WO2005097943A1 - Organic electroluminescent device material, organic electroluminescent device, display and illuminating device - Google Patents

Organic electroluminescent device material, organic electroluminescent device, display and illuminating device Download PDF

Info

Publication number
WO2005097943A1
WO2005097943A1 PCT/JP2005/004683 JP2005004683W WO2005097943A1 WO 2005097943 A1 WO2005097943 A1 WO 2005097943A1 JP 2005004683 W JP2005004683 W JP 2005004683W WO 2005097943 A1 WO2005097943 A1 WO 2005097943A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
organic electroluminescent
electroluminescent device
layer
general formula
Prior art date
Application number
PCT/JP2005/004683
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Oshiyama
Eisaku Katoh
Hiroshi Kita
Shuichi Oi
Yoshio Inoue
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2006511956A priority Critical patent/JP5045100B2/en
Publication of WO2005097943A1 publication Critical patent/WO2005097943A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • Organic electroluminescent device organic electroluminescent device
  • the present invention relates to a material for an organic electroluminescent device, a device for an organic electroluminescent device, a display device, and a lighting device.
  • ELD electroluminescent display
  • examples of ELD components include an inorganic electroluminescent device and an organic electroluminescent device (hereinafter, referred to as an organic EL device).
  • Inorganic electroluminescent devices have been used as flat light sources, but high voltage AC is required to drive the light emitting devices.
  • An organic EL device has a structure in which a light-emitting layer containing a compound that emits light is sandwiched between a cathode and an anode. Electrons and holes are injected into the light-emitting layer and recombined to generate excitons (exciton).
  • a stilbene derivative, a distyrylarylene derivative or a tris styrylarylene derivative is doped with a small amount of a phosphor to achieve an improvement in light emission luminance and a long life of the device. .
  • an element having an organic light-emitting layer obtained by using an 8-hydroxyquinoline aluminum complex as a host conjugate and adding a small amount of a phosphor thereto for example, JP-A-63-264692
  • a device having an organic light emitting layer in which a quinoline aluminum complex is used as a host conjugate and doped with a quinacridone dye for example, JP-A-3-255190
  • the upper limit of the internal quantum efficiency is 100%, so that the luminous efficiency is twice as high as that of the excited singlet, and performance almost equivalent to that of a cold cathode tube is not obtained. Because of the possibility that it may be used, it is attracting attention as a lighting application.
  • the light emission luminance and the light emission efficiency of the light emitting element are greatly improved as compared with the conventional element because the emitted light is derived from phosphorescence. There is a problem that the light lifetime is shorter than that of the conventional device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-332291
  • Patent Document 2 JP-A-2002-332292
  • Patent Document 3 JP-A-2002-338588
  • Patent Document 4 JP 2002-226495 A
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2002-234894
  • Patent Document 6 International Publication No. 02Z15645 pamphlet
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2003-123982
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2002-117978
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2003-146996
  • Patent Document 10 International Publication No. 04Z016711 pamphlet
  • Non-Patent Document 1 Inorganic Chemistry, Vol. 41, No. 12, pp. 3055-3066 (2002)
  • Non-patent document 2 Applied Physics Letters, Vol. 79, page 2082 (2001)
  • Non-patent document 3 Applied Physics Letters, Vol. 83, page 3818 (2003)
  • Non-patent document 4 New Journal of Chemistry, 26 Vol., P. 1171 (2002) Disclosure of the Invention
  • An object of the present invention is to provide an organic EL element, a lighting device, and a display device in which the emission wavelength is controlled, high luminous efficiency is exhibited, and luminescence life is long.
  • One embodiment of the present invention for achieving the above object is an organic electroluminescent device material comprising a metal complex having a partial structure represented by the following general formula (1). is there.
  • FIG. 1 is a schematic diagram showing an example of a display device configured with an organic EL element.
  • FIG. 2 is a schematic diagram of a display unit A.
  • FIG. 3 is an equivalent circuit diagram of a drive circuit forming a pixel.
  • FIG. 4 is a schematic view of a display device using a passive matrix system.
  • FIG. 5 is a schematic diagram of a sealing structure of an organic EL element OLED1-1.
  • FIG. 6 is a schematic view of a lighting device including an organic EL element.
  • An organic electroluminescent device material comprising a metal complex having a partial structure represented by the following general formula (1). —General formula (1)
  • R, R, R, R are hydrogen atoms or
  • M represents an element of Group 8, 9 or 10 in the periodic table.
  • Ra represents a substituent.
  • Xa represents an oxygen atom, a sulfur atom, or a nitrogen atom.
  • Na represents 1 or 2.
  • Rb, Rc, and Rd represent substituents, and Xb, Xc, and Xd represent an oxygen atom, a sulfur atom, or a nitrogen atom. Represents an elementary atom.
  • nb, nc, and nd represent 1 or 2.
  • R, R, R, R, R are hydrogen atoms or
  • M represents an element in group 8, 9 or 10 of the periodic table
  • Xd is a nitrogen atom
  • Xb and Xc are oxygen atoms.
  • the organic electroluminescent device material according to (1) or (2).
  • An organic electroluminescence device comprising the organic electroluminescence device according to any one of (1) to (9).
  • An organic electroluminescent device having a light-emitting layer as a constituent layer, wherein the light-emitting layer contains the organic electroluminescent device material described in (1) above.
  • a luminescence element A luminescence element.
  • An organic electroluminescence device comprising the organic electroluminescent device material according to claim 1.
  • a display device comprising the organic electroluminescent element according to any one of (10) to (12).
  • a lighting device comprising the organic electroluminescent element according to any one of (10) to (12).
  • the present inventors conducted studies based on the above guidelines as a means for shortening the emission wavelength to blue, and performed synthesis studies. As a result, control of the emission wavelength that almost satisfied the simulation results was performed. I can do it.
  • substituents such as alkylthio and arylthio groups have a small electron donating property, but the effect of improving the life is significantly increased. This is presumed to be because the electronic properties of these substituents have a function equivalent to that of a ⁇ -electron donating group due to the lawn pair present in the alkylthio group and arylthio group substituents.
  • the strong ⁇ property and the presence of at least two electron-donating groups in the molecule as a substituent can improve the lifetime of the light-emitting element even when an electron-withdrawing group is introduced at the 3 ⁇ -position or 5 ⁇ -position. I was helping.
  • Gaussian 98 (Revision A. 11.4, M. J. Frisch, G.
  • the phosphorescence wavelength was calculated by TD-DFT calculation, and the emission wavelength was obtained.
  • the layer containing the metal complex is preferably a light emitting layer and a Z or hole blocking layer.
  • the light emitting layer by using it as a light emitting dopant in the light emitting layer, it is possible to achieve an object of the present invention, that is, a longer light emitting life of the organic EL element.
  • the metal complex represented by the general formula (1) according to the present invention will be described.
  • A, B, and C each represent a force represented by a hydrogen atom or a substituent. At least two of them are represented by the general formula (2) and may be different from each other.
  • the substituents represented by A, B, and C are not particularly limited, but are preferably alkyl groups (for example, methyl group, isopropyl group, tert-butyl group, etc.), cycloalkyl groups (for example, cyclohexyl group, Cyclopentyl group, cyclopropyl group, etc.), alkenyl group (eg, butyl group, aryl group, 2-butenyl group, etc.), alkyl group (eg, ethur group, propynyl group, etc.), aryl group (eg, Phenyl, 2-naphthyl, 9-phenanthryl, 2-pyridyl, 2-chel, 3-furyl, mesityl, carbazolyl, fluoren
  • a silyl group eg, a triphenylsilyl group, a trimethylsilyl group, etc.
  • an amino group an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group and an aryl group.
  • an amino group an alkoxy group and an alkylthio group.
  • R, R, R, R, and R represent a hydrogen atom or a substituent.
  • R, R, and the substituents represented by R are described as the substituents represented by A, B, and C above. Synonymous with As the substituent represented by R or R, an electron withdrawing group (in the present invention,
  • the Hammett's ⁇ ⁇ value according to the present invention refers to Hammett's substituent constant ⁇ ⁇ .
  • the value of ⁇ ⁇ of Noh and Met is a substituent constant for which the electronic effect of the substituent on the hydrolysis of ethyl benzoate was determined by Hammett et al., “Structure-activity relationship of drugs” (Nan-Edo: 1979) And “SuDstituent Constants for Correlation Analysis chemistry and biology” (C. Hansch and A. Leo, John Wiley & Sons, New York, 1979) and the like can be cited.
  • the following is an example of an electron-withdrawing group having ⁇ ⁇ of 0.10 or more.
  • ⁇ ⁇ force ⁇ examples of electron-withdrawing groups of 10 or more include, for example, ⁇ ( ⁇ ) (0.12),
  • M represents an element belonging to Group 8, 9 or 10 in the periodic table.
  • the Group 8, 9 or 10 element is preferably ruthenium, rhodium, palladium, osmium, iridium and platinum, most preferably iridium and platinum.
  • Ra represents a substituent.
  • the substituent represented by Ra has the same meaning as that described for the substituent represented by A, B, or C. Of these, an alkyl group is particularly preferred.
  • Xa represents an oxygen atom, a sulfur atom or a nitrogen atom.
  • na is 1 Or 2
  • the metal complex represented by the general formula (3) according to the present invention will be described.
  • Rb, Rc, and Rd represent substituents, and the substituents represented by Rb, Rc, and Rd include A and B in the general formula (1). Has the same meanings as those described for the substituent represented by C.
  • the substituent for Rb, Rc and Rd is preferably an alkyl group.
  • Xb, Xc and Xd represent an oxygen atom, a sulfur atom or a nitrogen atom.
  • Xb, Xc and Xd are (l) Xd is a nitrogen atom, Xb and Xc are oxygen atoms, (2) Xd is a sulfur atom, and Xb and Xc are oxygen atoms or (3) Xb, Xc and Xd are preferably oxygen atoms.
  • nb, nc, and nd represent 1 or 2.
  • R, R, R, R, and R represent a hydrogen atom or a substituent.
  • R, R, and R represent the substituents represented by A, B, and C in the general formula (1).
  • M is an element of Group 8, 9 or 10 in the periodic table.
  • the Group 8, 9 or 10 element is preferably ruthenium, rhodium, palladium, osmium, iridium and platinum, most preferably iridium and platinum.
  • the organic EL element containing the above-mentioned organic EL element material means that the organic EL element material forms any of the organic layers constituting the organic EL element, or Represents the organic EL element contained in
  • the organic EL device material is preferably contained in the light emitting layer or the hole blocking layer.
  • the luminescent dopant (simply referred to as a dopant) and the luminescent host (simply referred to as a host) will be described.
  • a main component is called a host and other components are called a dopant, and represented by the general formula (1) according to the present invention.
  • Compounds are used as luminescent dopants.
  • the mixing ratio of the dopant to the host compound is preferably 0.
  • the light emitting dopant may be a mixture of a plurality of types of compounds.
  • the mixture may be made of a group 8, 9, or 10 metal complex having a different structure, or other phosphorescent compounds. It may be a dopant or a fluorescent dopant.
  • Light-emitting dopants are roughly classified into two types: fluorescent dopants that emit fluorescence and phosphorescent dopants that emit phosphorescence.
  • Representative examples of the former include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squarium dyes, and oxobenzanthracene dyes
  • fluorescein dyes rhodamine dyes
  • pyrylium dyes perylene dyes
  • stylbene dyes polythiophene dyes
  • rare earth complex fluorescent materials and other known fluorescent compounds.
  • Representative examples of the latter are preferably complex compounds containing a metal of Group 8, 9 or 10 in the periodic table of the elements, and more preferably an iridium compound. , Osmium compounds, palladium compounds or platinum compounds (platinum complex compounds
  • a light-emitting host (also referred to simply as a host!) Means a compound having the highest mixing ratio (mass) in a light-emitting layer composed of two or more compounds, and the other compounds are referred to as “do”.
  • One panto compound also simply referred to as a dopant
  • the luminescent host used in the present invention a compound having a shorter wavelength than the phosphorescent 0-0 band of the luminescent dopant used in combination is preferred, and the luminescent dopant is preferably the phosphorescent 0-0 band.
  • the emission host preferably has a phosphorescent 0-0 band power of 50 nm or less.
  • the luminescent host used in the present invention is not particularly limited in structure, but is typically a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing complex ring compound, or thiophene.
  • a compound having a basic skeleton such as a derivative, a furan derivative, or an oligoarylene conjugate, and having the above-mentioned 0-0 band of 450 nm or less is preferable, and examples of the compound are U and conjugate.
  • the luminescent host used in the present invention may be a low-molecular compound or a high-molecular compound having a repeating unit, and may be a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation-polymerizable luminescence). Host)
  • a compound that has a hole-transporting ability and an electron-transporting ability, prevents a longer emission wavelength, and has a high Tg (glass transition temperature) is preferable.
  • anode in the organic EL device a material having a large work function (4 eV or more), such as a metal, an alloy, an electrically conductive compound, and a mixture thereof is preferably used.
  • an electrode material include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO. Also, IDIXO (In O ZnO) etc.
  • a material that is amorphous and can form a transparent conductive film may be used.
  • the anode is made of these electrode materials
  • a thin film is formed by a method such as evaporation or sputtering, and a pattern of a desired shape can be formed by a photolithography method, or when pattern accuracy is not required very much (about 100 ⁇ m or more) Alternatively, a pattern may be formed through a mask having a desired shape during the deposition or sputtering of the electrode material.
  • the transmittance be greater than 10%, and the sheet resistance of the anode is preferably several hundred ⁇ aperture or less.
  • the film thickness is selected within the range of usually 10-1000 nm, preferably 10-200 nm, depending on the material.
  • a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material.
  • an electrode material include sodium, sodium-potassium alloy, magnesium, lithium, a mixture of magnesium and copper, a mixture of magnesium and silver, a mixture of magnesium and aluminum, a mixture of indium and magnesium, and a mixture of aluminum and aluminum. (Al 2 O 3) mixture, indium, lithium Z aluminum mixture, rare earth metal, etc.
  • a mixture of an electron-injecting metal and a second metal that is a metal having a large work function and a stable work function such as a magnesium Z-silver mixture, from the viewpoint of the electron-injecting property and the durability against oxidation and the like.
  • a magnesium Z-silver mixture a metal having a large work function and a stable work function, such as a magnesium Z-silver mixture.
  • the cathode can be manufactured by forming a thin film from these electrode substances by a method such as evaporation or sputtering. Further, the sheet resistance as the cathode is preferably several hundred ⁇ / square or less, and the preferred film thickness is usually selected in the range of lOnm-1000 nm, preferably 50 nm-200 nm. In order to transmit light, if either the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is advantageously improved.
  • Injection layer >>: electron injection layer, hole injection layer
  • the injection layer is provided as necessary, and has an electron injection layer and a hole injection layer. It may be present between the light emitting layer or the hole transporting layer and between the cathode and the light emitting layer or the electron transporting layer.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the light emission luminance, and is referred to as "the organic EL element and its forefront of industrial technology (November 30, 1998 The details are described in Chapter 2, Chapter 2, “Electrode Materials” (pages 123-166) of Vol. 2, No. 2, pp. 123-166, and the hole injection layer (anode buffer layer) and the electron injection layer (cathode buffer). One).
  • the anode buffer layer (hole injection layer) is described in detail in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like.
  • Copper phthalate One layer of phthalocyanine buffer typified by cyanine, one layer of oxide buffer typified by vanadium oxide, one layer of amorphous carbon buffer, polymer buffer using conductive polymer such as polyaline (emeraldine) or polythiophene And one layer.
  • cathode buffer electro injection layer
  • metal buffer represented by strontium ⁇ aluminum
  • alkali metal compound buffer represented by lithium fluoride
  • alkaline earth metal compound buffer represented by magnesium fluoride
  • aluminum oxide a buffer layer of the oxidizing substance to be used.
  • the thickness of the buffer layer is preferably in the range of 0.1 nm to 100 nm, although it depends on the desired material.
  • the blocking layer is provided as necessary in addition to the basic constituent layers of the organic compound thin film as described above.
  • the hole blocking layer is, in a broad sense, an electron transporting layer, a material that has a function of transporting electrons and has an extremely small ability to transport holes, and blocks holes while transporting electrons. This can improve the probability of recombination between electrons and holes.
  • an electron blocking layer is a hole transporting layer in a broad sense, and is a material having a very small ability to transport electrons while having a function of transporting holes. Obstruction By stopping, the recombination probability of electrons and holes can be improved.
  • the hole transport layer is made of a material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the injection layer can be formed by applying a thin film to the above-mentioned material by a known method such as a vacuum evaporation method, a spin coating method, a casting method, an ink jet method, and an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the injection layer may have a single-layer structure in which one or more of the above-mentioned materials are used.
  • the group VIII metal complex of the present invention is preferably used as a luminescent dopant, but other known luminescent hosts and luminescent dopants may be used in combination.
  • Examples of the known light-emitting host that may be used in combination include an electron transporting material and a hole transporting material described below as preferable examples thereof, and when applied to a blue or white light-emitting element, a display device, and a lighting device.
  • the maximum fluorescence wavelength is preferably 415 nm or less, and the 0-0 band of phosphorescence is more preferably 450 nm or less.
  • This light emitting layer can be formed by forming the above compound by a known thin film forming method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method.
  • the thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 5 nm to 5 ⁇ m.
  • the light-emitting layer may have a single-layer structure in which one or two or more of these light-emitting materials are used, or may have a stacked structure including a plurality of layers having the same composition or different compositions.
  • this light-emitting layer is formed by dissolving the light-emitting material together with a binder such as resin in a solvent to form a solution, and then spinning the solution.
  • the thin film can be formed by a coating method or the like.
  • the thickness of the light emitting layer thus formed is usually in the range of 5 nm to 5 ⁇ m.
  • the hole transport layer is made of a material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer may be provided as a single layer or a plurality of layers.
  • the hole transporting material is not particularly limited. Any material can be selected from those commonly used as injection / transport materials and known materials used for the hole injection layer and the hole transport layer of the EL element.
  • the hole transporting material has a hole injection / transport and / or electron barrier property, and may be either an organic substance or an inorganic substance.
  • triazole derivatives oxazidazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, furylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives , Stilbene derivatives, silazane derivatives, aniline-based copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the hole-transporting material As the hole-transporting material, the above-mentioned materials can be used. It is preferable to use porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds. ,.
  • aromatic tertiary amylide and the styrylamine diary include N, N, N ', N'-tetraphenyl-4,4'-diaminophenol; N, N '—Diphenyl N, N'-bis (3-methylphenyl) — [1,1'-biphenyl] 4,4'diamine (TPD); 2,2-bis (4-zy p-tolylaminophenol ) Propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ', N'-tetra-p-tolyl 4,4'diaminobiphenyl; 1,1bis ( 4-G-p-tolylaminophenyl) 4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-g-p-tolylaminophenyl)
  • Pat. No. 5,061,569 which has two condensed aromatic rings in the molecule, for example, 4,4'bis [N-(1naphthyl) N phenylamino] Bi-Fuel (NPD), a 3-star burst type tri-fluoramine unit described in JP-A-4-308688 4,4 ', A "-tris [? ⁇ -(3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) and the like.
  • NPD 4,4'bis [N-(1naphthyl) N phenylamino] Bi-Fuel
  • MTDATA triphenylamine
  • a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain, can also be used.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material.
  • the hole transport material of the hole transport layer preferably has a fluorescence maximum wavelength of 415 nm or less when applied to a blue or white light emitting element, a display device, and a lighting device. More preferably, the 0-0 band power of the phosphorescent light is 50 nm or less.
  • the hole transport material is preferably a compound having a high Tg.
  • This hole transport layer is formed by thinning the above-mentioned hole transport material by a known method such as a vacuum evaporation method, a spin coating method, a casting method, an ink jet method, and an LB method. be able to.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the hole transport layer may have a single-layer structure made of one or more of the above materials.
  • the electron transport layer is a material having a function of transporting electrons.
  • an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • the Group VIII metal complex of the present invention for the hole blocking layer, but in addition to these, a known electron transporting material (also serving as a hole blocking material) may be used in combination. A little bit.
  • the electron transporting material also serving as a hole blocking material
  • the electron transporting material used for an electron transporting layer having a single layer and an electron transporting layer adjacent to the light emitting layer on the cathode side with respect to the light emitting layer includes the following.
  • the above materials are known.
  • the electron transporting layer may be any material that has been selected from conventionally known compounds as long as it has a function of transmitting electrons injected from the cathode to the light emitting layer. You can be there.
  • electron transport material examples include heterocyclic substituted fluorene derivatives, difluoroquinone derivatives, thiopyrandioxide derivatives, and naphthalene perylene.
  • examples include tetracarboxylic anhydride, carbodiimide, fluorenylidene methane derivative, anthraquinodimethane and anthrone derivative, oxaziazole derivative and the like.
  • a thiadiazole derivative in which an oxygen atom of the oxaziazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain, can also be used.
  • metal complexes of 8-quinolinol derivatives for example, tris (8-quinolinol) aluminum- (Alq), tris (5,7-dichrolic-8-quinolinol) aluminum, tris (5,7-dibromo
  • Metal complexes that replace Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine, or those whose terminals are substituted with an alkyl group ⁇ sulfonic acid group or the like can be preferably used as the electron transporting material.
  • the distyryl virazine derivative exemplified as the material of the light emitting layer can be used as the electron transporting material, and like the hole injection layer and the hole transporting layer, n-type Si, n-type SiC, etc.
  • Inorganic semiconductors can also be used as electron transport materials.
  • the fluorescent maximum wavelength is preferably 415 nm or less.
  • the zero band force is 50 nm or less.
  • the compound used for the electron transport layer a compound having a high Tg is preferable.
  • the electron transporting layer is formed by thinning the electron transporting material by a known method such as a vacuum evaporation method, a spin coating method, a casting method, an inkjet method, and an LB method. Can.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the electron transport layer may have a single-layer structure made of one or more of the above materials.
  • the substrate for the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is not particularly limited as long as it is transparent. And a light-transmitting resin film.
  • Particularly preferred V is a resin film that can provide flexibility to the organic EL device.
  • Examples of the resin film include, but are not particularly limited to, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, senorelose diacetate, senorelostriacetate, senorelose acetate butyrate, and senolle.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, senorelose diacetate, senorelostriacetate, senorelose acetate butyrate, and senolle.
  • Cellulose esters such as Loose acetate propionate, Senolerose acetate phthalate, Senolerose nitrate or derivatives thereof, polychlorinated bilidene, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly Methylpentene, polyetherketone, polyimide, polyethersulfone, polysulfones, polyetherketoneimide, polya De, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name: manufactured by JSR Corporation) or Abel (trade name: manufactured by Mitsui Chemicals, Inc.)!
  • Examples include norbornene (or cycloolefin) resin, organic-inorganic hybrid resin, and the like.
  • Examples of the organic-inorganic hybrid resin include those obtained by combining an inorganic polymer (for example, silica, alumina, titer, zirconia, and the like) obtained by an organic resin-norgel reaction.
  • An inorganic or organic coating or a hybrid coating of both may be formed on the surface of the resin film.
  • the coating include a silica layer formed by a sol-gel method, and an organic layer formed by coating a polymer (for example, an organic material film having a polymerizable group is post-treated by means such as ultraviolet irradiation or heating).
  • Metal oxide, metal nitride forming metal oxide film and metal nitride film examples include metal oxides such as silicon oxide, titanium oxide, and aluminum oxide; metal nitrides such as silicon nitride; and metal oxynitrides such as silicon oxynitride and titanium oxynitride.
  • the water vapor permeability of the resin film having an inorganic or organic film or a hybrid film of both formed on the surface is preferably a high noria film of 0.01 gZm 2 'dayatm or less. ,.
  • the external extraction efficiency of light emission of the organic EL device of the present invention at room temperature is preferably 1% or more, more preferably 2% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element Z The number of electrons flowing to the organic EL element X 100.
  • a hue improvement filter such as a color filter may be used in combination.
  • a film having a roughened surface (such as an anti-glare film) may be used in combination to reduce light emission unevenness.
  • organic EL elements When used as a display device, there are at least two types of organic EL elements having different emission maximum wavelengths, but a preferred example of manufacturing an organic EL element will be described.
  • a desired electrode material for example, a thin film as a material for an anode is formed on an appropriate substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably lOnm-200 nm.
  • a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably lOnm-200 nm.
  • Examples of the method for forming a thin film of the organic compound thin film include a spin coating method, a casting method, an ink jet method, a vapor deposition method, and a printing method as described above.
  • the vacuum evaporation method or the spin coating method is particularly preferred in terms of, for example, the fact that the formation of a film is difficult. Further, a different film forming method may be applied to each layer.
  • the deposition conditions may vary due to kinds of materials used, generally boat temperature 50- 450 ° C, vacuum degree of 10- 6 Pa- 10- 2 Pa, deposition rate 0 Olnm—50nmZ seconds, substrate temperature It is desirable to select a temperature within a range of 50 ° C to 300 ° C and a film thickness of 0.1 nm to 5 ⁇ m.
  • a thin film that also acts as a material for the cathode is formed thereon by a method such as evaporation or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 5 Onm-200 nm.
  • a desired organic EL device can be obtained by forming and providing a cathode. In the production of this organic EL device, it is preferable to produce from the hole injection layer to the cathode consistently by one evacuation, but it is not tough to take it out and apply a different film forming method. At that time, consideration must be given to performing the work in a dry inert gas atmosphere.
  • a shadow mask is provided only when a light emitting layer is formed, and a film can be formed on one surface by an evaporation method, a casting method, a spin coating method, an inkjet method, a printing method, or the like.
  • the method is not particularly limited, but is preferably an evaporation method, an inkjet method, or a printing method.
  • a pattern Jung using a shadow mask is preferable.
  • the production order can be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be manufactured in this order.
  • the display device of the present invention can be used as a display device, a display, and various light emission light sources.
  • full-color display is possible by using three types of organic EL elements emitting blue, red and green light.
  • Examples of the display device and display include a television, a personal computer, a mono device, an AV device, a character broadcast display, and an information display in a car.
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • Luminescent light sources include home lighting, car interior lighting, backlights for watches and LCDs, and billboard advertising Illumination devices such as a light source of a traffic light, a light source of an optical storage medium, a light source of an electrophotographic copier, a light source of an optical communication processor, and a light source of an optical sensor, but are not limited thereto.
  • the organic EL device according to the present invention may be used as an organic EL device having a resonator structure.
  • the intended use of the organic EL device having such a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like.
  • the present invention is not limited to these. In addition, it can be used for the above applications by causing laser oscillation.
  • the organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device of a type for projecting an image, and a type of a device for directly recognizing a still image or a moving image. It may be used as a display device (display).
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more kinds of the organic EL elements of the present invention having different emission colors.
  • FIG. 1 is a schematic diagram showing an example of a display device configured with an organic EL element.
  • FIG. 2 is a schematic view of a display such as a mobile phone for displaying image information by light emission of an organic EL element.
  • the display 1 also has a display unit A having a plurality of pixels and a control unit B for performing image scanning of the display unit A based on image information.
  • the control unit B is electrically connected to the display unit A, sends a scan signal and an image data signal to each of the plurality of pixels based on image information from the outside, and controls the pixels for each scan line by the scan signal. , Sequentially emit light according to the image data signal, perform image scanning, and display image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A has a wiring portion including a plurality of scanning lines 5 and data lines 6, and a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • the figure shows a case where the light power emitted by the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 of the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at orthogonal positions ( Details are not shown).
  • the pixel 3 When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6, and emits light in accordance with the received image data.
  • the pixel 3 By properly arranging pixels in the red, green, and blue light emission regions on the same substrate, full color display is possible.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full-color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 for a plurality of pixels and juxtaposing them on the same substrate.
  • an image data signal is applied to the drain of the switching transistor 11 via the data line 6 in the control section B.
  • a scanning signal is applied to the gate of the switching transistor 11 via the control unit B scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of star 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the driving of the driving transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7, a source connected to the electrode of the organic EL element 10, and an organic EL element connected from the power supply line 7 according to the potential of the image data signal applied to the gate. Element 10 is supplied with current.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied.
  • the organic EL element 10 continues to emit light until the light is emitted.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a driving transistor 12 as active elements for each of the organic EL elements 10 of each of the plurality of pixels.
  • the element 10 emits light.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-valued image data signal having a plurality of gradation potentials, or a predetermined light emission amount by a binary image data signal. No, it's a talent! /.
  • the potential of the capacitor 13 may be maintained until the next scan signal is applied, or may be discharged immediately before the next scan signal is applied.
  • the present invention is not limited to the active matrix method described above, but may be a passive matrix light emission drive in which an organic EL element emits light in accordance with a data signal only when a scanning signal is scanned.
  • FIG. 4 is a schematic diagram of a display device using a noisy matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a grid pattern facing each other with the pixel 3 interposed therebetween.
  • the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
  • the manufacturing cost can be reduced because an active element is connected to the pixel 3.
  • the organic EL material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device. Simultaneous emission of multiple luminescent colors by multiple luminescent materials White light emission is obtained by mixing colors. As a combination of a plurality of emission colors, a combination of three emission maximum wavelengths of the three primary colors of blue, green, and blue may be used, or a combination of complementary colors such as blue and yellow, and blue-green and orange may be used. It may contain two emission maximum wavelengths.
  • a combination of a plurality of light-emitting materials for obtaining a plurality of luminescent colors includes a combination of a plurality of materials emitting a plurality of phosphorescent or fluorescent lights, and a combination of a luminescent material emitting a fluorescent or phosphorescent light and a luminescent material.
  • Any combination of a dye material that emits light as excitation light may be used, but in the white organic EL device according to the present invention, it is only necessary to mix and combine a plurality of light emitting dopants!
  • the light emitting layer or the hole transport layer is provided with a mask only at the time of forming the electron transport layer or the like, and may be simply arranged by separately applying the mask.
  • an electrode film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an inkjet method, a printing method, or the like, and the productivity is also improved.
  • the element itself emits white light, unlike a white organic EL device in which light-emitting elements of a plurality of colors are arranged in parallel in an array.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the platinum complex according to the present invention may be adjusted to a wavelength range corresponding to CF (color filter) characteristics. Also, whitening may be performed by selecting and combining arbitrary ones from known light emitting materials.
  • the white light-emitting organic EL element of the present invention can be used as a kind of lamp such as home lighting, vehicle interior lighting, and exposure light as various light-emitting light sources and lighting devices, as well as the display device and display. It is also useful for display devices such as backlights of liquid crystal display devices.
  • a backlight such as a clock, a signboard advertisement, a traffic light, a light source such as an optical storage medium, a light source of an electronic photocopier, a light source of an optical communication processor, a light source of an optical sensor, and a display device are required.
  • a wide range of applications such as general household electric appliances.
  • Substrate with 150 nm ITO deposited on glass as anode (NH-Techno Glass: NA-45) After the patterning, the transparent support substrate provided with the ITO transparent electrode was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, and washed with UV ozone for 5 minutes.
  • the transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while five tantalum-made resistance boats were coated with ⁇ -NPD, CBP, Ir-12, BCP, and Alq, respectively. Entering
  • lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and they were attached to a second vacuum tank of a vacuum evaporation apparatus.
  • the heating boat containing the BCP was energized and heated to provide a hole blocking layer having a thickness of lOnm at a deposition rate of 0.1-0.2n mZ seconds.
  • the heating boat containing Alq was energized and heated to provide a hole blocking layer having a thickness of lOnm at a deposition rate of 0.1-0.2n mZ seconds.
  • the heating boat containing Alq was energized and heated to provide a hole blocking layer having a thickness of lOnm at a deposition rate of 0.1-0.2n mZ seconds.
  • Alq Alq
  • An electron transport layer having a thickness of 40 nm was provided at a deposition rate of 0.1-0.2 nmZ seconds by applying a current and heating.
  • barium oxide 105 which is a water trapping agent, is made of a high purity barium oxide powder manufactured by Aldrich Co., Ltd. by using a fluororesin semi-permeable membrane with adhesive (Microtex S-NTF80 31Q manufactured by Nitto Denko). What was pasted on the sealing can 104 was prepared and used in advance. The sealing can was bonded to the organic EL element using an ultraviolet curable adhesive 107, and irradiated with an ultraviolet lamp to bond the two together to produce a sealing element.
  • an ultraviolet curable adhesive 107 is an ultraviolet curable adhesive
  • reference numeral 101 denotes a glass substrate provided with a transparent electrode
  • 102 denotes an organic EL layer composed of a hole injection Z transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and the like
  • 103 denotes a cathode.
  • An organic EL element OLED1-2-141 was produced in the same manner as in the production of the organic EL element OLED1-1 except that the emission dopant was changed as shown in Table 1. (How to make 0LED1-42, 43)
  • OLED1-1 In the fabrication of OLED1-1, the emission host was changed from CBP to AZ1, and the emission dopant was changed.
  • Organic EL devices 1-42 and 43 were produced in the same manner as in OLED1-1, except that the metal complex of the present invention (indicated by compound No. in the table) was used.
  • OLED1-1 was prepared in the same manner as OLED1-1, except that the light-emitting host was changed from CBP to CDBP and the light-emitting dopant was the metal complex of the present invention (indicated by compound No. in the table). EL devices 1-44 to 47 were produced.
  • the obtained organic EL device OLED1-1-147 was evaluated as follows.
  • the organic EL element OLED1- 1- 1 47 room temperature (about 23- 25 ° C), 2. the 5MAZcm 2 constant-performs lighting by conditions, measuring the lighting start immediately after the emission luminance (L) [cdZm 2] As a result, the external extraction quantum efficiency (r?) was calculated.
  • the emission luminance was measured using the CS-10 00 (manufactured by Minolta) was used.
  • the external extraction quantum efficiency was a relative value when the organic EL element OLED1-1 was set to 100.
  • the organic EL element OLED1-1- 1 47, 2. performs continuous lighting by constant current conditions 5mAZcm 2, the time required to becomes half of the initial luminance (tau
  • the light emission lifetime was represented by a relative value when the organic EL element OLED1-1 was set to 100.
  • the CIE chromaticity was measured using CS-1000 (manufactured by Minolta). ⁇ was determined according to the following equation.
  • the external extraction quantum efficiency was a relative value when the organic EL element OLED1-1 was set to 100.
  • OLED1 45 _30 125 164 0,23 The present invention
  • the organic EL element of the present invention has a higher luminous efficiency and a longer luminous life than the comparative organic EL element.
  • the emission colors of the organic EL devices of the present invention were all green.
  • the organic EL element OLED 1-11 of Example 1 was used as a blue light emitting element. [0213] (Production of green light-emitting element)
  • the organic EL element OLED2-7 of Example 2 was used as a green light emitting element.
  • the red, green, and blue light-emitting organic EL elements were juxtaposed on the same substrate to produce an active matrix full-color display device having the form as shown in FIG. 1, and FIG. Only a schematic diagram of the display unit A of the display device is shown. That is, on the same substrate, a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of juxtaposed pixels 3 (pixels in a red region, pixels in a green region, pixels in a blue region, etc.)
  • the scanning line 5 and the plurality of data lines 6 of the wiring portion are made of conductive material, respectively, and the scanning line 5 and the data line 6 are orthogonal to each other in a grid and connected to the pixel 3 at orthogonal positions.
  • the plurality of pixels 3 are driven by an active matrix method including an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6, and light is emitted according to the received image data.
  • an active matrix method including an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6, and light is emitted according to the received image data.
  • a full-color display device was manufactured by appropriately arranging the red, green, and blue pixels.
  • the electrode of the transparent electrode substrate of Example 1 was patterned into 20 mm ⁇ 20 mm, and ⁇ -NPD was formed thereon as a hole injection / transport layer with a thickness of 25 nm as in Example 1, and further,
  • the heated boat containing CBP, the boat containing compound P-9 of the present invention, and the boat containing Ir 9 are energized independently of each other, and CBP, which is a luminescent host, and compound P-9, which is a luminescent dopant, and
  • the deposition rate of Ir 9 was adjusted so as to be 100: 5: 0.6, and the deposition was performed so as to have a thickness of 30 nm to provide a light emitting layer.
  • BCP was formed by lOnm to form a hole blocking layer.
  • Alq is deposited at 40nm
  • An electron transport layer was provided.
  • Example 2 a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron transport layer, and 0.5 nm of lithium fluoride and a cathode were formed as a cathode buffer layer.
  • a cathode buffer layer was formed by vapor deposition of aluminum with a thickness of 150 nm.
  • FIG. 6 shows a schematic diagram of a flat lamp.
  • Fig. 6 (a) shows a schematic plan view and Fig. 6 (b) shows a schematic cross-sectional view.
  • an organic EL element a lighting device, and a display device in which the emission wavelength is controlled, which exhibits high emission efficiency, and which has a long emission life.

Abstract

Disclosed is an organic electroluminescent device material which is characterized by containing a metal complex having a partial structure represented by the general formula (1) or the general formula (3) shown in the description. Also disclosed is an organic electroluminescent device which is characterized by containing such an organic electroluminescent device material and having high luminous efficiency and long emission life wherein the emission wavelength is controlled. Further disclosed are an illuminating device and a display which are characterized by using such an organic electroluminescent device.

Description

明 細 書  Specification
有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素子 Organic electroluminescent device, organic electroluminescent device
、表示装置及び照明装置 , Display device and lighting device
技術分野  Technical field
[0001] 本発明は、有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素 子、表示装置及び照明装置に関する。  The present invention relates to a material for an organic electroluminescent device, a device for an organic electroluminescent device, a display device, and a lighting device.
背景技術  Background art
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下、 ELDという)がある。 ELDの構成要素としては、無機エレクト口ルミネッセン ス素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子という)が挙げられる 。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきたが、発光素子 を駆動させるためには交流の高電圧が必要である。有機 EL素子は、発光する化合 物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を 注入して、再結合させることにより励起子 (エキシトン)を生成させ、このエキシトンが 失活する際の光の放出 (蛍光'燐光)を利用して発光する素子であり、数 V—数十 V 程度の電圧で発光が可能であり、さらに、 自己発光型であるために視野角に富み、 視認性が高ぐ薄膜型の完全固体素子であるために省スペース、携帯性等の観点か ら注目されている。  [0002] Conventionally, there is an electroluminescent display (hereinafter, referred to as ELD) as a light-emitting electronic display device. Examples of ELD components include an inorganic electroluminescent device and an organic electroluminescent device (hereinafter, referred to as an organic EL device). Inorganic electroluminescent devices have been used as flat light sources, but high voltage AC is required to drive the light emitting devices. An organic EL device has a structure in which a light-emitting layer containing a compound that emits light is sandwiched between a cathode and an anode. Electrons and holes are injected into the light-emitting layer and recombined to generate excitons (exciton). This is an element that emits light by using light emission (fluorescence 'phosphorescence) when this exciton is deactivated. It can emit light at a voltage of several volts to several tens of volts. Because of this, it is a thin-film type solid-state device that has a wide viewing angle and high visibility, and is attracting attention from the viewpoint of space saving and portability.
[0003] し力しながら、今後の実用化に向けた有機 EL素子においては、さらに低消費電力 で効率よく高輝度に発光する有機 EL素子の開発が望まれている。  [0003] However, in organic EL devices for practical use in the future, there is a demand for the development of an organic EL device that emits light with high efficiency and low power consumption.
[0004] 特許第 3093796号明細書では、スチルベン誘導体、ジスチリルァリーレン誘導体 またはトリススチリルァリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上 、素子の長寿命化を達成している。  [0004] In the specification of Japanese Patent No. 3093796, a stilbene derivative, a distyrylarylene derivative or a tris styrylarylene derivative is doped with a small amount of a phosphor to achieve an improvement in light emission luminance and a long life of the device. .
[0005] また、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これに微量の蛍 光体をドープした有機発光層を有する素子 (例えば、特開昭 63— 264692号公報)、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これにキナクリドン系色 素をドープした有機発光層を有する素子 (例えば、特開平 3— 255190号公報)等が 知られている。 [0005] Further, an element having an organic light-emitting layer obtained by using an 8-hydroxyquinoline aluminum complex as a host conjugate and adding a small amount of a phosphor thereto (for example, JP-A-63-264692), A device having an organic light emitting layer in which a quinoline aluminum complex is used as a host conjugate and doped with a quinacridone dye (for example, JP-A-3-255190), etc. Are known.
[0006] 以上のように、励起一重項力 の発光を用いる場合、一重項励起子と三重項励起 子の生成比が 1 : 3であるため発光性励起種の生成確率が 25%であり、光の取り出し 効率が約 20%であるため、外部取り出し量子効率( r? ext)の限界は 5%とされている  [0006] As described above, when light emission of excited singlet force is used, the generation ratio of luminescent excited species is 25% because the generation ratio of singlet exciton to triplet exciton is 1: 3, Since the light extraction efficiency is about 20%, the limit of the external extraction quantum efficiency (r? Ext) is 5%.
[0007] ところが、プリンストン大より励起三重項力もの燐光発光を用いる有機 EL素子の報 告(M. A. Baldo et al. , nature, 395卷、 151— 154ページ(1998年))力 れて 以来、室温で燐光を示す材料の研究が活発になってきている。 [0007] However, reports of organic EL devices that use phosphorescence with triplet powers excited by Princeton University (MA Baldo et al., Nature, vol. 395, pp. 151-154 (1998)). Research on materials that exhibit phosphorescence has become active.
[0008] 例えば M. A. Baldo et al. , nature, 403卷、 17号、 750— 753ページ(2000 年)、また米国特許第 6, 097, 147号明細書等にも開示されている。 [0008] For example, it is disclosed in M. A. Baldo et al., Nature, Vol. 403, No. 17, pp. 750-753 (2000), and in US Pat. No. 6,097,147.
[0009] 励起三重項を使用すると、内部量子効率の上限が 100%となるため、励起一重項 の場合に比べて原理的に発光効率力 倍となり、冷陰極管とほぼ同等の性能が得ら れる可能性があることから照明用途としても注目されている。 [0009] When the excited triplet is used, the upper limit of the internal quantum efficiency is 100%, so that the luminous efficiency is twice as high as that of the excited singlet, and performance almost equivalent to that of a cold cathode tube is not obtained. Because of the possibility that it may be used, it is attracting attention as a lighting application.
[0010] 例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123卷, 4304ページ(2[0010] For example, S. Lamansky et al., J. Am. Chem. Soc., Vol. 123, p. 4304 (2
001年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合 成検討されている。 001) and the like, many compounds have been studied for synthesis centering on heavy metal complexes such as iridium complexes.
[0011] また、前述の M. A. Baldo et al. , nature, 403卷, 17号, 750— 753ページ(2 000年)においては、ドーパントとして、トリス(2—フエ-ルビリジン)イリジウムを用いた 検討がされている。  [0011] Further, in the aforementioned MA Baldo et al., Nature, Vol. 403, No. 17, pp. 750-753 (2000), a study using tris (2-phenylpyridine) iridium as a dopant was conducted. Have been.
[0012] その他、 M. E. Tompson等は、 The 10th International Workshop on In organic and Organic Electroluminescence (EL ' 00、浜松)【こお ヽて、ド ~~ノヽ ントとして L Ir (acac)例えば(ppy) Ir (acac)を、また、 Moon— Jae Youn. 0g、 Tet  [0012] In addition, ME Tompson et al., The 10th International Workshop on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu) [Kyoto, L Ir (acac) such as (ppy) Ir ( acac) and Moon—Jae Youn. 0g, Tet
2 2  twenty two
suo Tsutsui等は、やはり、 The 10th International Workshop on Inorga nic and Organic Electroluminescence (EL, 00、浜松)【こお ヽて、ドーノ ント として、トリス(2— (p—トリル)ピリジン)イリジウム (Ir (ptpy) ) , トリス (ベンゾ [h]キノリン  suo Tsutsui et al. also reported that The 10th International Workshop on Inorganic and Organic Electroluminescence (EL, 00, Hamamatsu) [Kyoto, as a donor, tris (2- (p-tolyl) pyridine) iridium (Ir (ptpy )), Tris (benzo [h] quinoline
3  Three
)イリジウム (Ir (bzq) )等を用いた検討を行って 、る(なおこれらの金属錯体は一般  Investigations using iridium (Ir (bzq)) and the like were conducted.
3  Three
にオルトメタル化イリジウム錯体と呼ばれて 、る。)。  It is called an orthometalated iridium complex. ).
[0013] また、前記、 S. Lamanskv et al. , J. Am. Chem. Soc. , 123卷, 4304ぺー ジ(2001年)等にぉ 、ても、各種イリジウム錯体を用いて素子化する試みがされて!/ヽ る。 [0013] In addition, the aforementioned S. Lamanskv et al., J. Am. Chem. Soc., 123, 4304- For example, Ji (2001) and others have attempted to make devices using various iridium complexes!
[0014] また、高い発光効率を得るために、 The 10th International Workshop on Inorganic and Organic Electroluminescence (EL ' 00、浜松)では、 Ikai等 はホール輸送性の化合物を燐光性ィ匕合物のホストとして用いている。また、 M. E. T ompson等は、各種電子輸送性材料を燐光性ィ匕合物のホストとして、これらに新規な イリジウム錯体をドープして用いて!/、る。  [0014] In order to obtain high luminous efficiency, in the 10th International Workshop on Inorganic and Organic Electroluminescence (EL'00, Hamamatsu), Ikai et al. Used a compound having a hole transporting property as a host of a phosphorescent compound. ing. ME Tompson et al. Use various electron-transporting materials as hosts for phosphorescent compounds and doping them with a novel iridium complex! /.
[0015] 中心金属をイリジウムの代わりに白金としたオルトメタルイ匕錯体も注目されて 、る。こ の種の錯体に関しては、配位子に特徴を持たせた例が多数知られている(例えば、 特許文献 1一 5及び非特許文献 1参照。 ) 0 [0015] An ortho-metal-i-dani complex in which the central metal is platinum instead of iridium has also attracted attention. Regarding this type of complex, examples which gave characterized ligands are known a number (e.g., Patent Document 1 one 5 and Non-Patent Reference 1.) 0
[0016] 何れの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光が燐 光に由来することから、従来の素子に比べ大幅に改良されるものである力 素子の発 光寿命にっ 、ては従来の素子よりも低 、と 、う問題点があった。  [0016] In any case, the light emission luminance and the light emission efficiency of the light emitting element are greatly improved as compared with the conventional element because the emitted light is derived from phosphorescence. There is a problem that the light lifetime is shorter than that of the conventional device.
[0017] また、りん光性の高効率の発光材料としては色純度のよい青色発光材料が求めら れているにも関わらず、発光波長の短波化が難しく実用に耐えうる性能を十分に達 成できていないのが現状である。波長の短波化に関しては、これまでフエニルピリジ ンにフッ素原子、トリフルォロメチル基、シァノ基等の電子吸引基を置換基として導入 すること、配位子としてピコリン酸やビラザボール系の配位子を導入することが知られ ている(例えば、特許文献 6— 10及び非特許文献 1一 4参照。)が、これらの配位子 では発光材料の発光波長が短波化して青色を達成し、高効率の素子を達成できる 一方、素子の発光寿命は大幅に劣化するため、そのトレードオフの改善が求められ ていた。  [0017] Further, although a blue light-emitting material with good color purity is required as a phosphorescent high-efficiency light-emitting material, it is difficult to shorten the wavelength of the light-emission wavelength, and a performance sufficient for practical use has been achieved. At present, it has not been achieved. In order to shorten the wavelength, electron-withdrawing groups such as fluorine, trifluoromethyl and cyano have been introduced as substituents into phenylpyridin, and picolinic acid and virazazol-based ligands have been used as ligands. Although it is known to be introduced (for example, see Patent Documents 6 to 10 and Non-patent Documents 1 to 14), in these ligands, the emission wavelength of the light-emitting material is shortened to achieve blue, and high efficiency is achieved. On the other hand, while the device of this type can be achieved, the light emission lifetime of the device is greatly deteriorated, so that an improvement in the trade-off has been required.
特許文献 1:特開 2002— 332291号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-332291
特許文献 2:特開 2002-332292号公報  Patent Document 2: JP-A-2002-332292
特許文献 3:特開 2002-338588号公報  Patent Document 3: JP-A-2002-338588
特許文献 4:特開 2002-226495号公報  Patent Document 4: JP 2002-226495 A
特許文献 5:特開 2002— 234894号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2002-234894
特許文献 6 :国際公開第 02Z15645号パンフレット 特許文献 7:特開 2003— 123982号公報 Patent Document 6: International Publication No. 02Z15645 pamphlet Patent Document 7: Japanese Patent Application Laid-Open No. 2003-123982
特許文献 8:特開 2002—117978号公報  Patent Document 8: Japanese Patent Application Laid-Open No. 2002-117978
特許文献 9:特開 2003— 146996号公報  Patent Document 9: Japanese Patent Application Laid-Open No. 2003-146996
特許文献 10:国際公開第 04Z016711号パンフレット  Patent Document 10: International Publication No. 04Z016711 pamphlet
非特許文献 1 : Inorganic Chemistry,第 41卷,第 12号, 3055— 3066ページ(2 002年)  Non-Patent Document 1: Inorganic Chemistry, Vol. 41, No. 12, pp. 3055-3066 (2002)
非特許文献 2 :Aplied Physics Letters,第 79卷, 2082ページ(2001年) 非特許文献 3 :Aplied Physics Letters,第 83卷, 3818ページ(2003年) 非特許文献 4 : New Journal of Chemistry,第 26卷, 1171ページ(2002年) 発明の開示  Non-patent document 2: Applied Physics Letters, Vol. 79, page 2082 (2001) Non-patent document 3: Applied Physics Letters, Vol. 83, page 3818 (2003) Non-patent document 4: New Journal of Chemistry, 26 Vol., P. 1171 (2002) Disclosure of the Invention
[0018] 本発明の目的は、発光波長が制御され、高い発光効率を示し、かつ、発光寿命の 長い有機 EL素子、照明装置及び表示装置を提供することにある。  [0018] An object of the present invention is to provide an organic EL element, a lighting device, and a display device in which the emission wavelength is controlled, high luminous efficiency is exhibited, and luminescence life is long.
[0019] 上記目的を達成するための、本発明の一つの態様は、下記一般式(1)で表される 部分構造を有する金属錯体を含有することを特徴とする有機エレクト口ルミネッセンス 素子材料にある。  [0019] One embodiment of the present invention for achieving the above object is an organic electroluminescent device material comprising a metal complex having a partial structure represented by the following general formula (1). is there.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は有機 EL素子力 構成される表示装置の一例を示した模式図である。  FIG. 1 is a schematic diagram showing an example of a display device configured with an organic EL element.
[図 2]図 2は表示部 Aの模式図である。  FIG. 2 is a schematic diagram of a display unit A.
[図 3]図 3は画素を構成する駆動回路の等価回路図である。  FIG. 3 is an equivalent circuit diagram of a drive circuit forming a pixel.
[図 4]図 4はパッシブマトリクス方式による表示装置の模式図である。  FIG. 4 is a schematic view of a display device using a passive matrix system.
[図 5]図 5は有機 EL素子 OLED1— 1の封止構造の概略模式図である。  FIG. 5 is a schematic diagram of a sealing structure of an organic EL element OLED1-1.
[図 6]図 6は有機 EL素子を具備してなる照明装置の模式図である。  FIG. 6 is a schematic view of a lighting device including an organic EL element.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の上記課題は、以下の構成により達成される。  [0021] The above object of the present invention is achieved by the following configurations.
(1)下記一般式 (1)で表される部分構造を有する金属錯体を含有することを特徴と する有機エレクト口ルミネッセンス素子材料。 —般式 (1)
Figure imgf000006_0001
(1) An organic electroluminescent device material comprising a metal complex having a partial structure represented by the following general formula (1). —General formula (1)
Figure imgf000006_0001
[0022] (式中、 A、 B、 Cは水素原子または置換基を表し、その少なくとも二つは下記一般式 (Wherein A, B, and C represent a hydrogen atom or a substituent, at least two of which are represented by the following general formula:
(2)で表され、互いに異なっていてもよい。 R、 R、 R、 R、 Rは水素原子または置  It is represented by (2) and may be different from each other. R, R, R, R, R are hydrogen atoms or
1 2 3 4 5  1 2 3 4 5
換基を表す。 Mは元素周期表における第 8族、第 9族または第 10族の元素を表す。 )  Represents a substituent. M represents an element of Group 8, 9 or 10 in the periodic table. )
一般式(2) -Xa-(Ra) na  General formula (2) -Xa- (Ra) na
(式中、 Raは置換基を表す。 Xaは酸素原子、硫黄原子または窒素原子を表す。 na は 1または 2を表す。 )  (In the formula, Ra represents a substituent. Xa represents an oxygen atom, a sulfur atom, or a nitrogen atom. Na represents 1 or 2.)
(2) 前記一般式(2)において、 Raがアルキル基であることを特徴とする前記(1)に 記載の有機エレクト口ルミネッセンス素子材料。  (2) The organic electroluminescent device material according to (1), wherein in the general formula (2), Ra is an alkyl group.
(3) 一般式 (3)で表される部分構造を有する金属錯体を含有することを特徴とする 有機エレクト口ルミネッセンス素子材料。 一般式 (3)
Figure imgf000006_0002
(3) An organic electroluminescent device material comprising a metal complex having a partial structure represented by the general formula (3). General formula (3)
Figure imgf000006_0002
[0023] (式中、 Rb、 Rc、 Rdは置換基を表し、 Xb、 Xc、 Xdは酸素原子、硫黄原子または窒 素原子を表す。 nb、 nc、 ndは 1または 2を表す。 R、 R、 R、 R、 R は水素原子また (Wherein, Rb, Rc, and Rd represent substituents, and Xb, Xc, and Xd represent an oxygen atom, a sulfur atom, or a nitrogen atom. Represents an elementary atom. nb, nc, and nd represent 1 or 2. R, R, R, R, R are hydrogen atoms or
6 7 8 9 10  6 7 8 9 10
は置換基を表す。 Mは元素周期表における第 8族、第 9族または第 10族の元素を Represents a substituent. M represents an element in group 8, 9 or 10 of the periodic table
2  2
表す。) Represent. )
(4) 前記一般式(3)にお 、て、 Rb、 Rc、 Rdがアルキル基であることを特徴とする前 記(3)に記載の有機エレクト口ルミネッセンス素子材料。  (4) The organic electroluminescent device material according to the above (3), wherein in the general formula (3), Rb, Rc, and Rd are alkyl groups.
(5) 前記一般式(3)にお 、て、 Xdが窒素原子で、 Xb、 Xcが酸素原子であることを 特徴とする前記(3)または (4)に記載の有機エレクト口ルミネッセンス素子材料。 (5) In the general formula (3), Xd is a nitrogen atom, and Xb and Xc are oxygen atoms. The organic electroluminescent device material according to the above (3) or (4), .
(6) 前記一般式(3)において、 Xdが硫黄原子であり、 Xb、 Xcが酸素原子であるこ とを特徴とする前記(3)または (4)に記載の有機エレクト口ルミネッセンス素子材料。(6) The organic electroluminescent device material according to (3) or (4), wherein in the general formula (3), Xd is a sulfur atom, and Xb and Xc are oxygen atoms.
(7) 前記一般式(3)にお 、て、 Xb、 Xc、 Xdが酸素原子であることを特徴とする前記 (3)または (4)に記載の有機エレクト口ルミネッセンス素子材料。 (7) The organic electroluminescent device material according to (3) or (4), wherein, in the general formula (3), Xb, Xc, and Xd are oxygen atoms.
(8) M力イリジウムまたは白金であることを特徴とする前記  (8) M-forced iridium or platinum
(1)または(2)に記載の有機エレクト口ルミネッセンス素子材料。  The organic electroluminescent device material according to (1) or (2).
(9) M力イリジウムまたは白金であることを特徴とする前記  (9) M-forced iridium or platinum.
2  2
(3)一 (7)の 、ずれか 1項に記載の有機エレクト口ルミネッセンス素子材料。  (3) The organic electroluminescent device material according to (1), wherein
(10) 前記(1)一(9)のいずれか 1項に記載の有機エレクト口ルミネッセンス素子材 料を含有することを特徴とする有機エレクト口ルミネッセンス素子。  (10) An organic electroluminescence device comprising the organic electroluminescence device according to any one of (1) to (9).
(11) 構成層として発光層を有し、該発光層が前記(1)一(9)のいずれ力 1項に記 載の有機エレクト口ルミネッセンス素子材料を含有することを特徴とする有機エレクト ロノレミネッセンス素子。  (11) An organic electroluminescent device having a light-emitting layer as a constituent layer, wherein the light-emitting layer contains the organic electroluminescent device material described in (1) above. A luminescence element.
(12) 構成層として正孔阻止層を有し、該正孔阻止層が前記(1)一(9)のいずれか (12) A hole blocking layer as a constituent layer, wherein the hole blocking layer is any one of the above (1)-(9).
1項に記載の有機エレクト口ルミネッセンス素子材料を含有することを特徴とする有機 エレクトロノレミネッセンス素子。 An organic electroluminescence device comprising the organic electroluminescent device material according to claim 1.
(13) 前記( 10)—( 12)の 、ずれか 1項に記載の有機エレクトルミネッセンス素子を 有することを特徴とする表示装置。  (13) A display device comprising the organic electroluminescent element according to any one of (10) to (12).
(14) 前記(10)—(12)のいずれか 1項に記載の有機エレクトルミネッセンス素子を 有することを特徴とする照明装置。  (14) A lighting device comprising the organic electroluminescent element according to any one of (10) to (12).
以下、本発明について詳細に説明する。 [0025] フ -ルビリジンの特定の箇所にある電子的性質をもった置換基を導入した、前記 一般式 (1)または (3)で表される部分構造を有する金属錯体を含有する有機 EL素 子材料を含む有機 EL素子により、従来の青色用の金属錯体、特に電子吸引基によ つてのみ発光波長を短波側に制御してきた有機 EL素子材料を用いて作製された有 機 EL素子の問題点であった発光寿命が大幅に改善されることが見出された。 Hereinafter, the present invention will be described in detail. An organic EL element containing a metal complex having a partial structure represented by the above general formula (1) or (3), in which a substituent having an electronic property at a specific position of furubiridin is introduced. Problems with organic EL devices fabricated using organic EL devices containing organic materials, using conventional metal complexes for blue, especially organic EL device materials whose emission wavelength is controlled to shorter wavelengths only by electron-withdrawing groups It was found that the light emission lifetime, which was a point, was greatly improved.
[0026] 以下、本発明に係る各構成要素の詳細について、順次説明する。 Hereinafter, details of each component according to the present invention will be sequentially described.
[0027] この検討にあたっては、下記の構造を例にして分子軌道計算による発光波長のシミ ユレーシヨンにより、フエ-ルビリジンへの置換基効果と発光波長の変動を詳細に検[0027] In this study, the effect of the substituent on phenylpyridine and the fluctuation of the emission wavelength were examined in detail by simulation of the emission wavelength by molecular orbital calculation using the following structure as an example.
B、Jした。 B, J.
Figure imgf000008_0001
Figure imgf000008_0001
[0028] その結果、波長の短波化,長波化に有効な置換位置は、 4位と 3p— 6p位であるこ とが見出された。特に、短波化に関しては、置換基が電子供与性基の場合、 4位、 4p 位、 6p位への置換基導入が有効である一方、置換基が電子吸引性基の場合、 3p位 、 5p位への置換基導入が有効であることが分力つた。また、 3、 5、 6位は置換基の電 子的性質によらず長波化することが分力つた。さらに、置換基の電子的性質に関して 相補的であった。 [0028] As a result, it was found that effective substitution positions for shortening and increasing the wavelength of the wavelength were the 4th and 3p-6p positions. In particular, regarding the shortening of the wavelength, when the substituent is an electron donating group, it is effective to introduce the substituent at the 4th, 4p, and 6p positions, whereas when the substituent is an electron withdrawing group, the 3p, 5p The introduction of substituents at the position was effective. In addition, it was a component of the fact that the 3, 5, and 6-positions had longer wavelengths regardless of the electronic properties of the substituents. Furthermore, they were complementary with respect to the electronic properties of the substituents.
[0029] この結果を受けて、本発明者等は発光波長を青色まで短波化するための手段とし て、上記指針に基づき検討を進め合成検討したところ、シミュレーション結果をほぼ 満足する発光波長の制御ができることを見出した。  [0029] In response to this result, the present inventors conducted studies based on the above guidelines as a means for shortening the emission wavelength to blue, and performed synthesis studies. As a result, control of the emission wavelength that almost satisfied the simulation results was performed. I can do it.
[0030] し力しながら、電子吸引性基を 3p位、 5p位へ導入した場合、青色の色純度改良に 有効である一方、素子の寿命が著しく劣化する傾向があることが分力つた。一方、電 子供与性基を 4位、 4p位、 6p位へ導入した場合、高効率ィ匕は実現されたが、置換基 の電子供与性が σ性に由来するか π性に由来するかで異なること分力つた。 [0031] メチル基のような σ性の強!、電子供与性基が置換基である場合、寿命の改善効果 は小さい一方、アルコキシ基、ァリールォキシ基のような π性の強い電子供与性基が 置換基である場合、寿命の改善効果が著しく大きくなつた。さらに、アルキルチオ基、 ァリールチオ基のような置換基は電子供与性は小さ 、が、寿命の改善効果が著しく 大きくなつた。これは、アルキルチオ基、ァリールチオ基の置換基に存在するローン ペアのために、これらの置換基の電子的性質が π性の電子供与基と同等の機能を 有するためと推定して 、る。このように π性の強!、電子供与基が置換基として分子内 に少なくとも二つ存在することにより、 3ρ位、 5ρ位に電子吸引基を導入した場合でも, 発光素子の寿命が改善できることがわ力つた。 When the electron-withdrawing group was introduced at the 3p-position and the 5p-position while applying force, it was effective to improve the color purity of blue, but the life of the device tended to be significantly deteriorated. On the other hand, when an electron-donating group was introduced at the 4-, 4-, or 6-position, high efficiency was achieved, but whether the electron-donating property of the substituent was derived from σ- or π- In the different things I tried. When a strong σ property such as a methyl group and an electron-donating group are substituents, the effect of improving the lifetime is small, while an electron-donating group having a strong π property such as an alkoxy group and an aryloxy group is used. In the case of a substituent, the effect of improving the life was significantly increased. Furthermore, substituents such as alkylthio and arylthio groups have a small electron donating property, but the effect of improving the life is significantly increased. This is presumed to be because the electronic properties of these substituents have a function equivalent to that of a π-electron donating group due to the lawn pair present in the alkylthio group and arylthio group substituents. The strong π property and the presence of at least two electron-donating groups in the molecule as a substituent can improve the lifetime of the light-emitting element even when an electron-withdrawing group is introduced at the 3ρ-position or 5ρ-position. I was helping.
[0032] このような知見に基づき、本発明の請求項 1一 9で表される分子構造にたどり着き、 本発明を完成するに至った。  [0032] Based on such knowledge, the present inventors have arrived at the molecular structure represented by claim 119 of the present invention, and have completed the present invention.
[0033] 発光波長の計算には、 Gaussian 98 (Revision A. 11. 4, M. J. Frisch, G.  For the calculation of the emission wavelength, Gaussian 98 (Revision A. 11.4, M. J. Frisch, G.
W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheesema n, V. G. Zakrzewski, J. A. Montgomery, Jr. , R. E. Stratmann, J. C. Bura nt, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain , O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, じ . Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ay ala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K . Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Pisko rz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill , B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Hea d— Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc. , Pittsburgh PA, 2002. )を用いた。  W. Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheesema n, VG Zakrzewski, JA Montgomery, Jr., RE Stratmann, JC Burant, S. Dapprich, JM Millam, AD Daniels, KN Kudin, MC Strain, O Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, J. Pomelli, C. Adamo, S. Clifford, J. Ochterski, GA Petersson, PY Ay ala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, JJ Dannenberg, D. K. Malick, AD Rabuck, K. Raghavachari, JB Foresman, J. Cioslowski, JV Ortiz, AG Baboul, BB Stefanov, G. Liu, A. Liashenko, P. Pisko rz, I. Komaromi, R. Gomperts, RL Martin, DJ Fox, T. Keith, MA Al-Laham, CY Peng, A. Nanayakkara, M. Challacombe, PMW Gill, B. Johnson, W. Chen, MW Wong, JL Andres, C. Gonzalez, M. Head-Gordon, ES Replogle, and JA Pople, Gaussian, Inc., Pittsburgh PA, 2002.).
[0034] 計算は B3LYP法を用いて構造最適化したのち、 TD— DFT計算によりりん光波長 計算を行な 、発光波長を求めた。  In the calculation, after optimizing the structure using the B3LYP method, the phosphorescence wavelength was calculated by TD-DFT calculation, and the emission wavelength was obtained.
[0035] また、前記金属錯体の含有層としては、発光層及び Zまたは正孔阻止層が好ましく 、また、発光層に含有する場合は、発光層中の発光ドーパントとして用いることにより 、本発明の目的である、有機 EL素子の発光寿命の長寿命化を達成することができる [0035] The layer containing the metal complex is preferably a light emitting layer and a Z or hole blocking layer. In addition, when it is contained in the light emitting layer, by using it as a light emitting dopant in the light emitting layer, it is possible to achieve an object of the present invention, that is, a longer light emitting life of the organic EL element.
[0036] 《金属錯体》 [0036] << Metal complex >>
本発明の有機 EL素子材料に係る金属錯体について説明する。  The metal complex according to the organic EL device material of the present invention will be described.
[0037] 《一般式 (1)で表される金属錯体》  [0037] << Metal Complex Represented by General Formula (1) >>
本発明に係る、前記一般式(1)で表される金属錯体について説明する。  The metal complex represented by the general formula (1) according to the present invention will be described.
[0038] 一般式(1)において、 A、 B、 Cは水素原子または置換基で表される力 その少なく とも二つは前記一般式(2)で表され、互いに異なっていてもよい。 A、 B、 Cで表され る置換基としては特に制限はないが、好ましくはアルキル基 (例えば、メチル基、イソ プロピル基、 tert ブチル基等)、シクロアルキル基 (例えば、シクロへキシル基、シク 口ペンチル基、シクロプロピル基等)、ァルケ-ル基 (例えば、ビュル基、ァリル基、 2— ブテニル基等)、アルキ-ル基 (例えば、ェチュル基、プロピニル基等)、ァリール基( 例えば、フエニル基、 2 ナフチル基、 9 フエナンスリル基、 2 ピリジル基、 2 チェ- ル基、 3—フリル基、メシチル基、カルバゾリル基、フルォレニル基等)、ヘテロ環基(N モルホリル基、 2—テトラヒドロフラ-ル基等)、アミノ基 (例えば、ジメチルァミノ基、ジ フエニルァミノ基等)、ハロゲン原子 (例えば、フッ素原子、塩素原子、臭素原子、沃 素原子等)、アルコキシ基 (例えば、メトキシ基、エトキシ基、イソプロポキシ基等)、ァ リールォキシ基 (例えば、フエノキシ基、パーフルオロフエノキシ基等)、アルキルチオ 基(例えば、メチルチオ基、ェチルチオ基、プロピルチオ基、ペンチルチオ基、へキ シルチオ基、ォクチルチオ基、ドデシルチオ基等)、ァリールチオ基 (例えば、フエ二 ルチオ基、ナフチルチオ基等)、シァノ基、フッ化炭化水素基 (例えば、トリフルォロメ チル基、ペンタフルォロフエ-ル基等)、シリル基 (例えば、トリフエ-ルシリル基、トリメ チルシリル基等)が挙げられる。この中で特に好ましいものは、アミノ基、アルコキシ基 、ァリールォキシ基、アルキルチオ基、ァリールチオ基、ァリール基である。最も好ま しくは、アミノ基、アルコキシ基、アルキルチオ基である。  [0038] In the general formula (1), A, B, and C each represent a force represented by a hydrogen atom or a substituent. At least two of them are represented by the general formula (2) and may be different from each other. The substituents represented by A, B, and C are not particularly limited, but are preferably alkyl groups (for example, methyl group, isopropyl group, tert-butyl group, etc.), cycloalkyl groups (for example, cyclohexyl group, Cyclopentyl group, cyclopropyl group, etc.), alkenyl group (eg, butyl group, aryl group, 2-butenyl group, etc.), alkyl group (eg, ethur group, propynyl group, etc.), aryl group (eg, Phenyl, 2-naphthyl, 9-phenanthryl, 2-pyridyl, 2-chel, 3-furyl, mesityl, carbazolyl, fluorenyl, etc., heterocyclic groups (N-morpholyl, 2-tetrahydrofuran- Group), amino group (eg, dimethylamino group, diphenylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkoxy (E.g., methoxy, ethoxy, isopropoxy, etc.), aryloxy (e.g., phenoxy, perfluorophenoxy, etc.), alkylthio (e.g., methylthio, ethylthio, propylthio, pentylthio) Group, hexylthio group, octylthio group, dodecylthio group, etc.), arylthio group (for example, phenylthio group, naphthylthio group, etc.), cyano group, fluorinated hydrocarbon group (for example, trifluoromethyl group, pentafluorophore group). A silyl group (eg, a triphenylsilyl group, a trimethylsilyl group, etc.). Of these, particularly preferred are an amino group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group and an aryl group. Most preferred are an amino group, an alkoxy group and an alkylthio group.
[0039] 一般式(1)において、 R、 R、 R、 R、 Rは水素原子または置換基を表す。 R、 R In the general formula (1), R, R, R, R, and R represent a hydrogen atom or a substituent. R, R
1 2 3 4 5 1 2 1 2 3 4 5 1 2
、 R、 R、 Rで表される置換基としては、前記 A、 B、 Cで表される置換基として説明 したものと同義である。 R、 Rで表される置換基としては、電子吸引基 (本発明では、 , R, R, and the substituents represented by R are described as the substituents represented by A, B, and C above. Synonymous with As the substituent represented by R or R, an electron withdrawing group (in the present invention,
1 2  1 2
σ ρが 0を超える基を表す)でもよ 、。  represents a group in which σ ρ exceeds 0).
[0040] 《ハメットの σ ρ値》 [0040] << Hammett's σ ρ value >>
本発明に係るハメットの σ ρ値とは、ハメットの置換基定数 σ ρを指す。ノ、メットの σ ρ の値は、 Hammett等によって安息香酸ェチルの加水分解に及ぼす置換基の電子 的効果力も求められた置換基定数であり、『薬物の構造活性相関』 (南江堂: 1979年 )、『SuDstituent Constants for Correlation Analysis m chemistry an d biology』(C. Hansch and A. Leo, John Wiley & Sons, New York, 197 9年)等に記載の基を引用することが出来る。以下に σ ρが 0. 10以上の電子吸引基 の例を示す。 The Hammett's σ ρ value according to the present invention refers to Hammett's substituent constant σ ρ. The value of σ ρ of Noh and Met is a substituent constant for which the electronic effect of the substituent on the hydrolysis of ethyl benzoate was determined by Hammett et al., “Structure-activity relationship of drugs” (Nan-Edo: 1979) And "SuDstituent Constants for Correlation Analysis chemistry and biology" (C. Hansch and A. Leo, John Wiley & Sons, New York, 1979) and the like can be cited. The following is an example of an electron-withdrawing group having σ ρ of 0.10 or more.
《σ ρ力 . 10以上の電子吸引性基》  《Σ ρ force. 10 or more electron-withdrawing groups》
ここで、 σ ρ力^). 10以上の電子吸引性基としては、例えば、 Β (ΟΗ) (0. 12)、  Here, σ ρ force ^). Examples of electron-withdrawing groups of 10 or more include, for example, Β (ΟΗ) (0.12),
2  2
臭素原子 (0. 23)、塩素原子 (0. 23)、沃素原子 (0. 18)、一 CBr (- 0. 29) ) , -C  Bromine (0.23), chlorine (0.23), iodine (0.18), CBr (-0.29)), -C
3  Three
C1 (0. 33)、一 CF (0. 54)、一 CN (0. 66)、一 CHO (0. 42)、一 COOH (0. 45) , C C1 (0.33), one CF (0.54), one CN (0.66), one CHO (0.42), one COOH (0.45), C
3 3 3 3
ONH (0. 36)、— CH SO CF (0. 31)、— COCH (0. 45)、 3—バレニル基(0. 1 ONH (0.36), — CH SO CF (0.31), — COCH (0.45), 3-valenyl group (0.1
2 2 2 3 3 2 2 2 3 3
9)、— CF (CF ) (0. 53)、 -CO C H (0. 45)、— CF CF CF CF (0. 52)、一 C  9), — CF (CF) (0.53), -CO C H (0.45), — CF CF CF CF (0.52), 1 C
3 2 2 2 5 2 2 2 3 6 3 2 2 2 5 2 2 2 3 6
F (0. 41)、 2—べンゾォキサゾリル基(0. 33)、 2—べンゾチアサゾリル基(0. 29)、—F (0.41), 2-benzoxazolyl group (0.33), 2-benzothiazazolyl group (0.29),-
5 Five
C = 0 (C H ) (0. 43)、— OCF (0. 35)、— OSO CH (0· 36)、—SO (NH ) (0.  C = 0 (C H) (0.43), — OCF (0.35), — OSO CH (0 · 36), — SO (NH) (0.
6 5 3 2 3 2 2 6 5 3 2 3 2 2
57)、 -SO CH (0. 72)、 -COCH CH (0. 48)、 -COCH (CH ) (0. 47)、—C 57), -SO CH (0.72), -COCH CH (0.48), -COCH (CH) (0.47), --C
2 3 2 3 3 2  2 3 2 3 3 2
OC (CH ) (0. 32)等が挙げられる力 本発明はこれらに限定されない。  Forces such as OC (CH) (0.32) The present invention is not limited to these.
3 3  3 3
[0041] 一般式(1)において、 Mは元素周期表における第 8族、第 9族または第 10族の元 素を表す。第 8族、第 9族または第 10族の元素としては、好ましくはルテニウム、ロジ ゥム、パラジウム、オスミウム、イリジウム、白金であり、最も好ましくはイリジウム、白金 である。  In the general formula (1), M represents an element belonging to Group 8, 9 or 10 in the periodic table. The Group 8, 9 or 10 element is preferably ruthenium, rhodium, palladium, osmium, iridium and platinum, most preferably iridium and platinum.
[0042] 一般式(2)にお 、て、 Raは置換基を表す。 Raで表される置換基としては、前記 A、 B、 Cで表される置換基として説明したものと同義である。この中で特に好ましいもの は、アルキル基である。  [0042] In the general formula (2), Ra represents a substituent. The substituent represented by Ra has the same meaning as that described for the substituent represented by A, B, or C. Of these, an alkyl group is particularly preferred.
[0043] 一般式(1)において、 Xaは酸素原子、硫黄原子または窒素原子を表す。 naは 1ま たは 2を表す。 In the general formula (1), Xa represents an oxygen atom, a sulfur atom or a nitrogen atom. na is 1 Or 2
[0044] 一般式(1)において、 A、 B、 Cの三つが一般式(2)で表される場合が最も好ましい  In the general formula (1), the case where three of A, B, and C are represented by the general formula (2) is most preferable.
[0045] 一般式(1)において、 A、 B、 Cの二つが一般式(2)で表される場合、最も好ましく は一般式 (2)が 4位と 6p位に置換される場合、好ましくは一般式 (2)が 4位と 4p位に 置換される場合である。 In the general formula (1), when two of A, B, and C are represented by the general formula (2), most preferably, when the general formula (2) is substituted at the 4-position and the 6p-position, Is the case where the general formula (2) is substituted at the 4th and 4p positions.
[0046] 《一般式 (3)で表される金属錯体》  << Metal Complex Represented by General Formula (3) >>
本発明に係る、前記一般式 (3)で表される金属錯体につ 、て説明する。  The metal complex represented by the general formula (3) according to the present invention will be described.
[0047] 一般式(3)にお!/、て、 Rb、 Rc、 Rdは置換基を表し、 Rb、 Rc、 Rdで表される置換基 としては、前記一般式(1)の A、 B、 Cで表される置換基として説明したものと同義であ る。 Rb、 Rc、 Rdの置換基としてはアルキル基であることが好ましい。  In the general formula (3), Rb, Rc, and Rd represent substituents, and the substituents represented by Rb, Rc, and Rd include A and B in the general formula (1). Has the same meanings as those described for the substituent represented by C. The substituent for Rb, Rc and Rd is preferably an alkyl group.
[0048] 一般式(3)にお 、て、 Xb、 Xc、 Xdは酸素原子、硫黄原子または窒素原子を表す。  In the general formula (3), Xb, Xc and Xd represent an oxygen atom, a sulfur atom or a nitrogen atom.
Xb、 Xc、 Xdの原子の組み合わせとしては、(l)Xdが窒素原子で、 Xb、 Xcが酸素原 子、(2) Xdが硫黄原子であり、 Xb、 Xcが酸素原子、または(3)Xb、 Xc、 Xdが酸素 原子であることが好ましい。  The combination of the atoms Xb, Xc and Xd is (l) Xd is a nitrogen atom, Xb and Xc are oxygen atoms, (2) Xd is a sulfur atom, and Xb and Xc are oxygen atoms or (3) Xb, Xc and Xd are preferably oxygen atoms.
[0049] 一般式(3)において、 nb、 nc、 ndは 1または 2を表す。  In the general formula (3), nb, nc, and nd represent 1 or 2.
[0050] 一般式(3)にお!/、て、 R、 R、 R、 R、 R は水素原子または置換基を表す。 R、 R  [0050] In the general formula (3),!, R, R, R, R, and R represent a hydrogen atom or a substituent. R, R
6 7 8 9 10 6 6 7 8 9 10 6
、 R、 R、 R で表される置換基としては、前記一般式(1)の A、 B、 Cで表される置, R, R, and R represent the substituents represented by A, B, and C in the general formula (1).
7 8 9 10 7 8 9 10
換基として説明したものと同義である。  It has the same meaning as described for the substituent.
[0051] 一般式(3)にお 、て、 Mは元素周期表における第 8族、第 9族または第 10族の元 [0051] In the general formula (3), M is an element of Group 8, 9 or 10 in the periodic table.
2  2
素を表す。第 8族、第 9族または第 10族の元素としては、好ましくはルテニウム、ロジ ゥム、パラジウム、オスミウム、イリジウム、白金であり、最も好ましくはイリジウム、白金 である。  Represents prime. The Group 8, 9 or 10 element is preferably ruthenium, rhodium, palladium, osmium, iridium and platinum, most preferably iridium and platinum.
[0052] 以下に、一般式(1)、一般式 (3)で表される具体的化合物例を挙げるが、本発明は 、これらに限定されない。
Figure imgf000013_0001
The following are specific examples of the compounds represented by the general formulas (1) and (3), but the present invention is not limited thereto.
Figure imgf000013_0001
Figure imgf000014_0001
一 J
Figure imgf000014_0001
One J
Figure imgf000014_0002
Figure imgf000014_0002
[seoo] [seoo]
C176.60/S00Z OAV C176.60 / S00Z OAV
Figure imgf000015_0001
Figure imgf000015_0001
[ 00]  [00]
C176.60/S00Z OAV C176.60 / S00Z OAV
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0002
Figure imgf000017_0001
Figure imgf000017_0001
[9900] 60/S00Z OAV [9900] 60 / S00Z OAV
£89^00/S00ZdT/X3d 91· εΐ?6ん £ 89 ^ 00 / S00ZdT / X3d 91
Figure imgf000018_0001
Figure imgf000018_0001
[zeoo]  [zeoo]
C176.60/S00Z OAV C176.60 / S00Z OAV
Figure imgf000019_0001
Figure imgf000019_0001
[8S00]  [8S00]
C176.60/S00Z OAV
Figure imgf000020_0001
C176.60 / S00Z OAV
Figure imgf000020_0001
f9-I  f9-I
Figure imgf000020_0002
Figure imgf000020_0002
39-1  39-1
Figure imgf000020_0003
Figure imgf000020_0003
簡 SOOZdf/ェ:) d 61· Simple SOOZdf / e :) d 61
Figure imgf000021_0001
Figure imgf000021_0001
[0900]  [0900]
£89簡 SOOZdf/ェ:) d 03 C176.60/S00Z OAV
Figure imgf000022_0001
£ 89 simple SOOZdf / e :) d 03 C176.60 / S00Z OAV
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000025_0001
900] f/ェ:) d z C176.60/S00Z OAV 900] f / e :) dz C176.60 / S00Z OAV
Figure imgf000026_0001
Figure imgf000026_0001
[S900] [S900]
93 C176.60/S00Z OAV
Figure imgf000027_0001
Figure imgf000028_0001
93 C176.60 / S00Z OAV
Figure imgf000027_0001
Figure imgf000028_0001
900] 900]
LZ C176.60/S00Z OAV
Figure imgf000029_0001
LZ C176.60 / S00Z OAV
Figure imgf000029_0001
SOOZdf/ェ:) d 83 C176.60/S00Z OAV SOOZdf / e :) d 83 C176.60 / S00Z OAV
Figure imgf000030_0001
Figure imgf000030_0001
Figure imgf000030_0002
Figure imgf000030_0002
[6900]  [6900]
C176.60/S00Z OAV
Figure imgf000031_0001
C176.60 / S00Z OAV
Figure imgf000031_0001
[ΟΖΟΟ] soozdf/ェ:) d οε ει?6.6θ/δοοζ OAV [ΟΖΟΟ] soozdf / e :) d οε ει? 6.6θ / δοοζ OAV
Figure imgf000032_0001
Figure imgf000032_0001
oz-d [ 00]
Figure imgf000032_0002
Figure imgf000033_0001
/vD/ O ε89さ osooifcId s6/-60sooiAV εε
Figure imgf000034_0001
Figure imgf000034_0002
oz-d [00]
Figure imgf000032_0002
Figure imgf000033_0001
/ vD / O ε89 sa osooifcId s6 / -60sooiAV εε
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000035_0001
Figure imgf000035_0001
Figure imgf000035_0002
Figure imgf000035_0002
Figure imgf000035_0003
Figure imgf000035_0003
[0077] これらのィ匕合物は、例えば、 Organic Leter, voll3, No. 16, p2579— 2581 (2 [0077] These diagonal products are described, for example, in Organic Leter, voll3, No. 16, p2579—2581 (2
001)、 Inorganic Chemistry, vol30, No. 8, pl685— 1687 (1991) , J. Am. Chem. Soc. , voll23, p4304 (2001) , Inorganic Chemistry, vol41, No. 1 2, pl3056— 3066 (2002) , New Jounal of Chemistry, vol26, pi 171 (20001), Inorganic Chemistry, vol30, No. 8, pl685—1687 (1991), J. Am. Chem. Soc., Voll23, p4304 (2001), Inorganic Chemistry, vol41, No. 12, pl3056—3066 (2002) ), New Jounal of Chemistry, vol26, pi 171 (20
02)、国際公開第 04Z045001号パンフレット、 Journal of the Organic Che mistry,第 67卷、第 1号、 238から 241ページ(2002年)さらにこれらの文献中に記 載の参考文献等の方法を適用することにより合成できる。 [0078] 本発明にお ヽて、上記有機 EL素子材料を含有する有機 EL素子とは、有機 EL素 子材料が有機 EL素子を構成する ヽずれかの有機層を形成するか、または有機層に 含有された有機 EL素子を表す。有機 EL素子材料は、好ましくは発光層または正孔 阻止層に含有される。 02), International Publication No. 04Z045001, pamphlet of Journal of the Organic Chemistry, Vol. 67, No. 1, pp. 238 to 241 (2002), and apply the methods of references described in these documents. Can be synthesized. [0078] In the present invention, the organic EL element containing the above-mentioned organic EL element material means that the organic EL element material forms any of the organic layers constituting the organic EL element, or Represents the organic EL element contained in The organic EL device material is preferably contained in the light emitting layer or the hole blocking layer.
[0079] (発光ドーパント)  (Emission dopant)
次に発光ドーパント(単にドーパントとも 、う)と発光ホスト(単にホストとも 、う)につ いて説明する  Next, the luminescent dopant (simply referred to as a dopant) and the luminescent host (simply referred to as a host) will be described.
有機 EL素子を構成する層において、その層が 2種以上の有機化合物で構成され るとき、主成分をホスト、その他の成分をドーパントといい、本発明に係る、一般式(1) で表される化合物は、発光ドーパントとして用いられる。  In a layer constituting an organic EL device, when the layer is composed of two or more kinds of organic compounds, a main component is called a host and other components are called a dopant, and represented by the general formula (1) according to the present invention. Compounds are used as luminescent dopants.
[0080] その場合、主成分であるホストイ匕合物に対するドーパントの混合比は、好ましくは 0[0080] In that case, the mixing ratio of the dopant to the host compound is preferably 0.
. 1一 30質量%未満である。 Less than 30% by mass.
[0081] ただし、発光ドーパントは複数種の化合物を混合して用いてもよぐ混合する相手 は構造を異にする第 8族、第 9族または第 10族金属錯体でも、その他のリン光性ドー パントでも、蛍光性ドーパントでもよい。 [0081] However, the light emitting dopant may be a mixture of a plurality of types of compounds. The mixture may be made of a group 8, 9, or 10 metal complex having a different structure, or other phosphorescent compounds. It may be a dopant or a fluorescent dopant.
[0082] これら本発明の化合物と併用してもよいドーパントについて述べる。 [0082] The dopants that may be used in combination with the compound of the present invention will be described.
[0083] 発光ドーパントは、大きく分けて、蛍光を発光する蛍光性ドーパントとリン光を発光 するリン光性ドーパントの 2種類がある。 [0083] Light-emitting dopants are roughly classified into two types: fluorescent dopants that emit fluorescence and phosphorescent dopants that emit phosphorescence.
[0084] 前者 (蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シ了ニ ン系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素[0084] Representative examples of the former (fluorescent dopant) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squarium dyes, and oxobenzanthracene dyes
、フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチ ルベン系色素、ポリチォフェン系色素、または希土類錯体系蛍光体、その他公知の 蛍光性化合物等が挙げられる。 And fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stylbene dyes, polythiophene dyes, rare earth complex fluorescent materials, and other known fluorescent compounds.
[0085] 後者 (リン光性ドーパント)の代表例としては、好ましくは元素周期表で第 8族、第 9 族または第 10族の金属を含有する錯体系化合物であり、さらに好ましくは、イリジウム 化合物、オスミウム化合物、パラジウム化合物または白金化合物(白金錯体系化合物[0085] Representative examples of the latter (phosphorescent dopant) are preferably complex compounds containing a metal of Group 8, 9 or 10 in the periodic table of the elements, and more preferably an iridium compound. , Osmium compounds, palladium compounds or platinum compounds (platinum complex compounds
)であり、中でも最も好ましいのはイリジウム化合物である。 ), And among them, the most preferred is an iridium compound.
[0086] 具体的には以下の特許公報に記載されている化合物である。 WOOO/70655^-,特開 2002— 280178号、同 2001— 181616号、同 2002— 280 179号、同 2001— 181617号、同 2002— 280180号、同 2001— 247859号、同 20 02— 299060号、同 2001— 313178号、同 2002— 302671号、同 2001— 345183 号、同 2002— 324679、 WO02Z15645号、同 2002— 332291号、同 2002— 504 84号、同 2002— 332292号、同 2002—83684、特表 2002— 540572号、同 2002 —117978号、同 2002— 338588号、同 2002— 170684号、同 2002— 352960号、 同 WO01Z93642号、同 2002— 50483号、同 2002— 100476号、同 2002— 1736 74号、同 2002— 359082号、同 2002— 175884号、同 2002— 363552号、同 200 2— 184582号、同 2003— 7469号、特表 2002— 525808号、特開 2003— 7471号、 特表 2002— 525833号、特開 2003— 31366号、同 2002— 226495号、同 2002— 2 34894号、同 2002— 235076号、同 2002— 241751号、同 2001— 319779号、同 2001— 319780号、同 2002— 62824号、同 2002— 100474号、同 2002— 203679 号、同 2002— 343572号、同 2002— 203678等。 [0086] Specific examples are compounds described in the following patent publications. WOOO / 70655 ^-, JP-A-2002-280178, 2001-181616, 2002-280179, 2001-181617, 2002-280180, 2001-247859, 2002-299060 2001-313178, 2002-302671, 2001-345183, 2002-324679, WO02Z15645, 2002-332291, 2002-50484, 2002-332292, 2002-83684 2002-540572, 2002-117978, 2002-338588, 2002-170684, 2002-352960, WO01Z93642, 2002-50483, 2002-100476, 2002 — 1736 74, 2002–359082, 2002–175884, 2002–363552, 2002–184582, 2003–7469, Table 2002–525808, JP 2003–7471, Table 2002-525833, JP-A-2003-31366, 2002-226495, 2002-234894, 2002-235076, 2002-241751, 2001-319779, 2001-319780 2002-62824, same 2002-100474, 2002-203679, 2002-343572, 2002-203678, etc.
その具体例の一部を下記に示す。 Some of the specific examples are shown below.
Figure imgf000038_0001
Figure imgf000038_0001
9一 J| S-JI  9-I J | S-JI
Figure imgf000038_0002
Figure imgf000038_0002
£89簡 SOOZdf/ェ:) d ζε CMん 60/S00Z OAV £ 89 SOOZdf / e :) d ζε CM 60 / S00Z OAV
Figure imgf000039_0001
Figure imgf000039_0002
Figure imgf000039_0001
Figure imgf000039_0002
Figure imgf000039_0003
Figure imgf000039_0004
Figure imgf000039_0003
Figure imgf000039_0004
£89簡 SOOZdf/ェ:) d [0089] £ 89 SOOZdf / e :) d [0089]
Figure imgf000040_0001
Figure imgf000040_0001
[0090] (発光ホスト) [0090] (Light-emitting host)
発光ホスト(単にホストとも!、う)とは、 2種以上の化合物で構成される発光層中にて 混合比 (質量)の最も多い化合物のことを意味し、それ以外の化合物については「ド 一パント化合物(単に、ドーパントともいう)」という。例えば、発光層をィ匕合物 A、化合 物 Bという 2種で構成し、その混合比が A:B= 10 :90であれば化合物 Aがドーパント 化合物であり、化合物 Bがホストイ匕合物である。さらに、発光層をィ匕合物 A、化合物 B 、化合物 Cの 3種力 構成し、その混合比が八^:じ=5:10:85でぁれば、化合物 A 、化合物 Bがドーパント化合物であり、化合物 Cがホストイ匕合物である。 A light-emitting host (also referred to simply as a host!) Means a compound having the highest mixing ratio (mass) in a light-emitting layer composed of two or more compounds, and the other compounds are referred to as “do”. One panto compound (also simply referred to as a dopant) ". For example, the light-emitting layer is composed of two kinds, compound A and compound B, and if the mixing ratio is A: B = 10: 90, compound A is a dopant compound, and compound B is a host compound. It is. Further, the light emitting layer is composed of three types of compound A, compound B, and compound C, and if the mixing ratio is 8: 1: 5 = 5: 10: 85, compound A , Compound B is a dopant compound, and compound C is a hostile conjugate.
[0091] 本発明に用いられる発光ホストとしては、併用される発光ドーパントのリン光 0— 0バ ンドよりも短波長なそれをもつ化合物が好ましぐ発光ドーパントにそのリン光 0— 0バ ンドが 480nm以下である青色の発光成分を含む化合物を用いる場合には、発光ホ ストとしてはリン光 0—0バンド力 50nm以下であることが好ましい。 [0091] As the luminescent host used in the present invention, a compound having a shorter wavelength than the phosphorescent 0-0 band of the luminescent dopant used in combination is preferred, and the luminescent dopant is preferably the phosphorescent 0-0 band. When a compound containing a blue light-emitting component having a wavelength of 480 nm or less is used, the emission host preferably has a phosphorescent 0-0 band power of 50 nm or less.
[0092] 本発明に用いられる発光ホストとしては、構造的には特に制限はないが、代表的に は力ルバゾール誘導体、トリアリールァミン誘導体、芳香族ボラン誘導体、含窒素複 素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレンィ匕合物等の基本骨 格を有し、かつ前記 0-0バンドが 450nm以下の化合物が好ま U、ィ匕合物として挙げ られる。 [0092] The luminescent host used in the present invention is not particularly limited in structure, but is typically a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing complex ring compound, or thiophene. A compound having a basic skeleton such as a derivative, a furan derivative, or an oligoarylene conjugate, and having the above-mentioned 0-0 band of 450 nm or less is preferable, and examples of the compound are U and conjugate.
[0093] また、本発明に用いられる発光ホストは低分子化合物でも、繰り返し単位をもつ高 分子化合物でもよぐビニル基やエポキシ基のような重合性基を有する低分子化合 物 (蒸着重合性発光ホスト)でもよ 、。  The luminescent host used in the present invention may be a low-molecular compound or a high-molecular compound having a repeating unit, and may be a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation-polymerizable luminescence). Host)
[0094] 発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化 を防ぎ、なおかつ高 Tg (ガラス転移温度)である化合物が好ま U、。  [0094] As the light-emitting host, a compound that has a hole-transporting ability and an electron-transporting ability, prevents a longer emission wavelength, and has a high Tg (glass transition temperature) is preferable.
[0095] 発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。  [0095] As specific examples of the light-emitting host, compounds described in the following documents are preferable.
特開 2001— 257076号、同 2002— 308855号、同 2001— 313179号、同 2002— 3 19491号、同 2001— 357977号、同 2002— 334786号、同 2002— 8860号、同 20 02— 334787号、同 2002— 15871号、同 2002— 334788号、同 2002— 43056号、 同 2002— 334789号、同 2002— 75645号、同 2002— 338579号、同 2002— 1054 45号、同 2002— 343568号、同 2002— 141173号、同 2002— 352957号、同 200 2— 203683号、同 2002— 363227号、同 2002— 231453号、同 2003— 3165号、 同 2002— 234888号、同 2003— 27048号、同 2002— 255934号、同 2002— 2608 61号、同 2002— 280183号、同 2002— 299060号、同 2002— 302516号、同 200 2— 305083号、同 2002— 305084号、同 2002— 308837号等。  JP 2001-257076, JP 2002-308855, JP 2001-313179, JP 2002-319491, JP 2001-357977, JP 2002-334786, JP 2002-8860, JP 2002-334787 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2003 2002–255934, 2002–260861, 2002–280183, 2002–299060, 2002–302516, 2002–305083, 2002–305084, and 2002–308837.
[0096] 本発明のホストイ匕合物として好まし 、ものの具体例を挙げる。 [0096] Preferable examples of the hostile conjugate of the present invention are given below.
Figure imgf000042_0001
Figure imgf000042_0001
Figure imgf000042_0002
Figure imgf000042_0002
£89簡 SOOZdf/ェ:) d VP C176.60/S00Z OAV
Figure imgf000043_0001
£ 89 SOOZdf / e :) d VP C176.60 / S00Z OAV
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000044_0001
£89簡 SOOZdf/ェ:) d C176.60/S00Z OAV £ 89 SOOZdf / e :) d C176.60 / S00Z OAV
Figure imgf000045_0001
Figure imgf000045_0001
次に、代表的な有機 EL素子の構成について述べる。  Next, the configuration of a typical organic EL device will be described.
[0102] 《有機 EL素子の構成層》  [0102] << Constituent layers of organic EL element >>
本発明の有機 EL素子の構成層につ 、て説明する。  The constituent layers of the organic EL device of the present invention will be described.
[0103] 本発明において、有機 EL素子の層構成の好ましい具体例を以下に示すが、本発 明はこれらに限定されない。 [0103] In the present invention, preferred specific examples of the layer structure of the organic EL device are shown below, but the present invention is not limited thereto.
(i)陽極 Z発光層 Z電子輸送層 Z陰極  (i) Anode Z Light-emitting layer Z Electron transport layer Z Cathode
(ii)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極  (ii) anode Z hole transport layer Z light emitting layer Z electron transport layer Z cathode
(iii)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極  (iii) anode Z hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode
(iv)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極  (iv) anode Z hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode buffer layer Z cathode
(v)陽極 Z陽極バッファ一層 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z 陰極バッファ一層 Z陰極  (v) anode Z anode buffer layer Z hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode buffer layer Z cathode
《陽極》  《Anode》
有機 EL素子における陽極としては、仕事関数の大きい (4eV以上)金属、合金、電 気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。こ のような電極物質の具体例としては Au等の金属、 Cul、インジウムチンォキシド (ITO ) , SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O ZnO)等 As the anode in the organic EL device, a material having a large work function (4 eV or more), such as a metal, an alloy, an electrically conductive compound, and a mixture thereof is preferably used. Specific examples of such an electrode material include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO. Also, IDIXO (In O ZnO) etc.
2 2 3 非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの電極物質 を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ一法で所 望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要としない場 合は(100 μ m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状の マスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透 過率を 10%より大きくすることが望ましぐまた、陽極としてのシート抵抗は数百 ΩΖ 口以下が好ましい。さらに膜厚は材料にもよる力 通常 10— 1000nm、好ましくは 10 一 200nmの範囲で選ばれる。 A material that is amorphous and can form a transparent conductive film may be used. The anode is made of these electrode materials A thin film is formed by a method such as evaporation or sputtering, and a pattern of a desired shape can be formed by a photolithography method, or when pattern accuracy is not required very much (about 100 μm or more) Alternatively, a pattern may be formed through a mask having a desired shape during the deposition or sputtering of the electrode material. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance of the anode is preferably several hundred Ω aperture or less. Further, the film thickness is selected within the range of usually 10-1000 nm, preferably 10-200 nm, depending on the material.
[0104] 《陰極》 [0104] 《Cathode》
一方、陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入性金属と称する )、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる 。このような電極物質の具体例としては、ナトリウム、ナトリウム カリウム合金、マグネ シゥム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミ -ゥム (Al O )混合物、インジウム、リチウム Zアルミニウム混合物、希土類金属等が  On the other hand, as the cathode, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material. Specific examples of such an electrode material include sodium, sodium-potassium alloy, magnesium, lithium, a mixture of magnesium and copper, a mixture of magnesium and silver, a mixture of magnesium and aluminum, a mixture of indium and magnesium, and a mixture of aluminum and aluminum. (Al 2 O 3) mixture, indium, lithium Z aluminum mixture, rare earth metal, etc.
2 3  twenty three
挙げられる。これらの中で、電子注入性及び酸ィ匕等に対する耐久性の点から、電子 注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物 、例えばマグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Ai o )混合物、リチウム  No. Among them, a mixture of an electron-injecting metal and a second metal that is a metal having a large work function and a stable work function, such as a magnesium Z-silver mixture, from the viewpoint of the electron-injecting property and the durability against oxidation and the like. , Magnesium Z aluminum mixture, Magnesium Z indium mixture, Aluminum Z oxidized aluminum (Aio) mixture, lithium
2 3 Zァ ルミ-ゥム混合物、アルミニウム等が好適である。陰極は、これらの電極物質を蒸着 やスパッタリング等の方法により、薄膜を形成させることにより作製することができる。 また、陰極としてのシート抵抗は数百 Ω Ζ口以下が好ましぐ膜厚は通常 lOnm— 1 000nm、好ましくは 50nm— 200nmの範囲で選ばれる。なお、発光を透過させるた め、有機 EL素子の陽極または陰極のいずれか一方力 透明または半透明であれば 発光輝度が向上し好都合である。  A 23 Z-aluminum mixture, aluminum and the like are preferred. The cathode can be manufactured by forming a thin film from these electrode substances by a method such as evaporation or sputtering. Further, the sheet resistance as the cathode is preferably several hundred Ω / square or less, and the preferred film thickness is usually selected in the range of lOnm-1000 nm, preferably 50 nm-200 nm. In order to transmit light, if either the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is advantageously improved.
[0105] 次に、本発明の有機 EL素子の構成層として用いられる、注入層、正孔輸送層、電 子輸送層等について説明する。  Next, an injection layer, a hole transport layer, an electron transport layer, and the like used as constituent layers of the organic EL device of the present invention will be described.
[0106] 《注入層》:電子注入層、正孔注入層  [0106] << Injection layer >>: electron injection layer, hole injection layer
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び、陰極と発光層または電子輸送層との間に存 在させてもよい。 The injection layer is provided as necessary, and has an electron injection layer and a hole injection layer. It may be present between the light emitting layer or the hole transporting layer and between the cathode and the light emitting layer or the electron transporting layer.
[0107] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123— 166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。  [0107] The injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the light emission luminance, and is referred to as "the organic EL element and its forefront of industrial technology (November 30, 1998 The details are described in Chapter 2, Chapter 2, “Electrode Materials” (pages 123-166) of Vol. 2, No. 2, pp. 123-166, and the hole injection layer (anode buffer layer) and the electron injection layer (cathode buffer). One).
[0108] 陽極バッファ一層(正孔注入層)は、特開平 9 45479号公報、同 9— 260062号公 報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フタ口 シァニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される酸 化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディン) やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる。  The anode buffer layer (hole injection layer) is described in detail in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. Copper phthalate One layer of phthalocyanine buffer typified by cyanine, one layer of oxide buffer typified by vanadium oxide, one layer of amorphous carbon buffer, polymer buffer using conductive polymer such as polyaline (emeraldine) or polythiophene And one layer.
[0109] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9— 17574号公 報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロンチウ ムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表されるアル カリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金属化 合物バッファ一層、酸ィ匕アルミニウムに代表される酸ィ匕物バッファ一層等が挙げられ る。 [0109] The details of one layer of the cathode buffer (electron injection layer) are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. One layer of metal buffer represented by strontium ゃ aluminum, one layer of alkali metal compound buffer represented by lithium fluoride, one layer of alkaline earth metal compound buffer represented by magnesium fluoride, represented by aluminum oxide And a buffer layer of the oxidizing substance to be used.
[0110] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるが、そ の膜厚は 0. lnm— lOOnmの範囲が好ましい。  The thickness of the buffer layer (injection layer) is preferably in the range of 0.1 nm to 100 nm, although it depends on the desired material.
[0111] 阻止層は、上記のごとぐ有機化合物薄膜の基本構成層の他に必要に応じて設け られるものである。例えば特開平 11— 204258号、同 11— 204359号、及び「有機 EL 素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ 'ティー ·エス社発行)」の 237頁 等に記載されて 、る正孔阻止(ホールブロック)層がある。 [0111] The blocking layer is provided as necessary in addition to the basic constituent layers of the organic compound thin film as described above. For example, JP-A Nos. 11-204258 and 11-204359, and pages 237 of "Organic EL Devices and Their Industrial Frontiers (November 30, 1998, published by NTS Co., Ltd.)" There is a hole blocking (hole blocking) layer.
[0112] 正孔阻止層とは広い意味では電子輸送層であり、電子を輸送する機能を有しつつ 正孔を輸送する能力が著しく小さい材料力 なり、電子を輸送しつつ正孔を阻止する ことで電子と正孔の再結合確率を向上させることができる。 [0112] The hole blocking layer is, in a broad sense, an electron transporting layer, a material that has a function of transporting electrons and has an extremely small ability to transport holes, and blocks holes while transporting electrons. This can improve the probability of recombination between electrons and holes.
[0113] 一方、電子阻止層とは広い意味では正孔輸送層であり、正孔を輸送する機能を有 しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電子を阻 止することで電子と正孔の再結合確率を向上させることができる。 [0113] On the other hand, an electron blocking layer is a hole transporting layer in a broad sense, and is a material having a very small ability to transport electrons while having a function of transporting holes. Obstruction By stopping, the recombination probability of electrons and holes can be improved.
[0114] 正孔輸送層とは正孔を輸送する機能を有する材料からなり、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。  [0114] The hole transport layer is made of a material having a function of transporting holes. In a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
[0115] この注入層は、上記材料を、例えば真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜ィ匕することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5— 5000nm程度である。こ の注入層は、上記材料の一種または二種以上力もなる一層構造であってもよい。  [0115] The injection layer can be formed by applying a thin film to the above-mentioned material by a known method such as a vacuum evaporation method, a spin coating method, a casting method, an ink jet method, and an LB method. The thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm. The injection layer may have a single-layer structure in which one or more of the above-mentioned materials are used.
[0116] 《発光層》  [0116] << Light-emitting layer >>
本発明においては、前記本発明の VIII族金属錯体を発光ドーパントに用いることが 好ましいが、これら以外にも公知の発光ホストや発光ドーパントを併用してもよい。  In the present invention, the group VIII metal complex of the present invention is preferably used as a luminescent dopant, but other known luminescent hosts and luminescent dopants may be used in combination.
[0117] 併用してもよい公知の発光ホストとしては、後述の電子輸送材料及び正孔輸送材 料もその好ましい一例として挙げられ、青色または白色の発光素子、表示装置及び 照明装置に適用する場合には、蛍光極大波長が 415nm以下であることが好ましぐ リン光の 0— 0バンドが 450nm以下であることがさらに好ましい。  [0117] Examples of the known light-emitting host that may be used in combination include an electron transporting material and a hole transporting material described below as preferable examples thereof, and when applied to a blue or white light-emitting element, a display device, and a lighting device. In addition, the maximum fluorescence wavelength is preferably 415 nm or less, and the 0-0 band of phosphorescence is more preferably 450 nm or less.
[0118] この発光層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、 LB 法等の公知の薄膜ィ匕法により製膜して形成することができる。発光層としての膜厚は 、特に制限はないが、通常は 5nm— 5 μ mの範囲で選ばれる。この発光層は、これら の発光材料一種または二種以上力もなる一層構造であってもよいし、あるいは、同一 組成または異種組成の複数層からなる積層構造であってもよい。  [0118] This light emitting layer can be formed by forming the above compound by a known thin film forming method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method. The thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 5 nm to 5 μm. The light-emitting layer may have a single-layer structure in which one or two or more of these light-emitting materials are used, or may have a stacked structure including a plurality of layers having the same composition or different compositions.
[0119] また、この発光層は、特開昭 57-51781号公報に記載されているように、榭脂等の 結着材と共に上記発光材料を溶剤に溶かして溶液としたのち、これをスピンコート法 等により薄膜ィ匕して形成することができる。このようにして形成された発光層の膜厚に ついては、前記の通り通常は 5nm— 5 μ mの範囲である。  [0119] Further, as described in JP-A-57-51781, this light-emitting layer is formed by dissolving the light-emitting material together with a binder such as resin in a solvent to form a solution, and then spinning the solution. The thin film can be formed by a coating method or the like. As described above, the thickness of the light emitting layer thus formed is usually in the range of 5 nm to 5 μm.
[0120] 《正孔輸送層》  [0120] << Hole transport layer >>
正孔輸送層とは正孔を輸送する機能を有する材料からなり、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける ことができる。  The hole transport layer is made of a material having a function of transporting holes. In a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer may be provided as a single layer or a plurality of layers.
[0121] 正孔輸送材料としては、特に制限はなぐ従来、光導伝材料において、正孔の電荷 注入輸送材料として慣用されて 、るものや EL素子の正孔注入層、正孔輸送層に使 用される公知のものの中から任意のものを選択して用いることができる。 [0121] The hole transporting material is not particularly limited. Any material can be selected from those commonly used as injection / transport materials and known materials used for the hole injection layer and the hole transport layer of the EL element.
[0122] 正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性の!/、ずれかを有するも のであり、有機物、無機物のいずれであってもよい。例えばトリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フ 二レンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また、導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。  [0122] The hole transporting material has a hole injection / transport and / or electron barrier property, and may be either an organic substance or an inorganic substance. For example, triazole derivatives, oxazidazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, furylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives , Stilbene derivatives, silazane derivatives, aniline-based copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
[0123] 正孔輸送材料としては、上記のものを使用することができる力 ポルフィリン化合物 、芳香族第三級ァミン化合物及びスチリルァミン化合物、特に芳香族第三級ァミン化 合物を用いることが好まし 、。  As the hole-transporting material, the above-mentioned materials can be used. It is preferable to use porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds, particularly aromatic tertiary amine compounds. ,.
[0124] 芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエ-ルー 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ルー N, N' - ビス(3 メチルフエ-ル)—〔1, 1' ービフエ-ル〕 4, 4' ージァミン(TPD) ; 2, 2—ビ ス(4ージー p—トリルァミノフエ-ル)プロパン; 1 , 1—ビス(4—ジー p—トリルァミノフエ-ル )シクロへキサン; N, N, N' , N' —テトラー p—トリル 4, 4' ージアミノビフエニル; 1 , 1 ビス(4ージー p—トリルァミノフエ-ル) 4—フエ-ルシクロへキサン;ビス(4 ジメチ ルァミノ— 2 メチルフエ-ル)フエニルメタン;ビス(4ージー p—トリルァミノフエ-ル)フエ -ルメタン; N, N' —ジフエ-ルー N, N' —ジ(4ーメトキシフエ-ル) 4, 4' ージァミノ ビフエ-ル; N, N, N' , N' —テトラフエ-ルー 4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオードリフエ-ル; N, N, N—トリ(p—トリル)ァミン; 4 —(ジ p—トリルァミノ) 4' —〔4— (ジー p—トリルァミノ)スチリル〕スチルベン; 4 N, N —ジフエ-ルァミノ—(2—ジフエ-ルビ-ル)ベンゼン; 3—メトキシー 4' N, N—ジフエ -ルアミノスチルベンゼン; N フエ-ルカルバゾール、さらには、米国特許第 5, 061 , 569号明細書に記載されている 2個の縮合芳香族環を分子内に有するもの、例え ば 4, 4' ビス〔N— ( 1 ナフチル) N フエ-ルァミノ〕ビフエ-ル (NPD)、特開平 4 —308688号公報に記載されているトリフエ-ルァミンユニットが 3つスターバースト型 に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル)— N—フエ-ルァミノ〕トリフ ェ-ルァミン(MTDATA)等が挙げられる。 [0124] Representative examples of the aromatic tertiary amylide and the styrylamine diary include N, N, N ', N'-tetraphenyl-4,4'-diaminophenol; N, N '—Diphenyl N, N'-bis (3-methylphenyl) — [1,1'-biphenyl] 4,4'diamine (TPD); 2,2-bis (4-zy p-tolylaminophenol ) Propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ', N'-tetra-p-tolyl 4,4'diaminobiphenyl; 1,1bis ( 4-G-p-tolylaminophenyl) 4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-g-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl L-N, N'-Di (4-methoxyphenyl) 4,4 'diamino biphenyl; N, N, N', N'-Tetraphen-lu 4,4 'Diamino Diphenyl ether; 4, 4 'bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4— (di-p-tolylamino) 4' — [4— (g N-N-diphenylamino- (2-diphenyl-benzene) benzene; 3-methoxy-4'N, N-diphenylaminostilbenzene; N-phenylcarbazole; U.S. Pat. No. 5,061,569, which has two condensed aromatic rings in the molecule, for example, 4,4'bis [N-(1naphthyl) N phenylamino] Bi-Fuel (NPD), a 3-star burst type tri-fluoramine unit described in JP-A-4-308688 4,4 ', A "-tris [? ^-(3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) and the like.
[0125] さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖と した高分子材料を用いることもできる。 [0125] Further, a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain, can also be used.
[0126] また、 p型 Si、 p型 SiC等の無機化合物も正孔注入材料、正孔輸送材料として使 用することができる。 [0126] Further, inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material.
[0127] また、本発明においては正孔輸送層の正孔輸送材料は、青色または白色の発光 素子、表示装置及び照明装置に適用する場合には、 415nm以下に蛍光極大波長 を有することが好ましぐリン光の 0— 0バンド力 50nm以下であることがさらに好まし い。  In the present invention, the hole transport material of the hole transport layer preferably has a fluorescence maximum wavelength of 415 nm or less when applied to a blue or white light emitting element, a display device, and a lighting device. More preferably, the 0-0 band power of the phosphorescent light is 50 nm or less.
[0128] 正孔輸送材料は、高 Tgである化合物が好ましい。  [0128] The hole transport material is preferably a compound having a high Tg.
[0129] この正孔輸送層は、上記正孔輸送材料を、例えば真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。正孔輸送層の膜厚については特に制限はないが、通常は 5— 5000 nm程度である。この正孔輸送層は、上記材料の一種または二種以上からなる一層 構造であってもよい。  [0129] This hole transport layer is formed by thinning the above-mentioned hole transport material by a known method such as a vacuum evaporation method, a spin coating method, a casting method, an ink jet method, and an LB method. be able to. The thickness of the hole transport layer is not particularly limited, but is usually about 5 to 5000 nm. The hole transport layer may have a single-layer structure made of one or more of the above materials.
[0130] 《電子輸送層》  [0130] << Electron transport layer >>
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層設ける ことができる。  The electron transport layer is a material having a function of transporting electrons. In a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
[0131] 本発明においては、前記本発明の VIII族金属錯体を正孔阻止層に用いることが好 ましいが、これら以外にも公知の電子輸送材料 (正孔阻止材料を兼ねる)を併用して ちょい。  In the present invention, it is preferable to use the Group VIII metal complex of the present invention for the hole blocking layer, but in addition to these, a known electron transporting material (also serving as a hole blocking material) may be used in combination. A little bit.
[0132] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、下 記の材料が知られて 、る。  [0132] Conventionally, the electron transporting material (also serving as a hole blocking material) used for an electron transporting layer having a single layer and an electron transporting layer adjacent to the light emitting layer on the cathode side with respect to the light emitting layer includes the following. The above materials are known.
[0133] さらに、電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有して いればよぐその材料としては従来公知の化合物の中から任意のものを選択して用 いることがでさる。 Further, the electron transporting layer may be any material that has been selected from conventionally known compounds as long as it has a function of transmitting electrons injected from the cathode to the light emitting layer. You can be there.
[0134] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレン等の複素環テトラカルボン酸無水物、カルポジイミド、フレオレニリデ ンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導体 等が挙げられる。さらに、上記ォキサジァゾール誘導体において、ォキサジァゾール 環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知ら れているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いるこ とがでさる。  Examples of the material used for the electron transport layer (hereinafter referred to as “electron transport material”) include heterocyclic substituted fluorene derivatives, difluoroquinone derivatives, thiopyrandioxide derivatives, and naphthalene perylene. Examples include tetracarboxylic anhydride, carbodiimide, fluorenylidene methane derivative, anthraquinodimethane and anthrone derivative, oxaziazole derivative and the like. Further, in the above oxadiazole derivative, a thiadiazole derivative in which an oxygen atom of the oxaziazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transport material.
[0135] さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖と した高分子材料を用いることもできる。  [0135] Furthermore, a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain, can also be used.
[0136] また、 8 キノリノール誘導体の金属錯体、例えばトリス(8 キノリノール)アルミ-ゥ ム(Alq )、トリス(5, 7—ジクロ口— 8—キノリノール)アルミニウム、トリス(5, 7—ジブロモFurther, metal complexes of 8-quinolinol derivatives, for example, tris (8-quinolinol) aluminum- (Alq), tris (5,7-dichrolic-8-quinolinol) aluminum, tris (5,7-dibromo
3 Three
—8 キノリノール)アルミニウム、トリス(2—メチルー 8 キノリノール)アルミニウム、トリス (5—メチルー8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛 (Znq)等、及び これらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置き替わった 金属錯体も、電子輸送材料として用いることができる。その他、メタルフリー若しくはメ タルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等で置換され ているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料と して例示したジスチリルビラジン誘導体も、電子輸送材料として用いることができるし、 正孔注入層、正孔輸送層と同様に、 n型 Si、 n型 SiC等の無機半導体も電子輸送 材料として用いることができる。 —8 quinolinol) aluminum, tris (2-methyl-8 quinolinol) aluminum, tris ( 5 -methyl- 8 -quinolinol) aluminum, bis ( 8 -quinolinol) zinc (Znq), etc. Metal complexes that replace Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those whose terminals are substituted with an alkyl group ゃ sulfonic acid group or the like can be preferably used as the electron transporting material. Also, the distyryl virazine derivative exemplified as the material of the light emitting layer can be used as the electron transporting material, and like the hole injection layer and the hole transporting layer, n-type Si, n-type SiC, etc. Inorganic semiconductors can also be used as electron transport materials.
[0137] 電子輸送層に用いられる好ましい化合物は、青色または白色の発光素子、表示装 置及び照明装置に適用する場合には、蛍光極大波長が 415nm以下であることが好 ましぐリン光の 0— 0バンド力 50nm以下であることがさらに好ましい。 When the compound used for the electron transport layer is applied to a blue or white light-emitting element, a display device, and a lighting device, the fluorescent maximum wavelength is preferably 415 nm or less. — More preferably, the zero band force is 50 nm or less.
[0138] 電子輸送層に用いられる化合物は、高 Tgである化合物が好ま 、。 [0138] As the compound used for the electron transport layer, a compound having a high Tg is preferable.
[0139] この電子輸送層は、上記電子輸送材料を、例えば真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。電子輸送層の膜厚については特に制限はないが、通常は 5— 5000 nm程度である。この電子輸送層は、上記材料の一種または二種以上からなる一層 構造であってもよい。 [0139] The electron transporting layer is formed by thinning the electron transporting material by a known method such as a vacuum evaporation method, a spin coating method, a casting method, an inkjet method, and an LB method. Can. The thickness of the electron transport layer is not particularly limited, but is usually about 5 to 5000 nm. The electron transport layer may have a single-layer structure made of one or more of the above materials.
[0140] 《基体 (基板、基材、支持体等とも!ヽぅ)》  [0140] << Substrate (with substrate, substrate, support, etc.!) >>
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた、透明のものであれば特に制限はないが、好ましく用いられる基板と しては例えばガラス、石英、光透過性榭脂フィルムを挙げることができる。特に好まし V、基体は、有機 EL素子にフレキシブル性を与えることが可能な榭脂フィルムである。  The substrate for the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is not particularly limited as long as it is transparent. And a light-transmitting resin film. Particularly preferred V is a resin film that can provide flexibility to the organic EL device.
[0141] 榭脂フィルムとしては、特に限定はなぐ具体的には、ポリエチレンテレフタレート、 ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン 、セノレロースジアセテート、セノレローストリアセテート、セノレロースアセテートブチレート 、セノレロースアセテートプロピオネート、セノレロースアセテートフタレート、セノレロース ナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩ィ匕ビユリデン、 ポリビニルアルコール、ポリエチレンビニルアルコール、シンジォタクティックポリスチ レン、ポリカーボネート、ノルボルネン榭脂、ポリメチルペンテン、ポリエーテルケトン、 ポリイミド、ポリエーテルスルホン、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド 、フッ素榭脂、ナイロン、ポリメチルメタタリレート、アクリルまたはポリアリレート類、ァー トン (商品名: JSR (株)製)またはアベル (商品名:三井化学 (株)製)と!、つたノルボル ネン系(またはシクロォレフイン系)榭脂、有機無機ハイブリッド榭脂等を挙げることが できる。有機無機ハイブリッド榭脂としては、有機榭脂どノルゲル反応によって得られ る無機高分子 (例えばシリカ、アルミナ、チタ-ァ、ジルコユア等)を組み合わせて得 られるものが挙げられる。  [0141] Examples of the resin film include, but are not particularly limited to, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, senorelose diacetate, senorelostriacetate, senorelose acetate butyrate, and senolle. Cellulose esters such as Loose acetate propionate, Senolerose acetate phthalate, Senolerose nitrate or derivatives thereof, polychlorinated bilidene, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, poly Methylpentene, polyetherketone, polyimide, polyethersulfone, polysulfones, polyetherketoneimide, polya De, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name: manufactured by JSR Corporation) or Abel (trade name: manufactured by Mitsui Chemicals, Inc.)! Examples include norbornene (or cycloolefin) resin, organic-inorganic hybrid resin, and the like. Examples of the organic-inorganic hybrid resin include those obtained by combining an inorganic polymer (for example, silica, alumina, titer, zirconia, and the like) obtained by an organic resin-norgel reaction.
[0142] 榭脂フィルムの表面には無機物もしくは有機物の被膜またはその両者のノヽイブリツ ド被膜が形成されて 、てもよ 、。  [0142] An inorganic or organic coating or a hybrid coating of both may be formed on the surface of the resin film.
[0143] 被膜の具体例としてはゾルーゲル法により形成されたシリカ層、ポリマーの塗布等に より形成された有機層 (例えば重合性基を有する有機材料膜に紫外線照射や加熱 等の手段で後処理を施した膜を含む)、 DLC膜、金属酸化物膜または金属窒化物 膜等が挙げられる。金属酸化物膜、金属窒化物膜を構成する金属酸化物、金属窒 化物としては、酸化珪素、酸化チタン、酸化アルミニウム等の金属酸化物、窒化珪素 等の金属窒化物、酸窒化珪素、酸窒化チタン等の金属酸窒化物が挙げられる。 [0143] Specific examples of the coating include a silica layer formed by a sol-gel method, and an organic layer formed by coating a polymer (for example, an organic material film having a polymerizable group is post-treated by means such as ultraviolet irradiation or heating). , A DLC film, a metal oxide film or a metal nitride film. Metal oxide, metal nitride forming metal oxide film and metal nitride film Examples of the oxide include metal oxides such as silicon oxide, titanium oxide, and aluminum oxide; metal nitrides such as silicon nitride; and metal oxynitrides such as silicon oxynitride and titanium oxynitride.
[0144] 前記、表面に無機物もしくは有機物の被膜またはその両者のハイブリッド被膜が形 成された榭脂フィルムの水蒸気透過率は、 0. 01gZm2'dayatm以下の高ノリア性 フィルムであることが好まし 、。 [0144] The water vapor permeability of the resin film having an inorganic or organic film or a hybrid film of both formed on the surface is preferably a high noria film of 0.01 gZm 2 'dayatm or less. ,.
[0145] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1%以上であるこ と力 子ましく、より好ましくは 2%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子数 X 100である。  The external extraction efficiency of light emission of the organic EL device of the present invention at room temperature is preferably 1% or more, more preferably 2% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element Z The number of electrons flowing to the organic EL element X 100.
[0146] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。  [0146] A hue improvement filter such as a color filter may be used in combination.
[0147] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフィルム等)を併用することもできる。  [0147] When used for lighting purposes, a film having a roughened surface (such as an anti-glare film) may be used in combination to reduce light emission unevenness.
[0148] 表示装置として用いる場合は少なくとも 2種類の異なる発光極大波長を有する有機 EL素子力もなるが、有機 EL素子を作製する好適な例を説明する。  When used as a display device, there are at least two types of organic EL elements having different emission maximum wavelengths, but a preferred example of manufacturing an organic EL element will be described.
[0149] 《有機 EL素子の作製方法》  [0149] << Method of Manufacturing Organic EL Element >>
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 Z発光層 Z電子輸送層 Z電子注入層 Z陰極からなる有機 EL素子の作製法につい て説明する。  As an example of a method for producing an organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer Z light emitting layer Z electron transport layer Z electron injection layer Z cathode will be described.
[0150] まず適当な基体上に、所望の電極物質、例えば陽極用物質力 なる薄膜を、 1 μ m 以下、好ましくは lOnm— 200nmの膜厚になるように、蒸着やスパッタリング等の方 法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正 孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形 成させる。  [0150] First, a desired electrode material, for example, a thin film as a material for an anode is formed on an appropriate substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 µm or less, preferably lOnm-200 nm. To form an anode. Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a hole blocking layer, which are element materials, is formed thereon.
[0151] この有機化合物薄膜の薄膜ィ匕の方法としては、前記の如くスピンコート法、キャスト 法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐかつピ ンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好まし い。さらに層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、 その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度 50— 450°C、真空度 10— 6Pa— 10— 2Pa、蒸着速度 0. Olnm— 50nmZ秒、基板温 度 50°C— 300°C、膜厚 0. lnm— 5 μ mの範囲で適宜選ぶことが望ましい。 [0151] Examples of the method for forming a thin film of the organic compound thin film include a spin coating method, a casting method, an ink jet method, a vapor deposition method, and a printing method as described above. The vacuum evaporation method or the spin coating method is particularly preferred in terms of, for example, the fact that the formation of a film is difficult. Further, a different film forming method may be applied to each layer. When employing the vapor deposition film, the deposition conditions may vary due to kinds of materials used, generally boat temperature 50- 450 ° C, vacuum degree of 10- 6 Pa- 10- 2 Pa, deposition rate 0 Olnm—50nmZ seconds, substrate temperature It is desirable to select a temperature within a range of 50 ° C to 300 ° C and a film thickness of 0.1 nm to 5 μm.
[0152] これらの層の形成後、その上に陰極用物質力もなる薄膜を、 1 μ m以下好ましくは 5 Onm— 200nmの範囲の膜厚になるように、例えば蒸着やスパッタリング等の方法に より形成させ、陰極を設けることにより、所望の有機 EL素子が得られる。この有機 EL 素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが 好ましいが、途中で取り出して異なる製膜法を施しても力まわない。その際、作業を 乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。  [0152] After these layers are formed, a thin film that also acts as a material for the cathode is formed thereon by a method such as evaporation or sputtering so as to have a thickness of 1 µm or less, preferably 5 Onm-200 nm. A desired organic EL device can be obtained by forming and providing a cathode. In the production of this organic EL device, it is preferable to produce from the hole injection layer to the cathode consistently by one evacuation, but it is not tough to take it out and apply a different film forming method. At that time, consideration must be given to performing the work in a dry inert gas atmosphere.
[0153] 本発明の表示装置は、発光層形成時のみシャドーマスクを設け、一面に蒸着法、 キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。  [0153] In the display device of the present invention, a shadow mask is provided only when a light emitting layer is formed, and a film can be formed on one surface by an evaporation method, a casting method, a spin coating method, an inkjet method, a printing method, or the like.
[0154] 発光層のみパターユングを行う場合、その方法に限定はないが、好ましくは蒸着法 、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを 用いたパターユングが好まし 、。  [0154] When patterning is performed only on the light emitting layer, the method is not particularly limited, but is preferably an evaporation method, an inkjet method, or a printing method. In the case of using a vapor deposition method, a pattern Jung using a shadow mask is preferable.
[0155] また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、 正孔注入層、陽極の順に作製することも可能である。  [0155] The production order can be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be manufactured in this order.
[0156] このようにして得られた表示装置に、直流電圧を印加する場合には、陽極を +、陰 極を一の極性として電圧 2— 40V程度を印加すると、発光が観測できる。また、逆の 極性で電圧を印加しても電流は流れずに発光は全く生じない。さら〖こ、交流電圧を 印加する場合には、陽極が +、陰極カ の状態になったときのみ発光する。なお、印 加する交流の波形は任意でょ 、。  When a DC voltage is applied to the display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive electrode as the positive electrode and the negative electrode as one polarity. Even if a voltage is applied in the opposite polarity, no current flows and no light emission occurs. Furthermore, when an AC voltage is applied, light is emitted only when the anode is in the + or cathode power state. The waveform of the applied AC is optional.
[0157] 本発明の表示装置は、表示デバイス、ディスプレー、各種発光光源として用いるこ とができる。表示デバイス、ディスプレーにおいて、青、赤、緑発光の 3種の有機 EL 素子を用いることにより、フルカラーの表示が可能となる。  [0157] The display device of the present invention can be used as a display device, a display, and various light emission light sources. In display devices and displays, full-color display is possible by using three types of organic EL elements emitting blue, red and green light.
[0158] 表示デバイス、ディスプレーとしてはテレビ、パソコン、モノィル機器、 AV機器、文 字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよぐ動画再生用の表示装置として使用する場合の駆 動方式は単純マトリックス (パッシブマトリックス)方式でもアクティブマトリックス方式で もどちらでもよい。  [0158] Examples of the display device and display include a television, a personal computer, a mono device, an AV device, a character broadcast display, and an information display in a car. In particular, when used as a display device for reproducing moving images, which may be used as a display device for reproducing still images or moving images, the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
[0159] 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告 、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光 センサーの光源等の照明装置が挙げられるがこれに限定するものではない。 [0159] Luminescent light sources include home lighting, car interior lighting, backlights for watches and LCDs, and billboard advertising Illumination devices such as a light source of a traffic light, a light source of an optical storage medium, a light source of an electrophotographic copier, a light source of an optical communication processor, and a light source of an optical sensor, but are not limited thereto.
[0160] また、本発明に係る有機 EL素子に共振器構造を持たせた有機 EL素子として用い てもよい。 The organic EL device according to the present invention may be used as an organic EL device having a resonator structure.
[0161] このような共振器構造を有した有機 EL素子の使用目的としては光記憶媒体の光源 、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられ るが、これらに限定されない。また、レーザー発振をさせることにより、上記用途に使 用してちょい。  [0161] The intended use of the organic EL device having such a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. However, the present invention is not limited to these. In addition, it can be used for the above applications by causing laser oscillation.
[0162] 《表示装置》  [0162] << Display device >>
本発明の有機 EL素子は、照明用や露光光源のような一種のランプとして使用して もよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を直 接視認するタイプの表示装置 (ディスプレイ)として使用してもよい。動画再生用の表 示装置として使用する場合の駆動方式は単純マトリクス (パッシブマトリクス)方式でも アクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の 有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製することが可 能である。  The organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device of a type for projecting an image, and a type of a device for directly recognizing a still image or a moving image. It may be used as a display device (display). When used as a display device for reproducing moving images, the driving method may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, a full-color display device can be manufactured by using two or more kinds of the organic EL elements of the present invention having different emission colors.
[0163] (発明の実施の態様)  (Embodiments of the Invention)
本発明の有機 EL素子力 構成される表示装置の一例を図面に基づいて以下に説 明する。  An example of a display device having the organic EL element of the present invention will be described below with reference to the drawings.
[0164] 図 1は、有機 EL素子力 構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。  FIG. 1 is a schematic diagram showing an example of a display device configured with an organic EL element. FIG. 2 is a schematic view of a display such as a mobile phone for displaying image information by light emission of an organic EL element.
[0165] ディスプレイ 1は、複数の画素を有する表示部 A、画像情報に基づいて表示部 Aの 画像走査を行う制御部 B等力もなる。  The display 1 also has a display unit A having a plurality of pixels and a control unit B for performing image scanning of the display unit A based on image information.
[0166] 制御部 Bは、表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画 像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画 素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 A に表示する。 [0167] 図 2は、表示部 Aの模式図である。 [0166] The control unit B is electrically connected to the display unit A, sends a scan signal and an image data signal to each of the plurality of pixels based on image information from the outside, and controls the pixels for each scan line by the scan signal. , Sequentially emit light according to the image data signal, perform image scanning, and display image information on the display unit A. FIG. 2 is a schematic diagram of the display unit A.
[0168] 表示部 Aは基板上に、複数の走査線 5及びデータ線 6を含む配線部と、複数の画 素 3等とを有する。表示部 Aの主要な部材の説明を以下に行う。  [0168] The display unit A has a wiring portion including a plurality of scanning lines 5 and data lines 6, and a plurality of pixels 3 and the like on a substrate. The main members of the display unit A will be described below.
[0169] 図においては、画素 3の発光した光力 白矢印方向(下方向)へ取り出される場合 を示している。  [0169] The figure shows a case where the light power emitted by the pixel 3 is extracted in the direction of the white arrow (downward).
[0170] 配線部の走査線 5及び複数のデータ線 6は、それぞれ導電材料からなり、走査線 5 とデータ線 6は格子状に直交して、直交する位置で画素 3に接続している(詳細は図 示せず)。  The scanning lines 5 and the plurality of data lines 6 of the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at orthogonal positions ( Details are not shown).
[0171] 画素 3は、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑 領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラ 一表示が可能となる。  [0171] When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6, and emits light in accordance with the received image data. By properly arranging pixels in the red, green, and blue light emission regions on the same substrate, full color display is possible.
[0172] 次に、画素の発光プロセスを説明する。  Next, a light emitting process of the pixel will be described.
[0173] 図 3は、画素の模式図である。  FIG. 3 is a schematic diagram of a pixel.
[0174] 画素は、有機 EL素子 10、スイッチングトランジスタ 11、駆動トランジスタ 12、コンデ ンサ 13等を備えている。複数の画素に有機 EL素子 10として、赤色、緑色、青色発 光の有機 EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行 うことができる。  [0174] The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full-color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 for a plurality of pixels and juxtaposing them on the same substrate.
[0175] 図 3において、制御部 B力もデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 B力 走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。  In FIG. 3, an image data signal is applied to the drain of the switching transistor 11 via the data line 6 in the control section B. When a scanning signal is applied to the gate of the switching transistor 11 via the control unit B scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of star 12.
[0176] 画像データ信号の伝達により、コンデンサ 13が画像データ信号の電位に応じて充 電されるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 12は、ドレ インが電源ライン 7に接続され、ソースが有機 EL素子 10の電極に接続されており、ゲ 一トに印加された画像データ信号の電位に応じて電源ライン 7から有機 EL素子 10に 電流が供給される。 [0177] 制御部 Bの順次走査により走査信号が次の走査線 5に移ると、スイッチングトランジ スタ 11の駆動がオフする。しかし、スイッチングトランジスタ 11の駆動がオフしてもコン デンサ 13は充電された画像データ信号の電位を保持するので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 EL素子 1 0の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に 同期した次の画像データ信号の電位に応じて駆動トランジスタ 12が駆動して有機 E L素子 10が発光する。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the driving of the driving transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7, a source connected to the electrode of the organic EL element 10, and an organic EL element connected from the power supply line 7 according to the potential of the image data signal applied to the gate. Element 10 is supplied with current. When the scanning signal is shifted to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied. The organic EL element 10 continues to emit light until the light is emitted. When the next scanning signal is applied by the sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
[0178] すなわち、有機 EL素子 10の発光は、複数の画素それぞれの有機 EL素子 10に対 して、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて 、複数の画素 3それぞれの有機 EL素子 10の発光を行っている。このような発光方法 をアクティブマトリクス方式と呼んで 、る。  In other words, the organic EL element 10 emits light by providing a switching transistor 11 and a driving transistor 12 as active elements for each of the organic EL elements 10 of each of the plurality of pixels. The element 10 emits light. Such a light emitting method is called an active matrix method.
[0179] ここで、有機 EL素子 10の発光は、複数の階調電位を持つ多値の画像データ信号 による複数の階調の発光でもよ 、し、 2値の画像データ信号による所定の発光量の オン、才フでもよ!/、。  Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-valued image data signal having a plurality of gradation potentials, or a predetermined light emission amount by a binary image data signal. No, it's a talent! /.
[0180] また、コンデンサ 13の電位の保持は、次の走査信号の印加まで継続して保持して もよ 、し、次の走査信号が印加される直前に放電させてもょ 、。  [0180] The potential of the capacitor 13 may be maintained until the next scan signal is applied, or may be discharged immediately before the next scan signal is applied.
[0181] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。  The present invention is not limited to the active matrix method described above, but may be a passive matrix light emission drive in which an organic EL element emits light in accordance with a data signal only when a scanning signal is scanned.
[0182] 図 4は、ノ ッシブマトリクス方式による表示装置の模式図である。図 4において、複 数の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられ ている。  FIG. 4 is a schematic diagram of a display device using a noisy matrix method. In FIG. 4, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a grid pattern facing each other with the pixel 3 interposed therebetween.
[0183] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 して ヽる画素 3が画像データ信号に応じて発光する。  When the scanning signal of the scanning line 5 is applied by the sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
[0184] ノ¾ /シブマトリクス方式では画素 3にアクティブ素子がなぐ製造コストの低減が計れ る。 [0184] In the noise / siv matrix method, the manufacturing cost can be reduced because an active element is connected to the pixel 3.
[0185] 本発明に係わる有機 EL材料は、また、照明装置として実質白色の発光を生じる有 機 EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて 混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色 の 3原色の 3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙 色等の補色の関係を利用した 2つの発光極大波長を含有したものでもよい。 [0185] The organic EL material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device. Simultaneous emission of multiple luminescent colors by multiple luminescent materials White light emission is obtained by mixing colors. As a combination of a plurality of emission colors, a combination of three emission maximum wavelengths of the three primary colors of blue, green, and blue may be used, or a combination of complementary colors such as blue and yellow, and blue-green and orange may be used. It may contain two emission maximum wavelengths.
[0186] また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または 蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材 料と発光材料力 の光を励起光として発光する色素材料との組み合わせたもののい ずれでもよいが、本発明に係わる白色有機 EL素子においては、発光ドーパントを複 数組み合わせ混合するだけでよ!ヽ。発光層もしくは正孔輸送層或!、は電子輸送層 等の形成時のみマスクを設け、マスクにより塗り分けるなど単純に配置するだけでよく 、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キヤ スト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産 性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白 色有機 EL装置と異なり、素子自体が発光白色である。  [0186] Further, a combination of a plurality of light-emitting materials for obtaining a plurality of luminescent colors includes a combination of a plurality of materials emitting a plurality of phosphorescent or fluorescent lights, and a combination of a luminescent material emitting a fluorescent or phosphorescent light and a luminescent material. Any combination of a dye material that emits light as excitation light may be used, but in the white organic EL device according to the present invention, it is only necessary to mix and combine a plurality of light emitting dopants! The light emitting layer or the hole transport layer is provided with a mask only at the time of forming the electron transport layer or the like, and may be simply arranged by separately applying the mask. Since other layers are common, patterning of the mask is unnecessary. Yes, for example, an electrode film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an inkjet method, a printing method, or the like, and the productivity is also improved. According to this method, the element itself emits white light, unlike a white organic EL device in which light-emitting elements of a plurality of colors are arranged in parallel in an array.
[0187] 発光層に用いる発光材料としては特に制限はなぐ例えば液晶表示素子における ノ ックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合するよ うに、本発明に係わる白金錯体、また公知の発光材料の中から任意のものを選択し て組み合わせて白色化すればょ 、。  [0187] The light emitting material used for the light emitting layer is not particularly limited. For example, in the case of a knock light in a liquid crystal display device, the platinum complex according to the present invention may be adjusted to a wavelength range corresponding to CF (color filter) characteristics. Also, whitening may be performed by selecting and combining arbitrary ones from known light emitting materials.
[0188] このように、本発明の白色発光有機 EL素子は、前記表示デバイス、ディスプレーに カロえて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源の ような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に 用いられる。  [0188] As described above, the white light-emitting organic EL element of the present invention can be used as a kind of lamp such as home lighting, vehicle interior lighting, and exposure light as various light-emitting light sources and lighting devices, as well as the display device and display. It is also useful for display devices such as backlights of liquid crystal display devices.
[0189] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。  [0189] In addition, a backlight such as a clock, a signboard advertisement, a traffic light, a light source such as an optical storage medium, a light source of an electronic photocopier, a light source of an optical communication processor, a light source of an optical sensor, and a display device are required. And a wide range of applications such as general household electric appliances.
実施例  Example
[0190] 実施例 1 [0190] Example 1
《有機 EL素子 OLED1— 1の作製》  << Preparation of organic EL element OLED1-1 >>
陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA-45) にパター-ングを行った後、この ITO透明電極を設けた透明支持基板を iso プロピ ルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行つ た。 Substrate with 150 nm ITO deposited on glass as anode (NH-Techno Glass: NA-45) After the patterning, the transparent support substrate provided with the ITO transparent electrode was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, and washed with UV ozone for 5 minutes.
[0191] この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、 5つ のタンタル製抵抗力卩熱ボートに、 α— NPD、 CBP、 Ir—12、 BCP、 Alqをそれぞれ入  [0191] The transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while five tantalum-made resistance boats were coated with α-NPD, CBP, Ir-12, BCP, and Alq, respectively. Entering
3  Three
れ、真空蒸着装置 (第 1真空槽)に取付けた。 a - NPD  Then, it was attached to a vacuum evaporation apparatus (first vacuum tank). a-NPD
Figure imgf000059_0001
Figure imgf000059_0001
CBP  CBP
Figure imgf000059_0002
Figure imgf000059_0002
[0192] さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボ ートにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽に取り付けた。 Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and they were attached to a second vacuum tank of a vacuum evaporation apparatus.
[0193] まず、第 1の真空槽を 4 X 10— 4Paまで減圧した後、 a NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. 1-0. 2nmZ秒で透明支持基板に膜厚 25nm の厚さになるように蒸着し、正孔注入 Z輸送層を設けた。 [0194] さらに、 CBPの入った前記加熱ボートと Ir 12の入ったボートをそれぞれ独立に通 電して発光ホストである CBPと発光ドーパントである Ir~10の蒸着速度が 100 : 7にな るように調節し膜厚 30nmの厚さになるように蒸着し、発光層を設けた。 [0193] First, after the vacuum of the first vacuum chamber to 4 X 10- 4 Pa, and heated by supplying an electric current to the baud preparative containing the a NPD, deposition rate 0.1 1-0. In 2nmZ seconds Evaporation was performed on a transparent support substrate so as to have a thickness of 25 nm, and a hole injection Z transport layer was provided. [0194] Further, the heating boat containing CBP and the boat containing Ir 12 are independently passed through, and the deposition rate of CBP as a light emitting host and Ir to 10 as a light emitting dopant becomes 100: 7. This was adjusted to a thickness of 30 nm to provide a light emitting layer.
[0195] ついで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. 1-0. 2n mZ秒で厚さ lOnmの正孔阻止層を設けた。さらに、 Alqの入った前記加熱ボートを  [0195] Next, the heating boat containing the BCP was energized and heated to provide a hole blocking layer having a thickness of lOnm at a deposition rate of 0.1-0.2n mZ seconds. In addition, the heating boat containing Alq
3  Three
通電して加熱し、蒸着速度 0. 1-0. 2nmZ秒で膜厚 40nmの電子輸送層を設けた  An electron transport layer having a thickness of 40 nm was provided at a deposition rate of 0.1-0.2 nmZ seconds by applying a current and heating.
[0196] 次に、前記の如く電子輸送層まで製膜した素子を真空のまま第 2真空槽に移した 後、電子輸送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置 外部からリモートコントロールして設置した。 [0196] Next, after the element formed up to the electron transport layer as described above was transferred to the second vacuum chamber while maintaining a vacuum, a rectangular perforated mask made of stainless steel was arranged on the electron transport layer. Equipment Installed by remote control from outside.
[0197] 第 2真空槽を 2 X 10— 4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01-0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ルミ-ゥムの入つたボートに通電して蒸着速度 1一 2nmZ秒で膜厚 150nmの陰極を つけた。さらにこの有機 EL素子を大気に接触させることなく窒素雰囲気下のグローブ ボックス(純度 99. 999%以上の高純度窒素ガスで置換したグローブボックス)へ移し 、図 5に示したような内部を窒素で置換した封止構造にして、有機 EL素子 OLED1— 1を作製した。なお、捕水剤である酸化バリウム 105は、アルドリッチ社製の高純度酸 ィ匕バリウム粉末を、粘着剤付きのフッ素榭脂系半透過膜 (ミクロテックス S-NTF80 31Q 日東電工製)でガラス製封止缶 104に貼り付けたものを予め準備して使用した 。封止缶と有機 EL素子の接着には紫外線硬化型接着剤 107を用い、紫外線ランプ を照射することで両者を接着し封止素子を作製した。図 5において 101は透明電極 を設けたガラス基板、 102が前記正孔注入 Z輸送層、発光層、正孔阻止層、電子輸 送層等カゝらなる有機 EL層、 103は陰極を示す。 [0197] After decompression of the second vacuum chamber up to 2 X 10- 4 Pa, evaporation Chakusokudo 0. 01-0. 02nmZ sec more cathode buffer layer thickness 0. 5 nm by supplying an electric current to the boat lithium fluoride-containing Then, electricity was supplied to the boat containing the aluminum and a cathode having a thickness of 150 nm was applied at a deposition rate of 12 nmZ seconds. Further, the organic EL device was transferred to a glove box under a nitrogen atmosphere (a glove box replaced with a high-purity nitrogen gas having a purity of 99.999% or more) without being brought into contact with the atmosphere, and the inside as shown in Fig. 5 was filled with nitrogen. With the replaced sealing structure, an organic EL element OLED1-1 was produced. In addition, barium oxide 105, which is a water trapping agent, is made of a high purity barium oxide powder manufactured by Aldrich Co., Ltd. by using a fluororesin semi-permeable membrane with adhesive (Microtex S-NTF80 31Q manufactured by Nitto Denko). What was pasted on the sealing can 104 was prepared and used in advance. The sealing can was bonded to the organic EL element using an ultraviolet curable adhesive 107, and irradiated with an ultraviolet lamp to bond the two together to produce a sealing element. In FIG. 5, reference numeral 101 denotes a glass substrate provided with a transparent electrode, 102 denotes an organic EL layer composed of a hole injection Z transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and the like, and 103 denotes a cathode.
[0198] 《有機 EL素子 OLED1— 2— 1 41の作製》  [0198] << Preparation of Organic EL Element OLED1-2-141 >>
上記の有機 EL素子 OLED1— 1の作製において、表 1に記載のように、発光ドーパ ントを変更した以外は同様にして、有機 EL素子 OLED1— 2— 1 41を作製した。 (0LED1— 42、 43の作製方法)  An organic EL element OLED1-2-141 was produced in the same manner as in the production of the organic EL element OLED1-1 except that the emission dopant was changed as shown in Table 1. (How to make 0LED1-42, 43)
OLED1— 1の作製において、発光ホストを CBPから AZ1に変更し、発光ドーパントを 本発明の金属錯体 (表中に化合物 Noで示した)を使用した以外は、 OLED1-1と同 様にして、有機 EL素子 1-42、 43を作製した。 In the fabrication of OLED1-1, the emission host was changed from CBP to AZ1, and the emission dopant was changed. Organic EL devices 1-42 and 43 were produced in the same manner as in OLED1-1, except that the metal complex of the present invention (indicated by compound No. in the table) was used.
(OLED1 - 44一 1 47の作製方法) (Production method of OLED1-44-1 47)
OLED1— 1の作製において、発光ホストを CBPから CDBPに変更し、発光ドーパント を本発明の金属錯体 (表中に化合物 Noで示した)を使用した以外は、 OLED1— 1と 同様にして、有機 EL素子 1-44から 47を作製した。 OLED1-1 was prepared in the same manner as OLED1-1, except that the light-emitting host was changed from CBP to CDBP and the light-emitting dopant was the metal complex of the present invention (indicated by compound No. in the table). EL devices 1-44 to 47 were produced.
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000062_0003
Figure imgf000062_0004
Figure imgf000062_0003
Figure imgf000062_0004
[0199] 得られた有機 EL素子 OLED1— 1一 1 47について下記のような評価を行った。 The obtained organic EL device OLED1-1-147 was evaluated as follows.
[0200] 《外部取り出し量子効率》  [0200] 《External extraction quantum efficiency》
有機 EL素子 OLED1— 1— 1 47を室温 (約 23— 25°C)、 2. 5mAZcm2の定電、 条件下による点灯を行い、点灯開始直後の発光輝度 (L) [cdZm2]を測定すること により、外部取り出し量子効率( r? )を算出した。ここで、発光輝度の測定は、 CS-10 00 (ミノルタ製)を用いた。 The organic EL element OLED1- 1- 1 47 room temperature (about 23- 25 ° C), 2. the 5MAZcm 2 constant-performs lighting by conditions, measuring the lighting start immediately after the emission luminance (L) [cdZm 2] As a result, the external extraction quantum efficiency (r?) Was calculated. Here, the emission luminance was measured using the CS-10 00 (manufactured by Minolta) was used.
[0201] また、外部取り出し量子効率は、有機 EL素子 OLED1—1を 100とした時の相対値 、 した。 [0201] The external extraction quantum efficiency was a relative value when the organic EL element OLED1-1 was set to 100.
[0202] 《発光寿命》  [0202] 《Emission life》
有機 EL素子 OLED1—1— 1 47を室温下、 2. 5mAZcm2の定電流条件下による 連続点灯を行い、初期輝度の半分の輝度になるのに要する時間( τ At room temperature the organic EL element OLED1-1- 1 47, 2. performs continuous lighting by constant current conditions 5mAZcm 2, the time required to becomes half of the initial luminance (tau
1/2 )を測定した 1/2) was measured
。また、発光寿命は、有機 EL素子 OLED1— 1を 100とした時の相対値で表した。 . In addition, the light emission lifetime was represented by a relative value when the organic EL element OLED1-1 was set to 100.
[0203] 《色度差》 [0203] 《Chromaticity difference》
有機 EL素子 OLED1— 1— 1 47を室温(約 23— 25°C)、 2. 5mAZcm2の定電流 条件下による点灯を行い、点灯開始直後の素子の発光色の CIE色度((X, y) = (a, b) )を測定し、 NTSC (modern)の青((x, y) = (0. 155, 0. 07) )との差を Δとして 算出した。 CIE色度の測定は、 CS— 1000 (ミノルタ製)を用いた。 Δは、以下の式に 従って求めた。 The organic EL element OLED1- 1- 1 47 room temperature (about 23- 25 ° C), 2. performs lighting by constant current conditions 5mAZcm 2, the emission color of the CIE chromaticity of the device immediately after the lighting start ((X, y) = (a, b)) and the difference from NTSC (modern) blue ((x, y) = (0.155, 0.07)) was calculated as Δ. The CIE chromaticity was measured using CS-1000 (manufactured by Minolta). Δ was determined according to the following equation.
[0204] Δ = ( (0. 155— a) 2+ (0. 07— b) 2) 1/2 [0204] Δ = ((0. 155— a) 2 + (0. 07— b) 2 ) 1/2
また、外部取り出し量子効率は、有機 EL素子 OLED1—1を 100とした時の相対値 、 した。  The external extraction quantum efficiency was a relative value when the organic EL element OLED1-1 was set to 100.
[0205] 得られた結果を表 1に示す。  [0205] The obtained results are shown in Table 1.
[0206] [表 1] [Table 1]
有機 EL素子 外部取り出し Organic EL element external extraction
発光ドーパント 発光寿命 色度差 備考  Luminescent dopant Luminescent lifetime Chromaticity difference Remarks
N〇, 量子効率  N〇, quantum efficiency
OLED1— 1 Ir-12 100 100 0.29 比較例  OLED1— 1 Ir-12 100 100 0.29 Comparative example
OLED1— 2 Ir-13 97 85 0.26 比較例  OLED1— 2 Ir-13 97 85 0.26 Comparative example
OLED1— 3 比較 1 107 80 0,24 比較例  OLED1-3 Comparison 1 107 80 0,24 Comparison example
OLED1— 4 比較 2 105 77 0,29 比較例  OLED1-4 Comparison 2 105 77 0,29 Comparison example
OLED1— 比較 3 95 83 0.34 比較例  OLED1— Comparative 3 95 83 0.34 Comparative Example
OLED1— 6 比較 4 98 81 0,36 比較例  OLED1-6 Comparison 4 98 81 0,36 Comparison example
OLED1— 7 比較 5 103 77 0,31 比較例  OLED1-7 Comparison 5 103 77 0,31 Comparison example
OLED1— 8 比較 6 100 60 0.31 比較例  OLED1-8 Comparison 6 100 60 0.31 Comparison example
OLED1— 9 比較 7 109 104 0,24 比較例  OLED1-9 Comparison 7 109 104 0,24 Comparison example
OLED1— 10 比較 8 108 98 0,30 比較例  OLED1-10 Comparison 8 108 98 0,30 Comparison example
OLED1— 11 1-1 128 220 0.20 本発明  OLED1— 11 1-1 128 220 0.20 The present invention
OLED1— 12 エー 2 129 210 0,19 本発明  OLED1—12 A 2 129 210 0,19 The present invention
OLED1 13 エー 9 125 200 0,22 本発明  OLED1 13 A 9 125 200 0,22 The present invention
OLED1 14 1-18 127 205 0.20 本発明  OLED1 14 1-18 127 205 0.20 The present invention
OLED1— 15 1-26 109 166 0.27 本発明  OLED1— 15 1-26 109 166 0.27 The present invention
OLED1— 16 ェ_30 109 167 0,26 本発明  OLED1-16 _30 109 167 0,26 The present invention
OLED1— 17 ェ_43 117 180 0,23 本発明  OLED1-17 _43 117 180 0,23 The present invention
OLED1— 18 1-44 116 170 0.24 本発明  OLED1— 18 1-44 116 170 0.24 The present invention
OLED1— 19 1-45 120 188 0.22 本発明  OLED1— 19 1-45 120 188 0.22 The present invention
OLED1— 20 ェ_61 120 188 0,23 本発明  OLED1-20 _61 120 188 0,23 The present invention
OLED1— 21 1-62 118 185 0.23 本発明  OLED1— 21 1-62 118 185 0.23 The present invention
OLED1— 22 1-63 122 194 0.23 本発明  OLED1-22 1-63 122 194 0.23 The present invention
OLED1— 23 P— 1 124 198 0,23 本発明  OLED1-23 P-1 124 198 0,23 The present invention
OLED1— 24 P-9 129 218 0,20 本発明  OLED1— 24 P-9 129 218 0,20 The present invention
OLED1— 25 p-io 128 213 0.19 本発明  OLED1— 25 p-io 128 213 0.19 The present invention
OLED1— 26 P-18 111 185 0,24 本発明  OLED1— 26 P-18 111 185 0,24 The present invention
OLED1— 27 P-21 109 190 0,25 本発明  OLED1— 27 P-21 109 190 0,25 The present invention
OLED1— 28 P— 29 126 198 0.22 本発明  OLED1— 28 P— 29 126 198 0.22 The present invention
OLED1— 29 P-37 124 201 0.24 本発明  OLED1— 29 P-37 124 201 0.24 The present invention
OLED1— 30 P-39 119 184 0,23 本発明  OLED1-30 P-39 119 184 0,23 The present invention
OLED1— 31 P-40 115 180 0,24 本発明  OLED1— 31 P-40 115 180 0,24 The present invention
OLED1— 32 P— 41 121 186 0.22 本発明  OLED1— 32 P— 41 121 186 0.22 The present invention
OLED1— 33 P-60 120 194 0.23 本発明  OLED1— 33 P-60 120 194 0.23 The present invention
OLED1— 34 P-61 118 188 0,24 本発明  OLED1— 34 P-61 118 188 0,24 The present invention
OLED1— 35 P-62 121 196 0.23 本発明  OLED1— 35 P-62 121 196 0.23 The present invention
OLED1— 36 1-68 129 165 0.23 本発明  OLED1— 36 1-68 129 165 0.23 The present invention
OLED1— 37 P— 70 122 160 0,23 本発明  OLED1— 37 P— 70 122 160 0,23 The present invention
OLED1— 38 75 127 169 0,19 本発明  OLED1— 38 75 127 169 0,19 The present invention
OLED1— 39 1-78 129 166 0.12 本発明  OLED1— 39 1-78 129 166 0.12 The present invention
OLED1— 40 P-73 125 170 0.20 本発明  OLED1-40 P-73 125 170 0.20 The present invention
OLED1 41 P-75 126 173 0,15 本発明  OLED1 41 P-75 126 173 0,15 The present invention
OLED1— 42 エー 6 133 240 0,17 本発明  OLED1-42 A 6 133 240 0,17 The present invention
OLED1— 43 P— 11 130 233 0.18 本発明  OLED1—43 P—11 130 233 0.18 The present invention
OLED1— 44 1-26 124 163 0.23 本発明  OLED1— 44 1-26 124 163 0.23 The present invention
OLED1— 45 ェ_30 125 164 0,23 本発明  OLED1 45 _30 125 164 0,23 The present invention
OLED1— 46 P-18 122 182 0.22 本発明  OLED1— 46 P-18 122 182 0.22 The present invention
OLED1— 47 P-21 120 188 0.23 本発明  OLED1— 47 P-21 120 188 0.23 The present invention
[0207] 表 1から、本発明に係る金属錯体を用いて作製した有機 EL素子は比較有機 EL素 子に比べ、高い発光効率と、発光寿命の長寿命化が達成できることが明らかである。 また、色純度も従来の素子に比べて向上していることが分力つた。  [0207] From Table 1, it is clear that the organic EL device manufactured using the metal complex according to the present invention can achieve higher luminous efficiency and longer luminescent life than the comparative organic EL device. Another factor was that the color purity was improved as compared with the conventional device.
[0208] 実施例 2  [0208] Example 2
《有機 EL素子 OLED2—1— 2—22の作製》  << Preparation of organic EL device OLED2-1-2-22 >>
実施例 1の有機 EL素子 OLED1— 1の作製において、発光ドーパントを Ir 12から I r 1に変更し、正孔阻止材料を表 2に記載のように変更した以外は同様にして、有機In the fabrication of the organic EL device OLED1-1 of Example 1, the emission dopant was changed from Ir12 to I12. r1 and the hole-blocking material as shown in Table 2
EL素子 OLED2— 1— 2— 22を作製した。 EL devices OLED2-1-2-22 were fabricated.
[0209] 得られた有機 EL素子 OLED2— 1 2— 22につ 、て、外部取り出し量子効率、発光 寿命の測定を実施例 1に記載の方法を用いて行った。評価は、有機 EL素子 OLEDWith respect to the obtained organic EL device OLED2-1-22-22, the measurement of the external extraction quantum efficiency and the light emission lifetime were performed using the method described in Example 1. Evaluation is OLED OLED
2— 1の値を 100としたときの有機 EL素子各試料の各々の相対値で表した。得られた 結果を表 2に示す。 The relative value of each sample of the organic EL device when the value of 2-1 was set to 100 was expressed. Table 2 shows the obtained results.
[0210] [表 2] [0210] [Table 2]
Figure imgf000065_0001
Figure imgf000065_0001
[0211] 表 2より、比較の有機 EL素子に比べて、本発明の有機 EL素子は高い発光効率と、 発光寿命が得られることが分力ゝつた。なお、本発明の有機 EL素子の発光色は全て 緑色だった。  [0211] As can be seen from Table 2, the organic EL element of the present invention has a higher luminous efficiency and a longer luminous life than the comparative organic EL element. The emission colors of the organic EL devices of the present invention were all green.
[0212] 実施例 3 [0212] Example 3
《フルカラー表示装置の作製》  << Production of full-color display device >>
(青色発光素子の作製)  (Production of blue light emitting element)
実施例 1の有機 EL素子 OLED 1-11を青色発光素子として用 、た。 [0213] (緑色発光素子の作製) The organic EL element OLED 1-11 of Example 1 was used as a blue light emitting element. [0213] (Production of green light-emitting element)
実施例 2の有機 EL素子 OLED2— 7を緑色発光素子として用いた。  The organic EL element OLED2-7 of Example 2 was used as a green light emitting element.
[0214] (赤色発光素子の作製) [0214] (Production of red light-emitting element)
実施例 1の有機 EL素子 OLED1— 11の作製において、発光ドーパントを I 1から Ir 9に変更した以外は同様にして作製した有機 EL素子を赤色発光素子として用いた  In the production of the organic EL device OLED1-11 of Example 1, an organic EL device produced in the same manner except that the luminescent dopant was changed from I1 to Ir9 was used as a red light-emitting device.
[0215] 上記赤色、緑色、青色各発光有機 EL素子を同一基板上に並置し、図 1に記載のよ うな形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図 2には、 作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基板上に、複 数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光の色が赤 領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複 数のデータ線 6はそれぞれ導電材料力 なり、走査線 5とデータ線 6は格子状に直交 して、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数画素 3は、 それぞれの発光色に対応した有機 EL素子、アクティブ素子であるスイッチングトラン ジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されて おり、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を受け 取り、受け取った画像データに応じて発光する。この様に各赤、緑、青の画素を適宜 、並置することによって、フルカラー表示装置を作製した。 [0215] The red, green, and blue light-emitting organic EL elements were juxtaposed on the same substrate to produce an active matrix full-color display device having the form as shown in FIG. 1, and FIG. Only a schematic diagram of the display unit A of the display device is shown. That is, on the same substrate, a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of juxtaposed pixels 3 (pixels in a red region, pixels in a green region, pixels in a blue region, etc.) The scanning line 5 and the plurality of data lines 6 of the wiring portion are made of conductive material, respectively, and the scanning line 5 and the data line 6 are orthogonal to each other in a grid and connected to the pixel 3 at orthogonal positions. (Details not shown). The plurality of pixels 3 are driven by an active matrix method including an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6, and light is emitted according to the received image data. Thus, a full-color display device was manufactured by appropriately arranging the red, green, and blue pixels.
[0216] フルカラー表示装置を駆動することにより、輝度が高ぐ高耐久性を有し、かつ、鮮 明なフルカラー動画表示が得られることが分力つた。  [0216] By driving a full-color display device, it was possible to obtain high luminance, high durability, and a clear full-color moving image display.
[0217] 実施例 4  [0217] Example 4
《白色発光素子及び白色照明装置の作製》  << Production of white light emitting element and white lighting device >>
実施例 1の透明電極基板の電極を 20mm X 20mmにパターユングし、その上に実 施例 1と同様に正孔注入/輸送層として α— NPDを 25nmの厚さで製膜し、さらに、 CBPの入った前記加熱ボートと本発明化合物 P— 9の入ったボート及び Ir 9の入つ たボートをそれぞれ独立に通電して発光ホストである CBPと発光ドーパントである本 発明化合物 P— 9及び Ir 9の蒸着速度が 100 : 5 : 0. 6になるように調節し膜厚 30nm の厚さになるように蒸着し、発光層を設けた。 [0218] ついで、 BCPを lOnm製膜して正孔阻止層を設けた。さらに、 Alqを 40nmで製膜 The electrode of the transparent electrode substrate of Example 1 was patterned into 20 mm × 20 mm, and α-NPD was formed thereon as a hole injection / transport layer with a thickness of 25 nm as in Example 1, and further, The heated boat containing CBP, the boat containing compound P-9 of the present invention, and the boat containing Ir 9 are energized independently of each other, and CBP, which is a luminescent host, and compound P-9, which is a luminescent dopant, and The deposition rate of Ir 9 was adjusted so as to be 100: 5: 0.6, and the deposition was performed so as to have a thickness of 30 nm to provide a light emitting layer. [0218] Next, BCP was formed by lOnm to form a hole blocking layer. In addition, Alq is deposited at 40nm
3  Three
し電子輸送層を設けた。  An electron transport layer was provided.
[0219] 次に、実施例 1と同様に、電子輸送層の上にステンレス鋼製の透明電極とほぼ同じ 形状の正方形穴あきマスクを設置し、陰極バッファ一層としてフッ化リチウム 0. 5nm 及び陰極としてアルミニウム 150nmを蒸着製膜した。 [0219] Next, as in Example 1, a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron transport layer, and 0.5 nm of lithium fluoride and a cathode were formed as a cathode buffer layer. Was formed by vapor deposition of aluminum with a thickness of 150 nm.
[0220] この素子を実施例 1と同様な方法及び同様な構造の封止缶を具備させ平面ランプ を作製した。図 6に平面ランプの模式図を示した。図 6 (a)に平面模式を図 6 (b)に断 面模式図を示す。 [0220] This element was provided with a sealing can having the same method and the same structure as in Example 1 to produce a flat lamp. Fig. 6 shows a schematic diagram of a flat lamp. Fig. 6 (a) shows a schematic plan view and Fig. 6 (b) shows a schematic cross-sectional view.
[0221] この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用でき ることが分かった。  [0221] When the flat lamp was energized, almost white light was obtained, which proved that it could be used as a lighting device.
産業上の利用可能性  Industrial applicability
[0222] 本発明により、発光波長が制御され、高い発光効率を示し、かつ、発光寿命の長い 有機 EL素子、照明装置及び表示装置を提供することができる。 According to the present invention, it is possible to provide an organic EL element, a lighting device, and a display device in which the emission wavelength is controlled, which exhibits high emission efficiency, and which has a long emission life.

Claims

請求の範囲 The scope of the claims
下記一般式 (1)で表される部分構造を有する金属錯体を含有することを特徴とする 有機エレクト口ルミネッセンス素子材料。  An organic electroluminescent device material comprising a metal complex having a partial structure represented by the following general formula (1).
—般式 (1 ) —General formula (1)
Figure imgf000068_0001
Figure imgf000068_0001
(式中、 A、 B、 Cは水素原子または置換基を表し、その少なくとも二つは下記一般式 (2)で表され、互いに異なっていてもよい。 R、 R、 R、 R、 Rは水素原子または置 (Where A, B, and C represent a hydrogen atom or a substituent, at least two of which are represented by the following general formula (2) and may be different from each other. R, R, R, R, R Hydrogen atom or position
1 2 3 4 5  1 2 3 4 5
換基を表す。 Mは元素周期表における第 8族、第 9族または第 10族の元素を表す。 )  Represents a substituent. M represents an element of Group 8, 9 or 10 in the periodic table. )
一般式(2) -Xa-(Ra)  General formula (2) -Xa- (Ra)
na  na
(式中、 Raは置換基を表す。 Xaは酸素原子、硫黄原子または窒素原子を表す。 na は 1または 2を表す。 )  (In the formula, Ra represents a substituent. Xa represents an oxygen atom, a sulfur atom, or a nitrogen atom. Na represents 1 or 2.)
[2] 前記一般式(2)にお 、て、 Raがアルキル基であることを特徴とする請求の範囲第 1 項に記載の有機エレクト口ルミネッセンス素子材料。  [2] The organic electroluminescent device material according to claim 1, wherein in the general formula (2), Ra is an alkyl group.
[3] 一般式 (3)で表される部分構造を有する金属錯体を含有することを特徴とする有機 エレクトロノレミネッセンス素子材料。 一般式 (3) [3] An organic electroluminescence device material comprising a metal complex having a partial structure represented by the general formula (3). General formula (3)
Figure imgf000069_0001
Figure imgf000069_0001
(式中、 Rb、 Rc、 Rdは置換基を表し、 Xb、 Xc、 Xdは酸素原子、硫黄原子または窒 素原子を表す。 nb、 nc、 ndは 1または 2を表す。 R、 R、 R、 R、 R は水素原子また (In the formula, Rb, Rc, and Rd represent a substituent, Xb, Xc, and Xd represent an oxygen atom, a sulfur atom, or a nitrogen atom. Nb, nc, and nd represent 1 or 2. R, R, R , R, R are hydrogen atoms or
6 7 8 9 10  6 7 8 9 10
は置換基を表す。 Mは元素周期表における第 8族、第 9族または第 10族の元素を  Represents a substituent. M represents an element in group 8, 9 or 10 of the periodic table
2  2
表す。)  Represent. )
[4] 前記一般式(3)にお 、て、 Rb、 Rc、 Rdがアルキル基であることを特徴とする請求の 範囲第 3項に記載の有機エレクト口ルミネッセンス素子材料。  [4] The organic electroluminescent device material according to claim 3, wherein in the general formula (3), Rb, Rc and Rd are alkyl groups.
[5] 前記一般式 (3)にお 、て、 Xdが窒素原子で、 Xb、 Xcが酸素原子であることを特徴と する請求の範囲第 3項に記載の有機エレクト口ルミネッセンス素子材料。 5. The organic electroluminescent device material according to claim 3, wherein in the general formula (3), Xd is a nitrogen atom, and Xb and Xc are oxygen atoms.
[6] 前記一般式 (3)において、 Xdが硫黄原子であり、 Xb、 Xcが酸素原子であることを特 徴とする請求の範囲第 3項に記載の有機エレクト口ルミネッセンス素子材料。 6. The organic electroluminescent device material according to claim 3, wherein in the general formula (3), Xd is a sulfur atom, and Xb and Xc are oxygen atoms.
[7] 前記一般式(3)にお 、て、 Xb、 Xc、 Xdが酸素原子であることを特徴とする請求の範 囲第 3項に記載の有機エレクト口ルミネッセンス素子材料。 7. The organic electroluminescent device material according to claim 3, wherein in the general formula (3), Xb, Xc, and Xd are oxygen atoms.
[8] Mがイリジウムまたは白金であることを特徴とする請求の範囲第 1項に記載の有機ェ レクト口ルミネッセンス素子材料。 [8] The material for an organic EL device according to claim 1, wherein M is iridium or platinum.
[9] M力イリジウムまたは白金であることを特徴とする請求の範囲第 3項に記載の有機ェ  [9] The organic solvent according to claim 3, which is iridium or platinum.
2  2
レクト口ルミネッセンス素子材料。  Recto luminescence element material.
[10] 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料を含有することを 特徴とする有機エレクト口ルミネッセンス素子。  [10] An organic electroluminescent device comprising the organic electroluminescent device material according to claim 1.
[11] 請求の範囲第 3項に記載の有機エレクト口ルミネッセンス素子材料を含有することを 特徴とする有機エレクト口ルミネッセンス素子。 [11] An organic electroluminescence device comprising the organic electroluminescence device according to claim 3.
[12] 構成層として発光層を有し、該発光層が請求の範囲第 1項に記載の有機エレクト口 ルミネッセンス素子材料を含有することを特徴とする有機エレクト口ルミネッセンス素 子。 [12] An organic electroluminescent device having a light emitting layer as a constituent layer, wherein the light emitting layer contains the organic electroluminescent device material according to claim 1.
[13] 構成層として発光層を有し、該発光層が請求の範囲第 3項に記載の有機エレクト口 ルミネッセンス素子材料を含有することを特徴とする有機エレクト口ルミネッセンス素 子。  [13] An organic electroluminescent device comprising a light emitting layer as a constituent layer, wherein the light emitting layer contains the organic electroluminescent device material according to claim 3.
[14] 構成層として正孔阻止層を有し、該正孔阻止層が請求の範囲第 1項に記載の有機 エレクト口ルミネッセンス素子材料を含有することを特徴とする有機エレクト口ルミネッ センス素子。  [14] An organic electroluminescent device having a hole blocking layer as a constituent layer, wherein the hole blocking layer contains the organic electroluminescent device material according to claim 1.
[15] 構成層として正孔阻止層を有し、該正孔阻止層が請求の範囲第 3項に記載の有機 エレクト口ルミネッセンス素子材料を含有することを特徴とする有機エレクト口ルミネッ センス素子。  [15] An organic electroluminescent device having a hole blocking layer as a constituent layer, wherein the hole blocking layer contains the organic electroluminescent device material according to claim 3.
[16] 請求の範囲第 10項に記載の有機エレクトルミネッセンス素子を有することを特徴とす る表示装置。  [16] A display device comprising the organic electroluminescence element according to claim 10.
[17] 請求の範囲第 10項に記載の有機エレクトルミネッセンス素子を有することを特徴とす る照明装置。  [17] A lighting device comprising the organic electroluminescence element according to claim 10.
PCT/JP2005/004683 2004-03-31 2005-03-16 Organic electroluminescent device material, organic electroluminescent device, display and illuminating device WO2005097943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511956A JP5045100B2 (en) 2004-03-31 2005-03-16 Organic electroluminescence element material and organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-103249 2004-03-31
JP2004103249 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005097943A1 true WO2005097943A1 (en) 2005-10-20

Family

ID=35125053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004683 WO2005097943A1 (en) 2004-03-31 2005-03-16 Organic electroluminescent device material, organic electroluminescent device, display and illuminating device

Country Status (2)

Country Link
JP (2) JP5045100B2 (en)
WO (1) WO2005097943A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640365A1 (en) * 2003-07-02 2006-03-29 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescence device containing the same
DE102007046445A1 (en) 2007-09-28 2009-04-16 Osram Opto Semiconductors Gmbh Organic radiation-emitting component, useful as organic light-emitting diode, comprises substrate, lower electrode layer, organic radiation-emitting layer with matrix containing radiation emitting metal complex and upper electrode layer
WO2010007107A1 (en) 2008-07-18 2010-01-21 Siemens Aktiengesellschaft Phosphorescent metal complex compound, method for the preparation thereof and radiating component
US20100270540A1 (en) * 2007-12-06 2010-10-28 Inktec Co., Ltd. Iridium Complex Containing Carbazole-Substituted Pyridine and Phenyl Derivatives as Main Ligand and Organic Light-Emitting Diodes Containing the Same
DE102009031683A1 (en) 2009-07-03 2011-03-24 Siemens Aktiengesellschaft Phophorescent metal complex compound, process for the preparation thereof and radiation-emitting component
DE102010005634A1 (en) 2010-01-25 2011-07-28 Siemens Aktiengesellschaft, 80333 Novel use of guanidinium cation and light-emitting device
DE102010005632A1 (en) 2010-01-25 2011-07-28 Siemens Aktiengesellschaft, 80333 Phosphorescent metal complex compound, method of preparation and light emitting device
JP2012502046A (en) * 2008-09-03 2012-01-26 ユニバーサル ディスプレイ コーポレイション Phosphorescent material
WO2012066686A1 (en) * 2010-11-19 2012-05-24 学校法人東京理科大学 Transition metal complex and use of same
WO2012069170A1 (en) 2010-11-22 2012-05-31 Solvay Sa A metal complex comprising a ligand having a combination of donor-acceptor substituents
JP2012102091A (en) * 2010-10-15 2012-05-31 Semiconductor Energy Lab Co Ltd Organometallic complex, and light-emitting element and display device using the same
WO2013018531A1 (en) * 2011-07-29 2013-02-07 Canon Kabushiki Kaisha Organometallic complex and organic light emitting element including the same
KR20130018738A (en) * 2010-03-03 2013-02-25 유니버셜 디스플레이 코포레이션 Phosphorescent materials
WO2013042626A1 (en) * 2011-09-21 2013-03-28 シャープ株式会社 Transition metal complex having alkoxy group, organic light-emitting device using same, color conversion light-emitting device using same, light conversion light-emitting device using same, organic laser diode light-emitting device using same, dye laser using same, display system using same, lighting system using same and electronic equipment using same
US20130306940A1 (en) * 2012-05-21 2013-11-21 Universal Display Corporation Heteroleptic iridium complexes containing carbazole-imidazole-carbene ligands and application of the same in light-emitting devices
US8734962B2 (en) 2007-05-21 2014-05-27 Osram Opto Semiconductors Gmbh Phosphorescent metal complex compound radiation emitting component comprising a phosphorescent metal complex compound and method for production of a phosphorescent metal complex compound
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes
WO2015037548A1 (en) * 2013-09-12 2015-03-19 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9139764B2 (en) 2007-09-28 2015-09-22 Osram Opto Semiconductors Gmbh Organic radiation-emitting component
JP2017193536A (en) * 2016-04-11 2017-10-26 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
US9812657B2 (en) 2014-01-07 2017-11-07 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
CN108484683A (en) * 2018-03-27 2018-09-04 江苏科技大学 Solubilising metal organic complex and the preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357588A (en) * 1999-06-11 2000-12-26 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2001181617A (en) * 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd Light emitting element material composed of orthometalated palladium complex and light emitting element
JP2003146996A (en) * 2000-09-26 2003-05-21 Canon Inc Light emission element, display and metal coordination compound for the light emission element
JP2004067658A (en) * 2002-06-10 2004-03-04 Mitsubishi Chemicals Corp Organometallic complex and organic electroluminescent device by using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812730B2 (en) * 2001-02-01 2006-08-23 富士写真フイルム株式会社 Transition metal complex and light emitting device
JP2003192691A (en) * 2001-12-26 2003-07-09 Mitsubishi Chemicals Corp Organic iridium complex and organic electroluminescent element
US6919139B2 (en) * 2002-02-14 2005-07-19 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds
US20050211974A1 (en) * 2004-03-26 2005-09-29 Thompson Mark E Organic photosensitive devices
WO2005097942A1 (en) * 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
JPWO2005097941A1 (en) * 2004-03-31 2008-02-28 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357588A (en) * 1999-06-11 2000-12-26 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2001181617A (en) * 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd Light emitting element material composed of orthometalated palladium complex and light emitting element
JP2003146996A (en) * 2000-09-26 2003-05-21 Canon Inc Light emission element, display and metal coordination compound for the light emission element
JP2004067658A (en) * 2002-06-10 2004-03-04 Mitsubishi Chemicals Corp Organometallic complex and organic electroluminescent device by using the same

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640365A4 (en) * 2003-07-02 2008-09-17 Idemitsu Kosan Co Metal complex compound and organic electroluminescence device containing the same
EP1640365A1 (en) * 2003-07-02 2006-03-29 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescence device containing the same
US9966544B2 (en) 2007-05-21 2018-05-08 Osram Oled Gmbh Phosphorescent metal complex compound radiation emitting component comprising a phosphorescent metal complex compound and method for production of a phosphorescent metal complex compound
US8734962B2 (en) 2007-05-21 2014-05-27 Osram Opto Semiconductors Gmbh Phosphorescent metal complex compound radiation emitting component comprising a phosphorescent metal complex compound and method for production of a phosphorescent metal complex compound
DE102007046445A1 (en) 2007-09-28 2009-04-16 Osram Opto Semiconductors Gmbh Organic radiation-emitting component, useful as organic light-emitting diode, comprises substrate, lower electrode layer, organic radiation-emitting layer with matrix containing radiation emitting metal complex and upper electrode layer
US9139764B2 (en) 2007-09-28 2015-09-22 Osram Opto Semiconductors Gmbh Organic radiation-emitting component
JP2011506312A (en) * 2007-12-06 2011-03-03 インクテック シーオー.,リミテッド. Iridium complex having carbazole pyridine and phenyl derivative as main ligands, and organic electroluminescent device containing the same
US8232549B2 (en) * 2007-12-06 2012-07-31 Inktec Co., Ltd Iridium complex containing carbazole-substituted pyridine and phenyl derivatives as main ligand and organic light-emitting diodes containing the same
US20100270540A1 (en) * 2007-12-06 2010-10-28 Inktec Co., Ltd. Iridium Complex Containing Carbazole-Substituted Pyridine and Phenyl Derivatives as Main Ligand and Organic Light-Emitting Diodes Containing the Same
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes
DE102008033929A1 (en) 2008-07-18 2010-01-21 Siemens Aktiengesellschaft Phosphorescent metal complex compound, process for the preparation thereof and radiation-emitting component
US9012038B2 (en) 2008-07-18 2015-04-21 Osram Gmbh Phosphorescent metal complex compound, method for the preparation thereof and radiating component
WO2010007107A1 (en) 2008-07-18 2010-01-21 Siemens Aktiengesellschaft Phosphorescent metal complex compound, method for the preparation thereof and radiating component
US10593896B2 (en) 2008-09-03 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10186672B2 (en) 2008-09-03 2019-01-22 Universal Display Corporation Organic electroluminescent materials and devices
US11482685B2 (en) 2008-09-03 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
KR102207559B1 (en) 2008-09-03 2021-01-26 유니버셜 디스플레이 코포레이션 Phosphorescent materials
US10892426B2 (en) 2008-09-03 2021-01-12 Universal Display Corporation Organic electroluminescent materials and devices
US9630983B2 (en) 2008-09-03 2017-04-25 Universal Display Corporation Organic electroluminescent material and devices
KR20200021549A (en) * 2008-09-03 2020-02-28 유니버셜 디스플레이 코포레이션 Phosphorescent materials
KR102082091B1 (en) 2008-09-03 2020-02-26 유니버셜 디스플레이 코포레이션 Phosphorescent materials
KR101969690B1 (en) 2008-09-03 2019-04-16 유니버셜 디스플레이 코포레이션 Phosphorescent materials
KR20190018044A (en) * 2008-09-03 2019-02-20 유니버셜 디스플레이 코포레이션 Phosphorescent materials
KR101950655B1 (en) 2008-09-03 2019-02-20 유니버셜 디스플레이 코포레이션 Phosphorescent materials
KR102530743B1 (en) 2008-09-03 2023-05-09 유니버셜 디스플레이 코포레이션 Phosphorescent materials
JP2012502046A (en) * 2008-09-03 2012-01-26 ユニバーサル ディスプレイ コーポレイション Phosphorescent material
KR20210157408A (en) * 2008-09-03 2021-12-28 유니버셜 디스플레이 코포레이션 Phosphorescent materials
TWI593694B (en) * 2008-09-03 2017-08-01 環球展覽公司 Method of making heteroleptic compounds
US9076973B2 (en) 2008-09-03 2015-07-07 Universal Display Corporation Phosphorescent materials
KR101831916B1 (en) * 2008-09-03 2018-02-26 유니버셜 디스플레이 코포레이션 Phosphorescent materials
TWI549960B (en) * 2008-09-03 2016-09-21 環球展覽公司 Phosphorescent materials
KR20180021231A (en) * 2008-09-03 2018-02-28 유니버셜 디스플레이 코포레이션 Phosphorescent materials
KR20180049183A (en) * 2008-09-03 2018-05-10 유니버셜 디스플레이 코포레이션 Phosphorescent materials
DE102009031683A1 (en) 2009-07-03 2011-03-24 Siemens Aktiengesellschaft Phophorescent metal complex compound, process for the preparation thereof and radiation-emitting component
US9375392B2 (en) 2010-01-25 2016-06-28 Osram Ag Use of the guanidinium cation and light-emitting component
DE102010005634A1 (en) 2010-01-25 2011-07-28 Siemens Aktiengesellschaft, 80333 Novel use of guanidinium cation and light-emitting device
US9169434B2 (en) 2010-01-25 2015-10-27 Osram Ag Phosphorescent metal complex, process for production and light-emitting component
DE102010005632A1 (en) 2010-01-25 2011-07-28 Siemens Aktiengesellschaft, 80333 Phosphorescent metal complex compound, method of preparation and light emitting device
WO2011088918A1 (en) 2010-01-25 2011-07-28 Siemens Aktiengesellschaft Use of a guanidinium cation in a light-emitting component
US9175211B2 (en) 2010-03-03 2015-11-03 Universal Display Corporation Phosphorescent materials
KR20130018738A (en) * 2010-03-03 2013-02-25 유니버셜 디스플레이 코포레이션 Phosphorescent materials
JP2013521280A (en) * 2010-03-03 2013-06-10 ユニバーサル ディスプレイ コーポレイション Phosphorescent substance
KR101872038B1 (en) * 2010-03-03 2018-07-31 유니버셜 디스플레이 코포레이션 Phosphorescent materials
JP2016121160A (en) * 2010-03-03 2016-07-07 ユニバーサル ディスプレイ コーポレイション Phosphorescent materials
JP2016027659A (en) * 2010-10-15 2016-02-18 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, luminaire, and electronic device
US9972794B2 (en) 2010-10-15 2018-05-15 Semiconductor Laboratory Co., Ltd. Organometallic complex, and light-emitting element and display device using the organometallic complex
US9490436B2 (en) 2010-10-15 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and display device using the organometallic complex
JP2012102091A (en) * 2010-10-15 2012-05-31 Semiconductor Energy Lab Co Ltd Organometallic complex, and light-emitting element and display device using the same
WO2012066686A1 (en) * 2010-11-19 2012-05-24 学校法人東京理科大学 Transition metal complex and use of same
JP2013545754A (en) * 2010-11-22 2013-12-26 ソルヴェイ(ソシエテ アノニム) Metal complexes containing ligands with a combination of donor and acceptor substituents
WO2012069170A1 (en) 2010-11-22 2012-05-31 Solvay Sa A metal complex comprising a ligand having a combination of donor-acceptor substituents
CN103339137A (en) * 2010-11-22 2013-10-02 索尔维公司 A metal complex comprising a ligand having a combination of donor-acceptor substituents
WO2013018531A1 (en) * 2011-07-29 2013-02-07 Canon Kabushiki Kaisha Organometallic complex and organic light emitting element including the same
CN103814039A (en) * 2011-09-21 2014-05-21 夏普株式会社 Transition metal complex having alkoxy group, organic light-emitting device using same, color conversion light-emitting device using same, light conversion light-emitting device using same, organic laser diode light-emitting device using same, dye laser using same, display system using same, lighting system using same and electronic equipment using same
WO2013042626A1 (en) * 2011-09-21 2013-03-28 シャープ株式会社 Transition metal complex having alkoxy group, organic light-emitting device using same, color conversion light-emitting device using same, light conversion light-emitting device using same, organic laser diode light-emitting device using same, dye laser using same, display system using same, lighting system using same and electronic equipment using same
CN103814039B (en) * 2011-09-21 2017-03-15 夏普株式会社 The transition metal complex compound and the organic illuminating element using which, complexion changed with alkoxyl changes optical element, light conversion light-emitting component, organic laser diode light-emitting component, pigment laser device, display device, illuminator and electronic equipment
US20130306940A1 (en) * 2012-05-21 2013-11-21 Universal Display Corporation Heteroleptic iridium complexes containing carbazole-imidazole-carbene ligands and application of the same in light-emitting devices
US9773985B2 (en) * 2012-05-21 2017-09-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2015037548A1 (en) * 2013-09-12 2015-03-19 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9412956B2 (en) 2013-09-12 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9812657B2 (en) 2014-01-07 2017-11-07 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
JP2017193536A (en) * 2016-04-11 2017-10-26 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
JP2022003041A (en) * 2016-04-11 2022-01-11 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
CN108484683B (en) * 2018-03-27 2021-01-19 江苏科技大学 Solubilizing metal organic complex and preparation method and application thereof
CN108484683A (en) * 2018-03-27 2018-09-04 江苏科技大学 Solubilising metal organic complex and the preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2005097943A1 (en) 2008-02-28
JP5403105B2 (en) 2014-01-29
JP2012199562A (en) 2012-10-18
JP5045100B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5045100B2 (en) Organic electroluminescence element material and organic electroluminescence element
JP5151481B2 (en) Organic electroluminescence element, display device and lighting device
JP4894513B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5076501B2 (en) White organic electroluminescence element, image display element, and illumination device
JP4904821B2 (en) Organic electroluminescence device and organic electroluminescence display
JP5124943B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5076888B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2005097942A1 (en) Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
WO2007029466A1 (en) Organic electroluminescent device, display and illuminating device
WO2005097940A1 (en) Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
WO2007055186A1 (en) Organic electroluminescent device, display and illuminating device
JP4935001B2 (en) Organic electroluminescence element material
WO2005009088A1 (en) Organic electroluminescent device, illuminating device, and display
JP6119375B2 (en) Organic electroluminescence element, display device and lighting device
JP4904727B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JPWO2006129471A1 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT MANUFACTURING METHOD, LIGHTING DEVICE, AND DISPLAY DEVICE
KR101751150B1 (en) Organic electroluminescence element, illumination device and display device
WO2005097941A1 (en) Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
JPWO2009008367A1 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2016056562A1 (en) Iridium complex, organic electroluminescence material, organic electroluminescence element, display device, and illumination device
KR20170131537A (en) Materials for Organic Electroluminescence Devices, Organic Electroluminescence Devices, Display Devices and Lighting Devices
JP5104981B2 (en) Organic electroluminescence element, display device and lighting device
WO2005062675A1 (en) Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
JP4946862B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, IMAGE DISPLAY DEVICE AND LIGHTING DEVICE
JP2005078996A (en) Organic electroluminescent element and display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511956

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase