WO2005096063A1 - Manipulator device, manipulator, and method of operating treatment tool using manipulator device - Google Patents

Manipulator device, manipulator, and method of operating treatment tool using manipulator device Download PDF

Info

Publication number
WO2005096063A1
WO2005096063A1 PCT/JP2005/006079 JP2005006079W WO2005096063A1 WO 2005096063 A1 WO2005096063 A1 WO 2005096063A1 JP 2005006079 W JP2005006079 W JP 2005006079W WO 2005096063 A1 WO2005096063 A1 WO 2005096063A1
Authority
WO
WIPO (PCT)
Prior art keywords
manipulator device
light
optical system
illumination
treatment tool
Prior art date
Application number
PCT/JP2005/006079
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiro Kita
Hideya Kitagawa
Akira Yagi
Yasushi Aono
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to JP2006511729A priority Critical patent/JP4331748B2/en
Publication of WO2005096063A1 publication Critical patent/WO2005096063A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes

Definitions

  • the present invention relates to a manipulator device, a manipulator, and a method for operating a treatment tool using the manipulator device.
  • Patent Document 2 As a treatment tool, no damage is caused when inserted into a cell! / An ultrafine needle is used, and a gene or a substance involved in gene expression is transferred to the needle. In this state, the gene is introduced into the cell by inserting and retaining the cell in that state.
  • Patent Document 1 JP-A-06-109979
  • Patent Document 2 JP-A-2003-325161
  • a manipulator device for performing gene transfer as described above is a target. Selection of cells is performed under a light microscope. Similarly, the tip of the treatment tool for treating cells is also detected by the optical microscope, and the relative positional relationship (in-plane position and height) with the target cells is controlled.
  • Patent Document 2 As described in Patent Document 2 described above, if the diameter of the distal end of the treatment tool is reduced to reduce damage to cells, it becomes difficult to detect the distal end of the treatment tool with an optical microscope. Become.
  • an atomic force microscope AFM is added to measure the distance between the treatment tool and the cell by measuring the atomic force acting between the treatment tool cantilever and the cell. Is going. Therefore, there is a disadvantage that an expensive interatomic microscope, which is expensive and complicated in structure and operation, is required.
  • the present invention has been made in view of the above problems, and has a low-cost and simple configuration, accurately obtains the position of the distal end of a treatment instrument of a mul- tiperator, and favorably controls the position of the distal end.
  • the purpose is to carry out.
  • the present invention relates to a mapper device for performing an operation on an operation target under observation by an observation optical system: a treatment tool for performing an operation on the operation target; Included in
  • a tip that comes into contact with or comes closest to the operation target and a detecting unit that detects a change in light that is generated by displacement of the tip and that includes scattered light illuminated by illumination light.
  • a manipulator device comprising:
  • the manipulator device may further include an illumination optical system that selectively irradiates the illumination light to an area where the tip may exist, of the area observed by the observation optical system. preferable.
  • the treatment tool tip is located in a predetermined area where positioning is desired. Only when the end reaches, the detecting means can detect a change in the image of the scattered light, so that the accuracy of detecting the position of the distal end of the treatment instrument can be improved.
  • the illuminating light is applied to an area where the tip portion may exist through the observation optical system.
  • the illumination optical system generates evanescent light on a surface holding the operation target.
  • the distal end of the treatment instrument can be brought close to a position as close as possible to 50 to 150 nm with respect to the surface holding the operation target. Since only the distal end of the treatment instrument is detected, the accuracy of detecting the position of the distal end of the treatment instrument can be significantly improved.
  • the manipulator device further includes first alignment means for aligning a position where the distal end can exist with an optical axis of the observation optical system, and the illumination optical system includes a dark-field illumination optical system. It is preferable that.
  • the distal end of the treatment tool is moved using the dark-field observation optical system, so that the position far from the objective lens can be detected without directly detecting the illumination light from the illumination optical system.
  • the image of the scattered light from the tip can be selectively detected with a simple microscope configuration.
  • the manipulator device further includes a second alignment unit that adjusts a position where the distal end portion may exist and a focal position of the observation optical system, and the detection unit is configured to irradiate the illumination light. It is preferable to detect a change in light including the scattered light passing through an opening provided at a position optically conjugate with the region.
  • the distal end portion of the treatment tool by moving the distal end portion of the treatment tool using the confocal optical system, of the portion illuminated by the illumination optical system, it is optically conjugate with the opening. Only when the distal end of the treatment instrument reaches the position, the image of the scattered light can be formed on the detection means, so that the scattered light with the force of the distal end of the treatment instrument can be selectively captured, and , The accuracy of detecting the position of the tip can be greatly improved.
  • the observation optical system includes a disk having a plurality of the openings, and rotates the disk to rotate the disk through the openings.
  • a disk having a plurality of the openings, and rotates the disk to rotate the disk through the openings.
  • an area where an end portion may exist is scanned and illuminated, and the detecting means detects a change in light including the scattered light passing through the opening provided in the disk.
  • the illumination light is scanned within the observation field of view, and the scattering from the distal end of the treatment tool reaching the focused portion of the observation optical system.
  • Light can be reliably detected by the detecting means.
  • the illumination optical system emits laser light and scans the laser light in a state where the laser light is converged in a region where the distal end portion may exist. It is preferable to detect a change in light including the scattered light that has passed through the opening provided at a position optically conjugate to the region where the laser light is converged.
  • the scattered light from the distal end of the treatment tool that has reached a position optically conjugate with the opening is detected by the detection means. It can be detected reliably.
  • the illumination optical system may be configured to irradiate at least a first area with a first illumination mode in which the illumination light is irradiated with the illumination light and a second area different from the first area with the illumination. It is preferable to switch between the second illumination mode for irradiating light.
  • the illumination optical system irradiates the illumination light to a region where the distal end portion may exist in the first illumination mode, and the operation object in the second illumination mode. It is preferable that the object is irradiated with the illumination light.
  • the distal end portion is smaller than the optical resolution of the observation optical system.
  • the manipulator device According to the manipulator device described above, if an extremely fine treatment tool is used, damage to the operation target can be suppressed to a minimum, and even with such a treatment tool, a method for detecting scattered light. Then, the position of the tip can be reliably detected. [0026]
  • the manipulator device further includes a position storage unit that stores a position of the distal end detected by the detection unit.
  • the position of the distal end of the treatment instrument is stored as, for example, a reference position, the position of the distal end of the treatment instrument can be reliably controlled by detecting the position once.
  • the manipulator device further includes a driving unit that adjusts a relative distance between the surface on which the operation target is held and the treatment tool, and the driving unit determines a result detected by the detection unit. It is preferable to control the movement of the treatment tool based on the above.
  • the position of the distal end portion of the treatment tool detected by the detection means is used as a reference position, and the position adjustment without damaging the treatment tool and the operation on the operation target are performed. It can be carried out.
  • the operation with the treatment tool may include inserting the treatment tool into the operation target, injecting a substance into the operation target, cutting the operation target, and cutting the operation target. It is preferable to include holding the object and physically or electrically stimulating the operation target.
  • operation refers to various manipulations, including both cases where the distal end portion of the treatment tool touches and does not touch the target.
  • the operation target includes a biological sample.
  • the biological sample is a living cell.
  • the present invention provides a manipulator used for the above manipulator device.
  • the present invention is a method for operating a treatment tool using a manipulator device, which performs an operation on an operation target under observation by an observation optical system: performing an operation on the operation target Illuminating a tip included in the treatment tool and in contact with or closest to the operation target with illumination light; and the tip illuminated by the illumination light, which is generated with displacement of the tip. Detecting a change in light including scattered light of force; and a method of operating a treatment tool using a manipulator device.
  • the illumination optical system that selectively irradiates a predetermined area that can be observed by the observation optical system of the present invention with illumination light includes a surface that holds an operation target and is necessary for observation.
  • An all-reflection illumination optical system that totally reflects light at the interface between the substrate that transmits light and the medium of the operation target can be applied.
  • the illumination light is totally reflected at the interface between the substrate that transmits light necessary for observation and the medium of the operation target.
  • an evanescent wave traveling in the optical axis direction is generated in the medium of the operation target. Since this evanescent wave exists only in the region of about 50 to 150 nm from the interface between the substrate and the medium, when the treatment tool is lowered and the tip enters this region, the evanescent wave reflected at the tip becomes the observation optics. An image is formed on the detector via the system and detected.
  • the region where the evanescent wave exists is a region of about 50 to 150 nm.Since the region other than the distal end of the treatment tool is not illuminated, it is possible to detect only the distal end with good contrast. it can.
  • a dark-field illumination optical system can be applied.
  • the illumination light is illuminated at an angle larger than the numerical aperture of the objective lens, and the light reflected on the horizontal plane does not directly enter the objective lens.
  • a minute object such as the distal end of the treatment tool exists in the illumination area, a part of the reflected light is incident on the objective lens, so that the distal end of the treatment tool can be detected.
  • the manipulator device of the present invention includes a driving means for adjusting a relative distance between the treatment object and the operation object or a surface on which the operation object is held, and the driving means is provided with the observation means. The relative distance between the surface on which the operation target is held and the treatment tool is adjusted based on the image of the treatment tool detected by the detection means selectively detecting through the optical system. .
  • a mode for illuminating the surface holding the operation target and a mode for illuminating the treatment tool can be switched. Then, the operation object or the surface on which the operation object is held and the distal end of the treatment tool can be easily detected by illuminating them with the optimal illumination method. This makes it possible to adjust the relative distance between the treatment tool and the operation target.
  • the present invention it is possible to satisfactorily detect an image of the distal end portion of the treatment tool. For this reason, even if the treatment tool is so fine that it cannot be captured by a normal optical microscope, the predetermined operation can be performed on the operation target without causing the tip of the treatment tool to be in contact with the substrate and causing damage. It can be done safely. Therefore, the depth of insertion into the operation target can be accurately managed, and the operation on the operation target can be performed very efficiently.
  • FIG. 1 is a diagram showing a first embodiment of a manipulator device of the present invention, and is a diagram showing a schematic configuration of the manipulator device.
  • FIG. 2 is a side sectional view schematically showing a total reflection illumination optical system of an inverted microscope.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a cleaning unit.
  • FIG. 4 is a side view showing a configuration of a solution stage.
  • FIG. 5 is a flowchart showing a work procedure of the manipulator device according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a relationship between a biological sample and a needle in a total internal reflection state in an inverted microscope.
  • FIG. 7 is a view showing a second embodiment of the manipulator device of the present invention, and is a side sectional view schematically showing a dark-field illumination optical system of an inverted microscope provided in the manipulator device.
  • FIG. 8 is a view showing a third embodiment of the manipulator device of the present invention, and is a side sectional view schematically showing a confocal optical system of an inverted microscope provided in the manipulator device.
  • FIG. 9 is a schematic diagram of a two-way disc used for a confocal optical system.
  • FIG. 10 is a view showing a modification of the third embodiment, and is a schematic view of a laser-scanning confocal optical system in an upright microscope.
  • FIG. 1 shows a configuration example of a manipulator device according to the present invention.
  • This manipulator device 1 introduces an appropriate gene (introduced substance) into the nucleus of a cell (biological sample) C as an operation target existing in a medium Ca, and expresses a protein encoded by the gene. (See Figure 6).
  • the manipulator device 1 includes an inverted microscope (observation optical system) 2 and a manipulator body 5. It is the main component.
  • the inverted microscope 2 is used for observing cells C and the like in an enlarged manner.
  • the manipulator body 5 introduces the substance to be introduced into the cell C held via the medium Ca in the sample container 4 placed on the XY stage 3 of the inverted microscope 2 using a treatment tool such as a needle 14, for example.
  • the sample container 4 is made of a translucent material or a transparent material, for example, made of glass.
  • the inverted microscope 2 includes an XY stage 3 on which a sample container 4 and the like are installed and which can be moved in two horizontal axes (front and rear and left and right), a main frame 6 supporting the XY stage 3, a sample container 4
  • the objective lens 7 (see Fig. 2) for observing the biological sample in the downward force, the eyepiece 8 for observing the image observed by the objective lens 7, and the light source 9 provided on the top of the main frame 6 Have.
  • the inverted microscope 2 is provided with a lens for capturing an image of the biological sample observed by the objective lens 7 and an imaging unit 10 including a CCD camera.
  • the imaging unit 10 is connected to a control unit 12 via an image processing unit (detection unit) 11.
  • the XY stage 3 is provided with driving means 3a connected to the control unit 12. When the driving unit 3a is driven according to a signal from the control unit 12, the XY stage 3 moves in the front-back or left-right direction.
  • the manipulator main body 5 includes a holding device 13 for holding a substance to be introduced into cells C or the like of a biological sample.
  • the holding device 13 cleans the needle (treatment instrument) 14 as an introduction means inserted into the cell C of the biological sample, the positioning means 15 for controlling the position of the needle 14, and the tip 14 a of the needle 14.
  • a cleaning unit 16 for activation and a solution table 17 for accommodating a substance to be absorbed and held by the needle 14 are provided.
  • Needle 14 has a sharp distal end 14a and a base 14b having a larger diameter than distal end 14a.
  • the tip 14 a of the needle 14 is smaller than the optical resolution of the inverted microscope 2.
  • the needle 14 has its base 14b held by the positioning means 15.
  • at least the surface of the needle 14 is made of a conductive material such as platinum, and is connected to a power supply (not shown) via a power cord 14c.
  • the positioning means 15 includes an evacuation stage 21 for holding the base 14b of the needle 14, a Z stage 22 for supporting the evacuation stage 21 movably in the Z direction (up and down directions), and the XY stage 3 described above. . Note that the XY stage 3 is also used as the inverted microscope 2.
  • the evacuation stage 21 has a holding member 2 la that holds the base 14 b of the needle 14.
  • the holding member 21a is connected to the driving means 24.
  • Driving means 25 is provided on the Z stage 22.
  • the Z stage 22 and the driving unit 25 constitute an elevating unit that moves the needle 14 up and down via the holding unit 21a and the evacuation stage 21.
  • the Z stage 22 is attached to the main gantry 6 via a support member 26.
  • the total reflection illumination optical system 2a of the inverted microscope 2 is obtained by adding a wedge prism 30 and an eccentric slit 31 to an epi-illumination system for performing fluorescence observation.
  • the total internal reflection illumination optical system 2a selectively irradiates illumination light to an area where the tip 14a of the needle 14 can be present among the areas observed by the inverted microscope 2, and a sample container holding cells C.
  • Evanescent light is generated on the bottom surface of 4.
  • the total reflection illumination optical system 2a the light emitted from the fluorescent lamp 29 passes through the excitation filter 32, the wedge prism 30, and the eccentric slit 31 in this order. Then, the light is reflected by the mirror 33, passes through the lens 34, is further reflected by the dichroic mirror 35, passes through the dedicated objective lens 7, and is incident on the back side (lower side) of the sample container 4.
  • the position of the eccentric slit 31 can be changed by the adjusting means 31a.
  • the position of the eccentric slit 31 it is possible to freely set the incident angle of the illuminating light to the objective lens 7 at least in the vicinity of the critical angle, and eventually the incident angle to the back surface of the sample container 4.
  • the illumination optical system of the present embodiment can perform illumination without depending on the spectral characteristics of the excitation filter 32 and the dichroic mirror 35.
  • the cleaning unit 16 has a cover 41 for dust prevention.
  • the cover 41 has a substantially square shape and a space inside.
  • An opening 42 for inserting the needle 14 is provided substantially at the center of the upper surface 41a of the cover 41.
  • the diameter of the opening 42 is a minimum size that allows a required amount of the needle 14 to be inserted in order to prevent dust.
  • Inside the cover 41 an ultrasonic cleaning tank 43 and an ultrasonic vibrator 44 are arranged inside the cover 41.
  • the ultrasonic cleaning tank 43 holds a medium (for example, pure water, a neutral detergent, or an alkaline solution) enough to immerse the tip 14a of the needle 14 sufficiently.
  • Ultrasonic vibrator 44 is ultrasonically cleaned It is attached to the lower part of tank 43.
  • a wiring cord 45 is connected to the ultrasonic vibrator 44, and the wiring cord 45 passes through the cover 41 and is connected to a power supply (not shown).
  • the solution stage 17 is provided with a plurality of recesses at predetermined intervals.
  • a plurality of different types of DNA deoxyribonucleic acid
  • An introduction substance solution 17a such as a solution is dispensed.
  • An electrode 46 is embedded in the solution table 17.
  • the electrode 46 is connected to a power source (not shown) via a wiring cord 47.
  • the upper surface of the solution stage 17 is water-repellent and a plurality of hydrophilic regions are formed, and the solution 17a is held in the hydrophilic region.
  • the positioning means 15 shown in FIG. 1 is moved, and the needle 14 is inserted into the opening 42 of the cleaning unit 16, and as shown by the phantom line in FIG. Immerse in the medium in 43.
  • power is supplied from the power supply to the ultrasonic vibrator 44 via the drive wiring 45, and the ultrasonic vibrator 44 is vibrated.
  • Ultrasonic waves are applied to the medium in the ultrasonic cleaning tank 43 to clean the surface of the tip 14a of the needle 14.
  • the surface of the tip 14a of the needle 14 is contaminated with an organic substance or the like, the organic substance is removed.
  • an active state Sl
  • the positioning means 15 is operated to move the tip 14a of the needle 14 into the introduced substance solution 17a injected into a predetermined recess of the container base 17. Is immersed in a predetermined portion of the droplet of the liquid crystal. At this time, a predetermined voltage is applied between the needle 14 and the electrode 46 via the wiring cord 47 for a predetermined time.
  • the substance to be introduced often has a negative charge and is DNA
  • the DNA is adsorbed on the surface of the tip 14a of the needle 14 using the needle 14 as an anode (S2).
  • the illumination mode is set to a mode suitable for determining the observation / position data of the operation target (S3).
  • the operation target is a cell C which is a biological sample
  • transmitted light field illumination or phase contrast illumination by the light source 9 is often used as an illumination mode.
  • the biological sample in the sample container 4 is observed under a microscope using bright-field illumination or phase-contrast illumination with the light source 9, and the cell C to be introduced is selected. If necessary, the position data of the selected cell C is stored in the storage unit (position storage means) 12a of the control unit 12 (S4).
  • the cell C is not adhered and the bottom surface of the sample container 4 is exposed near the cell C to be introduced in the visual field of the microscope.
  • the tip 14a of the needle 14 is lowered and brought close enough within a range where coordinate management can be safely performed (S5).
  • S5 coordinate management can be safely performed
  • a method of lowering the tip 14a of the needle 14 to a height of about 10 to several tens / zm can be cited.
  • the illumination mode is switched to total reflection illumination from the direction of falling onto the bottom surface of the sample container 4 using the fluorescent lamp 29 (S6).
  • the total reflection illumination is suitable for detecting the position of the treatment tool.
  • the position of the eccentric slit 31 is adjusted using the adjusting means 31a, and the upper part of the bottom surface of the sample container 4 is irradiated with so-called pseudo-evanescent light in which some transmitted light is mixed in addition to evanescent light.
  • adjust so that the focus of the microscope is located at 5 to LO / zm above the bottom surface of the sample container 4.
  • the needle 14 is lowered at a minute feed of about 2 m per feed, and when the scattered light of the pseudo evanescent light reflected at the tip 14 a of the needle 14 starts to be detected by the image processing means 11. , Stop the needle 14 from descending. This completes the coarse approach.
  • the position of the eccentric slit 31 is adjusted using the adjusting means 31a, so that only the evanescent light is irradiated above the bottom surface of the sample container 4.
  • adjust so that the focus of the microscope is located within about 20 Onm above the bottom or the force that matches the bottom of the sample container 4.
  • the needle 14 is lowered by a very small feed of about 100 nm per feed, and the evanescent light reflected by the tip 14a of the needle 14 is moved downward.
  • the lowering of the needle 14 is stopped. This completes the fine movement approach.
  • the height of the needle 14 at this time is defined as a reference height. That is, the position of the needle 14 when the tip 14a is in the very close position immediately before contacting the bottom surface of the sample container 4 is defined as a reference height, and this value is stored in the form of data in the storage unit 12a in the control unit 12. (S7).
  • the scattered light of the evanescent light reflected by the tip 14a of the needle 14 is detected by the image processing means 11, in addition to the height position data of the tip 14a of the needle 14, the horizontal plane of the tip 14a of the needle 14 Position data in the X and Y directions along. Therefore, the detected position data in the XY direction is stored in the storage unit 12a in the control unit 12 as the accurate position of the tip 14a of the needle 14.
  • the illumination optical system is set to the first illumination mode for detecting the tip (first region) 14a of the needle 14, and in this state, the needle 14 is focused on the tip 14a.
  • the illumination optical system is switched to the second illumination mode for irradiating the cell C (the second area) to be operated with illumination light.
  • the illumination mode is switched to a mode suitable for detecting the distal end portion 14a of the needle 14 as the treatment tool or a mode suitable for detecting the cell C as the operation target, and the The position and the position of the cell are detected.
  • X indicates the optical path of the total reflection illumination optical system
  • Y indicates the immersion oil interposed between the objective lens 7 and the bottom surface of the sample container
  • Z indicates the evanescent illumination area.
  • the driving means 3a is used so that the tip 14a of the needle 14 is positioned at a predetermined position such as the nucleus of the cell C to be introduced.
  • the driving means 25 is driven, and the needle 14 is lowered. This operation may be automatically performed by a command signal issued from the control unit 12 based on data input to the control unit 12. Then, the distal end 14a of the needle 14 is inserted into a predetermined position of the cell C to be introduced.
  • the reaching height of the tip 14a of the needle 14, that is, the penetration limit height is set a predetermined distance (for example: m) above the reference height set in S7, so that the tip 14a of the needle 14 Does not collide with the bottom of sample container 4 Therefore, the tip portion 14a of the needle 14 can be surely penetrated to the target position in the cell C (S8).
  • the data to be input to the control unit 12 may be the stored tip position data of the needle 14 described above.
  • the predetermined position of the cell C and the relative position of the needle 14 to the tip portion 14a are obtained.
  • the tip 14a of the needle 14 may be inserted into a predetermined position of the cell C to be introduced by using a method of matching the positions.
  • the driving means 25 is driven to raise the needle 14 and retreat from the cell C.
  • the above is the step of introducing the substance into the target cell C.
  • the DNA adsorbed on the needle 14 drops from the needle 14 in the nucleus of the cell C, whereby the gene is transferred.
  • the needle 14 when introducing into a different cell C, the needle 14 is inserted into the washing unit 16 to wash and remove the introduced substance remaining in the needle 14 and the substance adhered in the cell C. Thereafter, the needle 14 is washed with the washing unit 16 to absorb a predetermined substance to be introduced, and the needle 14 is moved to the biological sample until the cells have been selected and the introduction into all the planned locations is completed. The step of inserting the substance into the cell C by inserting the substance into the predetermined position is repeated (S9).
  • the procedure for introducing a gene is not limited to the order described above, but may be changed as appropriate in accordance with the purpose of introducing a gene and within the range of maintaining necessary accuracy.
  • the cell position detection (S3, S4) may be performed after the introduction needle position detection (S6, S7), or the cleaning of the needle tip (S1) and the adsorption of DNA (S2) may be performed on the cell or needle tip.
  • the detection may be performed immediately before gene introduction (S8).
  • the detection of the needle tip position (S6, S7) is performed once at first. May be performed only.
  • the needle 14 is gradually lowered by the raising and lowering means including the driving means 25 and the Z stage 22 under observation by the inverted microscope 2 using total reflection illumination in the falling direction.
  • the tip 14a of the needle 14 reaches the evanescent illumination area Z, it is illuminated with evanescent light.
  • the scattered light emitted from the tip 14a of the needle is detected by the image processing means 11, and the height position of the needle 14 at this time is set as the reference height.
  • the height of the needle 14 when the needle 14 is inserted into the cell C is set.
  • the needle 14 can be safely inserted into the cell C without the tip 14a of the 14 coming into contact with the bottom surface of the sample container 4.
  • the tip 14a of the needle 14 is as fine as V which cannot be captured by an optical microscope, the tip 14a can be prevented from colliding with the bottom surface of the sample container 4 and being broken.
  • the retracting / advancing operation of the needle 14 using the driving unit 24, the raising / lowering operation of the needle 14 using the driving unit 25, the moving operation of the XY stage 3 using the driving unit 3a, and the illumination of the inverted microscope 2 The switching operation may be performed automatically based on a command signal from the control unit 12, or may be performed manually.
  • a command signal from the control unit 12 is issued. Based on this, it is also possible to restrict further downward movement of the needle 14 and to display on the display means (not shown) connected to the control unit 12 that the position at the time of the downward movement of the needle 14 has reached a predetermined height. good.
  • the manipulator device 1 of the present invention and a method of operating a treatment tool using the device are described by taking, as an example, the case of gene transfer using insertion and injection with the needle 14.
  • the force described above may be replaced with another treatment tool instead of the needle 14, and operations such as moving, cutting, holding, and physical or electrical stimulation may be performed.
  • the above operation may be performed on other biological samples such as bacteria that are not limited to cells C, and on works other than biological samples such as semiconductors and nanotubes.
  • electricity is supplied to the outer peripheral surface of the needle 14 to electrically adsorb the introduced substance.
  • the present invention is not limited to this.
  • it may be formed in a nozzle shape, and the introduced substance solution may be directly discharged to the cell C or the like from the tip.
  • the force of cleaning the needle 14 using ultrasonic waves is not limited to this, and plasma, ultraviolet light, ozone, or the like is used according to the purpose or situation. Dry cleaning may be used. Instead of washing and reusing the needles 14, a plurality of needles 14 may be prepared in advance, and the needles may be changed and a predetermined operation may be performed.
  • the power using fluorescent lamp 29 as the light source for the total reflection illumination in the incident direction may be used as a light source.
  • the position set in advance as the position of the tip 14a of the needle 14 and stored in the storage unit 12a in the control unit 12 is modified based on the position of the scattered light due to the evanescent light detected by the image processing unit 11. You may correct it.
  • the manipulator device la shown in FIG. 7 includes a lamp 50, an illumination optical system 50a, a perforated mirror 51, a dark-field objective lens 52, an imaging lens 53, an imaging unit 10, an image processing unit (detection unit). 11).
  • An illumination light guide 52a is provided on the outer periphery of the dark field objective lens 52.
  • the needle 14 is supported by a driving means (first positioning means) 67 for aligning a position where the tip portion 14a can exist with the optical axis of the observation optical system.
  • the illumination optical system of the computer device la is a dark-field illumination optical system.
  • the illumination light beam emitted from the lamp 50 enters the perforated mirror 51 via the illumination optical system 50a, and enters the illumination light guide 52a as a ring-shaped light beam.
  • the luminous flux incident on the illumination light guide section 52a is reflected or refracted at the tip of the dark field objective lens 52 as shown by the broken line in the figure, and has an angle larger than the angle of the light beam that can be captured by the objective lens 52.
  • Illuminate sample container 4 in degrees.
  • the light beam reflected by a relatively large and flat surface such as the bottom surface of the sample container 4 does not enter the objective lens 52, but is reflected in a fine shape like the tip 14a of the needle 14.
  • Some of the scattered light generated as a result includes light incident on the objective lens 52. This light is captured by the objective lens 52, passes through the opening of the perforated mirror 51, is focused by the imaging lens 53, forms an image, and is imaged by the imaging means 10. As a result, the image processing means 11 detects that the scattered light has changed from a non-shining state to a shiny state.
  • the dark-field illumination light is partially reflected at the interface between the sample container 4 and the medium Ca, partially refracted, transmitted through the medium Ca, and also illuminates the part remote from the bottom surface of the sample container 4. .
  • the tip 14a of the needle 14 can be detected by the image processing means 11.
  • the possibility of collision or damage of the distal end portion 14a of the needle 14 can be further reduced as compared with the case of illuminating the evanescent light.
  • the manipulator device lb shown in FIG. 8 includes a lamp 50, an illumination optical system 50a, a beam splitter 54, a two-way disk 55, a rotating motor 56, an imaging lens 53, an imaging unit 10, an image Processing means (detection means) 11.
  • the two-way disc 55 is provided with a small opening 55a in a snail shape. The distance between the minute openings 55a is about 10 times the diameter of the minute openings 55a.
  • the rotation motor 56 rotates the two-way disc 55 at a constant speed.
  • the needle 14 is supported by driving means (second positioning means) 68 for aligning the position where the tip portion 14a can exist with the optical axis of the observation optical system.
  • the two-way disk 55 is arranged at the image position of the imaging lens 53, and constitutes a disk scanning confocal microscope together with the illumination optical system and the observation optical system.
  • the illumination light beam emitted from the lamp 50 is reflected by the beam splitter 54 via the illumination optical system, and is incident on the two-way disk 55.
  • the light beam passing through the minute aperture 55a converges at a predetermined point via the imaging lens 53 and the objective lens 7, and illuminates and reflects the tip 14a of the needle 14 that has reached that point.
  • the light reflected by the distal end portion 14a passes through the objective lens 7 and the imaging lens 53 again and is incident on the portable disk 55.
  • the reflected light (scattered light) will If the tip 14a is not focused on the needle 14a, the reflected light will not converge on the -Po disk 55 and will pass through the aperture 55a in a focused state. Can not.
  • the light that has passed through the small aperture 55a in a converged state passes through the beam splitter 54, forms an image on the imaging unit 10, and forms an image.
  • the image processing means 11 detects that the reflected light has changed to a non-imaging state and an image forming state.
  • the minute aperture 55a can scan the entire focal plane, and only an image of an object on the focal plane is detected. I can't be dumb Therefore, since the image is displayed only when the tip portion 14a of the needle 14 reaches the focal plane, the height of the needle 14 can be detected with high accuracy.
  • the image of the tip 14a of the needle 14 is You can also visually observe with an eyepiece instead of a CCD camera!
  • an upright type microscope may be used as the microscope, and a laser scanning type confocal optical system may be used.
  • the manipulator device lc shown in FIG. 10 includes a laser light source 60, a beam splitter 61, a two-dimensional light operation mechanism 62, a pupil projection lens 63, an imaging lens 53, an objective lens 7, and a condenser lens 64. , A confocal pinhole 65 and a photodetector 66.
  • the two-dimensional optical scanning mechanism 62 uses two sets of galvanomirror scanners to deflect (scan) the laser light in two directions.
  • a photodiode or a photomultiplier photomultiplier
  • the laser light emitted from the laser light source 60 passes through the beam splitter 61 and enters the two-dimensional optical scanning mechanism 62.
  • the laser light incident on the two-dimensional light scanning mechanism 62 is deflected in two directions by the two-dimensional light scanning mechanism 62, passes through the pupil projection lens 63, the imaging lens 53, the objective lens 7, and the treatment tool such as the needle 14 or a cell. C is irradiated and reflected.
  • the light reflected by the treatment tool such as the needle 14 or the cell C again enters the two-dimensional optical scanning mechanism 62 via the objective lens 7, the imaging lens 53, and the pupil projection lens 63. Then, the deflection in two directions is eliminated, and the light enters the beam splitter 61.
  • the light reflected by the treatment tool such as the needle 14 or the cell C is reflected by the beam splitter 61, collected by the condenser lens 64, and guided to the confocal pinhole 65.
  • the position irradiated with the laser beam and the confocal pinhole 65 are optically conjugated as described above. If so, the convergent light from the condenser lens 64 converges to one point on the confocal pinhole 65 and passes through the confocal pinhole 65. Then, the light is detected by the photodetector 66 and converted into an electric signal.
  • the treatment tool such as the needle 14 or the cell C is not at the in-focus position of the objective lens 7, the convergent light by the converging lens 64 is not converged on the confocal pinhole 65 but spreads. Even if a part of the light passes through the confocal pinhole 65, it is not detected by the photodetector 66.
  • the convergent light is only emitted when the treatment tool such as the needle 14 or the cell C has the focus of the objective lens. Imaged. Furthermore, when images are captured while sequentially changing the height of the objective lens, the height between the cell C and the treatment tool 14 depends on the height of the treatment tool such as the needle 14 and the height of the objective lens 7 from which an image of the cell C can be obtained. Can be detected.

Abstract

A manipulator device, a manipulator, and a method of operating a treatment tool using the manipulator device. The manipulator device operating an operation object under observation by an observational optical system comprises the treatment tool operating the operation object, a tip part involved in the treatment tool and coming into contact with or moving closest to the operation object, and a detection means detecting the change of light including scattered light from the tip part illumination by an illuminating light which occurs by the displacement of the tip part.

Description

マニピュレータ装置、マニピュレータ、およびマニピュレータ装置を用いた 処置具の操作方法  MANIPULATOR DEVICE, MANIPULATOR, AND METHOD OF OPERATING TREATMENT TOOL USING MANIPULATOR DEVICE
技術分野  Technical field
[0001] 本発明は、マニピュレータ装置、マニピュレータ、およびマニピュレータ装置を用い た処置具の操作方法に関する。  The present invention relates to a manipulator device, a manipulator, and a method for operating a treatment tool using the manipulator device.
本願は、 2004年 3月 30日に出願された特願 2004— 100820号について優先権 を主張し、その内容をここに援用する。  This application claims the priority of Japanese Patent Application No. 2004-100820 filed on Mar. 30, 2004, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 従来、対象物としての細胞等の生体試料に遺伝子を導入し、該遺伝子を発現させ るための手段としては、マイクロインジェクション法、エレクト口ポレーシヨン法やパーテ ィクルガン法等の物理的手法によるもの、リン酸カルシウム法やリボフヱクシヨン法等 の細胞のエンドサイト一シスを利用する手法によるものが知られている。  [0002] Conventionally, as a means for introducing a gene into a biological sample such as a cell as an object and expressing the gene, a physical method such as a microinjection method, an electoru-portion method, and a particle gun method has been used. And a method using a cell endocytosis method such as a calcium phosphate method or a ribofusion method are known.
これらの方法のうち、下記の特許文献 1に記載されているようなマイクロインジェクシ ヨン法では、個々の細胞に直接 DNA溶液を注入するので、任意の細胞に選択的に 遺伝子を導入することができる。この方法では、マニピュレータ装置の処置具の先端 が太いと、生体試料に与えるダメージが大きくなり、操作後の生存率が良好とはいえ ず、導入後の実験に支障を来すことがある。  Among these methods, in the microinjection method as described in Patent Document 1 below, a DNA solution is directly injected into individual cells, so that a gene can be selectively introduced into any cell. it can. In this method, if the tip of the treatment tool of the manipulator device is thick, the damage to the biological sample is increased, and the survival rate after the operation is not good, which may hinder the experiment after introduction.
そこで、例えば下記の特許文献 2では、処置具として、細胞への挿入時にダメージ を与えな!/、極細径の針状部を使用し、遺伝子または遺伝子発現に関与する物質をこ の針状部に固定ィ匕し、その状態で細胞への挿入及び保持を行うことで細胞への遺伝 子導入を行っている。  Therefore, for example, in Patent Document 2 below, as a treatment tool, no damage is caused when inserted into a cell! / An ultrafine needle is used, and a gene or a substance involved in gene expression is transferred to the needle. In this state, the gene is introduced into the cell by inserting and retaining the cell in that state.
特許文献 1:特開平 06 - 109979号公報  Patent Document 1: JP-A-06-109979
特許文献 2 :特開 2003— 325161  Patent Document 2: JP-A-2003-325161
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 一般に、上記のような遺伝子導入を行うためのマニピュレータ装置では、対象となる 細胞の選択を光学顕微鏡下で行う。同様に、細胞に対して処置を行う処置具の先端 もその光学顕微鏡で検出し、対象となる細胞との相対的な位置関係(面内位置およ び高さ)を制御する。 [0003] Generally, a manipulator device for performing gene transfer as described above is a target. Selection of cells is performed under a light microscope. Similarly, the tip of the treatment tool for treating cells is also detected by the optical microscope, and the relative positional relationship (in-plane position and height) with the target cells is controlled.
ここで、上記の特許文献 2に記載されているように、細胞へのダメージを軽減するた めに処置具の先端の径を細くすると、処置具の先端を光学顕微鏡で検出することが 困難になる。そこで、特許文献 2では、原子間力顕微鏡 (AFM)を付加し、処置具と 細胞との距離の測定を、処置具であるカンチレバーと細胞との間に作用する原子間 力を測定することで行っている。そのため、高価で構造や操作が複雑な原子間カ顕 微鏡が必要となる欠点がある。  Here, as described in Patent Document 2 described above, if the diameter of the distal end of the treatment tool is reduced to reduce damage to cells, it becomes difficult to detect the distal end of the treatment tool with an optical microscope. Become. In Patent Document 2, an atomic force microscope (AFM) is added to measure the distance between the treatment tool and the cell by measuring the atomic force acting between the treatment tool cantilever and the cell. Is going. Therefore, there is a disadvantage that an expensive interatomic microscope, which is expensive and complicated in structure and operation, is required.
また、このような構成であっても、細胞と処置具先端との位置合わせを正確に行うこ とができない。  In addition, even with such a configuration, it is not possible to accurately align the cells with the distal end of the treatment tool.
[0004] 本発明は、上記問題点に鑑みてなされたもので、安価でかつ簡単な構成で、マ- ピユレータの処置具の先端部の位置を正確に求め、同先端部の位置制御を良好に 行うことを目的とする。  [0004] The present invention has been made in view of the above problems, and has a low-cost and simple configuration, accurately obtains the position of the distal end of a treatment instrument of a mul- tiperator, and favorably controls the position of the distal end. The purpose is to carry out.
課題を解決するための手段  Means for solving the problem
[0005] 本発明は、観察光学系の観察下で、操作対象物に対して操作を行うマ-ピュレー タ装置であって:前記操作対象物に対して操作を行う処置具と;前記処置具に含まれ[0005] The present invention relates to a mapper device for performing an operation on an operation target under observation by an observation optical system: a treatment tool for performing an operation on the operation target; Included in
、前記操作対象物に接触または最も接近する先端部と;前記先端部の変位に伴って 発生する、照明光によって照明された前記先端部力もの散乱光を含む光の変化を検 出する検出手段と;を備えるマニピュレータ装置を提供する。 A tip that comes into contact with or comes closest to the operation target; and a detecting unit that detects a change in light that is generated by displacement of the tip and that includes scattered light illuminated by illumination light. And a manipulator device comprising:
[0006] 上記のマニピュレータ装置によれば、非常に微細であるために観察の困難な処置 具であっても、処置具の先端部力もの散乱光を検出し、それを利用するだけで、処置 具が物体に触れることがなぐ処置具を破損する虞もなしにその先端部の位置を正 確に求めることができる。 [0006] According to the manipulator device described above, even if the treatment tool is extremely fine and is difficult to observe, only the scattered light at the distal end of the treatment tool can be detected and used. The position of the distal end can be accurately obtained without the risk of damaging the treatment tool without the tool touching the object.
[0007] 上記のマニピュレータ装置は、前記観察光学系によって観察される領域のうち、前 記先端部が存在し得る領域に対して前記照明光を選択的に照射する照明光学系を 更に備えることが好ましい。 [0007] The manipulator device may further include an illumination optical system that selectively irradiates the illumination light to an area where the tip may exist, of the area observed by the observation optical system. preferable.
[0008] 上記のマニピュレータ装置によれば、位置決めを行いたい所定の領域に処置具先 端部が達したときだけ、検出手段が散乱光の像の変化を検出できるので、処置具の 先端部の位置を検出する精度を向上させることができる。 [0008] According to the manipulator device described above, the treatment tool tip is located in a predetermined area where positioning is desired. Only when the end reaches, the detecting means can detect a change in the image of the scattered light, so that the accuracy of detecting the position of the distal end of the treatment instrument can be improved.
[0009] 上記のマニピュレータ装置において、前記照明光は、前記観察光学系を介して前 記先端部が存在し得る領域に照射されることが好ましい。  [0009] In the above-mentioned manipulator device, it is preferable that the illuminating light is applied to an area where the tip portion may exist through the observation optical system.
[0010] 上記のマニピュレータ装置において、前記照明光学系は、前記操作対象物を保持 する面にエバネッセント光を生じさせることが好ましい。 [0010] In the above manipulator device, it is preferable that the illumination optical system generates evanescent light on a surface holding the operation target.
[0011] 上記のマニピュレータ装置によれば、操作対象物を保持した面に対し、 50〜150n mという限りなく近接した位置まで処置具の先端部を近接させることができ、また、ほ ぼ処置具の先端部のみが検出されるので、処置具の先端部の位置を検出す精度を 極めて向上させることができる。  [0011] According to the manipulator device described above, the distal end of the treatment instrument can be brought close to a position as close as possible to 50 to 150 nm with respect to the surface holding the operation target. Since only the distal end of the treatment instrument is detected, the accuracy of detecting the position of the distal end of the treatment instrument can be significantly improved.
[0012] 上記のマニピュレータ装置は、前記先端部の存在し得る位置と前記観察光学系の 光軸とを合わせる第 1の位置合わせ手段を更に備え、前記照明光学系は、暗視野照 明光学系であることが好まし 、。  [0012] The manipulator device further includes first alignment means for aligning a position where the distal end can exist with an optical axis of the observation optical system, and the illumination optical system includes a dark-field illumination optical system. It is preferable that.
[0013] 上記のマニピュレータ装置によれば、暗視野観察光学系を用い、処置具の先端部 を移動させることにより、照明光学系からの照明光を直接検出することなぐ対物レン ズから離れた位置にある処置具でも、その先端部からの散乱光の像を簡単な顕微鏡 の構成で選択的に検出することができる。  [0013] According to the manipulator device described above, the distal end of the treatment tool is moved using the dark-field observation optical system, so that the position far from the objective lens can be detected without directly detecting the illumination light from the illumination optical system. With the treatment tool described in (1), the image of the scattered light from the tip can be selectively detected with a simple microscope configuration.
[0014] 上記のマニピュレータ装置は、前記先端部の存在し得る位置と前記観察光学系の 焦点位置とを合わせる第 2の位置合わせ手段を更に備え、前記検出手段は、前記照 明光が照射された領域と光学的に共役な位置に設けられた開口部を通過した前記 散乱光を含む光の変化を検出することが好ましい。  [0014] The manipulator device further includes a second alignment unit that adjusts a position where the distal end portion may exist and a focal position of the observation optical system, and the detection unit is configured to irradiate the illumination light. It is preferable to detect a change in light including the scattered light passing through an opening provided at a position optically conjugate with the region.
[0015] 上記のマニピュレータ装置によれば、共焦点光学系を用いたうえで処置具の先端 部を移動させることにより、照明光学系で照明された部分のうち、開口部と光学的に 共役な位置に処置具の先端部が達したときのみ、散乱光の像を検出手段上で結像 させることができるので、処置具の先端部力もの散乱光を選択的に捉えることができ、 処置具の先端部の位置を検出する精度を極めて向上させることができる。  According to the above manipulator device, by moving the distal end portion of the treatment tool using the confocal optical system, of the portion illuminated by the illumination optical system, it is optically conjugate with the opening. Only when the distal end of the treatment instrument reaches the position, the image of the scattered light can be formed on the detection means, so that the scattered light with the force of the distal end of the treatment instrument can be selectively captured, and , The accuracy of detecting the position of the tip can be greatly improved.
[0016] 上記のマニピュレータ装置は、前記観察光学系は、複数の前記開口部を持つディ スクを備えるとともに、前記ディスクを回転させることにより当該開口部を通じて前記先 端部の存在し得る領域を走査して照明し、前記検出手段は、前記ディスクに設けら れた前記開口部を通過した前記散乱光を含む光の変化を検出することが好ま 、。 [0016] In the above-mentioned manipulator device, the observation optical system includes a disk having a plurality of the openings, and rotates the disk to rotate the disk through the openings. Preferably, an area where an end portion may exist is scanned and illuminated, and the detecting means detects a change in light including the scattered light passing through the opening provided in the disk.
[0017] 上記のマニピュレータ装置によれば、ディスクを回転させることにより、照明光を観 察視野内で走査させ、観察光学系の焦点が合った部分に達した処置具の先端部か らの散乱光を、検出手段によって確実に検出することができる。  According to the above manipulator device, by rotating the disk, the illumination light is scanned within the observation field of view, and the scattering from the distal end of the treatment tool reaching the focused portion of the observation optical system. Light can be reliably detected by the detecting means.
[0018] 上記のマニピュレータ装置は、前記照明光学系は、レーザ光を出射するとともに、 前記レーザ光を前記先端部の存在し得る領域で収束させた状態で走査し、前記検 出手段は、前記レーザ光を収束させた領域と光学的に共役な位置に設けられた前 記開口部を通過した前記散乱光を含む光の変化を検出することが好ましい。  [0018] In the above manipulator device, the illumination optical system emits laser light and scans the laser light in a state where the laser light is converged in a region where the distal end portion may exist. It is preferable to detect a change in light including the scattered light that has passed through the opening provided at a position optically conjugate to the region where the laser light is converged.
[0019] 上記のマニピュレータ装置によれば、レーザ光を観察視野内で走査させることによ り、開口部と光学的に共役な位置に達した処置具の先端部からの散乱光を検出手段 で確実に検出することができる。  [0019] According to the manipulator device described above, by scanning the observation light with the laser light, the scattered light from the distal end of the treatment tool that has reached a position optically conjugate with the opening is detected by the detection means. It can be detected reliably.
[0020] 上記のマニピュレータ装置は、前記照明光学系が、少なくとも、第 1の領域に前記 照明光を照射する第 1の照明モードと、前記第 1の領域とは異なる第 2の領域に前記 照明光を照射する第 2の照明モードとをそれぞれ切り換えることが好ましい。  [0020] In the above-described manipulator device, the illumination optical system may be configured to irradiate at least a first area with a first illumination mode in which the illumination light is irradiated with the illumination light and a second area different from the first area with the illumination. It is preferable to switch between the second illumination mode for irradiating light.
[0021] 上記のマニピュレータ装置によれば、処置具の先端部の粗い位置検出と精密な位 置検出、処置具の先端部への照明と他の部分への照明等をそれぞれ切り替え、種 々の操作を行うことができる。  According to the manipulator device described above, coarse and fine position detection of the distal end portion of the treatment tool, illumination of the distal end portion of the treatment tool, illumination of other portions, and the like are switched, respectively. Operations can be performed.
[0022] 上記のマニピュレータ装置は、前記照明光学系が、前記第 1の照明モードにおい て前記先端部が存在し得る領域に対し前記照明光を照射し、前記第 2の照明モード において前記操作対象物に対し前記照明光を照射することが好ましい。  [0022] In the above-mentioned manipulator device, the illumination optical system irradiates the illumination light to a region where the distal end portion may exist in the first illumination mode, and the operation object in the second illumination mode. It is preferable that the object is irradiated with the illumination light.
[0023] 上記のマニピュレータ装置によれば、処置具の先端部と操作対象物との正確な位 置を検出することができる。  According to the manipulator device described above, it is possible to detect an accurate position between the distal end portion of the treatment tool and the operation target.
[0024] 上記のマニピュレータ装置は、前記先端部が、前記観察光学系の光学的分解能よ りも小さいことが好ましい。  [0024] In the above manipulator device, it is preferable that the distal end portion is smaller than the optical resolution of the observation optical system.
[0025] 上記のマニピュレータ装置によれば、極めて微細な処置具を用いれば、操作対象 物へのダメージが最小限に抑制でき、このような処置具であっても、散乱光を検出す る方法であれば確実にその先端部の位置を検出することができる。 [0026] 上記のマニピュレータ装置は、前記検出手段が検出した前記先端部の位置を記憶 する位置記憶手段を更に備えることが好まし 、。 [0025] According to the manipulator device described above, if an extremely fine treatment tool is used, damage to the operation target can be suppressed to a minimum, and even with such a treatment tool, a method for detecting scattered light. Then, the position of the tip can be reliably detected. [0026] Preferably, the manipulator device further includes a position storage unit that stores a position of the distal end detected by the detection unit.
[0027] 上記のマニピュレータ装置によれば、処置具の先端部の位置を、例えば基準位置 として記憶すれば、一度の位置検出で確実に処置具の先端部の位置制御を行うこと ができる。 According to the manipulator device described above, if the position of the distal end of the treatment instrument is stored as, for example, a reference position, the position of the distal end of the treatment instrument can be reliably controlled by detecting the position once.
[0028] 上記のマニピュレータ装置は、前記操作対象物が保持された面と前記処置具との 相対的な距離を調節する駆動手段を更に備え、前記駆動手段は、前記検出手段が 検出した結果に基づ 、て前記処置具の移動を制御することが好ま 、。  [0028] The manipulator device further includes a driving unit that adjusts a relative distance between the surface on which the operation target is held and the treatment tool, and the driving unit determines a result detected by the detection unit. It is preferable to control the movement of the treatment tool based on the above.
[0029] 上記のマニピュレータ装置によれば、検出手段が検出した処置具の先端部の位置 を基準位置として用いるなどして、処置具を破損することなぐその位置調節や操作 対象物への操作を行うことができる。  [0029] According to the manipulator device described above, the position of the distal end portion of the treatment tool detected by the detection means is used as a reference position, and the position adjustment without damaging the treatment tool and the operation on the operation target are performed. It can be carried out.
[0030] 上記のマニピュレータ装置は、前記処置具による操作が、前記操作対象物への前 記処置具の挿入、前記操作対象物への物質の注入、前記操作対象物の切断、前記 操作対象物の保持、および前記操作対象物への物理的または電気的な刺激を含む ことが好ましい。  [0030] In the above manipulator device, the operation with the treatment tool may include inserting the treatment tool into the operation target, injecting a substance into the operation target, cutting the operation target, and cutting the operation target. It is preferable to include holding the object and physically or electrically stimulating the operation target.
[0031] 上記のマニピュレータ装置において、操作とは、処置具の先端部分が対象物に触 れる、触れない、のいずれの場合をも含め、種々のマニピュレーションを指す。  In the above manipulator device, “operation” refers to various manipulations, including both cases where the distal end portion of the treatment tool touches and does not touch the target.
[0032] 上記のマニピュレータ装置において、前記操作対象物は生体試料を含むことが好 ましい。また、前記生体試料は生細胞であることが好ましい。  [0032] In the above manipulator device, it is preferable that the operation target includes a biological sample. Preferably, the biological sample is a living cell.
[0033] 本発明は、上記のマニピュレータ装置に対して用いられるマニピュレータを提供す る。  [0033] The present invention provides a manipulator used for the above manipulator device.
[0034] 本発明は、観察光学系の観察下で操作対象物に対して操作を行う、マ-ピュレー タ装置を用いた処置具操作方法であって:前記操作対象物に対して操作を行う処置 具に含まれ、前記操作対象物に接触または最も接近する先端部を、照明光によって 照明する工程と;前記先端部の変位に伴って発生する、前記照明光によって照明さ れた前記先端部力 の散乱光を含む光の変化を検出する工程と;を備えるマ-ピュ レータ装置を用いた処置具操作方法を提供する。  [0034] The present invention is a method for operating a treatment tool using a manipulator device, which performs an operation on an operation target under observation by an observation optical system: performing an operation on the operation target Illuminating a tip included in the treatment tool and in contact with or closest to the operation target with illumination light; and the tip illuminated by the illumination light, which is generated with displacement of the tip. Detecting a change in light including scattered light of force; and a method of operating a treatment tool using a manipulator device.
[0035] エバネッセント光を利用した微小領域の照明、暗視野照明光学系、共焦点光学系 等の技術は従来力 存在するが、これらの技術を使って非常に微細な針先を検出す るという技術思想は、過去には存在しなかった。し力しながら、上記のマニピュレータ 装置によれば、観察の困難な微細な処置具であっても、処置具先端からの散乱光を 検出し、それを利用するだけで、処置具が物体に触れることなぐ処置具を破損する 虡なしにその先端の位置を正確に求められる。 [0035] Illumination of a minute area using evanescent light, dark field illumination optical system, confocal optical system Although technologies such as these have existed in the past, there was no technical idea in the past to detect extremely fine needle tips using these technologies. According to the manipulator device described above, even if it is a fine treatment tool that is difficult to observe, the treatment tool touches an object only by detecting scattered light from the distal end of the treatment tool and using it. The position of the tip can be accurately determined without damaging the treatment tool.
[0036] 本発明の観察光学系によって観察することができる所定の領域に対し、照明光を 選択的に照射する照明光学系としては、操作対象物を保持する面を含み、かつ観察 に必要な光を透過する基板と操作対象物の媒質との界面において全反射する全反 射照明光学系を適用することができる。  [0036] The illumination optical system that selectively irradiates a predetermined area that can be observed by the observation optical system of the present invention with illumination light includes a surface that holds an operation target and is necessary for observation. An all-reflection illumination optical system that totally reflects light at the interface between the substrate that transmits light and the medium of the operation target can be applied.
[0037] この全反射照明光学系によれば、照明光は観察に必要な光を透過する基板と操作 対象物の媒質の界面において全反射する。このとき、操作対象物の媒質中に、光軸 方向に進行するエバネッセント波が発生する。このエバネッセント波は、基板と媒質 の界面から 50〜150nm程度の領域にのみ存在するので、処置具を下降させてその 先端部がこの領域に入ると、先端部で反射したエバネッセント波が、観察光学系を介 して検出器上に結像し、検出される。エバネッセント波が存在する領域、すなわち全 反射照明光学系によって照明される領域は 50〜150nm程度の領域であり、処置具 の先端部以外は照明されないので、その先端部のみをコントラスト良く検出すること ができる。  According to this total reflection illumination optical system, the illumination light is totally reflected at the interface between the substrate that transmits light necessary for observation and the medium of the operation target. At this time, an evanescent wave traveling in the optical axis direction is generated in the medium of the operation target. Since this evanescent wave exists only in the region of about 50 to 150 nm from the interface between the substrate and the medium, when the treatment tool is lowered and the tip enters this region, the evanescent wave reflected at the tip becomes the observation optics. An image is formed on the detector via the system and detected. The region where the evanescent wave exists, that is, the region illuminated by the total internal reflection illumination optical system, is a region of about 50 to 150 nm.Since the region other than the distal end of the treatment tool is not illuminated, it is possible to detect only the distal end with good contrast. it can.
[0038] 照明光学系としては、暗視野照明光学系を適用することもできる。暗視野照明光学 系では、照明光は対物レンズの外側力も対物レンズの開口数よりも大きな角度で照 明されるので、水平面で反射した光は、対物レンズには直接は入射しない。しかしな がら、処置具の先端部のように微小なものが照明領域に存在すれば、反射光の一部 は対物レンズに入射するので、処置具の先端部を検出することができる。  [0038] As the illumination optical system, a dark-field illumination optical system can be applied. In a dark-field illumination optical system, the illumination light is illuminated at an angle larger than the numerical aperture of the objective lens, and the light reflected on the horizontal plane does not directly enter the objective lens. However, if a minute object such as the distal end of the treatment tool exists in the illumination area, a part of the reflected light is incident on the objective lens, so that the distal end of the treatment tool can be detected.
[0039] また、照明光学系および観察光学系として、試料の一点を照明し、結像位置での 一点のみで反射光強度を検出する共焦点光学系を適用することもできる。これらを用 いると、試料に焦点の合った領域だけが照明され、結像するので、この領域に処置 具の先端部があるときのみ、その先端部を検出できる。共焦点光学系としては、ディ スク走査型、レーザ走査型のいずれをも適用可能である。 [0040] さらに、本発明のマニピュレータ装置においては、操作対象物あるいは操作対象物 が保持された面と処置具との相対的な距離を調節する駆動手段を備え、この駆動手 段が、前記観察光学系を通じて選択的に検出する検出手段によって検出された処 置具の像に基づ 、て、操作対象物が保持された面と処置具との相対的な距離を調 節するようにしてちょい。 As the illumination optical system and the observation optical system, a confocal optical system that illuminates one point of the sample and detects the reflected light intensity at only one point at the image forming position can be applied. When these are used, only the region focused on the sample is illuminated and an image is formed, so that the distal end of the treatment tool can be detected only when the distal end of the treatment tool is located in this region. As the confocal optical system, any of a disk scanning type and a laser scanning type can be applied. [0040] Further, the manipulator device of the present invention includes a driving means for adjusting a relative distance between the treatment object and the operation object or a surface on which the operation object is held, and the driving means is provided with the observation means. The relative distance between the surface on which the operation target is held and the treatment tool is adjusted based on the image of the treatment tool detected by the detection means selectively detecting through the optical system. .
[0041] このような構成では、操作対象物が保持された面を照明するモードと、処置具を照 明するモードが切り替え可能である。そして、操作対象物あるいは操作対象物が保 持された面と処置具先端とを、それぞれ最適な照明方法で照明することによって容 易に検出することができる。これにより、処置具と操作対象物の相対的な距離を調整 することが可能となる。  [0041] In such a configuration, a mode for illuminating the surface holding the operation target and a mode for illuminating the treatment tool can be switched. Then, the operation object or the surface on which the operation object is held and the distal end of the treatment tool can be easily detected by illuminating them with the optimal illumination method. This makes it possible to adjust the relative distance between the treatment tool and the operation target.
発明の効果  The invention's effect
[0042] 本発明によれば、処置具の先端部の像を良好に検出することが可能となる。そのた め、処置具が通常の光学顕微鏡では捉えることができないほど微細なものであっても 、処置具の先端部を基板に接触'破損させることなぐ操作対象物に対して所定の操 作を安全に行うことができる。したがって、操作対象物への挿入深さを正確に管理し て、操作対象物に対する操作を非常に効率よく行うことができる。  According to the present invention, it is possible to satisfactorily detect an image of the distal end portion of the treatment tool. For this reason, even if the treatment tool is so fine that it cannot be captured by a normal optical microscope, the predetermined operation can be performed on the operation target without causing the tip of the treatment tool to be in contact with the substrate and causing damage. It can be done safely. Therefore, the depth of insertion into the operation target can be accurately managed, and the operation on the operation target can be performed very efficiently.
図面の簡単な説明  Brief Description of Drawings
[0043] [図 1]本発明のマニピュレータ装置の第 1の実施の形態を示す図であって、マ-ピュ レータ装置の概略構成を示す図である。  FIG. 1 is a diagram showing a first embodiment of a manipulator device of the present invention, and is a diagram showing a schematic configuration of the manipulator device.
[図 2]倒立顕微鏡の全反射照明光学系の概略を示す側断面図である。  FIG. 2 is a side sectional view schematically showing a total reflection illumination optical system of an inverted microscope.
[図 3]洗浄ユニットの構成を示す断面図である。  FIG. 3 is a cross-sectional view illustrating a configuration of a cleaning unit.
[図 4]溶液台の構成を示す側面図である。  FIG. 4 is a side view showing a configuration of a solution stage.
[図 5]本発明の実施の形態におけるマニピュレータ装置の作業手順を示すフローチ ヤートである。  FIG. 5 is a flowchart showing a work procedure of the manipulator device according to the embodiment of the present invention.
[図 6]倒立顕微鏡における全反射状態の生体試料と針との関係を示す断面図である  FIG. 6 is a cross-sectional view showing a relationship between a biological sample and a needle in a total internal reflection state in an inverted microscope.
[図 7]本発明のマニピュレータ装置の第 2の実施の形態を示す図であって、マ-ピュ レータ装置に備わる倒立顕微鏡の暗視野照明光学系の概略を示す側断面図である [図 8]本発明のマニピュレータ装置の第 3の実施の形態を示す図であって、マ-ピュ レータ装置に備わる倒立顕微鏡の共焦点光学系の概略を示す側断面図である。 FIG. 7 is a view showing a second embodiment of the manipulator device of the present invention, and is a side sectional view schematically showing a dark-field illumination optical system of an inverted microscope provided in the manipulator device. FIG. 8 is a view showing a third embodiment of the manipulator device of the present invention, and is a side sectional view schematically showing a confocal optical system of an inverted microscope provided in the manipulator device.
[図 9]共焦点光学系に用いる二ポーディスクの模式図である。  FIG. 9 is a schematic diagram of a two-way disc used for a confocal optical system.
[図 10]上記第 3の実施の形態の変形例を示す図であって、正立顕微鏡におけるレー ザ走査型の共焦点光学系の模式図である。  FIG. 10 is a view showing a modification of the third embodiment, and is a schematic view of a laser-scanning confocal optical system in an upright microscope.
符号の説明  Explanation of symbols
[0044] 1, la, lb, lc:マニピュレータ装置、 2:倒立顕微鏡、 2a:全反射照明光学系、 3:X Yステージ、 3a:駆動手段、 4:試料容器、 5:マニピュレータ本体、 6:主架台、 7:対物 レンズ、 8:接眼レンズ、 9:光源、 10:撮像手段、 11:画像処理手段、 12:制御部、 13 :保持装置、 14:針、 14a:先端部、 14b:基部、 14c:電源コード、 15:位置決め手段 、 16:洗浄ユニット、 17:溶液台、 17a:導入物質溶液、 21:退避ステージ、 21a:保持 部材、 22 :Zステージ、 24, 25:駆動手段、 26:支持部材、 29:蛍光ランプ、 30:楔プ リズム、 31:偏心スリット、 31a:調整手段、 32:励起フィルタ、 33:ミラー、 34:レンズ、 35:ダイクロイツクミラー、 41:カバー、 41a:上面部、 42:開口部、 43:超音波洗浄槽 、 44:超音波振動子、 45:配線コード、 46:電極、 47:配線コード、 50:ランプ、 51: 穴あきミラー、 52:暗視野対物レンズ、 52a:照明光導光部、 53:結像レンズ、 54:ビ 一ムスプリッタ、 55:-ポーディスク、 56:回転モータ、 60:レーザ光源、 61:ビームス プリッタ、 62 :2次元光走査機構、 63:瞳投影レンズ、 64:集光レンズ、 65:共焦点ピ ンホール、 66:光検出器、 67:駆動手段 (第 1の位置合わせ手段)、 68:駆動手段( 第 2の位置合わせ手段)  [0044] 1, la, lb, lc: manipulator device, 2: inverted microscope, 2a: total reflection illumination optical system, 3: XY stage, 3a: driving means, 4: sample container, 5: manipulator body, 6: main Mount, 7: Objective lens, 8: Eyepiece, 9: Light source, 10: Imaging means, 11: Image processing means, 12: Control unit, 13: Holding device, 14: Needle, 14a: Tip, 14b: Base, 14c: Power cord, 15: Positioning means, 16: Cleaning unit, 17: Solution table, 17a: Introduced substance solution, 21: Evacuation stage, 21a: Holding member, 22: Z stage, 24, 25: Driving means, 26: Supporting member, 29: fluorescent lamp, 30: wedge prism, 31: eccentric slit, 31a: adjusting means, 32: excitation filter, 33: mirror, 34: lens, 35: dichroic mirror, 41: cover, 41a: top surface Part, 42: Opening, 43: Ultrasonic cleaning tank, 44: Ultrasonic transducer, 45: Wiring code, 46: Electrode, 47: Wiring code, 50: Lamp, 51: Perforated mirror, 52: Field objective lens, 52a: Illumination light guide, 53: Imaging lens, 54: Beam splitter, 55: Po disk, 56: Rotary motor, 60: Laser light source, 61: Beam splitter, 62: Two-dimensional light Scanning mechanism, 63: pupil projection lens, 64: condenser lens, 65: confocal pinhole, 66: photodetector, 67: drive means (first alignment means), 68: drive means (second position) Matching means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0045] 本発明に係る第 1の実施の形態について図面を参照しながら詳細に説明する。 The first embodiment according to the present invention will be described in detail with reference to the drawings.
図 1に、本発明に係るマニピュレータ装置の構成例を示す。このマニピュレータ装 置 1は、例えば、培地 Ca中に存在する操作対象物である細胞(生体試料) Cの核内 に適当な遺伝子 (導入物質)を導入し、遺伝子にコードされているタンパク質を発現さ せるものである(図 6参照)。  FIG. 1 shows a configuration example of a manipulator device according to the present invention. This manipulator device 1 introduces an appropriate gene (introduced substance) into the nucleus of a cell (biological sample) C as an operation target existing in a medium Ca, and expresses a protein encoded by the gene. (See Figure 6).
[0046] マニピュレータ装置 1は、倒立顕微鏡 (観察光学系) 2と、マニピュレータ本体 5とを 主な構成要素としている。倒立顕微鏡 2は、細胞 C等を拡大して観察するために使用 される。マニピュレータ本体 5は、倒立顕微鏡 2の XYステージ 3上に載置される試料 容器 4に培地 Caを介して保持される細胞 Cに対し、例えば針 14等の処置具を使って 導入物質を導入する。ここで、試料容器 4は、半透明材または透明材カゝらなり、例え ばガラス〖こより作られる。 The manipulator device 1 includes an inverted microscope (observation optical system) 2 and a manipulator body 5. It is the main component. The inverted microscope 2 is used for observing cells C and the like in an enlarged manner. The manipulator body 5 introduces the substance to be introduced into the cell C held via the medium Ca in the sample container 4 placed on the XY stage 3 of the inverted microscope 2 using a treatment tool such as a needle 14, for example. . Here, the sample container 4 is made of a translucent material or a transparent material, for example, made of glass.
[0047] 倒立顕微鏡 2は、試料容器 4等を設置して水平 2軸方向 (前後及び左右)に移動可 能な XYステージ 3と、この XYステージ 3を支持する主架台 6と、試料容器 4内の生体 試料を下方力 観察するための対物レンズ 7 (図 2参照)と、対物レンズ 7で観察され た画像を観察する接眼レンズ 8と、主架台 6の上部に設けられた光源 9とを備えている 。倒立顕微鏡 2には、対物レンズ 7で観察された生体試料の像を撮影するためのレン ズ及び CCDカメラカゝらなる撮像手段 10が設けられている。この撮像手段 10は、画像 処理手段 (検出手段) 11を介して制御部 12に接続されている。また、 XYステージ 3 には、制御部 12に接続された駆動手段 3aが設けられている。この駆動手段 3aが制 御部 12からの信号に従って駆動されると、 XYステージ 3が前後または左右方向へ移 動する。 [0047] The inverted microscope 2 includes an XY stage 3 on which a sample container 4 and the like are installed and which can be moved in two horizontal axes (front and rear and left and right), a main frame 6 supporting the XY stage 3, a sample container 4 The objective lens 7 (see Fig. 2) for observing the biological sample in the downward force, the eyepiece 8 for observing the image observed by the objective lens 7, and the light source 9 provided on the top of the main frame 6 Have. The inverted microscope 2 is provided with a lens for capturing an image of the biological sample observed by the objective lens 7 and an imaging unit 10 including a CCD camera. The imaging unit 10 is connected to a control unit 12 via an image processing unit (detection unit) 11. The XY stage 3 is provided with driving means 3a connected to the control unit 12. When the driving unit 3a is driven according to a signal from the control unit 12, the XY stage 3 moves in the front-back or left-right direction.
[0048] マニピュレータ本体 5は、生体試料の細胞 C等に導入する導入物質を保持する保 持装置 13を備えている。保持装置 13は、生体試料の細胞 C等に挿入される導入手 段である針 (処置具) 14と、針 14の位置を制御する位置決め手段 15と、針 14の先端 部 14aを洗浄して活性ィ匕させる洗浄ユニット 16と、針 14に吸着保持させる導入物質 が収容される溶液台 17とを備えて 、る。  [0048] The manipulator main body 5 includes a holding device 13 for holding a substance to be introduced into cells C or the like of a biological sample. The holding device 13 cleans the needle (treatment instrument) 14 as an introduction means inserted into the cell C of the biological sample, the positioning means 15 for controlling the position of the needle 14, and the tip 14 a of the needle 14. A cleaning unit 16 for activation and a solution table 17 for accommodating a substance to be absorbed and held by the needle 14 are provided.
[0049] 針 14は、鋭利な先端部 14aと、先端部 14aよりも大径な基部 14bとを有している。針 14の先端部 14aは、倒立顕微鏡 2の光学的分解能よりも小さい。また、針 14は、基 部 14bを位置決め手段 15に保持されている。この実施の形態において、針 14は、少 なくとも表面が白金等の導電性材料カゝらなり、電源コード 14cを介して不図示の電源 に接続されている。位置決め手段 15は、針 14の基部 14bを保持する退避ステージ 2 1と、退避ステージ 21を Z方向(上下方向)に移動可能に支持する Zステージ 22と、前 記 XYステージ 3とを備えている。なお、 XYステージ 3は、倒立顕微鏡 2と兼用されて いる。 [0050] 退避ステージ 21は、針 14の基部 14bを保持する保持部材 2 laを有している。この 保持部材 21aは、駆動手段 24に接続されている。この駆動手段 24が制御部 12から の信号に従って駆動されると、保持部材 21aが水平方向へ移動する。 Zステージ 22 には、駆動手段 25が設けられている。この駆動手段 25が制御部 12からの信号に従 つて駆動されると、 Zステージ 22が上下方向へ移動する。つまり、 Zステージ 22及び 駆動手段 25は、保持手段 21a及び退避ステージ 21を介して針 14を昇降させる昇降 手段を構成している。 [0049] Needle 14 has a sharp distal end 14a and a base 14b having a larger diameter than distal end 14a. The tip 14 a of the needle 14 is smaller than the optical resolution of the inverted microscope 2. The needle 14 has its base 14b held by the positioning means 15. In this embodiment, at least the surface of the needle 14 is made of a conductive material such as platinum, and is connected to a power supply (not shown) via a power cord 14c. The positioning means 15 includes an evacuation stage 21 for holding the base 14b of the needle 14, a Z stage 22 for supporting the evacuation stage 21 movably in the Z direction (up and down directions), and the XY stage 3 described above. . Note that the XY stage 3 is also used as the inverted microscope 2. The evacuation stage 21 has a holding member 2 la that holds the base 14 b of the needle 14. The holding member 21a is connected to the driving means 24. When the driving unit 24 is driven according to a signal from the control unit 12, the holding member 21a moves in the horizontal direction. Driving means 25 is provided on the Z stage 22. When the driving unit 25 is driven according to a signal from the control unit 12, the Z stage 22 moves up and down. In other words, the Z stage 22 and the driving unit 25 constitute an elevating unit that moves the needle 14 up and down via the holding unit 21a and the evacuation stage 21.
なお、 Zステージ 22は、支持部材 26を介して主架台 6に取り付けられている。  The Z stage 22 is attached to the main gantry 6 via a support member 26.
[0051] 図 2に示すように、倒立顕微鏡 2の全反射照明光学系 2aは、蛍光観察を行う落射 照明系に、楔プリズム 30と偏心スリット 31とが付加されたものである。全反射照明光 学系 2aは、倒立顕微鏡 2によって観察される領域のうち、針 14の先端部 14aが存在 し得る領域に対して照明光を選択的に照射し、細胞 Cを保持する試料容器 4の底面 にエバネッセント光を生じさせる。この全反射照明光学系 2aにおいて、蛍光ランプ 29 力 出た光は、励起フィルタ 32、楔プリズム 30、偏心スリット 31を順に通過する。そし て、ミラー 33で反射してレンズ 34を通過し、さらにダイクロイツクミラー 35で反射し、専 用の対物レンズ 7内を経て試料容器 4の裏面側(下面側)に入射する。  As shown in FIG. 2, the total reflection illumination optical system 2a of the inverted microscope 2 is obtained by adding a wedge prism 30 and an eccentric slit 31 to an epi-illumination system for performing fluorescence observation. The total internal reflection illumination optical system 2a selectively irradiates illumination light to an area where the tip 14a of the needle 14 can be present among the areas observed by the inverted microscope 2, and a sample container holding cells C. Evanescent light is generated on the bottom surface of 4. In the total reflection illumination optical system 2a, the light emitted from the fluorescent lamp 29 passes through the excitation filter 32, the wedge prism 30, and the eccentric slit 31 in this order. Then, the light is reflected by the mirror 33, passes through the lens 34, is further reflected by the dichroic mirror 35, passes through the dedicated objective lens 7, and is incident on the back side (lower side) of the sample container 4.
[0052] ここで、偏心スリット 31の位置は、調整手段 31aによって変更することが可能である 。この偏心スリット 31の位置を変更することにより、少なくとも臨界角近傍における照 明光の対物レンズ 7への入射角、ひいては試料容器 4の裏面への入射角を自由に設 定することが可能である。なお、本実施の形態の照明光学系は、励起フィルタ 32、ダ ィクロイツクミラー 35の各分光特性に依ることなぐ照明を行うことが可能である。  [0052] Here, the position of the eccentric slit 31 can be changed by the adjusting means 31a. By changing the position of the eccentric slit 31, it is possible to freely set the incident angle of the illuminating light to the objective lens 7 at least in the vicinity of the critical angle, and eventually the incident angle to the back surface of the sample container 4. The illumination optical system of the present embodiment can perform illumination without depending on the spectral characteristics of the excitation filter 32 and the dichroic mirror 35.
[0053] 図 3にも示すように、洗浄ユニット 16は、防塵のためのカバー 41を有している。カバ 一 41は、略方形状で内部に空間を有している。カバー 41の上面部 41aの略中央に は、針 14を挿入する開口部 42が設けられている。この開口部 42の径は、防塵のた めに、針 14を必要な量だけ挿入することができる最小限の大きさになっている。カバ 一 41内には、超音波洗浄槽 43と、超音波振動子 44とが配置されている。超音波洗 浄槽 43には、針 14の先端部 14aを十分に浸漬させられる程度の媒質 (例えば、純水 、中性洗剤、アルカリ性溶液)が保持されている。超音波振動子 44は、超音波洗浄 槽 43の下部に取り付けられている。超音波振動子 44には、配線コード 45が接続さ れ、配線コード 45は、カバー 41を貫通して不図示の電源に接続されている。 As shown in FIG. 3, the cleaning unit 16 has a cover 41 for dust prevention. The cover 41 has a substantially square shape and a space inside. An opening 42 for inserting the needle 14 is provided substantially at the center of the upper surface 41a of the cover 41. The diameter of the opening 42 is a minimum size that allows a required amount of the needle 14 to be inserted in order to prevent dust. Inside the cover 41, an ultrasonic cleaning tank 43 and an ultrasonic vibrator 44 are arranged. The ultrasonic cleaning tank 43 holds a medium (for example, pure water, a neutral detergent, or an alkaline solution) enough to immerse the tip 14a of the needle 14 sufficiently. Ultrasonic vibrator 44 is ultrasonically cleaned It is attached to the lower part of tank 43. A wiring cord 45 is connected to the ultrasonic vibrator 44, and the wiring cord 45 passes through the cover 41 and is connected to a power supply (not shown).
なお、洗浄液として洗剤や薬剤を使用する場合には、複数の超音波洗浄槽 43を用 いて、中和及びすすぎを十分に行う。  When a detergent or a chemical is used as a cleaning liquid, neutralization and rinsing are sufficiently performed using a plurality of ultrasonic cleaning tanks 43.
[0054] 図 4にも示すように、溶液台 17には、複数の凹部が、所定間隔をあけて設けられて いる。これら複数の凹部ごとに、例えば種類の異なる複数の DNA (デォキシリボ核酸As shown in FIG. 4, the solution stage 17 is provided with a plurality of recesses at predetermined intervals. For each of the plurality of recesses, for example, a plurality of different types of DNA (deoxyribonucleic acid)
)溶液等の導入物質溶液 17aが分注される。溶液台 17には、電極 46が埋め込まれ て 、る。この電極 46は配線コード 47を介して不図示の電源に接続されて 、る。 なお、溶液 17aを分注する凹部を、溶液台 17に設ける代わりに、溶液台 17の上面 を撥水加工するとともに複数の親水領域を形成しておき、この親水領域に溶液 17a を保持させるようにしてもょ 、。 ) An introduction substance solution 17a such as a solution is dispensed. An electrode 46 is embedded in the solution table 17. The electrode 46 is connected to a power source (not shown) via a wiring cord 47. Instead of providing a concave portion for dispensing the solution 17a in the solution stage 17, the upper surface of the solution stage 17 is water-repellent and a plurality of hydrophilic regions are formed, and the solution 17a is held in the hydrophilic region. Anyway.
[0055] このようなマニピュレータ装置 1を用いて、針 14の先端部 14aに導入物質を保持さ せ、生体試料に導入物質を導入する手順を、図 5に示すフローチャートを用いて説 明する。 [0055] A procedure for causing the introduced substance to be held at the distal end portion 14a of the needle 14 and introducing the introduced substance into the biological sample using the manipulator device 1 will be described with reference to the flowchart shown in FIG.
まず、図 1に示す位置決め手段 15を移動させて、針 14を洗浄ユニット 16の開口部 42〖こ挿入し、図 3に仮想線で示すように、針 14の先端部 14aを超音波洗浄槽 43内 の媒質に浸漬させる。この状態で、電源から駆動配線 45を介して超音波振動子 44 に電力を供給し、超音波振動子 44を振動させる。超音波洗浄槽 43内の媒質には、 超音波が印加され、針 14の先端部 14aの表面が洗浄される。例えば、針 14の先端 部 14aの表面が有機物等で汚染されていた場合には、その有機物が除去される。こ れにより、針 14の先端部 14aの表面が清浄化され、他の元素等の吸着を阻害する物 質がない状態、つまり活性状態になる (S l)。  First, the positioning means 15 shown in FIG. 1 is moved, and the needle 14 is inserted into the opening 42 of the cleaning unit 16, and as shown by the phantom line in FIG. Immerse in the medium in 43. In this state, power is supplied from the power supply to the ultrasonic vibrator 44 via the drive wiring 45, and the ultrasonic vibrator 44 is vibrated. Ultrasonic waves are applied to the medium in the ultrasonic cleaning tank 43 to clean the surface of the tip 14a of the needle 14. For example, when the surface of the tip 14a of the needle 14 is contaminated with an organic substance or the like, the organic substance is removed. As a result, the surface of the tip portion 14a of the needle 14 is cleaned, and there is no substance that inhibits adsorption of other elements or the like, that is, an active state (Sl).
[0056] 超音波洗浄によって針 14の先端部 14aに活性を付与したら、位置決め手段 15を 作動させ、針 14の先端部 14aを、容器台 17の所定の凹部に注入された導入物質溶 液 17aの液滴の所定箇所に内に挿入し、浸漬させる。このとき、針 14と電極 46との間 に配線コード 47を介して所定の電圧を所定時間付与する。導入物質が一般的にマ ィナス電荷を帯びることが多 、DNAである場合には、針 14を陽極として針 14の先端 部 14aの表面に DNAを吸着させる(S2)。 次に、照明モードを、操作対象物の観察'位置データの決定に適したものに設定す る(S3)。 After the tip 14a of the needle 14 is activated by ultrasonic cleaning, the positioning means 15 is operated to move the tip 14a of the needle 14 into the introduced substance solution 17a injected into a predetermined recess of the container base 17. Is immersed in a predetermined portion of the droplet of the liquid crystal. At this time, a predetermined voltage is applied between the needle 14 and the electrode 46 via the wiring cord 47 for a predetermined time. In general, when the substance to be introduced often has a negative charge and is DNA, the DNA is adsorbed on the surface of the tip 14a of the needle 14 using the needle 14 as an anode (S2). Next, the illumination mode is set to a mode suitable for determining the observation / position data of the operation target (S3).
[0057] 操作対象物が生体試料である細胞 Cの場合には、照明モードとして、光源 9による 透過明視野照明や位相差照明が良く用いられる。試料容器 4内の生体試料を、光源 9による明視野照明あるいは位相差照明を用いて顕微鏡観察し、導入対象となる細 胞 Cを選択する。必要に応じて、選択した細胞 Cの位置データを制御部 12の記憶部 (位置記憶手段) 12aに記憶させる(S4)。  When the operation target is a cell C which is a biological sample, transmitted light field illumination or phase contrast illumination by the light source 9 is often used as an illumination mode. The biological sample in the sample container 4 is observed under a microscope using bright-field illumination or phase-contrast illumination with the light source 9, and the cell C to be introduced is selected. If necessary, the position data of the selected cell C is stored in the storage unit (position storage means) 12a of the control unit 12 (S4).
[0058] 次 、で、顕微鏡視野内の導入対象となる細胞 Cの近傍で、細胞 Cが接着しておら ず試料容器 4の底面が露出して 、る箇所に、駆動手段 25等を介して針 14の先端部 14aを下降させ、安全に座標管理ができる範囲で十分に接近させる(S5)。安全に座 標管理する手段としては、例えば、顕微鏡で十分観察可能な針 14の根元側の部位 と試料容器 4の底面とのフォーカス位置における対物レンズ 7の座標に基づき、試料 容器 4の底面から 10〜数十/ z m程度の高さまで針 14の先端部 14aを下降させる方 法が挙げられる。  Next, the cell C is not adhered and the bottom surface of the sample container 4 is exposed near the cell C to be introduced in the visual field of the microscope. The tip 14a of the needle 14 is lowered and brought close enough within a range where coordinate management can be safely performed (S5). As a means for safely managing coordinates, for example, based on the coordinates of the objective lens 7 at the focus position between the base side of the needle 14 that can be sufficiently observed with a microscope and the bottom surface of the sample container 4, A method of lowering the tip 14a of the needle 14 to a height of about 10 to several tens / zm can be cited.
[0059] 次に照明モードを、蛍光ランプ 29を用いる試料容器 4の底面への落射方向からの 全反射照明に切り替える(S6)。全反射照明は、処置具の位置検出に適している。ま た、調整手段 31aを使って偏心スリット 31の位置調整を行い、試料容器 4の底面の上 方に、エバネッセント光の他に若干の透過光が混入する、いわゆる疑似エバネッセン ト光を照射させる状態とする。これと同時に、顕微鏡のフォーカスが試料容器 4の底 面から上方 5〜: LO /z mに位置するように調整する。そして、例えば、 1回の送りにつき 2 m程度の微小送りで針 14を下降させ、針 14の先端部 14aで反射した疑似エバ ネッセント光の散乱光が画像処理手段 11によって検出され始めた時点で、針 14の 下降を停止させる。これで、粗動アプローチが完了する。  Next, the illumination mode is switched to total reflection illumination from the direction of falling onto the bottom surface of the sample container 4 using the fluorescent lamp 29 (S6). The total reflection illumination is suitable for detecting the position of the treatment tool. In addition, the position of the eccentric slit 31 is adjusted using the adjusting means 31a, and the upper part of the bottom surface of the sample container 4 is irradiated with so-called pseudo-evanescent light in which some transmitted light is mixed in addition to evanescent light. And At the same time, adjust so that the focus of the microscope is located at 5 to LO / zm above the bottom surface of the sample container 4. Then, for example, the needle 14 is lowered at a minute feed of about 2 m per feed, and when the scattered light of the pseudo evanescent light reflected at the tip 14 a of the needle 14 starts to be detected by the image processing means 11. , Stop the needle 14 from descending. This completes the coarse approach.
[0060] 次に、前述と同様、調整手段 31aを使って偏心スリット 31の位置調整を行い、試料 容器 4の底面の上方に、エバネッセント光のみを照射させる状態とする。これと同時 に、顕微鏡のフォーカスが試料容器 4の底面に一致する力もしくは底面の上方約 20 Onm以内に位置するように調整する。そして、例えば、 1回の送りにつき lOOnm程度 の極微小送りで針 14を下降させ、針 14の先端部 14aで反射したエバネッセント光の 散乱光が画像処理手段 11によって検出され始めた時点で (すなわち、散乱光が光つ ていない状態力も光った状態に変化した時点で)、針 14の下降を停止させる。これで 、微動アプローチが完了する。このときの針 14の高さを基準高さとする。すなわち、先 端部 14aが試料容器 4の底面に接触する直前の極近接位置にあるときの針 14の位 置を、基準高さとし、この値をデータの形で制御部 12内の記憶部 12aに記憶させる( S7)。 Next, as described above, the position of the eccentric slit 31 is adjusted using the adjusting means 31a, so that only the evanescent light is irradiated above the bottom surface of the sample container 4. At the same time, adjust so that the focus of the microscope is located within about 20 Onm above the bottom or the force that matches the bottom of the sample container 4. Then, for example, the needle 14 is lowered by a very small feed of about 100 nm per feed, and the evanescent light reflected by the tip 14a of the needle 14 is moved downward. At the time when the scattered light starts to be detected by the image processing means 11 (that is, when the state where the scattered light is not lit and the force changes to the lit state), the lowering of the needle 14 is stopped. This completes the fine movement approach. The height of the needle 14 at this time is defined as a reference height. That is, the position of the needle 14 when the tip 14a is in the very close position immediately before contacting the bottom surface of the sample container 4 is defined as a reference height, and this value is stored in the form of data in the storage unit 12a in the control unit 12. (S7).
なお、針 14の先端部 14aで反射したエバネッセント光の散乱光が画像処理手段 11 によって検出されるとき、針 14の先端部 14aの高さ位置データの他に、針 14の先端 部 14aの水平面に沿った XY方向の位置データも検出することができる。そこで、検 出された XY方向の位置データを、正確な針 14の先端部 14aの位置として、制御部 1 2内の記憶部 12aに記憶させる。  When the scattered light of the evanescent light reflected by the tip 14a of the needle 14 is detected by the image processing means 11, in addition to the height position data of the tip 14a of the needle 14, the horizontal plane of the tip 14a of the needle 14 Position data in the X and Y directions along. Therefore, the detected position data in the XY direction is stored in the storage unit 12a in the control unit 12 as the accurate position of the tip 14a of the needle 14.
[0061] このように、照明光学系を、針 14の先端部 (第 1の領域) 14aを検出するための第 1 の照明モードに設定し、この状態で先端部 14aに焦点を合わせて針 14の先端部 14 aを検出し、先端部 14aを検出したら、照明光学系を、操作する対象物である細胞 C ( 第 2の領域)に照明光を照射するための第 2の照明モードに設定し、細胞の位置を検 出する。このように、照明モードを、処置具である針 14の先端部 14aの検出に適した モード、または操作対象物である細胞 Cの検出に適したモードに切り替えて、針 14の 先端部 14aの位置と細胞の位置とを検出する。  As described above, the illumination optical system is set to the first illumination mode for detecting the tip (first region) 14a of the needle 14, and in this state, the needle 14 is focused on the tip 14a. When the tip 14a is detected, the illumination optical system is switched to the second illumination mode for irradiating the cell C (the second area) to be operated with illumination light. Set and detect cell position. As described above, the illumination mode is switched to a mode suitable for detecting the distal end portion 14a of the needle 14 as the treatment tool or a mode suitable for detecting the cell C as the operation target, and the The position and the position of the cell are detected.
なお、図 6において、 Xは全反射照明光学系の光路、 Yは対物レンズ 7と試料容器 の底面との間に介在されるイマ一ジョンオイル、 Zはエバネッセント照明領域を示す。  In FIG. 6, X indicates the optical path of the total reflection illumination optical system, Y indicates the immersion oil interposed between the objective lens 7 and the bottom surface of the sample container, and Z indicates the evanescent illumination area.
[0062] 次に、針 14を駆動手段 25によって上方へ一旦退避させた後、導入対象の細胞 C の核等の所定位置に針 14の先端部 14aが位置するように、駆動手段 3aを介して XY ステージ 3を移動させる。そして、この状態で駆動手段 25を駆動させ、針 14を下降さ せる。この操作は、制御部 12に入力したデータに基づき、制御部 12から発せられる 指令信号によって自動的に行っても良い。そして、針 14の先端部 14aを導入対象の 細胞 Cの所定位置に挿入する。このとき、針 14の先端部 14aの到達高さ、すなわち 侵入限界高さを、 S7において設定した基準高さから所定距離 (例えば、: m)上方 に設定することにより、針 14の先端部 14aが試料容器 4の底面に衝突させることない ので、針 14の先端部 14aを細胞 C内の目標位置まで確実に侵入させることができる( S8)。 [0062] Next, after the needle 14 is once retracted upward by the driving means 25, the driving means 3a is used so that the tip 14a of the needle 14 is positioned at a predetermined position such as the nucleus of the cell C to be introduced. To move XY stage 3. Then, in this state, the driving means 25 is driven, and the needle 14 is lowered. This operation may be automatically performed by a command signal issued from the control unit 12 based on data input to the control unit 12. Then, the distal end 14a of the needle 14 is inserted into a predetermined position of the cell C to be introduced. At this time, the reaching height of the tip 14a of the needle 14, that is, the penetration limit height is set a predetermined distance (for example: m) above the reference height set in S7, so that the tip 14a of the needle 14 Does not collide with the bottom of sample container 4 Therefore, the tip portion 14a of the needle 14 can be surely penetrated to the target position in the cell C (S8).
なお、制御部 12に入力するデータは、前述の記憶した針 14の先端位置データで あっても良ぐこのときの細胞 Cの所定位置及び針 14の先端部 14aとの相対位置を 求め、両者を一致させる方法を用いて、針 14の先端部 14aを導入対象の細胞 Cの所 定位置に挿入してもよい。  The data to be input to the control unit 12 may be the stored tip position data of the needle 14 described above. In this case, the predetermined position of the cell C and the relative position of the needle 14 to the tip portion 14a are obtained. The tip 14a of the needle 14 may be inserted into a predetermined position of the cell C to be introduced by using a method of matching the positions.
[0063] 上記針 14の先端部 14aの細胞 C内への挿入後、駆動手段 25を駆動させて針 14を 上昇させ、細胞 Cカゝら退避させる。以上が、対象となる細胞 Cへの物質を導入工程で ある。これにより、針 14に吸着させていた DNAが細胞 Cの核内で、針 14から脱落す ることにより、遺伝子導入が行われる。  After the tip 14a of the needle 14 is inserted into the cell C, the driving means 25 is driven to raise the needle 14 and retreat from the cell C. The above is the step of introducing the substance into the target cell C. As a result, the DNA adsorbed on the needle 14 drops from the needle 14 in the nucleus of the cell C, whereby the gene is transferred.
[0064] さらに、異なる細胞 Cへの導入を行う際には、針 14を洗浄ユニット 16に挿入し、針 1 4に残留している導入物質及び細胞 C内で付着した物質を洗浄除去する。以降は、 細胞を選び終え、予定している全ての箇所への導入が終了するまで、洗浄ユニット 1 6で針 14を洗浄し、所定の導入物質を吸着させてから、針 14を生体試料の所定位 置に挿入してその細胞 Cに対する導入物質の導入工程を繰り返す (S9)。  Further, when introducing into a different cell C, the needle 14 is inserted into the washing unit 16 to wash and remove the introduced substance remaining in the needle 14 and the substance adhered in the cell C. Thereafter, the needle 14 is washed with the washing unit 16 to absorb a predetermined substance to be introduced, and the needle 14 is moved to the biological sample until the cells have been selected and the introduction into all the planned locations is completed. The step of inserting the substance into the cell C by inserting the substance into the predetermined position is repeated (S9).
なお、遺伝子を導入する手順は、以上で説明した順序に限定されるものでなぐ遺 伝子導入の目的に合致し、必要な精度を保つ範囲で適宜変更しても良い。例えば、 導入針の位置検出(S6, S7)の後に細胞の位置検出(S3, S4)を行っても良いし、 針先の洗浄 (S1)や DNAの吸着(S2)を、細胞や針先の検出(S3〜S7)の後、遺伝 子導入 (S8)の直前で行っても良い。また、 1つの試料容器 4内で複数回導入を行い 、かつ導入毎に毎回針を交換せずに連続して使用する場合には、針先位置の検出( S6, S7)は最初に 1回だけ行うようにしても良い。  Note that the procedure for introducing a gene is not limited to the order described above, but may be changed as appropriate in accordance with the purpose of introducing a gene and within the range of maintaining necessary accuracy. For example, the cell position detection (S3, S4) may be performed after the introduction needle position detection (S6, S7), or the cleaning of the needle tip (S1) and the adsorption of DNA (S2) may be performed on the cell or needle tip. After the detection (S3 to S7), the detection may be performed immediately before gene introduction (S8). In addition, when introduction is performed several times in one sample container 4 and the needle is used continuously without replacing the needle each time, the detection of the needle tip position (S6, S7) is performed once at first. May be performed only.
[0065] この実施の形態では、倒立顕微鏡 2による落射方向の全反射照明を用いた観察下 で、駆動手段 25及び Zステージ 22からなる昇降手段により針 14を漸次下降させる。 その際、針 14の先端部 14aがエバネッセント照明領域 Zに至ると、エバネッセント光 で照明される。このとき、針の先端部 14aから発せられる散乱光が画像処理手段 11 によって検出されるので、このときの針 14の高さ位置を基準高さとする。そして、この 基準高さを基に、針 14を細胞 C内に挿入するときの針 14の高さを設定するので、針 14の先端部 14aが試料容器 4の底面に接触することなぐ針 14を細胞 Cに安全に挿 入させることができる。また、針 14の先端 14aは光学顕微鏡では捉えることができな V、ほど微細である場合であっても、試料容器 4の底面に衝突して折損するのを未然 に防止することができる。 In this embodiment, the needle 14 is gradually lowered by the raising and lowering means including the driving means 25 and the Z stage 22 under observation by the inverted microscope 2 using total reflection illumination in the falling direction. At this time, when the tip 14a of the needle 14 reaches the evanescent illumination area Z, it is illuminated with evanescent light. At this time, the scattered light emitted from the tip 14a of the needle is detected by the image processing means 11, and the height position of the needle 14 at this time is set as the reference height. Then, based on the reference height, the height of the needle 14 when the needle 14 is inserted into the cell C is set. The needle 14 can be safely inserted into the cell C without the tip 14a of the 14 coming into contact with the bottom surface of the sample container 4. In addition, even if the tip 14a of the needle 14 is as fine as V which cannot be captured by an optical microscope, the tip 14a can be prevented from colliding with the bottom surface of the sample container 4 and being broken.
[0066] また、駆動手段 24を用いた針 14の退避'進出操作、駆動手段 25を用いた針 14の 昇降操作、駆動手段 3aを用いた XYステージ 3の移動操作、および倒立顕微鏡 2の 照明切替操作を、制御部 12からの指令信号に基づいて自動的に行っても良いし、 手動で行っても良い。上記の操作を手動で行う場合には、基準高さを求めた後の針 14の下降位置が、設定された細胞 Cの侵入限界高さに達した後は、制御部 12から の指令信号に基づき、それ以上の針 14の下降を規制するともに、制御部 12に接続 された図示せぬ表示手段に、針 14の下降時の位置が所定高さに達したことを表示 するようにしても良い。 In addition, the retracting / advancing operation of the needle 14 using the driving unit 24, the raising / lowering operation of the needle 14 using the driving unit 25, the moving operation of the XY stage 3 using the driving unit 3a, and the illumination of the inverted microscope 2 The switching operation may be performed automatically based on a command signal from the control unit 12, or may be performed manually. When the above operation is performed manually, after the descending position of the needle 14 after obtaining the reference height reaches the set cell C intrusion limit height, a command signal from the control unit 12 is issued. Based on this, it is also possible to restrict further downward movement of the needle 14 and to display on the display means (not shown) connected to the control unit 12 that the position at the time of the downward movement of the needle 14 has reached a predetermined height. good.
なお、本発明は前記した実施の形態に限られることなぐ必要に応じて適宜変更可 能である。  It should be noted that the present invention is not limited to the above-described embodiment, but can be appropriately changed as needed.
[0067] 例えば、前述の実施の形態では、本発明のマニピュレータ装置 1を及び該装置を 用いた処置具の操作方法を、針 14による刺入'注入を利用した遺伝子導入の場合を 例に挙げて説明した力 これに限られることなぐ針 14の代わりに他の処置具を用い 、移動、切断、保持、物理的または電気的な刺激等の操作を行っても良い。また、操 作対象としては細胞 Cに限られることなぐ細菌等他の生体試料や、半導体やナノチ ユーブ等の生体試料以外のワークを対象として前述の操作を行っても良い。  For example, in the above-described embodiment, the manipulator device 1 of the present invention and a method of operating a treatment tool using the device are described by taking, as an example, the case of gene transfer using insertion and injection with the needle 14. The force described above may be replaced with another treatment tool instead of the needle 14, and operations such as moving, cutting, holding, and physical or electrical stimulation may be performed. In addition, the above operation may be performed on other biological samples such as bacteria that are not limited to cells C, and on works other than biological samples such as semiconductors and nanotubes.
[0068] また、前述の実施の形態では、針 14の外周面に電気を流して電気的に導入物質 を吸着させているが、これに限られることなぐ化学的に吸着させてもよい。また、十分 に微細であれば、ノズル状として、その先端から導入物質溶液を直接細胞 C等へ吐 出するようにしてもよい。  [0068] In the above-described embodiment, electricity is supplied to the outer peripheral surface of the needle 14 to electrically adsorb the introduced substance. However, the present invention is not limited to this. In addition, if it is sufficiently fine, it may be formed in a nozzle shape, and the introduced substance solution may be directly discharged to the cell C or the like from the tip.
[0069] 前述の実施の形態では、超音波を利用して針 14の洗浄を行っている力 これに限 られることなく、目的や状況に応じて、プラズマや紫外線、あるいはオゾン等を利用し たドライ洗浄を用いても良い。また、針 14を洗浄して再利用する代わりに、針 14を予 め複数用意しておき、それら針を持ち替えて所定の操作を行っても良い。 [0070] 前述の実施の形態では、落射方向の全反射照明の光源として、蛍光ランプ 29を利 用している力 これに限られることなぐレーザを光源として用いてもよい。また、針 14 の先端部 14aの位置として予め設定し、制御部 12内の記憶部 12aに記憶させた位 置を、画像処理手段 11が検出したエバネッセント光による散乱光の位置をもとに修 正しても良い。 [0069] In the above-described embodiment, the force of cleaning the needle 14 using ultrasonic waves is not limited to this, and plasma, ultraviolet light, ozone, or the like is used according to the purpose or situation. Dry cleaning may be used. Instead of washing and reusing the needles 14, a plurality of needles 14 may be prepared in advance, and the needles may be changed and a predetermined operation may be performed. [0070] In the above-described embodiment, the power using fluorescent lamp 29 as the light source for the total reflection illumination in the incident direction may be used as a light source. Further, the position set in advance as the position of the tip 14a of the needle 14 and stored in the storage unit 12a in the control unit 12 is modified based on the position of the scattered light due to the evanescent light detected by the image processing unit 11. You may correct it.
[0071] 次に、本発明に係る第 2の実施の形態について図 7を用いて説明する。  Next, a second embodiment according to the present invention will be described with reference to FIG.
図 7に示すマニピュレータ装置 laは、ランプ 50と、照明光学系 50aと、穴あきミラー 51と、暗視野対物レンズ 52と、結像レンズ 53と、撮像手段 10と、画像処理手段 (検 出手段) 11とを備えている。暗視野対物レンズ 52の外周部には、照明光導光部 52a が設けられている。針 14は、先端部 14aの存在し得る位置と観察光学系の光軸とを 合わせる駆動手段 (第 1の位置合わせ手段) 67に支持されている。このマ-ピュレー タ装置 laの照明光学系は、暗視野照明光学系である。  The manipulator device la shown in FIG. 7 includes a lamp 50, an illumination optical system 50a, a perforated mirror 51, a dark-field objective lens 52, an imaging lens 53, an imaging unit 10, an image processing unit (detection unit). 11). An illumination light guide 52a is provided on the outer periphery of the dark field objective lens 52. The needle 14 is supported by a driving means (first positioning means) 67 for aligning a position where the tip portion 14a can exist with the optical axis of the observation optical system. The illumination optical system of the computer device la is a dark-field illumination optical system.
[0072] ランプ 50から発せられた照明光束は、照明光学系 50aを経て穴あきミラー 51に入 射し、リング状の光束となって照明光導光部 52aに入射する。照明光導光部 52aに 入射した光束は、図中破線で示すように、暗視野対物レンズ 52の先端部分で反射ま たは屈折し、対物レンズ 52によって取り込むことができる光線の角度よりも大きな角 度で試料容器 4を照明する。  [0072] The illumination light beam emitted from the lamp 50 enters the perforated mirror 51 via the illumination optical system 50a, and enters the illumination light guide 52a as a ring-shaped light beam. The luminous flux incident on the illumination light guide section 52a is reflected or refracted at the tip of the dark field objective lens 52 as shown by the broken line in the figure, and has an angle larger than the angle of the light beam that can be captured by the objective lens 52. Illuminate sample container 4 in degrees.
[0073] ここで、試料容器 4の底面等、比較的大きくて平坦な面で反射した光線は、対物レ ンズ 52には入射しないが、針 14の先端部 14aのように微細な形状で反射して生じた 散乱光には、一部、対物レンズ 52に入射する光がある。この光は対物レンズ 52で取 り込まれ、穴あきミラー 51の開口部を通過し、結像レンズ 53で集光されて結像し、撮 像手段 10によって画像ィ匕される。これにより、この散乱光が光っていない状態から光 つた状態に変化したことが、画像処理手段 11によって検出される。  Here, the light beam reflected by a relatively large and flat surface such as the bottom surface of the sample container 4 does not enter the objective lens 52, but is reflected in a fine shape like the tip 14a of the needle 14. Some of the scattered light generated as a result includes light incident on the objective lens 52. This light is captured by the objective lens 52, passes through the opening of the perforated mirror 51, is focused by the imaging lens 53, forms an image, and is imaged by the imaging means 10. As a result, the image processing means 11 detects that the scattered light has changed from a non-shining state to a shiny state.
[0074] 暗視野照明光は、試料容器 4と培地 Caとの界面で一部が反射し、一部が屈折し、 培地 Ca中を透過し、試料容器 4の底面から離れた部分も照明する。これにより、針 1 4の先端部 14aが試料容器 4の底面力も離れて 、ても、画像処理手段 11によって同 先端部 14aを検出することができる。このため、エバネッセント光を照明する場合より も更に、針 14の先端部 14aの衝突'破損の可能性を低くすることができる。また、全 反射状態を必要としないので、高価な油浸タイプの対物レンズを使う必要が無ぐ作 業性も向上する。 [0074] The dark-field illumination light is partially reflected at the interface between the sample container 4 and the medium Ca, partially refracted, transmitted through the medium Ca, and also illuminates the part remote from the bottom surface of the sample container 4. . Thus, even if the tip 14a of the needle 14 is separated from the bottom surface force of the sample container 4, the tip 14a can be detected by the image processing means 11. For this reason, the possibility of collision or damage of the distal end portion 14a of the needle 14 can be further reduced as compared with the case of illuminating the evanescent light. Also, all Since there is no need for a reflective state, the workability is improved because it is not necessary to use an expensive oil immersion type objective lens.
[0075] 次に、本発明に係る第 3の実施の形態について図 8を用いて説明する。  Next, a third embodiment according to the present invention will be described with reference to FIG.
図 8に示すマニピュレータ装置 lbは、ランプ 50と、照明光学系 50aと、ビームスプリ ッタ 54と、二ポーディスク 55と、回転モータ 56と、結像レンズ 53と、撮像手段 10と、画 像処理手段 (検出手段) 11とを備えている。二ポーディスク 55には、図 9に示すように 、スノィラル状の微小開口 55aが空いている。各微小開口 55a間の距離は、微小開 口 55aの直径の 10倍程度である。回転モータ 56は、二ポーディスク 55を一定速度で 回転させる。針 14は、先端部 14aの存在し得る位置と観察光学系の光軸とを合わせ る駆動手段 (第 2の位置合わせ手段) 68に支持されている。このマニピュレータ装置 lbにおいて、二ポーディスク 55は、結像レンズ 53の像位置に配置されるとともに、照 明光学系および観察光学系と合わせてディスク走査型の共焦点顕微鏡を構成する。  The manipulator device lb shown in FIG. 8 includes a lamp 50, an illumination optical system 50a, a beam splitter 54, a two-way disk 55, a rotating motor 56, an imaging lens 53, an imaging unit 10, an image Processing means (detection means) 11. As shown in FIG. 9, the two-way disc 55 is provided with a small opening 55a in a snail shape. The distance between the minute openings 55a is about 10 times the diameter of the minute openings 55a. The rotation motor 56 rotates the two-way disc 55 at a constant speed. The needle 14 is supported by driving means (second positioning means) 68 for aligning the position where the tip portion 14a can exist with the optical axis of the observation optical system. In this manipulator device lb, the two-way disk 55 is arranged at the image position of the imaging lens 53, and constitutes a disk scanning confocal microscope together with the illumination optical system and the observation optical system.
[0076] ランプ 50から発せられた照明光束は、照明光学系を経てビームスプリッタ 54で反 射し、二ポーディスク 55に入射する。微小開口 55aを通過した光束は結像レンズ 53、 対物レンズ 7を経て所定の点で収束し、その点に達した針 14の先端部 14aを照明し 、反射する。先端部 14aで反射した光は、再び対物レンズ 7、結像レンズ 53を経て- ポーディスク 55に入射する。ここで、先端部 14aが照明される位置と微小開口 55aと が光学的に共役になっていれば、先端部 14aに焦点が合っていると、反射光 (散乱 光)は-ポーディスク 55上で集光し、微小開口 55aを通過する力 針先端 14aに焦点 が合っていないと、反射光は-ポーディスク 55上では集光せず、微小開口 55aを収 束した状態で通過することはできない。微小開口 55aを収束した状態で通過した光 は、ビームスプリッタ 54を透過し、撮像手段 10上で結像し、画像化される。これにより 、この反射光が結像していない状態力 結像した状態に変化したことが、画像処理手 段 11によって検出される。  The illumination light beam emitted from the lamp 50 is reflected by the beam splitter 54 via the illumination optical system, and is incident on the two-way disk 55. The light beam passing through the minute aperture 55a converges at a predetermined point via the imaging lens 53 and the objective lens 7, and illuminates and reflects the tip 14a of the needle 14 that has reached that point. The light reflected by the distal end portion 14a passes through the objective lens 7 and the imaging lens 53 again and is incident on the portable disk 55. Here, if the position where the tip 14a is illuminated and the micro aperture 55a are optically conjugate, if the tip 14a is in focus, the reflected light (scattered light) will If the tip 14a is not focused on the needle 14a, the reflected light will not converge on the -Po disk 55 and will pass through the aperture 55a in a focused state. Can not. The light that has passed through the small aperture 55a in a converged state passes through the beam splitter 54, forms an image on the imaging unit 10, and forms an image. As a result, the image processing means 11 detects that the reflected light has changed to a non-imaging state and an image forming state.
[0077] 二ポーディスク 55は定速度で回転するので、微小開口 55aは焦点面全体を走査す ることができ、焦点面にある物体の像だけが検出され、焦点面にないものは画像ィ匕さ れない。したがって、針 14の先端部 14aが焦点面に達したときのみ画像ィ匕されるの で、針 14の高さを高精度で検出することができる。ここで、針 14の先端部 14aの像は 、 CCDカメラのかわりに接眼レンズで目視観察しても良!、。 [0077] Since the two-way disc 55 rotates at a constant speed, the minute aperture 55a can scan the entire focal plane, and only an image of an object on the focal plane is detected. I can't be dumb Therefore, since the image is displayed only when the tip portion 14a of the needle 14 reaches the focal plane, the height of the needle 14 can be detected with high accuracy. Here, the image of the tip 14a of the needle 14 is You can also visually observe with an eyepiece instead of a CCD camera!
[0078] また、図 10に示すように、顕微鏡として正立型を用い、レーザ走査型の共焦点光学 系を用いも良い。図 10に示すマニピュレータ装置 lcは、レーザ光源 60と、ビームス プリッタ 61と、 2次元光操作機構 62と、瞳投影レンズ 63と、結像レンズ 53と、対物レ ンズ 7と、集光レンズ 64と、共焦点ピンホール 65と、光検出器 66とを備えている。 2次 元光走査機構 62は、 2組のガルバノミラースキャナ力 なり、レーザ光を 2方向に偏 向(走査)させる。光検出器 66には、フォトダイオードやフォトマルチプライヤー(フォト マル)が採用される。 Further, as shown in FIG. 10, an upright type microscope may be used as the microscope, and a laser scanning type confocal optical system may be used. The manipulator device lc shown in FIG. 10 includes a laser light source 60, a beam splitter 61, a two-dimensional light operation mechanism 62, a pupil projection lens 63, an imaging lens 53, an objective lens 7, and a condenser lens 64. , A confocal pinhole 65 and a photodetector 66. The two-dimensional optical scanning mechanism 62 uses two sets of galvanomirror scanners to deflect (scan) the laser light in two directions. As the photodetector 66, a photodiode or a photomultiplier (photomultiplier) is employed.
[0079] レーザ光源 60から出射されたレーザ光は、ビームスプリッタ 61を透過して 2次元光 走査機構 62に入射する。 2次元光走査機構 62に入射したレーザ光は、 2次元光走 查機構 62によって 2方向に偏向され、瞳投影レンズ 63、結像レンズ 53、対物レンズ 7 を経て針 14等の処置具または細胞 Cに照射され、反射する。針 14等の処置具また は細胞 Cで反射した光は、再び対物レンズ 7、結像レンズ 53、瞳投影レンズ 63を経 て 2次元光走査機構 62に入射する。そして、 2方向の偏向が解消し、ビームスプリツ タ 61へと入射する。針 14等の処置具または細胞 Cで反射した光は、ビームスプリッタ 61で反射し、集光レンズ 64で集光され、共焦点ピンホール 65へ導かれる。  The laser light emitted from the laser light source 60 passes through the beam splitter 61 and enters the two-dimensional optical scanning mechanism 62. The laser light incident on the two-dimensional light scanning mechanism 62 is deflected in two directions by the two-dimensional light scanning mechanism 62, passes through the pupil projection lens 63, the imaging lens 53, the objective lens 7, and the treatment tool such as the needle 14 or a cell. C is irradiated and reflected. The light reflected by the treatment tool such as the needle 14 or the cell C again enters the two-dimensional optical scanning mechanism 62 via the objective lens 7, the imaging lens 53, and the pupil projection lens 63. Then, the deflection in two directions is eliminated, and the light enters the beam splitter 61. The light reflected by the treatment tool such as the needle 14 or the cell C is reflected by the beam splitter 61, collected by the condenser lens 64, and guided to the confocal pinhole 65.
[0080] 針 14等の処置具または細胞 Cが対物レンズ 7の合焦位置にある場合は、上記のよ うにレーザ光が照射された位置と共焦点ピンホール 65とが光学的に共役になってい れば、集光レンズ 64による収束光は、共焦点ピンホール 65上で一点に収束し、共焦 点ピンホール 65を通過する。そして、光検出器 66によって検出され、電気信号に変 換される。また、針 14等の処置具または細胞 Cが対物レンズ 7の合焦位置に無い場 合は、集光レンズ 64による収束光は、共焦点ピンホール 65上では収束せずに広が つているので、その一部が共焦点ピンホール 65を通過しても、光検出器 66によって は検出されない。  When the treatment tool such as the needle 14 or the cell C is at the focused position of the objective lens 7, the position irradiated with the laser beam and the confocal pinhole 65 are optically conjugated as described above. If so, the convergent light from the condenser lens 64 converges to one point on the confocal pinhole 65 and passes through the confocal pinhole 65. Then, the light is detected by the photodetector 66 and converted into an electric signal. When the treatment tool such as the needle 14 or the cell C is not at the in-focus position of the objective lens 7, the convergent light by the converging lens 64 is not converged on the confocal pinhole 65 but spreads. Even if a part of the light passes through the confocal pinhole 65, it is not detected by the photodetector 66.
[0081] 2次元光走査機構 62の光偏向に同期して光検出器 66の光検出を行うと、針 14等 の処置具または細胞 Cに対物レンズの焦点があった場合のみ、収束光が画像化され る。さらに対物レンズの高さを順次変えながら画像を取り込むと、針 14等の処置具お よび細胞 Cの像が得られる対物レンズ 7の高さに応じて、細胞 Cと処置具 14との高さ の差を検出することができる。 When the light detection of the photodetector 66 is performed in synchronization with the light deflection of the two-dimensional optical scanning mechanism 62, the convergent light is only emitted when the treatment tool such as the needle 14 or the cell C has the focus of the objective lens. Imaged. Furthermore, when images are captured while sequentially changing the height of the objective lens, the height between the cell C and the treatment tool 14 depends on the height of the treatment tool such as the needle 14 and the height of the objective lens 7 from which an image of the cell C can be obtained. Can be detected.
このようなディスク型あるいはレーザ走査型の共焦点光学系を採用したマニピユレ ータ装置では、処置具の先端部の像を良好に検出することができるのに加え、その 高さも精度良く検出することができる。  In such a manipulator using a disk-type or laser-scanning confocal optical system, it is possible to detect not only the image of the distal end of the treatment tool but also its height with high accuracy. Can be.

Claims

請求の範囲 The scope of the claims
[1] 観察光学系の観察下で、操作対象物に対して操作を行うマニピュレータ装置であつ て:  [1] A manipulator device that performs an operation on an operation target under observation by an observation optical system:
前記操作対象物に対して操作を行う処置具と;  A treatment tool for performing an operation on the operation target;
前記処置具に含まれ、前記操作対象物に接触または最も接近する先端部と; 前記先端部の変位に伴って発生する、照明光によって照明された前記先端部力も の散乱光を含む光の変化を検出する検出手段と;  A tip included in the treatment tool and in contact with or closest to the operation target; and a change in light including scattered light generated by the illumination light and generated by displacement of the tip. Detection means for detecting
を備えるマニピュレータ装置。  A manipulator device comprising:
[2] 請求項 1に記載のマニピュレータ装置であって、  [2] The manipulator device according to claim 1, wherein
前記観察光学系によって観察される領域のうち、前記先端部が存在し得る領域に 対して前記照明光を選択的に照射する照明光学系を更に備える。  The illumination optical system further includes an illumination optical system that selectively irradiates the illumination light to an area where the distal end portion may exist, among the areas observed by the observation optical system.
[3] 請求項 2に記載のマニピュレータ装置であって、 [3] The manipulator device according to claim 2, wherein
前記照明光は、前記観察光学系を介して前記先端部が存在し得る領域に照射さ れる。  The illumination light is radiated through the observation optical system to a region where the distal end may exist.
[4] 請求項 2に記載のマニピュレータ装置であって、  [4] The manipulator device according to claim 2, wherein
前記照明光学系は、前記操作対象物を保持する面にエバネッセント光を生じさせ る。  The illumination optical system generates evanescent light on a surface holding the operation target.
[5] 請求項 2に記載のマニピュレータ装置であって、  [5] The manipulator device according to claim 2, wherein
前記先端部の存在し得る位置と前記観察光学系の光軸とを合わせる第 1の位置合 わせ手段を更に備え、  A first position aligning unit that aligns a position where the distal end can exist with an optical axis of the observation optical system,
前記照明光学系は、暗視野照明光学系である。  The illumination optical system is a dark field illumination optical system.
[6] 請求項 2に記載のマニピュレータ装置であって、 [6] The manipulator device according to claim 2, wherein
前記先端部の存在し得る位置と前記観察光学系の焦点位置とを合わせる第 2の位 置合わせ手段を更に備え、  A second alignment unit that adjusts a position where the distal end portion may exist and a focal position of the observation optical system,
前記検出手段は、前記照明光が照射された領域と光学的に共役な位置に設けら れた開口部を通過した前記散乱光を含む光の変化を検出する。  The detection unit detects a change in light including the scattered light that has passed through an opening provided at a position optically conjugate to the region irradiated with the illumination light.
[7] 請求項 6に記載のマニピュレータ装置であって、 [7] The manipulator device according to claim 6, wherein
前記観察光学系は、複数の前記開口部を持つディスクを備えるとともに、前記ディ スクを回転させることにより当該開口部を通じて前記先端部の存在し得る領域を走査 して照明し、 The observation optical system includes a disk having a plurality of the openings, and By rotating the disk, a region where the tip portion may exist is scanned and illuminated through the opening,
前記検出手段は、前記ディスクに設けられた前記開口部を通過した前記散乱光を 含む光の変化を検出する。  The detecting means detects a change in light including the scattered light that has passed through the opening provided in the disk.
[8] 請求項 6に記載のマニピュレータ装置であって、  [8] The manipulator device according to claim 6, wherein
前記照明光学系は、レーザ光を出射するとともに、前記レーザ光を前記先端部の 存在し得る領域で収束させた状態で走査し、  The illumination optical system emits laser light, and scans the laser light in a state where the laser light is converged in a region where the front end may exist;
前記検出手段は、前記レーザ光を収束させた領域と光学的に共役な位置に設けら れた前記開口部を通過した前記散乱光を含む光の変化を検出する。  The detecting means detects a change in light including the scattered light passing through the opening provided at a position optically conjugate with the region where the laser light is converged.
[9] 請求項 2に記載のマニピュレータ装置であって、 [9] The manipulator device according to claim 2, wherein
前記照明光学系は、少なくとも、第 1の領域に前記照明光を照射する第 1の照明モ ードと、前記第 1の領域とは異なる第 2の領域に前記照明光を照射する第 2の照明モ 一ドとをそれぞれ切り換える。  The illumination optical system includes at least a first illumination mode for irradiating a first area with the illumination light, and a second illumination mode for irradiating a second area different from the first area with the illumination light. Switch between lighting modes.
[10] 請求項 9に記載のマニピュレータ装置であって、 [10] The manipulator device according to claim 9, wherein
前記照明光学系は、前記第 1の照明モードにおいて前記先端部が存在し得る領域 に対し前記照明光を照射し、前記第 2の照明モードにおいて前記操作対象物に対し 前記照明光を照射する。  The illumination optical system irradiates the illumination light to a region where the distal end portion may exist in the first illumination mode, and irradiates the operation target with the illumination light in the second illumination mode.
[11] 請求項 1に記載のマニピュレータ装置であって、 [11] The manipulator device according to claim 1,
前記先端部は、前記観察光学系の光学的分解能よりも小さい。  The tip is smaller than the optical resolution of the observation optical system.
[12] 請求項 1に記載のマニピュレータ装置であって、 [12] The manipulator device according to claim 1,
前記検出手段が検出した前記先端部の位置を記憶する位置記憶手段を更に備え る。  The apparatus further includes position storage means for storing the position of the tip portion detected by the detection means.
[13] 請求項 12に記載のマニピュレータ装置であって、  [13] The manipulator device according to claim 12, wherein
前記操作対象物が保持された面と前記処置具との相対的な距離を調節する駆動 手段を更に備え、  Driving means for adjusting a relative distance between the surface on which the operation target is held and the treatment tool,
前記駆動手段は、前記検出手段が検出した結果に基づいて前記処置具の移動を 制御する。  The driving unit controls the movement of the treatment tool based on a result detected by the detection unit.
[14] 請求項 1に記載のマニピュレータ装置であって、 前記処置具による操作は、前記操作対象物への前記処置具の挿入、前記操作対 象物への物質の注入、前記操作対象物の切断、前記操作対象物の保持、前記操作 対象物の移動、および前記操作対象物への物理的または電気的な刺激を含む。 [14] The manipulator device according to claim 1, The operation with the treatment tool includes inserting the treatment tool into the operation target, injecting a substance into the operation target, cutting the operation target, holding the operation target, and moving the operation target. , And physical or electrical stimulation of the operation target.
[15] 請求項 1に記載のマニピュレータ装置であって、 [15] The manipulator device according to claim 1,
前記操作対象物は生体試料を含む。  The operation target includes a biological sample.
[16] 請求項 15に記載のマニピュレータ装置であって、 [16] The manipulator device according to claim 15, wherein
前記生体試料は生細胞である。  The biological sample is a living cell.
[17] 請求項 1のマニピュレータ装置に対して用いられるマニピュレータ。 [17] A manipulator used for the manipulator device according to claim 1.
[18] 観察光学系の観察下で操作対象物に対して操作を行う、マニピュレータ装置を用い た処置具操作方法であって: [18] A method for operating a treatment tool using a manipulator device, which performs an operation on an operation target under observation by an observation optical system, comprising:
前記操作対象物に対して操作を行う処置具に含まれ、前記操作対象物に接触また は最も接近する先端部を、照明光によって照明する工程と;  A step of illuminating, by illumination light, a tip included in a treatment tool that performs an operation on the operation target and coming into contact with or closest to the operation target;
前記先端部の変位に伴って発生する、前記照明光によって照明された前記先端部 力 の散乱光を含む光の変化を検出する工程と;  Detecting a change in light including scattered light of the tip portion illuminated by the illumination light, which is caused by the displacement of the tip portion;
を備えるマニピュレータ装置を用いた処置具操作方法。  A method for operating a treatment tool using a manipulator device comprising:
PCT/JP2005/006079 2004-03-30 2005-03-30 Manipulator device, manipulator, and method of operating treatment tool using manipulator device WO2005096063A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511729A JP4331748B2 (en) 2004-03-30 2005-03-30 Manipulator device and treatment instrument operating method using manipulator device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004100820 2004-03-30
JP2004-100820 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005096063A1 true WO2005096063A1 (en) 2005-10-13

Family

ID=35063936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006079 WO2005096063A1 (en) 2004-03-30 2005-03-30 Manipulator device, manipulator, and method of operating treatment tool using manipulator device

Country Status (2)

Country Link
JP (1) JP4331748B2 (en)
WO (1) WO2005096063A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2573606A3 (en) * 2011-09-26 2013-04-03 Olympus Corporation Inverted microscope
WO2013084678A1 (en) * 2011-12-07 2013-06-13 独立行政法人科学技術振興機構 Optical system and method for determining presence or absence of viral particles using same
JP2020020896A (en) * 2018-07-30 2020-02-06 アオイ電子株式会社 Operational tool illumination device, nano tweezers system, and method for illuminating operational tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628114A (en) * 1985-07-05 1987-01-16 Yoji Umetani Moving device for minute operating element of micromanipulator to under visual field of microscope
JPH06109979A (en) * 1992-09-30 1994-04-22 Shimadzu Corp Macromanipulator system
JPH0678918U (en) * 1993-04-21 1994-11-04 オリンパス光学工業株式会社 Micro manipulation device
JPH11119109A (en) * 1997-10-13 1999-04-30 Nikon Corp Transmission microscope and stereoscopic observation device attachable to and detachable from the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628114A (en) * 1985-07-05 1987-01-16 Yoji Umetani Moving device for minute operating element of micromanipulator to under visual field of microscope
JPH06109979A (en) * 1992-09-30 1994-04-22 Shimadzu Corp Macromanipulator system
JPH0678918U (en) * 1993-04-21 1994-11-04 オリンパス光学工業株式会社 Micro manipulation device
JPH11119109A (en) * 1997-10-13 1999-04-30 Nikon Corp Transmission microscope and stereoscopic observation device attachable to and detachable from the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2573606A3 (en) * 2011-09-26 2013-04-03 Olympus Corporation Inverted microscope
US9195039B2 (en) 2011-09-26 2015-11-24 Olympus Corporation Inverted microscope including condenser power transmission mechanism provided in support column and illumination support portion
WO2013084678A1 (en) * 2011-12-07 2013-06-13 独立行政法人科学技術振興機構 Optical system and method for determining presence or absence of viral particles using same
JP2020020896A (en) * 2018-07-30 2020-02-06 アオイ電子株式会社 Operational tool illumination device, nano tweezers system, and method for illuminating operational tool
JP7148770B2 (en) 2018-07-30 2022-10-06 アオイ電子株式会社 Inverted microscope, operating tool illumination device, and illumination method for operating tool

Also Published As

Publication number Publication date
JP4331748B2 (en) 2009-09-16
JPWO2005096063A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
EP1720051B1 (en) Microscope and sample observing method
JP4891057B2 (en) Confocal laser scanning microscope
JP4414722B2 (en) Laser microscope
JP2016535861A5 (en)
JP4448493B2 (en) Scanning probe microscope and molecular structure change observation method
JP2016535861A (en) Optical apparatus and method for inspecting multiple samples with a microscope
JP2007029603A (en) Optical diagnostic treatment apparatus
US20230161142A1 (en) Microscope, method of operating a microscope and method of imaging a sample
JP7291683B2 (en) Object picking device with imaging-based localization of the pipette tip
JP2007114542A (en) Microscope observation apparatus and microscope observation method
KR20050065366A (en) Microscope device and immersion objective lens
EP3677945B1 (en) Phase difference observation device and cell treatment device
JP4331748B2 (en) Manipulator device and treatment instrument operating method using manipulator device
US8343765B2 (en) Gene injection apparatus and gene injection method
US20210071128A1 (en) Cell treatment apparatus and method for treating cells with lasers
EP3575390A1 (en) Cell treatment device
KR20220115947A (en) Open top light sheet microscopy with non-orthogonal arrangement of illumination objective and collection objective
JP2004069428A (en) Atomic force and molecular force microscope
JP2005037421A (en) Microscope with dispenser
JP2005098808A (en) Biological information detecting apparatus
JP2008242014A (en) Fluorescence microscope
CN209847146U (en) Multi-modal imaging system
JP4694760B2 (en) microscope
JP2000069953A (en) Device for introducing specific substance into cell and observation device therefor
US20200032198A1 (en) Cell treatment apparatus and method for treating object to be treated

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511729

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase