれをコードする遺伝子 Download PDF

Info

Publication number
WO2005100565A1
WO2005100565A1 PCT/JP2004/004818 JP2004004818W WO2005100565A1 WO 2005100565 A1 WO2005100565 A1 WO 2005100565A1 JP 2004004818 W JP2004004818 W JP 2004004818W WO 2005100565 A1 WO2005100565 A1 WO 2005100565A1
Authority
WO
WIPO (PCT)
Prior art keywords
gag
aag
ttc
atg
atc
Prior art date
Application number
PCT/JP2004/004818
Other languages
English (en)
French (fr)
Inventor
Hiromi Takenaka
Original Assignee
Nec Soft Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Soft Ltd. filed Critical Nec Soft Ltd.
Priority to PCT/JP2004/004818 priority Critical patent/WO2005100565A1/ja
Priority to US10/953,050 priority patent/US7442768B2/en
Priority to DE602005008930T priority patent/DE602005008930D1/de
Priority to PCT/JP2005/006339 priority patent/WO2005095599A1/ja
Priority to EP05728016A priority patent/EP1734117B1/en
Priority to JP2006511816A priority patent/JP4863280B2/ja
Publication of WO2005100565A1 publication Critical patent/WO2005100565A1/ja
Priority to US12/204,557 priority patent/US8043850B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43509Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from crustaceans

Definitions

  • the present invention relates to a novel fluorescent protein and a gene encoding the same. Specifically, the present invention relates to a novel fluorescent protein derived from a newly discovered marine plankton exhibiting luminescence, and a code gene usable for recombinant expression of such a fluorescent protein. Background technology
  • the green fluorescent protein (GFP) derived from the jellyfish Aequoreavictoria (GFP) or its modified protein is found in heterologous cells, especially in various mammalian cells.
  • the recombinant protein can be expressed recombinantly, and the obtained recombinant protein exhibits fluorescent properties in host cells.
  • A. victoria-derived GFP and its homologues can be used as in vivo fluorescent marker proteins that can be expressed in animal cells in the fields of biochemistry, cell physiology, and medicine.
  • GFP-like protein has been cloned from the hydroids (class Hy drozoa) of the phylum Cn daria (Cn daria). GFP-like protein has also been cloned from Daria) flower insects (class Anthozoa). These GFP-like proteins found in cnidaria (Cn daria) flower insects (class Anthozoa) share a common bioprogression. It has been reported that it will constitute a family of fluorescent proteins having an origin (Reference 3: YA La baseta 1., Proc. Natl. Acad. Sci. USA vol. 99, 42 56-4261 (2002)).
  • GFP derived from A.victora With regard to GFP derived from A.victora, the mechanism required for its fluorescence '14 is being studied. First, when the translated GFP polypeptide is folded into its natural conformation, it undergoes cyclization of the internal tripeptide portion forming its fluorophore, and subsequent oxidation to mature It was revealed that it became type GFP. Furthermore, the inserted amino acid sequence (deduced amino acid sequence) of wild-type GFP derived from A. Victoria was confirmed to be an internal triplet site that forms a fluorophore of the SYG force of Nos. 65 to 67. It has been done.
  • the 203rd Thr is replaced with His, Ph.e, Tyr, T203H , T 203 F, T 203 Y mutation was introduced 1 ⁇ , and the maximum wavelength of fluorescence was about 530 nm, causing a remarkable red 'shift and yellow fluorescence'! 3 ⁇ 4 protein (YF P: Ye 1 I ow F luroesent Protein).
  • F64L-mutated EGFP (“enhanced” GFP), which replaces the 64th Phe adjacent to the 65th to 67th SYG site with Leu, is a wild-type GFP It has been reported that the maturation process involving the formation of a fluorophore is significantly improved compared to that of Ref. a 1., Genevol. 173, 33-38 (1996)).
  • GFP-like proteins derived from A. victoria and other marine animals belonging to the Cnidaria (Cndaria) are in vivo fluorescent markers and proteins that can be expressed in living cells. There have been many attempts to make money. On the other hand, it is known that many marine organisms, especially zooplankton, exhibit bioluminescence.
  • a fluorescent protein When a fluorescent protein is used as an in vivo fluorescent marker 1 ′ protein that can be expressed in a host cell, photoexcitation is performed from outside the cell to observe the fluorescence.
  • the wavelength used for the light excitation is selected to be a light absorption band located on a shorter wavelength side (higher energy side) than the fluorescence wavelength of the fluorescent protein.
  • the fluorescence intensity obtained from the fluorescent protein depends on the product of the molar absorption coefficient ⁇ (cm ⁇ 1 ⁇ M ⁇ 1 ) and the fluorescence quantum yield ⁇ at the excitation wavelength.
  • the excitation spectrum is measured while monitoring the fluorescence intensity obtained from the fluorescent protein, and the maximum peak wavelength is determined. For example, the excitation spectrum of GFP derived from A.
  • Victoria shows a main peak at 396 nm and a subpeak at 475 nm.
  • the maximum peak is shown at about 520 nm.
  • fluorescent proteins When two types of in vivo fluorescent markers / proteins are used in a host cell, two types of fluorescent proteins having different fluorescence wavelengths and excitation wavelengths are required. From this point of view, a new type that emits discriminable fluorescence when used in combination with a fluorescent protein that emits green fluorescence such as GFP derived from A. victoria. It is desired to provide a regular fluorescent protein. Specifically, the fluorescent GFP-like substance is found at a longer wavelength side than the maximum wavelength of the green fluorescent light, such as GFP derived from A. Victoria, which belongs to GFP derived from A. Victoria, and to which GFP derived from A. victoria belongs. It is desired to provide a novel fluorescent protein having a biological evolutionally different origin from the protein family.
  • An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to derive from zooplankton belonging to a phylum (phy1 urn) different from the phylum Cnidaria, and Providing a novel fluorescent protein that can be expressed recombinantly in heterologous cells and has a gene encoding it that has a maximum wavelength at a wavelength longer than 510 nm and exhibits yellow or yellow-green fluorescence. It is in.
  • the present inventors have searched for luminescent plankton that exhibits yellow or green-yellow luminescence and fluorescence from zooplankton living in the ocean.
  • the present inventors attempted to classify the red-green fluorescent protein-expressing Red Copepoda (red pods) found during this selection process, and found that the genus Arthropod (Arthropodapylum) Ae tideida (Mandibulatasubphy 1 um), Crustacea (C rustaceaclass), Crustacea (Copepoda: Co prpodas ub class) It was found to be consistent with the morphological color of the genus Bradyidius. Whether or not the species has already been reported has not been determined at this stage.
  • the present inventors have previously reported that in the case of a fluorescent GFP-like protein family to which GFP derived from A. Victoria belongs, translation of a collected cDNA into a peptide chain in Escherichia coli was often used. Furthermore, in consideration of the fact that the translated peptide chain is folded and a luminophore is formed, and expressed as a mature fluorescent protein, the synthesized cDNA is used for general-purpose cloning 'vector: pBluescript II SK To construct a cDNA library, and the presence or absence of protein expression from cDNA in Escherichia coli was examined.
  • the present inventors compared the full-length amino acid sequence of the yellow-green fluorescent protein derived from Red Copepoda with the full-length amino acid sequence of GFP derived from A. Victoria, Thus, the present inventors have confirmed that the fluorescent GFP-like protein family is a novel fluorescent protein having a different origin in biological evolution, and completed the present invention. .
  • the full-length amino acid sequence of the fluorescent protein is: MTTFKIESRI HGNLNGEKFE LVGGGVGEEG RLEIEMKTKD KPLAFSPFLL SHCMGYGFYH 60 FASFPKGTKN lYLHAATNGG YTNTRKEIYE DGGILEVNFR YTYEFNKI IG DVECIGHGFP 120 SQSPIFKDTI VKSCPTVDLM LPMSG I IAS GYSFKF NSF GSIFKN
  • the gene encoding the fluorescent protein derived from a rodent according to the present invention is a gene comprising DNA encoding the amino acid sequence of SEQ ID NO: 1.
  • the nucleotide sequence of DNA encoding the amino acid sequence of SEQ ID NO: 1 is:
  • ATG ACA ACC TTC AAA ATG GAG TCC CGG ATC CAT GGC AAC GTC AAC GGG 48 GAG AAG TTC GAG TTG GTT GGA GGT GGA GTA GGT GAG GAG GGT CGG GTG 96 GAG ATT GAG ATG AAG AGT AAA GAT AAA CCA CTG GCA TTC TGT CCC TTC 144 CTG GTG TCC CAG TGC ATG GGT TAG GGG TTC TAG GAC TTC GGC AGC TTC 192 CCA AAG GGG ACT AAG AAC ATC TAT CTT CAT GGT GCA ACA AAC GGA GGT 240 TAG ACC AAC ACC AGG AAG GAG ATG TAT GAA GAC GGC GTC TGC GAG 288 GTC AAC TTC CGT TAG ACT TAG GAG TTC AAC AAG ATC ATC GGT GAC GTC 336 GAG TGC ATT GGA CAT GGA TTC GCA AGT CAG AGT
  • the gene encoding the fluorescent protein derived from the pod of the present invention is prepared from the mRNA of the fluorescent protein derived from the pod, which is contained in the coding region of the amino acid sequence described in SEQ ID NO: 1.
  • the nucleotide sequence of the cDNA is AGAACACTCA GTGTATCCAG TTTTCCGTGC TACTACAAAC 40
  • the present invention also provides an invention of a plasmid vector carrying cDNA prepared from the above-mentioned mamma radiata-derived mRNA,
  • the plasmid and the vector according to the present invention are:
  • a plasmid or vector comprising a cDNA prepared from mRNA of a fluorescent protein derived from the pod, which is contained in the coding region of the amino acid sequence of SEQ ID NO: 1;
  • the nucleotide sequence of the cDNA is
  • FIG. 1 (a) shows the external appearance of Red Copepoda (red raccoon), which is the origin of the fluorescent protein of the present invention, under white light irradiation
  • FIG. 1 (b) shows a region emitting yellow-green fluorescence in the organ of the body of the Red Copoda observed by violet light microscopy under irradiation with Dark Reader light (wavelength range 420 ⁇ ! To 500 nm).
  • FIG. 3 is a diagram illustrating the configuration of an expression vector for a fluorescent protein derived from Red Copoda: pET101-NFP.
  • Fig. 3 shows that the gene (688 bp) encoding the fluorescent protein derived from Red Copepoda according to the present invention was transformed into a commercially available GST-tagged fusion protein-enhancing plasmid 'vector: pGEX-6P-1 (Manufactured by Amersh Biosciences), and the fluorescent protein derived from Red Copoda is fused to glutathione 'S as a fusion partner via a linker sequence having a cleavage site by endopeptidase Factor Xa.
  • GST linked to the C-terminus of transferase (GST) tagged vector for expression of fluorescent protein: pGEX6 P 1—NFP configuration.
  • Figure 4 shows the expression of fluorescent protein from Red Copeoda: pBluescript II SK—soluble in E. coli transformed with NFP. Shows the results of SDS-PAGE analysis of the proteins contained in the soluble fraction (cytoplasmic component) and the insoluble fraction (membrane component), respectively. The molecular weight found in the soluble fraction (cytoplasmic component) of the transformed E. coli Shows a new band at 25 kDa.
  • Figure 5 shows that a large amount of transformed Escherichia coli harboring an expression vector for a fluorescent protein derived from Red Copoda: pET101-NFP was cultured, and a soluble fraction (cytoplasmic component) was exchanged with an anion exchange column: H
  • Fig. 6 shows the results of visualization of a fluorescent protein solution sample from Red Copepoda with the purification purity shown in Fig. 5 under white light irradiation, and Dark Reader light (wavelength range from 42 O nm to 500 nm). The results of observation showing yellow-green fluorescence under irradiation are shown.
  • Fig. 7 shows the excitation spectrum of the fluorescent protein solution sample derived from Red Copoda with the purification purity shown in Fig. 5 while monitoring the fluorescence intensity at 500 nm. 4 shows the measurement results of a fluorescence spectrum measured while exciting.
  • Chapter 8 Expression vector for GST-tagged fluorescent protein: pGEX6 Pl—N. Coli-transformed E. coli (middle), negative control host E. coli (upper left), Chongjung vector: pB1
  • the isolated clones positive control; upper right), in which cDNA encoding a fluorescent protein derived from Red Coepoda was inserted into uescript II SK, were each cultured on a culture medium, and each colony was transformed into a DARK.
  • the results of observations under irradiation of rear light (wavelength range from 420 nm to 500 nm) are shown.
  • FIG. 9 shows a comparison between the fluorescent protein derived from Red Copeda according to the present invention and the amino acid sequence of the fluorescent protein derived from Copepoda published by EVRQGEN.
  • FIG. 10 shows the results of SDS-PAGE analysis showing the purification process of the fluorescent protein recombinant expression product derived from Red Copepoda according to the present invention.
  • the fluorescent protein derived from a rodent of the present invention can be recombinantly expressed in a heterologous host cell as a mature protein having its natural fluorescent properties.
  • the fluorescence of the recombinantly expressed fluorescent protein derived from the genus Rhopoda is yellow-green fluorescence having a maximum wavelength of 518 nm and covering the yellow region (570 nil! To 590 nm). It can be distinguished from green fluorescence such as GFP derived from Victoria. Therefore, both can be used as two kinds of inv ivo fluorescent marker 'proteins that show distinctly different fluorescence in host cells.
  • zooplankton which is the origin of the fluorescent protein of the present invention, was collected from the Sea of Japan, off Toyama Bay, and at a depth of 32 lm. Crustacean plankton found in deep ocean waters. As shown in Fig. 1 (a), the morphology is a type of red copepod (red raccoon) that looks red under a microscope under white light irradiation.
  • This Red Copepoda is taxonomically classified into arthropod phylums (Arthropodap hylum), f
  • Dark Reader light wavelength range 420 ⁇ n! ⁇ 500 nm
  • the present inventors further examined the yellow-green fluorescent region observed in the body of the Red Copepoda, and found that a bacterial protein producing a fluorescent protein was found. It was concluded that it was not due to the parasitism or adhesion of E. coli but to the fluorescent protein derived from the Red Copepoda itself. Actually, we considered collecting the plankton and proceeding with the isolation of fluorescent proteins.However, the amount of blank tons obtained was not sufficient, and it was difficult to collect enough protein for amino acid sequence analysis. It was determined that there was. Therefore, based on the results of the amino acid sequence analysis, a degenerate probe that encodes a part of the amino acid sequence is prepared, and the gene of the fluorescent protein is cloned from the genomic DNA by the probe hybridization method. Determined that it was difficult.
  • the present inventors have attempted to select, from the various mRNAs remaining with the expression of the protein in the Red Copepoda, those that can be translated into the fluorescent protein. .
  • a cDNA library was prepared from mRNA, and the expression cloning method was applied for the purpose of selecting those capable of expressing a fluorescent protein using this cDNA library.
  • the 5 'end of the cDNA is the B lun t end, and the 3' end is the X ho I The digestion end of the restriction enzyme.
  • the cDNA fragment described above was prepared by digesting the Xh0I restriction enzyme site in the multi-cloning site of the Clawing 'vector: pB1uescript II SK with the other cut end at the B1 unt end, Ligation was performed to insert a cDNA fragment into the site. Conventionally, it has been found that, for example, GFP derived from A. victoria, which is expressed in E.
  • coli from cDNA prepared from mRNA becomes mature GFP from the translated peptide chain.
  • the vector constituting the prepared cDNA library derived from Red Copepoda is introduced into E. coli, the inserted cDNA is expressed, and the presence or absence of a fluorescent protein in the encoded protein is determined. It was confirmed. Under the condition of generating about 300,000 colonies, one colony that emits fluorescence was found under the irradiation of dark light (wavelength range from 420 nm to 500 nm). One colony selected by the primary screening was subjected to a secondary screening under the same conditions, and a clone was isolated.
  • the introduced vector was recovered from the isolated clone, and the nucleotide sequence of the inserted cDNA was determined.
  • Growing 'vector used Based on the known base sequence of pB1uescriptIISK, sequencing to cDNA inserted between the Blunt-XhoI sites was advanced. As a result, a full-length: 782 bp and ORF (translation frame): 660 bp were identified as the cDNA base sequence derived from mRNA, which is used for expression of the Red Coepoda-derived fluorescent protein in Escherichia coli. .
  • the entire nucleotide sequence and the amino acid sequence deduced from ORF 219 amino acid length are shown below.
  • PCR primers were prepared based on the above base sequence. By performing PCR, it was confirmed that a broad product having the corresponding nucleotide sequence and molecular weight was obtained, and it actually encodes the fluorescent protein NFP (N fauxwa Fluorescent Protein) derived from the Red Copoda.
  • NFP N fauxwa Fluorescent Protein
  • Reverse primer Sa1I—LP1 (35tne r); 3, the corresponding base sequence is added to introduce a restriction enzyme Sa1I cleavage site at the end
  • a PCR amplification product was obtained using the vector recovered from the isolated clone as a mirror. As shown in FIG. 2, 673 bp of the PCR amplification product containing this ORF (translational frame) was commercially available. Was inserted into the plasmid pETlOl / D-TOPO (manufactured by Invitrogen) to produce an expression vector for the fluorescent protein NFP: pETlOl-NFP.
  • fluorescence from the Red Co pepoda! 3 ⁇ 4Protein is located at the C-terminal end of the fusion partner G ⁇ / tathione.s-transferase (GST).
  • GST G ⁇ / tathione.s-transferase
  • Forward primer GST-UP1 (43mer); partial sequence of ATGGAAGGGGGC encoding the cleavage amino acid sequence of protease: Facter Xa with respect to the aforementioned pET-UP1 (28mer); The corresponding base sequence GAATTG has been added to introduce the restriction enzyme Eco RI cleavage site.
  • PCR amplification product was obtained using the vector recovered from the isolated clone as type III. Once the PCR amplification product was incorporated into pCR4B1nt-TOPO (manufactured by Invitrogen), clone selection was performed using a selectable marker. For each selection clone, after culturing, the contained plasmid: pCR4B1nt-1NFP was purified, and its molecular weight and the nucleotide sequence of the inserted DNA fragment were confirmed.
  • Escherichia coli was transformed using the expression vector of the fluorescent protein NFP shown in FIG. 2: pETlOl-NFP. 'With respect to the obtained transformed Escherichia coli, clone selection was carried out using the selection marker Ampici 11 in resistance gene. In addition, expression of the inserted gene was induced from the vector-derived promoter using IPTG, and 2 hours and 4 hours after the induction, the presence or absence of the expression of the fluorescent protein was confirmed. After induction of IPTG expression, cultured cells of the transformed strain, for which the expression of the fluorescent protein was confirmed, were inoculated and then separated by centrifugation (15,000 rpm; 18,800 Xg).
  • the soluble fraction (cytoplasmic component) was converted to anion-exchange column: Hi Trap DE AE FF (Amersham Biosciences, elution conditions: A uffer 2 OmM Tris—HC 1 pH7.6 B buffer 1M Na Clin A buffer, 3 ⁇ 4: Linear gradient 0-20%
  • the fluorescent protein recombinant was collected in a fraction of 4.8-8.8% Bbufffer under Bbufffer (0-200 mM NaC1 concentration). Then, the collected fraction was concentrated in advance under the conditions of VIVASPIN20 MW10,00Cout. This concentrated sample was subjected to gel filtration: Hi Load 16/60 Superdex 200 pg (manufactured by Amersham Biosciences), and elution conditions were: Buffer 2 OmM Tris-HC 1 pH 7.6. The fluorescent protein recombinant was purified and collected as a fluorescent fraction having a molecular weight of 100 kDa or less. At this stage, when SDS-PAGE analysis is performed, as shown in FIG.
  • the target fluorescent protein recombinant is almost in a purified state.
  • the purified protein solution sample at this stage emits yellow-green fluorescence when irradiated with Dark Reader light (wavelength range 420 ⁇ n! To 500 nm) and emits V. .
  • the soluble fraction (cytoplasmic component) of the host E. coli was
  • Escherichia coli was transformed using an expression vector for a GST-tagged fluorescent protein shown in FIG. 3: pGEX6P1-NFP.
  • Each isolated clone positive control was cultured on a culture medium, and each colony was observed under Dark Reader light (wavelength range of 420 nm to 50 O nm) as shown in Fig. 8.
  • the transformed K was obtained using an expression vector for a GST-tagged fluorescent protein shown in FIG. 3: pGEX6P1-NFP.
  • tsukii bacteria obtained fluorescence, and it was confirmed that the GST-tagged fluorescent protein was expressed, and that an appropriate linker sequence with other proteins was confirmed.
  • the fused tanno which is linked through a peptide, is cyclized from the translated peptide chain to form a fluorophore-forming tripeptide moiety, and then oxidized, even when recombinantly expressed.
  • mature fluorescence with fluorescence properties On the other hand, the present inventors searched for the presence or absence of reports on a fluorescent protein derived from Copepoda in addition to the fluorescent protein derived from Red Copepoda of the present invention.
  • a green fluorescent protein expression vector containing a coding region derived from the fluorescent protein gene derived from Copepoda ⁇ was recently marketed by EVR QGEN3 ⁇ 4h under the brand name Cop—Green TM .
  • Co p GFP a recombinant expression product of a fluorescent protein derived from Co pep 0 da, expressed from the commercially available green fluorescent protein expression vector, has a maximum peak at a wavelength of 502 nm. And the excitation spectrum has a maximum peak at a wavelength of 482 nm. Is listed in the product catalog.
  • crustacean-derived fluorescent proteins show considerable homology and can be presumed to constitute a novel family of fluorescent proteins. Further, the tripeptide site involved in the formation of the fluorophore is measured as a GYG site. In addition, these two species of crustaceans In the conventional fluorescent protein, the mature protein that has undergone fluorophore entrapment and oxidation is presumed to have a similar conformation.
  • Co pGFP a recombinant expression of a fluorescent protein derived from Co pep 0 da, expressed from an expression vector commercially available from EVRQGEN, has been shown to exhibit fluorescence as a monomer.
  • the fluorescent protein derived from Red Cop epoda according to the present invention can also be in the form of a monomer when expressed recombinantly in mammalian cells, and can be used as an in vivo fluorescent marker protein. Expected to be available.
  • the gene (cDNA) encoding the fluorescent protein derived from Red Cop epoda according to the present invention was cloned.
  • Vector: pBluscript II SK, the vector into which the multi-cloning site was inserted: pB 1 uescript II SK— NFP is based on the Budapest Treaty, and has been granted the Patent Organism Depositary Center, National Institute of Advanced Industrial Science and Technology (AIST) (1-1, Higashi 1-chome, Tsukuba-shi, Ibaraki, Japan, zip code 305-8566) An international deposit (dated March 31, 2004) has been made under the accession number F ERM BP-08681.
  • Red Protein-derived fluorescent protein according to the present invention is recombinantly expressed in a mammalian cell as an in vivo fluorescent marker / protein
  • GFP derived from A. Victoria and its artificial Techniques for substituting the coding region using a variant expression system are available.
  • hosts such as bacteria, yeast, fungi, and insect cells capable of recombinant expression of conventional GFP also recombined fluorescent proteins derived from Red Cod pod a. It can be expressed.
  • the gene encoding the fluorescent protein derived from Red Cope pod a can be converted into a codon that is frequently used in the host and then inserted into the expression vector, if necessary. preferable.
  • the mutation is not introduced into the amino acid sequence itself encoded by the codon conversion.
  • the coding gene which has been previously codon-converted, is digested with restriction enzymes in non-coding regions at both ends and fragmented.
  • restriction enzymes in non-coding regions at both ends and fragmented.
  • the desired restriction enzyme site is introduced by mutating the base sequence of the non-coding region by site-directed mutagenesis. Example that can be done
  • the present inventors have proposed GFP-like worms (Class Hydrozoa) and worms (Class Anthozoa) of the phylum Stimuli (Cn daria) represented by GFP derived from A. victoria.
  • the protein family is a newly developed deep-sea water from the Sea of Japan and offshore of Toyama Bay, at a depth of 32 lm, with the aim of discovering a new fluorescent protein family that has no common origin in biological evolution.
  • many luminescent blank tons were found to be present in the sampled deep-sea waters.
  • fluorescence due to the fluorescent protein is found in the body ⁇ 1 T, further its fluorescence was selected those exhibiting a yellow fluorescence or yellow-green fluorescence.
  • a type of Red Copepoda (red copepod) that looks red when viewed under a microscope under white light irradiation during its selection process
  • a fluorescence microscope under irradiation with ultraviolet light for example, dark light (wavelength range 420 nm to 500 nm)
  • the internal organs of the red copoda ⁇ as shown in Fig. 1 (b) ⁇ It was found that it shows a region emitting yellow-green fluorescence.
  • This Red Copepoda is taxonomically classified into Arthropods (Arthropoda phylum), Candidae (Mandibulatasubphy 1 urn), Crustaceans (C rustaceaclass), and Crustacea (Copepoda: Coprpo 'das). ub class)., Ae tideidae, Brady It was concluded that it was a member of the genus idius.
  • the cryopreserved Red Co Pepoda individual was thawed at room temperature, and further supplemented with 3 mL of TRI ZOL reagent. This suspension was transferred to a 15 mL Teflon homogenizer container, and crushed at 10 ° C to crush the outer shell and body cells. The obtained cell lysate was transferred to a 15-mL Falcon 'tube and centrifuged (11,000 rpm) at 2 to 8 ° C for 10 minutes. The supernatant (first extraction component) was collected in another 15 mL Falcon tube.
  • the remaining precipitate pellet was added with 1 mL of TRIZOL reagent and resuspended. This resuspension was transferred to a glass homogenizer container and subjected to homogenization again. The reconstituted solution was transferred to another 15 mL Falcon 'tube, added with 4 mL of TRIZOL reagent, and centrifuged (11,000 rpm) at 2 to 8 ° C for 10 minutes. The obtained supernatant (second extraction component) is collected and combined with the supernatant of the previous stage (first extraction component) to make a total of 1 OmL of the extraction component. Dispensed.
  • RNA precipitation pellet was left at room temperature for 10 minutes to evaporate the remaining solvent and dried.
  • the remaining dried tota1 RNA sample was re-dissolved by adding 400 ⁇ L of water free of RNase and leaving it to stand for 10 to 20 minutes. A part of the lysate was collected, and the absorbance at wavelengths 260 nm, 280 nm and 320 nm was OD 2 € . , OD 28 . , OD 32 .
  • RNA-containing concentration was calculated from the absorbance OD 260.
  • gel electrophoresis was performed under non-denaturing conditions, and the purity of the contained RNA was confirmed by analyzing the presence or absence of contaminants. Table 1 shows the results of the evaluation of the RNA content concentration for the obtained total RNA samples.
  • RNA Purification Kit (TAKARA) was used for separation and purification.
  • RNA solution To 200 ⁇ L of the total RNA solution, add 200 ⁇ L of the Pibridase ⁇ "Shillon 'Buffer: 2 ⁇ indinguffer attached to the kit, and add A total of 400 L of liquid was homogenized.
  • 20 ⁇ L of a dispersion of Oligotex-dT30 was added and mixed well. Heat the solution in the tube to 70 ° C, hold it for 3 minutes, and then let it cool at room temperature for 10 minutes, and po (y) (A) + poly (A) end of mRNA and Oligotex-dT30 O The ligo-dT probe was hybridized. After centrifugation (15, OOO rpm) for 5 minutes, Oligotex-dT30 was separated as a precipitate fraction.
  • the supernatant containing the Oligotex—dT 30 and the RNA components that were not piperidized was removed.
  • the precipitate fraction was dispersed in 350 ⁇ L of a washing buffer attached to the kit and transferred to a tube for centrifugation.
  • the supernatant was removed by centrifugation (15, OOO rpm) for 30 seconds. Further, the same washing operation was performed using the same amount of the washing buffer.
  • the obtained purified mRNA precipitate was redissolved in 11 iL of DEPC-water (aqueous solution). Take a portion of the sample for evaluation, and use the remaining (10.5 / zL) purified mRNA sample solution for 18 samples. C, frozen and stored. In addition, use the sample for evaluation. Then, the RNA-containing concentration was evaluated. 'In addition, in each purification step, the supernatant removed and the purified mRNA precipitate were subjected to genole electrophoresis under non-denaturing conditions to confirm the purification process. Table 2 shows the evaluation results of the RNA-containing concentration of the obtained purified mRNA ⁇ ;
  • cDNA SynthesisKit (Stratagene)
  • the purified mRNA was used as type II and cDNA was synthesized.
  • cDNA single-stranded cDNA (first strand) was synthesized according to the following procedure.
  • Reverse transcription buffer provided with the kit: 10 X 1 st s s t r a n d bu f fer
  • DNA synthesis buffer attached to the kit 10 X 2 ndstrandbuffer 20 ⁇ L, 2ndstrand dNTP miture, and 11 ⁇ L of distilled water (DDW) were sequentially added to the kit, and RNase H solution 2 was used as an RNAse enzyme.
  • L enzyme concentration 1.5 UZ ⁇ L
  • DNA po 1.1 solution 11 enzyme concentration 9. OU / ⁇ L
  • the remaining mRNA is degraded by RNaseH, while the prepared single-stranded cDNA (first strand) is type III, and the complementary strand is obtained from the upstream blooder by DNA po 1.I.
  • Double-stranded cDNA (Second strand) synthesis.
  • the enzyme reaction mixture was kept at 16 ° C for 2.5 hours to extend the phase capture (second strand) to obtain double-stranded cDNA, and then cooled with water to stop the enzyme reaction.
  • Double-stranded cDNA Double-stranded cDNA
  • Both ends of the double-stranded cDNA were blunt-ended in the following procedure.
  • the reaction solution containing the double-stranded cDNA was added b 1 un tingd NTP mixture 23 ⁇ L s c P fu enzyme solution 2 mu L (the enzyme concentration 2. 5 ⁇ / ⁇ L).
  • the reaction mixture was vortexed, mixed uniformly, and kept at 72 ° C for 30 minutes to be treated with the enzyme.
  • the dried pellet of the DNA precipitate was redispersed in 9 L of Eco RI adapter solution at 4 ° (1 hour) and redispersed.
  • a commercially available Ligation reaction solution Ligation on Hi Add 4.5 ⁇ L of gh, keep it at 16 ° C overnight (1 S time), and ligate the Eco RI adapter to the end of the cDNA, and add 186.5 ⁇ L of distilled water to the reaction solution.
  • the mixture was diluted to a total volume of 200 ⁇ L, added with 200 ⁇ L of phenol, vortexed, and mixed well. The mixture was centrifuged for 5 minutes (15,000 rpm), the liquid phase was separated, and the upper layer of water was separated.
  • the separated aqueous layer was spiked with 200 / x L of chloroform, vortexed and mixed, and centrifuged (15,000 rpm) for 5 minutes to separate the liquid phase.
  • To the separated aqueous layer was added 10 tL of a 3 M aqueous sodium acetate solution and 200 L of 100% isopropanol, and the mixture was vortexed.
  • the cDNA precipitate was alcohol-precipitated, and the cDNA precipitate, which had been alcohol-precipitated, was centrifuged (15,000 rpm) at 4 ° C. for 60 minutes and separated into a precipitate fraction.
  • the supernatant was removed, 500 ⁇ L of 70% ethanol was added to the precipitate fraction of the remaining cDNA precipitate, and the mixture was mixed well, followed by centrifugation (15, OOO rpm) for 2 minutes to regenerate the cDNA.
  • the pellet of the recovered cDNA precipitate was dried, and the pellet of the recovered cDNA precipitate was dried with distilled water 20 ⁇ , ⁇ 4 PNK buffer.
  • the T4 PNK enzyme reaction mixture was re-dispersed well in a mixture of 3 ⁇ L, 3 ⁇ L of 50% glycerol, and 3 L of 75 mM ATP nuclei.
  • T4 Pol yn cleotide Kinase enzyme solution from an enzyme solution set (manufactured by TAKARA) was added, and the mixture was kept at 37 ° C. for 1 hour to allow the enzyme reaction to proceed. Final phosphorylation of the end Thereafter, the mixture was heated and maintained at 70 ° C. for 30 minutes to perform a heat denaturation treatment, thereby completing the reaction.
  • the double-stranded cDNA subjected to the above-mentioned terminal blunting treatment was digested with XhoI according to the following procedure.
  • the collected pellet of the cDNA fragment precipitate was redispersed in 6.0 L of TE buffer to obtain a solution. A part (1. O / i L) was collected and the contained cDNA concentration was evaluated. The cDNA concentration was 404.lng VL, the end was B ⁇ untend, and the 3 'end was digested with XhoI. Was done. Cloning.
  • the reaction solution after the Eco RV treatment was applied to a 0.7% agarose 'gel and subjected to electrophoresis to cut out a DNA fragment band having a desired size.
  • the excised gel was treated with Ultrafree DA, and centrifuged (7,000 rpm) for 10 minutes to recover a liquid layer consuming vector DNA fragments.
  • the vector DNA fragment was separated and purified from this solution by the MinE 1 ute method, and separated as a 20 ⁇ L eluate in Elution Buffer. DN in this vector DNA fragment solution
  • the A fragment was once precipitated with ethanol and redispersed in 5 jL of E1ution Buffer to prepare a vector DNA fragment solution having a DNA filtration rate of 94.5 ng / ⁇ L.
  • the vector forming the insertion site of the B lunt—en dZXhoI cleavage site pB1uescript II SK (+) fragment, 5, terminal B1untend, 3 'terminal XhoI
  • the digested double-stranded cDNA fragment was ligated to construct a cDNA library.
  • the constructed cDNA library was introduced into host Escherichia coli by the Electropanol method, and a transformant was selected.
  • the introduction of the plasmid 'vector into host Escherichia coli by the E1ctrop1 atione method was carried out by the following procedure. 5 ⁇ L of StrataCleanResin solution was added to 2.295 ⁇ L of Ligaton solution containing the prepared cDNA library, and the mixture was mixed well with Vortex for 15 seconds. Centrifugation was performed to sediment the Resin, and the supernatant was collected in another tube. Again, 5 ⁇ L of Resin solution was added to the supernatant, vortexed for 15 seconds, and mixed well. In addition, centrifugation was performed to sediment the residue, and the supernatant was collected in another tube.
  • the supernatant and the collected liquid layer were combined to prepare a solution containing a total of 10 L of the plasmid 'vector. Once again, this mixture was centrifuged to sediment slightly contaminated Resin, and the supernatant was collected in another tube. The enzyme used for the Ligation reaction is removed from the collected supernatant, and the resulting solution is a plasmid DNA solution.
  • the frozen stored ComtentCe11 is thawed at ice temperature.
  • E. coli Pulser Bio-rad
  • SOC pre-warmed medium component
  • the ratio (c DAN library efficiency) of the transformants having a vector into which the cDNA fragment was inserted was evaluated using the colony PCR method.
  • T7 primer As a feed primer, corresponding to the nucleotide sequence of the T7 promoter site, T7 primer: GTAATACGACTCACTATAGGGC
  • Reverse 'primer complementary to the base sequence at the T3 promoter site
  • PCR was performed using a commercially available DNA synthase: KOD Dash DNA polymerase with the vector DNA contained in the clone as type II.
  • Table 3 shows the temperature conditions of the PCR reaction used and the composition of the reaction solution.
  • the frequency of occurrence mainly reflects the abundance ratio of the original mRNA, but colonies of the transformed strain into which cDNA encoding the fluorescent protein of interest has been inserted, at least 2-3 colonies Presumed to be found.
  • many of the conventionally known GFPs are produced as fluorescent mature GFPs when expressed in host Escherichia coli.
  • Fluorescent protein derived from Red Copepoda may also be produced as a mature, mature fluorescent protein when expressed in host E. coli.
  • Based on the above considerations ⁇ : Based on at least the condition of producing at least 1.5 x 10 5 colleagues, a plurality of transformants carrying the cDNA library were transformed using multiple culture media using the medium LB / Car. The cells were cultured on a petri dish to form colloys.
  • the introduced plasmid 'vector' was replicated and purified by the following procedure.
  • Plasmids were separated and purified from the sorted cells using a commercially available plasmid purification kit: QI AGEN 1 a smidpurificationkit (QI AG EN). Add the P1 solution 0.375 attached to the purification kit to the sorted cells. Add mL and vortex to disperse well. To this cell dispersion, 0.375 mL of the added P2 solution was added and mixed. The plate was allowed to stand at room temperature (20 ° C) for 5 minutes. Next, 0.525 mL of the attached N 3 solution was added to the mixture and mixed. After the bactericidal treatment, the mixture was centrifuged (11,000 rpm) at 4 ° C. for 15 minutes, and the soluble fraction (supernatant) of plasmid DNA was separated and recovered.
  • QI AGEN 1 a smidpurificationkit QI AG EN
  • the soluble fraction (supernatant) containing the plasmid DNA was applied to a QI Ap rep 4 column of the same purification kit.
  • the liquid layer was removed by centrifugation (15,000 rpm) at 4 ° C.
  • 0.5 mL of PB was added for washing, and subsequently, 0.75 mL of PE was added for washing.
  • centrifugation (15,000 rpm) was performed at 4 ° C for 1 minute to remove the washing solution.
  • the plasmid adsorbed on the QI ApRep of the purification kit was eluted and recovered with 30 ⁇ L of EluteBuffer (EB). Of 30 L of the solution containing the purified plasmid, 2 ⁇ L was taken, and 98 ⁇ L of distilled water was added to obtain a 50-fold diluted solution.
  • EluteBuffer EluteBuffer
  • Table 4 shows the results of evaluating the concentration of DNA contained in the solution containing the purified plasmid for each clone.
  • T7 primer GTAATACGACTCACTATAGGGC
  • a primer complementary to the base sequence at the T3 promoter site As a reverse primer, a primer complementary to the base sequence at the T3 promoter site
  • T3 primer AATTAACCCTCACTAAAGGG
  • Table 5 shows the temperature conditions of the DNA chain extension reaction used and the composition of the reaction solution.
  • the purified DAN fragment for analysis was redispersed in Temp lates up pressor Reagent (TSR). After mixing in a vortex, the solution was collected by centrifugation. The mixture was heated at 95 ° C for 2 minutes, separated into single-stranded DNA, and cooled on ice. After vortexing, the cells were centrifuged to precipitate a type I plasmid. After separation treatment of this type I plasmid, it was stored at 120 ° C. Thereafter, the DNA sample for analysis was applied to a commercially available sequence device: ABIPRISM3100 Genetic Analyzer to perform nucleotide sequence analysis.
  • Plasmid pET101 / D Insertion of fluorescent protein gene from Red Co Pepoda into TOPO
  • Reverse 'Primer Sa1I-LP1 (35mer); 3, the corresponding nucleotide sequence is added at the end to introduce the restriction enzyme Sa1I cleavage site
  • Table 6 shows the temperature conditions of the PCR reaction used and the composition of the reaction solution.
  • Applicable equipment Mast e r c y c l e r Gr a d i e n t, e p p e n d o r f)
  • Purification of the prepared ⁇ CR amplification product was performed by the following procedure. After performing the PCR reaction with a reaction volume of 25/1 L each, combine a total of 3 reactions, collect 2 ⁇ L of the reaction solution, and run it on a 1 Q / o agarose gel. A PCR amplification product having a molecular weight of 673 bp was confirmed.
  • the product DNA was concentrated from the reaction solution by the MinE 1 ute method.
  • Five volumes of PBbuffer were added per 1 volume (73 L) of the reaction solution, subjected to vortexing, and then transferred to a MinE 1 ute column. After centrifugation for 30 seconds, the precipitated DNA was deposited, and the supernatant was removed. The precipitated DNA was washed with 0.7 mL of PE buffer, and centrifuged (15,000 rpm) for 1 minute. Further, add EBuffer1O / L, and allow to stand at room temperature for 1 minute. Thereafter, the mixture was centrifuged (15,000 rpm) for 1 minute, and the supernatant was collected.
  • the purified double-stranded DNA was introduced into a commercially available plasmid ⁇ ⁇ ⁇ ⁇ D-TOPO (manufactured by Invitrogen), and an expression vector for the fluorescent protein derived from the Red Copepoda was obtained.
  • PETl 01— NFP was prepared.
  • the fluorescent protein derived from the Red Copepoda is a linker sequence having a cleavage site by the endopeptidase Factor Xa at the C-terminal of glutathione S-transferase (GST), a fusion partner.
  • GST glutathione S-transferase
  • PCR a PCR amplification product was obtained using the vector recovered from the isolated clone as type III.
  • Table 7 shows the temperature conditions of the PCR reaction used and the composition of the reaction solution.
  • Applicable equipment Ma st e r c y c l e r Gr a d i e n t (e p p e n d or f)
  • PCR reaction was carried out with a reaction volume of 25 ⁇ L each, then a total of 3 reactions were combined, 2 L of the reaction solution was collected, and electrophoresed on a 1% agarose gel, and the target molecular weight was measured.
  • a PCR amplification product of 6 88 bp (19 + 660 + 9) was identified. Subsequent separation and purification procedures and conditions were the same.
  • the purified double-stranded DNA was once incorporated into pCR4Blnt-TOPO (Invitrogen II), and clone selection was performed using a selection marker. By culturing each select another clone, the palm increase the clones. Plasmid p CR4B l un t- NFP. After the culture, the contained plasmid was purified, and its molecular weight and the nucleotide sequence of the inserted DNA fragment were confirmed. Then, as shown in FIG. 3, an EcoRI / Sa1I fragment of a 688 bp insert DNA containing ORF (translation frame) following the site encoding the Facter Xa cleavage sequence was commercially available. GST-tagged fusion protein expression plasmid. Vector: pGEX-6P-1 (manufactured by Amersham Biosciences), which was inserted into a GST-tagged fluorescent protein expression vector: pGEX661-NFP.
  • Escherichia coli was transformed using the fluorescent protein NFP expression vector: pET101-NFP shown in FIG.
  • Clones were selected for the obtained transformed Escherichia coli using the Ampicci11in resistance gene as a selection marker.
  • the expression of the introduced gene was induced using IPTG from a promoter derived from the vector p ET 10 lZD-TOPO, and 2 hours and 4 hours after the induction, the fluorescent protein Was confirmed for recombinant expression.
  • the fact that the recombinantly expressed fluorescent protein is a mature protein is confirmed by showing the fluorescence of the transformant strain Kouyou under ultraviolet irradiation.
  • Expression vector of the fluorescent protein NFP derived from the Red Copepoda pET101—Transformed Escherichia coli carrying the NFP is cultured in large amounts, and separation and purification of the recombinant fluorescent protein produced by induction of IPTG expression is performed. I killed.
  • the fluorescent protein recombinant was recovered in a fraction of 4.8-8.8% B buff fer.
  • the collected fraction was concentrated in advance under the conditions of VIVASP IN20 MW 10,000 cut. This concentrated sample is subjected to gel filtration: Hi Lo a d 16/60
  • the purified protein solution sample at this stage emits yellow-green fluorescence when irradiated with Dark Reader light (wavelength range: 420 nm to 500 nm).
  • the soluble fraction (cytoplasmic component) of the host E. coli was Of course, no fluorescence was observed in the control sample subjected to the production process.
  • the fluorescence spectrum and the excitation spectrum were measured using the purified protein solution sample at this stage.
  • a maximum beak was found at a wavelength of 507 nm in the excitation spectrum, which was measured while monitoring the fluorescence intensity at a wavelength of 500 nm.
  • the fluorescence has a maximum peak at a wavelength of 518 nm and is in the yellow range (wavelength range of 570 nm to 590 nm).
  • the gel-filtered protein solution sample is applied to a MonoQ HR 5/5 column (Amersham Biosciences). Elution conditions: A buffer 2 OmM Tris—HC 1 pH 7.6 B buffer 1 M Na C In a 1 in A buffer, a linear gradient of 10-20% B buffer (100-200 mM NaCI concentration), the purified fluorescent protein group was added to the fraction of 12.0-14, 0% B b -uffer. The transformants were recovered.
  • FIG. 10 shows the results of SDS-PAGE analysis of each protein solution sample in the process of purifying the above-described recombinant expression of a fluorescent protein derived from Red Copepoda.
  • Escherichia coli was transformed using a GST-tagged fluorescent protein expression vector: pGEX6P1-1NFP shown in FIG.
  • Each clone (positive control) was cultured on the medium.
  • Fig. 8 when each colony was observed under irradiation with Dark Reader light (wavelength range of 420 to 500 nm), the colonies of the transformed Escherichia coli showed fluorescence and GST It was confirmed that the tagged fluorescent protein was expressed.
  • the translated peptide chain forms a fluorophore-forming ring at the tripeptide site.
  • the fluorescent protein of the present invention can be used as an invitro fluorescent marker protein that can be expressed in host cells in an invitro culture system using mammalian cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Insects & Arthropods (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書
新規な蛍光性タンパク質とそれをコ一ドする遺伝子 技 術 分 野
本発明は、新規な蛍光性タンパク質とそれをコードする遺伝子に関する。具体的 には、本発明は、新規に発見された発光能を示す海洋プランクトンに由来する、新 規な蛍光性タンパク質と、かかる蛍光性タンパク質の組換え発現に利用可能なコー ド遺伝子に関する。 背 景 技 術
クラゲのァェクオレア ·ビクトリア (Ae qu o r e a v i c t o r i a) 由 来の緑色蛍光性タンパク質(GF P: G r e e n F l u r o e s e n t P r o t e i n) 、 あるいは、 その改変体タンパク質は、 異種細胞内、 特には、 各種の哺 乳動物細胞内において、組換え発現可能であり、 また、得られる組換えタンパク質 は、 宿主細胞内において、蛍光特性を示す。 この特徴を利用して、 生化学、 細胞生 理学、 医学分野において、動物細胞内で発現可能な、 i n v i v o 蛍光性マー カー ·タンパク質として、 A. v i c t o r i a由来の G F Pならびにその相同 体は、種々の対象、用途へ利用が図られている (文献 1 : L i p p i n c o t t— S c hwa r t z, J . G. H. P a t t e r s o n, S c i e n c e v o 1. 300, 87-91 (2003) ; 文献 2: T s i e n, R. Y. , An n u. Re v. B i o c h em. v o l . 67, 509— 544 (1 998) を参照) 。
カロえて、 A. v i c t o r i a由来の GFP以外にも、 审 lj胞動物門 (Cn d a r i a) のヒドロ虫類(c l a s s Hy d r o z o a) から GFP様タンパク質 のクローニングされており、 更には、 刺胞動物門 (Cn d a r i a) の花虫類 (c l a s s An t h o z o a)からも、 G F P様タンパク質のクロー-ングされて いる。 これら刺胞動物門 (Cn d a r i a) の花虫類 (c l a s s An t h o z o a) で発見されている GFP様タンパク質に関して、生物進ィ匕的には、共通する 起源を有する、蛍光性タンパク質ファミリ一を構成するであろう ことが報告されて いる (文献 3 : Y. A. La b a s e t a 1. , P r o c. Na t l . Ac a d. S c i . U. S. A. v o l . 99, 42 56-4261 (2002) を参照) 。
A. v i c t o r i a由来の GFPに関しては、その蛍光 ' 14の発揮に必要な 機構の研究が進んでいる。 まず、翻訳された GFPポリペプチド、は、天然の立体構 造へとフォールデイングされる際、その蛍光団を形成する内部卜リペプチド部位の 環化と、その後の酸化を経て、蛍光特性を有する成熟型 GFPとなることが解明さ れた。 更には、 A. V i c t o r i a由来の野生型 GFPの插定アミノ酸配列 ( d e du c e d ami n o a c i d s e q ue n c e) 65番〜 67香 目の S Y G力 蛍光団を形成する内部トリぺプチド部位であることも確認されてい る。 例えば、 66番目の Ty rを H i sへと変異を施した、 Y6 6H— GFPでは 、 その蛍光は、 野生型 GFPの緑色蛍光に対して、 ブルー ·シアトを起こし、 極大 波長 448 nmの青色蛍光を示すことが報告されている。 さら (こ、 65番目の36 rを Th rへと変異を施した、 S 65T— GFPでは、その蛍 の極大波長は 51 0 n mとなり、野生型 G F Pの緑色蛍光に対して若干レッド'、ンフトを示す。 また 、 S 65T— GFPでは、 内部トリペプチド: TYG部位の環ィ匕と、 その後の酸化 による蛍光団の形成は、野生型 G FPの SYGよりも有意に速 かに進行すること も報告されている。
前記 65番〜 67番目の SYG部位への変異導入以外に、 A. v i c t o r i a由来の野生型 GFP中、 203番目の Th rを、 Hi s, P h. e , Ty rへと箧 換する、 T203H, T 203 F, T 203 Yの変異導入を施 1~と、 蛍光の極大波 長は 530 nm程度と顕著なレツド 'シフトを生じ、黄色蛍光'! ¾タンパク質(YF P: Ye 1 I o w F l u r o e s e n t P r o t e i n) となることも報告さ れている。また、 65番〜 67番目の SYG部位に隣接する 64番目の Ph eを L e uへと置換する、 F 64 Lの変異導入が施された EGFP ( "e nh a n c e d " GFP) では、野生型 G F Pと比較し、蛍光団の形成を伴う成熟化過程が格段 に向上されることが報告されている (文献 4: B. P. Co r ma c k e t a 1. , Ge n e v o l . 173, 33— 38 (1996) を参照) 。 このように、 A. v i c t o r i a由来の GFPを始めとし、 刺胞動物門 (C n d a r i a) に属する各種海洋動物由来の G F P様タンパク質に関しては、働物 細胞内で発現可能な、 i n v i v o 蛍光性マーカー.タンパク質として利月す る試みが多数行われている。 一方、 海洋生物、 特に、 動物性プランクトン類には、 パイォルミネッセンスを示すものが多数存在することが知られている。従って、 A . v i c t o r i a由来の GFPの属する蛍光性タンパク質フアミリーと^、生 物進ィヒ的には、異なる起源を有する、別種のタンパク質ファミリーを構成する、新 規な蛍光性タンパク質の存在も期待される。すなわち、宿主動物細胞内で発現 能 な、 i n v i v o 蛍光性マーカー 'タンパク質として利用可能な、新規な 光 性タンパク質フアミリーの探索が待望されている。 発明の開示
蛍光性タンパク質を、宿主細胞内で発現可能な、 i n v i v o 蛍光性マーカ 一 'タンパク質として利用する際、その蛍光を観測するためには、宿圭細胞外より 光励起を行う。 この光励起に利用される波長は、該蛍光性タンパク質の示す蛍 ¾波 長より、 短波長側 (高エネルギー側) に位置する光吸収帯に選択される。蛍光性タ ンパク質から得られる蛍光強度は、励起波長における、モル吸収係数 ε (cm一1 · M一1) と蛍光量子収率 ηとの積に依存している。 実際には、 蛍光性タンパク質か ら得られる蛍光強度をモユタ一しつつ、励起スぺクトルを測定し、その極大ピーク 波長を決定する。例えば、 A. V i c t o r i a由来の G F Pの励起スぺク トル では、 396 nmの主ピーク、 475 nmに副ピークを示す。 一方、 A. v i e t o r i a由来の GFPを改変した YFPの励起スぺクトルでは、極大ピークが 5 20 nm程度に示される。
宿主細胞内において、二種の i n v i v o 蛍光性マーカー ·タンパク質を利 用する際には、 このように蛍光波長ならびに励起波長が相違する、二種の蛍光 タ ンパク質が必要である。 その観点から、 A. v i c t o r i a由来の GF Pなど の緑色蛍光を発する蛍光性タンパク質と併用する際、弁別可能な蛍光を発する、新. 規な蛍光性タンパク質の提供が望まれている。具体的には、蛍光の極大波長力 A. V i c t o r i a由来の GFPなどが示す緑色蛍光の極大波長よりも長波長側に 見出され、 かつ、 A. v i c t o r i a由来の GFPの属する、 蛍光性 GFP様 タンパク質ファミリーとは、生物進化的に異なる起源を有する、新規な蛍光性タン パク質の提供が望まれている。
本発明は前記の課題を解決するもので、本発明の目的は、刺胞動物門 (Cn d a r i a) と異なる門 (p hy 1 urn) に属する動物性プランクトンに由来し、 少な くとも、蛍光の極大波長が 510 nmより長波長側に存在し、黄色蛍光または黄緑 色蛍光を示す、異種細胞内で組換え発現可能な、新規な蛍光性タンパク質、 ならび に、 それをコードする遺伝子を提供することにある。 本発明者らは、前記の課題を解決すべく、海洋に棲息する動物性プランクトンよ り、 黄色または緑黄色域の発光 ·蛍光を示す、発光プランクトンを探索した。 具体 的には、 日本海、 富山湾沖で採取された海洋深層水中に存在する、動物性プランク トンの分類を進める過程で、数多くの発光プランクトンが見出された。更に、 これ ら発光プランクトンのうち、分類学的に刺胞動物門 (Cn d a r i a) と異なる門 (p hy 1 urn)に属する動物性プランクトンであって、体内に黄色蛍光または黄 緑色蛍光を示すタンパク質を発現しているものを選別した。その選別過程において、 甲殻類のプランクトンのうち、 白色光照射下において、 目視観察すると赤色に見え る、 Re d Co p e p o d a (赤色の橈脚類)の一種が、紫外光照射下において、 高い輝度の黄緑色蛍光を発していることを見出した。
本発明者らは、 この選別過程で見出された、黄緑色蛍光性タンパク質を発現して いる Re d Co p e p o d a (赤色の橈脚類) の分類を試み、節足動物門 (A r t h r o p o d a p y l um) 大類類 (Ma n d i b u l a t a s u b p h y 1 um)、 甲殻類 (C r u s t a c e a c l a s s)、橈脚類(カイァシ類: Co p r p o d a s ub c l a s s) に属し、 Ae t i d e i d a
Figure imgf000006_0001
B r a d y i d i u s属の形態的 徼と合致することが判明した。なお、既に報告されて いる種か否かは、 現段階では、 確定できていない。 引き続き、該 R e d C o p e p o d a由来の黄緑色蛍光性タンパク質について、 それをコードする遺伝子の塩基配列の特定と、 推定アミノ酸配列の決定を試みた。 先ず、該 R e d C o p e p o d aから、全 RNAを抽出し、含まれる mRNAを 精製し、 逆転写酵素を用い、 定法に従って、 対応する c DNAを合成した。
本発明者らは、従来、報告されている A. V i c t o r i a由来の GF Pの属 する蛍光性 GF P様タンパク質フアミリーでは、多くの場合、採取された c DNA から大腸菌でペプチド鎖への翻訳、 さらに、翻訳されたペプチド鎖の畳み込みと発 光団の形成がなされ、成熟型の蛍光性タンパク質として発現されていることを考慮 し、合成した c DNAを汎用のクローニング'ベクター: p B l u e s c r i p t I I SK中に挿入して、 c DNAライブラリーを構築し、大腸菌において、 c D NAからのタンパク質発現の有無を検討した。その際、 目的とする黄緑色蛍光性タ ンパク質の発現がなされる際には、 近紫外光 (波長範囲 3 3 0 nm〜40 0 nm) や、 紫'藍色〜青緑色 (波長範囲 400 nm〜5 00 nm) の光照射下において、 黄緑色蛍光が観察されるはずであり、黄緑色蛍光の有無を選別基準としてスクリー ユングを行った。 その結果、 明確に黄緑色蛍光が観察されるコロニーが、一コロェ 一選別され、 引き続き、 選別されたコロエーについて、 二次スクリーングを行い、 クローンの単離を行った。単離されたクローンのベクター中に挿入さている、 c D N A断片の塩基配列解析を行い、目的とする R e d C o p e p o d a由来の黄緑 色蛍光性タンパク質の完全長ァミノ酸配列、それをコードする遺伝子の塩基配列を 解明した。 さらに、本発明者らは、 この R e d C o p e p o d a由来の黄緑色蛍 光性タンパク質の完全長アミノ酸配列と、 A. V i c t o r i a由来の GF Pの 完全長アミノ酸配列との対比を行い、配列の類似性は低く、蛍光性 GF P様タンパ ク質フアミリーとは、生物進化的に異なる起源を有する、新規な蛍光性タンパク質 であることを確認し、 本発明を完成するに至った。 .
すなわち、 本発明にかかる橈脚類由来の蛍光性タンパク質は、
A e t i d e i d a e科、 B r a d y i d i u s属に属する橈脚類由来の蛍光性 タンパク質であって、
該蛍光性タンパク質の完全長ァミノ酸配列は、 MTTFKIESRI HGNLNGEKFE LVGGGVGEEG RLEIEMKTKD KPLAFSPFLL SHCMGYGFYH 60 FASFPKGTKN lYLHAATNGG YTNTRKEIYE DGGILEVNFR YTYEFNKI IG DVECIGHGFP 120 SQSPIFKDTI VKSCPTVDLM LPMSG I IAS SYARAFQLKD GSFYTAEVKN NIDFKNPIHE 180 SFSKSGPMFT HRRVEETHTK ENLAMVEYQQ VFNSAPRDM 219
(配列番号: 1に記載のアミノ酸配列)であることを特徴とする蛍光性タンパク質 である。
また、 本発明にかかる橈脚類由来の蛍光性タンパク質をコードする遺伝子は、 配列番号: 1に記載のァミノ酸配列をコードする D N Aを含んでなる遺伝子であ る。例えば、 前記配列番号: 1に記載のアミノ酸配列をコードする D N Aの塩基配 列は、
ATG ACA ACC TTC AAA ATG GAG TCC CGG ATC CAT GGC AAC GTC AAC GGG 48 GAG AAG TTC GAG TTG GTT GGA GGT GGA GTA GGT GAG GAG GGT CGG GTG 96 GAG ATT GAG ATG AAG AGT AAA GAT AAA CCA CTG GCA TTC TGT CCC TTC 144 CTG GTG TCC CAG TGC ATG GGT TAG GGG TTC TAG GAC TTC GGC AGC TTC 192 CCA AAG GGG ACT AAG AAC ATC TAT CTT CAT GGT GCA ACA AAC GGA GGT 240 TAG ACC AAC ACC AGG AAG GAG ATG TAT GAA GAC GGC GGC ATC TTG GAG 288 GTC AAC TTC CGT TAG ACT TAG GAG TTC AAC AAG ATC ATC GGT GAC GTC 336 GAG TGC ATT GGA CAT GGA TTC GCA AGT CAG AGT GCG ATC TTC AAG GAC 384 ACG ATC GTG AAG TCG TGT CCC ACG GTG GAG CTG ATG TTG GCG ATG TCC 432 GGG AAC ATC ATC GCC AGG TCC TAG GCT AGA GCC TTC CAA CTG AAG GAC 480
GGC TCT TTC TAG AGG GCA GAA GTC AAG AAC AAC ATA GAC TTC AAG AAT 528
CGA ATC GAC GAG TCC TTC TCG AAG TCG GGG CGC ATG TTC AGG GAG AGA 576
CGT GTC GAG GAG ACT CAC ACC AAG GAG AAC CTT GCC ATG GTG GAG TAC 624
GAG CAG GTT TTC AAC AGC GCC CCA AGA GAC ATG TAG 660
(配列番号: 2に記載の塩基配列)であることを特徴とする遺伝子であってもよレヽ。 また、 本発明にかかる橈脚類由来の蛍光性タンパク質をコードする遺伝子は、 · 配列番号: 1に記載のァミノ酸配列のコード領域に含む、該橈脚類由来の蛍光性 タンパク質の mR NAから調製された c D NAであり、 該 c D NAの塩基配列は、 AGAACACTCA GTGTATCCAG TTTTCCGTGC TACTACAAAC 40
ATG ACA ACC TTC AAA ATC GAG TCC CGG ATC CAT GGC AAC CTC AAC GGG 88
GAG AAG TTC GAG TTG GTT GGA GGT GGA GTA GGT GAG GAG GGT CGG CTC 136
GAG ATT GAG ATG AAG ACT AAA GAT AAA CCA GTG GCA TTC TCT CGC TTC 184
CTG CTG TCC CAC TGC ATG GGT TAG GGG TTC TAG CAC TTC GCG AGC TTC 232
CCA AAG GGG ACT AAG AAC ATC TAT CTT CAT GCT GGA ACA AAC GGA GGT 280
TAC ACC AAC ACC AGG AAG GAG ATG TAT GAA GAG GGC GGG ATC TTG GAG 328 GTC AAC TTC CGT TAG ACT TAG GAG TTC AAC AAG ATC ATC GGT GAG GTC 376
GAG TGC ATT GGA CAT GGA TTC CCA AGT CAG AGT CCG ATC TTC AAG GAG 424
ACG ATC GTG AAG TCG TGT CCC ACG GTG GAG CTG ATG TTG GCG ATG TCC 472
GGG AAC ATC ATC GCG A6C TGC TAG GCT AGA 6CC TTG CAA CTG AAG GAG 520
G6G TCT TTG TAG ACG GGA 6AA GTC AAG AAC AAG ATA GAG TTG AAG AAT 568
CCA ATC CAG GAG TCC TTC TCG AAG TCG GGG GCC ATG TTC ACC CAG AGA 616
CGT GTC GAG GAG ACT CAG ACC AAG GAG AAC CTT GCC ATG GTG GAG TAG 664
CAG CAG GTT TTC AAC AGO GGC CCA AGA GAG ATG TAG 700
AATGTGGAAC GAAACCTTTT TTTCTGATTA CTTTCTGTGT TGACTCCACA 750 TTG6GAACTT GTATAAATAA 6TTCAGTTTA AA 782
(配列番号: 3に記載の塩基配列)であることを特徴とする遺伝子であってもよい。 加えて、本発明は、前記該橈脚類由来の mRN Aから調製された c DN Aを保持 するプラスミ ド ·ベクタ一の発明をも提供し、
すなわち、 本発明にかかるプラスミド,ベクターは、
配列番号: 1に記載のアミノ酸配列のコード領域に含む、該橈脚類由来の蛍光性 タンパク質の mR NAから調製された c D NAを揷入してなるプラスミド、ベクタ 一であって、
該 c D NAの塩基配列は、
AGAACACTCA GTGTATCQAG TTTTGCGTCC TACTACAAAC 40 ATG ACA ACC TTC AAA ATC GAG TCC CGG ATC CAT GGC AAC CTG AAC GGG 88
GAG AAG TTC GAG TTG GTT GGA GGT GGA GTA GGT GAG GAG GGT CGG GTC 136
GAG ATT GAG ATG AAG ACT AAA GAT AAA CCA CTG GGA TTC TGT CGG TTC 184
CTG CTG TCC CAC TGC ATG GGT TAG GGG TTC TAG CAC TTC GCC AGC TTC 232
CCA AAG GGG ACT AAG AAC ATC TAT CTT CAT GCT GCA ACA AAC GGA GGT 280
TAG ACC AAC ACC AGG AAG GAG ATC TAT GAA GAC GGC GGG ATC TTG GAG 328
GTC AAC TTC GGT TAG AGT TAG GAG TTC AAC AAG ATC ATG GGT GAC GTC 376
GAG TGC ATT GGA CAT GGA TTC CCA AGT GAG AGT CCG ATC TTC AAG GAC 424
ACG ATC GTG AAG TCG TGT GCC ACG GTG GAC CTG ATG TTG CCG ATG TCC 472
GGG AAC ATC ATC GGC AGC TCC TAG GCT AGA GGC TTC GAA CTG AAG GAC 520
GGG TGT TTG TAG AGG GCA GAA GTC AAG AAG AAC ATA GAC TTC AAG AAT 568
GCA ATC CAC GAG TGC TTC TCG AAG TCG GGG CGG ATG TTC AGC GAG AGA 616
GGT GTC GAG GAG ACT CAC ACC AAG GAG AAC CTT GCC ATG GTG GAG TAC 664
GAG CAG GTT TTC AAC AGC GCC CCA AGA GAG ATG TAG 700 AATGT6GAAC GAAACCTTTT TTTCTGATTA CTTTCTCTGT TGACTCCACA 750 TTCGGAACTT GTATAAATAA GTTCAGTTTA AA 782
(配列番号: 3に記載の塩基配列) であるプラスミド ·ベクター p B 1 e u s c r i p t II SK-NF P (F ERM BP— 08681) である。 図面の簡単な説明
図 1 (a) は、本発明の蛍光性タンパク質の起源である、 Re d Co p e p o d a (赤色の橈脚類) の、 白色光照射下において顕微鏡観察される、 外形を示し、 図 1 (b) は、 Da r k Re a d e r光 (波長範囲 420 ηπ!〜 500 nm) の 照射下に、 紫光顕微鏡観察される、 該 Re d Co p e p o d aの体内器官中の、 黄緑色蛍光を発する領域を示す。
図 2は、本 明にかかる R e d Co p e p o d a由来の蛍光性タンパク質をコ 一ドする遺伝子 (673 b p) を、市販のプラスミド p ET 101/D-TOPO (I nv i t r o g e n 製) 中に挿入してなる、該 R e d Co p e p o d a由 来の蛍光性タンパク質の発現ベクター: p ET 101一 NFPの構成を説明する図 である。
図 3は、本 明にかかる Re d Co p e p o d a由来の蛍光性タンパク質をコ ードする遺伝子 (688 b p) を、市販の GSTタグ付き融合型タンパク質努現用 プラスミド'ベクター: p GEX— 6 P— 1 (Ame r s h am B i o s c i e n c e s製) 中に揷入し、エンドべプチターゼ F a c t o r X aによる切断部位 を具えたリンカー配列を介して、 Re d Co p e p o d a由来の蛍光性タンパク 質を融合パートナーのグルタチオン' S—トランスフェラ一ゼ (GST) の C末に 連結した GS T— t a g g e d 蛍光性タンパク質の発現用ベクター: pGEX6 P 1— NFPの構成を示す。
図 4は、 R e d Co p e o d a由来の蛍光性タンパク質の発現ベクター: p B l u e s c r i p t ll S K— N F Pにより形質転換した大腸菌における、可溶 性画分 (細胞質成分) ならびに不溶性画分 (膜成分) にそれぞれ含まれるタンパク 質に関する、 SDS— PAGE分析結果を示し、形質転換大腸菌の可溶性画分(細 胞質成分) 中に見出される、 分子量 25 kD aの新たなバンドを示す。
図 5は、 Re d Co p e p o d a由来の蛍光性タンパク質の発現ベクター: p ET101-NF Pを保持する形質転換大腸菌を大量培養し、可溶性画分(細胞質 成分) から、 ァニ才ン交換カラム: H i T r a p DEAE F F (Ame r s h am B i o s c i e n c e s製) と、 ゲル濾過: H i L o a d 16/60 S u p e r d e x 200 p g (Am e r s h am B i o s c i e n c e s製) により精製、回収した蛍光性タンパク質組換え体を、 SDS— PAGE分析した結 果を示す。
図 6は、図 5に示す精製純度を有する、 Re d Co p e p o d a由来の蛍光性 タンパク質溶液サンプルの、 白色光照射下の目視結果と、 Da r k Re a d e r 光(波長範囲 42 O nm〜500 nm) 照射下において、黄緑色蛍光を示す観察結 果を示す。
図 7は、図 5に示す精製純度を有する、 Re d Co p e p o d a由来の蛍光性 タンパク質溶液サンプルについて、波長 500 nmで蛍光強度をモニターしつつ測 定した、励起スぺクトルと、波長 508 nmで励起しつつ測定した、蛍光スぺクト ルの測定結果を示す。
罔 8は、 GSTタグ付き蛍光性タンパク質の発現ベクター: pGEX6 P l— N FPにより形質転換した大腸菌 (中央) 、 陰性対照の宿主大腸菌 (左上) 、 なちぴ に、 クローユング ·ベクター: p B 1 u e s c r i p t II SK中に Re d C o p e p o d a由来の蛍光性タンパク質をコードする c DNAが揷入されている 単離クローン (陽 '性対照;右上) を、 それぞれ培地上で培養し、 各コロニーを Da r k Re a d e r光(波長範囲 420 nm〜500 nm) 照射下、観察した結果 を示す。
図 9は、 本発明にかかる Re d C o p e p o d a由来の蛍光性タンパク質と、 EVRQGEN社から公表されている、 Co p e p o d a由来蛍光性タンパク質の ァミノ酸配列との対比を示す。 図 10は、本発明にかかる R e d Co p e p o d a由来の蛍光性タンパク質組 換え発現体の精製過程を示す、 S D S— P AG E分析の結果を示す。 発明を実施するための最良の形態
本発明の橈脚類由来の蛍光性タンパク質は、異種の宿主細胞内において、その天 然の蛍光特性を有する成熟型たんぱく質として組換え発現可能である。また、該組 換え発現された、橈脚類由来の蛍光性タンパク質の蛍光は、極大波長 518 nmを 有し、 黄色領域 (570 nil!〜 590 nm) をカバーしている黄緑色蛍光であり、 A. V i c t o r i a由来の GFPなどの緑色蛍光と弁別可能である。 従って、 両者を、宿主細胞内において、明瞭に区別可能な異なる蛍光を示す、二種の i n v i v o 蛍光性マーカー 'タンパク質として利用することが可能である。 以下に、本発明の橈脚類由来の蛍光性タンパク質に関して、 より詳しく説明する まず、 本発明の蛍光性タンパク質の起源である動物性プランクトンは、 日本海、 富山湾沖、水深 32 lmから採取された海洋深層水中に見出された、 甲殻類プラン クトンである。 その形態は、 図 1 (a) に示すように、 白色光照射下において、 顕 微鏡観察すると赤色に見える、 Re d Co p e p o d a (赤色の橈脚類) の一種 である。 この R e d Co p e p o d aは、分類学上、節足動物門 (A r t h r o p o d a p hy l um) 、 f|¾l (Ma n d i u l a t a s ub p y l u m) 、 甲殻類 (Cr u s t a c e a c l a s s) , 橈脚類 (カイァシ類: C o p r p o d a s ub c l a s s に厲し、 Ae t i d e i a a e禾斗、 B r a d y i d i u s属の橈脚類の一種である。 また、 紫外光、 例えば、 Da r k Re a d e r光 (波長範囲 420η n!〜 500 n m) の照射下に、 蛍光顕微鏡観察すると、 図 1 (b) に示すように、該 R e d C o p e p o d aの体内器官中に、黄緑色蛍光 を発する領域が観察される。
本発明者らは、 この該 R e d Co p e p o d aの体内に観測される、黄緑色蛍 光を発する領域を更に詳細に調べた結果、蛍光性タンパク質を産生するバクテリア の寄生、付着に起因するものではなく、 この R e d Co p e p o d a自体に由来 する蛍光性タンパク質に因ると結論した。 実際に、該プランクトンを集め、蛍光性 タンパク質の単離を進めることを検討したが、入手されるブランクトン量が十分で なく、そのァミノ酸配列解析に十分なタンパク質量を回収することは困難であると 判断された。従って、アミノ酸配列解析の結果に基づき、 そのアミノ酸配列の一部 をコードする、縮重プローブを作製し、 ゲノム DNAから、 当該蛍光性タンパク質 の遺伝子をプローブ 'ハイプリダイズ法により、 クローニングする手法の適用は困 難であると判断した。
そのため、本発明者らは、該 Re d Co p e p o d a体内でのタンパク質の発 現に伴い、残留している多種の mRNAのうち、 当該蛍光性タンパク質へと翻訳可 能なものを選別することを試みた。具体的には、 mRNAより cDNAライブラリ 一を作製し、 この cDNAライブラリーを利用して、蛍光性タンパク質の発現が可 能なものを選別することを目的として、 発現クローニング法を適用した。
先ず、該 Re d Co p e p o d aより、巿販の RNA抽出試薬; TR I ZOL 試薬 (I n V i t r o g e n製) を用いて t o t a l RNAを抽出し、 次いで、 市販の精製キット; O 1 i g o t e x— dT 30 < SUPER> mRNA P u r i f i c a t i o n K i t (TAKARA製) を用いて種々のタンパク質の 翻訳に利用された、 p o l y (A) + mRNAの精製を行った。 更に、 精製済み の mRNAから、市販の cDNA調製キット: cDNA Syn t h e s i s k i t (S t r a t a g e n e製) を利用して、 対応する c DNAの合成と、 増幅 をおこなった。 調製された c DNAは、 クローニング ·ベクター: p B 1 u e s c r i p t II SK中に揷入し、 cDNA ライブラリーを作製した。
作製された cDNA中、両末端の PC R増幅用ブラーマ一塩基配列に由来する領 域を利用し、 c DNAの 5,末端側は、 B l un t 端とし、 3, 末端側は、 X h o I 制限酵素の消化端とする。 一方、 クローユング 'ベクター: pB 1 u e s c r i p t II SKのマルチ .クローエング 'サイト中、 Xh 0 I 制限酵素 サイトを醉素消化し、他の切断端を B 1 un t端とした上で、前記の cDNA断片 と、 L i g a t i o nして、 前記部位中に c DNA断片を揷入した。 従来、報告されている A. v i c t o r i a由来の GFPなどでは、 mRNA から作製した c DN Aから大腸菌内で発現がなされ、翻訳されたぺプチド鎖から成 熟型の GFPとなることが判明している。 同様に、調製された該 R e d Co p e p o d a由来の cDNA ライブラリーを構成するベクターを大腸菌に導入し、挿 入されている cDNAを発現させ、コードされるタンパク質中に蛍光性を有するも のの有無を確認した。約 30万コロニー 生成する条件下において、 Da r k R e a d e r光 (波長範囲 420n m〜 5O 0 n m) 照射下に、 蛍光を発するコロニ 一が一つ見出された。この一次スクリーユングで選別された一つのコロニーについ て、 同様の条件で二次スクリーニングを行い、 クローンの単離を行った。
単離されたクローンから、導入されて Vヽるベクタ一を回収し、揷入されている c DN Aの塩基配列を決定した。利用したグローニング 'ベクター: pB 1 u e s c r i p t II SKの既知塩基配列を基に、その B l un t— Xh o I 部位間 に揷入されている c DNAへのシークェシングを進めた。その結果、該 R e d C o p e p o d a由来め蛍光性タンパク質の大腸菌內発現に利用される、 mRNA由 来の c DNA塩基配列として、 全長: 78 2 b p、 ORF (翻訳枠) : 660 b p が特定された。 その全塩基配列と、 OR Fから推定されるアミノ酸配列: 219ァ ミノ酸長を以下に示す。
AGAACACTCA GTGTATCCAG TTTTCCGTCC TACTACAAAC 40
ATG ACA AGO TTC AAA ATG GAG TCC G6G ATC CAT GGC AAC CTC AAC GQG
M T T F K I E S R I H G N し N G
1 5 10 15
GAG AAG TTC GAG TTG GTT GGA GGT 6GA GTA GGT GAG GAG GGT CGC CTC
E K F E L V G G G V G E E G R し
20 25 30
GAG ATT GAG ATG AAG ACT AAA GAT AAA CCA CTG 6CA TTC TCT CCC TTG
E I E M K T D K P L A F S P F
35 40 45 GTG GTG TCC GAG TGC ATG GGT TAG GGG TTG TAC GAG TTC GCC AGC TTC 232 し し S H G M G Y G F Y H F A S F
50 55 60
CCA AAG GGG ACT AAG AAC ATC TAT GTT CAT 6CT GCA AGA AAG GGA GGT 280 P K G T K N I Y L H A A T N G G
65 70 75 80
TAG ACG AAC ACC AGG AAG GAG ATG TAT GAA GAC GGG 6GC ATC TTG GAG 328 Y T N T R K E I Y E D G G
85 90 95
GTC AAG TTC GGT TAG ACT TAG GAG TTG AAC AAG ATC ATC GGT GAC GTC 386 V N F R Y T Y E F N K I I G D V
100 105 110 GAG TGC ATT GGA CAT GGA TTC CCA AGT CA6 AGT CCG ATC TTC AAG GAC 424 E C I G H G F P S Q S P I F K D
115 120 125
AGG ATC GTG AAG TCG TGT CCG ACG GTG GAC GTG ATG TTG CCG ATG TCC 472
5 6 T I V K S G P T V D し M P M S 8 130 135 140
GGG AAC ATC ATC GCC AGC TCC TAG GOT AGA GCC TTC CAA GTG AAG GAC 520 G N I I A S S Y A R A F Q し K D 145 150 155 160
GGC TCT TTC TAG AGG GCA GAA GTC AAG AAC AAG ATA GAC TTC AAG AAT G S F Y T A E V K N N I D F K N
165 170 175
CCA ATC CAC GAG TCC TTC TCG AAG TCG GGG CCC ATG TTC ACC CAC AGA 616 P I H E S F S K S G P M F T H R
180 185 190 GGT GTC GAG GAG ACT CAC ACC AAG GAG AAG GTT GCC ATG GTG GAG TAG 664 195 200 205
GAG CAG GTT TTC AAC AGC GCC CCA AGA GAG ATG TAG Q Q V F N S A P R D M *
210 215
AATGTGGAAC GAAACCTTTT TTTCTGATTA CTTTCTCTGT TGACTCCACA TTCGGAACTT GTATAAATAA GTTCAGTTTA AA 加えて、 上記の塩基配列に基づき、 PCR用プライマーを作製し、 改めて、 31 個体の Re d Co p e p o d aから t o t a l RNAを抽出し、 RN Aを踌型 として RT— PCRを行つて、対応する塩基配列と分子量を示す增幅産物が得られ ることを確認し、実際に、該 Re d Co p e p o d a由来の蛍光性タンパク質 N F P (Namerikawa Fluorescent Protein)をコードするものであることを検証した また、 上記塩基配列に基づき、 PCR用ファワード'プライマーとリバース 'プ ライマーとして、
ファワード 'プライマー: pET— UP 1 (28me r )
5-CACCATGACAACCTTCAAAATCGAGTCG
リバース ·プライマー: S a 1 I— LP 1 (35tne r) ; 3, 末端に制限酵素 S a 1 Iの切断サイトを導入するため、 対応する塩基配列が付カ卩されている
5-CTGGTGGACCTACATGTCTCTTGGGGGGGT6TT6A
を作製し、単離クロ ^"ンより回収したベクターを鏡型として、 PCR増幅産物を得 た。 図 2に示すように、 この ORF (翻訳枠) を含む PC R増幅産物 673 b pを 、 市販のプラスミド pETl O l/D— TOPO (I nv i t r o g e n 製) 中 に揷入し、該蛍光性タンパク質 NFPの発現ベクター: pETl O l— NFPを作 製した。
一方、該 Re d Co p e p o d a由来の蛍光'! ¾タンパク質が、融合パートナー のグ.^ /タチオン. s—トランスフェラーゼ (GST) の C末に、 エンドぺプチタ一 ゼ F a c t o r X aによる切断部位を具えたリンカ一酉己列を介して連結され ている、 GST— t a g g e d 蛍光性タンパク質の発現ベクター: pGEX6 P 1— NFPを作製した。 すなわち、 PCR用ファワード'プライマーとリパース · プライマーとして、
ファワード.プライマー: GST— UP 1 (43me r ) ;前記 pET— UP 1 ( 28 me r ) に対して、 プロテーアーゼ: F a c t e r X aの切断アミノ酸配列 をコードする ATGGAAGGGGGCの部分配列と、 5 '末端に制限酵素 E c o R Iの切断 サイ トを導入するため、 対応する塩基配列 GAATTGが付加されている
5-CGAATTCATCGAAGGCCGGATGACAACCTTCAAAATCGAGTCC
5-CACCATGACAACCTTCAAAATCGAGTCC
リパース ·プライマー: S a 1 I—LP 1 (35me r ) ; 3, 末端に制限酵素 S a 1 Iの切断サイトを導入するすこめ、 対応する塩基配列が付カ卩されている
5-CTCGTCGAGCTACAT6TCTCTTGGGGCGCTGTTGA
を利用して、単離クローンより回収したベクターを铸型として、 PCR増幅産物を 得た。 一旦、 PCR増幅産物を p CR4 B 1 u n t -TOP O ( I n v i t r o g e n 製) 中に組み込み、 選択マーカーにより、 クローン還別を行った。 各選別ク ローンについて、培養後、含まれるプラスミド: pCR4B 1 n t一 NFPを精 製し、 その分子量サイズ、 挿入されている DNA断片の塩基配列の確認を行った。 ついで、 図 3に示すように、 ORF (翻訳枠) を含む、 68 8 b pの揷入 DN Aの E c o R I/S a 1 I断片を、市販の G S Tタグ付き融合 タンパク質発現用プ ラスミド ·ベクター: GEX- 6 P- 1 (Ame r s h a m B i o s c i e n c e s製) 中に挿入し、 GSTタグ付き蛍光性タンパク質] ST F Pの発現ベクター: pG EX6 P 1— NFPを作製した。
図 2に示す、該蛍光性タンパク質 NFPの発現ベクター: pETl O l— NFP を用いて、大腸菌を形質転換した。 '得られた形質転換大腸菌に関して、選択マーカ の Amp i c i 1 1 i n耐性遺伝子を用いて、 クローン選別を行った。 また、ベ クタ一由来のプロモーターから、 I PTGを用いて、揷入された遺伝子の発現を誘 導し、 誘導後 2時間、 4時間経過後、 蛍光性タンパク質の笫現の有無を確認した。 I P TG発現誘導後、蛍光性タンパク質発現の確認済みの形質転換株の培養菌体を 破碑後、 遠心 (1 5, 000 r pm; 1 8, 800 X g) により分離した、 可溶性 面分 (細胞質成分) ならびに不溶性画分 (膜成分) にそれぞれ含まれるタンパク質 について、 SDS— PAGE分析を行った。 その結果、形質転換大腸菌の可溶性画 分 (細胞質成分) 中に、 分子量 25 kD aの新たなパンドが見出された。 すなわち 、該 R e d C o p e p o d a由来の蛍光性タンパク質の分子量は、上記の推定ァ ミ ノ酸配列から 24. 7 kD aと推定され、図 4の SDS— PAGE分析結果に示 される、 分子量 25 kD aの新たなバンドは相当している。
該 R e d C o p e p o d a由来の蛍光性タンパク質の発現ベクター: p ET 1 0 1一 NFPを保持する形質転換大腸菌を大量培養し、蛍光性タンパク質組換え体 の分離精製を試みた。 予め、推定アミノ酸配列に基づき、該蛍光性タンパク質組換 え体の等電点 (p I) を推測 (算定) した結果、 p 1 =6. 5 0と算定された。 そ の結果を参照して、 可溶性画分(細胞質成分) を、 ァニオン交換カラム: H i T r a p D E AE F F (Am e r s h a m B i o s c i e n c e s ίこ力け、 溶出条件: A u f f e r 2 OmM T r i s— HC 1 pH7. 6 B b u f f e r 1M Na C l i n A b u f f e r, ¾:線勾配 0— 20 %
B b u f f e r (0-200 mM N a C 1濃度) におレ、て、 4. 8-8. 8 % B b u f f e rの画分に該蛍光性タンパク質組換え体を回収した。 次いで、 該回収画分を、 予め、 V I VAS P I N20 MW1 0, 0 O 0 c u tの条件で、 濃縮した。 この濃縮サンプノレを、 ゲル濾過: H i L o a d 1 6/60 S u p e r d e x 200 p g (Am e r s h a m B i o s c i e n c e s製) lこカ ナ 、溶出条件: A u f f e r 2 OmM T r i s -HC 1 pH7. 6におい て、 分子量 1 O O kD a以下の、蛍光画分として、該蛍光性タンパク質組換え体を 精製、 回収した。 この段階で、 SDS— PAGE分析を行つこところ、 図 5に示す よ うに、目的とする該蛍光性タンパク質組換え体がほぼ精製された状態となってい る。 この段階の精製タンパク質溶液サンプルは、 図 6に示すように、 D a r k R e a d e r光 (波長範囲 420 η n!〜 500 n m) 照射下では、黄緑色蛍光を発し て V、ることが確認される。 なお、宿主大腸菌の可溶性画分(細胞質成分) を同一の
X8 精製処理を施した対照サンプルでは、勿論、蛍光は観測されていない。 実際に、 こ の段階の精製タンパク質溶液サンプルを用いて、蛍光スぺクトルと、励起スぺクト ルの測定を行った。 図 7に示すように、波長 500 nmで蛍光強度をモニターしつ つ測定した、励起スぺクトルでは、波長 507 nmに極大ピークが見 された。一 方、波長 508 rimで励起しつつ測定した、蛍光スぺク トルでは、波長 518 nm の極大ピークを持ち、 黄色域(波長域 570 nm〜590 nm) を力パーする蛍光 が確認されている。
また、 図 3に示す、 GSTタグ付き蛍光性タンパク質の発現ベクター: pGEX 6 P 1— NFPを用いて、大腸菌を形質転換した。得られた形質転換大腸菌、宿主 大腸菌 (陰性対,照) 、 ならびに、 クローニング ·ベクター: pB l u e s c r i p t II 3 中&こ該1 6 (1 C o p e p o d a由来の蛍光性タンパク質をコード する cDNAが挿入されている単離クローン(陽性対照) を、 それぞれ培地上で培 養した。 図 8に示すように、各コロニーを D a r k Re a d e r光(波長範囲 4 20 nm〜50 O nm) 照射下、観察したところ、得られた形質転換大月昜菌のコ口 ニーは、蛍光を発しており、 GSTタグ付き蛍光性タンパク質の発現 なされてい ることが確認された。 また、他のタンパク質と適正なリンカ一配列を介して連結さ れた融合型タンノ、。ク質として、組換え発現した際にも、翻訳さ.れたぺプチド鎖から 、蛍光団を形成する內部トリペプチド部位の環化と、 その後の酸化を緩て、蛍光特 性を有する成熟型蛍光性タンパク質となることが確認される。 一方、本発明者らは、本発明の R e d Co p e p o d a由来の蛍光性タンパク 質以外に、 Co p e p o d a由来の蛍光性タンパク質に関する報告などの有無を検 索したところ、 C o p e p o d a由来の蛍光性タンパク質遺伝子をヒ トイヒしたコ一 ド領域を含む緑色蛍光性タンパク質発現べクタ ^が、極く最近、 EVR QGEN¾h から. C o p— G r e e nTM の商品名で市販されていることを知つだ。 同市販品 の緑色蛍光性タンパク質発現べクタ から発現される、 Co p e p 0 d a由来の蛍 光性タンパク質の組換え発現体 Co p GFPは、波長 502 nmに極大ピークを示 す、緑色蛍光を示すこと、 また、励起スぺクトルは、 波長 482 nmに極大ピーク を有することが、 その商品カタログに掲載されている。
また、 EVRQGENi社から公表されている、 C o p— G r e e nTM中にコー ドされる C o p e p o d a由来蛍光性タンパク質のアミノ酸配列、ならびに、 OR Fのコドンを対応するヒ ト化コドンに変換した塩基配列を以下に示す。
Sequence of the human i zed version of the GopGFP' s open reading frame
ATG CCC GGG ATG AAG ATC GAG TGC CGC ATC ACC GGC ACC CTG AAC GGC 48 M P A M K I E G R I T G T し N G 16
GTG GAG TTC GAG CTG GTG GGC GGC GGA GAG GGC ACC CCC GAG CAG GGC 96
V E F E L V G G G E G T P E Q G 32
GGC ATG ACC AAC AAG ATG AAG AGC ACC AAG GGG GGC CTG ACC TTC AGC 144
R M T N K W K S T K G A L T F S 48
CGC TAC GTG CTG AGC CAG GTG ATG GGC TAG GGG TTC TAG GAG TTG GGC 192
P Y L L S H V M G Y G F Y H F G 64
ACC TAC CCC AGC GGC TAC GAG AAC CCC TTG CTG CAC GGG ATG AAC AAC 240
T Y P S G Y E N P F し H A I N N 80
GGC GGC TAC ACC AAC ACC CGC ATC GAG AAG TAC GAG GAC GGC GGC GTG 288
G G Y T N T R I E K Y E D G G V 96
GTG CAC GTG AGC TTC AGC TAC CGC TAG GAG GGG GGC CGC GTG ATG GGC 336 L H V S F S Y R Y E A G R V I G 112
GAC TTC AAG GTG GTG GGC ACC GGG TTC CGC GAG GAC AGC GTG ATC TTC 384 K V V G D S V 128
ACC GAG AAG ATC ATC CGC AGC AAC GCC ACC GTG GAG GAG CTG GAG CGC 432 T D K I I R S N A T V E H L H P 144
ATG GGC GAT AAC GTG CTG GTG GGC AGC TTC GCC CGC ACG TTC AGC CTG 480 M G D N V し V G S F A R T F S し 160
CGC GAG GGC GGC TAG TAG AGC TTC GTG GTG GAG AGC CAG ATG GAG TTG 528
R D G G Y Y S F V V D S H M H F 176
AAG AGC GCC ATC GAG CCC AGC ATC CTG CAG AAC GGG GGC CCC ATG TTC 576 K S A I H P S I し Q N G G P M F 192
GCC TTG GGC C6G GTG GAG GAG GTG CAC AGC AAG ACC GAG CTG GGC ATC 624
A F R R V E E し H S N T E し G l 208
GTG GAG TAG GAG CAC GCC TTC AAG ACC GGG ATC GCA TTC GCC TGA 669 V E Y Q H A F K T P I A F A * 223 本発明にかかる Re d C o p e p o d a由来の蛍光性タンパク質と、該 EVR QGEN社から公表されている、 C o p e p o d a由来蛍光性タンパク質のァミノ 酸配列を対比すると、 図 9に示される通り、 同一性を示すアミノ酸 112残基、相 同的なアミノ酸残基をふくめると、 相当に高い相同性が見出されている。 但し、両 者の示す蛍光スぺクトルには、 明確な相違が存在している。
これら甲殻類由来の蛍光性タンパク質は、相当の相同性を示し、新規な蛍光性タ ンパク質のファミリーを構成すると推定できる。また、その蛍光団の形成に関与す るトリペプチド部位は、 GYGの部位と榫測される。 さらに、 この二種の甲殻類由 来の蛍光性タンパク質において、 蛍光団の猜化、 酸化を受けた、 成熟型タンパク質 は、類似する立体構造を示すと推定される。 該 EVRQGEN社から市販される発 現ベクターから発現される、 Co p e p 0 d a由来の蛍光性タンパク質の組換え発 現体 Co pGFPは、モノマーとして蛍光を示すことが示されている。相同性を考 慮すると、本発明にかかる Re d Cop e p o d a由来蛍光性タンパク質も、哺 乳動物細胞内において、組換え発現した際、同様にモノマーの形態とでき、 i n v i vo 蛍光性マーカー ·タンパク質として利用可能であると予測される。
なお、本発明にかかる Re d Cop e p o d a由来蛍光性タンパク質をコード する遺伝子(c DNA)を、クローニング.ベクター: pB l u e s c r i p t II SKのマルチ'クロ一ニング 'サイト中に ί ^入したベクタ一: pB 1 u e s c r i p t II SK— NFPは、ブタペスト条約こ基づき、独立行政法人産業技術総合研 究所 特許生物寄託センタ一 (日本国 茨娀県つくば市東 1丁目 1番地中央第 6、 郵便番号 305 - 8566) に、 受託番号 F ERM BP— 08681として、 国 際寄託 (平成 16年 3月 31日付け) がなされている。
本発明にかかる R e d Cop e poda由来蛍光性タンパク質を、 i n v i vo 蛍光性マーカー ·タンパク質として、 哺乳動物細胞内で組換え発現する際に は、 A. V i c t o r i a由来の GFPや、 その人為的な改変体の発現系を利用 し、そのコード領域を置換する手法が利用可能である。また、哺乳動物細胞以外に、 従来の GFPの組換え発現が可能な、 バクテリア、 酵母、 真菌、 昆虫細胞などの宿 主において、同様に R e d Cop e pod a由来蛍光性夕ンパク質を組換え発現 することが可能である。 これら組換え発現に利用する際、 Re d Cope pod a由来蛍光性タンパク質をコードする遺伝子は、必要に応じて、宿主において使用 頻度の高いコドンへと変換した上で発現ベクターに揷入することが好ましい。勿論、 コドン変換に伴い、その遺伝子によりコードされるアミノ酸配列自体には、変異が 導入されない。発現ベクターへの揷入に際し、 予めコドン変換された、 コード遺伝 子は、 両端の非コード領域において制限酵褰消化し、 断片化する。 この制限酵素消 化を行う際、適当な制限酵素サイ卜が存在しない場合には、部位特異的変異導入法 によって、非コード領域の塩基配列に変異罄入して、所望の制限酵素サイトを導入 することもできる 実施例
以下に、 実施例を挙げて、 本発明を具体的に説明する。 ここに示す具体例は、本 発明にかかる最良の実施形態の一例ではあるものの、本発明は、 これら具体例に限 定されるものではない。
(新規な蛍光性タンパク質を産生 る甲殻類プランクトンの採取)
本発明者らは、 A. v i c t o r i a由来の GFPを代表とする、剌胞動物門 (Cn d a r i a) のヒドロ虫類(c l a s s H y d r o z o a ) や、 花虫類 ( c l a s s An t h o z o a) にお来する G F P様タンパク質フアミリーとは、 生物進化的には、共通する起源をもだない、 あらたな蛍光性タンパク質フアミリー を発見することを目的として、新たに、 日本海、 富山湾沖、水深 32 lmから海洋 深層水を採取し、蛍光性タンパク質を生産している動物性ブランクトンを探索した その探索過程で、数多くの発光ブランクトンが、サンプリングされた海洋深層水 に存在することが確認されている。. かでも、 甲殻類プランクトンの内で、蛍光性 タンパク質に起因する蛍光が体內器1 Tに見出され、 さらに、その蛍光が、黄色蛍光 または黄緑色蛍光を呈するものを選 した。
その選別過程において、 その形態 ίよ、 図 1 (a) に示すように、 白色光照射下に おいて、顕微鏡観察すると赤色に見 tる、 Re d Co p e p o d a (赤色の橈脚 類) の一種が、 紫外光、 例えば、 D a r k Re a d e r光 (波長範囲 420 nm 〜500nm) の照射下に、 蛍光顕歡鏡観察すると、 図 1 (b) に示すように、 該 Re d Co p e p o d aの体内器 ^中に、黄緑色蛍光を発する領域を示すことを 見出した。 この Re d Co p e p o d aは、 分類学上、節足動物門 (A r t h r o p o d a phy l um) 、大顎類 (Ma n d i b u l a t a s u b p h y 1 urn) 、 甲殻類 (C r u s t a c e a c l a s s) , 橈脚類 (カイァシ類: C o p r p o' d a s ub c l a s s).に為し、 Ae t i d e i d a e科、 B r a dy i d i u s属の橈脚類の一種であると結論された。
(Re d Co p e p o d a由来の蛍光性タンパク N F Pをコードする遺伝子 クローニング)
t o t a l RNAの採取
サンプリングされた海洋深層水より、回収された Re d Co p e p o d aの 3 00個体について、水きりした後、合計 3mLの TR I ZOL試薬中に懸濁し、 一 80°Cで凍結、 保存した。
凍結保存した R e d Co p e p o d a個体を室温で解凍し、更に、 3mLの T R I ZOL試薬を添カ卩した。 この懸濁液を、 15 mL容テフロン製ホモジナイザー 用容器に移し、 10度破 に力け、外殻ならびに体 ^細胞の破砕を行った。得ら れた細胞破砕物を 15 mL容ファルコン'チューブに移し、 2〜8°Cにおいて、 1 0分間、 遠心 (11, 000 r pm) した。 上清 (第一抽出成分) を、 別の 15m L容ファルコン ·チューブに回収した。
残った沈澱物ペレットに、 lmLの TR I ZOL試薬を添カ卩して、 再懸濁した。 この再懸濁液を、ガラス製ホモジナイザー用容器に移し、再度ホモジナイズ処理を 施した。別の 15 mL容ファルコン 'チューブに、再 理済み液を移し、 4mLの TR I ZOL試薬を加えた後、 2〜8°Cにおいて、 l O分間、 遠心 (11, 000 r m) した。 得られた上清 (第二抽出成分) を回収し、 前段の上清 (第一抽出成 分) と併せて、合計 1 OmLの抽出成分とし、 15mし容ファルコン ·チューブ中 に各 5 m L分注した。
分注したチューブ中、 TR I ZOL試薬 lmL当たり、 0. 2mLのクロロフォ ルム (1チュ^ "ブ当たり、 lmL) を添加した上で、 く振って、 両液相の分散を 図った。室温で 2〜 3分間静置した後、 2〜8°Cにおいて、 10分間、遠心(11, O O O r pm) した。 分離された水相 (約 3mL) を、 別のチューブに分取した。 分取した水相 (約 3mL) に、 当初の TR I ZOし^;薬 lmL当たり、 0. 5m Lのイソプロパノール (1チューブ当たり、 2. 4m3L) をカロえ、 よく混合した。 室温で 5分間静置した後、 2〜8°Cにおいて、 10分間、 遠心 (11, 000 r p m) した。 上清を除いた後、 アルコール沈澱画分に、 1チューブ当たり、 5mLの 無水エタノールを添加して、 一 20°Cで保存した。
チューブ中のエタノール沈澱ペレツトに、当初の TR I 20し試薬1111 当たり、 lmLの 75%エタノール (1チューブ当たり、 5raL) を加え、 ヴオルテックス にかけ、分散'混合した。分散'混合液を、 2〜8°Cにおいて、 10分間、遠心(1 1, 000 r p m) した。 上清を除いた後、 RN A沈澱ペレツトを、 室温、 10分 間放置して、残留する溶媒を蒸散させ、 乾燥した。 二つの分注から精製された、 乾 燥済みの t o t a l RN A試料二つの一方は、乾燥状態のまま、― 80°Cで保存 した。
残る一方の乾燥済みの t o t a 1 RNA試料は、 RNa s eの混入のない水 4 00 μ Lを加えて、 10〜 20分間静置して、再溶解した。一部溶解液を採取して、 波長 260 nm、 280 nm、 320 nmの吸光度 OD 2€。、 OD28。、 OD32
(パックグラウンド吸収) を測定した。 その結果に基づき、 定法に従って、 吸光度 OD 260から RNA含有濃度を算定した。 併せて、 非変性条件において、 ゲル電気 泳動を行い、夾雑物の有無を分析することで、含有される RNAの純度確認を行つ た。表 1に、得られた t o t a l RNA試料に関する、 : RNA含有濃度の評価結 果を示す。
Figure imgf000027_0001
o l y (A) + mRNAの精製
上で調製した、精製済みの t o t a l RNA溶液(R3NT A含有濃度 1. 14 μ g/μ L) 200 μ L力、ら、含まれている p o l y (A) 斗 mRNAを市販の精 製キット; O 1 i g o t e X— dT30 <SUPER> mRNA P u r i f i c a t i on Ki t (TAKARA製) を用いて分離、 精製した。
前記 t o t a l R N A溶液 200 μ Lに、同キットに舔付のパイブリダイゼ^" シヨン'ノ ッファー: 2ΧΒ i n d i n g u f f e r 200 μ Lを加え、合 計 400 Lの液を均一化した。 この RNA溶液に、 O l i g o t e x— dT30 の分散液 20 μ Lを添加し、 よく混合した。 チューブ中の液を 70°Cに加熱し、 3 分間保持し、 引き続き、 室温で 10分間放冷して、 p o 1 y (A) + mRNAの p o l y (A)末端と、 O l i g o t e x— dT30の O l i g o— dTプローブ 部とのパイブリダイゼーションを行った。 5分間、遠心 (15, O O O r pm) し て、 O l i g o t e x— dT30を沈澱画分として分離した。 O l i g o t e x— dT 30とパイプリダイゼーシヨンしていない RNA成分を含む、上清を除去した。 沈澱画分を、同キットに添付の洗浄用バッファー 350 μ L中&こ分散し、遠心力 ラム用チューブに移した。 30秒間、遠心 (15, O O O r pm) して、 上清を除 去した。 さらに、 同量の洗浄用バッファーを用いて、 同じ洗浄操作を行った。
二度の洗浄を終えた、沈澱画分に、予め 70°Cに加熱した、 同キットに添付の D EPC— wa t e r (水溶液) 50 μ Lを加えて、 この混合物を別の遠心力ラム 用チューブに移した。 30秒間、 遠心 (15, OO O r pm) して、 O 1 i g o t e x-dT30のプローブ上から遊離された p o 1 y (A) + mRNAを含む上 清を回収した。 沈澱画分に、再度、 予め 70 °Cに加熱した、 DEPC— wa t e r (水溶液) 50 μ Lを加えて、 プローブ上からの遊離操作を行レ、、 上清を回収し た。回収された上清を合わせ、合計 100 μ Lの精製済み mRNAを含む溶液とし た。
この精製済み mRNAを含む溶液に、 3.M 酢酸ナトリゥム水溶液 10 ^ Lと、 100%イソプロパノール 100 Lを添カ卩し、よく混合した。その後、一 20°C、 10分間放置し、含有される mRNAをアルコール沈澱させた。 30分間、遠心(1 4, O O O r pm) して、 析出した mRNAを沈澱画分に集め、 上清を除去した。 更に、析出した mRNAの沈澱画分に、 75%エタノール lmLを加え、 よく昆合 した。 5分間、 遠心 (14, O O O r pm) して、 析出した mRNAの沈澱画分を 分離し、 上清を除去した。
得られた精製済みの mRNA析出物ほ、 DEPC-wa t e r (水溶液) 11 i L中に再溶解した。 一部評価用サンプノレを取り、 残り (10. 5 /z L) の精製済 みの mRNA試料溶液は、一8ひ。 Cで凍結、保存した。 なお、評価用サンプルを用 いて、 RNA含有濃度を評価した。'また、 精製各段階において、 除去された上清、 ならびに、精製済みの mRN A析出物について、非変性条件において、 ゲノレ電気泳 動を行い、精製過程の確認を行った。表 2に、得られた精製済み mRNA^;料に関 する、 RNA含有濃度の評価結果を示す。
表 2
Figure imgf000029_0001
m RNAを鏡型とした c DNAの合成
市販の c DNA合成キット: c DNA S yn t h e s i s K i t (S t r a t a g e n e) を用いて、 精製済み mRNAを踌型として、 cDNAを合威した。 先ず、 一本鎖 cDNA (第一鎖) の合成を、 以下の手順で行った。
同キット添付の逆転写用バッファー: 10 X 1 s t s t r a n d bu f f e r
5 μ 、 me t hy l d NT Ρ mi t u r e 3 μ 、 l i nk e r p r i m e r 混合液 2 z L RNa s e B l o c k R i b o nu c l e a s e I nh i b i t o r 溶液 l μ L、水 (RNa s e f r e e) 30, 06 μ Lの混合液に対して、
精製済み mRNA溶液 7. 44μ L· (mRNA量 5 μ g) を一且、 70°Cで 3分間 加熱処理し、 高次構造の解消を行い、氷冷により急冷した後、添カ卩して緩やかに混 合した。 室温で、 10分間保持して、 mRNAの 3, 末端にブラーマ一を結合させ た。 添付されている逆転写酵素: S t r a t a S c r i p t R i v e r e s e Tr a n s c r i p t a s e 液 1.5 μ Lを添加し、緩やかに混合して、 42°C、 1時間酵素反応を行った。 次いで、 合成された一本鎖の cDNA (第一鎖) を踌型として、 その相補鎖 (第 二鎖) の合成を、 以下の手順で行った。
得られた酵素反応液 50 μ Lに対して、 氷冷下、 同キット添付の DNA合成用バッファー: 10 X 2 n d s t r a n d b u f f e r 20 μ L, 2 n d s t r a n d dNTP m i t u r e 、 留水 (DDW) 1 1 1 μ Lを順次カ卩え、 更に、 RNA分解酵素として、 RN a s e H 溶液 2 L (酵素濃度1. 5UZμ L)、 DNA合成酵素として、 DNA p o 1. I 溶液 1 1 (酵素濃度 9. OU/μ L) を加えて、 凝やかに混合 した。残留している mRNAを RN a s eHで分解し、 一方、調製された一本鎖の cDNA (第一鎖)を铸型として、上流側のブラーマ一より、 DNA p o 1. I により、 その相補鎖 (第二鎖) の合成を進める。 酵素反応液を、 1 6 °C、 2, 5時 間保持し、 相捕鎖 (第二鎖) の伸長を行い、 二本鎖 c DNAとした後、 水冷し、 酵 素反応を停止した。 二本鎖 c D N A末端の平滑ィ匕
前記二本鎖 c DN Aの両末端を、 以下の手順で平滑化処理した。
前記二本鎖 cDNAを含む反応液に対して、 b 1 un t i n g d NTP m i x t u r e 23 μ Ls c P f u 酵素液 2 μ L (酵素濃度 2. 5 \ / β L) を 添加した。 反応液をヴオルテックスにかけ、均一に混和した後、 30分間、 7 2°C に保持し、 酵素処理した。
30分間経過後、反応溶液に、 フエノール 200 μ Lを添加し、 ヴオノレテック スにかけ、 混合した。 2分間、 遠心 (1 5, 000 r p m) して、 液相を分離し、 上層の水層を分取した。その分取した水層に、クロロフオルム 20 0 μ Lを添加 し、 ヴオルテックスにかけ、混和した。 2分間、遠心(1 5, 000 r pm) して、 液相を分離し、 上層の水層を分取した。
分取した水層に、 3 M 酢酸ナトリウム水溶液 20 μ Lと、 無水エタノール 400 Lを添カ卩し、 ヴオルテックスにかけて、 よく混合し、含ま る cDNAを ェタノール沈澱させた。 ェタノール沈澱させた、 c D N A析出物は、 60分間、 遠 心 (1 5, 000 r p m) して、 沈澱画分に分離した。 上清を除去し、 残った c D NA析出物の沈澱画分に、 70%エタノール 500 μ Lを加え、 よく混合した。 2 分間、 遠心 (1 5, 000 r p m) tて、 再び、 c DNA析出物を ¾fc澱画分に分離 し、 上清を除去した。 回収された cDNA析出物のペレットを乾燥した。 c DNA析出物の乾燥ペレットを、 E c o R I a d a p t e r 溶液 9 L中に、 4° (、 1時間保持して、 再分散した。 この液に、 市販の L i g a t i on 反応液: L i g a t i on H i gh 4. 5 μ Lを添加し、 16°C、 夜間 (1 S 時間) 保持して、 c DNA末端に、 Ec o R I a d a p t e rを連結した。 反 応液に、 蒸留水 186. 5 μ Lを加え、 総量 200 μ Lに希釈した。 更に、 フ ノール 200 μ Lを加え、 ヴオルテックスにかけ、 よく混和した。 5分間、遠 ' (15, 000 r p m) して、 液相を分離し、 上層の水層を分取した。 その分取し た水層に、 クロロフオルム 200 /x Lを添カ卩し、 ヴオルテックスにかけ、混和し た。 5分間、 遠心 (15, 000 r p m) して、 液相を分離し、 上層の水層を分政 した。 分取した水層に、 3 M 酢酸ナトリウム水溶液 10 t Lと、 100%イソプロ パノール 200 Lを添加し、 ヴオルテックスにかけて、 よく混合し、含まれる c DNAをアルコール沈澱させた。 アルコール沈澱させた、 cDNA析出物は、 6 0分間、 4°C、 遠心 (15, 000 r p m) して、 沈澱画分に分離した。 上清を除 去し、 残った c DNA析出物の沈澱画分に、 70%エタノール 500 μ Lを加え、 よく混合した。 2分間、 遠心 (15, O O O r pm) して、 再ぴ、 cDNA析出 を沈澱画分に分離し、上清を除去した。回収された cDN A析出物のペレツトを乾 燥した。 回収された c DNA析出物のペレットを、蒸留水 20μ Ι^、 Τ4 PNK h» u f f e r 3 μ L , 50% グリセロール 3 μ L、 75 mM ATP 溶核 3 Lの混合液中に、 よく再分散させた。 この T4 PNK酵素用反応液を一 2 に冷却した。 解凍した後、 市販の酵素液セット (TAKARA製) の T4 P o l yn c l e o t i d e Ki na s e 酵素液 1 μ Lを添加し、 37 、 1時間保持し、酵素反応を行わせた。 二本鎖 c DNAの 5, 末端へのリン酸化を終 えた後、 70°C、 30分間加熱保持して、 熱変性処理を施し、 反応を終了した。 二本鎖 cDNAの Xh o I消化処理
上記の末端平滑化処理を施した二本鎖 c DNAを、以下の手順で Xh o I消化 処理した。
末端平滑化処理を施した二本鎖 cDN A 溶液 3 O^ L、市販の制限酵素反応 用 b u f f e r液 (TAKARA製) : 10XH Bu f f e r 11. 5 μ L、 水 (DDW) 70. 5 μ L, 市販の制限酵素液キット (TAKARA製) の Xh o I制限酵素液 (酵素濃度 1 OU/μ L) を混合し、合計 1 15 μ Lの 反応液に調製する。 37°C、 2時間、酵素消化を行った後、 フエノール 200 μ Lを加え、 ヴオルテックスにかけ、 よく混和した。 5分間、 遠心 (15, 000 r pm) して、 液相を分離し、 上層の水層を分取した。 その分取した水層に、 クロ口 フオルム 1 15 μ Lを添加し、 ヴオルテックスにかけ、混和した。 5分間、遠心 (15, O O O r pm) して、 液相を分離し、 上層の水層を分取した。
次いで、酵素消化された cDNA断片を含む、分取した水層 115 μ Lを、 1 X STE b u f f e r 3倍容を加えて平衡させた、 S— 300 s p i n c o 1 umnにかけた。 2分間、遠心 (1, 500 r pm ; 400X g) して、 分離 する水層 105 μ Lを回収した。 この回収した水層に、無水エタノール 200 / Lをカロえ、 一 20°C、 1時間静置して、 cDN A断片を析出させた。 cDNA断 片の析出物は、 60分間、 4°C、 遠心 (15, O O O r pm) して、 沈澱画分に分 離した。 c DN A析出物の沈澱画分に、 70%エタノール 900 μ Lを加え、洗浄 する操作を 2度繰り返した後、回収された cDN Α断片析出物のペレツトを乾燥し た。
回収された c DNA断片析出物のペレットを、 TE b u f f e r 6. 0 L 中に再分散し、 溶液とした。 その一部 (1. O/i L) を採取し、 含有される cDN A濃度を評価した。. c DNA濃度は、 404. l n g VLであり、 5, 末端は B Γ u n t e n d, 3'末端 は X h o I消化処理済みの、 二本鎖 c D N A断片 の溶液、 計 5. O. Lが得られた。 クローニング .ベクター: B 1 u e s c r i p t II SKのマゾレチ 'クロー ユング 'サイト中に、 B 1 u n t— e n dZXh o I切断の揷入部位の形成 巿販のベクター: p B 1 u e s c r i p t II SK ( + ) (S t r a t a g e n e製) を、 予め増殖し、 p B l u e s c r i p t II SK (+) の溶液 (濃度 5 0 0 η g/μ L)に調製した。このベクター溶液 6 μ L (ベクター量 3 μ g)、 1 0 XH B u f f e r 3 L, Xh o I制限酵素液 1 μ L (酵素濃度 1 0 U/μ L) 、 水 (DDW) 20 μ Lの、 合計 3 0 μ Lの反応液を、 3 7°C、 3時 間保持し、ベクターを Xh 0 Iサイトで酵素消化する。酵素消化されたベクター の主断片を、 M i n E 1 u t e法で分離精製し、 E l u t i o n B u f f e r中 の 2 6 Lの溶出液として回収した。
この 26 μ Lの溶出液に、 C I AP b u f f e r (On e— p h o r— A l 1 u f f e r) 3 μ L, C I AP 酵素溶液 1 Lを加え、合計 3 0 j Lの反 応液を、 3 7°C、 3 0分間保持し、 X h o Iサイトのみに C I A P処理を施した。 処理済みベクター主断片を、 M i n E 1 u t e法で分離精製し、 E l u t i o n B u f f e r中の 2 6 Lの溶出液として回収した。
. 回収された 2 6 /X Lの溶出液に、 1 0 XH B u f f e r 3 ^ L、 E c o R V制慨酵素液 1 μ L (酵素濃度 1 5U V L) を添加し、 3 7。C、 夜間 (1 4時 間)保持し、ベクターの Xh o I切断端の一方に E c o RVによる処理を加え た。 結果的に、 ベクター: p B 1 u e s c r i p t II S K (+) は、 B 1 u n t - e n d/Xh o I切断サイトの揷入部位を有するように切断されたものと なる。
前記 E c o RV処理後の反応液を、 0. 7% ァガロース 'ゲルにかけ、 電気 泳動して、 目的のサイズを有する DN A断片バンドを切り出した。切り出したゲル を、 U l t r a f r e e DAにより処理し、 1 0分間、 遠心 (7, 0 00 r p m) して、 ベクター DNA断片を食む液層を回収した。 次いで、 この液から、 べク ター DNA断片を、 M i nE 1 u t e法で分離精製し、 E l u t i o n Bu f f e r中の 20 μ Lの溶出液として分離した。このベクター DNA断片溶液中の DN A断片を一旦、エタノール沈澱させ、 E 1 u t i o n B u f f e r 5 j L中に 再分散させ、 DN A漉度 94. 5 n g/μ Lのベクター DNA断片溶液に調製し た。 c DNAライブラリーの構築
前記の B l u n t— e n dZXh o I切断サイトの揷入部位を形成したべク ター: p B 1 u e s c r i p t II S K ( + )断片と、 5,末端は B 1 u n t e n d、 3 ' 末端部は Xh o I消化処理済みの二本鎖 c DN A断片とを連結して、 c DNAライプラリーを構築した。
ベクター DNA断片溶液 0. 5 3 ^ L (DNA量 5 0 n g) 、 末端処理済み二 本鎖 c DNA断片の溶液 1 μ L (DNA42 O O n g) , L i g a t i o n H i g h 0. 7 6 5 Lを混合し、 1 6°C、 一夜 (1 4時間) 保持して、 両 DNA 断片の連結を行った。得られたプラスミド ·ベクターは、 R e d C o p e p o d aから回収された mRNAから調製された c DNAが揷入されており、 cDNAラ イブラリーが構築されている。 プラスミド.ベタターの宿主大腸菌への導入
構築された c DNAライプラリーを、 E l e c t r o p o l a t i o n法により 宿主大腸菌へ導入し、形質転換株を選択した。 プラスミド 'ベクターの E 1 e c t r o p o 1 a t i o n法による宿主大腸菌へ導入は、 以下の手順で実施した。 . 作製された c DNAライブラリーを含む L i g a t i o n液 2. 2 9 5 μ Lに、 S t r a t a C l e a n R e s i n 液 5 μ Lを添加し、 1 5秒間ヴオルテ ックスにかけて、 よく混合した。遠心して、 R e s i nを沈降させ、 上清を別のチ ュ一ブに回収した。再度、上清に R e s i n 液 5 μ Lを添加し、 1 5秒間ヴォ ルテックスにかけて、 よく混合した。 また、 遠心して、 R e s i nを沈降させ、 上 清を別のチューブに回収した。
二つのチューブ内に残余している R e s i n沈降物に、水 (DDW) 2. 5 μ L をそれぞれカ卩え、洗浄した。遠心して、 R e s i nを沈降させ、 洗浄により回収さ れたプラスミド ·ベクターを含む液層を分離した。
先の上清と、 回収された液層とを合わせて、計 1 0 Lのプラスミド 'ベクター を含む液とした。今一度、 この混合液を遠心し、僅かに混入している R e s i nを 沈降させ、上情を別のチューブに回収した。 回収された上清は、 L i g a t i o n 反応に利用した酵素が除去され、 プラスミド DNA溶液となる。 宿主大腸菌に利用する、 TOP 1 0株、 ならびに、 T e n B 1 u e株は、 凍結保 存されている C omp e t e n t C e l lを、氷温で解凍する。 R e s i n吸着 処理を施した、プラスミド DNA溶液 5 μ Lを、解凍された宿主大腸菌の C om p e t e n t C e l l懸濁液 40 μ Lに加えた。市販の E 1 e c t r o p o 1 a t i o n装置: E. c o l i P u l s e r (B i o— r a d製) を用いて、 パルス電圧; 1 , 7 kV、 0. 1 mm g a p c u v e t t e内において、 宿主 への E l e c t r o p o l a t i o n注入を行った。なお、使用パルスの時定数は、 c DNAライプラリー /TOP 1 0株の系では、 4. 1 μ s、 c DNAライブラ リー ZT e n B 1 u e株の系では、 4. 0 μ sに設定した。ベクター注入処理後、 宿主大腸菌を懸濁した液 4 5 μ Lに、 3 7 °Cに予熱した培地成分 SO C 9 5 5 μ Lを加えて、 3 7 °C、 1. 5時間振盪培養した。
その後、得られた培養液 1 0 00 /i Lから、 5 ju Lを採取し、培地成分 S O C I O O JU Lを加えて、 9 οιηφシャーレ上に撒種し、 室温 (20で) で二日間培養 を行った。残る培養液 9 9 5 μ Lに、 50%グリセロール 42 8. 5 7 ju Lを 加え、 混合液 (最終濃度 1 5%グリセロール含有) を— 8 0°Cで、 凍結保存した。 シャーレ培養において、 amp i c i 1 1 i n耐性を示すコロエー生成数を数え たところ、 c DNAライブラリー/ TOP 1 0株の系では、 1 4 2 5コロニー、 c DNAライブラリー/ T e n B 1 u e株の系では、 7 00コロニーであった。従つ て、前記培養液中に含まれる形質転換株密度は、 c DNAライプラリー ZTOP 1 0株の系では、 2. 8 X 1 05 c f u/mL (1. 1 X 1 0 c f u/ ut g v e c t o r) 、 c DNAライプラリー /T e n B 1 u e株の系では、 1. 4 X 1 05 c f u/mL (5. 6 X 106 c f u/μ g v e c t o r) に相当している。 一方、 コロニー PCR法を利用して、形質転換株中、 cDNA断片が挿入された べクターを有するものの比率( c DANライブラリ一効率)を評価した。ベクター: pB l ue s c r i p t II S K (+) のマルチ 'クローニング ·サイトの上流 に位置する T 7プロモータ部位と、マルチ ·クローニング ·サイトの下流に位置す る T 3プロモータ部位の間への、 c DN A断片挿入の有無を以下の手順で確認した。 c o l o ny RCRは、
フォヮ一ド ·プライマーとして、 T 7プロモータ部位の塩基配列に相当する、 T 7プライマー: GTAATACGACTCACTATAGGGC
リバース 'プライマーとして、 T 3プロモータ部位の塩基配列に対して、相補的な
TTAATTGGGAGTGATTTCCC
T 3プライマ一: AATTAACCCTCACTAAAGGG
を禾 IJ用して、市販の DNA合成酵素: KOD Da s h DNA p o l yme r a s eを用いて、 クローン中に含まれるベクター DNAを铸型として、 PCR増幅 を行った。 表 3に、 用いた PC R反応の温度条件、 ならびに、 反応液組成を示す。
表 3
PCR反応の温度条件:
fe用装置: Ma s t e r c y c l e r (e p p e n d o r i
Figure imgf000037_0001
反 ^液組成
Figure imgf000037_0002
シャーレ上のコロユーから、無作為に 1 0コロニ^"を選択し、各コロニーの菌体 を 70 jLi Lの水(DDW)に懸濁した。この菌体懸濁液を 9 5°C、 5分間処理した。 この菌体から回収されたベクターを含む液を、反応液において、 コロユ^-溶液とし て利用した。
P CR反応の終了後、 増幅産物を含む反応液 1 から、 3 を採取して、 0. 7 %ゲル上で泳動して、 c DNA断片に相当する P CR増幅産物の有無、 その サイズ範囲を調べた。上で作製した cDNAライプラリーに対して、無作為に選択 した 1 0コロユー中、 5コロニーにおいて、 c DN A断片に相当する PC R増幅産 物が見出された。 従って、 実際に、 形質転換株中、 cDNA断片が挿入されたべク ターを有するものの比率は、 5 0%程度と判断した。
E X p e s s i o n c l o n i n g法による、 R e_d C o e p o d a由来 の蛍光性タンパク質をコードする c DNAを有するクローン選別
調製された c DNAライブラリ一中に含まれる、 R e d C o p e p o d a由来 のタンパク質をコードする遺伝子種類が、 3 X 1 04と仮定する。 一方、 全コロニ 一数 3 X 1 05 c f uを生成した場合、 その内、 c DNA断片が揷入されたべクタ 一を有するコロニーは、 前記比率 5 0%とすると、 1. 5 X 1 05 c f uが見込ま れる。 c DN Aライブラリ一中に含まれる、コード遺伝子種類が 3 X 1 04であり、 同程度の存在頻度で含まれると仮定すると、各コード遺伝子当たり、 5コロニー程 度の存在が期待される。存在頻度のパラツキは、主に、元々の mRNAの存在比率 を反映するが、 目的の蛍光性タンパク質をコードする c DNAが挿入されている形 質転換株のコロニーは、 少なくとも、 2〜3コロユーは見出されると推定された。 加えて、 従来から知られている GF Pの多くは、 宿主大腸菌内で発現させた際、 蛍光性を有する成熟型の GF Pとして、産生されることが報告されている。 R e d C o p e p o d a由来の蛍光性タンパク質も、宿主大腸菌内で発現させた際、蛍光 性を有する成熟型の蛍光性タンパク質として産生される可能性がある。 . 以上の考察^:基づき、 少なくとも、 コロユー総数 1. 5 X 1 05以上を生成する 条件で、 c DN Aライプラリーを保持する形質転換株を、培地 LB/C a rを用 いた、 複数枚のシャーレ上で培養して、 コロユー形成を行った。
- 80 °Cで凍結保存している、 グリセ口ール添加培養液を解凍し、培地成分 S O Cを加えて、翁量 2 0 0 0 μ Lの培養液とした。その内、 1 μ Lの培養液を採取し、 培地成分 SO C l O O ^ Lに加えて、 9 cm^シャーレ上に撒種し、 3 7。C、 一 夜. ( 1 4時間) 培養を行った。 残る培養液の全量を、 合計 1 1枚の 1 5 οιηφシャ ーレに作製した培地 LB/C a r上に撒種して、 3 7°C、 一夜(1 4時間) 培養 を行った。
9 cm</>シャーレ上では、 の培養液から、 1 5 3 ロ-一が生成されてい た。 一方、合計 1 1枚の 1 5 οπιφシャーレでは、少なくとも、 コロニー数の総和 は、 1. 5 X 1 05以上に達していた。 従って、 生成されたコロニー総数は、 1 5 3 X 2000、 凡そ、 3. 0 X 1 05〜1. 5 X 1 05の範囲と判断される。
合計 1 1枚の 1 5 οπιφシャーレについて、蛍光を発するコロニーの有無を調べ た結果、 D a r k Re a d e rの紫外線照射下、蛍光を発するコ口ニーが一つ見 出された。 この紫光を発するコロニーを取り出し、 5mLの培地 LB/C a r中 に懸濁した液を、 同培地を用いた 1/1 0希釈した。 この菌体希釈液 1 00 μ L· を、 1 5 cm<i>シャーレに作製した培地 LBZC a r上に撒種して、蛍光を発す るコロニーの二次スクリーユングを行った。 3 7°C、 一夜 (14時間)培養を行つ た後、 1 5 cm<i>シャーレ上に生成されたコロニーを D a r k Re a d e rの紫 外線照射下、 観察すると、 80〜90%のコロユーが蛍光を示していた。
この二次スクリーユングにおいて、特に、 明確な蛍光を示す(蛍光 p o s i t i v e) コロニー複数のうち、無作為に 4つの蛍光 ρ o s i t i V eコロユーを採取 した。 この蛍光 p o s i t i v eコロニーは、 それぞれ、 5mLの培地 LB/C a r中に懸濁し、 3 7で、 9時間培養を行った。得られた蛍光 p o s i t i v eコ 口ユー 4つの各培養液を、 クローン培養液 (1 5%グリセロール含有) として、 凍 結保存した。 選別クローン中に導入されているプラスミド 'ベクターの複製、 精製
選別され 4つのクローンから、以下の手順で、導入されているプラスミド 'ベ クタ一の複製、 精製を行った。
宿主大腸菌 TOP 1 0を用いて、 c DNAライブラリーを導入した系において、 蛍光を発するコロユーとして、二段階スクリーニングで選別された 4つのコロユー (クローン) を、 それぞれ 5 mL.の培地 LB/C a r中に懸濁し、 37 、 8時 間培養を行った。 培養液を、 遠心 (5000 X g) して、 細胞を分取した。
. 分取した細胞から、市販のプラスミド精製キット: Q I AGEN 1 a sm i d p u r i f i c a t i o n k i t (Q I AG EN製) を利用して、 プラスミ ドを分離、精製した。 分取した細胞に、 同精製キットに添付の P 1液 0. 375 mLを添加し、 ヴォノレテックスにかけて、 よく分散させた。 この細胞分散液に、 添 付の P 2液 0. 37 5 m Lを添加し、 混和した。 室温 (20 °C) に、 5分間静置 した。 次いで、 添付の N 3液 0. 525mLを添カ卩し、 混和した。 破菌処理後、 15分間、 4°Cで遠 、 (11, 000 r p m) し、 プラスミド DN Aを可溶性画分 (上清) を分離、 回权した。
プラスミド DNAを含む可溶性画分(上清) を、 同精製キットの Q I Ap r e p 4 カラムにかけた。 4°Cで遠心 (15, 000 r p m) し、 液層を除去した。 P B 0. 5mLを加えて、 洗浄し、 引き続き、 PE 0. 75mLを加えて、 洗浄 した。 最終的に、 1分間、 4°Cで遠心 (15, 000 r pm) し、 洗浄液を除去し た。精製キットの Q I Ap r e pに吸着されている、プラスミドを、 E l u t e B u f f e r (EB) 30 μ Lにより、 溶出させ、 回収した。 この精製済みプラス ミドを含む液 30 Lのうち、 2 μ Lをとり、蒸留水 98 ;u Lを加えて、 50 倍希釈液とした。
表 4に、各クローンについて、精製済みプラスミドを含む液中に含まれる DN A 濃度を評価した結果を示す。
表 4
Figure imgf000040_0001
選別クローン中の c DNA断片の塩基配列解析
前記 4種のクローンは、 c o l o ny R C Rの結果から、保持しているプラス ミ ド ·ベクター中には同一の塩基長の cDNA断片を有することが判明している。 先ず、 以下の手順で、 このプラスミド 'ベクター中に挿入されている、 cDNA部 分を PC R増幅した。
選別クローンから回収、精製したプラスミド 'ベクターを含む液について、 その DNA濃度を 500 n gZjuLとなるように it^¾を行っ 次いで、謙の タエ ンス用 DNA^|S||¾^ット: B i gDye Te rmi na to r Cyc l e Seque c i n g Rea dy Rea c t i on Ki t wi th Amp 1 i Ta q p o 1 yme r a s eにより、 こ < « ^みプラスミ ド ·ベクターを铸型として、 塩基配列解析用の 試料を、
フォワード側プライマーとして、 T 7プロモータ部位の塩基配列に相当する、
T 7プライマー: GTAATACGACTCACTATAGGGC
リバース側プライマーとして、 T 3プロモータ部位の塩基配列に対して、相補的な
TTAATTGGGAGTGATTTCCC
T 3プライマー: AATTAACCCTCACTAAAGGG
をシークェンス ·プライマーとして利用し、 プラスミド'ベクター中に挿入されて いる cDNAを含む領域から調製した。表 5に、用いた DN A鎖伸長反応の温度条 件、 ならびに、 反応液組成を示す。
表 5
反応液組成
Figure imgf000041_0001
DN Α鎖伸長反応の温度条件:
用装 fc: Ma s t e r e y e
Figure imgf000041_0002
調製された塩基配列解析用の試料の精製は、 以下の手順で行つた。 各反応用チューブから、 調製済み試料溶液を別の 0. 5m L容チューブに移し た。試料溶液 当たり、 3M 酢酸ナトリウム水溶液 0. 5 xL、 95% エタノール 12. 5 ju Lの比率で混合した液を、 別途、 1. 5m L容チューブ に予め用意した。 この 1. 5m L容チューブ中に、 予め集めた試料溶液を投入し た。 均一に混合した上で、氷冷下に、 10分間静置し、含まれる DNA断片をエタ ノール沈澱 (析出) させた。 20分間、 遠心 (14, 000 r p m) し、 析出した DN A断片を沈積させ、 上清を除去した。 次いで、 125 μ Lの 70%エタノール を加え、析出 DN Α断片をリンスした。再ぴ、 5分間、遠心(14, 000 r p m) し、析出 DNA断片を沈積させ、上清を吸引除去した。残った析出 DNA断片のぺ レツトを乾燥した。 精製した解析用試料 DAN断片を、 Temp l a t e s up p r e s s o r Re a g e n t (TSR)中に再分散した。ヴオルテックスにかけて、混合した後、 遠心して液を集めた。 95°C、 2分間加熱し、 一本鎖 DNAに分離し、 氷冷した。 ー且、 ヴオルテックスにかけた後、遠心して、 铸型のプラスミドを沈積させた。 こ の錄型のプラスミドの分離処理後、 一 20°Cに保存した。 その後、解析用試料 DA N断片は、市販のシークェンス装置: AB I PR I SM 3100 Gen e t i c An a l y z e rにかけ、 塩基配列解析を行った。
5, 末端側からの配列解析結果と、 3, 末端側からの配列解析結果とを総合し、 Re d Co p e o d a由来の蛍光性タンパク質をコードする mRNAから調 製された、 cDNA断片の塩基酉己列が決定された。
(Re d Co p e p o d a甶来の蛍光性タンパク質の組換え発現)
プラスミド p ET 101/D— TOPO中への R e d Co p e p o d a由来 の蛍光性タンパク質遺伝子の挿入
先ず、上記塩基配列に基づき、 PCR用ファワード'プライマーとリバース '.プ ライマ一として、
ファワード 'プライマー: p ET— UP 1 (28me r ) 5-CACCATGACAACCTTCAAAATCGAGTCC
リバース 'プライマー: S a 1 I—LP 1 (35me r) ; 3, 末端に制限酵素 S a 1 Iの切断サイトを導入するため、 対応する塩基配列が付加されている
5-CTCGTCGACCTACATGTCTCTTGGGGCGCTGTTGA
を作製し、単離クローンより回収したベクターを踌型として、以下の条件で PCR 増幅産物を得た。 表 6に、 用いた P CR反応の温度条件、 ならびに、 反応液組成を 示す。
表 6
PCR反応の温度条件:
使用装置: Ma s t e r c y c l e r Gr a d i e n t 、e p p e nd o r f )
Figure imgf000043_0001
反応液組成
Figure imgf000043_0002
調製された Ρ CR増幅産物の精製は、 以下の手 j噴で行った。 各 25/1 Lの反応液量で PC R反応を実施した後、 合計 3回の反応液を合わせ、 2 μ Lの反応液を採取し、 1 Q/oァガロース ·ゲル上で泳動し、 目的分子量 673 b pの P C R増幅産物を確認した。
次いで、 反応液から、産物 DNAを、 Mi nE 1 u t e法で濃縮した。 反応液 1 容 (73 L) 当たり、 P B bu f f e r 5容を加え、 ヴオルテックスにかけ た後、 Mi nE 1 u t eカラムに移した。 30秒間遠心し、析出する DN Aを沈積 させ、 上清を除去した。析出した DNAを、 PE b u f f e r 0. 7mLで洗 浄し、 1分間、遠心(15, 000 r pm) した。 さらに、 EB u f f e r 1 O/ Lを加えて、 室温で、 1分間静置する。 その後、 1分間、 遠心 (15, 000 r pm) し、 上清を回収した。
回収された DNA溶液に、 10 X 1 o a d i n g dy e 液 2 / Lを添カロし た後、 1. 0% TAE ァガロース 'ゲル上、 各レーン DNA溶液 12 μ L を泳動した。 目的の 688 b ρのバンドをゲルから切り出した。 1. 5m L容 e p p e nチューブ中に、 ゲル切片を入れ、 DN Aを回収した。
図 2に示すように、精製済み二本鎖 DNAを、市販のプラスミド ρΕΤ Ι Ο ΐΖ D-TOPO (I nv i t r o g e n 製) 中に揷入し、該 Re d Co p e p o d a由来の蛍光性タンパク質の発現ベクター: pETl 01— NFPを作製した。 加えて、該 Re d Co p e p o da由来の蛍光性タンパク質が、融合パートナ 一のグルタチオン · S—トランスフェラーゼ (GST) の C末に、 エンドぺプチタ ーゼ F a c t o r Xaによる切断部位を具えたリンカ一配列を介して連結さ れている、 GST— t a g.g e d 蛍光 f生タンパク質の発現ベクター: p GEX6 P 1—NFPをも作製した。 すなわち、 PCR用ファワード 'プライマーとリパー ス .プライマーとして、
ファワード'プライマー: GST— UP 1 (43me r ) ;前記 pET— UP 1 ( 28me r ) に対して、 プロテーアーゼ: F a c t e r Xaの切断アミノ酸配列 をコードする ATGGAAGGGGGGの部分配列と、 5 '末端に制限酵素 E c o R Iの切断 サイトを導入するため、 対応する塩基配列 GAATTGが付加されている 5-CGAATTCATCGAAGGCCGCATGACAACCTTCAAAATCGAGTCC
5-CACCATGACAACCTTCAAAATGGAGTCC
リパース ·プライマー: S a 1 I -LP 1 (35me r ) ; 3' 末端に制限酵素 S a 1 Iの切断サイトを導入するため、 対応する塩基配列が付加されている
5-CTCGTCGACCTAGATGTCTCTTGGGGCGCTGTTGA
を利用して、単離クローンより回収したベクターを铸型として、 PCR増幅産物を 得た。 表 7に、 用いた PC R反応の温度条件、 ならびに、 反応液組成を示す。
表 7
PCR反応の温度条件:
使用装置: Ma s t e r c y c l e r Gr a d i e n t (e p p e n d o r f )
Figure imgf000045_0001
反応液組成
Figure imgf000045_0002
調製された Ρ CR増幅産物の精製は、 前記の手順に準じて行った , 先ず、各 25 μ Lの反応液量で PC R反応を実施した後、合計 3回の反応液を合 わせ、 2 Lの反応液を採取し、 1%ァガロース 'ゲル上で泳動し、 目的分子量 6 88 b p (19 + 660 + 9) の P C R増幅産物を瘤認した。 その後の分離、 精製 手順、 条件は同じであった。
精製済み二本鎖 DN Aは、一旦、 pCR4B l un t -TOPO ( I n v i t r o g e n ¾) 中に組み込み、選択マーカーにより、 クローン選別を行った。 各選 別クローンを培養して、該クローン.プラスミド pCR4B l un t— NFPを増 やした。 培養後、含まれるプラスミドを精製し、 その分子量サイズ、挿入されてい る DNA断片の塩基配列の確認を行った。 ついで、 図 3に示すように、上記 F a c t e r X aの切断配列をコードする部位に続き ORF (翻訳枠) を含む、 688 b pの挿入 DNAの E c o R I/S a 1 I断片を、市販の G S Tタグ付き融合型 タンパク質発現用プラスミド.ベクター: pGEX— 6 P— 1 (Ame r s h am B i o s c i e n c e s製) 中に挿入し、 G S Tタグ付き蛍光性タンパク質の発現 ベクター: pGEX6 Ρ 1— NFPを作製した。
(Re d Co p e p o d a由来蛍光性タンパク質 N F Pの組換え発現体の蛍光 特性)
先ず、 図 2に示す、該蛍光性タンパク質 NFPの発現ベクター: pET 101— NFPを用いて、大腸菌を形質転換した。得られた形質転換大腸菌に関して、選択 マーカーの Amp i c i 1 1 i n耐性遺伝子を用いて、 クローン選別を行った。 選別されたクローンについて、ベクター p ET 10 lZD— TOPO由来のプロ モーターから、 I P TGを用いて、揷入された遺伝子の発現を誘導し、誘導後 2時 間、 4時間経過後、 蛍光性タンパク質の組換え発現の有無を確認した。 また、 I P T G発現誘導後、組換え発現されている蛍光性タンパク質が成熟型タンパク質とな つていることは、'形質転換株のコ口ユーを紫外線照射下、蛍光を示すことによって 確認される。
培養形質転換株について、 I PTG発現誘導後、 4時間経過した時点で培養菌体 を回収した。 菌体破砕後、遠心 (15, O O O r pm ; 18, 800X g) により 分維した、 可溶性画分 (細胞質成分) ならびに不溶性画分 (膜成分) にそれぞれ含 ま るタンパク質について、 SDS— PAGE分析を行った。 その結果、形質転換 大腸菌の可溶性画分(細胞質成分) 中に、分子量 25kDaの新たなバンドが見出 さ た。すなわち、該 Re d Co p e p o d a由来の蛍光性タンパク質の分子量 は、 上記の推定アミノ酸配列から 24. 7 kD aと推定され、 図 4の SDS— PA GE分析結果に示される、 分子量 25 kD aの新たなパンドは相当している。 該 R e d Co p e p o d a由来の蛍光性タンパク質 N F Pの発現ベクター: p ET 101— NFPを保持する形質転換大腸菌を大量培養し、 I PTG発現誘導に よって産生された蛍光性タンパク質組換え体の分離精製を弑みた。
チめ、推定アミノ酸配列に基づき、該蛍光性タンパク質組換え体の等電点 (P I ) を推測 (算定) した結果、 p I =6. 50と算定された。 その結果を参照して、 可溶性画分 (細胞質成分) を、 ァニオン交換カラム: Hi Tr a p DEAE F F (Am e r s h am B i o s c i e n c e s製) に力、ナ、溶出条件: A b u f f e r 2 OmM Tr i s— HC 1 pH7. 6 B u f f e r 1M Na C l i n A b u f f e r, 直線勾配 0_2 O% B b u f f e r
(0 -200 mM Na C 1濃度) において、 4. 8— 8. 8% B b u f f e rの画分に該蛍光性タンパク質組換え体を回収した。
¾feいで、該回収画分を、 予め、 VIVASP IN20 MW 10, 000 c u t の条件で、濃縮した。 この濃縮サンプルを、 ゲル濾過: H i Lo a d 16/60
S up e r d e x 200 p g (Am e r s ham B i o s c i en c e s 製) にかけ、溶出条件: A b u f f e r 2 OmM Tr i s -HC 1 pH7 . 6において、分子量 10 OkDa以下の、 蛍光画分として、 該蛍光性タンパク質 組換え体を精製、 回収した。 この段階で、 SDS— PAGE分析を行ったところ、 図 5に示すように、目的とする該蛍光性タンパク質組換え体がほぼ精製された状態 となっている。
この段階の精製タンパク質溶液サンプルは、図 6に示すように、 D a r k Re a d e r光 (波長範囲 420n n!〜 500n m) 照射下では、.黄緑色蛍光を発して いることが確認される。 なお、宿主大腸菌の可溶性画分 (細胞質成分) を同一の精 製処理を施した対照サンプルでは、勿論、蛍光は観測されていない。 実際に、 この 段階の精製タンパク質溶液サンプルを用いて、蛍光スぺク トルと、励起スぺクトル の測定を行った。図 7に示すように、波長 500 nmで蛍光強度をモニターしつつ 測定した、励起スぺクトルでは、波長 507 nmに極大ビークが見出された。 一方 、波長 508 nmで励起しつつ測定した、蛍光スぺクトノレでは、波長 518 nmの 極大ピークを持ち、黄色域(波長域 570n m〜 590 n m) を力パーする蛍光が 確認されている。
さらに、ゲル濾過済みのタンパク質溶液サンプルを、 Mo n oQ HR 5/5 カラム (Am e r s h am B i o s c i e n c e s製) にかけ、 溶出条件: A b u f f e r 2 OmM Tr i s— HC 1 pH7. 6 B b u f f e r 1 M N a C 1 i n A b u f f e r, 直線勾配 1 0— 20% B b u f f e r (100-200 mM Na C I濃度) において、 12. 0— 14, 0% B b -u f f e rの画分に、 精製済みの該蛍光性タンパク質組換え体を回収した。 図 10に、上述する Re d Co p e p o d a由来の蛍光性タンパク質組換え発現 体の精製過程における各タンパク質溶液サンプルの SD S— PAGE分析の結果 を示す。 また、 図 3に示す、 GSTタグ付き蛍光性タンパク質の発現ベクター: pGEX 6P 1一 NFPを用いて、大腸菌を形質転換した。得られた形質転換大腸菌、宿主 大腸菌 (陰性対照) 、 ならびに、 クローニング ·ベクター: p B 1 u e s c r i p t II SK中に該 Re d C o p e p o d a由来の蛍光性タンパク質をコード する cDNAが揷入されている単離クローン(陽性対照) を、 それぞれ培地上で培 養した。 図 8に示すように、各コロユーを D a r k Re a d e r光 (波長範囲 4 20 nm〜500 nm)照射下、観察したところ、得られた形質転換大腸菌のコロ ニーは、蛍光を発しており、 GSTタグ付き蛍光性タンパク質の発現がなされてい 'ること S確認された。また、他のタンパク質と適正なリンカ一配列を介して連結さ れた融合型タンパク質として、組換え発現した際にも、翻訳されたぺプチド鎖から 、蛍光団を形成する內部トリペプチド部位の環化と、 その後の酸化を経て、蛍光特 性を有する成熟型蛍光性タンパク質となることが確認される 産業上の利用の可能性
本発明の蛍光性タンパク質は、哺乳動物細胞を利用する i n V i t r o培養 系において、該宿主細胞内で発現可能な i n v i v o 蛍光性マーカー ·タンパ ク質として利用することが可能である。

Claims

請求の範囲
1. Ae t i d e i d a e科、 B r a dy i d i u s属に属する橈脚類由来の蛍 光' !·生タンパク質であって、
該蛍光性タンパク質の完全長ァミノ酸配列は、
MTTFKIESRI HGNLNGEKFE LVGGGVGEEG RLEIEMKTKD KPLAFSPFLL SHCMGYGFYH 60 FASFPKGTKN lYLHAATNGG YTNTRKEIYE DGGILEVNFR YTYEFNKIIG DVECIGHGFP 120 SQSPIFKDTI VKSCPTVDLM LPMSGNIIAS SYARAFQLKD GSFYTAEVKN NIDFKNPIHE 180 SFSKSGPMFT HRRVEETHTK ENLAMVEYQQ VFNSAPRDM 219
(配列番号: 1に記載のアミノ酸配列) である
ことを特徴とする蛍光性タンパク質。
2. 橈脚類由来の蛍光性タンパク質をコードする遺伝子であって、
配列番号: 1に記載のァミノ酸配列をコードする DN Aを含んでなる遺伝子。
3. 前記配列番号: 1に記載のァミノ酸配列をコードする D N Aの塩基配列は、 ATG ACA ACC TTC AAA ATC GAG TGC CGG ATC CAT GGC AAC GTC AAC GGG 48
GAG AAG TTC GAG TTG GTT GGA GGT GGA GTA GGT GAG GAG GGT CGC GTC 96
GAG ATT GAG ATG AAG ACT AAA GAT AAA CCA CT6 GCA TTC TCT CCC TTG 144
CTG CTG TGC CAC TGC ATG GGT TAC GGG TTC IkC CAC TTC GCC AGO TTC 192
CCA AAG GGG ACT AAG AAC ATG TAT CTT CAT GGT GCA ACA AAC GGA GGT .240
TAC ACC AAC ACG AGG AAG GAG ATC TAT GAA GAC GGG GGC ATC TTG GAG 288
GTG AAC TTC CGT TAG ACT TAG GAG TTC AAC A 3 ATG ATC GGT GAC GTC 336 GAG TGG ATT GGA CAT GGA TTC CCA AGT GAG AGT CCG ATC TTC AAG GAC 384
ACG ATC GTG AAG TCG TGT CCC ACG GTG GAC CTG ATG TTG CCG ATG TCC 432
GGG AAG ATC ATC GCC AGC TCC TAC 6CT AGA GCC TTC CAA CTG AAG GAC 480
GGC TCT TTC TAC ACG GCA GAA GTC AAG AAC AAC ATA GAC TTC AAG AAT 528
CCA ATC CAC GAG TCC TTC TCG AAG TCG GGG CCC ATG TTC ACC CAC AGA 576
GGT GTC GAG GAG ACT GAC ACC AAG GAG AAC GTT GCC ATG GTG GAG TAG 624
GAG CAG GTT TTC AAC AGC GCC CCA AGA GAC ATG TAG 660
(配列番号: 2に記載の塩基配列) である
ことを特徴とする、 請求の範囲 第 2項に記載の遺伝子。
4 , 配列番号: 1に記載のアミノ酸配列のコード領域に含む、橈脚類由来の蛍光 性タンパク質の mRNAから調製され fこ c D N Aであり、
該 c D NAの塩基配列は、
AGAACACTCA GTGTATGCAG TTTTCCGTCC TACTACAAAC 40
ATG ACA AGC TTC AAA ATC GAG TCC CGG ATC CAT GGC AAC CTC AAC GGG 88
GAG AAG TTC GAG TTG GTT GGA GGT GGA GTA GGT GAG GAG GGT CGC CTC 136
GAG ATT GAG ATG AAG ACT AAA GAT AAA CCA CTG GCA TTC TCT CCC TTC 184
GTG CTG TGG GAG TGG ATG GGT TAC GQG TTG TAC CAC TTC GCC AGC TTG 232 GCA AAG GGG ACT AAG AAC ATC TAT GTT CAT GGT GCA ACA AAC GGA GGT 280
TAG ACC AAC ACC AGG AAG GAG ATC TAT GAA GAC GGG GGG ATG TTG GAG 328
GTC AAC TTC GGT TAG ACT TAG GAG TTC AAC AAG ATG ATC GGT GAC GTC 376
GAG TGC ATT GGA CAT GGA TTC CCA AGT CAG AGT CCG ATC TTC AAG GAC 424
ACG ATC GTG AAG TCG TGT CCC ACG GTG GAC CTG ATG TTG CCG ATG TCC 472
GGG AAC ATC ATC GCC AGC TCC TAG GOT AGA GCG TTC GAA CTG AAG GAC 520
GGC TGT TTC TAG AGG GCA GAA GTC AAG AAG AAC ATA GAC TTC AAG AAT 568
CCA ATC CAC GAG TCC TTC TCG AAG TCG GGG CCC ATG TTC ACC CAG AGA 616
GGT GTC GAG GAG AGT GAG AGG AAG GAG AAG GTT GGG ATG GTG GAG TAC 664
GAG CAG GTT TTC AAC AGC GCG CCA AGA GAG ATG TAG 700
AATGTGGAAC GAAACCTTTT TTTCTGATTA CTTTCTGTGT TGACTCCACA 750
TTCGGAACTT GTATAAATAA GTTCAGTTTA AA 782
(配列番号: 3に記載の塩基配列) である
ことを特徴とする、 請求の範囲 第 2項に記載の遺伝子。
5 . 配列番号: 1.に記載のァミ /酸配列のコード領域に含む、橈脚類由来の蛍光 性タンパク質の mR NAから調製された c D NAを揷入してなるプラスミド'ベタ ターであって、
該 c D NAの塩基配列は、
AGAACACTGA GTGTATCCAG TTTTCCGTCC TACTACAAAC 40
ATG ACA ACG TTC AAA ATG GAG TCC CGG ATC GAT GGC AAG CTC AAG GGG 88 GAG AAG TTC GAG TTG GTT GGA GGT GGA GTA GGT GAG GAG GGT CGC CTC 136 GAG ATT GAG ATG AAG ACT AAA GAT AAA CCA CTG GGA TTC TCT CCC TTC 184
CTG CTG TCC CAC TGG ATG GGT TAC GGG TTC TAG CAC TTC GCC AGC TTC 232
CCA AAG GGG ACT AAG AAG ATC TAT CTT GAT GGT GCA AGA AAG GGA GGT 280
TAC ACC AAC ACC AGG AAG GAG ATC TAT GAA GAC GGC GGC ATC TTG GAG 328
GTC AAC TTG CGT TAG ACT TAG GAG TTG AAC AAG ATC ATC GGT GAC GTC 376
GAG TGC ATT GGA CAT GGA TTC CCA AGT GAG AGT CGG ATC TTC AAG GAC 424
ACG ATC GTG AAG TGG TGT CGC ACG GTG GAC CTG ATG TTG GGG ATG TCC 472
GGG AAG ATC ATC GCC AGC TCC TAG GCT AGA GCC TTC CAA CTG AAG GAC 520
GGC TCT TTC TAG ACG GCA GAA GTC AAG AAC AAG ATA GAC TTC AAG AAT 568
CCA ATG CAC GAG TGC TTG TCG AAG TCG GGG CCC ATG TTC AGC GAG AGA 616
5.1 CGT GTC GAG GAG ACT CAG ACC AAG GAG AAC CTT GCC ATG GTG GAG TAC 664
CAG CAG GTT TTC AAC AGC GCC CCA AGA GAG ATG TAG 700
AATGTGGAAC GAAACCTTTT TTTCTGATTA GTTTCTCTGT TGACTCCACA 750 TTCGGAACTT GTATAAATAA GTTCAGTTTA AA 782
(配列番号: 3に記載の塩基配列) である
ことを特徴とするプラスミ ド 'ベクター pB l u e s c r i p t II SK-NF P (FERM BP— 08681) 。
PCT/JP2004/004818 2004-03-31 2004-03-31 新規な蛍光性タンパク質とそれをコードする遺伝子 WO2005100565A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2004/004818 WO2005100565A1 (ja) 2004-03-31 2004-03-31 新規な蛍光性タンパク質とそれをコードする遺伝子
US10/953,050 US7442768B2 (en) 2004-03-31 2004-09-30 Fluorescent protein and gene encoding the same
DE602005008930T DE602005008930D1 (de) 2004-03-31 2005-03-31 Neues fluoreszenzprotein und dafür codierendes gen
PCT/JP2005/006339 WO2005095599A1 (ja) 2004-03-31 2005-03-31 新規な蛍光性タンパク質とそれをコードする遺伝子
EP05728016A EP1734117B1 (en) 2004-03-31 2005-03-31 Novel fluorescent protein and gene encoding the same
JP2006511816A JP4863280B2 (ja) 2004-03-31 2005-03-31 新規な蛍光性タンパク質とそれをコードする遺伝子
US12/204,557 US8043850B2 (en) 2004-03-31 2008-09-04 Fluorescent protein and gene encoding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/004818 WO2005100565A1 (ja) 2004-03-31 2004-03-31 新規な蛍光性タンパク質とそれをコードする遺伝子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/953,050 Continuation-In-Part US7442768B2 (en) 2004-03-31 2004-09-30 Fluorescent protein and gene encoding the same

Publications (1)

Publication Number Publication Date
WO2005100565A1 true WO2005100565A1 (ja) 2005-10-27

Family

ID=35063779

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/004818 WO2005100565A1 (ja) 2004-03-31 2004-03-31 新規な蛍光性タンパク質とそれをコードする遺伝子
PCT/JP2005/006339 WO2005095599A1 (ja) 2004-03-31 2005-03-31 新規な蛍光性タンパク質とそれをコードする遺伝子

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006339 WO2005095599A1 (ja) 2004-03-31 2005-03-31 新規な蛍光性タンパク質とそれをコードする遺伝子

Country Status (3)

Country Link
US (2) US7442768B2 (ja)
EP (1) EP1734117B1 (ja)
WO (2) WO2005100565A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013202A1 (fr) * 2006-07-25 2008-01-31 Nec Soft, Ltd. Application d'une protéine fluorescente à une plante horticole
WO2019187218A1 (ja) * 2018-03-30 2019-10-03 Necソリューションイノベータ株式会社 新規タンパク質、新規遺伝子、形質転換体、形質転換体の製造方法、および新規蛍光タンパク質のスクリーニング方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278120B2 (en) 2006-01-26 2012-10-02 Nec Soft, Ltd. Method of changing fluorescence wavelength of fluorescent protein
WO2008094316A2 (en) * 2006-09-22 2008-08-07 Stowers Institute Of Medical Research Novel branchiostoma derived fluorescent proteins
CN107849554B (zh) * 2015-06-19 2021-10-12 日本电气方案创新株式会社 新的蛋白质、基因、表达载体、转化体、生产转化体的方法和筛选新的荧光蛋白质的方法
KR20240072334A (ko) * 2022-11-11 2024-05-24 주식회사 유씨아이테라퓨틱스 유전자 조작된 세포 및 이의 용도

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976796A (en) * 1996-10-04 1999-11-02 Loma Linda University Construction and expression of renilla luciferase and green fluorescent protein fusion genes
DE60333486D1 (de) * 2002-12-26 2010-09-02 Zakrytoe Aktsionernoe Obschest Fluoreszenzproteine aus copepoda-spezies und verfahren zur verwendung davon

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"COP-Green(TM) expression vectors", 18 April 2003 (2003-04-18) - 25 June 2004 (2004-06-25), XP002980552, Retrieved from the Internet <URL:http://www.evrogen.com/p-copGFP.shtml> *
"Internet archive wayback machine", 25 June 2004 (2004-06-25), XP002980553, Retrieved from the Internet <URL:http://www.evrogen.com/p-copGFP.shtml> *
ALVAREZ M P J, ET AL: "Two bottom living copepoda calanoida aetideidae-bradyidius plinioi and lutamator elegans n.sp, collected in brazilian waters", BOLM. ZOOL., vol. 8, 1984, pages 93 - 106, XP002980556 *
BRADFORD-GRIEVE J M: "A new specied of benthopelagic calanoid copepod of the genus Bradyidius Giesbrecht, 1897 (Calanoida: Aetideidae) from New Zealand", NEW ZEALAN JOURNAL OF MARINE AND FRESHWATER RESEARCH, vol. 37, no. 1, 2003, pages 95 - 103, XP002980555 *
MARKHASEVA E L, ET AL: "Calanoid copepods of the family aetideidae of the world ocean", TRUDY ZOOL. INST. RAN., vol. 268, 1996, pages 1-10+68 - 86, XP002980554 *
SHAGIN D A, ET AL: "GFP-like protein as ubiquitous metazoan superfamily: evolution of functional features and structural comlexity", MOL. BIOL. EVOL., vol. 21, no. 5, 2004, pages 841 - 850, XP002980557 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013202A1 (fr) * 2006-07-25 2008-01-31 Nec Soft, Ltd. Application d'une protéine fluorescente à une plante horticole
US8203032B2 (en) 2006-07-25 2012-06-19 Nec Soft, Ltd. Application of fluorescent protein to garden plant
WO2019187218A1 (ja) * 2018-03-30 2019-10-03 Necソリューションイノベータ株式会社 新規タンパク質、新規遺伝子、形質転換体、形質転換体の製造方法、および新規蛍光タンパク質のスクリーニング方法
JPWO2019187218A1 (ja) * 2018-03-30 2021-02-12 Necソリューションイノベータ株式会社 新規タンパク質、新規遺伝子、形質転換体、形質転換体の製造方法、および新規蛍光タンパク質のスクリーニング方法

Also Published As

Publication number Publication date
US8043850B2 (en) 2011-10-25
US20050221338A1 (en) 2005-10-06
EP1734117B1 (en) 2008-08-13
US7442768B2 (en) 2008-10-28
EP1734117A4 (en) 2007-05-16
EP1734117A1 (en) 2006-12-20
US20090123969A1 (en) 2009-05-14
WO2005095599A1 (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
CA2383642C (en) Anthozoa derived chromophores/fluorophores and methods for using the same
JP4618891B2 (ja) Anthozoa綱の非生物発光性種由来の蛍光タンパク質、そのようなタンパク質をコードする遺伝子、およびそれらの使用
RU2303600C2 (ru) Новые хромофоры/флуорофоры и способы их применения
US8043850B2 (en) Fluorescent protein and gene encoding the same
EP1994149A2 (en) Novel fluorescent proteins and methods for using same
JP4644600B2 (ja) 非オワンクラゲヒドロ虫種由来の蛍光たんぱく質および色素たんぱく質、並びにそれらの使用方法
US6414119B1 (en) Rapidly greening, low oxygen mutant of the aequoria victoria green fluorescent protein
US8206978B2 (en) Green fluorescent protein optimized for expression with self-cleaving polypeptides
JP4863280B2 (ja) 新規な蛍光性タンパク質とそれをコードする遺伝子
US9771401B2 (en) Green fluorescent protein (GFP) peptides from Rhacostoma
CN110177575B (zh) 药物递送系统用胞吞作用增强剂
EP1572732B1 (de) Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung
CA2807587C (en) Fluorescent proteins with increased activity in cells
KR101523834B1 (ko) 적색 형광 단백질 변이체
EP1456223B1 (en) Rapidly maturing fluorescent proteins and methods for using the same
Smith et al. SYNTHETIC BIOMIMETIC FLUOROPHORES FOR MICRO/NANOSENSOR
JP2005514032A (ja) 変異体発色団/蛍光団ならびにそれらの製造法および使用法
Sun Mosquito cecropins: Characterization of the purified proteins, and cloning and regulation of cecropin genes
TW200817428A (en) Fluorescent proteins wfCGFP, and the use thereof
WO2010060054A1 (en) Bacteriophage derived methods to control lactic acid bacterial growth
DE102005005438A1 (de) Mutanten des fluoreszierenden Proteins CGFPs, sowie deren Verwendung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10953050

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase