WO2005096995A2 - Stent delivery for bifurcated vessels - Google Patents

Stent delivery for bifurcated vessels Download PDF

Info

Publication number
WO2005096995A2
WO2005096995A2 PCT/US2005/010962 US2005010962W WO2005096995A2 WO 2005096995 A2 WO2005096995 A2 WO 2005096995A2 US 2005010962 W US2005010962 W US 2005010962W WO 2005096995 A2 WO2005096995 A2 WO 2005096995A2
Authority
WO
WIPO (PCT)
Prior art keywords
stent
stents
delivery catheter
vessel
branch
Prior art date
Application number
PCT/US2005/010962
Other languages
French (fr)
Other versions
WO2005096995A3 (en
Inventor
Bernard Andreas
Jeffry J. Grainger
Original Assignee
Xtent, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xtent, Inc. filed Critical Xtent, Inc.
Priority to CA002560310A priority Critical patent/CA2560310A1/en
Priority to JP2007506577A priority patent/JP4921355B2/en
Priority to AU2005231420A priority patent/AU2005231420A1/en
Priority to EP05730839A priority patent/EP1737388A4/en
Publication of WO2005096995A2 publication Critical patent/WO2005096995A2/en
Publication of WO2005096995A3 publication Critical patent/WO2005096995A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/856Single tubular stent with a side portal passage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9517Instruments specially adapted for placement or removal of stents or stent-grafts handle assemblies therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • A61F2002/067Y-shaped blood vessels modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/825Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having longitudinal struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/826Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0071Additional features; Implant or prostheses properties not otherwise provided for breakable or frangible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0097Visible markings, e.g. indicia

Definitions

  • This application is also a continuation-in-part of U.S. Patent Application Serial No. 10/738666 (Attorney Docket No. 021629-000510US), filed December 16, 2003, which is a non-provisional application of U.S. Provisional Patent Application No. 60/440,839 (Attorney Docket No. 21629-000500US), filed January 17, 2003, the disclosures of which are all fully incorporated herein by reference.
  • This invention relates generally to stents and stent delivery catheters for deployment in the coronary arteries and other vessels. More specifically, the invention relates to stents and stent delivery systems for treating bifurcated vessels.
  • Stenting has become an increasingly important treatment option for patients with coronary artery disease. Stenting involves the placement of a tubular prosthesis within a diseased coronary artery to expand the arterial lumen and maintain the patency of the artery.
  • Stenting involves the placement of a tubular prosthesis within a diseased coronary artery to expand the arterial lumen and maintain the patency of the artery.
  • Early stent technology suffered from problems with restenosis, the tendency of the coronary artery to become re-occluded following stent placement.
  • improvements in stent design and the advent of drug-eluting stents have reduced restenosis rates dramatically. As a result, the number of stenting procedures being performed in the United States, Europe, and elsewhere has risen.
  • Stents are delivered to the coronary arteries using long, flexible vascular catheters typically inserted through a femoral artery.
  • the stent is simply released from the delivery catheter and it resiliently expands into engagement with the vessel wall.
  • a balloon on the delivery catheter is expanded which expands and deforms the stent to the desired diameter, whereupon the balloon is deflated and removed.
  • current stent delivery devices are not well-adapted for treating vascular lesions that are very long and/or in curved regions of a vessel.
  • Current stents have a discrete length that is relatively short due to their stiffiiess. If current stents were made longer so as to treat longer lesions, they would not conform well to the curvature of vessels or to the movement of vessels on the surface of the beating heart. On the other hand, any attempt to place multiple stents end-to-end in longer lesions is hampered by the inability to maintain appropriate inter-stent spacing and to prevent overlap of adjacent stents.
  • 021629-000340US filed August 8, 2003; 10/624451 (Attorney Docket No. 021629-000400US), filed July 21, 2003; 10/738666 (Attorney Docket No. 021629-000510US), filed December 16, 2003; 10/458062 (Attorney Docket No. 021629- 001800US), filed June 9, 2003; 10/686507 (Attorney Docket No. 021629-001900US), filed October 14, 2003; 10/686025 (Attorney Docket No. 021629-002000US), filed October 14, 2003; 10/687532 (Attorney Docket No.
  • a bifurcation of a vessel is generally a division into two branches, such as a main branch and a side branch.
  • treatment of such bifurcated vessels with stents is difficult because it is technically challenging to place one or more stents in a main vessel and one or more stents in a branching vessel so as to sufficiently treat the existing lesion(s) while not interrupting blood flow through either the main or branch vessel.
  • the main vessel is treated sufficiently with a stent, the stent disrupts flow into the branching vessel and/or makes placement of additional stents in the branching vessel quite difficult.
  • a stent in the branching vessel may hinder stent placement and/or blood flow in the main vessel. Difficulties in stent-based treatment of bifurcated vessels occur due to limitations of both current stent designs and currently available stent delivery devices and techniques.
  • Some currently available systems for placing stents at an area of vessel bifurcation require placement of a first stent in one branch of the vessel, removal of the catheter from the body, insertion of a second catheter to place a second stent, and so on until a desired number of stents is placed.
  • Other available techniques involve insertion of two catheters simultaneously to place stents in two branches of a bifurcated vessel.
  • a number of other alternative techniques and devices have been developed for treating vessel lesions at bifurcations. Some methods are described, for example, in U.S. Patent Nos. 6,033,434 and 6,582,394, as well as PCT Patent Application Publication No. WO 2004/017865.
  • stents and stent delivery catheters should be capable of treating lesions of particularly long length and lesions in curved regions of a vessel, and should be highly flexible to conform to vessel shape and movement.
  • Such stent delivery catheters should further be of minimal cross- sectional profile and should be highly flexible for endovascular positioning through tortuous vascular pathways. At least some of these objectives will be met by the present invention.
  • a method of treating one or more lesions in a vessel involves: positioning a delivery catheter in the main branch; deploying a first stent from the delivery catheter in the main branch; positioning the delivery catheter in the side branch; and deploying a second stent from the delivery catheter in the side branch.
  • the delivery catheter is not removed from the vessel between deploying the first and second stents.
  • the method may optionally include deploying a third stent from the delivery catheter in the main branch or side branch without removing the delivery catheter from the vessel, h one embodiment, the delivery catheter is positioned through an opening in a sidewall of the first stent to deploy the second stent.
  • the first and second stents each comprise a plurality of separable segments.
  • the first stent may have a different length than the second stent.
  • the first stent may be deployed before the second stent or the second stent may be deployed before the first stent.
  • the first stent and the second stent each have a portion in the main branch.
  • Some embodiments of the method further include adjusting the length of the first and/or second stents before deploying the first and/or second stents while the delivery catheter remains in the vessel. [0015] Optionally, some embodiments further include dilating at least one lesion in the vessel using an expandable member on the delivery catheter before deploying at least one of the first and second stents. Such dilating of a vessel before deploying a stent is often referred to as "pre-dilatation.” In various embodiments, various different techniques for pre-dilatation and stent placement may be employed. For example, in one embodiment an expandable member may be used to pre-dilate a vessel, and then the same expandable member may be used to deploy and expandable stent.
  • the same expandable member may additionally be used to further expand the stent after it has been deployed.
  • an expandable member may be used to pre-dilate a vessel and then self- expanding stent(s) may be deployed from the delivery catheter without using the expandable member for deployment.
  • a first expandable member may be used for pre-dilatation and a second expandable member on the same delivery catheter may be used to deploy stent(s) in the vessel.
  • any suitable combination of expandable members, pre- dilatation and stent delivery are contemplated within the scope of the invention. Stent delivery devices and methods involving pre-dilatation are described more fully in U.S. Patent Application Serial No. 10/794,405 (Attorney Docket No. 021629-002400US), entitled “Stent Delivery Apparatus and Methods," filed March 3, 2004, which was previously incorporated by reference.
  • a method of treating one or more lesions in a vessel involves: positioning a delivery catheter in the first branch; deploying a first stent from the delivery catheter in the first branch, a portion of the first stent being disposed across the bifurcation; positioning the delivery catheter in the second branch through an opening in a sidewall of the first stent; and deploying a second stent from the delivery catheter, at least a portion of the second stent being disposed in the second branch.
  • the delivery catheter is not removed from the vessel between deploying the first and second stents.
  • the method further includes dilating the opening in the sidewall of the first stent by expanding an expandable member on the delivery catheter.
  • the opening in the sidewall of the first stent is I-shaped.
  • the first stent may have a first portion with a plurality of first slots and a second portion with a plurality of second slots, the first slots being larger than the second slots.
  • the opening in the sidewall of the first stent may comprise one of the first slots, and the first stent may be deployed so that at least one of the first slots is aligned with bifurcation.
  • any of a number of suitable stents may be used.
  • the first stent may have a different geometry than the second stent.
  • the first stent has a different length than the second stent.
  • at least one of the first and second stents comprises a plurality of separable segments.
  • deploying the first stent and/or the second stent comprises expanding an expandable member on the delivery catheter.
  • the stents may be self-expanding and may be deployed by releasing them from the delivery catheter. Some embodiments may further include dilating at least one lesion in the vessel using an expandable member on the delivery catheter before deploying at least one of the first and second stents.
  • a stent delivery device for treating one or more lesions in a vessel having a bifurcation, the bifurcation including a main branch and a side branch, includes: a catheter shaft; a first stent carried by the catheter shaft configured for deployment in the main branch; a second stent carried by the catheter shaft configured for deployment in the side branch; and a deployment mechanism for deploying the first and second stents independently of each other.
  • the deployment mechanism comprises an expandable member coupled to the catheter shaft, the first and second stents being positionable on the expandable member for expansion thereby.
  • Such embodiments may optionally further include a sheath slidably disposed over the expandable member, the sheath being positionable to restrain a first portion of the expandable member while allowing expansion of a second portion of the expandable member.
  • the expandable member is configured for dilation of the vessel without deploying either of the first and second stents.
  • either or both of the first and second stents may be self- expanding.
  • at least one of the first and second stents may have a sidewall opening that can be widened following stent deployment.
  • the other of the first and second stents may optionally be positionable through the sidewall opening.
  • the second stent has a different geometry, material, shape, and/or size than the first stent.
  • Some embodiments further include a third stent carried by the catheter shaft and deployable independently of the first and second stents. h some embodiments, a length of at least one of the first and second stents may be selected in situ. Also in some embodiments, at least one of the first and second stents may comprise a plurality of separable stent segments.
  • FIG. 1 is a perspective view of a stent delivery catheter with sheath retracted and expandable member inflated according to one embodiment of the invention.
  • Fig. 2 A is a side cross-section of a distal portion of the stent delivery catheter of Fig. 1 with expandable member deflated and sheath advanced distally.
  • Fig. 2B is a side cross-section of a distal portion of the stent delivery catheter of Fig. 1 with expandable member inflated and sheath retracted.
  • FIG. 3 A is a side view of a first embodiment of a stent segment in an unexpanded configuration according to one embodiment of the invention.
  • Fig. 3B is a side view of the stent segment of Fig. 3 A in an expanded configuration.
  • Fig. 4A is a side view of a stent segment in an unexpanded configuration according to one embodiment of the invention.
  • Fig. 4B is a side view of two of the stent segments of Fig. 4A in an expanded configuration.
  • FIG. 5 A is a perspective schematic view of a stent having a central portion and adjacent end portions according to one embodiment of the invention.
  • FIGs. 5B-5D are schematic side views of various stents, each having a central portion and adjacent end portions, according to various embodiments of the invention.
  • Figs. 6A-6H are side cutaway views illustrating a method for treating lesions in a bifurcated vessel using a stent delivery catheter according to one embodiment of the invention.
  • Figs. 7A-7D are side cutaway views illustrating a method for treating lesions in a bifurcated vessel using a stent delivery catheter according to another embodiment of the invention.
  • Fig. 7E is a schematic side view of two overlapping stents placed according to a method as in Figs. 7A-7D.
  • FIGs. 8A-8D are side cutaway views illustrating a method for treating lesions in a bifurcated vessel using a stent delivery catheter according to another embodiment of the invention.
  • a stent delivery catheter 20 comprises an elongate flexible shaft 22 having a proximal end 24 and a distal end 26.
  • Shaft 22 is comprised of a plurality of coaxial members including an inflation shaft 34, a pusher 36, and a sheath 38.
  • a handle 28 is mounted to sheath 38 at proximal end 24.
  • expandable member 30 shown in an expanded configuration, is mounted at its proximal end to inflation shaft 34.
  • a guidewire tube 40 extends through a port 42 in sheath 38 and extends through the interior of expandable member 30 to distal end 26.
  • Expandable member 30 is attached at its distal end to guidewire tube 40, and a nosecone 32 is mounted to guidewire tube 40 distally of expandable member 30.
  • a guidewire 44 is slidably positionable through guidewire tube 40 and nosecone 32 to facilitate guidance of catheter 20 through the vasculature.
  • a plurality of stent segments 46 are slidably positioned over expandable member 30.
  • Pusher 36 is axially slidable relative to inflation shaft 34 and engages stent segments 46 at its distal end 48.
  • Pusher 36 may be pushed distally to advance stent segments 46 over expandable member 30, or pusher 36 may be held in a stationary position while expandable member 30 is drawn proximally relative to stent segments 46.
  • Sheath 38 is axially movable relative to expandable member 30, pusher 36, and stent segments 46.
  • Sheath 38 may be repositioned proximally or distally to selectively expose a desired length of the expandable member and stent segments thereon according to the length of the lesion to be treated.
  • Sheath 38 and pusher 36 may be drawn proximally in tandem relative to expandable member 30 to separate stent segments 46 exposed distally of sheath 38 from stent segments 46 held within sheath 38.
  • Various other aspects of the construction of delivery catheter 20 and stent segments 46 are described in copending U.S. Patent Application Serial No. 10/637713, which was previously incorporated by reference.
  • a stent valve 50 is mounted to the interior of sheath 38 and is preferably spaced proximally from the distal end 52 of sheath 38 a distance equal to the length of about Vi-l stent segment.
  • Stent valve 50 comprises an annular ridge configured to frictionally engage stent segments 46 to facilitate control of the spacing between those segments to be deployed distally of sheath 38 and those to be retained within sheath 38.
  • Stent valve 50 may also comprise any of the structures described in copending U.S. Patent Application Serial No. 10/412714, which was previously incorporated by reference.
  • Handle 28 includes an actuator knob 54 rotatably coupled thereto.
  • a post 56 is mounted to handle 28 so as to be extendable distally out of the handle and retractable proximally into the handle.
  • Sheath 39 is attached to post 56.
  • Rotation of actuator knob 54 extends or retracts post 56, thereby moving sheath 38 relative to expandable member 30.
  • a lever 58 is pivotably coupled to handle 28 and is movable between a first position in which rotation of actuator knob 54 moves only sheath 38, and a second position in which rotation of actuator knob 54 moves both sheath 38 and pusher 36 relative to expandable member 30, as described more fully below.
  • a plurality of indicia 60 are disposed on post 56.
  • Indicia 60 comprise alphanumeric symbols or other appropriate indicators of the length of expandable member exposed distally of sheath 38 and/or the number or length of stent segments 46 exposed for deployment.
  • a pointer or other reference object may be used that points to the appropriate location among indicia 60 corresponding to the number or length of stent segments 46 that have been exposed; preferably such pointer is adapted to compensate for retraction of sheath 38 in tandem with pusher 36, during which additional stent segments are not exposed distally of sheath 38, as described more fully below.
  • a luer fitting 62 is mounted to a proximal end of handle 28 and is in fluid communication with an inflation lumen (not shown in Fig. 1) in inflation shaft 34. Luer fitting 62 is adapted for coupling to an inflation device to enable delivery of inflation fluid into expandable member 30, for example, an IndeflatorTM inflation device available from Guidant Corp. of Santa Clara, California.
  • delivery catheter 20 includes a device for providing a tactile indication of the number of stent segments 46 exposed from sheath 38 in addition to the visual indication provided by indicia 60.
  • the indication device consists of a detent 66 extending inwardly from the inner wall of sheath 38, and a series of slots 68 arranged axially at spaced-apart locations on pusher 36.
  • Detent 66 and slots 68 may be located in a distal portion of delivery catheter 20 just proximal to expandable member 30, in a middle portion of the catheter proximal to guidewire port 42, or near the proximal end 24 distally of or within post 56 or handle 28.
  • Detent 66 is preferably a cantilevered extension integrally formed with sheath 38, being cut, for example, out of the wall of sheath 38, and is resiliently deflectable and biased toward pusher 36.
  • Detent 66 may alternatively be a bump or ridge on the inner wall of sheath 38 configured to engage slots 68.
  • Slots 68 may be holes, apertures, depressions, recesses, ridges, bumps or any other suitable structure for receiving or catching on detent 66.
  • the spacing of slots 68 is selected to provide an indication of the distance that sheath 38 is translated relative to pusher 36. In a preferred embodiment, the spacing is equal to the length of 1 stent segment 46, although %, twice, or other known fraction or multiple of the length of a stent segment 46 are also possible. As sheath 38 is retracted proximally relative to pusher 36, detent 66 catches in each slot, providing a tactile "bump" that can be felt through handle 28.
  • knob 54 is turned to retract sheath 38
  • the user knows that each bump corresponds to the length of one stent segment, meaning that one stent segment has been exposed distally of sheath 38 with each bump.
  • the user can precisely retract the sheath to expose the number of stent segments needed to match the length of the lesion being treated, as illustrated in Fig. 2B.
  • stent delivery catheter devices such as those illustrated by Figs. 1, 2 A and 2B may be found in U.S. Patent Application No. 10/46466, which was previously incorporated by reference. Further detailed description of the distal portion of a stent delivery catheter may be found in U.S. Patent Application Serial No. 10/794,405 (Attorney Docket No. 021629-002400US), which was previously incorporated by reference.
  • FIG. 3 A illustrates a portion of a stent segment 32 in an unexpanded configuration, shown in a planar shape for clarity.
  • Stent segment 32 comprises two parallel rows 96 A, 96B of I-shaped cells 100 formed around an axis A so that stent segment 32 has a cylindrical shape.
  • Each cell 100 has upper and lower axial slots 102 aligned with the axial direction and a circumferential slot 104.
  • Upper and lower slots 102 preferably have an oval, racetrack, rectangular or other oblong shape with a long dimension L generally parallel to axis A and a short dimension W perpendicular thereto.
  • Axial slots 102 are bounded by upper axial struts 106 and lower axial struts 107, curved outer ends 108 and curved inner ends 110.
  • Each circumferential slot 104 is bounded by an outer circumferential strut 109 and an inner circumferential strut 111.
  • Each I- shaped cell 100 is connected to the adjacent I-shaped cell 100 in the same row 96A or 96B by a circumferential connecting strut 113. All or a portion of cells 100 in row 96 A merge or join with cells 100 in row 96B at the inner ends 110, which are integrally formed with the inner ends 110 of the adjacent cells 100.
  • a spacing member 112 extends outwardly in the axial direction from a selected number of outer circumferential struts 109 and/or connecting struts 113. Spacing member 112 preferably itself forms a subcell 114 in its interior, but alternatively may be solid without any cell or opening therein. For those spacing members 112 attached to outer circumferential struts 109, subcell 114 preferably communicates with I- shaped cell 100. Spacing members 112 are configured to engage the curved outer ends 108 of an adjacent stent segment 32 so as to maintain appropriate spacing between adjacent stent segments.
  • spacing members 112 have outer ends 116 with two spaced- apart protrusions 118 that provide a cradle-like structure to index and stabilize the curved outer end 108 of the adjacent stent segment.
  • spacing members 112 have an axial length of at least about 10%, more preferably at least about 25%, of the long dimension L of I-shaped cells 100, so that the I-shaped cells 100 of adjacent stent segments are spaced apart at least that distance. Because spacing members 112 experience little or no axial shortening during expansion of stent segments 32, this minimum spacing between stent segments is maintained both in the unexpanded and expanded configurations.
  • Fig. 3B shows stent segment 32 of Fig. 3A in an expanded configuration. It may be seen that cells 100 are expanded so that upper and lower slots 102 are diamond shaped with circumferential slots 104 remaining basically unchanged. This results in some axial shortening of the stent segment, thereby increasing the spacing between adjacent stent segments.
  • the stent geometry is optimized by balancing the amount of axial shortening and associated inter-segment spacing, the desired degree of vessel wall coverage, the desired metal density, and other factors. Because the stent is comprised of multiple unconnected stent segments 32, any desired number from 2 up to 10 or more stent segments may be deployed simultaneously to treat lesions of any length. Further, because such segments are unconnected to each other, the deployed stent structure is highly flexible and capable of deployment in long lesions having curves and other complex shapes.
  • circumferential slots 104 provide a pathway through which yessel side branches can be accessed for catheter interventions.
  • a balloon dilatation catheter may be positioned through circumferential slot 104 and expanded. This deforms circumferential struts 109, 111 axially outward, thereby expanding circumferential slot 104 and further expanding upper and lower slots 102, as shown in phantom in Fig. 3B.
  • This provides a relatively large opening 120 through which a catheter may be inserted through stent segment 32 and into the side branch for placing stents, performing angioplasty, or carrying out other interventions.
  • opening 120 may be expanded to a diameter approximately as large as the expanded diameter of stent segments 32 to allow deployment of additional stent segments through opening 120.
  • Figs. 4A-4B illustrate a second preferred embodiment of a stent segment 32 according to the invention, h Fig. 4A, a portion of stent segment 32 is shown in a planar shape for clarity. Similar to the embodiment of Fig. 3A, stent segment 32 comprises two parallel rows 122 A, 122B of I-shaped cells 124 formed into a cylindrical shape around axial axis A. Cells 124 have upper and lower axial slots 126 and a connecting circumferential slot 128. Upper and lower slots 126 are bounded by upper axial struts 130, lower axial struts 132, curved outer ends 134, and curved inner ends 136.
  • Circumferential slots 128 are bounded by outer circumferential strut 138 and inner circumferential strut 140.
  • Each I-shaped cell 124 is connected to the adjacent I-shaped cell 124 in the same row 122 by a circumferential connecting strut 142.
  • Row 122A is connected to row 122B by the merger or joining of curved inner ends 136 of at least one of upper and lower slots 126 in each cell 124.
  • the embodiment of Figs. 4A-4B includes a bulge 144 in upper and lower axial struts 130, 132 extending circumferentially outwardly from axial slots 126. These give axial slots 126 an arrowhead or cross shape at their inner and outer ends.
  • each upper axial strut 130 extends toward the bulge 144 in a lower axial strut 132 in the same cell 100 or in an adjacent cell 100, thus creating a concave abutment 146 in the space between each axial slot 126.
  • Concave abutments 146 are configured to receive and engage curved outer ends 134 of cells 124 in the adjacent stent segment, thereby maintaining spacing between the stent segments.
  • the axial location of bulges 144 along upper and lower axial struts 130, 132 may be selected to provide the desired degree of inter-segment spacing.
  • Fig. 4B shows two stent segments 32 of Fig. 4A in an expanded condition. It may be seen that axial slots 124 are deformed into a circumferentially widened modified diamond shape with bulges 144 on the now diagonal upper and lower axial struts 130, 132. Circumferential slots 128 are generally the same size and shape as in the unexpanded configuration. Bulges 144 have been pulled away from each other to some extent, but still provide a concave abutment 146 to maintain a minimum degree of spacing between adjacent stent segments. As in the earlier embodiment, some axial shortening of each segment occurs upon expansion and stent geometry can be optimized to provide the ideal intersegment spacing.
  • Figs. 4A-4B retains the feature described above with respect to Figs. 3A-3B to enable access to vessel side branches blocked by stent segment 32. Should such side branch access be desired, a dilatation catheter may be inserted into circumferential slot 128 and expanded to provide an enlarged opening through which a side branch may be entered.
  • stents 30 may include a side access portion 152 and adjacent end portions 150.
  • side access portions 152 are configured with larger openings than end portions 150 to allow passage of a guidewire, stent delivery catheter and/or stent through the sidewall of side access portion 152.
  • side access portion 152 has struts which are made of a more flexible or deformable material to facilitate passage of a second stent therethrough.
  • stent 30 may be placed in a main branch vessel with side access portion 152 positioned at an ostium of a side branch vessel bifurcating off of the main branch.
  • a stent delivery catheter may then be passed through an opening in side access portion 152, into the side branch vessel, to place a second stent in the side branch.
  • the side branch stent may extend though side access portion 152 into the main branch. Methods for deploying such stents are described in further detail below.
  • end portions 150 have a higher density of struts or material per unit length than side access portion 152. In other words, end portions 150 may be constructed of more dense material, may have a more dense pattern of struts, or both, relative to side access portion 152 in some embodiments. As shown in Fig.
  • end portions 150 may have straight or I-shaped slots, and side access portion 152 may have a woven or cross-hatched geometry of diagonal struts.
  • side access portion 152 has linear struts aligned along the longitudinal axis of stent 30.
  • side access portion 152 has an undulating pattern.
  • stents may have any other suitable configurations including a side access portion 152 with openings like those described above in reference to Figs. 3 A and 3B or 4A and 4B, but which are larger than adjacent end portions 150.
  • stents 30 may be deployed by a number of different techniques.
  • end portions 150 are balloon expandable while side access portion 152 is self-expanding, for example a side access portion 152 comprising shape memory or superelastic material.
  • all of stent 30 may be either self-expanding or balloon expandable.
  • an expandable member may be advanced through an opening in side access portion 152 and expanded to increase the size of the opening.
  • Some embodiments may further include coupling means such as hooks, tabs or annular rib or rim on either or both of the main branch stent and side branch stent for coupling a side branch stent with side access portion 152.
  • Side access portion 152 may be disposed centrally along the stent or may be offset toward the distal or proximal ends of the stent, and may even be at either end of the stent, as appropriate for the lesion to be treated. Multiple side access portions may also be included in the same stent.
  • FIG. 6A-6H one embodiment of a method for treating lesions in a bifurcated using a stent delivery catheter of the invention will be described. While the invention will be described in the context of coronary artery treatment, the invention is useful in any of a variety of bifurcated blood vessels and other body lumens in which stents are deployed, including the carotid, femoral, iliac and other arteries, as well as veins and other fluid-carrying vessels.
  • a guiding catheter (not shown) is first inserted into a peripheral artery such as the femoral and advanced to the ostium of the target coronary artery A. Referring to Fig.
  • a guidewire 168 is then inserted through the guiding catheter into the coronary artery A where one or more lesions L are to be treated.
  • the proximal end of guidewire 168 is then inserted through a nosecone 164 of a stent delivery catheter 160 outside the patient's body, and stent delivery catheter 160 is slidably advanced over guidewire 168 and through the guiding catheter into the coronary artery A.
  • a sheath 162 is extended to nosecone 164 to surround the expandable member.
  • stent delivery catheter 160 is positioned through a lesion L to be treated such that nosecone 164 is distal to the lesion L.
  • catheter 160 is positioned first to treat a lesion in a main branch vessel MB of the coronary artery A.
  • catheter 160 may first be used to treat a lesion in a side branch vessel SB of the artery A.
  • sheath 162 may be retracted and expandable member 166 expanded to predilate lesion L prior to stent deployment.
  • Stent delivery catheter 160 may be used for predilitation by retracting sheath 162 along with stent segments (not shown) to expose an extremity of expandable member 166 long enough to extend through the entire lesion.
  • predilatation may be performed prior to introduction of stent delivery catheter 160 by inserting a separate angioplasty catheter over guidewire 168 and dilating lesion L.
  • This may be done while delivery catheter 160 is positioned proximally of lesion L or with expandable member 166 extending through lesion L.
  • fluoroscopy enables the user to visualize the extent of sheath retraction relative to lesion L by observing the position of a marker on sheath 162 relative to a marker at the distal end of expandable member 166.
  • force is released from pusher tube 36 and valve member 50 (Figs. 2 A and 2B) engages and draws the stent segments proximally with sheath 162.
  • inflation fluid is introduced through inflation lumen 34 to inflate expandable member 166 distally of sheath 162 and thereby dilate lesion L.
  • Expandable member 166 is then deflated and retracted within sheath 162 while maintaining force on the pusher tube so that stent segments are positioned up to the distal end of expandable member 166, surrounded by sheath 162.
  • Alternative embodiments of devices and methods for lesion predilatation are described in detail in U.S. Patent Application No. 10/794,405 (Attorney Docket No. 021629-002400US), which was previously incorporated by reference.
  • stent delivery catheter 160 is repositioned in the main branch so that nosecone 164 is distal to the lesion (main branch MB lesion not visible in Fig. 6C).
  • Sheath 162 is then retracted to expose a stent 170 having an appropriate number of stent segments 172 to cover the lesion.
  • force is maintained against pusher tube 36 so that stent segments 172 remain positioned up to the distal end of expandable member 166.
  • Expandable member 166 is then inflated by delivering inflation fluid through inflation lumen 34, and the exposed distal portion of expandable member 166 expands so as to expand stent segments 172 thereon into engagement with the lesion. If predilatation was not performed, lesion L may be dilated during the deployment of stent segments 172 by appropriate expansion of expandable member 166. Sheath 162 constrains the expansion of the proximal portion of expandable member 166 and stent segments within sheath 162.
  • Expandable member 166 is then deflated, leaving stent segments 172 in a plastically-deformed, expanded configuration within lesion L, as shown in Fig. 6D. With stent segments 172 deployed, expandable member 166 may be retracted within sheath 162, again maintaining force against pusher tube 36 to position a second set of stent segments (not shown) at the distal end of expandable member 166. Expandable member 166 is moved proximally relative to the second stent segments until the distal-most stent segment engages stop 78 (Figs. 2A-2B), thereby placing second stent segments in position for deployment.
  • Stent delivery catheter 160 is then ready to be repositioned at a different lesion L in the side branch vessel SB, as shown in Fig. 6D, or in the main branch MB in other embodiments.
  • Guidewire 168 is first advanced into side branch SB, and catheter 160 is advanced over guidewire 168.
  • Sheath 162 is again retracted and expandable member 166 expanded to dilate lesion L.
  • multiple lesions of various lengths may be treated in this way without removing stent delivery catheter 160 from the patient's body.
  • stent delivery catheter 160 may be used to deploy a second stent 180 at the lesion L in the side branch SB.
  • the method for stent deployment may be carried out as described above.
  • Delivery catheter 160 may then be removed from the side branch SB, realigned in the main branch, and expandable member 166 again inflated to dilate a third lesion L, as shown in Fig. 6F.
  • stent delivery catheter 160 may next be used to deploy a third stent 190 having one or more stent segments 190 at another lesion L in the main branch MB.
  • 6H shows three stents 170, 180, 190 in place in the main branch MB and side branch SB of the artery A, after stent delivery catheter 160 has been removed.
  • only one stent may be placed in each of the main and side branches, the side branch stent may be placed before the main branch stent, multiple stents may be placed in the side branch vessel, and or the like. Any suitable combination of stent placements is contemplated according to various embodiments of the invention.
  • movement of the pusher tube, sheath, or stent segments is described in relation to other components of the delivery catheter of the invention, such movement is relative and will encompass: moving the sheath, pusher tube, or stent segments while keeping the other component(s) stationary; keeping the sheath, pusher tube or stent segments stationary while moving the other component(s); or moving multiple components simultaneously relative to each other.
  • a first stent 210 preferably having multiple stent segments 212 may be placed in the manner described above in a main branch MB of a vessel such that a central portion of first stent 210 crosses an ostium of (opening into) a side branch SB of the vessel.
  • a guidewire 208 may then be extended through an opening in the sidewall of the central portion of first stent 210 into side branch SB and up to or past a side branch lesion L.
  • a stent delivery catheter 200 may then be advanced over guidewire 208, into side branch SB to a position for treating the lesion L.
  • a sheath 202 will first be retracted proximally from nosecone 204 to expose and allow expansion of an expandable member 206 to predilate the lesion L.
  • a portion of expanded expandable member 206 will extend through a sidewall opening 214 in first stent 210, and may be used to expand sidewall opening 214 either before or at the same time as it predilates the lesion L, deforming the struts around sidewall opening 214 to create a larger opening of a size sufficient to receive a second stent therethrough.
  • a second stent 220 may then be placed in side branch SB using stent delivery catheter 200 (removed from Fig. 7C for clarity).
  • second stent 220 may extend through side- wall opening 214 of first stent 210, to extend back into the main branch MB, thus having a bend or "elbow" to conform to the longitudinal axis of the main branch.
  • the second stent may extend up to but not through sidewall opening 214, may extend up to and attach to sidewall opening 214, maybe spaced apart from sidewall opening 214, or the like.
  • stent delivery catheter 200 may by advanced into main branch MB again, after placement of second stent 220, and expandable member 206 may be expanded so as to expand an opening 221 in the "elbow portion" of second stent 220 in alignment with the passage through first stent 210.
  • Fig. 7E schematically shows first stent 210 overlapping second stent 214, the latter of which includes opening 221 in the "elbow portion" of the stent 214. .
  • Such expansion of an opening of second stent 220 helps to prevent disruption of blood flow through the main branch MB due to the presence of second stent 220 within the main branch MB.
  • a first stent 240 is delivered via a stent deliver catheter (shown in Fig. 8B) in a main branch MB of the vessel, such that a central portion 244 of first stent 240 is positioned at an ostium of a side branch SB.
  • First stent 240 is generally configured as the stents described above with reference to Figs. 5A-5D, thus having central portion 244 with one or more large sidewall openings and adjacent end portions 242 having smaller (or "higher density") sidewall openings.
  • central portion 244 is self-expanding while end portions 242 are balloon expandable. Central portion 244 may be positioned relative to the side branch SB ostium using fluoroscopy or any other suitable technique. A guidewire 238 may then be extended through a sidewall opening in central portion 244, into the side branch SB and up to or past a side branch lesion L.
  • a stent delivery catheter 230 may then be passed through the sidewall opening, over guidewire 238, and into the side branch SB.
  • a sheath 232 may be retracted from the nosecone 234 to expose and allow expansion of an expandable member 236, to both predilate the lesion L and to expand the sidewall opening in central portion 244 by deforming or deflecting one or more struts 244a of central portion 244 adjacent the sidewall opening.
  • delivery catheter 230 may then be used to deploy a second stent 250, as described above.
  • Second stent 250 may also include a central portion 254 having large sidewall openings and adjacent end portions 252 having smaller sidewall openings.
  • delivery catheter 230 may be repositioned in the main branch MB after delivery of first stent 240 to expand a sidewall opening in second stent 250 to enhance blood flow through the main branch MB.
  • the expanded opening in second stent 250 may in some embodiments lie in the central portion 254 of second stent 250.
  • catheters for deployment of prosthetic devices such as embolic coils, stent grafts, aneurism repair devices, annuloplasty rings, heart valves, anastomosis devices, staples or clips, as well as ultrasound and angiography catheters, electrophysiological mapping and ablation catheters, and other devices may also utilize the principles of the invention.
  • prosthetic devices such as embolic coils, stent grafts, aneurism repair devices, annuloplasty rings, heart valves, anastomosis devices, staples or clips, as well as ultrasound and angiography catheters, electrophysiological mapping and ablation catheters, and other devices may also utilize the principles of the invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Prostheses (AREA)

Abstract

Apparatus and methods for delivering stents to bifurcated vessels involve delivering a first stent in a main branch of a vessel using a stent delivery catheter and delivering a second stent in a side branch of the vessel, without removing the stent delivery catheter from the patient. In various embodiments, multiple stents may be placed in either or both of the main and side branches. In some embodiments, stents in main and side branches are separate and do not touch, while in other embodiments a side branch stent may extend through a sidewall opening in a main branch stent. Stent length may optionally be adjusted in situ, and some embodiments provide for predilatation of one or more lesions.

Description

STENT DELIVERY FOR BIFURCATED VESSELS
CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation-in-part of U.S. Patent Application Serial No. 10/637713 (Attorney Docket No. 021629-000340US), filed August 8, 2003, which is a continuation-in-part of co-pending application Serial No. 10/412,714, (Attorney Docket No. 21629-000330), filed April 10, 2003, which is a continuation-in-part of application Serial No. 10/306,813, (Attorney Docket No. 21629-000320), filed November 27, 2002, which is a non- provisional application of U.S. Provisional Application Serial Nos.: 60/336,767, (Attorney Docket No. 21629-000300), filed December 3, 2001, and 60/364,389, (Attorney Docket No. 21629-000310), filed March 13, 2002, the disclosures of which are all fully incorporated herein by reference. This application is also a continuation-in-part of U.S. Patent Application Serial No. 10/738666 (Attorney Docket No. 021629-000510US), filed December 16, 2003, which is a non-provisional application of U.S. Provisional Patent Application No. 60/440,839 (Attorney Docket No. 21629-000500US), filed January 17, 2003, the disclosures of which are all fully incorporated herein by reference.
FIELD OF THE INVENTION [0002] This invention relates generally to stents and stent delivery catheters for deployment in the coronary arteries and other vessels. More specifically, the invention relates to stents and stent delivery systems for treating bifurcated vessels. BACKGROUND OF THE INVENTION [0003] Stenting has become an increasingly important treatment option for patients with coronary artery disease. Stenting involves the placement of a tubular prosthesis within a diseased coronary artery to expand the arterial lumen and maintain the patency of the artery. Early stent technology suffered from problems with restenosis, the tendency of the coronary artery to become re-occluded following stent placement. However, in recent years, improvements in stent design and the advent of drug-eluting stents have reduced restenosis rates dramatically. As a result, the number of stenting procedures being performed in the United States, Europe, and elsewhere has soared.
[0004] Stents are delivered to the coronary arteries using long, flexible vascular catheters typically inserted through a femoral artery. For self-expanding stents, the stent is simply released from the delivery catheter and it resiliently expands into engagement with the vessel wall. For balloon expandable stents, a balloon on the delivery catheter is expanded which expands and deforms the stent to the desired diameter, whereupon the balloon is deflated and removed.
[0005] Current stent delivery technology suffers from a number of drawbacks. For example, current stent delivery catheters are not capable of customizing the length of the stent in situ to match the size of the lesion to be treated. While lesion size may be measured prior to stenting using angiography or fluoroscopy, such measurements may be inexact. If a stent is introduced that is found to be of inappropriate size, the delivery catheter and stent must be removed from the patient and replaced with a different device of correct size.
[0006] Moreover, current stent delivery devices cannot treat multiple lesions with a single catheter. Current devices are capable of delivering only a single stent with a single catheter, and if multiple lesions are to be treated, a new catheter and stent must be introduced for each lesion to be treated.
[0007] Further, current stent delivery devices are not well-adapted for treating vascular lesions that are very long and/or in curved regions of a vessel. Current stents have a discrete length that is relatively short due to their stiffiiess. If current stents were made longer so as to treat longer lesions, they would not conform well to the curvature of vessels or to the movement of vessels on the surface of the beating heart. On the other hand, any attempt to place multiple stents end-to-end in longer lesions is hampered by the inability to maintain appropriate inter-stent spacing and to prevent overlap of adjacent stents.
[0008] Many of the above shortcomings are addressed by various currently pending patent applications assigned to the assignee of the present application, such as U.S. Patent Application Serial Nos.: 10/306622 (Attorney Docket No. 021629-000110US), filed November 27, 2002; 10/306620 (Attorney Docket No. 021629-000210US), filed November 27, 2002; 10/306813 (Attorney Docket No. 021629-000320US), filed November 27, 2002; 10/412714 (Attorney Docket No. 021629-000330US), filed April 10, 2003; 10/637713 (Attorney Docket No. 021629-000340US), filed August 8, 2003; 10/624451 (Attorney Docket No. 021629-000400US), filed July 21, 2003; 10/738666 (Attorney Docket No. 021629-000510US), filed December 16, 2003; 10/458062 (Attorney Docket No. 021629- 001800US), filed June 9, 2003; 10/686507 (Attorney Docket No. 021629-001900US), filed October 14, 2003; 10/686025 (Attorney Docket No. 021629-002000US), filed October 14, 2003; 10/687532 (Attorney Docket No. 021629-002100US), filed October 15, 2003; 10/46466 (Attorney Docket No. 021629-002200US), filed December 23, 2003; and 10/794,405 (Attorney Docket No. 021629-002400US), filed March 3, 2004, all of which are hereby incorporated fully by reference. Although many improvements in stent design and stent delivery techniques have been suggested, improvements are still being sought.
[0009] For example, repair of vessels at areas of bifurcation is particularly challenging. A bifurcation of a vessel is generally a division into two branches, such as a main branch and a side branch. Generally, treatment of such bifurcated vessels with stents is difficult because it is technically challenging to place one or more stents in a main vessel and one or more stents in a branching vessel so as to sufficiently treat the existing lesion(s) while not interrupting blood flow through either the main or branch vessel. Oftentimes, if the main vessel is treated sufficiently with a stent, the stent disrupts flow into the branching vessel and/or makes placement of additional stents in the branching vessel quite difficult. In other cases, placement of a stent in the branching vessel may hinder stent placement and/or blood flow in the main vessel. Difficulties in stent-based treatment of bifurcated vessels occur due to limitations of both current stent designs and currently available stent delivery devices and techniques.
[0010] Some currently available systems for placing stents at an area of vessel bifurcation require placement of a first stent in one branch of the vessel, removal of the catheter from the body, insertion of a second catheter to place a second stent, and so on until a desired number of stents is placed. Other available techniques involve insertion of two catheters simultaneously to place stents in two branches of a bifurcated vessel. A number of other alternative techniques and devices have been developed for treating vessel lesions at bifurcations. Some methods are described, for example, in U.S. Patent Nos. 6,033,434 and 6,582,394, as well as PCT Patent Application Publication No. WO 2004/017865.
[0011] All of these currently available devices and methods for delivering stents at vessel bifurcations have one or more drawbacks. Perhaps most obvious is the inconvenience and additional time and expense of using multiple catheters to place multiple stents in the bifurcated vessel. As discussed above, currently available devices and methods also do not provide for placement of custom length stents. [0012] For these and other reasons, stents and stent delivery catheters are needed which facilitate treatment of vessels at areas of bifurcations. Ideally, such stents and delivery catheters would allow for placement of stents in a main vessel and a branch vessel, without requiring removal of the delivery catheter from the patient. Also ideally, customization of stent length in situ would be provided, as well as treatment of multiple lesions of various sizes, both without requiring removal of the delivery catheter from the patient. Such stents and stent delivery catheters should be capable of treating lesions of particularly long length and lesions in curved regions of a vessel, and should be highly flexible to conform to vessel shape and movement. Such stent delivery catheters should further be of minimal cross- sectional profile and should be highly flexible for endovascular positioning through tortuous vascular pathways. At least some of these objectives will be met by the present invention.
BRIEF SUMMARY OF THE INVENTION [0013] The invention provides apparatus and methods for delivering prostheses or stents into bifurcated vessels. In one aspect of the invention, a method of treating one or more lesions in a vessel, the vessel having a main branch and a side branch branching from the main branch at a bifurcation, involves: positioning a delivery catheter in the main branch; deploying a first stent from the delivery catheter in the main branch; positioning the delivery catheter in the side branch; and deploying a second stent from the delivery catheter in the side branch. Using this method, the delivery catheter is not removed from the vessel between deploying the first and second stents.
[0014] In some embodiments, the method may optionally include deploying a third stent from the delivery catheter in the main branch or side branch without removing the delivery catheter from the vessel, h one embodiment, the delivery catheter is positioned through an opening in a sidewall of the first stent to deploy the second stent. In a preferred embodiment, the first and second stents each comprise a plurality of separable segments. Optionally, the first stent may have a different length than the second stent. In alternative embodiments, the first stent may be deployed before the second stent or the second stent may be deployed before the first stent. In some embodiments, the first stent and the second stent each have a portion in the main branch. Some embodiments of the method further include adjusting the length of the first and/or second stents before deploying the first and/or second stents while the delivery catheter remains in the vessel. [0015] Optionally, some embodiments further include dilating at least one lesion in the vessel using an expandable member on the delivery catheter before deploying at least one of the first and second stents. Such dilating of a vessel before deploying a stent is often referred to as "pre-dilatation." In various embodiments, various different techniques for pre-dilatation and stent placement may be employed. For example, in one embodiment an expandable member may be used to pre-dilate a vessel, and then the same expandable member may be used to deploy and expandable stent. Sometimes, the same expandable member may additionally be used to further expand the stent after it has been deployed. In another embodiment, an expandable member may be used to pre-dilate a vessel and then self- expanding stent(s) may be deployed from the delivery catheter without using the expandable member for deployment. In another embodiment, a first expandable member may be used for pre-dilatation and a second expandable member on the same delivery catheter may be used to deploy stent(s) in the vessel. Thus, any suitable combination of expandable members, pre- dilatation and stent delivery are contemplated within the scope of the invention. Stent delivery devices and methods involving pre-dilatation are described more fully in U.S. Patent Application Serial No. 10/794,405 (Attorney Docket No. 021629-002400US), entitled "Stent Delivery Apparatus and Methods," filed March 3, 2004, which was previously incorporated by reference.
[0016] hi another aspect of the invention, a method of treating one or more lesions in a vessel, the vessel having a first branch and a second branch meeting at a bifurcation, involves: positioning a delivery catheter in the first branch; deploying a first stent from the delivery catheter in the first branch, a portion of the first stent being disposed across the bifurcation; positioning the delivery catheter in the second branch through an opening in a sidewall of the first stent; and deploying a second stent from the delivery catheter, at least a portion of the second stent being disposed in the second branch. Again, using this method, the delivery catheter is not removed from the vessel between deploying the first and second stents.
[0017] In some embodiments, the method further includes dilating the opening in the sidewall of the first stent by expanding an expandable member on the delivery catheter. In one embodiment, before dilating, the opening in the sidewall of the first stent is I-shaped. Optionally, the first stent may have a first portion with a plurality of first slots and a second portion with a plurality of second slots, the first slots being larger than the second slots. In such embodiments, the opening in the sidewall of the first stent may comprise one of the first slots, and the first stent may be deployed so that at least one of the first slots is aligned with bifurcation.
[0018] In various embodiments, any of a number of suitable stents may be used. In one embodiment, for example, the first stent may have a different geometry than the second stent. In another embodiment, the first stent has a different length than the second stent. In some embodiments, at least one of the first and second stents comprises a plurality of separable segments.
[0019] As described above, in some embodiments deploying the first stent and/or the second stent comprises expanding an expandable member on the delivery catheter. In other embodiments, the stents may be self-expanding and may be deployed by releasing them from the delivery catheter. Some embodiments may further include dilating at least one lesion in the vessel using an expandable member on the delivery catheter before deploying at least one of the first and second stents.
[0020] In another aspect of the invention, a stent delivery device for treating one or more lesions in a vessel having a bifurcation, the bifurcation including a main branch and a side branch, includes: a catheter shaft; a first stent carried by the catheter shaft configured for deployment in the main branch; a second stent carried by the catheter shaft configured for deployment in the side branch; and a deployment mechanism for deploying the first and second stents independently of each other. In some embodiments, the deployment mechanism comprises an expandable member coupled to the catheter shaft, the first and second stents being positionable on the expandable member for expansion thereby. Such embodiments may optionally further include a sheath slidably disposed over the expandable member, the sheath being positionable to restrain a first portion of the expandable member while allowing expansion of a second portion of the expandable member. In some embodiments, the expandable member is configured for dilation of the vessel without deploying either of the first and second stents.
[0021] In some embodiments, either or both of the first and second stents may be self- expanding. Optionally, at least one of the first and second stents may have a sidewall opening that can be widened following stent deployment. In such embodiments, the other of the first and second stents may optionally be positionable through the sidewall opening. In one embodiment, the second stent has a different geometry, material, shape, and/or size than the first stent. Some embodiments further include a third stent carried by the catheter shaft and deployable independently of the first and second stents. h some embodiments, a length of at least one of the first and second stents may be selected in situ. Also in some embodiments, at least one of the first and second stents may comprise a plurality of separable stent segments.
[0022] Further aspects of the nature and advantages of the invention will become apparent from the detailed description below taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS [0023] Fig. 1 is a perspective view of a stent delivery catheter with sheath retracted and expandable member inflated according to one embodiment of the invention.
[0024] Fig. 2 A is a side cross-section of a distal portion of the stent delivery catheter of Fig. 1 with expandable member deflated and sheath advanced distally.
[0025] Fig. 2B is a side cross-section of a distal portion of the stent delivery catheter of Fig. 1 with expandable member inflated and sheath retracted.
[0026] Fig. 3 A is a side view of a first embodiment of a stent segment in an unexpanded configuration according to one embodiment of the invention.
[0027] Fig. 3B is a side view of the stent segment of Fig. 3 A in an expanded configuration.
[0028] Fig. 4A is a side view of a stent segment in an unexpanded configuration according to one embodiment of the invention.
[0029] Fig. 4B is a side view of two of the stent segments of Fig. 4A in an expanded configuration.
[0030] Fig. 5 A is a perspective schematic view of a stent having a central portion and adjacent end portions according to one embodiment of the invention.
[0031] Figs. 5B-5D are schematic side views of various stents, each having a central portion and adjacent end portions, according to various embodiments of the invention.
[0032] Figs. 6A-6H are side cutaway views illustrating a method for treating lesions in a bifurcated vessel using a stent delivery catheter according to one embodiment of the invention. [0033] Figs. 7A-7D are side cutaway views illustrating a method for treating lesions in a bifurcated vessel using a stent delivery catheter according to another embodiment of the invention.
[0034] Fig. 7E is a schematic side view of two overlapping stents placed according to a method as in Figs. 7A-7D.
[0035] Figs. 8A-8D are side cutaway views illustrating a method for treating lesions in a bifurcated vessel using a stent delivery catheter according to another embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION [0036] Referring to Fig. 1, in a first embodiment of the invention, a stent delivery catheter 20 comprises an elongate flexible shaft 22 having a proximal end 24 and a distal end 26. Shaft 22 is comprised of a plurality of coaxial members including an inflation shaft 34, a pusher 36, and a sheath 38. A handle 28 is mounted to sheath 38 at proximal end 24. Near distal end 26, expandable member 30, shown in an expanded configuration, is mounted at its proximal end to inflation shaft 34. A guidewire tube 40 extends through a port 42 in sheath 38 and extends through the interior of expandable member 30 to distal end 26. Expandable member 30 is attached at its distal end to guidewire tube 40, and a nosecone 32 is mounted to guidewire tube 40 distally of expandable member 30. A guidewire 44 is slidably positionable through guidewire tube 40 and nosecone 32 to facilitate guidance of catheter 20 through the vasculature.
[0037] A plurality of stent segments 46 are slidably positioned over expandable member 30. Pusher 36 is axially slidable relative to inflation shaft 34 and engages stent segments 46 at its distal end 48. Pusher 36 may be pushed distally to advance stent segments 46 over expandable member 30, or pusher 36 may be held in a stationary position while expandable member 30 is drawn proximally relative to stent segments 46. Sheath 38 is axially movable relative to expandable member 30, pusher 36, and stent segments 46. Sheath 38 may be repositioned proximally or distally to selectively expose a desired length of the expandable member and stent segments thereon according to the length of the lesion to be treated. Sheath 38 and pusher 36 may be drawn proximally in tandem relative to expandable member 30 to separate stent segments 46 exposed distally of sheath 38 from stent segments 46 held within sheath 38. Various other aspects of the construction of delivery catheter 20 and stent segments 46 are described in copending U.S. Patent Application Serial No. 10/637713, which was previously incorporated by reference.
[0038] A stent valve 50 is mounted to the interior of sheath 38 and is preferably spaced proximally from the distal end 52 of sheath 38 a distance equal to the length of about Vi-l stent segment. Stent valve 50 comprises an annular ridge configured to frictionally engage stent segments 46 to facilitate control of the spacing between those segments to be deployed distally of sheath 38 and those to be retained within sheath 38. Stent valve 50 may also comprise any of the structures described in copending U.S. Patent Application Serial No. 10/412714, which was previously incorporated by reference.
[0039] Handle 28 includes an actuator knob 54 rotatably coupled thereto. A post 56 is mounted to handle 28 so as to be extendable distally out of the handle and retractable proximally into the handle. Sheath 39 is attached to post 56. Rotation of actuator knob 54 extends or retracts post 56, thereby moving sheath 38 relative to expandable member 30. A lever 58 is pivotably coupled to handle 28 and is movable between a first position in which rotation of actuator knob 54 moves only sheath 38, and a second position in which rotation of actuator knob 54 moves both sheath 38 and pusher 36 relative to expandable member 30, as described more fully below.
[0040] A plurality of indicia 60 are disposed on post 56. Indicia 60 comprise alphanumeric symbols or other appropriate indicators of the length of expandable member exposed distally of sheath 38 and/or the number or length of stent segments 46 exposed for deployment. As described more fully below, a pointer or other reference object may be used that points to the appropriate location among indicia 60 corresponding to the number or length of stent segments 46 that have been exposed; preferably such pointer is adapted to compensate for retraction of sheath 38 in tandem with pusher 36, during which additional stent segments are not exposed distally of sheath 38, as described more fully below.
[0041] A luer fitting 62 is mounted to a proximal end of handle 28 and is in fluid communication with an inflation lumen (not shown in Fig. 1) in inflation shaft 34. Luer fitting 62 is adapted for coupling to an inflation device to enable delivery of inflation fluid into expandable member 30, for example, an Indeflator™ inflation device available from Guidant Corp. of Santa Clara, California. [0042] Referring to Figs. 2A-2B, delivery catheter 20 includes a device for providing a tactile indication of the number of stent segments 46 exposed from sheath 38 in addition to the visual indication provided by indicia 60. In this embodiment, the indication device consists of a detent 66 extending inwardly from the inner wall of sheath 38, and a series of slots 68 arranged axially at spaced-apart locations on pusher 36. Detent 66 and slots 68 may be located in a distal portion of delivery catheter 20 just proximal to expandable member 30, in a middle portion of the catheter proximal to guidewire port 42, or near the proximal end 24 distally of or within post 56 or handle 28. Detent 66 is preferably a cantilevered extension integrally formed with sheath 38, being cut, for example, out of the wall of sheath 38, and is resiliently deflectable and biased toward pusher 36. Detent 66 may alternatively be a bump or ridge on the inner wall of sheath 38 configured to engage slots 68. Slots 68 may be holes, apertures, depressions, recesses, ridges, bumps or any other suitable structure for receiving or catching on detent 66. The spacing of slots 68 is selected to provide an indication of the distance that sheath 38 is translated relative to pusher 36. In a preferred embodiment, the spacing is equal to the length of 1 stent segment 46, although %, twice, or other known fraction or multiple of the length of a stent segment 46 are also possible. As sheath 38 is retracted proximally relative to pusher 36, detent 66 catches in each slot, providing a tactile "bump" that can be felt through handle 28. In this way, as knob 54 is turned to retract sheath 38, the user knows that each bump corresponds to the length of one stent segment, meaning that one stent segment has been exposed distally of sheath 38 with each bump. By feeling such bumps and by observing indicia 60, the user can precisely retract the sheath to expose the number of stent segments needed to match the length of the lesion being treated, as illustrated in Fig. 2B.
[0043] Further description of stent delivery catheter devices such as those illustrated by Figs. 1, 2 A and 2B may be found in U.S. Patent Application No. 10/46466, which was previously incorporated by reference. Further detailed description of the distal portion of a stent delivery catheter may be found in U.S. Patent Application Serial No. 10/794,405 (Attorney Docket No. 021629-002400US), which was previously incorporated by reference.
[0044] A first preferred geometry of stent segments 32 is illustrated in Figs. 3A-3B. Fig. 3 A illustrates a portion of a stent segment 32 in an unexpanded configuration, shown in a planar shape for clarity. Stent segment 32 comprises two parallel rows 96 A, 96B of I-shaped cells 100 formed around an axis A so that stent segment 32 has a cylindrical shape. Each cell 100 has upper and lower axial slots 102 aligned with the axial direction and a circumferential slot 104. Upper and lower slots 102 preferably have an oval, racetrack, rectangular or other oblong shape with a long dimension L generally parallel to axis A and a short dimension W perpendicular thereto. Axial slots 102 are bounded by upper axial struts 106 and lower axial struts 107, curved outer ends 108 and curved inner ends 110. Each circumferential slot 104 is bounded by an outer circumferential strut 109 and an inner circumferential strut 111. Each I- shaped cell 100 is connected to the adjacent I-shaped cell 100 in the same row 96A or 96B by a circumferential connecting strut 113. All or a portion of cells 100 in row 96 A merge or join with cells 100 in row 96B at the inner ends 110, which are integrally formed with the inner ends 110 of the adjacent cells 100.
[0045] In a preferred embodiment, a spacing member 112 extends outwardly in the axial direction from a selected number of outer circumferential struts 109 and/or connecting struts 113. Spacing member 112 preferably itself forms a subcell 114 in its interior, but alternatively may be solid without any cell or opening therein. For those spacing members 112 attached to outer circumferential struts 109, subcell 114 preferably communicates with I- shaped cell 100. Spacing members 112 are configured to engage the curved outer ends 108 of an adjacent stent segment 32 so as to maintain appropriate spacing between adjacent stent segments. In one embodiment, spacing members 112 have outer ends 116 with two spaced- apart protrusions 118 that provide a cradle-like structure to index and stabilize the curved outer end 108 of the adjacent stent segment. Preferably, spacing members 112 have an axial length of at least about 10%, more preferably at least about 25%, of the long dimension L of I-shaped cells 100, so that the I-shaped cells 100 of adjacent stent segments are spaced apart at least that distance. Because spacing members 112 experience little or no axial shortening during expansion of stent segments 32, this minimum spacing between stent segments is maintained both in the unexpanded and expanded configurations.
[0046] Fig. 3B shows stent segment 32 of Fig. 3A in an expanded configuration. It may be seen that cells 100 are expanded so that upper and lower slots 102 are diamond shaped with circumferential slots 104 remaining basically unchanged. This results in some axial shortening of the stent segment, thereby increasing the spacing between adjacent stent segments. The stent geometry is optimized by balancing the amount of axial shortening and associated inter-segment spacing, the desired degree of vessel wall coverage, the desired metal density, and other factors. Because the stent is comprised of multiple unconnected stent segments 32, any desired number from 2 up to 10 or more stent segments may be deployed simultaneously to treat lesions of any length. Further, because such segments are unconnected to each other, the deployed stent structure is highly flexible and capable of deployment in long lesions having curves and other complex shapes.
[0047] As an additional feature, circumferential slots 104 provide a pathway through which yessel side branches can be accessed for catheter interventions. Should stent segment 32 be deployed at a location in which it covers the ostium of a side branch to which access is desired, a balloon dilatation catheter may be positioned through circumferential slot 104 and expanded. This deforms circumferential struts 109, 111 axially outward, thereby expanding circumferential slot 104 and further expanding upper and lower slots 102, as shown in phantom in Fig. 3B. This provides a relatively large opening 120 through which a catheter may be inserted through stent segment 32 and into the side branch for placing stents, performing angioplasty, or carrying out other interventions. In preferred embodiments, opening 120 may be expanded to a diameter approximately as large as the expanded diameter of stent segments 32 to allow deployment of additional stent segments through opening 120.
[0048] Figs. 4A-4B illustrate a second preferred embodiment of a stent segment 32 according to the invention, h Fig. 4A, a portion of stent segment 32 is shown in a planar shape for clarity. Similar to the embodiment of Fig. 3A, stent segment 32 comprises two parallel rows 122 A, 122B of I-shaped cells 124 formed into a cylindrical shape around axial axis A. Cells 124 have upper and lower axial slots 126 and a connecting circumferential slot 128. Upper and lower slots 126 are bounded by upper axial struts 130, lower axial struts 132, curved outer ends 134, and curved inner ends 136. Circumferential slots 128 are bounded by outer circumferential strut 138 and inner circumferential strut 140. Each I-shaped cell 124 is connected to the adjacent I-shaped cell 124 in the same row 122 by a circumferential connecting strut 142. Row 122A is connected to row 122B by the merger or joining of curved inner ends 136 of at least one of upper and lower slots 126 in each cell 124.
[0049] One of the differences between the embodiment of Figs. 4A-4B and that of Figs. 3A-3B is the way in which spacing is maintained between adjacent stent segments. In place of the spacing members 112 of the earlier embodiment, the embodiment of Fig. 4 A includes a bulge 144 in upper and lower axial struts 130, 132 extending circumferentially outwardly from axial slots 126. These give axial slots 126 an arrowhead or cross shape at their inner and outer ends. The bulge 144 in each upper axial strut 130 extends toward the bulge 144 in a lower axial strut 132 in the same cell 100 or in an adjacent cell 100, thus creating a concave abutment 146 in the space between each axial slot 126. Concave abutments 146 are configured to receive and engage curved outer ends 134 of cells 124 in the adjacent stent segment, thereby maintaining spacing between the stent segments. The axial location of bulges 144 along upper and lower axial struts 130, 132 may be selected to provide the desired degree of inter-segment spacing.
[0050] Fig. 4B shows two stent segments 32 of Fig. 4A in an expanded condition. It may be seen that axial slots 124 are deformed into a circumferentially widened modified diamond shape with bulges 144 on the now diagonal upper and lower axial struts 130, 132. Circumferential slots 128 are generally the same size and shape as in the unexpanded configuration. Bulges 144 have been pulled away from each other to some extent, but still provide a concave abutment 146 to maintain a minimum degree of spacing between adjacent stent segments. As in the earlier embodiment, some axial shortening of each segment occurs upon expansion and stent geometry can be optimized to provide the ideal intersegment spacing.
[0051] It should also be noted that the embodiment of Figs. 4A-4B retains the feature described above with respect to Figs. 3A-3B to enable access to vessel side branches blocked by stent segment 32. Should such side branch access be desired, a dilatation catheter may be inserted into circumferential slot 128 and expanded to provide an enlarged opening through which a side branch may be entered.
[0052] Referring now to Figs. 5 A-5D, various embodiments of stents 30 may include a side access portion 152 and adjacent end portions 150. hi some embodiments, side access portions 152 are configured with larger openings than end portions 150 to allow passage of a guidewire, stent delivery catheter and/or stent through the sidewall of side access portion 152. In other embodiments, side access portion 152 has struts which are made of a more flexible or deformable material to facilitate passage of a second stent therethrough. Thus, stent 30 may be placed in a main branch vessel with side access portion 152 positioned at an ostium of a side branch vessel bifurcating off of the main branch. A stent delivery catheter may then be passed through an opening in side access portion 152, into the side branch vessel, to place a second stent in the side branch. In some embodiments, the side branch stent may extend though side access portion 152 into the main branch. Methods for deploying such stents are described in further detail below. [0053] In other embodiments, end portions 150 have a higher density of struts or material per unit length than side access portion 152. In other words, end portions 150 may be constructed of more dense material, may have a more dense pattern of struts, or both, relative to side access portion 152 in some embodiments. As shown in Fig. 5B, in one embodiment end portions 150 may have straight or I-shaped slots, and side access portion 152 may have a woven or cross-hatched geometry of diagonal struts. In another embodiment, as in Fig. 5C, side access portion 152 has linear struts aligned along the longitudinal axis of stent 30. h yet another embodiment, as in Fig. 5D, side access portion 152 has an undulating pattern. Various other embodiments of stents may have any other suitable configurations including a side access portion 152 with openings like those described above in reference to Figs. 3 A and 3B or 4A and 4B, but which are larger than adjacent end portions 150. hi various embodiments, stents 30 may be deployed by a number of different techniques. For example, in some embodiments, end portions 150 are balloon expandable while side access portion 152 is self-expanding, for example a side access portion 152 comprising shape memory or superelastic material. In other embodiments, all of stent 30 (both end portions 150 and side access portion 152) may be either self-expanding or balloon expandable. In some embodiments, an expandable member may be advanced through an opening in side access portion 152 and expanded to increase the size of the opening. Some embodiments may further include coupling means such as hooks, tabs or annular rib or rim on either or both of the main branch stent and side branch stent for coupling a side branch stent with side access portion 152. Side access portion 152 may be disposed centrally along the stent or may be offset toward the distal or proximal ends of the stent, and may even be at either end of the stent, as appropriate for the lesion to be treated. Multiple side access portions may also be included in the same stent.
[0054] Referring now to Figs. 6A-6H, one embodiment of a method for treating lesions in a bifurcated using a stent delivery catheter of the invention will be described. While the invention will be described in the context of coronary artery treatment, the invention is useful in any of a variety of bifurcated blood vessels and other body lumens in which stents are deployed, including the carotid, femoral, iliac and other arteries, as well as veins and other fluid-carrying vessels. A guiding catheter (not shown) is first inserted into a peripheral artery such as the femoral and advanced to the ostium of the target coronary artery A. Referring to Fig. 6A, a guidewire 168 is then inserted through the guiding catheter into the coronary artery A where one or more lesions L are to be treated. The proximal end of guidewire 168 is then inserted through a nosecone 164 of a stent delivery catheter 160 outside the patient's body, and stent delivery catheter 160 is slidably advanced over guidewire 168 and through the guiding catheter into the coronary artery A. During advancement, a sheath 162 is extended to nosecone 164 to surround the expandable member.
[0055] As shown in Fig. 6B, stent delivery catheter 160 is positioned through a lesion L to be treated such that nosecone 164 is distal to the lesion L. In one embodiment, catheter 160 is positioned first to treat a lesion in a main branch vessel MB of the coronary artery A. In alternative embodiments, catheter 160 may first be used to treat a lesion in a side branch vessel SB of the artery A.
[0056] Optionally, as shown in Fig. 6B, sheath 162 may be retracted and expandable member 166 expanded to predilate lesion L prior to stent deployment. Stent delivery catheter 160 may be used for predilitation by retracting sheath 162 along with stent segments (not shown) to expose an extremity of expandable member 166 long enough to extend through the entire lesion. (Alternatively, predilatation may be performed prior to introduction of stent delivery catheter 160 by inserting a separate angioplasty catheter over guidewire 168 and dilating lesion L.) This may be done while delivery catheter 160 is positioned proximally of lesion L or with expandable member 166 extending through lesion L. hi some embodiments, fluoroscopy enables the user to visualize the extent of sheath retraction relative to lesion L by observing the position of a marker on sheath 162 relative to a marker at the distal end of expandable member 166. To allow stent segments to move proximally relative to expandable member 166, force is released from pusher tube 36 and valve member 50 (Figs. 2 A and 2B) engages and draws the stent segments proximally with sheath 162. With the appropriate length of expandable member 166 exposed, inflation fluid is introduced through inflation lumen 34 to inflate expandable member 166 distally of sheath 162 and thereby dilate lesion L. Expandable member 166 is then deflated and retracted within sheath 162 while maintaining force on the pusher tube so that stent segments are positioned up to the distal end of expandable member 166, surrounded by sheath 162. Alternative embodiments of devices and methods for lesion predilatation are described in detail in U.S. Patent Application No. 10/794,405 (Attorney Docket No. 021629-002400US), which was previously incorporated by reference.
[0057] Referring now to Fig. 6C, following any predilatation, stent delivery catheter 160 is repositioned in the main branch so that nosecone 164 is distal to the lesion (main branch MB lesion not visible in Fig. 6C). Sheath 162 is then retracted to expose a stent 170 having an appropriate number of stent segments 172 to cover the lesion. As sheath 162 is drawn proximally, force is maintained against pusher tube 36 so that stent segments 172 remain positioned up to the distal end of expandable member 166. Expandable member 166 is then inflated by delivering inflation fluid through inflation lumen 34, and the exposed distal portion of expandable member 166 expands so as to expand stent segments 172 thereon into engagement with the lesion. If predilatation was not performed, lesion L may be dilated during the deployment of stent segments 172 by appropriate expansion of expandable member 166. Sheath 162 constrains the expansion of the proximal portion of expandable member 166 and stent segments within sheath 162.
[0058] Expandable member 166 is then deflated, leaving stent segments 172 in a plastically-deformed, expanded configuration within lesion L, as shown in Fig. 6D. With stent segments 172 deployed, expandable member 166 may be retracted within sheath 162, again maintaining force against pusher tube 36 to position a second set of stent segments (not shown) at the distal end of expandable member 166. Expandable member 166 is moved proximally relative to the second stent segments until the distal-most stent segment engages stop 78 (Figs. 2A-2B), thereby placing second stent segments in position for deployment. Stent delivery catheter 160 is then ready to be repositioned at a different lesion L in the side branch vessel SB, as shown in Fig. 6D, or in the main branch MB in other embodiments. Guidewire 168 is first advanced into side branch SB, and catheter 160 is advanced over guidewire 168. Sheath 162 is again retracted and expandable member 166 expanded to dilate lesion L. Advantageously, multiple lesions of various lengths may be treated in this way without removing stent delivery catheter 160 from the patient's body.
[0059] Referring now to Fig. 6E, once positioned in the side branch SB, stent delivery catheter 160 may be used to deploy a second stent 180 at the lesion L in the side branch SB. The method for stent deployment may be carried out as described above. Delivery catheter 160 may then be removed from the side branch SB, realigned in the main branch, and expandable member 166 again inflated to dilate a third lesion L, as shown in Fig. 6F. As shown in Fig. 6G, stent delivery catheter 160 may next be used to deploy a third stent 190 having one or more stent segments 190 at another lesion L in the main branch MB. Fig. 6H shows three stents 170, 180, 190 in place in the main branch MB and side branch SB of the artery A, after stent delivery catheter 160 has been removed. In various alternative techniques, only one stent may be placed in each of the main and side branches, the side branch stent may be placed before the main branch stent, multiple stents may be placed in the side branch vessel, and or the like. Any suitable combination of stent placements is contemplated according to various embodiments of the invention. Furthermore, when movement of the pusher tube, sheath, or stent segments is described in relation to other components of the delivery catheter of the invention, such movement is relative and will encompass: moving the sheath, pusher tube, or stent segments while keeping the other component(s) stationary; keeping the sheath, pusher tube or stent segments stationary while moving the other component(s); or moving multiple components simultaneously relative to each other.
[0060] Referring now to Figs. 7A-7D, an alternative method for treating a bifurcated vessel is illustrated. As shown in Fig. 7 A, a first stent 210 preferably having multiple stent segments 212 may be placed in the manner described above in a main branch MB of a vessel such that a central portion of first stent 210 crosses an ostium of (opening into) a side branch SB of the vessel. A guidewire 208 may then be extended through an opening in the sidewall of the central portion of first stent 210 into side branch SB and up to or past a side branch lesion L.
[0061] As shown in Fig. 7B, a stent delivery catheter 200 may then be advanced over guidewire 208, into side branch SB to a position for treating the lesion L. In some embodiments, a sheath 202 will first be retracted proximally from nosecone 204 to expose and allow expansion of an expandable member 206 to predilate the lesion L. In some embodiments, a portion of expanded expandable member 206 will extend through a sidewall opening 214 in first stent 210, and may be used to expand sidewall opening 214 either before or at the same time as it predilates the lesion L, deforming the struts around sidewall opening 214 to create a larger opening of a size sufficient to receive a second stent therethrough.
[0062] Referring now to Fig. 7C, a second stent 220 may then be placed in side branch SB using stent delivery catheter 200 (removed from Fig. 7C for clarity). In some embodiments, as in Figs. 7C and 7D, second stent 220 may extend through side- wall opening 214 of first stent 210, to extend back into the main branch MB, thus having a bend or "elbow" to conform to the longitudinal axis of the main branch. In alternative embodiments, the second stent may extend up to but not through sidewall opening 214, may extend up to and attach to sidewall opening 214, maybe spaced apart from sidewall opening 214, or the like. [0063] As shown in Figs. 7D and 7E, in one embodiment in which second stent 220 extends into the main branch MB, stent delivery catheter 200 may by advanced into main branch MB again, after placement of second stent 220, and expandable member 206 may be expanded so as to expand an opening 221 in the "elbow portion" of second stent 220 in alignment with the passage through first stent 210. Fig. 7E schematically shows first stent 210 overlapping second stent 214, the latter of which includes opening 221 in the "elbow portion" of the stent 214. . Such expansion of an opening of second stent 220 helps to prevent disruption of blood flow through the main branch MB due to the presence of second stent 220 within the main branch MB.
[0064] With reference now to Figs. 8A-8D, another embodiment of a method for treating bifurcated vessels is described. As shown in Fig. 8A, a first stent 240 is delivered via a stent deliver catheter (shown in Fig. 8B) in a main branch MB of the vessel, such that a central portion 244 of first stent 240 is positioned at an ostium of a side branch SB. First stent 240 is generally configured as the stents described above with reference to Figs. 5A-5D, thus having central portion 244 with one or more large sidewall openings and adjacent end portions 242 having smaller (or "higher density") sidewall openings. In one embodiment, central portion 244 is self-expanding while end portions 242 are balloon expandable. Central portion 244 may be positioned relative to the side branch SB ostium using fluoroscopy or any other suitable technique. A guidewire 238 may then be extended through a sidewall opening in central portion 244, into the side branch SB and up to or past a side branch lesion L.
[0065] As illustrated in Fig. 8B, a stent delivery catheter 230 may then be passed through the sidewall opening, over guidewire 238, and into the side branch SB. A sheath 232 may be retracted from the nosecone 234 to expose and allow expansion of an expandable member 236, to both predilate the lesion L and to expand the sidewall opening in central portion 244 by deforming or deflecting one or more struts 244a of central portion 244 adjacent the sidewall opening. As shown in Fig. 8C, delivery catheter 230 may then be used to deploy a second stent 250, as described above. Second stent 250 may also include a central portion 254 having large sidewall openings and adjacent end portions 252 having smaller sidewall openings. Again, as shown in Fig. 8D, delivery catheter 230 may be repositioned in the main branch MB after delivery of first stent 240 to expand a sidewall opening in second stent 250 to enhance blood flow through the main branch MB. The expanded opening in second stent 250 may in some embodiments lie in the central portion 254 of second stent 250. [0066] While the foregoing description of the invention is directed to a stent delivery catheter for deploying stents into vascular lumens to maintain patency, various other types of wire- guided catheters also may embody the principles of the invention. For example, catheters for deployment of prosthetic devices such as embolic coils, stent grafts, aneurism repair devices, annuloplasty rings, heart valves, anastomosis devices, staples or clips, as well as ultrasound and angiography catheters, electrophysiological mapping and ablation catheters, and other devices may also utilize the principles of the invention.
[0067] Although the above is complete description of the preferred embodiments of the invention, various alternatives, additions, modifications and improvements may be made without departing from the scope thereof, which is defined by the claims.

Claims

_ . . . ..WHAT IS CLAIMED IS:
1. A method of treating one or more lesions in a vessel, the vessel having a main branch and a side branch branching from the main branch at a bifurcation, the method comprising: positioning a delivery catheter in the main branch; deploying a first stent from the delivery catheter in the main branch; positioning the delivery catheter in the side branch; and deploying a second stent from the delivery catheter in the side branch; wherein the delivery catheter is not removed from the vessel between deploying the first and second stents.
2. A method as in claim 1 further comprising deploying a third stent from the delivery catheter in the main branch or side branch without removing the delivery catheter from the vessel.
3. A method as in claim 1 wherein the delivery catheter is positioned through an opening in a sidewall of the first stent to deploy the second stent.
4. A method as in claim 1 wherein the first and second stents each comprise a plurality of separable segments.
5. A method as in claim 1 wherein the first stent has a different length than the second stent.
6. A method as in claim 1 wherein the first stent is deployed before the second stent.
7. A method as in claim 1 wherein the second stent is deployed before the first stent.
8. A method as in claim 1 wherein the first stent and the second stent each have a portion in the main branch.
9. A method as in claim 1 further comprising adjusting the length of the first stent before deploying the first stent while the delivery catheter remains in the vessel.
10. A method as in claim 1 further comprising adjusting the length of the second stent before deploying the second stent while the delivery catheter remains in the vessel.
11. A method as in claim 1 further comprising dilating at least one lesion in the vessel using an expandable member on the delivery catheter before deploying at least one of the first and second stents.
12. A method of treating one or more lesions in a vessel, the vessel having a first branch and a second branch meeting at a bifurcation, the method comprising: positioning a delivery catheter in the first branch; deploying a first stent from the delivery catheter in the first branch, a portion of the first stent being disposed across the bifurcation; positioning the delivery catheter in the second branch through an opening in a sidewall of the first stent; and deploying a second stent from the delivery catheter, at least a portion of the second stent being disposed in the second branch; wherein the delivery catheter is not removed from the vessel between deploying the first and second stents.
13. The method of claim 12 further comprising dilating the opening in the sidewall of the first stent by expanding an expandable member on the delivery catheter.
14. The method of claim 13 wherein before dilating, the opening in the sidewall of the first stent is I-shaped.
15. The method of claim 12 wherein first stent has a first portion with a plurality of first slots and a second portion with a plurality of second slots, the first slots being larger than the second slots.
16. The method of claim 15 wherein the opening in the sidewall of the first stent comprises one of the first slots, and wherein the first stent is deployed so that at least one of the first slots is aligned with bifurcation.
17. The method of claim 12 wherein the first stent has a different geometry than the second stent.
18. The method of claim 12 wherein the first stent has a different length than the second stent.
19. The method of claim 12 wherein deploying the first stent comprises expanding an expandable member on the delivery catheter.
20. The method of claim 19 wherein deploying the second stent comprises expanding the expandable member on the delivery catheter.
21. The method of claim 19 wherein at least one of the first and second stents comprises a plurality of separable segments.
22. The method of claim 12 further comprising dilating at least one lesion in the vessel using an expandable member on the delivery catheter before deploying at least one of the first and second stents.
23. A stent delivery device for treating one or more lesions in a vessel having a bifurcation, the bifurcation including a main branch and a side branch, the stent delivery device comprising: a catheter shaft; a first stent carried by the catheter shaft configured for deployment in the main branch; a second stent carried by the catheter shaft configured for deployment in the side branch; and a deployment mechanism for deploying the first and second stents independently of each other.
24. A stent delivery device as in claim 23 wherein the deployment mechanism comprises an expandable member coupled to the catheter shaft, the first and second stents being positionable on the expandable member for expansion thereby.
25. A stent delivery device as in claim 24 further comprising a sheath slidably disposed over the expandable member, the sheath being positionable to restrain a first portion of the expandable member while allowing expansion of a second portion of the expandable member.
26. A stent delivery device as in claim 24 wherein the expandable member is configured for dilation of the vessel without deploying either of the first and second stents.
27. A stent delivery device as in claim 23 wherein the first and second stents are self-expanding.
28. A stent delivery device as in claim 23 wherein at least one of the first and second stents has a sidewall opening that can be widened following stent deployment.
29. A stent delivery device as in claim 28 wherein the other of the first and second stents is positionable through the sidewall opening.
30. A stent delivery device as in claim 28 wherein the sidewall opening is in a first wall portion of the first or second stent, the first or second stent further having a second wall portion, the second wall portion having a different geometry, material or shape than the first wall portion.
31. A stent delivery device as in claim 30 wherein the second wall portion is balloon expandable, and the first wall portion is self-expanding.
32. A stent delivery device as in claim 30 wherein the first wall portion has a lower density of material per unit length than the second wall portion.
33. A stent delivery device as in claim 23 wherein the second stent has a different geometry, shape, or size than the first stent.
34. A stent delivery device as in claim 23 further comprising a third stent carried by the catheter shaft and deployable independently of the first and second stents.
35. A stent delivery device as in claim 23 wherein a length of at least one of the first and second stents can be selected in situ.
36. A stent delivery device as in claim 23 wherein at least one of the first and second stents comprises a plurality of separable stent segments.
PCT/US2005/010962 2004-03-30 2005-03-30 Stent delivery for bifurcated vessels WO2005096995A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002560310A CA2560310A1 (en) 2004-03-30 2005-03-30 Stent delivery for bifurcated vessels
JP2007506577A JP4921355B2 (en) 2004-03-30 2005-03-30 Stent delivery for branch vessels
AU2005231420A AU2005231420A1 (en) 2004-03-30 2005-03-30 Stent delivery for bifurcated vessels
EP05730839A EP1737388A4 (en) 2004-03-30 2005-03-30 Stent delivery for bifurcated vessels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/814,593 US8080048B2 (en) 2001-12-03 2004-03-30 Stent delivery for bifurcated vessels
US10/814,593 2004-03-30

Publications (2)

Publication Number Publication Date
WO2005096995A2 true WO2005096995A2 (en) 2005-10-20
WO2005096995A3 WO2005096995A3 (en) 2006-07-27

Family

ID=35125589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/010962 WO2005096995A2 (en) 2004-03-30 2005-03-30 Stent delivery for bifurcated vessels

Country Status (6)

Country Link
US (1) US8080048B2 (en)
EP (1) EP1737388A4 (en)
JP (1) JP4921355B2 (en)
AU (1) AU2005231420A1 (en)
CA (1) CA2560310A1 (en)
WO (1) WO2005096995A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896983A1 (en) * 2006-02-09 2007-08-10 Alain Dibie SYSTEM FOR TREATING LESIONS ON A BIFURCATION OF BLOOD VESSEL
US20100324664A1 (en) * 2006-10-18 2010-12-23 Asher Holzer Bifurcated Stent Assemblies
US8545418B2 (en) 2004-08-25 2013-10-01 Richard R. Heuser Systems and methods for ablation of occlusions within blood vessels
US9044350B2 (en) 2006-08-21 2015-06-02 Boston Scientific Scimed, Inc. Alignment sheath apparatus and method

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258230A3 (en) 2001-03-29 2003-12-10 CardioSafe Ltd Balloon catheter device
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7147656B2 (en) 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US20030135266A1 (en) 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7309350B2 (en) 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
US7351255B2 (en) 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US8109987B2 (en) 2003-04-14 2012-02-07 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7717953B2 (en) 2004-10-13 2010-05-18 Tryton Medical, Inc. Delivery system for placement of prosthesis at luminal OS
US7731747B2 (en) 2003-04-14 2010-06-08 Tryton Medical, Inc. Vascular bifurcation prosthesis with multiple thin fronds
US7972372B2 (en) 2003-04-14 2011-07-05 Tryton Medical, Inc. Kit for treating vascular bifurcations
US8083791B2 (en) 2003-04-14 2011-12-27 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7758630B2 (en) 2003-04-14 2010-07-20 Tryton Medical, Inc. Helical ostium support for treating vascular bifurcations
US7241308B2 (en) 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US7323006B2 (en) 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US8414473B2 (en) * 2004-04-21 2013-04-09 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US7871431B2 (en) * 2004-07-27 2011-01-18 The Cleveland Clinic Foundation Apparatus for treating atherosclerosis
US8641746B2 (en) * 2005-05-31 2014-02-04 J.W. Medical Systems Ltd. In situ stent formation
US7320702B2 (en) 2005-06-08 2008-01-22 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses (III)
EP1998716A4 (en) 2006-03-20 2010-01-20 Xtent Inc Apparatus and methods for deployment of linked prosthetic segments
US9211206B2 (en) * 2006-04-13 2015-12-15 Medtronic Vascular, Inc. Short handle for a long stent
WO2007146075A2 (en) * 2006-06-07 2007-12-21 Cherik Bulkes Analog signal transition detector
US8517933B2 (en) * 2006-06-13 2013-08-27 Intuitive Surgical Operations, Inc. Retraction of tissue for single port entry, robotically assisted medical procedures
US20080199510A1 (en) 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8366628B2 (en) * 2007-06-07 2013-02-05 Kenergy, Inc. Signal sensing in an implanted apparatus with an internal reference
US9101503B2 (en) 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
US8152840B2 (en) 2008-07-31 2012-04-10 Boston Scientific Scimed, Inc. Bifurcation catheter assembly and methods
WO2010036982A1 (en) 2008-09-25 2010-04-01 Henry Bourang Partially crimped stent
US8769796B2 (en) 2008-09-25 2014-07-08 Advanced Bifurcation Systems, Inc. Selective stent crimping
US12076258B2 (en) 2008-09-25 2024-09-03 Advanced Bifurcation Systems Inc. Selective stent crimping
US8821562B2 (en) 2008-09-25 2014-09-02 Advanced Bifurcation Systems, Inc. Partially crimped stent
US11298252B2 (en) 2008-09-25 2022-04-12 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
US8366763B2 (en) 2009-07-02 2013-02-05 Tryton Medical, Inc. Ostium support for treating vascular bifurcations
CN109363807B (en) 2010-03-24 2021-04-02 高级分支系统股份有限公司 System and method for treating a bifurcation
EP2549951B1 (en) 2010-03-24 2017-05-10 Advanced Bifurcation Systems, Inc. Stent alignment during treatment of a bifurcation
AU2011232360B2 (en) 2010-03-24 2015-10-08 Advanced Bifurcation Systems Inc. Methods and systems for treating a bifurcation with provisional side branch stenting
WO2012037507A1 (en) 2010-09-17 2012-03-22 Abbott Cardiovascular Systems Inc. Length and diameter adjustable balloon catheter
US9327101B2 (en) 2010-09-17 2016-05-03 Abbott Cardiovascular Systems Inc. Length and diameter adjustable balloon catheter
EP2642946B1 (en) 2010-11-24 2023-08-16 Poseidon Medical Inc. Support for treating vascular bifurcations
EP3449879B1 (en) 2011-02-08 2020-09-23 Advanced Bifurcation Systems Inc. System for treating a bifurcation with a fully crimped stent
EP2672925B1 (en) 2011-02-08 2017-05-03 Advanced Bifurcation Systems, Inc. Multi-stent and multi-balloon apparatus for treating bifurcations
WO2013162724A1 (en) 2012-04-26 2013-10-31 Tryton Medical, Inc. Support for treating vascular bifurcations
US9623216B2 (en) 2013-03-12 2017-04-18 Abbott Cardiovascular Systems Inc. Length and diameter adjustable balloon catheter for drug delivery
US10238845B2 (en) * 2014-09-19 2019-03-26 Acclarent, Inc. Balloon catheter assembly
CN108472147B (en) * 2015-07-23 2023-06-20 奥普特米德医疗器械股份有限公司 Support frame

Family Cites Families (327)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069825A (en) 1976-01-28 1978-01-24 Taichiro Akiyama Surgical thread and cutting apparatus for the same
US4564014A (en) 1980-01-30 1986-01-14 Thomas J. Fogarty Variable length dilatation catheter apparatus and method
US4468224A (en) 1982-01-28 1984-08-28 Advanced Cardiovascular Systems, Inc. System and method for catheter placement in blood vessels of a human patient
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US5693083A (en) * 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
US4891225A (en) * 1984-05-21 1990-01-02 Massachusetts Institute Of Technology Bioerodible polyanhydrides for controlled drug delivery
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
DE3442736C2 (en) 1984-11-23 1987-03-05 Tassilo Dr.med. 7800 Freiburg Bonzel Dilatation catheter
US4690684A (en) * 1985-07-12 1987-09-01 C. R. Bard, Inc. Meltable stent for anastomosis
US4770176A (en) * 1985-07-12 1988-09-13 C. R. Bard, Inc. Vessel anastomosis using meltable stent
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4681110A (en) 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US5040548A (en) 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
US5350395A (en) 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4775337A (en) 1986-12-02 1988-10-04 Universal Manufacturing Corporation Conductive wire with integral electrical terminal
US4748982A (en) 1987-01-06 1988-06-07 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
DE3884020T2 (en) 1987-02-27 1994-03-03 Bard Inc C R Catheter and guide wire replacement system.
US4988356A (en) 1987-02-27 1991-01-29 C. R. Bard, Inc. Catheter and guidewire exchange system
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5171222A (en) 1988-03-10 1992-12-15 Scimed Life Systems, Inc. Interlocking peel-away dilation catheter
US6730105B2 (en) 1988-07-29 2004-05-04 Samuel Shiber Clover leaf shaped tubular medical device
US5092877A (en) 1988-09-01 1992-03-03 Corvita Corporation Radially expandable endoprosthesis
US5226913A (en) 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US4994066A (en) 1988-10-07 1991-02-19 Voss Gene A Prostatic stent
US4994069A (en) 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
DE8916283U1 (en) 1989-01-30 1997-05-15 C.R. Bard, Inc., Murray Hill, N.J. Quickly replaceable coronary catheter
US5217495A (en) 1989-05-10 1993-06-08 United States Surgical Corporation Synthetic semiabsorbable composite yarn
US5292331A (en) 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
IE73670B1 (en) 1989-10-02 1997-07-02 Medtronic Inc Articulated stent
US5035706A (en) * 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5013318A (en) 1990-07-31 1991-05-07 Special Devices Incorporated Medical instrument for measuring depth of fastener hold in bone
US5122154A (en) * 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
AR246020A1 (en) 1990-10-03 1994-03-30 Hector Daniel Barone Juan Carl A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms.
ES2085435T3 (en) 1990-10-09 1996-06-01 Cook Inc PERCUTANEOUS DILATOR DEVICE.
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
US5135535A (en) 1991-06-11 1992-08-04 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US5527354A (en) 1991-06-28 1996-06-18 Cook Incorporated Stent formed of half-round wire
US5490837A (en) 1991-07-05 1996-02-13 Scimed Life Systems, Inc. Single operator exchange catheter having a distal catheter shaft section
US5976107A (en) 1991-07-05 1999-11-02 Scimed Life Systems. Inc. Catheter having extendable guide wire lumen
EP0533960B1 (en) 1991-07-29 1994-10-12 Brandes, Bernd Device and procedure for detecting leaks in double walled pipelines for fluids
US5456713A (en) 1991-10-25 1995-10-10 Cook Incorporated Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5628775A (en) 1991-11-08 1997-05-13 Ep Technologies, Inc. Flexible bond for sleeves enclosing a bendable electrode tip assembly
CA2117386A1 (en) 1992-01-09 1993-07-22 Motasim M. Sirhan Guidewire replacement device
US5246421A (en) 1992-02-12 1993-09-21 Saab Mark A Method of treating obstructed regions of bodily passages
US5273536A (en) 1992-04-02 1993-12-28 Vicky Savas Tapered balloon catheter
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5562725A (en) 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
DE59206251D1 (en) 1992-10-31 1996-06-13 Schneider Europ Ag Arrangement for implanting self-expanding endoprostheses
US5336178A (en) 1992-11-02 1994-08-09 Localmed, Inc. Intravascular catheter with infusion array
US5607463A (en) 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
EP0696185B1 (en) * 1993-04-28 1998-08-12 Focal, Inc. Apparatus, product and use related to intraluminal photothermoforming
US5549553A (en) 1993-04-29 1996-08-27 Scimed Life Systems, Inc. Dilation ballon for a single operator exchange intravascular catheter or similar device
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US5334187A (en) 1993-05-21 1994-08-02 Cathco, Inc. Balloon catheter system with slit opening handle
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5445646A (en) * 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5989280A (en) * 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
US5607444A (en) 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5549635A (en) 1994-01-24 1996-08-27 Solar, Rita & Gaterud, Ltd. Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
DE69514690T3 (en) 1994-02-25 2006-09-14 Fischell, Robert E. stent
US5453090A (en) 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5478349A (en) 1994-04-28 1995-12-26 Boston Scientific Corporation Placement of endoprostheses and stents
WO1995029646A1 (en) 1994-04-29 1995-11-09 Boston Scientific Corporation Medical prosthetic stent and method of manufacture
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5456694A (en) 1994-05-13 1995-10-10 Stentco, Inc. Device for delivering and deploying intraluminal devices
US5514093A (en) 1994-05-19 1996-05-07 Scimed Life Systems, Inc. Variable length balloon dilatation catheter
DE4418336A1 (en) * 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5636641A (en) 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
US5575816A (en) 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US5723003A (en) 1994-09-13 1998-03-03 Ultrasonic Sensing And Monitoring Systems Expandable graft assembly and method of use
US5549563A (en) 1994-10-11 1996-08-27 Kronner; Richard F. Reinforcing insert for uterine manipulator
US5836964A (en) 1996-10-30 1998-11-17 Medinol Ltd. Stent fabrication method
EP0714640A1 (en) * 1994-11-28 1996-06-05 Advanced Cardiovascular Systems, Inc. System and method for delivering multiple stents
US5735869A (en) 1994-11-30 1998-04-07 Schneider (Europe) A.G. Balloon catheter and stent delivery device
US5628755A (en) 1995-02-20 1997-05-13 Schneider (Europe) A.G. Balloon catheter and stent delivery system
CA2163708C (en) * 1994-12-07 2007-08-07 Robert E. Fischell Integrated dual-function catheter system for balloon angioplasty and stent delivery
US5549551A (en) 1994-12-22 1996-08-27 Advanced Cardiovascular Systems, Inc. Adjustable length balloon catheter
US5662675A (en) 1995-02-24 1997-09-02 Intervascular, Inc. Delivery catheter assembly
US5709713A (en) 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
US5807398A (en) * 1995-04-28 1998-09-15 Shaknovich; Alexander Shuttle stent delivery catheter
FR2733682B1 (en) * 1995-05-04 1997-10-31 Dibie Alain ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR
EP0773754B1 (en) * 1995-05-25 2004-09-01 Medtronic, Inc. Stent assembly
US5639274A (en) 1995-06-02 1997-06-17 Fischell; Robert E. Integrated catheter system for balloon angioplasty and stent delivery
EP0836416A1 (en) 1995-06-06 1998-04-22 Corvita Corporation Endovascular measuring apparatus, loading and deployment means
EP0830109B1 (en) * 1995-06-08 2003-10-15 Ave Galway Limited Bifurcated endovascular stent
JP3467916B2 (en) 1995-07-10 2003-11-17 松下電器産業株式会社 Transmission / reception method
US5877224A (en) * 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5797951A (en) 1995-08-09 1998-08-25 Mueller; Edward Gene Expandable support member
US5776141A (en) 1995-08-28 1998-07-07 Localmed, Inc. Method and apparatus for intraluminal prosthesis delivery
US5769882A (en) 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5702418A (en) 1995-09-12 1997-12-30 Boston Scientific Corporation Stent delivery system
JP3725919B2 (en) 1995-09-26 2005-12-14 キーパー株式会社 Resin CVJ boots
US5749848A (en) 1995-11-13 1998-05-12 Cardiovascular Imaging Systems, Inc. Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6090063A (en) 1995-12-01 2000-07-18 C. R. Bard, Inc. Device, system and method for implantation of filaments and particles in the body
US6579305B1 (en) * 1995-12-07 2003-06-17 Medtronic Ave, Inc. Method and apparatus for delivery deployment and retrieval of a stent comprising shape-memory material
US6042605A (en) * 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6878161B2 (en) * 1996-01-05 2005-04-12 Medtronic Vascular, Inc. Stent graft loading and deployment device and method
US5895398A (en) 1996-02-02 1999-04-20 The Regents Of The University Of California Method of using a clot capture coil
US5749921A (en) 1996-02-20 1998-05-12 Medtronic, Inc. Apparatus and methods for compression of endoluminal prostheses
EP0795304B1 (en) 1996-03-10 2004-05-19 Terumo Kabushiki Kaisha Implanting stent
US6334871B1 (en) * 1996-03-13 2002-01-01 Medtronic, Inc. Radiopaque stent markers
US6533805B1 (en) 1996-04-01 2003-03-18 General Surgical Innovations, Inc. Prosthesis and method for deployment within a body lumen
US5670161A (en) * 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5709701A (en) 1996-05-30 1998-01-20 Parodi; Juan C. Apparatus for implanting a prothesis within a body passageway
FR2749500B1 (en) * 1996-06-06 1998-11-20 Jacques Seguin DEVICE ALLOWING THE TREATMENT OF BODY DUCTS AT THE LEVEL OF A BIFURCATION
US7238197B2 (en) * 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US8728143B2 (en) * 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US6666883B1 (en) 1996-06-06 2003-12-23 Jacques Seguin Endoprosthesis for vascular bifurcation
US5697971A (en) * 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US6190402B1 (en) 1996-06-21 2001-02-20 Musc Foundation For Research Development Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
CA2211249C (en) 1996-07-24 2007-07-17 Cordis Corporation Balloon catheter and methods of use
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
DE19630469C2 (en) 1996-07-27 2000-12-21 Michael Betzler Vascular endoprosthesis, especially for the endovascular treatment of aortic aneurysms
US6090136A (en) 1996-07-29 2000-07-18 Radiance Medical Systems, Inc. Self expandable tubular support
US5922020A (en) 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US5755781A (en) 1996-08-06 1998-05-26 Iowa-India Investments Company Limited Embodiments of multiple interconnected stents
US6007517A (en) 1996-08-19 1999-12-28 Anderson; R. David Rapid exchange/perfusion angioplasty catheter
US6007543A (en) 1996-08-23 1999-12-28 Scimed Life Systems, Inc. Stent delivery system with stent securement means
US6123712A (en) 1996-08-23 2000-09-26 Scimed Life Systems, Inc. Balloon catheter with stent securement means
CA2263492C (en) 1996-08-23 2006-10-17 Scimed Life Systems, Inc. Stent delivery system having stent securement apparatus
US20030093143A1 (en) 1999-03-01 2003-05-15 Yiju Zhao Medical device having surface depressions containing nitric oxide releasing compound
US6254628B1 (en) 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US5772669A (en) 1996-09-27 1998-06-30 Scimed Life Systems, Inc. Stent deployment catheter with retractable sheath
US5755776A (en) 1996-10-04 1998-05-26 Al-Saadon; Khalid Permanent expandable intraluminal tubular stent
US6086610A (en) 1996-10-22 2000-07-11 Nitinol Devices & Components Composite self expanding stent device having a restraining element
US6835203B1 (en) * 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
EP0843990B1 (en) 1996-11-15 2003-07-30 Schneider (Europe) GmbH Balloon catheter and delivery device for a stent
US6551350B1 (en) * 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US5858556A (en) 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
JP3523765B2 (en) 1997-01-24 2004-04-26 テルモ株式会社 Living organ dilator
ES2251763T3 (en) 1997-01-24 2006-05-01 Paragon Intellectual Properties, Llc BISTABLE SPRING STRUCTURE FOR AN ENDOPROTESIS.
GB9703859D0 (en) * 1997-02-25 1997-04-16 Plante Sylvain Expandable intravascular stent
US5814064A (en) * 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
IL128261A0 (en) 1999-01-27 1999-11-30 Disc O Tech Medical Tech Ltd Expandable element
US6344272B1 (en) * 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
US6852252B2 (en) * 1997-03-12 2005-02-08 William Marsh Rice University Use of metalnanoshells to impede the photo-oxidation of conjugated polymer
US5817101A (en) * 1997-03-13 1998-10-06 Schneider (Usa) Inc Fluid actuated stent delivery system
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6143016A (en) 1997-04-21 2000-11-07 Advanced Cardiovascular Systems, Inc. Sheath and method of use for a stent delivery system
ATE265247T1 (en) 1997-06-10 2004-05-15 Schneider Europ Gmbh CATHETER SYSTEM
US6004328A (en) * 1997-06-19 1999-12-21 Solar; Ronald J. Radially expandable intraluminal stent and delivery catheter therefore and method of using the same
US6070589A (en) * 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US5899935A (en) 1997-08-04 1999-05-04 Schneider (Usa) Inc. Balloon expandable braided stent with restraint
US5984957A (en) 1997-08-12 1999-11-16 Schneider (Usa) Inc Radially expanded prostheses with axial diameter control
US6306166B1 (en) 1997-08-13 2001-10-23 Scimed Life Systems, Inc. Loading and release of water-insoluble drugs
US6056722A (en) 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
JP4292710B2 (en) * 1997-09-24 2009-07-08 エム イー ディ インスチィチュート インク Radially expandable stent
US5972027A (en) * 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US5961536A (en) 1997-10-14 1999-10-05 Scimed Life Systems, Inc. Catheter having a variable length balloon and method of using the same
US6511468B1 (en) 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
NO311781B1 (en) 1997-11-13 2002-01-28 Medinol Ltd Metal multilayer stents
US6241691B1 (en) 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6022374A (en) * 1997-12-16 2000-02-08 Cardiovasc, Inc. Expandable stent having radiopaque marker and method
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US6699724B1 (en) * 1998-03-11 2004-03-02 Wm. Marsh Rice University Metal nanoshells for biosensing applications
US6428811B1 (en) * 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
US6425898B1 (en) * 1998-03-13 2002-07-30 Cordis Corporation Delivery apparatus for a self-expanding stent
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US6132460A (en) * 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent
US6102942A (en) 1998-03-30 2000-08-15 Endovascular Technologies, Inc. Stent/graft deployment catheter with a stent/graft attachment mechanism
US6063111A (en) 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
US6037647A (en) * 1998-05-08 2000-03-14 Fujitsu Limited Semiconductor device having an epitaxial substrate and a fabrication process thereof
US6036725A (en) * 1998-06-10 2000-03-14 General Science And Technology Expandable endovascular support device
DE19829702C1 (en) * 1998-07-03 2000-03-16 Heraeus Gmbh W C Radially expandable support device V
WO2000012832A2 (en) 1998-08-26 2000-03-09 Molecular Geodesics, Inc. Radially expandable device
US6120522A (en) 1998-08-27 2000-09-19 Scimed Life Systems, Inc. Self-expanding stent delivery catheter
US5997563A (en) 1998-09-28 1999-12-07 Medtronic, Inc. Implantable stent having variable diameter
US6196995B1 (en) 1998-09-30 2001-03-06 Medtronic Ave, Inc. Reinforced edge exchange catheter
US6254612B1 (en) 1998-10-22 2001-07-03 Cordis Neurovascular, Inc. Hydraulic stent deployment system
US6293967B1 (en) * 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
DE19855421C2 (en) 1998-11-02 2001-09-20 Alcove Surfaces Gmbh Implant
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
SG75982A1 (en) * 1998-12-03 2000-10-24 Medinol Ltd Controlled detachment stents
US6187034B1 (en) * 1999-01-13 2001-02-13 John J. Frantzen Segmented stent for flexible stent delivery system
US6022359A (en) 1999-01-13 2000-02-08 Frantzen; John J. Stent delivery system featuring a flexible balloon
US6558414B2 (en) 1999-02-02 2003-05-06 Impra, Inc. Partial encapsulation of stents using strips and bands
US6248122B1 (en) * 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
US6251134B1 (en) 1999-02-28 2001-06-26 Inflow Dynamics Inc. Stent with high longitudinal flexibility
US5976155A (en) 1999-03-05 1999-11-02 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US6379365B1 (en) * 1999-03-29 2002-04-30 Alexis Diaz Stent delivery catheter system having grooved shaft
US6258117B1 (en) 1999-04-15 2001-07-10 Mayo Foundation For Medical Education And Research Multi-section stent
US6730116B1 (en) * 1999-04-16 2004-05-04 Medtronic, Inc. Medical device for intraluminal endovascular stenting
US6273911B1 (en) * 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6585756B1 (en) 1999-05-14 2003-07-01 Ernst P. Strecker Implantable lumen prosthesis
US6375676B1 (en) 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6290673B1 (en) * 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6858034B1 (en) * 1999-05-20 2005-02-22 Scimed Life Systems, Inc. Stent delivery system for prevention of kinking, and method of loading and using same
DE19938377A1 (en) * 1999-08-06 2001-03-01 Biotronik Mess & Therapieg Stent for vascular branching
US6415696B1 (en) 1999-09-01 2002-07-09 Kennametal Pc Inc. Toolholder assembly
US6605062B1 (en) 1999-09-02 2003-08-12 Advanced Cardiovascular Systems, Inc. Catheter for guidewire support or exchange
US6383171B1 (en) 1999-10-12 2002-05-07 Allan Will Methods and devices for protecting a passageway in a body when advancing devices through the passageway
US6409753B1 (en) 1999-10-26 2002-06-25 Scimed Life Systems, Inc. Flexible stent
US6325823B1 (en) 1999-10-29 2001-12-04 Revasc Corporation Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use
US6428569B1 (en) 1999-11-09 2002-08-06 Scimed Life Systems Inc. Micro structure stent configurations
US6287291B1 (en) 1999-11-09 2001-09-11 Advanced Cardiovascular Systems, Inc. Protective sheath for catheters
JP4473390B2 (en) 2000-01-07 2010-06-02 川澄化学工業株式会社 Stent and stent graft
US6322586B1 (en) * 2000-01-10 2001-11-27 Scimed Life Systems, Inc. Catheter tip designs and method of manufacture
US6312458B1 (en) 2000-01-19 2001-11-06 Scimed Life Systems, Inc. Tubular structure/stent/stent securement member
CA2398912A1 (en) 2000-02-04 2001-08-09 Wilson-Cook Medical Inc. Stent introducer apparatus
US6530944B2 (en) * 2000-02-08 2003-03-11 Rice University Optically-active nanoparticles for use in therapeutic and diagnostic methods
DE10012460A1 (en) * 2000-03-15 2001-09-20 Biotronik Mess & Therapieg Stent consists of several adjacent lengthwise tubular sections joined by first and second connections consisting of cell-type elements of one orientation.
US6264683B1 (en) 2000-03-17 2001-07-24 Advanced Cardiovascular Systems, Inc. Stent delivery catheter with bumpers for improved retention of balloon expandable stents
US6315708B1 (en) * 2000-03-31 2001-11-13 Cordis Corporation Stent with self-expanding end sections
US6702843B1 (en) 2000-04-12 2004-03-09 Scimed Life Systems, Inc. Stent delivery means with balloon retraction means
US6451050B1 (en) 2000-04-28 2002-09-17 Cardiovasc, Inc. Stent graft and method
KR20020093109A (en) 2000-05-02 2002-12-12 윌슨-쿡 메디컬 인크. Introducer device for catheters o.t.l. with eversible sleeve
US6602282B1 (en) 2000-05-04 2003-08-05 Avantec Vascular Corporation Flexible stent structure
US6569180B1 (en) * 2000-06-02 2003-05-27 Avantec Vascular Corporation Catheter having exchangeable balloon
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US6529549B1 (en) 2000-07-27 2003-03-04 2Wire, Inc. System and method for an equalizer-based symbol timing loop
US6945989B1 (en) * 2000-09-18 2005-09-20 Endotex Interventional Systems, Inc. Apparatus for delivering endoluminal prostheses and methods of making and using them
CA2397373C (en) 2000-09-22 2010-02-09 Boston Scientific Limited Flexible and expandable stent
AU2002246587A1 (en) 2000-11-03 2002-08-06 Wm. Marsh Rice University Partial coverage metal nanoshells and method of making same
US6582394B1 (en) * 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
US6743251B1 (en) 2000-11-15 2004-06-01 Scimed Life Systems, Inc. Implantable devices with polymeric detachment junction
US6607553B1 (en) * 2000-11-17 2003-08-19 B. Braun Medical, Inc. Method for deploying a thermo-mechanically expandable stent
US6582460B1 (en) * 2000-11-20 2003-06-24 Advanced Cardiovascular Systems, Inc. System and method for accurately deploying a stent
US6468298B1 (en) 2000-12-28 2002-10-22 Advanced Cardiovascular Systems, Inc. Gripping delivery system for self-expanding stents and method of using the same
DE10105160B4 (en) 2001-02-06 2005-09-01 Osypka, Peter, Dr.-Ing. Implantable vascular support
US6540777B2 (en) * 2001-02-15 2003-04-01 Scimed Life Systems, Inc. Locking stent
ATE368482T1 (en) 2001-02-16 2007-08-15 Abbott Lab Vascular Entpr Ltd IMPLANTS WITH FK506 FOR RESTENOSE TREATMENT AND PROPHYLAXIS
WO2002067816A1 (en) * 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
US20030097169A1 (en) * 2001-02-26 2003-05-22 Brucker Gregory G. Bifurcated stent and delivery system
US6592549B2 (en) 2001-03-14 2003-07-15 Scimed Life Systems, Inc. Rapid exchange stent delivery system and associated components
EP1258230A3 (en) 2001-03-29 2003-12-10 CardioSafe Ltd Balloon catheter device
US6660031B2 (en) 2001-04-11 2003-12-09 Scimed Life Systems, Inc. Multi-length delivery system
US6712845B2 (en) 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US6837901B2 (en) 2001-04-27 2005-01-04 Intek Technology L.L.C. Methods for delivering, repositioning and/or retrieving self-expanding stents
US8337540B2 (en) * 2001-05-17 2012-12-25 Advanced Cardiovascular Systems, Inc. Stent for treating bifurcations and method of use
US6749628B1 (en) * 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
SE0101887L (en) 2001-05-30 2002-12-01 Jan Otto Solem Vascular instrument and method
US6599314B2 (en) * 2001-06-08 2003-07-29 Cordis Corporation Apparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements
ES2266148T5 (en) 2001-07-20 2012-11-06 Sorin Biomedica Cardio S.R.L. Stent
US6599296B1 (en) 2001-07-27 2003-07-29 Advanced Cardiovascular Systems, Inc. Ratcheting handle for intraluminal catheter systems
US6679909B2 (en) 2001-07-31 2004-01-20 Advanced Cardiovascular Systems, Inc. Rapid exchange delivery system for self-expanding stent
US20030045923A1 (en) 2001-08-31 2003-03-06 Mehran Bashiri Hybrid balloon expandable/self expanding stent
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
US6685730B2 (en) * 2001-09-26 2004-02-03 Rice University Optically-absorbing nanoparticles for enhanced tissue repair
US6778316B2 (en) * 2001-10-24 2004-08-17 William Marsh Rice University Nanoparticle-based all-optical sensors
JP4043216B2 (en) 2001-10-30 2008-02-06 オリンパス株式会社 Stent
US6939376B2 (en) * 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7682387B2 (en) 2002-04-24 2010-03-23 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
US20030135266A1 (en) 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7351255B2 (en) * 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US8353945B2 (en) 2001-12-03 2013-01-15 J.W. Medical System Ltd. Delivery catheter having active engagement mechanism for prosthesis
US7270668B2 (en) 2001-12-03 2007-09-18 Xtent, Inc. Apparatus and methods for delivering coiled prostheses
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7309350B2 (en) 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US7147656B2 (en) * 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US20030114919A1 (en) 2001-12-10 2003-06-19 Mcquiston Jesse Polymeric stent with metallic rings
EP1471844A2 (en) * 2002-01-16 2004-11-03 Eva Corporation Catheter hand-piece apparatus and method of using the same
US6939368B2 (en) * 2002-01-17 2005-09-06 Scimed Life Systems, Inc. Delivery system for self expanding stents for use in bifurcated vessels
US6981985B2 (en) 2002-01-22 2006-01-03 Boston Scientific Scimed, Inc. Stent bumper struts
US6911040B2 (en) 2002-01-24 2005-06-28 Cordis Corporation Covered segmented stent
US6866679B2 (en) 2002-03-12 2005-03-15 Ev3 Inc. Everting stent and stent delivery system
US7052511B2 (en) 2002-04-04 2006-05-30 Scimed Life Systems, Inc. Delivery system and method for deployment of foreshortening endoluminal devices
US6800065B2 (en) 2002-04-04 2004-10-05 Medtronic Ave, Inc. Catheter and guide wire exchange system
US20030195609A1 (en) 2002-04-10 2003-10-16 Scimed Life Systems, Inc. Hybrid stent
AU2003221976A1 (en) * 2002-04-16 2003-11-03 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an expandable anchor
US20040024450A1 (en) 2002-04-24 2004-02-05 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7470281B2 (en) 2002-04-26 2008-12-30 Medtronic Vascular, Inc. Coated stent with crimpable coating
US6645547B1 (en) 2002-05-02 2003-11-11 Labcoat Ltd. Stent coating device
US20030225446A1 (en) 2002-05-29 2003-12-04 William A. Cook Australia Pty Ltd. Multi-piece prosthesis deployment apparatus
US6761734B2 (en) * 2002-07-22 2004-07-13 William S. Suhr Segmented balloon catheter for stenting bifurcation lesions
US7141063B2 (en) 2002-08-06 2006-11-28 Icon Medical Corp. Stent with micro-latching hinge joints
US8518096B2 (en) * 2002-09-03 2013-08-27 Lifeshield Sciences Llc Elephant trunk thoracic endograft and delivery system
AU2003270070A1 (en) * 2002-09-04 2004-03-29 Reva Medical, Inc. A slide and lock stent and method of manufacture from a single piece shape
US6893417B2 (en) * 2002-09-20 2005-05-17 Medtronic Vascular, Inc. Catheter and guide wire exchange system with improved proximal shaft and transition section
US6994721B2 (en) 2002-10-21 2006-02-07 Israel Henry M Stent assembly
US7169172B2 (en) 2002-11-01 2007-01-30 Counter Clockwise, Inc. Method and apparatus for caged stent delivery
ITRM20020596A1 (en) * 2002-11-27 2004-05-28 Mauro Ferrari IMPLANT VASCULAR PROSTHESIS WITH COMBINED, LAPAROSCOPIC AND ENDOVASCULAR TECHNIQUES, FOR THE TREATMENT OF ABDOMINAL AORTIC ANEURYSMS, AND OPERATIONAL EQUIPMENT FOR THE RELEASE OF A PROSTHESIS EQUIPPED WITH ANCHORING STENTS.
DE60326000D1 (en) 2002-12-04 2009-03-12 Cook Inc METHOD AND DEVICE FOR TREATMENT IN AORTASE ACTION
EP1575454A4 (en) 2002-12-09 2006-11-29 Medtronic Vascular Inc Modular stent having polymer bridges at modular unit contact sites
US6849084B2 (en) 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US7314480B2 (en) * 2003-02-27 2008-01-01 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery
WO2004093746A1 (en) 2003-03-26 2004-11-04 The Foundry Inc. Devices and methods for treatment of abdominal aortic aneurysm
US7208001B2 (en) 2003-04-24 2007-04-24 Medtronic Vascular, Inc. Catheter with detached proximal inflation and guidewire shafts
US7241308B2 (en) 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US7744620B2 (en) * 2003-07-18 2010-06-29 Intervalve, Inc. Valvuloplasty catheter
US20050209674A1 (en) 2003-09-05 2005-09-22 Kutscher Tuvia D Balloon assembly (V)
US20070219613A1 (en) 2003-10-06 2007-09-20 Xtent, Inc. Apparatus and methods for interlocking stent segments
US7553324B2 (en) 2003-10-14 2009-06-30 Xtent, Inc. Fixed stent delivery devices and methods
US20050080475A1 (en) 2003-10-14 2005-04-14 Xtent, Inc. A Delaware Corporation Stent delivery devices and methods
US7192440B2 (en) * 2003-10-15 2007-03-20 Xtent, Inc. Implantable stent delivery devices and methods
US7175654B2 (en) 2003-10-16 2007-02-13 Cordis Corporation Stent design having stent segments which uncouple upon deployment
US20050085897A1 (en) 2003-10-17 2005-04-21 Craig Bonsignore Stent design having independent stent segments which uncouple upon deployment
US7220755B2 (en) 2003-11-12 2007-05-22 Biosensors International Group, Ltd. 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same
US7090694B1 (en) * 2003-11-19 2006-08-15 Advanced Cardiovascular Systems, Inc. Portal design for stent for treating bifurcated vessels
US8157855B2 (en) 2003-12-05 2012-04-17 Boston Scientific Scimed, Inc. Detachable segment stent
US7244336B2 (en) 2003-12-17 2007-07-17 Lam Research Corporation Temperature controlled hot edge ring assembly for reducing plasma reactor etch rate drift
US20070156225A1 (en) 2003-12-23 2007-07-05 Xtent, Inc. Automated control mechanisms and methods for custom length stent apparatus
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US7323006B2 (en) 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US20050222671A1 (en) 2004-03-31 2005-10-06 Schaeffer Darin G Partially biodegradable stent
US20050228477A1 (en) 2004-04-09 2005-10-13 Xtent, Inc. Topographic coatings and coating methods for medical devices
US7820732B2 (en) * 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US20060069424A1 (en) 2004-09-27 2006-03-30 Xtent, Inc. Self-constrained segmented stents and methods for their deployment
US7402168B2 (en) 2005-04-11 2008-07-22 Xtent, Inc. Custom-length stent delivery system with independently operable expansion elements
US8641746B2 (en) 2005-05-31 2014-02-04 J.W. Medical Systems Ltd. In situ stent formation
US7320702B2 (en) * 2005-06-08 2008-01-22 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses (III)
US7938851B2 (en) 2005-06-08 2011-05-10 Xtent, Inc. Devices and methods for operating and controlling interventional apparatus
US8021426B2 (en) 2005-06-15 2011-09-20 Ouroboros Medical, Inc. Mechanical apparatus and method for artificial disc replacement
US20070179587A1 (en) 2006-01-30 2007-08-02 Xtent, Inc. Apparatus and methods for deployment of custom-length prostheses
EP1998716A4 (en) 2006-03-20 2010-01-20 Xtent Inc Apparatus and methods for deployment of linked prosthetic segments
US20070265637A1 (en) 2006-04-21 2007-11-15 Xtent, Inc. Devices and methods for controlling and counting interventional elements
US20070281117A1 (en) 2006-06-02 2007-12-06 Xtent, Inc. Use of plasma in formation of biodegradable stent coating
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US20080269865A1 (en) * 2006-08-07 2008-10-30 Xtent, Inc. Custom Length Stent Apparatus
US20080199510A1 (en) * 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8486132B2 (en) * 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1737388A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545418B2 (en) 2004-08-25 2013-10-01 Richard R. Heuser Systems and methods for ablation of occlusions within blood vessels
FR2896983A1 (en) * 2006-02-09 2007-08-10 Alain Dibie SYSTEM FOR TREATING LESIONS ON A BIFURCATION OF BLOOD VESSEL
WO2007090863A2 (en) * 2006-02-09 2007-08-16 Alain Dibie System for treating lesions on a blood vessel bifurcation
WO2007090863A3 (en) * 2006-02-09 2007-11-29 Alain Dibie System for treating lesions on a blood vessel bifurcation
US9044350B2 (en) 2006-08-21 2015-06-02 Boston Scientific Scimed, Inc. Alignment sheath apparatus and method
US20100324664A1 (en) * 2006-10-18 2010-12-23 Asher Holzer Bifurcated Stent Assemblies

Also Published As

Publication number Publication date
CA2560310A1 (en) 2005-10-20
WO2005096995A3 (en) 2006-07-27
EP1737388A4 (en) 2007-06-27
JP4921355B2 (en) 2012-04-25
AU2005231420A1 (en) 2005-10-20
JP2007531601A (en) 2007-11-08
EP1737388A2 (en) 2007-01-03
US8080048B2 (en) 2011-12-20
US20040249434A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
US8080048B2 (en) Stent delivery for bifurcated vessels
US11439524B2 (en) Apparatus and methods for deployment of multiple custom-length prostheses (III)
EP2145609B1 (en) Apparatus for deployment of modular vascular prostheses
EP1771126B1 (en) Stent delivery apparatus
US8083788B2 (en) Apparatus and methods for positioning prostheses for deployment from a catheter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2560310

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005231420

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007506577

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2005231420

Country of ref document: AU

Date of ref document: 20050330

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005231420

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005730839

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005730839

Country of ref document: EP