WO2005098001A1 - Novel transformant - Google Patents

Novel transformant Download PDF

Info

Publication number
WO2005098001A1
WO2005098001A1 PCT/JP2005/006922 JP2005006922W WO2005098001A1 WO 2005098001 A1 WO2005098001 A1 WO 2005098001A1 JP 2005006922 W JP2005006922 W JP 2005006922W WO 2005098001 A1 WO2005098001 A1 WO 2005098001A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
composition
transformant
plasmid
patent document
Prior art date
Application number
PCT/JP2005/006922
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Nagaoka
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006512128A priority Critical patent/JPWO2005098001A1/en
Publication of WO2005098001A1 publication Critical patent/WO2005098001A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)

Definitions

  • the present invention relates to a novel plasmid for producing a polyester having a high 3HH composition, a transformant thereof, and a method for producing a polyester having a high 3HH composition using the same.
  • P (3HB) poly-3-hydroxybutyric acid
  • 3HB 3-hydroxybutyric acid
  • Bacillus megaterium Bacillus megaterium
  • P (3HB) is a thermoplastic polymer that is biologically degraded in the natural environment and is attracting attention as an environmentally friendly plastic.
  • P (3HB) has high crystallinity and is hard and brittle, so its practical application is limited. For this reason, research aimed at improving this property has been made.
  • P (3HB-CO-3HH) 3HB and 3hydroxyhexanoic acid
  • 3HH 3hydroxyhexanoic acid
  • Patent Documents 3 and 4 The method for producing P (3HB-co-3HH) reported in these reports is based on fermentative production of fatty acids such as oleic acid and fatty oils such as olive oil using aeromonas caviae isolated from soil. there were. Also, studies on the properties of P (3HB co 3HH) have been made (see Non-Patent Document 1).
  • this production method has a low cell productivity of 4 g ZL, a polymer content of 30%, and a low polymer productivity, making it inadequate as a production method for the practical use of this polymer.
  • Aeromonas hydrofila is pathogenic to humans (see Non-Patent Document 4), and thus cannot be said to be a species suitable for industrial production.
  • these culture productions use expensive carbon sources, it is required to use inexpensive carbon sources from the viewpoint of production costs.
  • PHA polyhydroxyalkanoic acid synthase gene was cloned from Aeromonas cinerea (see Patent Document 5, Non-patent Document 5).
  • Production of P (3HB—co—3HH) using a transformant in which this gene was introduced into Ralstonia eutropha (formerly Alcaligenes eutrophas) resulted in a cell productivity of 4 gZL and polymer content.
  • a cell productivity of 4 gZL and a polymer content of 80% were achieved (see Non-Patent Document 6).
  • the polymer productivity is low, although cheap vegetable oils and fats are used as carbon sources.
  • the 3HH composition of 5% was hard, brittle, and had physical properties.
  • a P (3HB-co-3HH) producing strain using Escherichia coli as a host has also been constructed.
  • a strain was constructed in which Escherichia coli introduced a PHA synthase gene of the genus Aeromonas and a NADP-acetoacetyl Co-A reductase gene of Ralstonia eutopha.
  • the bacterial mass was 79 gZL
  • the polymer content was 27.2%
  • the 3HH composition was 10.8% (see Non-Patent Document 8).
  • PHA synthase activity and 3HH composition were also improved, and mutants in which 518th phenylalanine was replaced with isoleucine and 214th in which palin was replaced with glycine It has been reported that the enzyme has improved PHA synthase activity and polymer content in Escherichia coli. However, since they use special E. coli as their host and still have a low polymer content, further improvement was required for industrial production utilizing the characteristics of these mutant enzymes.
  • Patent Document 6 A method for producing P (3HB-co-3HH) has also been studied (see Patent Document 6). Also, a method for controlling the physical properties of P (3HB-co-3HH) has been disclosed (see Patent Document 6). By using at least two kinds of fats and oils having different carbon numbers and Z or fatty acids as a carbon source, it becomes possible to produce P (3HB-co-3HH) having a 3HH composition of 1 to 40 mol%, and various physical properties can be obtained. (3HB-co-3HH) can be produced. However, in this production method, it is necessary to add relatively expensive hexanoic acid, octanoic acid, etc. to control the 3HH composition, and high concentrations of hexanoic acid show cytotoxicity. The result is a decrease. In addition, the addition of multi-component carbon sources can make the production facilities complex and expensive.
  • Patent Document 1 JP-A-57-150393
  • Patent Document 2 JP-A-59-220192
  • Patent Document 3 JP-A-5-93049
  • Patent Document 4 JP-A-7-265065
  • Patent Document 5 JP-A-10-108682
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2001-340078
  • Non-Patent Document 1 Y. Doi, S. Kitamura, H. Abe, Macromolecules 28, 4822-4 823 (1995)
  • Non-patent document 2 Biotechnology and Bioengineering, vol67, 240 (2000)
  • Non-patent document 3 Appl.Microbiol.Biotechnol., Vol57, 50 (2001)
  • Non-Patent Document 4 National Institute of Infectious Diseases, Regulations for Safety Management of Pathogens, Appendix 1 Appendix 1 (1999)
  • Non-Patent Document 5 T. Fukui, Y. Doi, J. Bacteriol, 179, 15, 4821—4830 (1997)
  • Non-patent document 6 T. Fukui et al., Appl. Microbiol. Biotecnol. 49, 333 (1998)
  • Non-patent document 7 T. Fukui et al., Biomolecules, vol3, 618 (2002)
  • Non-Patent Document 8 S. Park et al. Biomacromolecules, vol2, 248 (2001)
  • Non-Patent Document 9 X. Lu et al., FEMS Microbiology Letters, vol221, 97 (2003)
  • Non-Patent Document 10 T. Kichise et al., Appl.Environ.Microbiol. 68, 2411-2419 (2 002)
  • Non-Patent Document 11 A. Amara et al. App.Microbiol.Biotechnol., Vol59, 477 (200 2)
  • Ralstonia's eutopha is the most suitable host for industrial production of P (3HB-co-3HH) from the viewpoints of safety, high productivity, availability of an inexpensive carbon source, and the like. Is expected.
  • P (3HB-co-3HH) production system safe and inexpensive production of high 3HH composition P (3HB-co-3HH) suitable for processing into films, etc., making use of its flexible properties Since the system was established, the development of a high production system was desired.
  • the present inventors have conducted intensive studies in order to solve the above problems, and have constructed a novel polyester synthase expression plasmid containing a novel phaC derivative gene derived from Aeromonas' biebie.
  • a transformant in which the expression plasmid was introduced into a host such as Ralstonia-eutropha was prepared and cultured under a single carbon source using inexpensive vegetable oils and fats.
  • P (3HB-co-3HH) with a 3HH composition of 12 mol% or more was obtained. Can be produced with high productivity.
  • the present invention provides a polyester synthase expression plasmid capable of producing P (3HB-co-3HH) having a high 3HH composition excellent in processability into a film or the like, and a high 3HH composition polyester containing the plasmid.
  • the present invention relates to a transformant having an ability and a safe and inexpensive method for producing a high 3HH composition polyester using the transformant.
  • the present invention provides a polyester synthase expression plasmid (I) contained in PHB-4 / pJRDdTc + 149NS17IDG (FERM BP-10259), which is a high 3HH composition polyester synthase expression plasmid; Polyester synthase expression plasmid (II) obtained by miniaturizing the plasmid; a transformant transformed with the above-mentioned high 3HH composition polyester synthase expression plasmid and PHB-4ZpJRDdTc + 149NS171DG (FERM BP-10259);
  • the present invention relates to a method for producing a polyester.
  • the polyester is represented by the following formula (1) [0017] [Formula 1]
  • the polyester synthase expression plasmid (I) of the present invention is contained in PHB-4ZpJRDdTc + 149N S171DG (FERM BP-10259), and has a high productivity and high 3HH composition P (3HB-co-3HH). This is an expression plasmid for the enzyme to be synthesized.
  • polyester synthase expression plasmid (I) of the present invention will be described.
  • Global genetic manipulations can be performed as described in Molecular Cloning (Cold Spring Harbor Laboratory Press, (1989)).
  • Enzymes, Cloying hosts, etc. used for genetic manipulation can be purchased from market suppliers and used according to the description.
  • the enzyme is not particularly limited as long as it can be used for genetic manipulation.
  • the Clawing host is not particularly limited, and examples include Escherichia coli DH5 ⁇ strain.
  • pJRD215 ATC C 37533
  • pJRDdTc a pJRD215 derivative pJRDdTc (described in WO04Z074476), which is one of the broad host range vectors, can be used as the vector.
  • SEQ ID NO: 4 shows the sequence of the vector used in the construction of this expression plasmid.
  • an N149SZD171G double mutant gene fragment derived from Aeromonas capillaris shown in SEQ ID NO: 3 is prepared as a restriction enzyme EcoRI fragment, and inserted into the same restriction enzyme site of the above vector to construct.
  • the N149S mutant gene and the D171G mutant gene are described in T. Kichise et al., Appl. Environ. Microbiol. 68, 2411-2419 (2002) [this description describes that asparagine at the 149th amino acid is serine.
  • the 171st amino acid aspartic acid is This is a polyester synthase gene derived from Aeromonas capillaris, substituted for syn.
  • FIG. 1 shows the procedure for constructing the polyester synthase expression plasmid (I) of the present invention.
  • the polyester synthase gene only needs to have an expression unit that functions in the host bacterium, such as a promoter and a terminator, in addition to the structural gene.
  • the polyester synthase expression plasmid may contain a plurality of expression units as long as at least one expression unit is present.
  • polyester synthase expression plasmid (I) contained in PHB-4ZpJRDdTc + 149NS171DG (FERM BP-10259) of the present invention may be referred to as “pJRDdTc + 149NS171DG” in this specification.
  • the polyester synthase expression plasmid ( ⁇ ) of the present invention is obtained by miniaturizing the polyester synthase expression plasmid (I) contained in PHB-4ZpJRDdTc + 149 NS171DG (FERM BP-10259).
  • the size of the plasmid can be reduced by deleting portions unnecessary for expression of the polyester synthase gene and plasmid replication.
  • the plasmid used has two or more antibiotic resistance genes, either of them can be deleted.
  • it is possible to delete the kanamycin resistance gene or the streptomycin resistance gene but it is preferable to delete the streptomycin resistance gene.
  • a method for deleting a specific gene as described above a method using a restriction enzyme site or a method using PCR can be used.
  • polyester synthase expression plasmid lacking part or all of the conjugation transfer ability and lacking the streptomycin resistance gene can be suitably used.
  • the polyester synthase expression plasmid ( ⁇ ) of the present invention can improve the transformation rate when the expression plasmid is introduced into a host by miniaturizing the plasmid.
  • the transformant of the present invention comprises at least one of the above-mentioned polyester synthase expression plasmids (I) to (II). It has been transformed by this. That is, the transformant of the present invention can be obtained by introducing any of the polyester synthase expression plasmids (I) to (I) obtained above into a host compatible with the plasmid.
  • the host is not particularly limited, but a microorganism isolated from nature, a microorganism deposited at a strain depository (eg, IFO, ATCC, etc.), and the like can be used.
  • non-polyester-producing bacteria of bacteria such as Ralstonia, Aeromonas, Escherichia, Alcaligenes, and Pseudomonas can be used.
  • Ralstonia is preferable, Ralstonia eutropha is more preferable, and polyester synthase is inactivated by mutagen treatment or gene disruption treatment based on homologous recombination.
  • Ralstonia's Eutropha for example, Ralstonia's Eutropha PHB-4 strain.
  • Ralstonia's Eutropha PHB-4 strain is available from institutional sources such as D SMZ.
  • Preferable transformants of the present invention include, for example, a transformant in which the polyester synthase expression plasmid (I) is introduced into Ralstonia's utop as a host. Specific examples include the following transformants.
  • PHB-4 / pJRDdTc + 149NS171DG (Accession number: FERM BP-10259, accession date: February 23, 2005), which is a transformant in which pJRDdTc + 149NS 171DG was introduced into Ralstonia eutropha PHB-4 strain.
  • This transformant has been deposited internationally under the Budapest Treaty at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary, located at 1-1, Tsukuba-Higashi, Ibaraki, Japan. .
  • the method for producing a polyester of the present invention uses the above transformant.
  • the above polyester the following formula (1)
  • Copolymerized polyester P (3HB—co—3HH), which also has 3-hydroxybutyric acid and 3-hydroxyhexanoic acid, represented by the formula (where m and n represent integers of 1 or more) is preferred.
  • Higher 3HH copolymer polyester P (3HB-co-3HH) is more preferred!
  • composition ratio of each monomer unit constituting the high 3HH composition P (HB—co—3HH)!
  • 3HH units are preferably at least 8 mol% and at most 50 mol%, more preferably at least 10 mol% and at most 40 mol%, particularly at most 12 mol%. % Or more and 30 mol% or less.
  • sugars, fats and oils or fatty acids are given as carbon sources and include nutrients other than carbon sources, such as nitrogen sources, inorganic salts, and other organic nutrients.
  • the transformant can be cultured using a medium.
  • a medium for culturing a transformant obtained by using a microorganism such as a microorganism belonging to the genus Ralstonia, Aeromonas, Escherichia, Alcaligenes or Pseudomonas as a host
  • a carbon source that can be assimilated by the microorganism is used.
  • a medium in which any one of nitrogen source, inorganic salts and organic nutrients is restricted for example, a medium in which the nitrogen source is restricted to 0.01 to 0.1%, etc. can be used. .
  • sugar examples include carbohydrates such as glucose and fructose.
  • fats and oils examples include fats and oils rich in saturated 'unsaturated fatty acids having 10 or more carbon atoms, such as coconut oil, palm oil, palm kernel oil and the like.
  • Fatty acids include saturated unsaturated fatty acids such as hexanoic acid, octanoic acid, decanoic acid, lauric acid, oleic acid, palmitic acid, linoleic acid, linolenic acid and myristic acid, and esters and salts of these fatty acids. Fatty acid derivatives are mentioned.
  • Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium phosphate and the like, as well as peptone, meat extract, yeast extract and the like.
  • Examples of the inorganic salts include potassium potassium phosphate, potassium potassium phosphate, magnesium phosphate, magnesium sulfate, sodium salt and the like.
  • organic nutrients include, for example, amino acids such as glycine, alanine, serine, threonine, and proline; and vitamins such as vitamin B1, vitamin B12, and vitamin C.
  • an antibiotic such as kanamycin
  • an antibiotic corresponding to the antibiotic resistance gene present in the expression plasmid of the present invention may be added to the culture solution.
  • the culture temperature may be any temperature at which the bacteria can grow, but is preferably 20 ° C to 40 ° C.
  • the culture time is not particularly limited, but may be about 1 to 7 days.
  • P (3HB-CO-3HH) should be recovered from the obtained cultured cells.
  • P (3HB-co-3HH) can be recovered from cells by, for example, the following method. After completion of the culture, the cells are separated from the culture using a centrifuge or the like, and the cells are washed with distilled water, methanol and the like, and dried. From the dried cells, p (3HB-co-3HH) is extracted using an organic solvent such as black form. Cell components are removed from the organic solvent solution containing P (3HB—co—3HH) by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to form P (3HB co—3HH). Let it settle. Further, the supernatant is removed by filtration or centrifugation, and dried to recover P (3HB-co-3HH).
  • the analysis of the weight average molecular weight (Mw) and the 3HH composition (mol%) of the obtained P (3HB-co-3HH) can be performed by, for example, a gas chromatography method or a nuclear magnetic resonance method.
  • a dyeing method using Nilered can be used as a simple method for confirming polyester production. That is, the presence or absence of polyester production is determined by culturing Nilered on an agar medium on which the recombinant bacterium grows, culturing the recombinant bacterium for 1 to 7 days, and observing whether the recombinant bacterium turns red. You can check.
  • pJRDdTc + 149NS171DG a vector encoded by the DNA shown in SEQ ID NO: 4 was used. This vector can be constructed in the same manner as pJRDd Tc described in WO04Z074476.
  • the N149SZD171G double mutant gene fragment derived from Aeromonas radiata which is a polyester synthase gene, was prepared by PCR.
  • asparagine which is the 149th amino acid of PHA synthase derived from Aeromonas' rabies
  • aspartic acid which is the 171st amino acid
  • the N149S mutant gene derived from Aeromonas serrata described in Non-Patent Document 10 was subcloned at the EcoRI site of pUC19, and the synthetic DNAs represented by SEQ ID NO: 1 and SEQ ID NO: 2 were used as primers.
  • the conditions were (1) 2 minutes at 94 ° C, (2) 30 seconds at 94 ° C, (3) 30 seconds at 55 ° C, (4) 2 minutes at 72 ° C, (2) to (4) ) For 25 cycles, (5) 5 minutes at 72 ° C, and LA Taq polymerase (Takara Bio) was used as the polymerase.
  • the N149S ZD171G fragment shown in SEQ ID NO: 3 was prepared by digestion with the restriction enzyme EcoRI, and this vector was inserted into the site digested with the same enzyme to construct the expression plasmid pJRDdTc + 149NS171DG.
  • a transformant of Ralstonia'eutropha PHB-4 strain containing the expression plasmid obtained in Example 1 was prepared by an electric pulse method. That is, a gene pulsar manufactured by Biomd was used for the gene transfer device, and a cuvette having a gap of 0.2 cm manufactured by Biorad was used as the cuvette. Inject 400 ⁇ l of the competent cells and 20 ⁇ l of the expression plasmid into a cuvette, set them in a pulse device, and apply an electric pulse under the conditions of a capacitance of 25 ⁇ F, a voltage of 1.5 kV, and a resistance of 800 ⁇ . I did.
  • the bacterial solution in the cuvette is shake-cultured at 30 ° C for 3 hours in a Nutrient Broth medium (DIFCO), and is incubated at 30 ° C in a selection plate (NutrientAgar medium (DIFCO), kanamycin lOOmgZL). After culturing for 2 days, a transformant was obtained.
  • DIFCO Nutrient Broth medium
  • DIFCO NutrientAgar medium
  • kanamycin lOOmgZL kanamycin lOOmgZL
  • the transformant obtained in Example 2 was transformed into a Nilered-containing medium (9 g of disodium hydrogen phosphate ⁇ 12 hydrate, 1.5 g of potassium dihydrogen phosphate, 0.05 g of ammonium chloride, 0.05 g of magnesium sulfate, and 7 water of magnesium sulfate).
  • the seed culture medium was composed of lwZv% Meat-extract, lw / v% Bacto-Trypton, 0.2 w / v% Yeast -extract, 0.9 w / v% Na PO12 ⁇ , 0.15 w / v % KH
  • composition of the preculture medium was 1. lw / v% Na PO ⁇ 12 ⁇ 0, 0.19 w / v% KH PO, 1
  • composition of the P (3HB—co—3HH) production medium was 0.385 w / v% Na PO ⁇ 12 ⁇ 0, 0.06.
  • the carbon source is palm kernel oil olein, a low melting point fraction of palm kernel oil, used as a single carbon source. Throughout the entire culture, feeding was performed so that the specific substrate supply rate was 0.08 to 0.1 (oil () X (net dry cell weight (g) ⁇ 1 X (time (h)) _1 ) _1 ).
  • a glycerol stock (50 ⁇ l) of the PHB-4ZpJRDdTc + 149NS171DG transformant was inoculated into a seed culture medium (10 ml), cultured for 24 hours, and a 3 L jaw inconveniencer (circle) containing 1.8 L of preculture medium was added.
  • 1.0vZv% was inoculated into Ryo Bioenge's MDL-300).
  • the operating conditions were a culture temperature of 30 ° C., a stirring speed of 500 rpm, an aeration rate of 1.8 LZmin, and culture for 28 hours while controlling the pH between 6.7 and 6.8.
  • a 7% aqueous ammonium hydroxide solution was used for pH control.
  • P (3HB—co—3HH) production culture is a 10L jar armamentar containing 6L of production medium.
  • the operating conditions were a culture temperature of 28 ° C, a stirring speed of 400 rpm, an aeration rate of 3.6 LZmin, and a pH of 6.7 to 6.8. A 7% aqueous ammonium hydroxide solution was used for pH control. The culture was performed for about 60 hours. After completion of the culture, the cells were collected by centrifugation, washed with methanol, freeze-dried, and the weight of the dried cells was measured.
  • the 3HH composition analysis of P (3HB-co-3HH) produced by the PHB-4 / pJRDdTc + 149NS171 DG transformant was measured by gas chromatography as follows. [0055] Approximately 20 mg of dry P (3HB-co-3HH) was added with 2 ml of a mixture of sulfuric acid and methanol (15:85) and 2 ml of a form of lip, sealed and heated at 100 ° C for 140 minutes. As a result, a methyl ester of a P (3HB-co-3HH) decomposition product was obtained. After cooling, 1.5 g of sodium bicarbonate was added little by little to neutralize, and the mixture was allowed to stand until carbon dioxide gas generation was stopped.
  • the mixture was centrifuged, and the monomer unit composition of the P (3HB-co-3HH) degradation product in the supernatant was analyzed by canary gas chromatography.
  • the gasket mat used was Shimadzu GC-17A, and the one-shot ram was NEUTRA BOND-1 (column length: 25 m, column inner diameter: 0.25 mm, liquid film thickness: 0.4 / zm). He was used as the carrier gas, the column inlet pressure was 100 kPa, and 1 ⁇ l of the sample was injected.
  • the temperature was raised to the initial temperature of 100 to 200 ° C at a rate of 8 ° CZ, and further to 200 to 290 ° C at a rate of 30 ° CZ.
  • the 3HH yarn of P (3HB-co-3HH) at the end of the 62-hour culture was 14.7 (mol%), a high 3HH yarn suitable for application to a finolem. It was a success.
  • FIG. 1 is a drawing showing the construction of a plasmid for expressing pJRDdTc + 149NS171DG (FERM BP-10259) polyester synthase of the present invention.

Abstract

From the viewpoints of its safety, high productivity, availability as an economical carbon source and so on, Ralstonia eutropha is expected as a host that is most suitable for the industrial production of P(3HB-co-3HH). Compared with a low-3HH composition P(3HB-co-3HH) production system, however, there has been established no safe and economical production system of high-3HH composition P(3HB-co-3HH) appropriate for processing into films and the like by taking advantage of its high flexibility. Thus, it has been required to develop a high production system thereof. Namely, a novel polyester synthase-expressing plasmid for producing high-3HH composition P(3HB-co-3HH) showing a high flexibility and thus being appropriate for processing into films and the like; a transformant capable of synthesizing high-3HH composition P(3HB-co-3HH) which contains the above plasmid; and a safe and economical method of producing high-3HH composition P(3HB-co-3HH) by using the above transformant.

Description

明 細 書  Specification
新規形質転換体  New transformant
技術分野  Technical field
[0001] 本発明は、高 3HH組成ポリエステル生産用新規プラスミド、およびその形質転換体 、またそれを用いた高 3HH組成ポリエステルの製造方法に関するものである。  The present invention relates to a novel plasmid for producing a polyester having a high 3HH composition, a transformant thereof, and a method for producing a polyester having a high 3HH composition using the same.
背景技術  Background art
[0002] 現在までに数多くの微生物において、エネルギー貯蔵物質としてポリエステルを菌体 内に蓄積することが知られて 、る。その代表例としては 3—ヒドロキシ酪酸 (以下 3HB と略す)のホモポリマーであるポリ 3—ヒドロキシ酪酸(以下、 P (3HB)と略す)であり 、 1925年にバチルス 'メガテリゥム(Bacillus megaterium)で最初に発見された。 P (3HB)は熱可塑性高分子であり、自然環境中で生物的に分解されることから、環 境にやさしいプラスチックとして注目されている。しかし、 P (3HB)は結晶性が高いた め、硬くて脆い性質を持っていることから実用的には応用範囲が限られる。この為、こ の性質の改良を目的とした研究がなされてきた。  [0002] It has been known that many microorganisms accumulate polyester in cells as an energy storage substance. A typical example is poly-3-hydroxybutyric acid (hereinafter abbreviated as P (3HB)), which is a homopolymer of 3-hydroxybutyric acid (hereinafter abbreviated as 3HB), and was first introduced in 1925 in Bacillus megaterium (Bacillus megaterium). Was discovered in P (3HB) is a thermoplastic polymer that is biologically degraded in the natural environment and is attracting attention as an environmentally friendly plastic. However, P (3HB) has high crystallinity and is hard and brittle, so its practical application is limited. For this reason, research aimed at improving this property has been made.
[0003] その中で、 3 ヒドロキシ酪酸(3HB)と 3 ヒドロキシ吉草酸(3HV)と力もなる共重合 体 (以下 P (3HB- CO- 3HV)と略す)の製造方法が開示されて!、る(例えば、特許 文献 特許文献 2参照)。この? !^ ^ー !^)は P (3HB)に比べると柔軟性 に富むため、幅広い用途に応用できると考えられた。し力しながら、実際には P (3HB - CO- 3HV)は 3HVモル分率を増加させても、それに伴う物性の変化が乏しぐ特 にフィルム等へカ卩ェするために要求される柔軟性が向上しないため、シャンプーボト ルゃ使!、捨て剃刀の取っ手等、硬質成型体の分野にしか利用されなかった。  [0003] Among them, a method for producing a copolymer (hereinafter, abbreviated as P (3HB-CO-3HV)) that is also powerful with 3-hydroxybutyric acid (3HB) and 3-hydroxyvaleric acid (3HV) is disclosed! (For example, see Patent Document Patent Document 2). this? ! ^ ^ ー! ^) Is considered to be applicable to a wide range of applications because it is more flexible than P (3HB). In fact, P (3HB-CO-3HV) is not required to change its physical properties even if the 3HV mole fraction is increased. It was not used in the field of hard moldings, such as shampoo bottles and handles for throwing razors.
[0004] 近年、 3HBと 3 ヒドロキシへキサン酸(以下、 3HHと略す)との 2成分共重合ポリェ ステル(以下 P (3HB- CO - 3HH)と略す)およびその製造方法にっ 、て研究がなさ れた (特許文献 3、特許文献 4参照)。これら報告の P (3HB— co— 3HH)の製造方 法は、土壌より単離されたァエロモナス 'キヤビエ(Aeromonas caviae)を用いてォ レイン酸等の脂肪酸ゃォリーブオイル等の油脂力 発酵生産するものであった。また 、 P (3HB co 3HH)の性質に関する研究もなされている(非特許文献 1参照)。こ の報告では炭素数が 12個以上の脂肪酸を唯一の炭素源としてァエロモナス ·キヤビ ェを培養し、 3HH組成が 11〜 19mol%の P (3HB -co- 3HH)を発酵生産して!/ヽ る。この P (3HB— co— 3HH)は 3HH組成の増加にしたがって、 P (3HB)の硬くて 脆い性質力 次第に柔軟な性質を示すようになり、 P (3HB— co— 3HV)を上回る柔 軟性を示すことが明らかにされた。すなわち P (3HB— co— 3HH)は 3HH組成を変 えることで、硬質ポリマー力 軟質ポリマーまで応用可能な幅広い物性を持っため、 テレビの筐体等のように硬さを要求されるものからフィルム等のように柔軟性を要求さ れるものまで、幅広い分野への応用が期待できる。し力しながら、本製造方法では菌 体生産量 4gZL、ポリマー含量 30%とポリマー生産性は低いものであり、本ポリマー の実用化に向けた生産方法としては未だ不十分と言わざるを得な力 たため、実用 化に向けて更に高い生産性が得られる方法が探索された。 In recent years, research has been conducted on a two-component copolymer polyester (hereinafter abbreviated as P (3HB-CO-3HH)) of 3HB and 3hydroxyhexanoic acid (hereinafter abbreviated as 3HH) and a method for producing the same. (See Patent Documents 3 and 4). The method for producing P (3HB-co-3HH) reported in these reports is based on fermentative production of fatty acids such as oleic acid and fatty oils such as olive oil using aeromonas caviae isolated from soil. there were. Also, studies on the properties of P (3HB co 3HH) have been made (see Non-Patent Document 1). This Reported that aeromonas capillarum was cultured using fatty acids having 12 or more carbon atoms as the sole carbon source, and fermentatively produced P (3HB-co-3HH) with a 3HH composition of 11 to 19 mol%! . This P (3HB—co—3HH) becomes harder and more brittle than P (3HB) as the 3HH composition increases, and the P (3HB—co—3HV) becomes more flexible than P (3HB—co—3HV). It was revealed to show. In other words, P (3HB—co—3HH) has a wide range of physical properties that can be applied to soft polymers by changing the 3HH composition. It can be expected to be applied to a wide range of fields, such as those requiring flexibility, such as. However, this production method has a low cell productivity of 4 g ZL, a polymer content of 30%, and a low polymer productivity, making it inadequate as a production method for the practical use of this polymer. As a result, we searched for ways to achieve even higher productivity for practical use.
[0005] P (3HB— co— 3HH)の工業生産を目指した取組みもなされている。ァエロモナス' ハイドロフイラ(Aeromonas hydrophila)を用いた培養では、ォレイン酸を炭素源と した 43時間の流加培養において、菌体量 95. 7g/L、ポリマー含量 45. 2%、 3HH 組成 17%の P (3HB— co— 3HH)が生産された (非特許文献 2参照)。また、ァエロ モナス'ハイドロフイラを、炭素源としてグルコース及びラウリン酸を用いて培養し、菌 体量 50gZL、ポリマー含量 50%を達成した (非特許文献 3参照)。し力しながら、ァ エロモナス.ハイドロフイラはヒトに対して病原性を有する (非特許文献 4参照)ことから 、工業生産に適した種とはいえない。また、これらの培養生産では高価な炭素源を使 用するため、製造コストの観点より安価な炭素源の利用も求められている。  [0005] Efforts have also been made toward industrial production of P (3HB—co—3HH). In the culture using Aeromonas hydrophila, in a 43-hour fed-batch culture using oleic acid as a carbon source, a P cell with a cell mass of 95.7 g / L, a polymer content of 45.2%, and a 3HH composition of 17% was obtained. (3HB—co—3HH) was produced (see Non-Patent Document 2). Further, Aeromonas' hydrofila was cultured using glucose and lauric acid as carbon sources to achieve a cell amount of 50 gZL and a polymer content of 50% (see Non-Patent Document 3). However, Aeromonas hydrofila is pathogenic to humans (see Non-Patent Document 4), and thus cannot be said to be a species suitable for industrial production. In addition, since these culture productions use expensive carbon sources, it is required to use inexpensive carbon sources from the viewpoint of production costs.
[0006] このため、安全な宿主での生産及び生産性の向上を目指した取組みが行なわれた。  [0006] For this reason, efforts have been made to improve production in a safe host and improve productivity.
ァエロモナス .キヤビエよりポリヒドロキシアルカン酸(PHA)合成酵素遺伝子がクロー ユングされた (特許文献 5、非特許文献 5参照)。本遺伝子をラルストニア'ユートロフ ァ(Ralstonia eutropha,旧アルカリゲネス ·ユートロファス)に導入した形質転換体 を用いて P (3HB— co— 3HH)の生産を行った結果、菌体生産性は 4gZL、ポリマ 一含量は 30%であった。更に本形質転換体を、炭素源として植物油脂を用いて培 養した結果、菌体含量 4gZL、ポリマー含量 80%が達成された (非特許文献 6参照) 。し力しながら、安価な植物油脂を炭素源とするもののポリマー生産性は低ぐまたそ の 3HH組成は 5 %であり硬くて脆!、物性であつた。 A polyhydroxyalkanoic acid (PHA) synthase gene was cloned from Aeromonas cinerea (see Patent Document 5, Non-patent Document 5). Production of P (3HB—co—3HH) using a transformant in which this gene was introduced into Ralstonia eutropha (formerly Alcaligenes eutrophas) resulted in a cell productivity of 4 gZL and polymer content. Was 30%. Furthermore, as a result of culturing the transformant using vegetable oils and fats as a carbon source, a cell content of 4 gZL and a polymer content of 80% were achieved (see Non-Patent Document 6). However, the polymer productivity is low, although cheap vegetable oils and fats are used as carbon sources. The 3HH composition of 5% was hard, brittle, and had physical properties.
[0007] また、フラクトースを炭素源として P (3HB— co— 3HH)を生産できるラルストニア 'ュ 一トロファも構築された力 本菌株のポリマー生産性は低ぐ実生産に適しているとは Vヽえなかった (非特許文献 7参照)。  [0007] In addition, Ralstonia ト ロ -tropha capable of producing P (3HB-co-3HH) using fructose as a carbon source has also been constructed. The polymer productivity of this strain is low, and it is not suitable for actual production. (See Non-Patent Document 7).
[0008] 大腸菌を宿主とした P (3HB— co— 3HH)生産株も構築された。ァエロモナス属の P HA合成酵素遺伝子等やラルストニア ·ユート口ファの NADP -ァセトァセチル Co - A還元酵素遺伝子を大腸菌に導入した株が構築された。ドデカンを炭素源として同 大腸菌を 40. 8時間培養した結果、菌体量 79gZL、ポリマー含量 27. 2%、 3HH組 成 10. 8%であった (非特許文献 8参照)。  [0008] A P (3HB-co-3HH) producing strain using Escherichia coli as a host has also been constructed. A strain was constructed in which Escherichia coli introduced a PHA synthase gene of the genus Aeromonas and a NADP-acetoacetyl Co-A reductase gene of Ralstonia eutopha. As a result of culturing the Escherichia coli for 40.8 hours using dodecane as a carbon source, the bacterial mass was 79 gZL, the polymer content was 27.2%, and the 3HH composition was 10.8% (see Non-Patent Document 8).
[0009] ァエロモナス 'キヤビエの PHA合成酵素遺伝子、エノィル CoAヒドラターゼ遺伝子及 びァシル CoAデヒドロゲナーゼ遺伝子を導入した大腸菌も構築された。同大腸菌を ラウリン酸を含む培地で培養すると、ポリマー含量約 16%、 3HH組成約 16%であつ た (非特許文献 9)。これらの大腸菌では生産性は低ぐ工業的生産への適用は困難 であった。  [0009] An Escherichia coli transfected with the PHA synthase gene of Aeromonas' rabies, the enol CoA hydratase gene and the acyl-CoA dehydrogenase gene was also constructed. When the Escherichia coli was cultured in a medium containing lauric acid, the polymer content was about 16% and the 3HH composition was about 16% (Non-Patent Document 9). The productivity of these Escherichia coli was low and it was difficult to apply them to industrial production.
[0010] 一方で、 P (3HB— co— 3HH)の生産性向上並びに 3HH組成制御を目指して、 PH A合成酵素の人為的な改変が行なわれた (非特許文献 10、非特許文献 11参照)。 ァエロモナス.キヤビエ由来の PHA合成酵素変異体のなかで、 149番目のアミノ酸ァ スパラギンがセリンに置換された変異体酵素や、 171番目のァスパラギン酸がグリシ ンに置換された変異体酵素は、大腸菌内での PHA合成酵素活性や 3HH組成が向 上していることが示され、また、 518番目のフエ-ルァラニンがイソロイシンに置換され た変異体酵素や 214番目のパリンがグリシンに置換された変異体酵素は大腸菌での PHA合成酵素活性やポリマー含量が向上したことが報告されている。しかし、これら は宿主として特殊な大腸菌を用いており未だポリマー含量は低いことから、これらの 変異体酵素の特徴を活力した工業的生産に向けた更なる改良が必要であった。  [0010] On the other hand, in order to improve the productivity of P (3HB-co-3HH) and control the composition of 3HH, artificial modification of PHA synthase was performed (see Non-Patent Documents 10 and 11). ). Among the PHA synthase mutants derived from A. aeruginosa, a mutant enzyme in which the amino acid aspargin at position 149 has been replaced with serine and a mutant enzyme in which glycine has been substituted for position 171 aspartic acid have been found in Escherichia coli. PHA synthase activity and 3HH composition were also improved, and mutants in which 518th phenylalanine was replaced with isoleucine and 214th in which palin was replaced with glycine It has been reported that the enzyme has improved PHA synthase activity and polymer content in Escherichia coli. However, since they use special E. coli as their host and still have a low polymer content, further improvement was required for industrial production utilizing the characteristics of these mutant enzymes.
[0011] T. Fukui等がラルストニア ·ユート口ファを宿主として P (3HB— co— 3HH)を生産し た PHA合成酵素発現プラスミドは、 pJRD215 (ATCC 37533)にポリエステル合 成酵素遺伝子や D—エノィル Co— Aヒドラターゼ遺伝子等を導入した PJRDEE32や pJRDEE32dl3等 (特許文献 5参照)であった。本菌株の菌体含量は 4gZLと低か つたが、植物油脂を炭素源とした同菌株の培養条件改善により菌体含量 45gZL、 ポリマー含量 62. 5%、3HH糸且成 8. 1%にまで向上したように、培養方法によって高 3HH組成の P (3HB -co - 3HH)を生産する方法も研究された (特許文献 6参照)。 また、 P (3HB— co— 3HH)の物性を制御する方法も開示されている(特許文献 6参 照)。少なくとも 2種類の炭素数の異なる油脂および Zまたは脂肪酸を炭素源として 用いることによって、 3HH組成が l〜40mol%の P (3HB— co— 3HH)を生産するこ とが可能となり、種々の物性を有する(3HB— co— 3HH)が生産できるようになった。 しかしながら、本製造方法では、 3HH組成制御のために比較的高価なへキサン酸、 オクタン酸等を添加する必要があり、また高濃度のへキサン酸は細胞毒性を示すこと 力 菌体生産性が低下する結果となっている。また、多成分の炭素源を添加するた め、生産設備が複雑 '高価なものになりかねない。 [0011] T. Fukui et al. Produced a PHA synthase expression plasmid that produced P (3HB—co—3HH) using Ralstonia eutopha as a host, and the polyester synthase gene and D-enol PJRDEE32 and pJRDEE32dl3 into which a Co—A hydratase gene or the like was introduced (see Patent Document 5). Is the cell content of this strain as low as 4 gZL? As a result, the cell content was increased to 45 g ZL, the polymer content was increased to 62.5%, and the 3HH was increased to 8.1% by improving the culture conditions of the same strain using vegetable oil as a carbon source. A method for producing P (3HB-co-3HH) has also been studied (see Patent Document 6). Also, a method for controlling the physical properties of P (3HB-co-3HH) has been disclosed (see Patent Document 6). By using at least two kinds of fats and oils having different carbon numbers and Z or fatty acids as a carbon source, it becomes possible to produce P (3HB-co-3HH) having a 3HH composition of 1 to 40 mol%, and various physical properties can be obtained. (3HB-co-3HH) can be produced. However, in this production method, it is necessary to add relatively expensive hexanoic acid, octanoic acid, etc. to control the 3HH composition, and high concentrations of hexanoic acid show cytotoxicity. The result is a decrease. In addition, the addition of multi-component carbon sources can make the production facilities complex and expensive.
特許文献 1 :特開昭 57— 150393号公報 Patent Document 1: JP-A-57-150393
特許文献 2:特開昭 59— 220192号公報 Patent Document 2: JP-A-59-220192
特許文献 3:特開平 5— 93049号公報 Patent Document 3: JP-A-5-93049
特許文献 4:特開平 7— 265065号公報 Patent Document 4: JP-A-7-265065
特許文献 5:特開平 10— 108682号公報 Patent Document 5: JP-A-10-108682
特許文献 6:特開 2001— 340078号公報 Patent Document 6: Japanese Patent Application Laid-Open No. 2001-340078
非特許文献 1 :Y. Doi, S. Kitamura, H. Abe, Macromolecules 28, 4822-4 823 (1995) Non-Patent Document 1: Y. Doi, S. Kitamura, H. Abe, Macromolecules 28, 4822-4 823 (1995)
非特許文献 2 : Biotechnology and Bioengineering, vol67, 240 (2000) 非特許文献 3 :Appl. Microbiol. Biotechnol. , vol57, 50 (2001) Non-patent document 2: Biotechnology and Bioengineering, vol67, 240 (2000) Non-patent document 3: Appl.Microbiol.Biotechnol., Vol57, 50 (2001)
非特許文献 4 :国立感染症研究所、病原体等安全管理規定、別表 1付表 1 (1999) 非特許文献 5 :T. Fukui, Y. Doi, J. Bacteriol, 179, 15, 4821—4830 (1997) 非特許文献 6 :T. Fukui等, Appl. Microbiol. Biotecnol. 49, 333 (1998) 非特許文献 7 :T. Fukui等 Biomolecules, vol3, 618 (2002) Non-Patent Document 4: National Institute of Infectious Diseases, Regulations for Safety Management of Pathogens, Appendix 1 Appendix 1 (1999) Non-Patent Document 5: T. Fukui, Y. Doi, J. Bacteriol, 179, 15, 4821—4830 (1997) Non-patent document 6: T. Fukui et al., Appl. Microbiol. Biotecnol. 49, 333 (1998) Non-patent document 7: T. Fukui et al., Biomolecules, vol3, 618 (2002)
非特許文献 8 : S. Park等 Biomacromolecules, vol2, 248 (2001) Non-Patent Document 8: S. Park et al. Biomacromolecules, vol2, 248 (2001)
非特許文献 9 :X. Lu等、 FEMS Microbiology Letters, vol221, 97 (2003) 非特許文献 10 :T. Kichise等、 Appl. Environ. Microbiol. 68, 2411 - 2419 (2 002) Non-Patent Document 9: X. Lu et al., FEMS Microbiology Letters, vol221, 97 (2003) Non-Patent Document 10: T. Kichise et al., Appl.Environ.Microbiol. 68, 2411-2419 (2 002)
非特許文献 11 : A. Amara等 App. Microbiol. Biotechnol. , vol59, 477 (200 2)  Non-Patent Document 11: A. Amara et al. App.Microbiol.Biotechnol., Vol59, 477 (200 2)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 上述したようにラルストニア'ユート口ファは安全性、高い生産性、安価な炭素源の利 用が可能等の観点より P (3HB— co— 3HH)の工業的生産に最も適した宿主である と期待されている。しかしながら、低 3HH組成 P (3HB— co— 3HH)生産系に比べ、 柔軟な性質を活かしたフィルム等への加工に適した高 3HH組成 P (3HB— co— 3H H)の安全且つ安価な生産系が確立されて 、な 、ため、その高生産系開発が望まれ ていた。 [0013] As described above, Ralstonia's eutopha is the most suitable host for industrial production of P (3HB-co-3HH) from the viewpoints of safety, high productivity, availability of an inexpensive carbon source, and the like. Is expected. However, compared to the low 3HH composition P (3HB-co-3HH) production system, safe and inexpensive production of high 3HH composition P (3HB-co-3HH) suitable for processing into films, etc., making use of its flexible properties Since the system was established, the development of a high production system was desired.
課題を解決するための手段  Means for solving the problem
[0014] 本発明者は、上記課題を解決するために鋭意検討し、ァエロモナス'キヤビエ由来の phaC新規誘導体遺伝子を含む新規なポリエステル合成酵素発現プラスミドを構築し た。ラルストニア'ユートロファ等の宿主にその発現プラスミドを導入した形質転換体を 作製し、安価な植物油脂による単一炭素源下で培養した結果、 3HH組成が 12mol %以上の P (3HB— co— 3HH)を高生産性にて生産できることを見出した。  [0014] The present inventors have conducted intensive studies in order to solve the above problems, and have constructed a novel polyester synthase expression plasmid containing a novel phaC derivative gene derived from Aeromonas' biebie. A transformant in which the expression plasmid was introduced into a host such as Ralstonia-eutropha was prepared and cultured under a single carbon source using inexpensive vegetable oils and fats. As a result, P (3HB-co-3HH) with a 3HH composition of 12 mol% or more was obtained. Can be produced with high productivity.
[0015] すなわち、本発明は、フィルム等への加工性に優れた高 3HH組成の P (3HB— co— 3HH)を製造可能なポリエステル合成酵素発現プラスミド、該プラスミドを含む高 3H H組成ポリエステル合成能を有する形質転換体、および該形質転換体を使用した高 3HH組成ポリエステルの安全且つ安価な製造方法に関する。  [0015] That is, the present invention provides a polyester synthase expression plasmid capable of producing P (3HB-co-3HH) having a high 3HH composition excellent in processability into a film or the like, and a high 3HH composition polyester containing the plasmid. The present invention relates to a transformant having an ability and a safe and inexpensive method for producing a high 3HH composition polyester using the transformant.
[0016] つまり、本発明は、高 3HH組成ポリエステル合成酵素発現プラスミドである、 PHB- 4/pJRDdTc + 149NS 17 IDG (FERM BP— 10259)に含まれるポリエステル合 成酵素発現プラスミド (I);上記発現プラスミドを小型化したポリエステル合成酵素発 現プラスミド (II);上記高 3HH組成ポリエステル合成酵素発現プラスミドによって形質 転換された形質転換体及び PHB— 4ZpJRDdTc+ 149NS171DG (FERM BP - 10259);形質転換体を用いたポリエステルの製造方法に関するものである。 上記製造方法は、好ましくは、ポリエステルが下式(1) [0017] [化 1] [0016] That is, the present invention provides a polyester synthase expression plasmid (I) contained in PHB-4 / pJRDdTc + 149NS17IDG (FERM BP-10259), which is a high 3HH composition polyester synthase expression plasmid; Polyester synthase expression plasmid (II) obtained by miniaturizing the plasmid; a transformant transformed with the above-mentioned high 3HH composition polyester synthase expression plasmid and PHB-4ZpJRDdTc + 149NS171DG (FERM BP-10259); The present invention relates to a method for producing a polyester. In the above production method, preferably, the polyester is represented by the following formula (1) [0017] [Formula 1]
H -O H ( 1 )
Figure imgf000007_0001
H-OH (1)
Figure imgf000007_0001
[0018] (式中、 m、 nは 1以上の整数を表す)で示される、 3—ヒドロキシ酪酸と 3—ヒドロキシ へキサン酸力もなる共重合ポリエステル P (3HB— co— 3HH)である、上記形質転換 体を用いた高 3HH組成ポリエステルの安全且つ安価な製造方法である。 (Wherein m and n each represent an integer of 1 or more), which is a copolymerized polyester P (3HB—co—3HH) having 3-hydroxybutyric acid and 3-hydroxyhexanoic acid power. This is a safe and inexpensive method for producing a high 3HH composition polyester using a transformant.
[0019] 以下に、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明のポリエステル合成酵素発現プラスミド(I)は、 PHB— 4ZpJRDdTc+ 149N S171DG (FERM BP— 10259)に含まれるものであり、高生産性かつ高 3HH組 成である P (3HB— co— 3HH)を合成する酵素の発現プラスミドである。  The polyester synthase expression plasmid (I) of the present invention is contained in PHB-4ZpJRDdTc + 149N S171DG (FERM BP-10259), and has a high productivity and high 3HH composition P (3HB-co-3HH). This is an expression plasmid for the enzyme to be synthesized.
[0020] 発現プラスミドの作製  Preparation of Expression Plasmid
まず、本発明のポリエステル合成酵素発現プラスミド (I)の作製にっ 、て説明する。 全体的な遺伝子操作は、 Molecular Cloning (Cold Spring Harbor Laborat ory Press, (1989) )に記載されているように行うことができる。また、遺伝子操作に 使用する酵素、クローユング宿主等は、市場の供給者から購入し、その説明に従い 使用することができる。なお、酵素としては、遺伝子操作に使用できるものであれば特 に限定されない。また、クローユング宿主としては、特に限定はないが、例えば大腸 菌 DH5 α株等が挙げられる。  First, the production of the polyester synthase expression plasmid (I) of the present invention will be described. Global genetic manipulations can be performed as described in Molecular Cloning (Cold Spring Harbor Laboratory Press, (1989)). Enzymes, Cloying hosts, etc. used for genetic manipulation can be purchased from market suppliers and used according to the description. The enzyme is not particularly limited as long as it can be used for genetic manipulation. The Clawing host is not particularly limited, and examples include Escherichia coli DH5α strain.
[0021] 本発明において、ベクターとしては広宿主域ベクターの一つである pJRD215 (ATC C 37533)の誘導体 pJRDdTc (WO04Z074476記載)等を用いることができる。 本発現プラスミド構築に使用したベクターの配列を配列番号 4に示す。  In the present invention, a pJRD215 (ATC C 37533) derivative pJRDdTc (described in WO04Z074476), which is one of the broad host range vectors, can be used as the vector. SEQ ID NO: 4 shows the sequence of the vector used in the construction of this expression plasmid.
ポリエステル合成酵素遺伝子として、配列番号 3に示すァエロモナス ·キヤビエ由来 の N149SZD171G二重変異体遺伝子断片を制限酵素 EcoRI断片として調製し、 上記ベクターの同制限酵素部位に挿入して構築することができる。  As a polyester synthase gene, an N149SZD171G double mutant gene fragment derived from Aeromonas capillaris shown in SEQ ID NO: 3 is prepared as a restriction enzyme EcoRI fragment, and inserted into the same restriction enzyme site of the above vector to construct.
なお、 N149S変異体遺伝子及び D171G変異体遺伝子は、 T. Kichise等、 Appl. Environ. Microbiol. 68, 2411— 2419 (2002)【こ記載されて!ヽる、それぞれ 149 番目のアミノ酸のァスパラギンがセリンに、 171番目のアミノ酸のァスパラギン酸がダリ シンに置換された、ァエロモナス ·キヤビエ由来であるポリエステル合成酵素遺伝子 である。 The N149S mutant gene and the D171G mutant gene are described in T. Kichise et al., Appl. Environ. Microbiol. 68, 2411-2419 (2002) [this description describes that asparagine at the 149th amino acid is serine. The 171st amino acid aspartic acid is This is a polyester synthase gene derived from Aeromonas capillaris, substituted for syn.
図 1に、本発明のポリエステル合成酵素発現プラスミド (I)を構築する手順を示す。  FIG. 1 shows the procedure for constructing the polyester synthase expression plasmid (I) of the present invention.
[0022] ポリエステル合成酵素遺伝子としては、構造遺伝子のほかに、プロモーター、ターミ ネーター等、宿主菌で機能する発現ユニットを有していればよい。なお、ポリエステル 合成酵素発現プラスミドには、上記発現ユニットが 1個以上存在していればよぐ複数 個存在してもよい。 [0022] The polyester synthase gene only needs to have an expression unit that functions in the host bacterium, such as a promoter and a terminator, in addition to the structural gene. Note that the polyester synthase expression plasmid may contain a plurality of expression units as long as at least one expression unit is present.
なお、本発明の PHB— 4ZpJRDdTc + 149NS171DG (FERM BP— 10259)に 含まれるポリエステル合成酵素発現プラスミド (I)は、本明細書中「pJRDdTc+ 149 NS171DG」と表すことがある。  The polyester synthase expression plasmid (I) contained in PHB-4ZpJRDdTc + 149NS171DG (FERM BP-10259) of the present invention may be referred to as “pJRDdTc + 149NS171DG” in this specification.
[0023] 次に、本発明のポリエステル合成酵素発現プラスミド (II)の作製について説明する。  Next, the production of the polyester synthase expression plasmid (II) of the present invention will be described.
本発明のポリエステル合成酵素発現プラスミド(Π)は、 PHB— 4ZpJRDdTc+ 149 NS171DG (FERM BP— 10259)に含まれるポリエステル合成酵素発現プラスミド (I)を小型化したものである。  The polyester synthase expression plasmid (Π) of the present invention is obtained by miniaturizing the polyester synthase expression plasmid (I) contained in PHB-4ZpJRDdTc + 149 NS171DG (FERM BP-10259).
[0024] プラスミドを小型化するには、ポリエステル合成酵素遺伝子の発現およびプラスミド複 製に不要である部分を欠失させることにより行える。例えば、使用するプラスミドに抗 生物質耐性遺伝子が 2つ以上あるならば、そのどちらかを欠失させることができる。 本発明の発現プラスミド場合、カナマイシン耐性遺伝子あるいはストレプトマイシン耐 性遺伝子を欠失させることが可能であるが、ストレプトマイシン耐性遺伝子を欠失させ ることが好ましい。このように特定の遺伝子を欠失させる方法としては、制限酵素部位 を利用した方法や PCRによる方法を用いることができる。  [0024] The size of the plasmid can be reduced by deleting portions unnecessary for expression of the polyester synthase gene and plasmid replication. For example, if the plasmid used has two or more antibiotic resistance genes, either of them can be deleted. In the case of the expression plasmid of the present invention, it is possible to delete the kanamycin resistance gene or the streptomycin resistance gene, but it is preferable to delete the streptomycin resistance gene. As a method for deleting a specific gene as described above, a method using a restriction enzyme site or a method using PCR can be used.
[0025] また、接合伝達能力の一部または全てを欠失し、かつ、ストレプトマイシン耐性遺伝 子を欠失したポリエステル合成酵素発現プラスミドも好適に用いることができる。  [0025] Also, a polyester synthase expression plasmid lacking part or all of the conjugation transfer ability and lacking the streptomycin resistance gene can be suitably used.
[0026] 本発明のポリエステル合成酵素発現プラスミド (Π)は、プラスミドを小型化することに より、宿主に発現プラスミドを導入する際、形質転換率を向上させることができる。  [0026] The polyester synthase expression plasmid (本) of the present invention can improve the transformation rate when the expression plasmid is introduced into a host by miniaturizing the plasmid.
[0027] 形皙転椽体の作製  [0027] Fabrication of the form
次に、形質転換体の作製について説明する。  Next, production of a transformant will be described.
本発明の形質転換体は、上記ポリエステル合成酵素発現プラスミド (I)〜 (II)の ヽず れかによつて形質転換されたものである。つまり、本発明の形質転換体は、上記で得 られたポリエステル合成酵素発現プラスミド (I)〜 (Π)の 、ずれかを、当該プラスミドに 適合する宿主中に導入することにより得られる。 The transformant of the present invention comprises at least one of the above-mentioned polyester synthase expression plasmids (I) to (II). It has been transformed by this. That is, the transformant of the present invention can be obtained by introducing any of the polyester synthase expression plasmids (I) to (I) obtained above into a host compatible with the plasmid.
[0028] 宿主としては、特に制限はないが、天然から単離された微生物や、菌株の寄託機関( 例えば IFO、 ATCC等)に寄託されている微生物等を使用できる。具体的にはラルス トニア (Ralstonia)属、ァエロモナス (Aeromonas)属、ェシエリキア (Escherichia) 属、アルカリゲネス(Alcaligenes)属、シユードモナス(Pseudomonas)属等の細菌 類のポリエステル非生産菌を使用することができる。安全性及び生産性の観点から 好ましくはラルストニア属であり、より好ましくはラルストニア ·ユートロファであり、更に 好ましくは変異剤処理又は相同組換えに基づく遺伝子破壊処理によってポリエステ ル合成酵素が不活性ィ匕されたラルストニア'ユートロファであり、例えばラルストニア' ユートロファ PHB— 4株等である。ラルストニア'ユートロファ PHB— 4株は、例えば D SMZ等の機関力 入手可能である。  [0028] The host is not particularly limited, but a microorganism isolated from nature, a microorganism deposited at a strain depository (eg, IFO, ATCC, etc.), and the like can be used. Specifically, non-polyester-producing bacteria of bacteria such as Ralstonia, Aeromonas, Escherichia, Alcaligenes, and Pseudomonas can be used. From the viewpoint of safety and productivity, Ralstonia is preferable, Ralstonia eutropha is more preferable, and polyester synthase is inactivated by mutagen treatment or gene disruption treatment based on homologous recombination. Ralstonia's Eutropha, for example, Ralstonia's Eutropha PHB-4 strain. Ralstonia's Eutropha PHB-4 strain is available from institutional sources such as D SMZ.
[0029] 微生物へのポリエステル合成酵素発現プラスミドの導入は、公知の方法により行うこと ができる。例えば、エレクト口ポレーシヨン法 (Current Protocols in Morecular Biology, 1卷、 1. 8. 4頁、 1994年)や、カルシウム法(Lederberg. E. M. et al . , J. Bacteriol. 119. 1072 (1974) )等を用いることができる。  [0029] Introduction of a polyester synthase expression plasmid into a microorganism can be performed by a known method. For example, the electo-portion method (Current Protocols in Morecular Biology, vol. 1, page 1.8.4, 1994), the calcium method (Lederberg. EM et al., J. Bacteriol. 119. 1072 (1974)), etc. Can be used.
[0030] 本発明の好ましい形質転換体としては、例えば、宿主としてのラルストニア 'ユート口 ファに、ポリエステル合成酵素発現プラスミド (I)を導入した形質転換体等が挙げられ る。具体的には、以下に示す形質転換体等が挙げられる。  [0030] Preferable transformants of the present invention include, for example, a transformant in which the polyester synthase expression plasmid (I) is introduced into Ralstonia's utop as a host. Specific examples include the following transformants.
pJRDdTc+ 149NS 171DGをラルストニア ·ユートロファ PHB— 4株に導入した形質 転換体である、 PHB— 4/pJRDdTc+ 149NS171DG (受託番号: FERM BP— 10259、受託日:平成 17年 2月 23日)。なお、この形質転換体は、 日本国茨城県つ くば巿東 1丁目 1番地 1中央第 6にある独立行政法人産業技術総合研究所特許生物 寄託センターに、ブダペスト条約に基づいて国際寄託されている。  PHB-4 / pJRDdTc + 149NS171DG (Accession number: FERM BP-10259, accession date: February 23, 2005), which is a transformant in which pJRDdTc + 149NS 171DG was introduced into Ralstonia eutropha PHB-4 strain. This transformant has been deposited internationally under the Budapest Treaty at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary, located at 1-1, Tsukuba-Higashi, Ibaraki, Japan. .
[0031] P (3HB— co— 3HH)生産 [0031] P (3HB—co—3HH) production
次に、 P (3HB— co— 3HH)の生産について説明する。  Next, the production of P (3HB-co-3HH) will be described.
本発明のポリエステルの製造方法は、上記形質転換体を用いるものである。 上記ポリエステルとしては、下式(1) The method for producing a polyester of the present invention uses the above transformant. As the above polyester, the following formula (1)
[0032] [化 2] [0032] [Formula 2]
H -O H ( 1 )
Figure imgf000010_0001
H-OH (1)
Figure imgf000010_0001
[0033] (式中、 m、 nは 1以上の整数を表す)で示される、 3—ヒドロキシ酪酸と 3—ヒドロキシ へキサン酸力もなる共重合ポリエステル P (3HB— co— 3HH)が好ましぐ高 3HH組 成の共重合ポリエステル P (3HB-co - 3HH)がより好まし!/、。 [0033] Copolymerized polyester P (3HB—co—3HH), which also has 3-hydroxybutyric acid and 3-hydroxyhexanoic acid, represented by the formula (where m and n represent integers of 1 or more) is preferred. Higher 3HH copolymer polyester P (3HB-co-3HH) is more preferred!
[0034] 高 3HH組成 P (3HB— co— 3HH)を構成する各モノマーユニットの組成比につ!/、て は特に限定されるものではないが、柔軟性の良好さから、好ましくは 3HHユニットが 8 mol%以上且つ 50mol%以下であり、より好ましくは 10mol%以上且つ 40mol%以 下、とりわけ 12mol%以上且つ 30mol%以下が好ましい。  [0034] The composition ratio of each monomer unit constituting the high 3HH composition P (3HB—co—3HH)! Although not particularly limited, from the viewpoint of good flexibility, 3HH units are preferably at least 8 mol% and at most 50 mol%, more preferably at least 10 mol% and at most 40 mol%, particularly at most 12 mol%. % Or more and 30 mol% or less.
[0035] P (3HB— co— 3HH)の生産においては、糖、油脂または脂肪酸を炭素源として与 え、炭素源以外の栄養源である窒素源、無機塩類及びそのほかの有機栄養源を含 む培地を用いて、上記形質転換体を培養することができる。  [0035] In the production of P (3HB-co-3HH), sugars, fats and oils or fatty acids are given as carbon sources and include nutrients other than carbon sources, such as nitrogen sources, inorganic salts, and other organic nutrients. The transformant can be cultured using a medium.
[0036] 例えば、ラルストニア属、ァエロモナス属、ェシエリキア属、アルカリゲネス属またはシ ユードモナス属に属する微生物等の細菌を宿主として得られた形質転換体を培養す る培地としては、微生物が資化し得る炭素源を与え、場合によっては、窒素源、無機 塩類および有機栄養源のうちのいずれかを制限した培地、例えば窒素源を 0. 01〜 0. 1%に制限した培地等を用 、ることができる。  For example, as a medium for culturing a transformant obtained by using a microorganism such as a microorganism belonging to the genus Ralstonia, Aeromonas, Escherichia, Alcaligenes or Pseudomonas as a host, a carbon source that can be assimilated by the microorganism is used. In some cases, a medium in which any one of nitrogen source, inorganic salts and organic nutrients is restricted, for example, a medium in which the nitrogen source is restricted to 0.01 to 0.1%, etc. can be used. .
[0037] 糖としては、例えばグルコース、フラクトース等の炭水化物が挙げられる。  [0037] Examples of the sugar include carbohydrates such as glucose and fructose.
油脂としては、炭素数が 10以上である飽和 '不飽和脂肪酸を多く含む油脂、例えば ヤシ油、パーム油、パーム核油等が挙げられる。  Examples of fats and oils include fats and oils rich in saturated 'unsaturated fatty acids having 10 or more carbon atoms, such as coconut oil, palm oil, palm kernel oil and the like.
脂肪酸としては、へキサン酸、オクタン酸、デカン酸、ラウリン酸、ォレイン酸、パルミ チン酸、リノール酸、リノレン酸、ミリスチン酸等の飽和 '不飽和脂肪酸、あるいはこれ ら脂肪酸のエステルや塩等の脂肪酸誘導体が挙げられる。  Fatty acids include saturated unsaturated fatty acids such as hexanoic acid, octanoic acid, decanoic acid, lauric acid, oleic acid, palmitic acid, linoleic acid, linolenic acid and myristic acid, and esters and salts of these fatty acids. Fatty acid derivatives are mentioned.
[0038] 窒素源としては、例えばアンモニア、塩化アンモ-ゥム、硫酸アンモ-ゥム、リン酸ァ ンモ -ゥム等のアンモ-ゥム塩の他、ペプトン、肉エキス、酵母エキス等が挙げられる [0039] 無機塩類としては、例えばリン酸第一カリウム、リン酸第二カリウム、リン酸マグネシゥ ム、硫酸マグネシウム、塩ィ匕ナトリウム等が挙げられる。 [0038] Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium phosphate and the like, as well as peptone, meat extract, yeast extract and the like. Be [0039] Examples of the inorganic salts include potassium potassium phosphate, potassium potassium phosphate, magnesium phosphate, magnesium sulfate, sodium salt and the like.
[0040] そのほかの有機栄養源としては、例えばグリシン、ァラニン、セリン、スレオニン、プロ リン等のアミノ酸;ビタミン Bl、ビタミン B12、ビタミン C等のビタミン等が挙げられる。 [0040] Other organic nutrients include, for example, amino acids such as glycine, alanine, serine, threonine, and proline; and vitamins such as vitamin B1, vitamin B12, and vitamin C.
[0041] また、培養液中に、本発明の発現プラスミドに存在する抗生物質耐性遺伝子に対応 する抗生物質 (カナマイシン等)を添加しても良 、。 Further, an antibiotic (such as kanamycin) corresponding to the antibiotic resistance gene present in the expression plasmid of the present invention may be added to the culture solution.
培養温度は、その菌が生育可能な温度であればよいが、 20°Cから 40°Cが好ましい。 培養時間は、特に制限はないが、 1〜7日間程度で良い。  The culture temperature may be any temperature at which the bacteria can grow, but is preferably 20 ° C to 40 ° C. The culture time is not particularly limited, but may be about 1 to 7 days.
その後、得られた該培養菌体から P (3HB- CO - 3HH)を回収すればょ 、。  Thereafter, P (3HB-CO-3HH) should be recovered from the obtained cultured cells.
[0042] 本発明において、菌体からの P (3HB— co— 3HH)の回収は、例えば次のような方 法により行うことができる。培養終了後、培養液から遠心分離器等で菌体を分離し、 その菌体を蒸留水、メタノール等により洗浄し、乾燥させる。この乾燥菌体から、クロ口 ホルム等の有機溶剤を用いて p (3HB— co— 3HH)を抽出する。この P (3HB— co — 3HH)を含んだ有機溶剤溶液から、濾過等によって菌体成分を除去し、そのろ液 にメタノールやへキサン等の貧溶媒を加えて P (3HB co— 3HH)を沈殿させる。さ らに、濾過や遠心分離によって上澄み液を除去し、乾燥させて P (3HB— co— 3HH )を回収する。 [0042] In the present invention, P (3HB-co-3HH) can be recovered from cells by, for example, the following method. After completion of the culture, the cells are separated from the culture using a centrifuge or the like, and the cells are washed with distilled water, methanol and the like, and dried. From the dried cells, p (3HB-co-3HH) is extracted using an organic solvent such as black form. Cell components are removed from the organic solvent solution containing P (3HB—co—3HH) by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to form P (3HB co—3HH). Let it settle. Further, the supernatant is removed by filtration or centrifugation, and dried to recover P (3HB-co-3HH).
[0043] 得られた P (3HB-co- 3HH)の重量平均分子量(Mw)や 3HH組成 (mol%)の分 析は、例えば、ガスクロマトグラフ法や核磁気共鳴法等により行うことができる。あるい は、ポリエステル生産確認の簡易法としては、 Nileredを用いた染色法を利用できる 。すなわち、組換え菌が生育する寒天培地に Nileredをカ卩え、組換え菌を 1〜7日間 培養し、組換え菌が赤変するカゝ否かを観察することにより、ポリエステル生産の有無 を確認できる。  The analysis of the weight average molecular weight (Mw) and the 3HH composition (mol%) of the obtained P (3HB-co-3HH) can be performed by, for example, a gas chromatography method or a nuclear magnetic resonance method. Alternatively, as a simple method for confirming polyester production, a dyeing method using Nilered can be used. That is, the presence or absence of polyester production is determined by culturing Nilered on an agar medium on which the recombinant bacterium grows, culturing the recombinant bacterium for 1 to 7 days, and observing whether the recombinant bacterium turns red. You can check.
発明の効果  The invention's effect
[0044] 上述したように、新規ポリエステル合成酵素発現プラスミドによるラルストニア 'ユート 口ファの形質転換体を用いることにより、安価な植物油脂等の単一炭素源下での培 養においてもフィルム状等への加工に適した高 3HH組成の P (3HB— co— 3HH)を 安全且つ高生産性で生産することが可能となった。 [0044] As described above, the use of a transformant of Ralstonia 'Uto ora by using a novel polyester synthase expression plasmid enables the formation of a film or the like even when cultured under a single carbon source such as inexpensive vegetable oils and fats. P (3HB—co—3HH) with high 3HH composition suitable for It has become possible to produce safely and with high productivity.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 以下、実施例により本発明を詳細に説明する。ただし、本発明は、これら実施例にそ の技術範囲を限定するものではな 、。  Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention does not limit the technical scope to these examples.
(実施例 1) 発現プラスミドの構築  (Example 1) Construction of expression plasmid
高 3HH組成 P (3HB -co- 3HH)生産用の発現プラスミドは以下のようにして構築 した。  An expression plasmid for production of high 3HH composition P (3HB-co-3HH) was constructed as follows.
pJRDdTc+ 149NS171DG構築用のベクターとしては、配列番号 4に示される DN Aでコードされるベクターを用いた。本ベクターは、 WO04Z074476記載の pJRDd Tcと同様に構築することができる。  As a vector for constructing pJRDdTc + 149NS171DG, a vector encoded by the DNA shown in SEQ ID NO: 4 was used. This vector can be constructed in the same manner as pJRDd Tc described in WO04Z074476.
ポリエステル合成酵素遺伝子であるァエロモナス .キヤビエ由来の N149SZD171G 二重変異体遺伝子断片は、 PCR法により作成した。 N149S変異及び D171G変異 はそれぞれァエロモナス'キヤビエ由来 PHA合成酵素の 149番目のアミノ酸であるァ スパラギンがセリンに、 171番目のアミノ酸であるァスパラギン酸がグリシンに置換さ れている。従って、非特許文献 10に記載されているァエロモナス 'キヤビエ由来の N 149S変異遺伝子を、ー且 pUC19の EcoRI部位にサブクローユングしておき、配列 番号 1と配列番号 2で示される合成 DNAをプライマーとして用いて PCRを行った。そ の条件は(1) 94°Cで 2分、(2) 94°Cで 30秒、(3) 55°Cで 30秒、(4) 72°Cで 2分、(2 )から (4)を 25サイクル、(5) 72°Cで 5分であり、ポリメラーゼとしては LA Taqポリメラ ーゼ(宝バイオ製)を用いた。制限酵素 EcoRIで切断して配列番号 3に示す N149S ZD171G断片を調製し、本ベクターを同酵素で切断した部位に挿入して発現プラス ミド pJRDdTc+ 149NS171DGを構築した。  The N149SZD171G double mutant gene fragment derived from Aeromonas radiata, which is a polyester synthase gene, was prepared by PCR. In the N149S mutation and the D171G mutation, asparagine, which is the 149th amino acid of PHA synthase derived from Aeromonas' rabies, is substituted with serine, and aspartic acid, which is the 171st amino acid, is substituted with glycine. Therefore, the N149S mutant gene derived from Aeromonas serrata described in Non-Patent Document 10 was subcloned at the EcoRI site of pUC19, and the synthetic DNAs represented by SEQ ID NO: 1 and SEQ ID NO: 2 were used as primers. Was used for PCR. The conditions were (1) 2 minutes at 94 ° C, (2) 30 seconds at 94 ° C, (3) 30 seconds at 55 ° C, (4) 2 minutes at 72 ° C, (2) to (4) ) For 25 cycles, (5) 5 minutes at 72 ° C, and LA Taq polymerase (Takara Bio) was used as the polymerase. The N149S ZD171G fragment shown in SEQ ID NO: 3 was prepared by digestion with the restriction enzyme EcoRI, and this vector was inserted into the site digested with the same enzyme to construct the expression plasmid pJRDdTc + 149NS171DG.
[0046] (実施例 2) 形質転換体の作製 (Example 2) Preparation of transformant
実施例 1で得られた発現プラスミドを含むラルストニア'ユートロファ PHB— 4株の形 質転換体を電気パルス法により作製した。つまり、遺伝子導入装置は Biomd社製の ジーンパルサーを用い、キュベットは同じく Biorad社製の gapO. 2cmのものを用いた 。キュベットに、コンビテント細胞 400 μ 1と発現プラスミド 20 μ 1を注入してパルス装置 にセットし、静電容量 25 μ F、電圧 1. 5kV、抵抗値 800 Ωの条件で電気パルスをか けた。パルス後、キュベット内の菌液を NutrientBroth培地(DIFCO社製)で 30°C、 3時間振とう培養し、選択プレート(NutrientAgar培地(DIFCO社製)、カナマイシ ン lOOmgZL)で、 30°Cにて 2日間培養して、形質転換体を取得した。 A transformant of Ralstonia'eutropha PHB-4 strain containing the expression plasmid obtained in Example 1 was prepared by an electric pulse method. That is, a gene pulsar manufactured by Biomd was used for the gene transfer device, and a cuvette having a gap of 0.2 cm manufactured by Biorad was used as the cuvette. Inject 400 μl of the competent cells and 20 μl of the expression plasmid into a cuvette, set them in a pulse device, and apply an electric pulse under the conditions of a capacitance of 25 μF, a voltage of 1.5 kV, and a resistance of 800 Ω. I did. After the pulse, the bacterial solution in the cuvette is shake-cultured at 30 ° C for 3 hours in a Nutrient Broth medium (DIFCO), and is incubated at 30 ° C in a selection plate (NutrientAgar medium (DIFCO), kanamycin lOOmgZL). After culturing for 2 days, a transformant was obtained.
[0047] (実施例 3) 形質転換体の選択  (Example 3) Selection of transformant
実施例 2で得られた形質転換体を、 Nilered含有培地(リン酸水素 2ナトリウム · 12水 塩 9g、リン酸 2水素カリウム 1. 5g、塩化アンモ -ゥム 0. 05g、硫酸マグネシウム •7水塩 0. 02g、フルクトース 0. 5g、塩ィ匕コノ ルト · 6水塩 0. 25ppm、塩ィ匕鉄(Π Ι) · 6水塩 16ppm、塩化カルシウム · 2水塩 10. 3ppm、塩化ニッケル · 6水塩 0. 12ppm、硫酸銅 · 5水塩 0. 16ppm、 Nilered 0. 5mg、寒天 15gZlL)に播種 し、 30°Cで 1週間培養した。その結果、コロニーが赤変したことカも菌体内にポリエス テルが蓄積していることを確認し、そのコロニーを選択して P (3HB— co— 3HH)の 生産を行った。この形質転換体は、 PHB— 4ZpJRDdTc + 149NS171DG (受託 番号: FERM BP— 10259、受託日:平成 17年 2月 23日)の名称で、日本国茨城 県つくば巿東 1丁目 1番地 1中央第 6にある独立行政法人産業技術総合研究所特許 生物寄託センターに、ブダペスト条約に基づいて国際寄託されている。  The transformant obtained in Example 2 was transformed into a Nilered-containing medium (9 g of disodium hydrogen phosphate · 12 hydrate, 1.5 g of potassium dihydrogen phosphate, 0.05 g of ammonium chloride, 0.05 g of magnesium sulfate, and 7 water of magnesium sulfate). 0.02 g of salt, 0.5 g of fructose, 0.5 g of Shii-Dani Conolt · 0.25 ppm of 6-hydrate salt, 16 ppm of Shi-i-Dai Tetsu (Π Ι) · 16 ppm of 6-hydrate, calcium chloride · 10.3 ppm of 2-hydrate, nickel chloride · Hexahydrate 0.12 ppm, copper sulfate pentahydrate 0.16 ppm, Nilered 0.5 mg, agar 15 gZlL), and cultured at 30 ° C for 1 week. As a result, it was confirmed that the colony turned red and that the mosquito also accumulated polyester inside the cells, and the colony was selected to produce P (3HB-co-3HH). This transformant was named PHB-4ZpJRDdTc + 149NS171DG (Accession number: FERM BP-10259, Accession date: February 23, 2005), 1-1 Tsukuba East, Ibaraki, Japan 1 Central No. 6 It has been internationally deposited under the Budapest Treaty at the Patent Organism Depositary, the National Institute of Advanced Industrial Science and Technology, Japan.
[0048] (実施例 4) P (3HB— co— 3HH)の生産および精製  Example 4 Production and Purification of P (3HB—co—3HH)
種母培地の糸且成は lwZv% Meat -extract, lw/v% Bacto— Trypton、 0. 2 w/v% Yeast -extract, 0. 9w/v% Na PO · 12Η Ο、0. 15w/v% KH  The seed culture medium was composed of lwZv% Meat-extract, lw / v% Bacto-Trypton, 0.2 w / v% Yeast -extract, 0.9 w / v% Na PO12Η, 0.15 w / v % KH
2 4 2 2 2 4 2 2
PO、 pH6. 8とした。 PO, pH 6.8.
4  Four
[0049] 前培養培地の組成は 1. lw/v% Na PO · 12Η 0、 0. 19w/v% KH PO、 1  [0049] The composition of the preculture medium was 1. lw / v% Na PO · 12Η 0, 0.19 w / v% KH PO, 1
2 4 2 2 4 2 4 2 2 4
. 29w/v% (NH ) SO、 0. lw/v% MgSO - 7H 0、 2. 5w/v% パーム W 29w / v% (NH) SO, 0.lw / v% MgSO-7H 0, 2.5w / v% Palm W
4 2 4 4 2  4 2 4 4 2
ォレイン油、 0. 5vZv% 微量金属塩溶液(0. 1N塩酸に 1. 6w/v% FeCl · 6Η  Oil, 0.5vZv% trace metal salt solution (1.6w / v% FeCl · 6N in 0.1N hydrochloric acid)
3 2 3 2
0、 lw/v% CaCl · 2Η 0、 0. 02w/v% CoCl - 6H 0、 0. 016w/v% CuS 0, lw / v% CaCl2Η 0, 0.02w / v% CoCl-6H 0, 0.016w / v% CuS
2 2 2 2  2 2 2 2
O · 5Η 0、 0. 012w/v% NiCl - 6H Oを溶かしたもの。)、 5 X 10"6w/v% 力O · 5Η 0, 0.012w / v% NiCl-6H O dissolved. ), 5 X 10 " 6 w / v% power
4 2 2 2 4 2 2 2
ナマイシンとした。  Namycin.
[0050] P (3HB— co— 3HH)生産培地の組成は 0. 385w/v% Na PO · 12Η 0、 0. 06  [0050] The composition of the P (3HB—co—3HH) production medium was 0.385 w / v% Na PO · 12Η0, 0.06.
2 4 2  2 4 2
7w/v% KH PO、 0- 291w/v% (NH ) SO、 0. lw/v% MgSO - 7H 0、  7w / v% KH PO, 0-291w / v% (NH) SO, 0.1lw / v% MgSO-7H 0,
2 4 4 2 4 4 2 2 4 4 2 4 4 2
0. 5v/v% 微量金属塩溶液(0. IN塩酸に 1. 6w/v% FeCl · 6Η 0、 lw/v % CaCl · 2Η 0、 0. 02w/v% CoCl - 6H 0、 0. 016w/v% CuSO - 5H O0.5v / v% trace metal salt solution (0.6w / v% FeCl in 0.6N HCl, 6Η0, lw / v % CaCl2Η 0, 0.02w / v% CoCl-6H 0, 0.016w / v% CuSO-5H O
2 2 2 2 4 22 2 2 2 4 2
、 0. 012w/v% NiCl - 6H Oを溶かしたもの。)、 0. 05w/v%BIOSPUREX20 0.021w / v% NiCl-6HO dissolved. ), 0.05w / v% BIOSPUREX20
2 2  twenty two
OK (消泡剤:コグニスジャパン製)、 5 X 10"6w/v% カナマイシンとした。炭素源は パーム核油を分別した低融点画分であるパーム核油ォレインを単一炭素源として用 い、培養全般を通じ、比基質供給速度が 0. 08〜0. 1 (油脂( ) X (正味乾燥菌体 重量 (g) Γ1 X (時間(h) ) _1となるように流加した。 OK (antifoaming agent: Cognis Japan), 5 x 10 " 6 w / v% kanamycin. The carbon source is palm kernel oil olein, a low melting point fraction of palm kernel oil, used as a single carbon source. Throughout the entire culture, feeding was performed so that the specific substrate supply rate was 0.08 to 0.1 (oil () X (net dry cell weight (g) Γ 1 X (time (h)) _1 ) _1 ).
[0051] PHB— 4ZpJRDdTc + 149NS171DG形質転換体のグリセロールストック(50 μ 1) を種母培地(10ml)に接種して 24時間培養し、 1. 8Lの前培養培地を入れた 3Lジャ ーフアーメンター(丸菱バイオェンジ製 MDL— 300型)に 1. 0vZv%接種した。運転 条件は、培養温度 30°C、攪拌速度 500rpm、通気量 1. 8LZminとし、 pHは 6. 7〜 6. 8の間でコントロールしながら 28時間培養した。 pHコントロールには 7%水酸化ァ ンモニゥム水溶液を使用した。  [0051] A glycerol stock (50 µl) of the PHB-4ZpJRDdTc + 149NS171DG transformant was inoculated into a seed culture medium (10 ml), cultured for 24 hours, and a 3 L jaw amenter (circle) containing 1.8 L of preculture medium was added. 1.0vZv% was inoculated into Ryo Bioenge's MDL-300). The operating conditions were a culture temperature of 30 ° C., a stirring speed of 500 rpm, an aeration rate of 1.8 LZmin, and culture for 28 hours while controlling the pH between 6.7 and 6.8. A 7% aqueous ammonium hydroxide solution was used for pH control.
[0052] P (3HB— co— 3HH)生産培養は 6Lの生産培地を入れた 10Lジャーフアーメンター  [0052] P (3HB—co—3HH) production culture is a 10L jar armamentar containing 6L of production medium.
(丸菱バイオェンジ製 MDL— 1000型)に前培養種母を 5. 0vZv%接種した。運転 条件は、培養温度 28°C、攪拌速度 400rpm、通気量 3. 6LZminとし、 pHは 6. 7か ら 6. 8の間でコントロールした。 pHコントロールには 7%水酸化アンモ-ゥム水溶液 を使用した。培養は約 60時間行い、培養終了後、遠心分離によって菌体を回収し、 メタノールで洗浄後、凍結乾燥し、乾燥菌体重量を測定した。  (MDL-1000 manufactured by Marubishi Biohenge) was inoculated with 5.0 vZv% of the precultured seed. The operating conditions were a culture temperature of 28 ° C, a stirring speed of 400 rpm, an aeration rate of 3.6 LZmin, and a pH of 6.7 to 6.8. A 7% aqueous ammonium hydroxide solution was used for pH control. The culture was performed for about 60 hours. After completion of the culture, the cells were collected by centrifugation, washed with methanol, freeze-dried, and the weight of the dried cells was measured.
[0053] 得られた乾燥菌体約 lgに 100mlのクロ口ホルムをカ卩え、室温で一昼夜攪拌して、菌 体内の P (3HB— co— 3HH)を抽出した。菌体残渣をろ別後、エバポレーターで総 容量が約 30mlになるまで濃縮後、約 90mlのへキサンを徐々に加え、ゆっくり攪拌し ながら、 1時間放置した。析出した P (3HB— co— 3HH)をろ別後、 50°Cで 3時間真 空乾燥した。乾燥? !^ー^ー !!^の重量を測定し、菌体内含量を算出した。 その結果、 PHB - 4/pJRDdTc + 149NS 171DG形質転換体の P (3HB— co— 3 HH)含量は 62時間で 66. 1 (wt%)という高含量であった。 [0053] To about lg of the dried cells obtained above, 100 ml of black-mouthed form was added and stirred at room temperature for 24 hours to extract P (3HB-co-3HH) in the cells. After filtering off the bacterial cell residue, the mixture was concentrated by an evaporator until the total volume became about 30 ml, then about 90 ml of hexane was gradually added, and the mixture was left for 1 hour while stirring slowly. After the precipitated P (3HB—co—3HH) was filtered off, it was vacuum dried at 50 ° C. for 3 hours. Dry? ! ^-^-! ! ^ Was weighed and the intracellular content was calculated. As a result, PHB - 4 / pJRDdTc + 149NS 171DG transformants P (3HB- co- 3 HH) content was high content of 6 in 62 hours 6 1 (wt%)..
[0054] (実施例 5) (3118—。0— 31111)の31111糸且成分析  (Example 5) 31111 yarn analysis of (3118—.0—31111)
PHB - 4/pJRDdTc + 149NS171 DG形質転換体により生産された P ( 3HB - co — 3HH)の 3HH組成分析は以下のようにガスクロマトグラフィーによって測定した。 [0055] 乾燥 P (3HB— co— 3HH)の約 20mgに 2mlの硫酸一メタノール混液( 15: 85)と 2m 1のクロ口ホルムを添カ卩して密栓し、 100°Cで 140分間加熱することで P (3HB— co— 3HH)分解物のメチルエステルを得た。冷却後、これに 1. 5gの炭酸水素ナトリウムを 少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置した。 4mlのジイソプロピル エーテルを添加してよく混合した後、遠心して、上清中の P (3HB— co— 3HH)分解 物のモノマーユニット組成をキヤビラリーガスクロマトグラフィーにより分析した。ガスク 口マトグラフは島津製作所 GC— 17A、キヤビラリ一力ラムは GLサイエンス社製 NEU TRA BOND— 1 (カラム長 25m、カラム内径 0. 25mm、液膜厚 0. 4 /z m)を用いた 。キャリアガスとして Heを用い、カラム入口圧 lOOkPaとし、サンプルは 1 μ 1を注入し た。温度条件は、初発温度 100〜200°Cまで 8°CZ分の速度で昇温、さらに 200〜2 90°Cまで 30°CZ分の速度で昇温した。上記条件にて分析した結果、 62時間培養終 了時の P (3HB— co— 3HH)の 3HH糸且成は 14. 7 (mol% )というフイノレム状への加 ェに適した高 、3HH糸且成であった。 The 3HH composition analysis of P (3HB-co-3HH) produced by the PHB-4 / pJRDdTc + 149NS171 DG transformant was measured by gas chromatography as follows. [0055] Approximately 20 mg of dry P (3HB-co-3HH) was added with 2 ml of a mixture of sulfuric acid and methanol (15:85) and 2 ml of a form of lip, sealed and heated at 100 ° C for 140 minutes. As a result, a methyl ester of a P (3HB-co-3HH) decomposition product was obtained. After cooling, 1.5 g of sodium bicarbonate was added little by little to neutralize, and the mixture was allowed to stand until carbon dioxide gas generation was stopped. After adding 4 ml of diisopropyl ether and mixing well, the mixture was centrifuged, and the monomer unit composition of the P (3HB-co-3HH) degradation product in the supernatant was analyzed by canary gas chromatography. The gasket mat used was Shimadzu GC-17A, and the one-shot ram was NEUTRA BOND-1 (column length: 25 m, column inner diameter: 0.25 mm, liquid film thickness: 0.4 / zm). He was used as the carrier gas, the column inlet pressure was 100 kPa, and 1 μl of the sample was injected. The temperature was raised to the initial temperature of 100 to 200 ° C at a rate of 8 ° CZ, and further to 200 to 290 ° C at a rate of 30 ° CZ. As a result of analysis under the above conditions, the 3HH yarn of P (3HB-co-3HH) at the end of the 62-hour culture was 14.7 (mol%), a high 3HH yarn suitable for application to a finolem. It was a success.
産業上の利用可能性  Industrial applicability
[0056] 上述したように、新規ポリエステル合成酵素発現プラスミドによるラルストニア 'ユート 口ファの形質転換体を用いることにより、安価な植物油脂等の単一炭素源下での培 養においてもフィルム状等への加工に適した高 3HH組成の P (3HB— co— 3HH)を 安全且つ高生産性で生産することが可能となった。 [0056] As described above, the use of a transformant of Ralstonia 'Uto lipophora with a novel polyester synthase expression plasmid enables the formation of a film or the like even when cultured under a single carbon source such as inexpensive vegetable oils and fats. It has become possible to produce P (3HB-co-3HH) with a high 3HH composition suitable for the processing of ash safely and with high productivity.
図面の簡単な説明  Brief Description of Drawings
[0057] [図 1]本発明の、 pJRDdTc+ 149NS171DG (FERM BP— 10259)ポリエステル 合成酵素発現プラスミドの構築図である。  FIG. 1 is a drawing showing the construction of a plasmid for expressing pJRDdTc + 149NS171DG (FERM BP-10259) polyester synthase of the present invention.

Claims

請求の範囲 The scope of the claims
[1] PHB - 4/pJRDdTc + 149NS171DG (FERM BP— 10259)に含まれるポリエ ステル合成酵素発現プラスミド。  [1] A plasmid for expressing a polyester synthase contained in PHB-4 / pJRDdTc + 149NS171DG (FERM BP-10259).
[2] 請求項 1に記載のプラスミドを小型化したポリエステル合成酵素発現プラスミド。 [2] A plasmid for expressing a polyester synthase obtained by miniaturizing the plasmid according to claim 1.
[3] 請求項 1又は 2に記載のプラスミドによって形質転換された形質転換体。 [3] A transformant transformed by the plasmid according to claim 1 or 2.
[4] 宿主がポリエステル非生産性のラルストニア属である請求項 3に記載の形質転換体。 4. The transformant according to claim 3, wherein the host is a non-polyester-producing genus Ralstonia.
[5] 宿主がポリエステル非生産性のラルストニア ·ユートロファである請求項 3又は 4に記 載の形質転換体。 [5] The transformant according to [3] or [4], wherein the host is Ralstonia eutropha which does not produce polyester.
[6] 宿主がラルストニア'ユートロファ PHB— 4株である請求項 3〜5のいずれ力 1項に記 載の形質転換体。  [6] The transformant according to any one of claims 3 to 5, wherein the host is Ralstonia'eutropha PHB-4 strain.
[7] PHB - 4/pJRDdTc + 149NS171DG (FERM BP— 10259)である形質転換体  [7] A transformant which is PHB-4 / pJRDdTc + 149NS171DG (FERM BP-10259)
[8] 請求項 3〜7の!ヽずれか 1項に記載の形質転換体を用いたポリエステルの製造方法 ポリエステル力 下式(1) [8] A method for producing a polyester using the transformant according to any one of claims 3 to 7!
[化 1]
Figure imgf000016_0001
[Chemical 1]
Figure imgf000016_0001
(式中、 m、 nは 1以上の整数を表す)で示される、 3—ヒドロキシ酪酸と 3—ヒドロキシ へキサン酸力 なる共重合ポリエステルである請求項 8に記載のポリエステルの製造 方法。 9. The method for producing a polyester according to claim 8, which is a copolymerized polyester of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid represented by the formula (where m and n represent integers of 1 or more).
PCT/JP2005/006922 2004-04-09 2005-04-08 Novel transformant WO2005098001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512128A JPWO2005098001A1 (en) 2004-04-09 2005-04-08 New transformant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-115642 2004-04-09
JP2004115642 2004-04-09

Publications (1)

Publication Number Publication Date
WO2005098001A1 true WO2005098001A1 (en) 2005-10-20

Family

ID=35125077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006922 WO2005098001A1 (en) 2004-04-09 2005-04-08 Novel transformant

Country Status (3)

Country Link
JP (1) JPWO2005098001A1 (en)
TW (1) TW200540269A (en)
WO (1) WO2005098001A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049716A1 (en) * 2005-10-27 2007-05-03 Kaneka Corporation Novel plasmid vector and transformant capable of carrying plasmid stably
JP2007259708A (en) * 2006-03-27 2007-10-11 Kaneka Corp New method for producing biodegradable polyester
WO2008010296A1 (en) * 2006-07-21 2008-01-24 Kaneka Corporation Microorganism with replaced gene and process for producing polyester using the same
JP2008029218A (en) * 2006-07-26 2008-02-14 Kaneka Corp Method for producing copolymerized polyester by using microorganism having lowered enzymatic activity
US7384766B2 (en) 2006-07-26 2008-06-10 Kaneka Corporation Gene-substituted microorganisms, and production method of polyesters using the same
JPWO2006101176A1 (en) * 2005-03-24 2008-09-04 株式会社カネカ Microorganisms that accumulate ultra high molecular weight polyester
WO2012102371A1 (en) 2011-01-27 2012-08-02 株式会社カネカ Microorganism producing high-molecular-weight pha
US9051589B2 (en) 2005-10-27 2015-06-09 Kaneka Corporation Plasmid vector and transformant stably retaining plasmid
CN104845927A (en) * 2006-07-21 2015-08-19 株式会社钟化 Gene substituted microbe and polyester preparation method using gene substituted microbe
WO2020218565A1 (en) * 2019-04-26 2020-10-29 株式会社フューエンス Polyhydroxyalkanoic acid and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108682A (en) * 1996-08-14 1998-04-28 Rikagaku Kenkyusho Polyester polymerase gene and production of polyester
WO2004074476A1 (en) * 2003-02-21 2004-09-02 Kaneka Corporation Novel vector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA04003275A (en) * 2001-10-10 2004-07-08 Kaneka Corp Enzyme gene participating in the synthesis of polyester and process for producing polyester using the same.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108682A (en) * 1996-08-14 1998-04-28 Rikagaku Kenkyusho Polyester polymerase gene and production of polyester
WO2004074476A1 (en) * 2003-02-21 2004-09-02 Kaneka Corporation Novel vector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KICHISE T. ET AL: "Enhanced Acummulation and Changed Monomer Composition in Polyhydroxyalkanoate (PHA) Copolyester by In Vitro Evolution of Aeromonas caviae PHA Synthase.", APPLIC.ENVIRON.MICROBIOL., vol. 68, 2002, pages 2411 - 2419, XP002961039 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006101176A1 (en) * 2005-03-24 2008-09-04 株式会社カネカ Microorganisms that accumulate ultra high molecular weight polyester
US9051589B2 (en) 2005-10-27 2015-06-09 Kaneka Corporation Plasmid vector and transformant stably retaining plasmid
WO2007049716A1 (en) * 2005-10-27 2007-05-03 Kaneka Corporation Novel plasmid vector and transformant capable of carrying plasmid stably
JP2007259708A (en) * 2006-03-27 2007-10-11 Kaneka Corp New method for producing biodegradable polyester
JPWO2008010296A1 (en) * 2006-07-21 2009-12-17 株式会社カネカ Gene replacement microorganism and method for producing polyester using the same
JP5468779B2 (en) * 2006-07-21 2014-04-09 株式会社カネカ Gene replacement microorganism and method for producing polyester using the same
WO2008010296A1 (en) * 2006-07-21 2008-01-24 Kaneka Corporation Microorganism with replaced gene and process for producing polyester using the same
CN104845927A (en) * 2006-07-21 2015-08-19 株式会社钟化 Gene substituted microbe and polyester preparation method using gene substituted microbe
US7384766B2 (en) 2006-07-26 2008-06-10 Kaneka Corporation Gene-substituted microorganisms, and production method of polyesters using the same
JP2008029218A (en) * 2006-07-26 2008-02-14 Kaneka Corp Method for producing copolymerized polyester by using microorganism having lowered enzymatic activity
WO2012102371A1 (en) 2011-01-27 2012-08-02 株式会社カネカ Microorganism producing high-molecular-weight pha
WO2020218565A1 (en) * 2019-04-26 2020-10-29 株式会社フューエンス Polyhydroxyalkanoic acid and method for producing same
JPWO2020218565A1 (en) * 2019-04-26 2021-09-27 株式会社 フューエンス Polyhydroxyalkanoate and its production method
JP7063513B2 (en) 2019-04-26 2022-05-09 株式会社 フューエンス Polyhydroxyalkanoate and its manufacturing method

Also Published As

Publication number Publication date
JPWO2005098001A1 (en) 2008-02-28
TW200540269A (en) 2005-12-16

Similar Documents

Publication Publication Date Title
JP5670728B2 (en) Improved polyhydroxyalkanoate-producing microorganism and method for producing polyhydroxyalkanoate using the same
US10829793B2 (en) Transformant that produces copolymerized PHA containing 3HH unit, and method for producing said PHA
WO2005098001A1 (en) Novel transformant
Insomphun et al. Modification of β-oxidation pathway in Ralstonia eutropha for production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil
WO2008010296A1 (en) Microorganism with replaced gene and process for producing polyester using the same
JP2007259708A (en) New method for producing biodegradable polyester
WO2015115619A1 (en) MICROORGANISM HAVING ADJUSTED EXPRESSION OF R-SPECIFIC ENOYL-CoA HYDRATASE GENE, AND METHOD FOR MANUFACTURING POLYHYDROXYALKANOATE COPOLYMER USING SAME
JP4643799B2 (en) Polyester manufacturing method
EP2818561A1 (en) Utilization of the novel, environmental isolates Pseudomonas sp. IPB-B26 and N-128 for the efficient high yield production of mcl/lcl-PHAs
JP4960033B2 (en) Method for producing copolymerized polyester using microorganisms having reduced enzyme activity
JP6853787B2 (en) A PHA-producing microorganism having sucrose assimilation property, and a method for producing PHA using the microorganism.
JP4437087B2 (en) Production method of copolyester
JP2008086238A (en) Method for producing polyhydroxyalkanoate
JPWO2008090873A1 (en) Process for producing polyhydroxyalkanoate
WO2006101176A1 (en) Microorganism capable of accumulating ultra high molecular weight polyester
JP5839854B2 (en) Microbial culture method
JP4490274B2 (en) Culturing method for controlling composition of copolymerized polyester
JP2009225775A (en) Method of producing polyhydroxyalkanoic acid
JP2005333933A (en) New expression plasmid
JP5839855B2 (en) Process for producing polyhydroxyalkanoate
WO2008135065A1 (en) PHAs PRODUCING MICROORGANISM AND PHA OBTAINABLE THEREWITH
CN104845927A (en) Gene substituted microbe and polyester preparation method using gene substituted microbe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512128

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase