JP5839855B2 - Process for producing polyhydroxyalkanoate - Google Patents

Process for producing polyhydroxyalkanoate Download PDF

Info

Publication number
JP5839855B2
JP5839855B2 JP2011144508A JP2011144508A JP5839855B2 JP 5839855 B2 JP5839855 B2 JP 5839855B2 JP 2011144508 A JP2011144508 A JP 2011144508A JP 2011144508 A JP2011144508 A JP 2011144508A JP 5839855 B2 JP5839855 B2 JP 5839855B2
Authority
JP
Japan
Prior art keywords
culture
acid
composition
polyester
pha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011144508A
Other languages
Japanese (ja)
Other versions
JP2013009628A (en
Inventor
加藤 隆久
隆久 加藤
俊輔 佐藤
俊輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011144508A priority Critical patent/JP5839855B2/en
Publication of JP2013009628A publication Critical patent/JP2013009628A/en
Application granted granted Critical
Publication of JP5839855B2 publication Critical patent/JP5839855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、微生物を用いて生産される3−ヒドロキシ酪酸(以下、3HBとも記す)及び3−ヒドロキシヘキサン酸(以下、3HHとも記す)を重合して得られるポリヒドロキシアルカノエート共重合体(以下、PHAとも記す)並びにその製造方法に関する。さらに詳しくは、3−ヒドロキシ酪酸単位と3−ヒドロキシヘキサン酸単位及び/又はその他のモノマー単位の共重合比率をコントロールする方法に関する。   The present invention relates to a polyhydroxyalkanoate copolymer (hereinafter referred to as “polyhydroxyalkanoate copolymer”) obtained by polymerizing 3-hydroxybutyric acid (hereinafter also referred to as “3HB”) and 3-hydroxyhexanoic acid (hereinafter also referred to as “3HH”) produced using a microorganism. , Also referred to as PHA) and its manufacturing method. More specifically, the present invention relates to a method for controlling the copolymerization ratio of 3-hydroxybutyric acid units, 3-hydroxyhexanoic acid units and / or other monomer units.

PHAは、広範な微生物によって生成されるポリエステル型有機分子ポリマーである。PHAは生分解性を有する熱可塑性高分子である。また、PHAは再生可能資源から産生されうる。これらのことから、PHAを環境調和型素材または生体適合型素材として工業的に生産し、多様な産業で利用する試みが行われている。   PHA is a polyester-type organic molecular polymer produced by a wide range of microorganisms. PHA is a biodegradable thermoplastic polymer. PHA can also be produced from renewable resources. For these reasons, attempts have been made to industrially produce PHA as an environmentally conscious material or a biocompatible material and use it in various industries.

現在までに数多くの微生物が、エネルギー貯蔵物質としてPHAを菌体内に蓄積することが知られている。PHAの代表例としては3−ヒドロキシ酪酸(以下、3HBとも記す)のホモポリマーであるポリ−3−ヒドロキシ酪酸(以下、P(3HB)とも記す)が挙げられる。P(3HB)は1925年にBacillus megateriumで最初に発見された。P(3HB)は熱可塑性高分子であり、自然環境中で生物的に分解されることから、環境にやさしいプラスチックとして注目されている。しかし、P(3HB)は結晶性が高いために硬くて脆い性質を持っていることから実用的には応用範囲が限られている。応用範囲を広げるためには、P(3HB)に柔軟性を付与することが必要であった。   To date, many microorganisms are known to accumulate PHA as an energy storage substance in the cells. A typical example of PHA is poly-3-hydroxybutyric acid (hereinafter also referred to as P (3HB)), which is a homopolymer of 3-hydroxybutyric acid (hereinafter also referred to as 3HB). P (3HB) was first discovered in 1925 in Bacillus megaterium. P (3HB) is a thermoplastic polymer and is biologically decomposed in the natural environment, and thus has attracted attention as an environmentally friendly plastic. However, P (3HB) has a hard and brittle nature because of its high crystallinity, so its practical application range is limited. In order to expand the application range, it was necessary to give flexibility to P (3HB).

その中で、3HBとそれ以外のヒドロキシ酸、例えば、3−ヒドロキシ吉草酸(以下、3HVとも記す)、3−ヒドロキシプロピオン酸(以下、3HPとも記す)、3−ヒドロキシペンタン酸(以下、3HCとも記す)、3−ヒドロキシヘキサン酸(以下、3HHとも記す)、3−ヒドロキシオクタン酸(以下、3HOとも記す)、3−ヒドロキシノナン酸(以下、3HNとも記す)、3−ヒドロキシデカン酸(以下、3HDとも記す)、3−ヒドロキシドデカン酸(以下、3HDDとも記す)などを重合して得られる共重合ポリエステルが精力的に研究されてきた(非特許文献1)。   Among them, 3HB and other hydroxy acids such as 3-hydroxyvaleric acid (hereinafter also referred to as 3HV), 3-hydroxypropionic acid (hereinafter also referred to as 3HP), 3-hydroxypentanoic acid (hereinafter also referred to as 3HC). 3-hydroxyhexanoic acid (hereinafter also referred to as 3HH), 3-hydroxyoctanoic acid (hereinafter also referred to as 3HO), 3-hydroxynonanoic acid (hereinafter also referred to as 3HN), 3-hydroxydecanoic acid (hereinafter referred to as Copolyesters obtained by polymerizing 3-hydroxydodecanoic acid (hereinafter also referred to as 3HDD) and the like have been energetically studied (Non-Patent Document 1).

その中でも、注目すべきものとして、3HBと3HHを重合して得られる共重合ポリエステル、特に3HBと3HHの共重合体(以下P(3HB−co−3HH)とも記す)と、その製造方法についての研究がある(特許文献1、2)。これらに記載のP(3HB−co−3HH)の製造方法は、土壌より単離されたAeromonas caviaeやAeromonas hydrophilaを用い、炭素源としてラウリン酸、オレイン酸、パルミチン酸等の脂肪酸や、グルコースを用いた方法であった。また、P(3HB−co−3HH)の性質に関する研究もなされている(非特許文献2)。この報告では炭素数が12個以上の脂肪酸を唯一の炭素源としてA. caviaeを培養し、3HH組成が11〜19mol%のP(3HB−co−3HH)を発酵生産している。このP(3HB−co−3HH)は、3HH組成が増加するにしたがって、P(3HB)の硬くて脆い性質から次第に柔軟な性質を示すようになり、それまでに報告されていた3HBと3HVからなる共重合体(以下P(3HB−co−3HV)とも記す)を上回る柔軟性を示すことが明らかにされた。   Among them, as a remarkable one, research on a copolymerized polyester obtained by polymerizing 3HB and 3HH, particularly a copolymer of 3HB and 3HH (hereinafter also referred to as P (3HB-co-3HH)) and a production method thereof. (Patent Documents 1 and 2). The production methods of P (3HB-co-3HH) described therein use Aeromonas caviae and Aeromonas hydrophila isolated from soil, and use fatty acids such as lauric acid, oleic acid, palmitic acid, and glucose as carbon sources. It was the method that was. Studies on the properties of P (3HB-co-3HH) have also been made (Non-Patent Document 2). In this report, A. caviae is cultured using a fatty acid having 12 or more carbon atoms as a sole carbon source, and P (3HB-co-3HH) having a 3HH composition of 11 to 19 mol% is produced by fermentation. This P (3HB-co-3HH) gradually becomes more flexible from the hard and brittle nature of P (3HB) as the 3HH composition increases. From the 3HB and 3HV reported so far, It was clarified that it exhibits a higher flexibility than the copolymer (hereinafter also referred to as P (3HB-co-3HV)).

また、A. caviaeのPHAシンターゼ遺伝子をクローニングし、この遺伝子を乾燥菌体あたり90%以上の高PHB蓄積能を有するCupriavidus necator(旧分類:Ralstonia eutropha或いはAlcaligenes eutrophus)に導入した形質転換体を用い、脂肪酸を炭素源としてP(3HB−co−3HH)を生産する報告がなされている(非特許文献3、特許文献3)。このなかで、オクタン酸ナトリウムを炭素源とすることで、3HH組成が10〜20mol%のP(3HB−co−3HH)が生産できることが報告されている。さらに、上記形質転換体を用いてポリエステルを生産する際に、複数種の炭素源を用いる方法が開示され、炭素源として用いる油脂や脂肪酸の炭素数が、P(3HB−co−3HH)の3HH組成に影響を与えることが明らかとなった(特許文献4)。これによれば、少なくとも2種類の炭素数の異なる油脂および/または脂肪酸を炭素源として用いることによって、3HH組成が1〜40mol%のポリエステルを生産することが可能となり、種々の物性を有するP(3HB−co−3HH)が生産できることが報告されている。しかしながら、本製造方法では、3HH組成制御のために高価なヘキサン酸、オクタン酸等の脂肪酸或いは対応する脂肪酸塩を添加する必要があり、また高濃度のヘキサン酸は細胞毒性を示すことから菌体生産性が低下する結果となり、工業生産に適用するには高コストとなるため実用には適していない。   In addition, a PHA synthase gene of A. caviae was cloned, and a transformant introduced into a Cupriavidus necator (former classification: Ralstonia eutropha or Alcaligenes eutrophus) having a high PHB accumulation capacity of 90% or more per dry cell was used. There have been reports of producing P (3HB-co-3HH) using fatty acid as a carbon source (Non-patent Document 3, Patent Document 3). Among these, it is reported that P (3HB-co-3HH) having a 3HH composition of 10 to 20 mol% can be produced by using sodium octoate as a carbon source. Furthermore, when producing polyester using the transformant, a method using a plurality of carbon sources is disclosed, and the number of carbons of fats and fatty acids used as the carbon source is 3HH of P (3HB-co-3HH). It was revealed that the composition was affected (Patent Document 4). According to this, by using at least two types of fats and oils and / or fatty acids having different carbon numbers as a carbon source, it becomes possible to produce a polyester having a 3HH composition of 1 to 40 mol%, and P ( 3HB-co-3HH) can be produced. However, in this production method, it is necessary to add expensive fatty acids such as hexanoic acid and octanoic acid or corresponding fatty acid salts for controlling the composition of 3HH, and since high concentrations of hexanoic acid are cytotoxic, As a result, productivity is lowered, and it is not suitable for practical use because it is expensive to apply to industrial production.

一方で、培養中にリンを流加することで、P(3HB−co−3HV)中のバレレート反復単位に変換される効率を高める培養方法が提案されている(特許文献5)。この培養方法によれば、ナタネ油または粗トウモロコシ油、及びプロピオン酸を炭素源として、リン酸を流加することにより、プロピオン酸の取り込み効率を高めることが出来る。具体的には、細胞増殖が停止するか著しく減速した後に、リン酸と炭素源を、炭素総量(C)のリン総量(P)に対する重量比(以下C/P比と記す)を300から600までの範囲内に維持しながら添加することで、得られるP(3HB−co−3HV)の3HV組成をリン酸添加なしの場合(7.4mol%)と比べ、8.7mol%に高めることを可能とした。このリン酸及び炭素源の添加速度は、細胞乾燥重量を所期レベルに増加させるのに十分ではあるが、PHA蓄積の抑制を伴う実質的な増殖を生じさせるには不十分な添加速度である。しかしながら、上述のように高価な脂肪酸を使用するため、低コストでの生産が困難である。   On the other hand, a culture method has been proposed in which the efficiency of conversion to a valerate repeat unit in P (3HB-co-3HV) is increased by feeding phosphorus during culture (Patent Document 5). According to this culture method, the efficiency of propionic acid uptake can be increased by adding phosphoric acid using rapeseed oil or crude corn oil and propionic acid as a carbon source. Specifically, after cell growth is stopped or markedly slowed, the weight ratio of phosphoric acid and carbon source to the total amount of phosphorus (P) of the total amount of carbon (C) (hereinafter referred to as C / P ratio) is 300 to 600. By adding while maintaining within the range up to, the 3HV composition of the obtained P (3HB-co-3HV) is increased to 8.7 mol% compared to the case without adding phosphoric acid (7.4 mol%). It was possible. This phosphate and carbon source addition rate is sufficient to increase cell dry weight to the desired level, but is insufficient to cause substantial growth with suppression of PHA accumulation. . However, since expensive fatty acids are used as described above, production at low cost is difficult.

他にもPHB及びP(3HB−co−3HV)の培養中にリン流加を行った例は報告されているが、何れもポリマー生産性を高める目的で実施されている(非特許文献4、5)。非特許文献5ではP(3HB−co−3HV)の培養において、炭素源を10〜30g/Lに保つように流加し、細胞増殖が停止した後に、菌体生産速度を一定値(0.02g/L・h)に保つために必要なリン酸塩水溶液を一定速度(0.2mg−P/L・h)にて添加することで、ポリマー含有率が最大となることが報告されているが、3HV組成に関するデータは示されていない。   Other examples have been reported in which phosphorus fed-batch was performed during the culture of PHB and P (3HB-co-3HV), but both have been carried out for the purpose of increasing polymer productivity (Non-Patent Document 4, 5). In Non-Patent Document 5, in the cultivation of P (3HB-co-3HV), the carbon source was fed so as to be kept at 10 to 30 g / L, and after cell growth stopped, the cell production rate was set to a constant value (0. It is reported that the polymer content is maximized by adding the phosphate aqueous solution necessary for maintaining the pressure to 02 g / L · h) at a constant rate (0.2 mg-P / L · h). However, data on 3HV composition is not shown.

また、培養期間を菌体増殖期とポリエステル蓄積期の2つのフェーズに分け、それぞれのフェーズで、炭素源として使用する油脂の比基質供給速度を一定に制御する培養を行うことにより、3HH組成を制御する培養方法が提案されている(特許文献6)。この培養方法によれば、高価な脂肪酸を使用せずに炭素源の流加速度を制御することにより、3HH組成を任意にコントロールすることが可能と報告されている。しかしながら本培養方法によれば、3HH組成を高めるためには炭素源の流加速度を低減させる必要があることからポリマー生産性が低下し、より柔軟性に富んだ高い3HH組成を有する共重合ポリマーを高生産するには課題があった。   In addition, the culture period is divided into two phases, a cell growth phase and a polyester accumulation phase, and in each phase, the culture is performed by controlling the specific substrate supply rate of fats and oils used as a carbon source at a constant level. A controlled culture method has been proposed (Patent Document 6). According to this culture method, it is reported that the 3HH composition can be arbitrarily controlled by controlling the flow acceleration of the carbon source without using expensive fatty acids. However, according to the present culture method, in order to increase the 3HH composition, it is necessary to reduce the flow acceleration of the carbon source, so that the polymer productivity is lowered, and a copolymer polymer having a high 3HH composition rich in flexibility is obtained. There was a problem in high production.

今後、P(3HB−co−3HH)などの共重合ポリエステルのモノマー単位の組成比、特に3HH組成を任意の広い範囲でコントロールして共重合体を製造することができれば、硬い共重合体から柔らかい共重合体まで発酵生産可能となり、テレビの筐体などのように硬さを要求されるものから糸やフィルムなどのような柔軟性を要求されるものまで、幅広い分野への応用が期待できると考えられている。   In the future, if a copolymer can be produced by controlling the composition ratio of monomer units of a copolyester such as P (3HB-co-3HH), in particular, the 3HH composition within an arbitrary wide range, it will be soft from a hard copolymer. Copolymers can be fermented and can be applied in a wide range of fields, from those that require hardness, such as television casings, to those that require flexibility, such as yarn and film. It is considered.

特開平5−93049号公報JP-A-5-93049 特開平7−265065号公報JP 7-265065 A 特開平10−108682号公報Japanese Patent Laid-Open No. 10-108682 特開2001−340078号公報JP 2001-340078 A 特表平11−500008号公報Japanese National Patent Publication No. 11-500008 国際公開番号WO2004/033670号International Publication Number WO2004 / 033670

BIO/TECHNOLOGY 13, 142-150 (1995)BIO / TECHNOLOGY 13, 142-150 (1995) Macromolecules 28, 4822-3 (1995)Macromolecules 28, 4822-3 (1995) J. Bacteriol. 179(15), 4821-30 (1997)J. Bacteriol. 179 (15), 4821-30 (1997) Process Biochemistry (Oxford) 34(2), 109-14 (1999)Process Biochemistry (Oxford) 34 (2), 109-14 (1999) Applied Microbiology and Biotechnology 61(3), 257-60 (2003)Applied Microbiology and Biotechnology 61 (3), 257-60 (2003)

本発明は、高いポリマー生産性を実現し、かつ共重合ポリエステルの組成を任意に制御することができる安価なPHAの製造方法を提供することを課題とする。また、高価な脂肪酸を炭素源として使用せず、少なくとも3HB及び3HHを重合して得られる共重合ポリエステルの3HH組成を任意に制御でき、かつ高いポリマー生産性を実現する安価なPHAの製造方法を提供することを課題とする。さらに、培養期間中に炭素源を変更することなく共重合ポリエステルの3HH組成を任意に制御する方法を提供することを課題とする。   An object of the present invention is to provide an inexpensive method for producing PHA that can realize high polymer productivity and can arbitrarily control the composition of the copolyester. In addition, an inexpensive PHA production method that can arbitrarily control the 3HH composition of a copolyester obtained by polymerizing at least 3HB and 3HH without using an expensive fatty acid as a carbon source and realizes high polymer productivity. The issue is to provide. It is another object of the present invention to provide a method for arbitrarily controlling the 3HH composition of the copolyester without changing the carbon source during the culture period.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、モノマーユニットとして少なくとも3−ヒドロキシ酪酸と3−ヒドロキシヘキサン酸を含む2種以上の構成要素よりなる共重合ポリエステルを生産する微生物を、天然油脂、分別油脂、合成油脂、及び、混合油脂からなる群から選ばれる少なくとも1種の油脂を炭素源として含む培地で培養し、かつ培養中に培地にリン化合物を添加することを特徴とするPHAの製造方法を用いることにより、ポリマー生産性を高めるのみならず、炭素源として特に高価な脂肪酸などを使用しなくても3HH組成を任意の範囲内に良好に制御した共重合ポリエステルを生産することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have produced a microorganism that produces a copolyester composed of two or more components containing at least 3-hydroxybutyric acid and 3-hydroxyhexanoic acid as monomer units. Culturing in a medium containing at least one oil selected from the group consisting of natural oils, fractionated oils, synthetic oils, and mixed oils as a carbon source, and adding a phosphorus compound to the medium during the culture By using the method for producing PHA, a copolymer polyester that not only increases polymer productivity but also has a well-controlled 3HH composition within an arbitrary range without using a particularly expensive fatty acid as a carbon source. The production was found and the present invention was completed.

即ち本発明の特徴の一つは、モノマーユニットとして少なくとも3−ヒドロキシ酪酸と3−ヒドロキシヘキサン酸を含む2種以上の構成要素よりなる共重合ポリエステルを生産する微生物を、天然油脂、分別油脂、合成油脂、及び、混合油脂からなる群から選ばれる少なくとも1種の油脂を炭素源として含む培地で培養し、かつ培養中に培地にリン化合物を添加することを特徴とするPHAの製造方法である。   That is, one of the features of the present invention is that a microorganism producing a copolyester composed of two or more components including at least 3-hydroxybutyric acid and 3-hydroxyhexanoic acid as a monomer unit is used for natural oils, fractionated fats and oils. A method for producing PHA, comprising culturing a medium containing at least one type of oil selected from the group consisting of oils and fats and mixed oils and fats as a carbon source, and adding a phosphorus compound to the medium during the culture.

本発明の別の特徴の一つは、前記培地にリン化合物を添加する期間の単位時間当たりに添加する炭素源中の炭素総量(C)の単位時間当たりに添加するリン化合物中のリン総量(P)に対する重量比(C/P比)が150〜20000であることを特徴とするPHAの製造方法である。   Another feature of the present invention is that the total amount of phosphorus in the phosphorus compound added per unit time of the total amount of carbon (C) in the carbon source added per unit time of the period in which the phosphorus compound is added to the medium ( A method for producing PHA, wherein the weight ratio (C / P ratio) to P) is 150 to 20000.

本発明の別の特徴の一つは、前記C/P比が300〜12000であることを特徴とするPHAの製造方法である。   Another feature of the present invention is a method for producing a PHA, wherein the C / P ratio is 300 to 12000.

本発明の別の特徴の一つは、前記C/P比が600超〜1600であることを特徴とするPHAの製造方法である。   Another feature of the present invention is a method for producing PHA, wherein the C / P ratio is more than 600 to 1600.

本発明の別の特徴の一つは、前記リン化合物が、リン酸及び/又はリン酸塩を含むことを特徴とするPHAの製造方法である。   Another feature of the present invention is a method for producing PHA, wherein the phosphorus compound contains phosphoric acid and / or phosphate.

本発明の別の特徴の一つは、前記共重合ポリエステルがP(3HB−co−3HH)であるPHAの製造方法である。   Another feature of the present invention is a method for producing PHA in which the copolyester is P (3HB-co-3HH).

本発明の別の特徴の一つは、前記微生物が、カプリアヴィドゥス(Cupriavidus)属、シュードモナス(Pseudomonas)属、アエロモナス(Aeromonas)属、アルカリゲネス(Alcaligenes)属、又は、エシュリキア(Escherichia)属のいずれかに属する微生物であるPHAの製造方法である。   Another feature of the present invention is that the microorganism is any of the genus Cupriavidus, Pseudomonas, Aeromonas, Alcaligenes, or Escherichia. This is a method for producing PHA which is a microorganism belonging to the above.

本発明の別の特徴の一つは、前記微生物が、ポリエステル重合酵素遺伝子を組み込んだ形質転換微生物であるPHAの製造方法である。   Another feature of the present invention is a method for producing PHA, wherein the microorganism is a transformed microorganism into which a polyester polymerizing enzyme gene is incorporated.

本発明のPHAの製造方法を用いることにより、高いポリマー生産性を実現し、かつ共重合ポリエステルの組成を任意に制御することができる安価なPHAの製造方法を提供することができる。また、高価な脂肪酸を炭素源として使用せず、少なくとも3HB及び3HHを重合して得られる共重合ポリエステルの3HH組成を任意に制御でき、かつ高いポリマー生産性を実現する安価なPHAの製造方法を提供することができる。さらに、培養期間中に炭素源を変更することなく共重合ポリエステルの3HH組成を任意に制御する方法を提供することができる。   By using the method for producing PHA of the present invention, it is possible to provide an inexpensive method for producing PHA capable of realizing high polymer productivity and arbitrarily controlling the composition of the copolyester. In addition, an inexpensive PHA production method that can arbitrarily control the 3HH composition of a copolyester obtained by polymerizing at least 3HB and 3HH without using an expensive fatty acid as a carbon source and realizes high polymer productivity. Can be provided. Furthermore, it is possible to provide a method for arbitrarily controlling the 3HH composition of the copolyester without changing the carbon source during the culture period.

本発明は、モノマーユニットとして少なくとも3−ヒドロキシ酪酸と3−ヒドロキシヘキサン酸を含む2種以上の構成要素よりなる共重合ポリエステルを生産する微生物を、天然油脂、分別油脂、合成油脂、及び、混合油脂からなる群から選ばれる少なくとも1種の油脂を炭素源として含む培地で培養し、かつ培養中に培地にリン化合物を添加することを特徴とするPHAの製造方法に関する。   The present invention relates to a microorganism that produces a copolyester composed of two or more kinds of constituents containing at least 3-hydroxybutyric acid and 3-hydroxyhexanoic acid as a monomer unit. Natural microorganisms, fractionated fats and oils, synthetic fats and oils, and mixed fats and oils It is related with the manufacturing method of PHA characterized by culturing with the culture medium which contains at least 1 type of fats and oils selected from the group which consists of as a carbon source, and adding a phosphorus compound to a culture medium during culture | cultivation.

本発明の共重合ポリエステルの組成をコントロールするPHAの製造方法は、微生物を用いて生分解性の共重合ポリエステルを生産する際に適用される。   The method for producing PHA for controlling the composition of the copolymerized polyester of the present invention is applied when producing a biodegradable copolymerized polyester using microorganisms.

本発明のPHAの製造方法が適用できる共重合ポリエステルとしては特に限定されず、少なくとも2種以上のモノマー単位を重合して得られる共重合ポリエステルであれば適用しうる。具体的には、3HBと3HHを重合して得られる共重合ポリエステルP(3HB−co−3HH)や、3HBと3HHと3HVの3成分を重合して得られる共重合体、その他Pseudomonas属細菌によって生産されうる3HB、3HH、3HO、3HD、3HDDなどを重合して得られる共重合ポリマーをその代表的なものとして挙げる事ができる(Appl. Microbiol. Biotechnol. 47, 207-11 (1997)、Appl. Microbiol. Biotechnol. 49, 431-7 (1998)参照)。この中でも特に、P(3HB−co−3HH)が好ましい。   The copolyester to which the method for producing PHA of the present invention can be applied is not particularly limited, and any copolyester obtained by polymerizing at least two kinds of monomer units can be used. Specifically, copolymer polyester P (3HB-co-3HH) obtained by polymerizing 3HB and 3HH, a copolymer obtained by polymerizing three components of 3HB, 3HH and 3HV, and other Pseudomonas bacteria Copolymers obtained by polymerizing 3HB, 3HH, 3HO, 3HD, 3HDD, etc. that can be produced can be mentioned as typical examples (Appl. Microbiol. Biotechnol. 47, 207-11 (1997), Appl. Microbiol. Biotechnol. 49, 431-7 (1998)). Among these, P (3HB-co-3HH) is particularly preferable.

本発明に使用する微生物としては、モノマーユニットとして少なくとも3−ヒドロキシ酪酸と3−ヒドロキシヘキサン酸を含む2種以上の構成要素よりなる共重合ポリエステルを生産する限り特に制限なく、天然から単離された微生物、変異を導入した微生物、遺伝子操作を行った微生物や菌株の寄託機関(例えばIFO、ATCC等)に寄託されている微生物を使用できる。具体的には、カプリアヴィドゥス(Cupriavidus)属(旧分類:ラルストニア(Ralstonia)属或いはアルカリゲネス(Alcaligenes属))、アエロモナス(Aeromonas)属、シュードモナス(Pseudomonas)属、又はエシェリキア(Escherichia)属のいずれかに属する微生物を好適に使用することが出来る。   The microorganism used in the present invention was isolated from nature without any particular limitation as long as it produces a copolyester composed of two or more components containing at least 3-hydroxybutyric acid and 3-hydroxyhexanoic acid as monomer units. Microorganisms, microorganisms into which mutations have been introduced, microorganisms that have been genetically manipulated, and microorganisms that have been deposited with a depository organization (for example, IFO, ATCC, etc.) can be used. Specifically, any of the genus Capriavidus (old classification: Ralstonia or Alcaligenes), Aeromonas, Pseudomonas, or Escherichia Can be preferably used.

また上記微生物が、野生型の状態では目的とする共重合体を生産できない、もしくはその生産量が低い場合には、上記微生物に、目的とする共重合ポリエステルの重合酵素遺伝子を導入して得られる形質転換体を用いることができる。形質転換体を作製する場合、ポリエステル重合酵素遺伝子を含む組換えベクターを利用するなどの一般的な方法を用いることができ、該ベクターには、その菌体内で自律的に増殖しうるプラスミドベクターを用いることができる。また、該ポリエステル重合酵素遺伝子を直接宿主の染色体に組み込んでも良い。   In addition, when the microorganism cannot produce the desired copolymer in the wild type state or the production amount is low, the microorganism can be obtained by introducing a polymerization enzyme gene of the desired copolymer polyester into the microorganism. Transformants can be used. When preparing a transformant, a general method such as using a recombinant vector containing a polyester polymerizing enzyme gene can be used, and a plasmid vector capable of autonomously growing in the microbial cell is used as the vector. Can be used. The polyester polymerase gene may be directly integrated into the host chromosome.

本発明の共重合ポリエステルの生産において使用されるポリエステル重合酵素遺伝子としては、特に限定されないが、A. caviaeより単離された遺伝子が好ましく、例えば特許文献3に記載されている遺伝子断片を用いることができる。微生物に組換えベクターを導入するには、公知の方法により行うことができる。例えば、接合法、カルシウム法やエレクトロポレーション法等を用いることができる。本発明に用いられる微生物の一例として、Cupriavidus necatorに、A. caviae由来のポリエステル重合酵素遺伝子を導入した、Cupriavidus necator PHB-4/pJRDEE32d13株(Appl. Microbiol. Biotechnol. 49, 333-6 (1998)参照)を好ましく用いることができる。   The polyester polymerase enzyme gene used in the production of the copolyester of the present invention is not particularly limited, but a gene isolated from A. caviae is preferable. For example, a gene fragment described in Patent Document 3 is used. Can do. Introduction of a recombinant vector into a microorganism can be performed by a known method. For example, a bonding method, a calcium method, an electroporation method, or the like can be used. As an example of the microorganism used in the present invention, Cupriavidus necator PHB-4 / pJRDEE32d13 strain (Appl. Microbiol. Biotechnol. 49, 333-6 (1998)) in which a polyester polymerase gene derived from A. caviae was introduced into Cupriavidus necator. Can be preferably used.

本発明の培養方法において、共重合ポリエステルの生産には、発酵原料として、価格、供給安定性、品質の安定性、菌体あるいはポリエステルの収率などの点から、安価な油脂を主要な炭素源として使用する。炭素源以外の栄養源としては、窒素源、リン化合物、無機塩類、そのほかの一般的な有機栄養源を含む培地が使用できる。生産コスト低減の観点からは高価な有機窒素源、例えばポリペプトン、イーストエキス、肉エキスなどの使用は最少量に留める方が好ましい。培養温度はその菌の生育可能な温度であればよいが、20〜40℃が好ましい。培養時間には特に制限はないが、1〜7日程度で良い。また、形質転換体を使用する際は、培養中にベクターに存在する耐性遺伝子に対応するカナマイシン、アンピシリン、テトラサイクリン等の抗生物質を添加しても良い。   In the cultivation method of the present invention, in the production of the copolyester, inexpensive fats and oils are used as the main carbon source in terms of price, supply stability, quality stability, fungus body or polyester yield, etc. as fermentation raw materials. Use as As a nutrient source other than the carbon source, a medium containing a nitrogen source, a phosphorus compound, inorganic salts, and other general organic nutrient sources can be used. From the viewpoint of reducing the production cost, it is preferable to use an expensive organic nitrogen source such as polypeptone, yeast extract, meat extract, etc. in a minimum amount. Although culture | cultivation temperature should just be the temperature which can grow the microbe, 20-40 degreeC is preferable. The culture time is not particularly limited, but may be about 1 to 7 days. Moreover, when using a transformant, you may add antibiotics, such as kanamycin, ampicillin, and tetracycline corresponding to the resistance gene which exists in a vector during culture | cultivation.

本発明において炭素源として使用する油脂は、大豆油、コーン油、綿実油、パーム油、パーム核油、ヤシ油、落花生油などの比較的安定的に供給される天然油脂およびこれらの油脂を分別して得られる各画分、例えばパームWオレイン油(パーム油を2回無溶媒分別した低融点画分)、パーム核油オレイン(パーム核油を1回無溶媒分別した低融点画分)などの分別油脂、またはこれら天然油脂やその画分を化学的あるいは生物化学的に処理した合成油、さらにはこれらを混合した混合油が使用できる。このなかでも、コストの点からは天然油脂を使用するのが好ましい。   Oils and fats used as a carbon source in the present invention are classified into relatively stable natural oils such as soybean oil, corn oil, cottonseed oil, palm oil, palm kernel oil, coconut oil, and peanut oil, and these oils and fats. Fractionation of each fraction obtained, for example, palm W olein oil (low melting point fraction obtained by fractionating palm oil twice), palm kernel oil olein (low melting point fraction obtained by fractionating palm kernel oil once) Oils and fats, synthetic oils obtained by chemically or biochemically treating these natural fats and their fractions, and mixed oils obtained by mixing them can be used. Among these, it is preferable to use natural fats and oils from the viewpoint of cost.

本発明の方法において、リン源は、培養の全期間を通じて、或いは培養のあるフェーズ期間内で、連続的に、或いは間欠的に流加される。本明細書において培養全期間とは、本培養における培養開始から培養終了時までの全期間を意味し、培養全期間を通じて流加するということは、すなわち菌体増殖期とポリエステル蓄積期の両方の期間に流加を行うことである。またここでいう、培養の菌体増殖期やポリエステル蓄積期とは、培養期間を大きく2つのフェーズに分けた場合の、それぞれ、培地中にリンが十分量存在し、菌体増殖が活発に行われ、ポリエステルの蓄積速度が比較的小さい前半のフェーズ(菌体増殖期)と、培地中のリン濃度が低下し、菌体増殖が制限され、ポリエステルの蓄積速度が大きくなった後半のフェーズ(ポリエステル蓄積期)である。実質的には、培地中の残存リン濃度が50ppm以上である期間を菌体増殖期、50ppm未満となった後の期間をポリエステル蓄積期とすることができる。   In the method of the present invention, the phosphorus source is fed continuously or intermittently throughout the entire period of culture or within a phase period of culture. In this specification, the whole culture period means the whole period from the start of culture to the end of culture in the main culture, and feeding through the whole culture period means that both the cell growth phase and the polyester accumulation phase. It is to feed in the period. In addition, the cell growth phase and polyester accumulation phase of culture here means that when the culture period is roughly divided into two phases, there is a sufficient amount of phosphorus in the medium, and cell growth is active. The first half of the phase where the polyester accumulation rate is relatively low (cell growth phase) and the second half phase (polyester) where the phosphorus concentration in the medium is reduced, the cell growth is restricted, and the polyester accumulation rate is increased. Accumulation period). Substantially, the period in which the residual phosphorus concentration in the medium is 50 ppm or more can be defined as the cell growth period, and the period after the concentration becomes less than 50 ppm as the polyester accumulation period.

本発明に用いるリン化合物としてはリン酸及び/又はリン酸塩を含むリン化合物を好適に用いることができる。   As the phosphorus compound used in the present invention, a phosphorus compound containing phosphoric acid and / or a phosphate can be suitably used.

本発明の特徴の一つは、培地にリン化合物を添加する期間中、単位時間当たりに添加する炭素源中の炭素総量(C)の単位時間当たりに添加するリン化合物中のリン総量(P)に対する重量比(C/P比)を制御するPHAの製造方法である。   One of the features of the present invention is that the total amount of phosphorus (P) in the phosphorus compound added per unit time of the total amount of carbon (C) in the carbon source added per unit time during the period of adding the phosphorus compound to the medium. It is the manufacturing method of PHA which controls the weight ratio (C / P ratio) with respect to.

好ましいC/P比は、使用するリン化合物及び炭素源の種類にもよるが、概ね150〜20000、好ましくは300〜12000、更に好ましくは600超〜1600である。   Although preferable C / P ratio is based also on the kind of phosphorus compound and carbon source to be used, it is about 150-20000, Preferably it is 300-12000, More preferably, it is more than 600-1600.

本発明において、培養中にリン源を流加することにより、生産される共重合ポリエステル、例えばP(3HB−co−3HH)の3HH組成が上昇することが初めて見出だされた。更にその流加期間及び/または流加速度を適宜変更することにより、3HH組成の上昇期間及び/または上昇率を制御することが可能となり、結果として所望の3HH組成を有する共重合ポリエステルを取得することが可能となる。ここでいう、3HH組成の上昇率とは以下の式で示されるものである。
3HH組成上昇率(mol%/g/L)=(3HH(t2)−3HH(t1))/(DCW(t2)−DCW(t1))
3HH(t1):時間t1での3HH組成(mol%)
3HH(t2):時間t2での3HH組成(mol%)
DCW(t1):時間t1での乾燥菌体重量(g/L)
DCW(t2):時間t2での乾燥菌体重量(g/L)
本発明の方法に用いられる窒素源としては、例えばアンモニア、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩である無機窒素源、ペプトン、肉エキス、酵母エキスなどの有機窒素源が挙げられる。リン源としては、例えばリン酸一水素カリウム、リン酸二水素カリウム、リン酸ナトリウム、リン酸一水素ナトリウム、リン酸二水素ナトリウム、リン酸マグネシウム、リン酸などのリン化合物が挙げられる。またその他の無機塩類としては、例えば硫酸マグネシウム、塩化ナトリウムなどを用いることができる。そのほかの有機栄養源としては、グリシン、アラニン、セリン、スレオニン、プロリンなどアミノ酸、ビタミンB1、ビタミンB12、ビタミンC等のビタミン類を用いることができる。しかしながら、生産コスト抑制の観点からは有機栄養源であるペプトン、肉エキス、酵母エキスおよびグリシン、アラニン、セリン、スレオニン、プロリンなどのアミノ酸、ビタミンB1、ビタミンB12、ビタミンC等のビタミンの使用は最少量とすることが好ましい。
In the present invention, it has been found for the first time that the 3HH composition of a copolyester produced, for example, P (3HB-co-3HH), is increased by feeding a phosphorus source during culture. Furthermore, by appropriately changing the feeding period and / or flow acceleration, it is possible to control the rising period and / or rate of the 3HH composition, and as a result, obtain a copolyester having the desired 3HH composition. Is possible. Here, the rate of increase of the 3HH composition is expressed by the following equation.
3HH composition increase rate (mol% / g / L) = (3HH (t2) -3HH (t1)) / (DCW (t2) -DCW (t1))
3HH (t1): 3HH composition at time t1 (mol%)
3HH (t2): 3HH composition (mol%) at time t2
DCW (t1): Weight of dry cells at time t1 (g / L)
DCW (t2): Weight of dry cells at time t2 (g / L)
Examples of the nitrogen source used in the method of the present invention include inorganic nitrogen sources that are ammonium salts such as ammonia, ammonium chloride, ammonium sulfate, and ammonium phosphate, and organic nitrogen sources such as peptone, meat extract, and yeast extract. Examples of the phosphorus source include phosphorus compounds such as potassium monohydrogen phosphate, potassium dihydrogen phosphate, sodium phosphate, sodium monohydrogen phosphate, sodium dihydrogen phosphate, magnesium phosphate, and phosphoric acid. As other inorganic salts, for example, magnesium sulfate, sodium chloride and the like can be used. As other organic nutrient sources, amino acids such as glycine, alanine, serine, threonine, and proline, and vitamins such as vitamin B1, vitamin B12, and vitamin C can be used. However, from the viewpoint of reducing production costs, organic nutrient sources such as peptone, meat extract, yeast extract and amino acids such as glycine, alanine, serine, threonine and proline, and vitamins such as vitamin B1, vitamin B12 and vitamin C are the most used. A small amount is preferable.

本発明において、共重合ポリエステルを微生物菌体から回収する方法は特に限定されず、公知の溶媒抽出法、物理的破砕法、化学的処理法などが採用でき、例えば、次のような方法が使用できる。培養終了後、培養液を遠心分離機などで菌体を分離し、その菌体を蒸留水およびメタノール等により洗浄した後、乾燥させる。この乾燥菌体からクロロホルム等の有機溶剤を用いてポリエステルを抽出する。このポリエステルを含んだ有機溶剤溶液から濾過等によって菌体成分を除去し、そのろ液にメタノールやヘキサン等の貧溶媒を加えてポリエステルを沈殿させる。濾過や遠心分離によって上澄み液を除去し、乾燥させてポリエステルを回収する。   In the present invention, the method for recovering the copolyester from the microbial cells is not particularly limited, and a known solvent extraction method, physical disruption method, chemical treatment method, etc. can be employed. For example, the following method is used. it can. After completion of the culture, the cells are separated from the culture solution using a centrifuge, and the cells are washed with distilled water and methanol, and then dried. Polyester is extracted from the dried cells using an organic solvent such as chloroform. Cellular components are removed from the organic solvent solution containing the polyester by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to precipitate the polyester. The supernatant is removed by filtration or centrifugation, and dried to recover the polyester.

得られたポリエステルのモノマーユニットの分析法としては、例えば、核磁気共鳴法、或いはモノマーをメチルエステル化した後、ガスクロマトグラフィー、又は高速液体クロマトグラフィーにより分析する方法などがある。   Examples of the method for analyzing the monomer unit of the obtained polyester include a nuclear magnetic resonance method or a method in which the monomer is methylesterified and then analyzed by gas chromatography or high performance liquid chromatography.

以下、実施例により本発明をさらに具体的に説明する。以下の実施例においては、いずれも共重合ポリエステルとして、P(3HB−co−3HH)を生産した。もちろん本発明はこれら実施例にその技術範囲を限定するものではなく、P(3HB−co−3HH)に限られるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. In the following examples, P (3HB-co-3HH) was produced as a copolyester. Of course, the scope of the present invention is not limited to these examples, and is not limited to P (3HB-co-3HH).

例えば、用いる微生物やポリエステル重合酵素遺伝子、或いは炭素源の種類を変えることで、P(3HB−co−3HH)以外の他の共重合体を生産することが可能である。   For example, it is possible to produce other copolymers other than P (3HB-co-3HH) by changing the type of microorganism, polyester polymerase enzyme gene, or carbon source used.

(実施例1)
国際公開番号WO2009−145164号公報表1記載のPac−bktB/AS+pCUP−631株を用い、次のように培養した。
(Example 1)
Using Pac-bktB / AS + pCUP-631 strain described in Table 1 of International Publication No. WO2009-145164, the culture was performed as follows.

種母培地の組成は1w/v% Meat−extract、1w/v% Bacto−Trypton、0.2w/v% Yeast−extract、0.9w/v% NaHPO・12HO、0.15w/v% KHPO、(pH6.8)とした。 The composition of Tanehaha medium 1w / v% Meat-extract, 1w / v% Bacto-Trypton, 0.2w / v% Yeast-extract, 0.9w / v% Na 2 HPO 4 · 12H 2 O, 0.15w / V% KH 2 PO 4 (pH 6.8).

前培養培地の組成は1.1w/v% NaHPO・12HO、0.19w/v% KHPO、1.29 w/v%(NHSO、0.1w/v% MgSO・7HO、2.5w/v% パーム核油オレイン、0.5v/v% 微量金属塩溶液(0.1N塩酸に1.6w/v% FeCl・6HO、1w/v% CaCl・2HO、0.02w/v% CoCl・6HO、0.016w/v% CuSO・5HO、0.012w/v% NiCl・6HOを溶かしたもの。)、とした。 The composition of the preculture medium is 1.1 w / v% Na 2 HPO 4 · 12H 2 O, 0.19 w / v% KH 2 PO 4 , 1.29 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 · 7H 2 O, 2.5w / v% palm kernel oil olein, 0.5 v / v% trace metal salt solution (in 0.1N hydrochloric acid 1.6w / v% FeCl 3 · 6H 2 O, 1 w / v% CaCl 2 .2H 2 O, 0.02 w / v% CoCl 2 .6H 2 O, 0.016 w / v% CuSO 4 .5H 2 O, 0.012 w / v% NiCl 2 .6H 2 O Melted).

ポリエステル生産培地の組成は0.385w/v% NaHPO・12HO、0.067w/v% KHPO、0.291w/v% (NHSO、0.1w/v% MgSO・7HO、0.5v/v% 微量金属塩溶液(0.1N 塩酸に1.6w/v% FeCl・6HO、1w/v% CaCl・2HO、0.02w/v% CoCl・6HO、0.016w/v% CuSO・5HO、0.012w/v% NiCl・6HOを溶かしたもの。)、0.05w/v% BIOSPUMEX200K(消泡剤:コグニスジャパン社製)とした。炭素源としてはパーム核油を分別した低融点画分であるパーム核油オレインを用いた。流加用のリン酸塩水溶液としては、4.00w/v% NaHPO・12HO、0.69w/v% KHPOとなるよう調製したものを用いた。 The composition of the polyester production medium is 0.385 w / v% Na 2 HPO 4 · 12H 2 O, 0.067 w / v% KH 2 PO 4 , 0.291 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 .7H 2 O, 0.5 v / v% trace metal salt solution (1.6 W / v% FeCl 3 .6H 2 O in 0.1N hydrochloric acid, 1 w / v% CaCl 2 .2H 2 O, 0 0.02 w / v% CoCl 2 · 6H 2 O, 0.016 w / v% CuSO 4 · 5H 2 O, 0.012 w / v% NiCl 2 · 6H 2 O)), 0.05 w / v% BIOSPUMEX 200K (antifoaming agent: manufactured by Cognis Japan) was used. As the carbon source, palm kernel oil olein, which is a low melting point fraction obtained by fractionating palm kernel oil, was used. As the aqueous solution of phosphate for feeding, one prepared to be 4.00 w / v% Na 2 HPO 4 · 12H 2 O, 0.69 w / v% KH 2 PO 4 was used.

KNK−631株のグリセロールストック(50μl)を種母培地(10ml)に接種して24時間培養し、1.8Lの前培養培地を入れた3Lジャーファーメンター(丸菱バイオエンジ製MDL−300型)に1.0v/v%接種した。運転条件は、培養温度33℃、攪拌速度500rpm、通気量1.8L/min.とし、pHは6.7〜6.8の間でコントロールしながら28時間培養した。pHコントロールには7%水酸化アンモニウム水溶液を使用した。   A glycerol stock (50 μl) of the KNK-631 strain was inoculated into a seed mother medium (10 ml), cultured for 24 hours, and a 3 L jar fermenter (MDL-300 model manufactured by Marubishi Bioengineering) containing 1.8 L of a preculture medium ) Was inoculated with 1.0 v / v%. The operating conditions were a culture temperature of 33 ° C., a stirring speed of 500 rpm, and an aeration rate of 1.8 L / min. And culturing for 28 hours while controlling the pH between 6.7 and 6.8. A 7% aqueous ammonium hydroxide solution was used for pH control.

PHAの生産培養は4.3Lの生産培地を入れた10Lジャーファーメンター(丸菱バイオエンジ製MDL−1000型)に前培養種母を5.0v/v%接種した。運転条件は、培養温度28℃、攪拌速度600rpm、通気量6L/min.とし、pHは6.7から6.8の間でコントロールした。pHコントロールには14%水酸化アンモニウム水溶液を使用した。炭素源は培養全般を通じ、パーム核油オレインを、比基質供給速度が0.1〜0.12(g油脂)×(g正味乾燥菌体重量)−1×(h)−1となるように流加した。ここで、比基質供給速度とは、単位時間に正味の菌体重量あたり供給される油脂の量、つまり、正味の乾燥菌体重量あたりの油脂流加速度として定義される培養変数である。また、正味の乾燥菌体重量とは、全乾燥菌体重量から含有するポリエステル重量を差し引いた乾燥菌体重量である。すなわち、比基質供給速度は以下の式より求められる値である。
比基質供給速度=油脂流加速度(g/h)/正味の乾燥菌体重量(g)=単位時間あたりの油脂の供給量(g/h)/(全乾燥菌体重量(g)−ポリエステル含有量(g))
また、リン酸塩水溶液を培養20時間目以降、C/P比が600〜800となるような流速にて連続的に添加した。培養は約64時間行い、培養終了後、遠心分離によって菌体を回収、メタノールで洗浄、凍結乾燥し、乾燥菌体重量を測定した。
In the production culture of PHA, a 10 L jar fermenter (MDL-1000 type, manufactured by Maruhishi Bioengine) containing 4.3 L of production medium was inoculated with 5.0 v / v% of the preculture seed. The operating conditions were a culture temperature of 28 ° C., a stirring speed of 600 rpm, and an aeration rate of 6 L / min. And the pH was controlled between 6.7 and 6.8. A 14% aqueous ammonium hydroxide solution was used for pH control. The carbon source is palm kernel oil olein throughout the culture so that the specific substrate feed rate is 0.1 to 0.12 (g fat) x (g net dry cell weight) -1 x (h) -1. Fed. Here, the specific substrate supply rate is a culture variable defined as the amount of oil supplied per unit time per net cell weight, that is, the oil flow acceleration per net dry cell weight. The net dry cell weight is the dry cell weight obtained by subtracting the polyester weight contained from the total dry cell weight. That is, the specific substrate supply rate is a value obtained from the following equation.
Specific substrate feed rate = Oil flow acceleration (g / h) / Net dry cell weight (g) = Oil feed per unit time (g / h) / (Total dry cell weight (g) -Polyester content Amount (g))
Moreover, the phosphate aqueous solution was continuously added after 20 hours of culture at a flow rate such that the C / P ratio was 600 to 800. Culturing was carried out for about 64 hours. After completion of the cultivation, the cells were collected by centrifugation, washed with methanol, lyophilized, and the weight of the dried cells was measured.

得られた乾燥菌体約1gに100mlのクロロホルムを加え、室温で一昼夜攪拌して、菌体内のポリエステルを抽出した。菌体残渣をろ別後、エバポレーターで総容量が約30mlになるまで濃縮後、約90mlのヘキサンを徐々に加え、ゆっくり攪拌しながら、1時間放置した。析出したポリエステルをろ別後、50℃で3時間真空乾燥した。乾燥ポリエステルの重量を測定し、菌体内のポリマー含量を算出した。   100 ml of chloroform was added to about 1 g of the obtained dried microbial cells, and stirred overnight at room temperature to extract the polyester in the microbial cells. The bacterial cell residue was filtered off and concentrated with an evaporator until the total volume reached about 30 ml. Then, about 90 ml of hexane was gradually added, and the mixture was allowed to stand for 1 hour with slow stirring. The precipitated polyester was filtered off and then vacuum dried at 50 ° C. for 3 hours. The weight of the dried polyester was measured, and the polymer content in the cells was calculated.

共重合ポリエステルの3HH組成は以下のようにガスクロマトグラフィーによって測定した。   The 3HH composition of the copolyester was measured by gas chromatography as follows.

乾燥ポリエステルの約20mgに2mlの硫酸−メタノール混液(15:85)と2mlのクロロホルムを添加して密栓し、100℃で140分間加熱することでポリエステル分解物のメチルエステルを得た。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置した。4mlのジイソプロピルエーテルを添加してよく混合した後、遠心して、上清中のポリエステル分解物のモノマーユニット組成をキャピラリーガスクロマトグラフィーにより分析した。ガスクロマトグラフは島津製作所GC−17A、キャピラリーカラムはGLサイエンス社製NEUTRA BOND−1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)を用いた。キャリアガスとしてHeを用い、カラム入口圧100kPaとし、サンプルは1μlを注入した。温度条件は、初発温度100〜200℃まで8℃/分の速度で昇温、さらに200〜290℃まで30℃/分の速度で昇温した。   To 20 mg of the dried polyester, 2 ml of a sulfuric acid-methanol mixture (15:85) and 2 ml of chloroform were added and sealed, and heated at 100 ° C. for 140 minutes to obtain a methyl ester of a polyester degradation product. After cooling, 1.5 g of sodium bicarbonate was added little by little to neutralize it, and the mixture was allowed to stand until the generation of carbon dioxide gas stopped. After adding 4 ml of diisopropyl ether and mixing well, the mixture was centrifuged and the monomer unit composition of the polyester degradation product in the supernatant was analyzed by capillary gas chromatography. The gas chromatograph used was Shimadzu Corporation GC-17A, and the capillary column used was GL Science's NEUTRA BOND-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 μm). He was used as the carrier gas, the column inlet pressure was 100 kPa, and 1 μl of the sample was injected. As temperature conditions, the temperature was raised from the initial temperature of 100 to 200 ° C. at a rate of 8 ° C./min, and further from 200 to 290 ° C. at the rate of 30 ° C./min.

細胞中に蓄積された共重合ポリエステルの含量は、加藤らの方法(Appl. Microbiol. Biotechnol. 45, 363 (1996)、Bull. Chem. Soc. 69, 515 (1996))に従い、培養細胞からクロロホルムを用いて抽出し、乾燥後の重量を測定することで求めた。   The content of the copolyester accumulated in the cells was determined from the cultured cells according to the method of Kato et al. (Appl. Microbiol. Biotechnol. 45, 363 (1996), Bull. Chem. Soc. 69, 515 (1996)). It extracted by using, and calculated | required by measuring the weight after drying.

(実施例2)
リン酸塩水溶液をC/P比が300〜400となるような流速で添加した点を除いて、実施例1と同様の条件で培養を実施した。
(Example 2)
Cultivation was performed under the same conditions as in Example 1 except that the phosphate aqueous solution was added at a flow rate such that the C / P ratio was 300 to 400.

(実施例3)
リン酸塩水溶液をC/P比が200〜300となるような流速で添加した点を除いて、実施例1と同様の条件で培養を実施した。
(Example 3)
Cultivation was carried out under the same conditions as in Example 1 except that the phosphate aqueous solution was added at a flow rate such that the C / P ratio was 200 to 300.

(実施例4)
リン酸塩水溶液をC/P比が1200〜1600となるような流速で添加した点を除いて、実施例1と同様の条件で培養を実施した。
Example 4
Cultivation was performed under the same conditions as in Example 1 except that the phosphate aqueous solution was added at a flow rate such that the C / P ratio was 1200 to 1600.

(実施例5)
培養液量5.4L、撹拌速度400rpm、通気量3.6L/min.とした点を除いて、実施例1と同様の条件で培養を実施した。
(Example 5)
The culture volume is 5.4 L, the stirring speed is 400 rpm, and the aeration rate is 3.6 L / min. The culture was carried out under the same conditions as in Example 1 except that.

(実施例6)
リン酸塩水溶液をC/P比が100〜200となるような流速で添加した点を除いて、実施例5と同様の条件で培養を実施した。
(Example 6)
Cultivation was performed under the same conditions as in Example 5, except that the aqueous phosphate solution was added at a flow rate such that the C / P ratio was 100 to 200.

(比較例1)
培養中にリン酸塩水溶液を流加しないという変更点を除いて、実施例1と同様の条件で培養を実施した。
(Comparative Example 1)
The culture was carried out under the same conditions as in Example 1 except that the phosphate aqueous solution was not fed during the culture.

リン酸塩水溶液の添加が3HH組成に与える影響を表1に示した。   Table 1 shows the effect of adding an aqueous phosphate solution on the 3HH composition.

Figure 0005839855
Figure 0005839855

この結果から、培養中にリン酸塩水溶液を流加することにより、共重合ポリエステル中の3HH組成が上昇することが分かった。また、C/P比の低下に伴い、言い換えれば炭素源流加速度に対するリン流加速度を相対的に高めるにつれて、共重合ポリエステル中の3HH組成がより上昇することが明らかとなった。また、リン酸塩水溶液の流加により、ポリマー生産性が高まるが、C/P比が一定値以下となるとPHBH生産性が低下することが明らかとなった。   From this result, it was found that the 3HH composition in the copolyester was increased by feeding a phosphate aqueous solution during the cultivation. Moreover, it became clear that the 3HH composition in the copolyester further increased as the C / P ratio decreased, in other words, as the phosphorus flow acceleration relative to the carbon source flow acceleration was relatively increased. Moreover, although the polymer productivity is increased by feeding the phosphate aqueous solution, it has been clarified that the PHBH productivity is lowered when the C / P ratio is a certain value or less.

(実施例7)
パーム核油オレインのかわりにパームWオレイン油を用いた以外は実施例1と同様の培地・条件で培養を行い、表2に示す結果を得た。
(Example 7)
Culturing was carried out under the same medium and conditions as in Example 1 except that palm W olein oil was used instead of palm kernel oil olein, and the results shown in Table 2 were obtained.

(比較例2)
培養中にリン酸塩水溶液を流加しないという変更点を除いて、実施例7と同様の条件で培養を実施した。使用する炭素源が3HH組成に与える影響を表2に示した。
(Comparative Example 2)
Cultivation was performed under the same conditions as in Example 7 except that the phosphate aqueous solution was not fed during the culturing. Table 2 shows the effect of the carbon source used on the 3HH composition.

Figure 0005839855
Figure 0005839855

表2に示されているように、パームWオレイン油を炭素源として用いた場合においても、パーム核油オレインを用いた場合と同様に、リン酸塩水溶液を流加することによって、ポリエステル中の3HH組成が向上することがわかった。しかしながら、同じリン酸塩水溶液供給条件下、3HH組成をパームWオレイン油と実施例1のパーム核油オレインで比較すると、パームWオレイン油の方が明らかに低く、同じリン酸塩水溶液供給条件下でも、基質として使用する油脂の違いによって、得られる3HH組成に差があることがわかった。   As shown in Table 2, even when palm W olein oil was used as a carbon source, as in the case of using palm kernel oil olein, by adding a phosphate aqueous solution, It was found that the 3HH composition was improved. However, when the 3HH composition is compared between the palm W olein oil and the palm kernel oil olein of Example 1 under the same phosphate aqueous solution supply conditions, the palm W olein oil is clearly lower and the same phosphate aqueous solution supply conditions. However, it was found that there is a difference in the 3HH composition obtained depending on the fat and oil used as the substrate.

(実施例8)
培養に使用する菌株を国際公開公報WO2008/010296号に記載のKNK−005株とした点を除いて、実施例1と同様の条件で培養を行った。表3に結果を記した。
(Example 8)
Culturing was performed under the same conditions as in Example 1 except that the strain used for the culture was the KNK-005 strain described in International Publication No. WO2008 / 010296. The results are shown in Table 3.

(比較例3)
培養中にリン酸塩水溶液を流加しないという変更点を除いて、実施例8と同様の条件で培養を実施した。使用する菌株の違いが3HH組成に与える影響を表3に示した。
(Comparative Example 3)
Cultivation was performed under the same conditions as in Example 8 except that the phosphate aqueous solution was not fed during the culturing. Table 3 shows the effect of different strains used on the 3HH composition.

Figure 0005839855
Figure 0005839855

上記結果から、使用菌株に拠らず、リン酸塩水溶液流加による3HH組成向上効果が認められることが分かった。   From the above results, it was found that 3HH composition improvement effect by feeding phosphate aqueous solution was recognized regardless of the strain used.

Claims (5)

モノマーユニットとして少なくとも3−ヒドロキシ酪酸と3−ヒドロキシヘキサン酸を含む2種以上の構成要素よりなる共重合ポリエステルを生産するカプリアヴィドゥス(Cupriavidus)属に属する微生物を、天然油脂及び/又は分別油脂を炭素源として含む培地で培養し、かつ培養中に培地にリン化合物を添加することを特徴とするPHAの製造方法であって、前記培地にリン化合物を添加する期間の単位時間当たりに添加する炭素源中の炭素総量(C)の単位時間当たりに添加するリン化合物中のリン総量(P)に対する重量比(C/P比)が600超〜1600であることを特徴とするPHAの製造方法。 A microorganism belonging to the genus Cupriavidus that produces a copolyester comprising two or more constituents containing at least 3-hydroxybutyric acid and 3-hydroxyhexanoic acid as a monomer unit, and a natural fat and / or a fractionated fat A method for producing PHA , comprising culturing in a medium containing a carbon source and adding a phosphorus compound to the medium during the culture , wherein carbon added per unit time of a period during which the phosphorus compound is added to the medium A method for producing PHA, wherein the weight ratio (C / P ratio) of the total amount of carbon (C) in the source to the total amount of phosphorus (P) in the phosphorus compound added per unit time is more than 600 to 1600. 前記C/P比が600超〜800であることを特徴とする請求項1記載のPHAの製造方法。The method for producing a PHA according to claim 1, wherein the C / P ratio is more than 600 to 800. 前記リン化合物が、リン酸及び/又はリン酸塩を含むことを特徴とする請求項1または2記載のPHAの製造方法。 The phosphorus compound, according to claim 1 or 2 method for producing PHA according characterized in that it comprises a phosphoric acid and / or phosphate. 前記共重合ポリエステルがP(3HB−co−3HH)である請求項1〜いずれか一項に記載のPHAの製造方法。 The method for producing PHA according to any one of claims 1 to 3, wherein the copolyester is P (3HB-co-3HH). 前記微生物が、ポリエステル重合酵素遺伝子を組み込んだ形質転換微生物である請求項1〜4いずれか一項に記載のPHAの製造方法。

The method for producing PHA according to any one of claims 1 to 4 , wherein the microorganism is a transformed microorganism into which a polyester polymerizing enzyme gene is incorporated.

JP2011144508A 2011-06-29 2011-06-29 Process for producing polyhydroxyalkanoate Active JP5839855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144508A JP5839855B2 (en) 2011-06-29 2011-06-29 Process for producing polyhydroxyalkanoate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144508A JP5839855B2 (en) 2011-06-29 2011-06-29 Process for producing polyhydroxyalkanoate

Publications (2)

Publication Number Publication Date
JP2013009628A JP2013009628A (en) 2013-01-17
JP5839855B2 true JP5839855B2 (en) 2016-01-06

Family

ID=47684126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144508A Active JP5839855B2 (en) 2011-06-29 2011-06-29 Process for producing polyhydroxyalkanoate

Country Status (1)

Country Link
JP (1) JP5839855B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9503174D0 (en) * 1995-02-17 1995-04-05 Zeneca Ltd Polymer production
JP3607746B2 (en) * 1995-04-18 2005-01-05 財団法人地球環境産業技術研究機構 Method for producing ternary copolymer
MY136899A (en) * 2002-10-10 2008-11-28 Kaneka Corp Method for producing copolyester
AU2004293501B2 (en) * 2003-11-28 2009-10-29 Phb Industrial S.A. Process for recovering polyhydroxialkanoates ("PHAs") from cellular biomass
WO2008010296A1 (en) * 2006-07-21 2008-01-24 Kaneka Corporation Microorganism with replaced gene and process for producing polyester using the same
WO2009145164A1 (en) * 2008-05-26 2009-12-03 株式会社カネカ Microorganism capable of producing improved polyhydroxyalkanoate and method of producing polyhydroxyalkanoate by using the same

Also Published As

Publication number Publication date
JP2013009628A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5670728B2 (en) Improved polyhydroxyalkanoate-producing microorganism and method for producing polyhydroxyalkanoate using the same
Cui et al. Improved productivity of poly (3-hydroxybutyrate)(PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture
Yun et al. Production of polyhydroxyalkanoates by Ralstonia eutropha from volatile fatty acids
WO2008010296A1 (en) Microorganism with replaced gene and process for producing polyester using the same
JP4643799B2 (en) Polyester manufacturing method
WO2005098001A1 (en) Novel transformant
JP6313708B2 (en) High molecular weight PHA producing microorganism and method for producing high molecular weight PHA using the same
JP4960033B2 (en) Method for producing copolymerized polyester using microorganisms having reduced enzyme activity
KR20150000840A (en) Utilization of the novel, environmental isolates pseudomonas sp. ipb-b26 and n-128 for the efficient high yield production of mcl/lcl-phas
JP4437087B2 (en) Production method of copolyester
Mozejko et al. Mcl-PHAs produced by Pseudomonas sp. Gl01 using fed-batch cultivation with waste rapeseed oil as carbon source
JP2008086238A (en) Method for producing polyhydroxyalkanoate
US20230265468A1 (en) Method for producing poly(3-hydroxyalkanoate)
Mothes et al. Synthesis of poly (3‐hydroxybutyrate‐co‐4‐hydrobutyrate) with a target mole fraction of 4‐Hydroxybutyric acid units by two‐stage continuous cultivation of Delftia acidovorans P4a
JPWO2006101176A1 (en) Microorganisms that accumulate ultra high molecular weight polyester
JP4490274B2 (en) Culturing method for controlling composition of copolymerized polyester
JP5839855B2 (en) Process for producing polyhydroxyalkanoate
JP5839854B2 (en) Microbial culture method
WO2018117168A1 (en) Method for producing polyhydroxyalkanoic acid, and microbes
Kanekar et al. Environmental friendly microbial polymers, polyhydroxyalkanoates (PHAs) for packaging and biomedical applications
WO2024135408A1 (en) Method for producing polyhydroxyalkanoic acid
WO2024166830A1 (en) Transformed microorganism, and production method of polyhydroxyalkanoic acid
Alavi et al. Author Copy
WO2008135065A1 (en) PHAs PRODUCING MICROORGANISM AND PHA OBTAINABLE THEREWITH

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R150 Certificate of patent or registration of utility model

Ref document number: 5839855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250