JP4473390B2 - Stent and stent graft - Google Patents

Stent and stent graft Download PDF

Info

Publication number
JP4473390B2
JP4473390B2 JP2000001255A JP2000001255A JP4473390B2 JP 4473390 B2 JP4473390 B2 JP 4473390B2 JP 2000001255 A JP2000001255 A JP 2000001255A JP 2000001255 A JP2000001255 A JP 2000001255A JP 4473390 B2 JP4473390 B2 JP 4473390B2
Authority
JP
Japan
Prior art keywords
stent
agent
layer
polymer
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000001255A
Other languages
Japanese (ja)
Other versions
JP2001190687A (en
Inventor
悦夫 土金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasumi Laboratories Inc
Original Assignee
Kawasumi Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasumi Laboratories Inc filed Critical Kawasumi Laboratories Inc
Priority to JP2000001255A priority Critical patent/JP4473390B2/en
Publication of JP2001190687A publication Critical patent/JP2001190687A/en
Application granted granted Critical
Publication of JP4473390B2 publication Critical patent/JP4473390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は血管等の生体内に生じた狭窄部の改善に使用されるステント及びステントグラフトの改良に関し、特に生物学的活性物質を含んだポリマー材料に覆われ、抗血栓性の表面を提供し、再狭窄を予防するステント及びステントグラフトに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
ステントのほとんどはステンレスやTi−Ni系形状記憶金属等の金属製であり、血栓または血餅の形成が起こりやすく、内皮細胞でステント表面が覆われるまでの術後約2週間は補足的な治療目的でへパリン等の抗凝固剤の投与を行う必要がある。このため患者の様態によっては副作用により出血を伴う等の合併症が起こる危険性があった。ここで、抗凝固剤の投与量、投与期間を減少することが可能であれば、合併症についても減少することが可能であるばかりでなく、入院期間の短縮につなげることが可能となる。
【0003】
また抗凝固剤のような薬剤をステントへの供給も試みられ、抗凝固剤、抗血小板剤の単独または併用の開示例が特開平8−224297、特開平8−33718に示されている。しかしながら、それぞれの薬剤が有する特性の相乗効果を具体的に利用した発明は、いまだ開示されていない。
そこで本発明者は以上の課題を解決するために鋭意検討を重ねた結果次の発明に到達した。
【0004】
【課題を解決するための手段】
[1]本発明は、管状のステント基材(31)の外周面に第一被覆層(32)を被覆し、
当該第一被覆層(32)の外周面に、第二被覆層(33)を被覆し、
前記第一被覆層(32)は、抗血小板剤または抗トロンビン剤のいずれか一つを含み、
前記第二被覆層(33)は、前記第一被覆層(32)に含まれていない抗トロンビン剤または抗血小板剤のいずれか一つを含む、ステント(30)を提供する。
]本発明は、抗血小板剤または抗トロンビン剤のいずれか一つを含むポリマーよりなる内層管状体と、
当該内層管状体に含まれない抗トロンビン剤または抗血小板剤のいずれか一つを含む外層管状体とからなる多層管状体を、管状のステント基材の外周面に被嵌した、ステントグラフトを提供する。
[3]本発明は、前記抗血小板剤がシロスタゾールであり、前記抗トロンビン剤がアルガトロバンである、[1]に記載のステント(30)または[2]に記載のステントグラフトを提供する。
]本発明は、前記ポリマーが熱可塑性ポリウレタン、ポリアミド、ポリエステル、ポリエチレン、ポリプロピレン、これらのポリマーの二種以上の混合物、ブレンド、コポリマーを含む、[1]から[3]のいずれか1項に記載のステント(30)またはステントグラフトを提供する。
【0005】
【発明の実施の形態】
本発明のステント及びステントグラフトは基材及び基材に被覆される被覆層または基材の外周に被嵌される管状体とからなる。基材は例えばSUS316等のステンレススチール、Ni-Ti合金等の材質からなるパイプ、平板をレーザー加工することにより表面に所定のパターンを形成した略管状体やワイヤーにより形成した網目状の略管状体等が使用されるが、略管状体の形状については目的の物性が得られるものであれば特に限定されるものではない。
【0006】
図1は本発明のステントの一例を示す概略図で、ステント10はステンレススチール製の基材11から構成され、その外周面に抗血小板剤及び抗トロンビン剤を含んだポリマー層12が被覆されている。図2は図1の断面図でポリマー層12には抗血小板剤13と抗トロンビン剤14が分散して含まれている。被覆の方法は抗血小板剤及び抗トロンビン剤とポリマーとを異なる溶媒で溶解して混合し、スプレーによる被覆やディッピングによる被覆が可能である。スプレー、ディッピングの回数は一回でも良いがポリマーの濃度等により被覆層の厚さを調整するため複数回に分けて行う方法が通常用いられる。
【0007】
本発明に使用されるポリマーとしては、熱可塑性ポリウレタン、ポリアミド、ポリエステル、ポリエチレン、ポリプロピレン、これらのポリマーの二種以上の混合物、ブレンド、コポリマー等が挙げられるが、これらに限定されるものではなく、生体適合性に優れているポリマーであれば何でも使用することができる。
【0008】
図3は基材21の内周面と外周面に抗血小板剤と抗トロンビン剤を含むポリマーの被覆層(内層22と外層23)を設けたステント20の一例である。内層22と外層23を基材21の内外の両面に被覆するにはディッピングによる被覆が有効である。
【0009】
図4のステント30は基材31の外周面に抗トロンビン剤または抗血小板剤を含むポリマー層(第一被覆層)32を被覆し、さらにその外周面に抗血小板剤または抗トロンビン剤を含むポリマー層(第二被覆層)33を被覆した例である。本実施例では基材31の外周面に抗トロンビン剤または抗血小板剤とポリマーの混合溶液をスプレーしてポリマー層32を被覆し、これを乾燥させた後に抗血小板剤または抗トロンビン剤とポリマーの混合溶液をスプレーしてポリマー層32の外周面にポリマー層33の被覆を行ったものである。使用したポリマーはポリマー層32とポリマー層33で双方とも熱可塑性ポリウレタンを使用し、同一のものを使用したが、接着力が得られる組み合わせであればポリマー層32とポリマー層33に使用するポリマーは異なる種類の組み合わせも可能である。
【0010】
図5は本発明のステントグラフト40の一例である。基材41の外周面に抗血小板剤と抗トロンビン剤を含むポリマーからなる管状体42を被嵌したもので、管状体42はステントグラフト40の縮小時から拡張時のサイズまで伸縮が可能である。また管状体42は単層または二層以上の多層体を使用することができる。
単層の場合、管状体42は抗血小板剤と抗トロンビン剤を含むポリマーから形成されるが、多層管状体の場合、管状体42は内層管状体を抗血小板剤または抗トロンビン剤のみを含むポリマーで形成し、外層管状体を抗トロンビン剤または抗血小板剤のみを含むポリマーで形成しても良い。
【0011】
【実施例】
(実施例1)
テコフレックス100A(熱可塑性ポリウレタン)の10重量%溶液(溶媒THF)と、シロスタゾール、アルガトロバンをそれぞれ5重量%溶解したメタノールとを混合し、SUS316製のステント基材11の外周面にスプレーにより吹き付け、乾燥を5回繰り返して厚さ70μmのポリマー層12を形成した。
(実施例2)
バイオネート80A(ポリカーボネートタイプ熱可塑性ポリウレタン)の7重量%THF溶液とアルガトロバンの10重量%メタノール溶液の混合溶液をSUS316製のステント基材31の外周面にスプレーにて吹き付け、乾燥を5回繰り返してポリマー層32を形成した後、さらにポリマー層32の外周面にバイオネート80Aの7重量%THF溶液とシロスタゾールの10重量%メタノール溶液の混合溶液をスプレーにて吹き付け、乾燥を5回繰り返して厚さ70μmのポリマー層33を形成した。
(実施例3)
テコフレックス100Aにシロスタゾールとアルガトロバンをそれぞれ5重量%、合わせて10重量%の量で小型混連機で190℃にてコンパウンド化し、これを15mm押出機にて1.45mm×1.50mmのサイズの管状体42を成形し、ステント基材41の長さにあわせて切断し、ステント基材41に被嵌しステントグラフト40を作製した。
(実施例4)
テコフレックス100Aにシロスタゾールを15重量%の量で混連したコンパウンドとテコフレックス100Aにアルガトロバン15重量%で混連したコンパウンドとを12mm/15mmの2台の押出機使用して、それぞれの層の厚さ25μmとし、1.45mm×1.50mmの二層チューブを成形し、管状体42層)テコフレックス100A/シロスタゾール10重量%、(層)テコフレックス100A/アルガトロバン10重量%を作製し、これをステント基材41に被嵌しステントグラフト40を作製した。
【0012】
作製したステント(実施例1)及びステントグラフト(実施例4)を37℃、ph7.4のリン酸緩衝液中に浸漬し、経時的に50回振盪した後、シロスタゾールとアルガトロバンの溶出量及び溶出速度を測定した。その結果をそれぞれ表1(実施例1)、表2(実施例4)に示した。実施例1ではシロスタゾールとアルガトロバンの溶出性に差はほとんど見られなかったが、実施例4ではシロスタゾールとアルガトロバンの溶出性が短期間(直後より3日間)と長期間(直後より2週間)と時間差があり、被覆層の種類、構成、製法、及び薬剤の配合量の違いによって薬剤の徐放性の調整が可能なことが確認された。
【0013】
【表1】

Figure 0004473390
【0014】
【表2】
Figure 0004473390
【0015】
【発明の作用効果】
本発明のステント及びステントグラフトによれば抗血小板剤と抗トロンビン剤の効果を相乗的に利用できる。すなわち抗血小板剤により血小板粘着を阻害し、抗トロンビン剤により血液凝固反応の開始と進展の抑制が可能となる。また、基材に被覆ないし被嵌するポリマー層の厚さと抗血小板剤及び抗トロンビン剤の配合量を調整すればステント留置直後の即効的な薬剤放出から内皮細胞再生までの2週間までの長期間に渡って薬剤が血液中に徐放するようにコントロールすることが可能になる。また抗凝固剤の静注による副作用発生も低減でき、患者に負担の少ない治療が実現できる。さらに抗血小板剤として使用するシロスタゾ−ルには平滑筋細胞増殖抑制効果及び内皮再生促進効果も有しているのでステント留置による再狭窄の危険性をより低減できるものである。
【図面の簡単な説明】
【図1】本発明のステントの概略図
【図2】図1のステントの断面図
【図3】本発明のステントの概略図
【図4】本発明のステントの概略図
【図5】本発明のステントグラフトの概略図
【符号の説明】
10 、20、30 ステント
11、21、31 基材
12 ポリマー層
13 抗血小板剤
14 抗トロンビン剤
22 内層
23 外層
32 抗トロンビン剤を含むポリマー層(第一被覆層)
33 抗血小板剤を含むポリマー層(第二被覆層)
40 ステントグラフト
41 基材
42 管状体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a stent and a stent graft used to improve a stenosis occurring in a living body such as a blood vessel, and in particular, is provided with an antithrombotic surface covered with a polymer material containing a biologically active substance, The present invention relates to a stent and a stent graft for preventing restenosis.
[0002]
[Prior art and problems to be solved by the invention]
Most of the stents are made of metal such as stainless steel or Ti-Ni shape memory metal. Thrombus or blood clots are likely to form, and supplementary treatment is required for about 2 weeks after the operation until the stent surface is covered with endothelial cells. It is necessary to administer an anticoagulant such as heparin for the purpose. For this reason, there was a risk of complications such as bleeding due to side effects depending on the patient's condition. Here, if it is possible to reduce the dose and administration period of the anticoagulant, it is possible not only to reduce complications but also to shorten the hospital stay.
[0003]
Further, attempts have been made to supply a drug such as an anticoagulant to the stent, and disclosed examples of anticoagulant and antiplatelet agent alone or in combination are disclosed in JP-A-8-224297 and JP-A-8-33718. However, an invention that specifically utilizes the synergistic effect of the characteristics of each drug has not yet been disclosed.
Therefore, as a result of intensive studies to solve the above problems, the present inventor has reached the following invention.
[0004]
[Means for Solving the Problems]
[1] The present invention covers the outer peripheral surface of the tubular stent base material (31) with the first coating layer (32),
The outer peripheral surface of the first coating layer (32) is coated with the second coating layer (33),
The first coating layer (32) includes any one of an antiplatelet agent and an antithrombin agent,
The second covering layer (33) provides a stent (30) including any one of an antithrombin agent or an antiplatelet agent not included in the first covering layer (32).
[ 2 ] The present invention provides an inner layer tubular body made of a polymer containing any one of an antiplatelet agent and an antithrombin agent;
Provided is a stent graft in which a multilayer tubular body comprising an outer layer tubular body containing any one of an antithrombin agent and an antiplatelet agent not included in the inner layer tubular body is fitted on the outer peripheral surface of a tubular stent base material. .
[3] The present invention provides the stent graft according to [1] , wherein the antiplatelet agent is cilostazol, and the antithrombin agent is argatroban .
[ 4 ] The present invention provides the method according to any one of [1] to [3], wherein the polymer includes thermoplastic polyurethane, polyamide, polyester, polyethylene, polypropylene, a mixture, blend, or copolymer of two or more of these polymers. A stent (30) or stent graft as described in 1) is provided.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The stent and stent graft of the present invention are composed of a base material and a covering layer coated on the base material or a tubular body fitted on the outer periphery of the base material. The base material is, for example, a pipe made of a material such as stainless steel such as SUS316, a Ni—Ti alloy or the like, a substantially tubular body in which a predetermined pattern is formed on the surface by laser processing of a flat plate, or a net-like substantially tubular body formed by a wire. The shape of the substantially tubular body is not particularly limited as long as the desired physical properties can be obtained.
[0006]
FIG. 1 is a schematic view showing an example of a stent of the present invention. A stent 10 is composed of a stainless steel base material 11, and a polymer layer 12 containing an antiplatelet agent and an antithrombin agent is coated on the outer peripheral surface thereof. Yes. FIG. 2 is a cross-sectional view of FIG. 1, and the polymer layer 12 contains an antiplatelet agent 13 and an antithrombin agent 14 dispersed therein. As the coating method, the antiplatelet agent, the antithrombin agent and the polymer are dissolved and mixed in different solvents, and coating by spraying or coating by dipping is possible. The number of sprays and dippings may be one, but a method of performing a plurality of times is usually used in order to adjust the thickness of the coating layer depending on the polymer concentration or the like.
[0007]
Examples of the polymer used in the present invention include, but are not limited to, thermoplastic polyurethane, polyamide, polyester, polyethylene, polypropylene, a mixture of two or more of these polymers, blends, copolymers, and the like. Any polymer that is excellent in biocompatibility can be used.
[0008]
FIG. 3 shows an example of a stent 20 in which a coating layer (an inner layer 22 and an outer layer 23) containing an antiplatelet agent and an antithrombin agent is provided on the inner peripheral surface and the outer peripheral surface of a base material 21. In order to coat the inner layer 22 and the outer layer 23 on both the inner and outer surfaces of the substrate 21, coating by dipping is effective.
[0009]
In the stent 30 of FIG. 4, a polymer layer (first coating layer) 32 containing an antithrombin agent or an antiplatelet agent is coated on the outer peripheral surface of a substrate 31, and a polymer containing an antiplatelet agent or an antithrombin agent is further provided on the outer peripheral surface thereof. This is an example in which a layer (second coating layer) 33 is coated. In this embodiment, the outer peripheral surface of the base material 31 is sprayed with a mixed solution of an antithrombin agent or antiplatelet agent and polymer to coat the polymer layer 32, and after drying this, the antiplatelet agent or antithrombin agent and polymer are mixed. The polymer solution 33 is coated on the outer peripheral surface of the polymer layer 32 by spraying the mixed solution. As the polymer used, both the polymer layer 32 and the polymer layer 33 are made of thermoplastic polyurethane, and the same one is used. However, the polymer used for the polymer layer 32 and the polymer layer 33 may be any combination that provides an adhesive force. Different types of combinations are possible.
[0010]
FIG. 5 is an example of the stent graft 40 of the present invention. A tubular body 42 made of a polymer containing an antiplatelet agent and an antithrombin agent is fitted on the outer peripheral surface of the base material 41, and the tubular body 42 can be expanded and contracted from the time when the stent graft 40 is contracted to the size when expanded. The tubular body 42 can be a single layer or a multilayer body of two or more layers.
Case of a single layer, but the tubular body 42 is formed from a polymer containing an anti-platelet agent and antithrombin agent, the case of a multilayer tubular body, the tubular body 42 is a polymer containing only antiplatelet or anti-thrombin agents inner tubular member The outer layer tubular body may be formed of a polymer containing only an antithrombin agent or an antiplatelet agent.
[0011]
【Example】
Example 1
A 10% by weight solution of Tecoflex 100A (thermoplastic polyurethane) (solvent THF) and methanol in which 5% by weight of cilostazol and argatroban were dissolved were mixed, and sprayed onto the outer peripheral surface of the stent substrate 11 made of SUS316, Drying was repeated 5 times to form a polymer layer 12 having a thickness of 70 μm.
(Example 2)
A mixed solution of 7 wt% THF solution of bionate 80A (polycarbonate type thermoplastic polyurethane) and 10 wt% methanol solution of argatroban was sprayed on the outer peripheral surface of the stent base material 31 made of SUS316, and drying was repeated 5 times. After the polymer layer 32 is formed, a mixed solution of a 7 wt% THF solution of bionate 80A and a 10 wt% methanol solution of cilostazol is sprayed on the outer peripheral surface of the polymer layer 32 by spraying, and drying is repeated 5 times to obtain a thickness. A 70 μm polymer layer 33 was formed.
(Example 3)
Tecoflex 100A was compounded with cilostazol and argatroban in amounts of 5 wt% and 10 wt%, respectively, in a small mixed machine at 190 ° C, and this was 1.45 mm x 1.50 mm in size with a 15 mm extruder. The tubular body 42 was formed, cut according to the length of the stent base material 41, and fitted onto the stent base material 41 to produce the stent graft 40.
Example 4
The thickness of each layer was determined by using two 12 mm / 15 mm extruders composed of a compound in which cilostazol was mixed in an amount of 15% by weight with Tecoflex 100A and a compound in which Tecoflex 100A was mixed with 15% by weight of argatroban. It is a 25 [mu] m, and forming a two-layer tube of 1.45 mm × 1.50 mm, the tubular body 42 '(outer layer) Tecoflex 100A / cilostazol 10 wt%, (inner layer) Tecoflex 100A / argatroban 10 wt% of The stent graft 40 was manufactured by fitting it onto the stent base material 41.
[0012]
The prepared stent (Example 1) and stent graft (Example 4) were immersed in a phosphate buffer solution at 37 ° C. and pH 7.4 and shaken 50 times over time, and then elution amount and elution rate of cilostazol and argatroban. Was measured. The results are shown in Table 1 (Example 1) and Table 2 (Example 4), respectively. In Example 1, there was almost no difference in the elution properties of cilostazol and argatroban, but in Example 4, the elution properties of cilostazol and argatroban were short time (3 days from immediately after) and long time (2 weeks from immediately after). It was confirmed that the sustained release of the drug can be adjusted depending on the type of coating layer, the structure, the production method, and the amount of the drug.
[0013]
[Table 1]
Figure 0004473390
[0014]
[Table 2]
Figure 0004473390
[0015]
[Effects of the invention]
According to the stent and stent graft of the present invention, the effects of the antiplatelet agent and the antithrombin agent can be used synergistically. That is, platelet adhesion is inhibited by an antiplatelet agent, and the initiation and progression of blood coagulation reaction can be suppressed by an antithrombin agent. In addition, if the thickness of the polymer layer to be coated or fitted on the base material and the blending amount of antiplatelet and antithrombin agents are adjusted, a long period of 2 weeks from immediate drug release immediately after stent placement to endothelial cell regeneration It is possible to control so that the drug is gradually released into the blood over a period of time. In addition, side effects caused by intravenous injection of anticoagulants can be reduced, and treatment with less burden on patients can be realized. Furthermore, since cilostazol used as an antiplatelet agent also has a smooth muscle cell proliferation inhibitory effect and an endothelium regeneration promoting effect, the risk of restenosis due to stent placement can be further reduced.
[Brief description of the drawings]
1 is a schematic view of the stent of the present invention. FIG. 2 is a cross-sectional view of the stent of FIG. 1. FIG. 3 is a schematic view of the stent of the present invention. Schematic diagram of the stent graft [Explanation of symbols]
10, 20, 30 Stent 11, 21, 31 Base material 12 Polymer layer 13 Antiplatelet agent 14 Antithrombin agent 22 Inner layer 23 Outer layer 32 Polymer layer containing antithrombin agent (first coating layer)
33 Polymer layer containing antiplatelet agent (second coating layer)
40 Stent graft 41 Base material 42 Tubular body

Claims (4)

管状のステント基材(31)の外周面に第一被覆層(32)を被覆し、
当該第一被覆層(32)の外周面に、第二被覆層(33)を被覆し、
前記第一被覆層(32)は、抗血小板剤または抗トロンビン剤のいずれか一つを含み、
前記第二被覆層(33)は、前記第一被覆層(32)に含まれていない抗トロンビン剤または抗血小板剤のいずれか一つを含む、ことを特徴とするステント(30)。
Coating the outer peripheral surface of the tubular stent substrate (31) with the first coating layer (32);
The outer peripheral surface of the first coating layer (32) is coated with the second coating layer (33),
The first coating layer (32) includes any one of an antiplatelet agent and an antithrombin agent,
The stent (30), wherein the second covering layer (33) includes any one of an antithrombin agent and an antiplatelet agent not included in the first covering layer (32).
抗血小板剤または抗トロンビン剤のいずれか一つを含むポリマーよりなる内層管状体と、
当該内層管状体に含まれない抗トロンビン剤または抗血小板剤のいずれか一つを含む外層管状体とからなる多層管状体を、管状のステント基材の外周面に被嵌した、ことを特徴とするステントグラフト。
An inner layer tubular body made of a polymer containing any one of an antiplatelet agent or an antithrombin agent;
A multilayer tubular body comprising an outer layer tubular body containing any one of an antithrombin agent or an antiplatelet agent not included in the inner layer tubular body is fitted on the outer peripheral surface of a tubular stent base material. Stent graft.
前記抗血小板剤がシロスタゾールであり、前記抗トロンビン剤がアルガトロバンであることを特徴とする請求項1に記載のステント(30)または請求項2に記載のステントグラフト。The stent (30) according to claim 1 or the stent graft according to claim 2, wherein the antiplatelet agent is cilostazol and the antithrombin agent is argatroban. 前記ポリマーが熱可塑性ポリウレタン、ポリアミド、ポリエステル、ポリエチレン、ポリプロピレン、これらのポリマーの二種以上の混合物、ブレンド、コポリマーを含む、ことを特徴とする請求項1から請求項3のいずれか1項に記載のステント(30)またはステントグラフト。  4. The polymer according to claim 1, wherein the polymer includes thermoplastic polyurethane, polyamide, polyester, polyethylene, polypropylene, and a mixture, blend, or copolymer of two or more of these polymers. Stent (30) or stent graft.
JP2000001255A 2000-01-07 2000-01-07 Stent and stent graft Expired - Fee Related JP4473390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001255A JP4473390B2 (en) 2000-01-07 2000-01-07 Stent and stent graft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001255A JP4473390B2 (en) 2000-01-07 2000-01-07 Stent and stent graft

Publications (2)

Publication Number Publication Date
JP2001190687A JP2001190687A (en) 2001-07-17
JP4473390B2 true JP4473390B2 (en) 2010-06-02

Family

ID=18530505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001255A Expired - Fee Related JP4473390B2 (en) 2000-01-07 2000-01-07 Stent and stent graft

Country Status (1)

Country Link
JP (1) JP4473390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024831A1 (en) 2009-08-26 2011-03-03 国立大学法人九州大学 Medical device for placement into a lumen and manufacturing method thereof
US11241322B2 (en) 2014-10-28 2022-02-08 Jimro Co., Ltd. Drug-eluting stent

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US7682648B1 (en) 2000-05-31 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for forming polymeric coatings on stents
US6953560B1 (en) 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US7771468B2 (en) 2001-03-16 2010-08-10 Angiotech Biocoatings Corp. Medicated stent having multi-layer polymer coating
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
JP4943597B2 (en) * 2001-07-31 2012-05-30 川澄化学工業株式会社 Antithrombotic medical device
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US7309350B2 (en) 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US20030135266A1 (en) 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7351255B2 (en) 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US8080048B2 (en) 2001-12-03 2011-12-20 Xtent, Inc. Stent delivery for bifurcated vessels
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
US7147656B2 (en) 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
WO2004002367A1 (en) * 2002-06-27 2004-01-08 Microport Medical (Shanghai) Co., Ltd. Drug eluting stent
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7758880B2 (en) 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7279174B2 (en) 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
US7241308B2 (en) 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US7329413B1 (en) 2003-11-06 2008-02-12 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices having gradient of hydration and methods for fabricating thereof
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US7435788B2 (en) 2003-12-19 2008-10-14 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US7323006B2 (en) 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US7563780B1 (en) 2004-06-18 2009-07-21 Advanced Cardiovascular Systems, Inc. Heparin prodrugs and drug delivery stents formed therefrom
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US20050287184A1 (en) 2004-06-29 2005-12-29 Hossainy Syed F A Drug-delivery stent formulations for restenosis and vulnerable plaque
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US7494665B1 (en) 2004-07-30 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymers containing siloxane monomers
US7244443B2 (en) 2004-08-31 2007-07-17 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US7390497B2 (en) 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7604818B2 (en) 2004-12-22 2009-10-20 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
WO2007058190A1 (en) * 2005-11-16 2007-05-24 Tokai University Educational System Controlled drug release composition and drug releasing medical device
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US20070196428A1 (en) 2006-02-17 2007-08-23 Thierry Glauser Nitric oxide generating medical devices
US8652198B2 (en) 2006-03-20 2014-02-18 J.W. Medical Systems Ltd. Apparatus and methods for deployment of linked prosthetic segments
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US20080199510A1 (en) 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
KR20100068412A (en) * 2007-09-04 2010-06-23 가부시키가이샤 니혼 스텐토 테크놀로지 Stent for controlled drug release
US9101503B2 (en) 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
JP5487122B2 (en) 2009-02-06 2014-05-07 学校法人慶應義塾 Stent for use in biological tubular organs
WO2010101072A1 (en) 2009-03-02 2010-09-10 株式会社日本ステントテクノロジー Drug releasing stent
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
JP5695259B1 (en) 2014-02-19 2015-04-01 株式会社World Medish High flexibility stent
CN116785038A (en) 2020-08-12 2023-09-22 正林康宏 Support frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024831A1 (en) 2009-08-26 2011-03-03 国立大学法人九州大学 Medical device for placement into a lumen and manufacturing method thereof
US11241322B2 (en) 2014-10-28 2022-02-08 Jimro Co., Ltd. Drug-eluting stent

Also Published As

Publication number Publication date
JP2001190687A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
JP4473390B2 (en) Stent and stent graft
US7014913B2 (en) Rate-reducing membrane for release of an agent
JP5452832B2 (en) Drug eluting coating for medical implants
AU758175B2 (en) Polymeric coatings with controlled delivery of active agents
US6503556B2 (en) Methods of forming a coating for a prosthesis
US7396539B1 (en) Stent coatings with engineered drug release rate
JP5368991B2 (en) Drug sustained release stent
JP6817472B2 (en) Pharmaceutical compositions and coatings
US20050220853A1 (en) Controlled delivery of therapeutic agents from medical articles
US20070038289A1 (en) Stent to be placed in vivo
EP1440698A1 (en) Drug-polymer coated stent with pegylated styrenic block polymers
JP2010518945A (en) Medical products for long-term implantation
JP2008500886A (en) Medical device of permeable metal material for bioactive substance delivery
US20070142905A1 (en) Medical devices to treat or inhibit restenosis
JP2009540873A (en) Medical device with multi-component fiber
WO2003022323A1 (en) Coating for reducing the rate of release of drugs from stents
JP2012504018A (en) Dexamethasone derivatives and analogs and coatings containing olimus drugs
US20030229392A1 (en) Drug eluted vascular graft
EP1440699A1 (en) Stent with epoxy primer coating
CN107049571A (en) A kind of vertebral artery stent and preparation method thereof
JP2004222953A (en) Indwelling stent
JP5073891B2 (en) Stent and stent graft
US20050220835A1 (en) Agent eluting bioimplantable devices and polymer systems for their preparation
JP4379044B2 (en) Indwelling stent
JP4456322B2 (en) Stent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees